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Abstract 

The presence of optical illusions tells us that what we see - at least a large fraction of it – is influenced by 

our expectations, which are built on our experience of the environment. This means that, at a 

perceptual level, our brain fills in parts of the visual world with things that aren’t there.  

In this work, we have discovered the presence of neurons in the primary visual cortex (V1), the earliest 

cortical stage of visual processing, that predict the identity of upcoming visual stimuli that mice 

observed in a virtual environment. We also show that these predictions are dependent on the animals’ 

spatial location, suggesting that an internal representation of space can serve as a scaffold for 

predictions. Consistent with an influence representations of space on visual processing, we find that the 

activity of neurons in V1 was modulated by location in the environment, and it is thus possible to 

decode not only the stimulus the mouse is observing at any given time, but its location as well, in the 

case where an identical stimulus is presented in multiple locations.   

Furthermore, we identified the anterior cingulate cortex (ACC) as a potential source of stimulus 

predictions to V1, as V1-projecting ACC axons carried stimulus-predictive activity. Finally, omitting an 

expected visual stimulus drove strong responses in V1. These results are consistent with a predictive 

coding framework, wherein predictions of future sensory stimuli are compared to ongoing sensory 

input, and mismatches between the two lead to error signals.  
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Introduction 

In the early days of artificial intelligence, it was thought that the brain functions easiest to reproduce in 

machines would be the senses, like vision, and the most difficult would be more esoteric concepts like 

reasoning. The exact opposite turned out to be true: computers are remarkably good at proving (simple) 

theorems, solving geometry problems and playing complex games, but are incredibly inept at vision1 

(Moravec 1988). However, vision, and sensing the world in general, seem remarkably easy to us. Why, 

then, does this discrepancy exist? How are humans - and many other animals - so good at vision? 

An elegant model of how sensory systems could function came at least as early as the work of Horace 

Barlow in the 1950’s, with the theorization of the “feature detector”, a module in the sensory brain that 

would be sensitive to specific features in the environment. It was brought about by the discovery of 

neurons in the frog retina that responded to small moving objects in the visual field (Barlow 1953). 

Further experimental evidence for such a detector came with the seminal work of David Hubel & 

Thorsten Wiesel (Hubel and Wiesel 1962), when they found neurons in the primary visual cortex (V1) of 

the cat that were selectively responsive to bars of specific orientations in their preferred regions of the 

visual field. They hypothesized that these types of properties could arise by summating over the 

responses of neurons in the lateral geniculate nucleus of the thalamus (LGN; the primary source of 

retinal input to V1 (Lund 1988)) with appropriately aligned receptive fields, such that they would best 

drive the downstream V1 neuron when a dark oriented bar was in that area of visual space (see Fig. 1 

below). 

 

                                                           
1 This is known as “Moravec’s paradox”. Moravec writes: “it is comparatively easy to make computers exhibit adult level 
performance on intelligence tests or playing checkers, and difficult or impossible to give them the skills of a one-year-old when 
it comes to perception and mobility”. 

Figure 1: Left: schematic of the experiment. Cats viewed stimuli presented on a screen while the activity of neurons in visual cortex was 
recorded. Right: Schematic of a possible connectivity pattern that could explain the formation of orientation-selective neurons in V1. 
Adapted from (Hubel and Wiesel 1962) 
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One could propagate this idea further and hypothesize that the activity of neurons with diverse 

orientation selectivity in V1 could be integrated in higher visual areas to give rise to neurons selective to 

curves, complex shapes, and even faces (indeed, primates seem to have a visual area dedicated to faces 

(Kanwisher, McDermott, and Chun 1997)). This feed-forward hypothesis has become the dominant view 

of how sensory processing works. While it carries a lot of credibility based on known response 

properties in higher visual areas, it is insufficient in explaining how we perceive the world. The most 

intuitive way to demonstrate this is via optical illusions, such as the following:  

 

Figure 2: Optical illusion (Will Kerslake2) 

In this illusion, you can only see the black dots that you are foveating (focusing your eyes) on. The rest 

become invisible. This illusion works even when you distance yourself from the image and are able to 

contain a large part of it in your fovea. A likely explanation is that our brain is aware of the highly regular 

pattern in the image and imposes this pattern onto our perception on regions we are not focusing on, 

therefore overriding what our eyes tell it is there. This is an underlying principle for many illusions: we 

see what we expect to see. Feed-forward summation of objects in the visual scene is insufficient to 

                                                           
2 This illusion is traced to twitter post: https://twitter.com/wkerslake/status/775105333333204992 
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explain illusions like this: even though the feed-forward representation of these dots exist, we do not 

perceive them. Some other processing component, based on knowledge of the visual environment, 

must then occur. This could be achieved via feeding such knowledge back into earlier visual areas. 

Indeed, feedback connections to V1 from other cortical regions as well as connections within V1 

compose the majority of its input (Kennedy, H., P. Barone, A. Falchier 2000). Their functions, however, 

are largely unknown.  

 

Figure 3: Example images from mouse brains with monosynaptic rabies virus expressing GFP injected into V13. Note the diversity 
of areas projecting to V1, as well as the relative density of intracortical projections compared to that of the projection from LGN. 
(Work done by Marcus Leinweber) 

A theoretical framework called predictive coding postulates that a role of these feedback projections is 

to relay predictions of sensory input to earlier sensory areas (Bastos et al. 2012; Rao and Ballard 1999). 

In these earlier areas, the predictions are then subtracted from the actual input arriving from the 

environment, and the difference between the two – the error – is fed forward to the same areas that 

provided the predictions. This error can be used to signal changes or new rules in the environment and 

update our predictions. For example, consider learning to play tennis. A difficulty that many 

inexperienced players face is that the racquet frequently does not connect with the ball. Every time this 

happens, we get an error signal, e.g. in the form of a lack of visual or somatosensory cues triggered by 

the ball having bounced off the racquet. We expected the racquet to be in a given position that would 

intercept the ball, based on our knowledge of the position of our arm. However, this was not the case. 

                                                           
3 The virus is complemented with rabies virus glycoprotein in V1 and then “jumps” retrogradely to infect neurons that send 

axons to V1 (Wickersham et al. 2007). 
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We therefore use the error signal to update our knowledge of how our arm is positioned and the way 

we grip the racket translate to how we expect the ball to react.  

 

Figure 4: Schematic of sensorimotor learning: incoming sensory input is compared to an efference copy of motor output, and 
errors are used to guide adjustments. Adapted from (Keller and Hahnloser 2009) 

 

In order to examine the above in functional detail, let’s take a closer look at the structure and known 

functions of primary visual cortex.  
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The visual system 

Anatomy 
Retinal ganglion cells send axons from the retina to the lateral geniculate nucleus of the thalamus (LGN) 

via the optic nerve (Lund 1988). The LGN has classically been thought to be a “relay” center of retinal 

information to V1, but retinal signals do undergo processing in that area, though the nature of this 

processing is a subject of debate (Cudeiro and Sillito 2006). 

Afferent projections from the LGN terminate in Layer 4 (L4) of primary visual cortex (Felleman and Van 

Essen 1991). From there, information is largely sent to L2/3, which in turn projects to L5, to L4 of 

downstream cortical areas, as well as horizontally in L2/3 itself (Felleman and Van Essen 1991). 

Feedback connections to V1 typically originate in deep layers (L5) of the downstream cortical area, and 

terminate outside of L4 (Felleman and Van Essen 1991). 

 

Figure 5: Schematic of a proposed cortical microcircuit (Bastos et al. 2012). 

 

As mentioned previously, although retinal input is communicated to V1 via the LGN, the majority of V1’s 

inputs come from other cortical areas (Salin and Bullier 1995). The role of this input has classically been 

regarded as modulatory (Crick and Koch 1998; Sherman and Guillery 1998). 
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However, feedback inputs in the absence of LGN activity and L4 activity are still sufficient to drive 

activity in L2/3 of V1. Indeed, silencing downstream areas can abolish L2/3 activity in V1 (Mignard and 

Malpeli 1991). 

Function 
The prevailing models of visual processing are consistent with the feedforward connectivity of the visual 

system. In brief, inputs from the LGN are pooled in V1 to produce orientation selectivity for stimuli in 

each neuron’s receptive field. In the “ventral stream”, a hypothesized hierarchy of visual areas 

concerned with the perception and recognition of visual objects (Goodale and Milner 1992), which 

begins in V1 and terminates in the hippocampal formation, this pattern is repeated as one follows a 

putative processing hierarchy, such that neurons higher up in this hierarchy are selective to curves, 

complex shapes (such as faces) and achieve view invariance – the ability to “recognize” an object despite 

its location and orientation in the environment (Poggio and Riesenhuber 1999; Watanabe et al. 2007). In 

the “dorsal stream”, a similarly envisioned hierarchy specializing in motion perception and the visual 

guidance of movement (Goodale and Milner 1992), starting from V1 and terminating in parietal 

multisensory and motor areas in primates, the activity of motion-selective neurons in V1 is fed forward 

to areas like V3 and MT (Simoncelli and Heeger 1998) and LIP (Blatt, Andersen, and Stoner 1990), which 

contain complex representations of visual motion.  

Traditionally, the role of feedback in the visual system has been confined to a modulatory one, 

hypothesizing that feedback connections can sharpen or change the gain of neurons representing 

features in the environment that are important to the animal. This can be done via attentional or other 

learning-related processes (Zhang et al. 2014). More recently, locomotion has been shown to strongly 

affect, and indeed drive, responses in L2/3 of V1 (Keller, Bonhoeffer, and Hübener 2012; Niell and 

Stryker 2010; Polack, Friedman, and Golshani 2013; Saleem et al. 2013), even in the absence of visual 

input (Keller et al. 2012; Saleem et al. 2013). The role of motor-related inputs to V1 is unclear. It has so 

far been hypothesized to alter the gain of visual representations, to aid in speed estimation (Saleem et 

al. 2013), or to confer predictions of visual flow (Keller et al. 2012).  

The latter hypothesis is reinforced by the finding of neurons in L2/3 of V1 that signal the mismatch 

between predicted visual flow (provided by the animal’s running speed) and actual visual flow 

(controlled via the virtual environment) (Keller et al. 2012; Saleem et al. 2013). Indeed, the amplitude of 

this mismatch signal correlates with the speed of the animal during the visual flow perturbation (Keller 

et al. 2012). These results are consistent with a predictive coding framework, wherein primary sensory 



 
 

12 
 

areas signal the residual errors between actual sensory input and predictions of sensory input are 

relayed via feedback.  

Predictive coding  
Imagine sitting on your desk reading this document on your laptop. An inviting cup of coffee lies a bit 

further away on the tabletop, and you reach for it while still engrossed in the fascinating details of what 

you’re reading. You extend your arm, grasp the cup and bring it to your mouth without ever looking at 

what you’re doing. This is all made possible by the fact that the brain contains an internal representation 

of the world (Hinton 2000). One important advantage of such an internal model is that it can be used to 

predict the sensory outcomes of our motor actions, therefore allowing us to adjust movements in real 

time and to reach for invisible coffee cups.  

As in the tennis example earlier, the errors between what we expect to sense based on our previous 

experience and what actually occurs can be used to update our internal model. As an idea this is 

uncontroversial. The point of contention lies rather in how this is implemented in the brain. One 

possibility is that this comparison is done in higher parts of the brain involved in action planning and 

memory. Predictive coding, on the other hand, hypothesizes that an internal model of the world 

generates predictions of what we are about to sense based on prior experience, which are fed back to 

sensory cortices. These predictions are then subtracted from input from the sensory organs, and sensory 

cortex signals the difference, or error, between the two (Rao and Ballard 1999). 

Theoretical Work 
This theory is appealing for a number of reasons. Firstly, predictive coding models can account for the 

emergence of a large fraction of the types of receptive fields found in V1 and other visual areas (Rao and 

Ballard 1999; Spratling 2010, 2012). The top-down communication of stimulus predictions could possibly 

also explain the observation that V1 is active during mental imagery (Goebel et al. 1998; Kosslyn et al. 

1995) and during illusory perception of contours (Mendola et al. 1999).  

Secondly, despite the additional step of forming predictions, it can address issues of redundancy in the 

sensory world (Huang and Rao 2011). The properties of nearby areas of visual space are typically highly 

correlated, as objects possess continuity in space. This is true of time as well: objects persist in time. 

Theoretical work has shown that a predictive coding framework can reduce redundancy in 

representations by inhibiting the representation of predictable components of visual scenes, both in 

time and in space (Huang and Rao 2011). A consequence of this is that it maximizes the “surprise”, or 

information content, of an unexpected stimulus (Friston 2010; Huang and Rao 2011). Furthermore, as 
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the predicted component inhibits the neurons carrying its representation, the limited dynamic range of 

individual neurons can be better exploited (Huang and Rao 2011). 

Thirdly, predictive coding can be applied to other brain functions, and seen as a fundamental 

computation of cortex. Predictive coding can account for observations in perceptual decision making 

(Summerfield et al. 2006; Summerfield and de Lange 2014), and can be extended to motor cortex 

(Shipp, Adams, and Friston 2013) and account for the properties of the mirror neuron system (Kilner, 

Friston, and Frith 2007). 

Experimental evidence 
Despite the abundance of theoretical work on the field, systems neuroscience studies that probe for 

hypothesized elements of a predictive coding scheme are relatively scarce (Eliades and Wang 2008; 

Keller et al. 2012; Keller and Hahnloser 2009; Saleem et al. 2013). At least two groups have found a 

population of neurons in mouse V1 that encode the error between expected and actual visual flow 

(Keller et al. 2012; Saleem et al. 2013). This work has so far been confined to the exploitation of an 

internal model of optic flow given motor output as a basis for forming predictions. However, in theory 

all possible internal representations can be used to generate sensory predictions. Perhaps the most 

explored such representation is that of space.  

Spatial maps have been discovered in the hippocampus (O’Keefe and Dostrovsky 1971) and entorhinal 

cortex (Hafting et al. 2005), most characteristically in the form of “place cells” and “grid cells”, 

respectively. Place cells in fields CA1 and CA3 of the hippocampus are preferentially active in a specific 

location of the environment, whereas grid cells in the lateral entorhinal cortex (LEC) tile the 

environment in a hexagonal pattern. 

Internal representations of space are very well poised as experimentally testable sources of predictions 

in a predictive coding framework, as they have been shown to be updated by sensory cues (Fyhn et al. 

2007; O’Keefe and Conway 1978) and persist in virtual environments (Domnisoru, Kinkhabwala, and 

Tank 2013; Harvey et al. 2009), which allow for experimentally controlled violations of predictions.  

The goal of this PhD project is to investigate influences on visual processing from internal 

representations of space and, in particular, to uncover elements of predictive coding in the form of a) 

predictions of visual stimuli based on spatial location and b) error signals when these predictions are 

violated.  
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Experience-dependent spatial expectations in mouse visual cortex4 

Indirect evidence for an influence of internal representations on visual processing comes from the 

findings that hippocampal replay during sleep is accompanied by replay in visual cortex (Ji and Wilson 

2007), and from the appearance of theta oscillations in the LFP in visual cortices during locomotion in 

mice (Niell and Stryker 2010) and during short-term memory tasks in monkeys (Lee et al. 2005). We 

speculated that if a direct influence of spatial maps on visual processing develops with experience, it 

could manifest as a prediction of visual stimulus based on spatial location. The underlying conceptual 

model is that spatial representations of the environment activate the corresponding visual 

representations of stimuli encountered in specific locations. This would likely be mediated by top-down 

projections to V1 from areas involved in spatial memory, like the anterior cingulate cortex (ACC) 

(Frankland 2004; Maviel et al. 2004; Teixeira et al. 2004; Weible et al. 2012). This leads to a number of 

testable predictions. First, visual representations of the environment should change systematically with 

increasing experience in a given environment. Second, we should find non-sensory stimulus-predictive 

responses that are tied to a conjunction of spatial location and the visual stimulus previously 

encountered at this location. Third, if the stimulus encountered at a given location is different from the 

one previously encountered at the same location this should lead to detectable mismatch signals.  

To probe for the existence of experience-dependent spatial expectations in mouse primary visual cortex, 

we repeatedly let mice explore a virtual tunnel over the course of several days. Throughout exploration, 

we chronically recorded the activity of the same 1630 neurons in V1 layer 2/3 of 9 adult C57BL/6 mice, 

using two-photon imaging of the genetically encoded calcium indicator GCaMP6f (Chen et al. 2013) 

(AAV2/1-Ef1a-GCaMP6f-WPRE). The experiments in V1 were done by myself, David Mahringer and 

Hassana Oyibo. For all imaging experiments, mice were head-fixed and free to run on a spherical 

treadmill (Dombeck et al. 2007; Holscher et al. 2005). Rotation of the spherical treadmill was restricted 

to forward and backward directions and controlled movement in a virtual tunnel that was projected 

onto a toroidal screen surrounding the mouse (Fig. 6a). Upon reaching the end of the tunnel, mice 

received a water reward and their position was reset to the beginning of the tunnel. The walls of the 

virtual tunnel were lined with four different landmark stimuli and five uniform gray areas, marking 

locations at which one of two orthogonal sinusoidal gratings (henceforth referred to as A and B) were 

presented when the mouse reached the corresponding gray area (Fig. 6b). This was done to ensure 

precise control of when the mouse would first see the grating. During the first two sessions the 

                                                           
4 All of the data in this chapter have appeared in the publication (Fiser et al. 2016).  
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sequence of the five grating stimuli was identical (A-B-A-B-A) on every traversal (condition 1). In 

subsequent sessions the identity of the last grating stimulus changed to a B on randomly selected 

traversals (90% A and 10% B in condition 2; 100% B in condition 3; and 10% A and 90% B in condition 4). 

In the fifth condition we omitted the grating in position 5 altogether on 10% of randomly selected 

traversals. Each condition comprised two recording sessions that lasted between 1 and 2 hours and 

occurred daily (spaced by 24 ± 4 hours, with the exception of condition 5 which immediately followed 

condition 4). We imaged from the same neurons chronically throughout the duration of the experiment. 

Animals traversed the tunnel an average of 109 times per session. Each traversal lasted between 10 and 

120 seconds. In addition, we measured responses of the same neurons during anesthesia to passive 

presentations of the tunnel presented at a constant visual flow speed both before the first condition 

(pre-experience anesthesia) and after the last condition (post-experience anesthesia). In total we 

recorded the activity of 1147 L2/3 neurons in V1 of 6 animals exposed to conditions 1 through 5 (Fig. 

6b), of which 899 neurons were responsive to at least one visual element of the tunnel (tunnel 

responsive; 78.4%, see Methods). We also recorded from 483 neurons in conditions 1 and 2 in an 

additional 3 animals, of which 436 neurons were classified as tunnel responsive (90.2%; in total 1335 of 

1630 or 81.9% of neurons were tunnel responsive).  

 

Figure 6: The experimental setup. (a) Left: Schematic of the experimental setup. Right: Photograph of a mouse approaching a 
landmark stimulus in the virtual tunnel. (b), Schematic representation of the texture lining both walls of the tunnel. Gratings A 
and B in positions 1-5 were only shown once the animal reached the corresponding position in the tunnel. In between the grating 
positions were four permanent landmark stimuli. The probability of encountering an A or B in position 5 changed with conditions 
as shown. 

V1 activity becomes descriptive of spatial location 
To probe for a spatial component in V1 activity, we investigated whether location in the environment 

modulates neuronal responses to identical visual stimuli. We found that peak calcium fluorescence 

amplitudes of grating-responsive neurons were different for the presentation of the same grating in 

different positions in the tunnel (Fig. 7a,b). In order to quantify the spatial heterogeneity of neuronal 

responses in the population, we trained a classifier (Matlab Treebagger, see Methods) to predict which 

grating location the mouse was traversing in each trial for each behavioral condition using the average 

population activity within a 667 ms (10 frames) window following each grating onset. Based on V1 
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activity, the classifier was able to predict not only the identity of the grating the mouse was seeing but 

also where in the tunnel the mouse was seeing the grating (Fig. 7c). Classification performance, 

measured as the mean of the diagonal of the confusion matrix for each condition (see Methods), 

significantly increased between conditions 1 and 4 (condition 1: 53.3 % ± 7.7 %; condition 4: 81.7 % ± 4.6 

%, mean ± s.e.m.; p = 0.029, Wilcoxon Rank Sum test). The classifier also performed considerably better 

in post-experience, compared to pre-experience anesthesia (Fig. 7c; Fig. 8a; Ane. Pre: 31.3 ± 6.2%; Ane. 

Post: 67.2 ± 7.2%; p = 0.031, Wilcoxon Rank Sum test). To ensure that the difference in responses to the 

same stimulus in different locations was not due to running speed tuning (Keller et al. 2012; Niell and 

Stryker 2010), we trained a classifier to predict the animal’s location based on running speed. The 

classifier did not perform better than chance (Fig. 8b). Training a classifier on slow traversals and testing 

it on fast traversals, and vice versa, yielded classification accuracy that remained well above chance in 

both cases (Fig. 8c), suggesting that speed tuning is not a major contributor of predictive power in the 

classification. To test if calcium dynamics influence the change in classification performance, we 

deconvolved raw calcium traces using an exponential kernel with a time constant of 0.5 s (Chen et al. 

2013; Yaksi and Friedrich 2006) (Fig. 8d; see Methods) and trained the classifier on the deconvolved 

traces. Average accuracy was slightly decreased when the classifier was trained on deconvolved traces, 

but the increase between condition 1 and 4 was unchanged (Fig. 8e).  

 

Figure 7: Identical visual stimuli in different spatial locations can elicit different responses in V1 and similar responses in CA1. (a), 
Top: schematic of V1 imaging strategy. Bottom: example two-photon image of V1 L2/3 neurons. (b), Average responses of an 
example A-selective neuron (left) and an example B-selective neuron (right) to A1, B2, A3 and B4. Shading indicates s.e.m. across 
grating presentations (left: 178 presentations; right: 218 presentations). (c), Left: Confusion matrices of the distributions of 



 
 

17 
 

classified grating location (x-axis) based on grating onset responses, as a function of actual grating location (y-axis). Right: Mean 
classification accuracy for all conditions, measured as the mean of the diagonal of the confusion matrix for each condition. Note, 
for these plots V1 data recorded in conditions 1-2 (from 9 animals) and data recorded in conditions 1-4 (from 6 animals) were 
combined. Mean ± s.e.m. across animals. Ane-pre: pre-experience anesthesia; Ane-post: post-experience anesthesia. *: p = 0.029 
(conditions 1 and 4); p = 0.031 (pre- and post-experience anesthesia), Wilcoxon Rank Sum test. (d), Top: Schematic of CA1 imaging 
strategy. Bottom: Example two-photon image of CA1 pyramidal neurons. (e), Heatmaps showing normalized fluorescence traces 
of CA1 neurons in condition 1, selective to A (left) and B (right), sorted by peak position. Traces on top are the mean activity of 
neurons shown below, highlighted by the blue, red and green vertical bars respectively. (f), Left: As in c, but based on mean 
response, not grating onset response. Right: as in e, for mean response (solid line) and for grating onset response (dashed line). 
Ane-pre: pre-experience anesthesia; Ane-post: post-experience anesthesia. Mean ± s.e.m. across animals (n = 5). *: p = 0.043, 
n.s.: p = 0.931 (conditions 1 and 4); n.s.: p = 0.524, p = 0.463 (pre- and post-experience anesthesia), Wilcoxon Rank Sum test. 

In addition to a spatial component in V1 activity, an increase in stimulus selectivity could also influence 

the discriminability of stimuli in the environment. We quantified the selectivity of all neurons to the two 

grating stimuli A and B using a selectivity index (SI) as (RA-RB)/(RA+RB), where RA is the average response 

to A in positions 1 and 3, and RB is the average response to B in positions 2 and 4; SI was set to 0 for 

neurons without a significant response to either A or B (Fig. 9a; see Methods). We found that, with 

experience, neurons in V1 that are grating-selective become more selective with time (Fig. 9b,c), an 

effect that cannot be explained by their mean activity (Fig. 9e). Furthermore, the stability of these 

selective neurons increased with experience, an effect not explained by stability in motor behavior (Fig. 

9f).  
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Figure 8: (a), Confusion matrices as in Fig. 7c,f for pre- and post-anesthesia in V1 (left) and CA1 (right). In this and subsequent 
panels, Ane-pre: pre-experience anesthesia; Ane-post: post-experience anesthesia. (b), Accuracy of the classifier predicting the 
animal’s location in the tunnel based on either neural activity (black line) or running speed (gray line) for conditions 1 through 4. 
Chance level of 20% (dashed line) is given by the 5 possible grating locations in the tunnel. Error bars: s.e.m. (c), Classifier accuracy 
when trained on neural activity during fast (slow) traversals and tested on slow (fast) traversals. Error bars: s.e.m. (d), Example 
of a raw activity trace in time (black), and the same trace deconvolved using an exponential deconvolution kernel with a time 
constant of 0.5 s (magenta). (e), Classifier performance using raw and deconvolved traces. The similar performance suggests that 
down-sweeps in calcium signals are not the main predictors of spatial location in population activity.  Error bars: s.e.m. 

To compare dynamics of spatial signals in V1 to potential changes in the spatial map in hippocampus, we 

chronically recorded the activity of the same 1736 neurons in hippocampal region CA1 in 5 animals 

exposed to conditions 1 through 5. The experiments in CA1 were performed by myself, David Mahringer 

and Anders Petersen. Changes in spatial signals in V1 could be the result of changes in the spatial 

representation in hippocampus, or changes in the way V1 is activated by the spatial representation. In 

either case, these changes should be reflected in top-down inputs to V1. Activity in CA1 exhibited place-

like responses that reflected the pattern of visual stimuli along the tunnel. Neurons showed visually 

locked responses, and locations with similar visual stimuli elicited similar neural responses (Fig. 7d,e;). 

Consistent with previous reports (Ziv et al. 2013), we found that activity patterns were only partially 

stable over different conditions or days. For 14.8 % of neurons, the location of peak activity in the tunnel 

was stable over the five behavioral conditions (10a,c; within 5% of tunnel length; see Methods). By 

comparison, in V1, 32% of neurons exhibited a stable location of peak activity (Fig. 10b,c). The instability 

of CA1 activity may have been augmented by the unilateral removal of cortical tissue necessary to image 

CA1 pyramidal neurons. Previous work, however, has argued that place field responses measured by 

imaging using similar methods are not different from those measured with electrophysiological 

techniques (Dombeck et al. 2010). Classification of grating identity based on grating onset responses 

using CA1 data was only slightly above chance (Fig. 7f). This was likely due to the absence of clear 

grating onset responses (Fig. 7e); using mean activity instead of grating onset responses, classification 

performance in condition 1 was not different from that based on V1 data (Fig. 7f; condition 1: 53.9 ± 

4.4%; condition 4: 32.3 ± 4.8%, mean ± s.e.m.; p = 0.043, Wilcoxon Rank Sum test). Interestingly 

however, classification performance decreased with experience, indicating that CA1 activity becomes 

less informative of spatial location. Furthermore, neurons that were stimulus-selective on average 

showed decreasing selectivity with experience and maintained high trial-to-trial response variability (Fig. 

9d,f). This is opposite to the trend we observed in V1 activity where decoding performance increased 

with experience. The experience-dependent effects found in V1 therefore cannot be explained by a 

concurrent change of a spatial map in CA1. 
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Figure 9: Orientation-selective neurons in V1 (CA1) become more (less) selective with experience. (a), Histogram of the selectivity 
index (SI) of all neurons averaged across conditions. Black bars: neurons with a SI ≥ 0.5 (≤ -0.5) were considered to be selective 
for A (B). (b), Average responses of an example neuron to A (blue lines) and B (red lines) across presentations. Gray shading 
indicates time window used to calculate SI. Blue and red shading indicate s.e.m. (c), Average SI per condition for V1 as in a, 
showing the selectivity indices for each cell included (gray circles). Mean ± s.e.m.  across animals. **: p = 0.0047, n.s.: p = 0.125, 
Wilcoxon Rank Sum test. (d), As in c, but for CA1. *: p = 0.009; n.s.: p = 1, Wilcoxon Rank Sum test. (e), Average activity of the 
same neurons (V1: black; CA1: green) shown in c per condition does not increase with time. Mean ± s.e.m. Conditions 1-4: V1: p 
= 0.093, : CA1: p = 0.12 (conditions 1-4). Pre- and post-anesthesia: V1:  p = 1.5e-5; CA1: p = 1, Wilcoxon Rank Sum test. (f), Average 
trial-to-trial stereotypy of activity increased with experience. Shown is the mean correlation coefficient r of activity traces of 
neurons shown in c and d in different traversals with the same and across different conditions. Mean ± s.e.m.  (Note, for this 
analysis traversals were subsampled to match stereotypy of running speed across conditions). Conditions 1-4: V1: p = 0.00085; 
CA1: p = 0.44. Pre- and post-anesthesia: V1: p = 2.5e-8; CA1: p = 1, Wilcoxon Rank Sum test. 
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Figure 10: Stability of grating responses between conditions is higher in V1 than in CA1. (a), Normalized activity of grating selective 
CA1 neurons (SI ≥ 0.1) sorted by position of peak response in the tunnel. Selection of grating responsive neurons and sorting was 
done on condition 1 for the first row of plots. Data are shown for the same neurons using the same sorting for condition 2 through 
5 in the remaining plots of the first row. Similarly for the remaining rows of plots. (b), As in a, but for V1 data. (c), Quantification 
of stability of responses in V1 and CA1. Shown is the fraction of neurons plotted in a and b that peak within 5% of tunnel length 
(or one texture length) between the conditions indicated.  
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V1 develops predictive responses to upcoming visual stimuli 

A potential role for the spatial modulation of V1 activity is to enhance the discriminability of similar 

stimuli in different contexts. In this scenario, a spatial input would trigger predictions of expected visual 

input at a given spatial position. Indeed, we found a group of neurons (5.6% or 50 of 899 tunnel-

responsive neurons) that, with increasing experience in the tunnel, started firing prior to the appearance 

of the upcoming grating in an A- or B-selective manner (Fig. 11a,b). As responses both preceded the 

stimulus and signaled the identity of the upcoming stimulus, we will refer to these signals as stimulus-

predictive. The response in predictive neurons developed with experience and was absent in the first 

condition (Fig. 11b). In contrast, responses in neurons classified as visual and selective to either A or B 

(4.9% or 44 of 899 tunnel-responsive neurons) were present already in the first condition and exhibited 

a much smaller increase with experience (Fig. 11c). Predictive and visual neurons were equally selective 

for A or B (predictive neurons: mean SI = 0.79 ± 0.04; visual neurons: 0.82 ± 0.03). Using a classifier 

trained on the activity of predictive neurons preceding the appearance of the stimulus we could predict 

the identity of the upcoming visual stimulus (Fig. 11d; accuracy = 81.4 ± 5.1%, mean ± s.e.m.). Once 

present, predictive responses are stable over conditions. The correlation of the mean responses of 

predictive neurons between conditions 3 and 4 was almost as high as for visual neurons (predictive 

neurons: r = 0.81, p = 1.1*10-27 ; visual neurons: r = 0.95, p = 5.4*10-47). Moreover, only one neuron 

classified as predictive in condition 3 was classified as visual in condition 4. 
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Figure 11: V1 neurons develop predictive responses to approaching visual stimuli with experience. (a), The activity of two B-
selective neurons during a single traversal of the tunnel. Note that one neuron (black line) fires in anticipation of each B 
presentation, whereas the other fires causally with a delay after the presentation. (b,c), The average response of predictive (b, 
50 neurons) and visual (c, 44 neurons) stimulus-selective neurons to their preferred grating orientation in conditions 1-4. In these 
and all following panels shading along curves indicates s.e.m. (d), Classification accuracy of a classifier trained on the activity of 
predictive neurons (n = 50) to decode grating identity (A3 vs B4) prior to the stimulus (-333ms to 0ms) in condition 4. Circles: 
individual sites (5 sites); Triangle: Mean; Error bars: s.e.m. Data in d-i are from condition 4. (e), Average responses of two example 
B-selective neurons to mean A1 & A3 (blue line), mean B2 & B4 (red line), unexpected A5 (blue dashed), and the expected B5 
(red dashed). (f), Average responses of predictive (n = 50) and visual (n = 44) neurons to mean A1 & A3, mean B2 & B4, expected 
B5 and unexpected A5. (g), Upper panel: Responses of predictive neurons (n = 50) aligned to either previous landmark stimulus 
(dashed lines) or upcoming grating stimulus (solid lines) for fast (dark green) and slow traversals (light green). Note that responses 
for slow and fast traversals align best with upcoming grating onset. Lower panel: histogram of time between previous landmark 
stimulus and upcoming grating onset for fast (dark green) and slow (light green) traversals. Fast and slow traversals were classified 
by mean running speed in a window of 467 ms (7 frames) preceding onset of the grating stimulus. (h), Strength of predictive 
responses of B-predictive neurons (n = 39, left) and A-predictive neurons (n = 11, right) to B2 & B4 (mean B) and B5 in condition 
4 where the animal always encountered B in position 2 and 4, but only with 90% probability in position 5. Mean ± s.e.m. across 
neurons. (***: p = 0.00015, n.s.: p = 0.7, Wilcoxon Signed-Rank test). (i), Responses of visual neurons on traversals of high (orange) 
and low (yellow) activity in predictive neurons. Strong predictive activity before a grating (in the top 20%, 787 grating 
presentations) correlated with weak visually driven responses, and vice versa (in the bottom 20%, 787 grating presentations).  
Mean responses are calculated in the window indicated with gray shading. (j), Average responses of visually selective neurons in 
response to the unexpected A5 in traversals with weak (yellow; 51 A5 presentations) and strong (orange; 52 A5 presentations) 
activity in predictive B-selective neurons. The higher the activity in predictive B-selective neurons, the higher the mean visual 
responses to the unexpected A (mean responses are calculated in the window indicated with gray shading).  
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In conditions 2 and 4 we presented a different grating on 10% of randomly selected traversals in the 

final location (Fig. 6b). On these traversals, with an unexpected grating in the final location, stimulus-

predictive neurons fired as if the predicted grating would appear, but visual neurons fired in response to 

the actual grating shown (Fig. 11e,f). Given that stimulus-predictive neurons were as selective for the 

upcoming stimulus (A or B) on average as visual neurons, it is unlikely that predictive responses are 

responses to the preceding stimulus. To confirm this, we aligned responses of stimulus-predictive 

neurons to either the preceding landmark stimulus or the upcoming grating for fast and slow traversals 

separately. Alignment of the responses for fast and slow traversals should be best for the stimulus 

(previous or upcoming) that actually drives the responses. We found that responses were best aligned 

with the upcoming stimulus (Fig. 11g), and thus are best explained by distance, and not time, from the 

last stimulus. This implies that predictive activity relies on spatial location to signal the upcoming visual 

stimulus. 

Stimulus-predictive signals could reflect the frequency of having encountered a certain stimulus in a 

specific location. Thus predictive signals should be higher when the same stimulus is always 

encountered as opposed to when in a specific location different stimuli were encountered during 

experience. Therefore, the predictive response to B5 should be lower than the predictive response to 

mean B, as the stimulus presented in position 5 varied with session (Fig. 6b), whereas in position 2 and 4 

the animal always encountered a B. This was indeed the case: in condition 4, B-selective predictive 

neurons were significantly less active prior to grating B5 (90% B) than on average to gratings B2 and B4 

(100% B) (Fig. 11h, mean B: ΔF/F = 9.1% ± 2%; B5: ΔF/F = 4.4% ± 1.3%; p = 0.00015, Wilcoxon Signed-

Rank test). Conversely, one could argue that A-predictive neurons should be more active prior to B5 as 

the animal encounters an A in this location on 10% of the traversals. A rare encounter, however, did not 

lead to a measureable increase in predictive activity in V1 (Fig. 11h, mean B: ΔF/F = 2.3%; ± 2% B5: ΔF/F 

= 3.1% ± 2.9%; p = 0.7, Wilcoxon Signed-Rank test). 

In predictive coding models, the primary visual cortex communicates the error between predicted and 

actual visual stimuli to downstream visual areas(Bastos et al. 2012; Rao and Ballard 1999). If predictive 

activity scales with the frequency of having encountered a visual stimulus in a particular location, then 

the strength of the visual response to the stimulus may signal the surprise of seeing it. This would be 

reflected in lower visually-driven activity on trials when prediction of a grating was high. We observed 

that on traversals with high predictive activity preceding each grating, visually evoked activity to the 

grating was lower (ΔF/F = 8.0% ± 0.5%, mean ± s.e.m.) than on traversals with low predictive activity 

(ΔF/F = 11.2% ± 0.5%, mean ± s.e.m.; Fig. 11i). In sum, this suggests that stronger visual responses report 
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the discrepancy between predicted and actual visual input, and that activity in stimulus-predictive 

neurons may lead to a reduction of visual responses.  

If activity in stimulus-predictive neurons indeed signals the identity of the upcoming stimulus, one would 

expect a difference in the visual response when an unpredicted stimulus is encountered. We found that 

the responses of A-selective visual neurons to the unexpected A at position 5 were stronger when B-

predictive neurons fired strongly in anticipation to the grating presentation (Fig. 11j). Traversals were 

split into two groups by median amplitude of the response of predictive neurons (average visual 

responses on high traversals with high predictive activity: 21.4% ± 3.1% ΔF/F; and on traversals with low 

predictive activity 12.5% ± 2.2% ΔF/F; mean ± s.e.m.; p = 0.02, Wilcoxon Rank Sum test). Altogether, 

these findings indicate that the strength of predictive responses preceding a stimulus strongly affect the 

visual responses to it, suggesting a dynamic interplay between stimulus prediction and stimulus 

response. 

ACC conveys stimulus predictive signals to V1  
As the source of predictive signals must be extra-retinal, one would expect that at least some of the top-

down inputs to primary visual cortex exhibit signals that are stimulus-predictive, and that this predictive 

input develops with experience. One of the candidate structures for such top-down inputs to V1 is the 

anterior cingulate cortex (ACC). ACC is known to project to V1 (Miller and Vogt 1984; Vogt and Miller 

1983; Zhang et al. 2014), and has been shown to be involved in long-term memory storage (Frankland 

2004; Maviel et al. 2004; Teixeira et al. 2004; Weible et al. 2012). To test if spatial information could be 

relayed to V1 via ACC, we recorded the activity of ACC axons in layer 1 of V1 in condition 1 (3513 axons, 

5 sites) and in condition 4 (8599 axons, 10 sites) in 5 animals (Fig. 12a; see Methods). The ACC 

recordings were performed by Marcus Leinweber. Note that, unlike for the V1 and CA1 experiments, we 

were unable to chronically record from the same ACC axons on different days. The combination of the 

high density of ACC axons in layer 1 of V1 and the low baseline fluorescence made it impossible for us to 

ensure that we were recording from the same axons on different days. However, there likely was a large 

overlap between the axons recorded on different days as imaging regions (5 of 10) were realigned based 

on blood vessel patterns. We imaged activity on the first and the sixth (2 sites, 1 animal) or seventh (8 

sites, 4 animals) day in the tunnel. As the total experience in the tunnel between the two imaging time 

points was comparable to the difference between condition 1 and condition 4 in the V1 and CA1 data 

we will use the same nomenclature for the ACC data.  
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When classifying grating position based on the activity of ACC axons we found an increase in 

classification accuracy with experience, similar to the increase in V1 (Fig. 12b; condition 1: 31.7 ± 18.3%; 

condition 4: 88.6 ± 2.4%, mean ± s.e.m.; p = 0.03, Wilcoxon Rank Sum test). We then compared the 

activity of ACC axons that exhibit selective responses for either A or B in early and late conditions. Using 

the same criteria as for responses in V1 (Fig. 11b,c) we were able to classify axons as either predictive or 

visual in both early and late conditions (Fig. 12c, d). We found that in early conditions there were visual 

responses but no predictive responses and that in late conditions stimulus-predictive responses 

emerged (Fig. 12d). Note, even axons classified as visual exhibited activity that preceded the 

presentation of the stimulus in condition 4. The contribution of these predictive responses to the total 

population response to gratings was larger in ACC than in V1 (Fig. 13). As in V1 (Fig. 11h), the strength of 

predictive responses depended on the reliability of having encountered a certain stimulus in a specific 

location. Predictive responses to B2 and B4 (100% B) were larger than the predictive responses to B5 

(90% B – 10% A, in condition 4; Mean B: ΔF/F = 6.5 ± 0.6%; B5: ΔF/F = 4.2% ± 0.8%; mean ± s.e.m.; p = 

0.00028, Wilcoxon Signed-Rank test), and different from activity in V1, A-predictive activity was higher 

prior to B5 as compared to B2 and B4 (Fig. 12e; Mean B: ΔF/F = 2.2% ± 0.3%; B5: ΔF/F = 4.4% ± 0.5%; 

mean ± s.e.m.; p = 0.00015, Wilcoxon Signed-Rank test). Predictive inputs from ACC could signal spatial 

location (in spatial coordinates) or signal the predicted visual stimulus (in visual coordinates). To test if 

axons classified as visual in condition 4 were actually visually driven, we compared responses of 

expected and unexpected presentations of A or B (condition 4). Responses of axons that were B-

selective had visual responses to an expected B5 comparable to the mean response to B. Responses to 

the unexpected A still showed predictive activity, but diverged from B responses following stimulus 

onset (Fig. 12f). Conversely, axons selective for A exhibited predictive responses to an expected A1 or 

A3 and only small responses to the expected B5, but showed clear visual responses to the unexpected 

A5 (Fig. 12g). Thus, predictive signals in V1 are likely conveyed by top-down signals carrying an 

expectation of the visual input based on spatial location. 
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Figure 12: ACC projections to V1 carry visual stimulus predictions. (a), Left: schematic of ACC axon imaging strategy. Right: 
Example two-photon image of ACC axons in V1. (b), Classification accuracy for a classifier trained to decode grating location based 
on grating onset responses (as in Fig. 1e,h). The accuracy of the classifier increases with time. Mean ± s.e.m. across sites (condition 
1: 3 sites; condition 4: 10 sites). *: p = 0.03, Wilcoxon Rank Sum test. (c), Activity of two A-selective axons during a single traversal 
of the tunnel. One axon (black line) fires in anticipation of each A, whereas the other (gray line) peaks after each stimulus. (d), As 
in V1, stimulus-predictive responses emerge with experience. Orange lines indicate mean activity of predictive (solid; n = 654) 
and visual (dashed; n = 1377) axons in condition 1, whereas blue lines indicate activity of the corresponding axons in condition 4 
(736 predictive and 2559 visual axons). Shading indicates s.e.m. across axons.(e), As in Fig. 2h, for V1-projecting ACC axons. 
Strength of predictive responses of B-predictive axons (left) and A-predictive axons (right) to B2 & B4 (mean B) and B5 in condition 
4 where the animal always encountered B in position 2 and 4, but only with 90% probability in position 5. Mean ± s.e.m. across 
axons (312 A-predictive and 500 B-predictive axons). ***: p = 0.00015 (A-predictive), p = 0.00028 (B-predictive), Wilcoxon Signed-
Rank test. (f), Activity of visual B axons (n = 1175) to mean B (B2 & B4) (solid red), expected B5 (dashed red) and unexpected A5 
(dashed blue). (g), As in f, but for visual A axons (n = 1384). Note the visually evoked response to the unexpected A5. Shading in 
f and g indicates s.e.m. 

 

 

Figure 13: Grating responses in condition 1 (orange) and condition 4 (blue) for grating-selective (SI > 0.1) CA1 and V1 neurons 
and ACC axons.  
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Omitting an expected stimulus drives strong responses in V1 
To probe if expectations can drive responses in V1 in the absence of a visual stimulus, we omitted the 

final stimulus altogether in 10% of randomly selected traversals (condition 5). In these omission 

traversals, no grating would appear as the mouse reached the gray area marking the location of the final 

grating presentation. The omission of the stimulus elicited a strong response in the V1 population (Fig. 

14a, Fig. 15). Moreover, a subset of neurons selectively responded to the omission (Fig. 14b; 2.3% or 21 

of 899 tunnel-responsive neurons). If this omission response indeed signals a deviation between 

predicted and actual visual input, one would expect the strength of the predictive response to correlate 

with the omission response. To test this, we split all traversals into two categories depending on how 

strong the average response of predictive A- and B-selective neurons was prior to the omission. The 

average omission response in trials with low predictive activity was significantly smaller than in trials 

with high predictive activity (Fig. 4c; omission-evoked activity on trials with high predictive activity: ΔF/F 

= 35.2% ± 8.5%; on trials with low predictive activity: ΔF/F = 16.6% ± 2.2%, mean ± s.e.m.; p = 0.00018, 

Wilcoxon Rank Sum test with bootstrapping, see Methods).  

 

 

Figure 14: The omission of an expected grating strongly drives activity in V1. (a), Average population response (1147 neurons) to 
the omission of grating B5 (black dashed line) in comparison to the average response to A (blue line), B (red line) and B5 (red 
dashed line). Shading indicates s.e.m. across neurons. (b), As in a, but for omission selective neurons (21 of 899 tunnel-
responsive). Shading indicates s.e.m. across neurons. (c), Average omission responses in omission selective neurons on traversals 
of high activity in predictive neurons (orange line; 13 traversals) and on traversals with low activity in predictive neurons (yellow 
line; 12 traversals). Gray shading indicates window over which mean activity was calculated. Shading indicates s.e.m. over 
traversals. 
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The lack of local visual flow during the grating omissions raises the possibility that these responses are 

instances of sensorimotor mismatch (Keller et al. 2012). To test this, we compared the omission 

responses of the omission-selective neurons to their responses to the expected uniform gray stimulus 

that the animals encountered while running at the beginning and end of the tunnel. We found no 

response to the expected gray stimulus in omission selective neurons (Fig. 14b). Thus, omission 

responses can best be explained by a deviation between expected and actual visual stimulus based on 

what the mouse had seen in this position on previous traversals. Furthermore, omission responses were 

absent in ACC axons (Fig. 14c), suggesting that visual cortex compares visual stimulus predictions, 

relayed by top-down cortical input, to actual visual input. 

 

Figure 15: (a), Population mean response to grating omission for each animal (dashed black lines, n=6). Shading indicates s.e.m. 
(b), Responses of omission selective neurons to omission events and onsets of gray areas in the tunnel locations that are always 
encountered as gray. (c), Average ACC axon population response (8599 axons) to the grating omission.  

An additional possibility is that omission-related activity in V1 can be explained via a change in motor 

activity specific to the stimulus omission. However, running speed during the omission was identical to 

that during the presentation of the expected B5 grating (Fig. 16) 

 

Figure. 16: Average running speed following the expected B5 grating (red) and the stimulus omission (black). Shading indicates 
s.e.m.  
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Discussion 

In this work, we have shown that experience shapes the activity of neurons in L2/3 of primary visual 

cortex. Specifically, V1 develops stimulus-predictive responses that are tied to spatial location; the 

omission of an expected stimulus drives responses in V1 that are stronger than those to visual stimuli; 

and the activity of V1 neurons becomes more descriptive of both spatial location and stimulus identity. 

Furthermore, the activity of visually driven responses scales with the activity of stimulus-predictive 

neurons preceding the stimulus in a manner consistent with the hypothesis that feedforward activity in 

sensory cortices signals the errors between predicted and actual input (Rao and Ballard 1999). 

Additionally, we have identified the anterior cingulate cortex (ACC) as a potential source of these 

stimulus predictions. Our results are therefore consistent with a predictive coding framework, where an 

internal model, in this case a model of space, generates predictions of upcoming sensory input. These 

findings build upon previous work showing that motor-related signals are integrated with sensory 

signals in primary sensory cortices to generate sensorimotor error signals (Eliades and Wang 2008; Keller 

et al. 2012; Keller and Hahnloser 2009; Saleem et al. 2013).  

Our results cannot be explained by timing dependent recall of activity or reward anticipation. Cue-

triggered recall of activity, for example, has been shown to occur in visual cortex after repeated 

experience of rapid sequences of stimuli (Gavornik and Bear 2014) and fast moving spots (Xu et al. 

2012). Sequence learning, however, is specific to the timing used for training; a change in timing of the 

stimuli of as little as 150 ms abolishes the effect (Gavornik and Bear 2014). Predictive responses in our 

experiments persisted even though trial to trial differences in traversal times were on the order of tens 

of seconds, and predictive activity traces aligned to the predicted stimulus (and not to a previous 

stimulus) in a manner that is invariant to locomotion speed. Moreover, the cue-triggered recall was only 

observed when the animal was anesthetized, or the animal was awake but cortex was in a synchronized 

state (characteristic of quiet wakefulness), and the effect was absent when cortex was in a 

desynchronized state (characteristic of motor behavior) (Xu et al. 2012). Another effect that has been 

shown to drive activity in visual cortex is reward anticipation (Shuler and Bear 2006). Neurons that code 

for a rewarded stimulus are selectively activated in anticipation of reward-predicting stimuli (Poort et al. 

2015). However, as in our data predictive activity is stimulus selective and omission responses are 

independent of the reward delivered at the end of the tunnel, reward anticipation cannot explain the 

spatial modulation we describe here. 
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ACC as part of the brain’s generative model 
We have identified ACC as a potential source of predictions of visual input to V1, suggesting that it 

contains internal representations of the environment and can thus serve as part of the brain’s 

generative model. Moreover, unpublished work from our lab (Leinweber et al., in preparation) suggests 

that the ACC projection to V1 carries predictions of visual flow. Furthermore, the previously published 

report that this projection modulates surround suppression (Zhang et al. 2014) is not inconsistent with 

the idea of low-level stimulus predictions being fed back to V1, as predictive coding models can account 

for the formation of these types of receptive fields (Rao and Ballard 1999). 

An additional argument in favor of this idea is that, as in V1, the activity of V1-projecting ACC axons also 

scales with the probability of a stimulus being at a certain location (Fig.12e), suggesting that its 

representation is updated based on the history of sensory input. However, this study provided no insight 

into how an internal representation of the virtual environment in ACC could be updated using 

feedforward input. A handle on this could be obtained by imaging from cell bodies in ACC while 

perturbing the activity of ACC-projecting V1 neurons during the animal’s experience in the environment.  

However, the study described in this thesis does not provide evidence that this projection is necessary 

for the formation of stimulus-predictive responses in V1. An ideal experiment to perform would be to 

selectively silence V1-projecting ACC axons optogenetically preceding the grating. This could lead to a 

reduction of stimulus-predictive signals in V1, and possibly a potentiation of visually driven responses. 

However, at the time of writing this document, this technique has not been possible in our hands, likely 

for reasons mentioned in (Mahn et al. 2016). It would still be interesting, however, to locally activate 

ACC axons in V1 preceding a grating presentation, as it could lead to an error signal in V1.  

Furthermore, ACC is only one of the many non-sensory cortical areas providing input to V1. Since there 

is evidence of more than one type of prediction originating in ACC this begs the question of what types 

of predictions other downstream areas might be feeding back. Anatomically, based on its connectivity 

with the hippocampal formation (Sugar et al. 2011), the retrosplenial cortex (RSC) is equally well poised 

to relay stimulus predictions based on spatial location to V1. The presence of head-direction and other 

self-motion responses in RSC (Cho and Sharp 2001) suggests that a potential role for this input could be 

to relay predictions of stimulus based on head orientation and motion cues. The projection from 

orbitofrontal cortex could relay predictions of stimuli associated with value-based decision making 

(Feierstein et al. 2006; Schoenbaum, Chiba, and Gallagher 1998). 



 
 

31 
 

Another major source of input to V1 is of course secondary visual cortex. It would be of major interest to 

determine whether predictions follow a progression from high level “abstractions” to low level 

retinotopic visual representations as they are passed downwards through the visual hierarchy.  

Why do visually driven responses persist in the presence of predictions?  
In the predictive coding framework, predicted elements of the sensory scene are suppressed. The free-

energy formulation of predictive coding (Friston 2010) postulates that the brain seeks to minimize 

“surprise” and spurious activity. However, in this work and others (Keller et al. 2012; Saleem et al. 2013) 

that report error signals, visually driven responses persist. The most intuitive explanation for this is that 

the internal model is imperfect and therefore so are the predictions it generates, thus allowing residual 

error following every prediction. This is likely a realistic argument to make, given that creating a detailed 

representation from a general, high-level concept is a poorly posed problem. Since residual errors are 

used to update the internal model, this would imply that the model is constantly updated even in what 

should be the absence of errors. Though this seems like an inefficient state of affairs, arguments can be 

made as to why this could be rational.  

1. The world is never static: we never see something exactly the same way twice. Whether due to 

environmental factors (viewing angle, lighting, changes in the object itself) or simply due to the 

fact that we constantly perform microsaccades (Rolfs 2009), visual (and other sensory) stimuli 

are never completely invariant spatially or temporally. This suggests that predictions can only 

operate within a certain boundary of accuracy by design. The need to constantly update our 

internal model by having imperfect prediction machinery is therefore useful: it allows us to learn 

more about an object each time we view it, and potentially allows us to make better predictions 

about similar objects or contexts further down the road (e.g. viewing things when they are wet). 

 

Additionally, other sensory and non-sensory modalities influence our internal model. We often 

associate visual stimuli with sounds, textures and contexts. These are also not invariant each 

time we view a stimulus, and as such may affect our predictions. Furthermore, if generating 

predictions happens via a process similar to memory retrieval, which is possible, since 

predictions are by design based in memory, each prediction generated will be different (Bridge 

and Paller 2012). 

 

This explanation implicitly states that the presence of visually driven responses in the studies 

mentioned above is also due to the stimuli not being completely identical with each 
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presentation. A lack of stimulus invariance could therefore likely affect both the internal model 

and feedforward components.  

 

2. Counterintuitively, having an inaccurate internal model can be not only necessary, due to a lack 

of invariance, but also beneficial from a computational perspective. A very “sharp” prediction 

would potentiate feedforward neurons to strongly signal small deviations from prediction, and 

this could therefore saturate responses in the event that a stimulus strongly deviates. 

Predictions could therefore be “fuzzy”. This also allows the brain to generate predictions using 

finite connectivity. 

However, this is only beneficial in the case where predictions are subtracted from feedforward 

sensory input. In the case where a prediction is stronger than sensory input, for example in the 

case of running during visual flow halts (Keller et al. 2012; Saleem et al. 2013), the symmetrical 

computation needs to take place (since neurons most likely cannot compute absolutes): sensory 

input should also be subtracted from predictions (E = P - I; E being the error, P the prediction 

and I the sensory input). Generating fuzzy predictions in this case would seem 

counterproductive, as subtracting the sensory signal would always result in a residual error. A 

number of possibilities exist for how the brain could deal with this conundrum. One is that it 

uses recurrent activity to “sharpen” the prediction. This could also apply to the first 

computation described (E = I – P), and would introduce a potential role for the stimulus-

predictive neurons in V1 introduced in this study (see section “Why are stimulus predictions also 

found in V1”, below).  

Another possibility is that residual errors from the P – I computation are “ignored” until they 

reach a certain threshold. This would be consistent with the fact that, as mentioned in the 

introduction, what we see is dominated by our expectations. It is unknown whether a 

psychophysical asymmetry exists: do we better perceive changes in the sensory world that are 

of larger magnitude than what we predict? For example, are we better at detecting 

accelerations of backward visual flow when we move than decelerations?  

 

3. In the event that all feedforward activity is completely silenced, it is conceivable that this would 

negatively affect perception. This is consistent with studies showing that images that move with 

the eye, i.e. become spatially and temporally invariant, appear to fade with time (Martinez-
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Conde, Macknik, and Hubel 2004). In this scenario, a lot of what we see would be prediction 

errors themselves.  

It could thus be argued that the persistence of visually driven responses in the presence of predictions is 

not at odds with predictive coding. Instead, they could be a result of ways the brain could beneficially 

constrain prediction accuracy given limited resources and the variance of the environment. 

Why does a familiar stimulus in an unexpected location not evoke a mismatch signal?  
We found that omitting the presentation of an expected visual stimulus drives very strong responses in 

V1. However, presenting a familiar stimulus in an unexpected location does not appear to do the same 

(B-grating at position 5: Fig. 11e,f). The response of visually driven neurons to the unexpected stimulus 

scales with the strength of predictive neuron activity preceding it (Fig. 11j), yet effectively this stimulus 

is an absence of the expected stimulus – just like the stimulus omission.  

A possible explanation is that the prediction for the grating at location 5 is uncertain due to its 

variability, and that the unexpected stimulus is predicted to some extent. This is consistent with the 

activity of B-predictive V1 neurons and ACC axons being lower to the B grating at position 5 than to the 

other B gratings, and vice versa for A-predictive neurons and axons (Fig. 11h). A possible contributing 

factor to this uncertainty is the change of sequence between conditions 1-2 and 3. Therefore, presenting 

the unexpected stimulus in condition 2, the first time an unexpected stimulus was presented in position 

5, might be more likely to drive a mismatch response. However, this is not the case (Fig. 17 below), 

possibly since stimulus predictions in condition 2 are weaker than in condition 4 (Fig. 12b).   

 

Figure 17: Mean population response (1630 neurons) to the unexpected B5 (red dashed line), the average response to A (blue 
line), B (red line) and A5 (blue dashed line). Shading indicates s.e.m. across neurons. 
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Another possibility is that the response to the orthogonal grating is within the uncertainty of the 

prediction for the expected grating. This seems unlikely, however, since stimulus predictive neurons 

themselves are stimulus selective.  

It is possible, consistent with Fig. 2i,j , that the error is communicated via the visually driven response to 

the unexpected grating. This leads to a bit of a kerfuffle. The type of mismatch signal we observe with 

stimulus omission is most likely a prediction error of the form E = P – I: the prediction drives responses 

in V1 which are not silenced by expected visual input. However, if the visually driven response to the 

unexpected grating is a type of error signal, it would be of the form E = I – P. This would imply that the 

result of the P – I subtraction is zero when the unexpected grating is presented, suggesting that both 

grating orientations are within the bounds of the prediction. Since this would contradict the selectivity 

seen in the top-down predictions (Fig. 12), it is possible that different levels of prediction are relayed for 

each error computation. Alternatively, the presence of a positive I – P signal could inhibit the P – I signal.  

Why are stimulus predictions also found in V1? 
The presence of top-down stimulus predictions and bottom-up errors we found in this study is 

consistent with predictive coding. However, the presence of stimulus predictions within V1 L2/3 does 

not lie classically within this framework. This raises the question of the significance of this signal.  A 

similar stimulus-specific anticipatory response in V1 has been detected in human subjects using fMRI 

(Kok, Failing, and de Lange 2014). The hypothesis the authors posit is that the role of top-down input is 

to drive these neurons in V1, and their activity is used locally in order to calculate deviations from 

prediction. Previous work, including unpublished work from our lab, has shown that long-range 

projections from ACC target inhibitory interneurons in L2/3 of V1 (Zhang et al. 2014). It is possible that 

stimulus-predictive neurons in L2/3 of V1 are inhibitory and exert a direct influence on visually driven 

responses. Our estimates place nearly 98% of Ef1α-GCAmp6f expressing neurons in L2/3 as being 

excitatory (unpublished data from our lab). Approximately 5% of V1 L2/3 neurons were stimulus 

predictive, roughly in range of this estimate. This allows for the possibility that stimulus predictive 

neurons directly inhibit visually driven responses. However, this makes the assumption that the activity 

of the two populations overlaps in time. Though this is hard to estimate with Calcium imaging, stimulus-

predictive neurons peak roughly 100 ms following stimulus onset (Fig. 11b), which is approximately 

when visually driven neurons start firing. It is unclear how this type of inhibition would robustly reduce 

visually driven responses, unless this prediction is maintained in the cortical column through recurrent 

activity. A more obvious candidate for the stimulus prediction that would need to be subtracted is 
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therefore the visual response fed to V1 from ACC as, at least at the temporal resolution that Calcium 

imaging can provide, it strongly coincides with the visually driven responses in V1.  

Another possibility is that stimulus predictive activity reflects an error signal of the form E = P – I, which 

is suppressed when the stimulus appears. This would suggest that the activity of stimulus predictive 

neurons be different during the omission than following grating presentation (Fig. 18 below). 

Unfortunately, the low number of stimulus omissions does not allow for any conclusions to be drawn. 

 

Figure 18: Activity of B-predictive (left) and B-visual (right) neurons to mean A1 & A3, mean B2 & B4, expected B5 and stimulus 
omission.  

Finally, it is interesting to speculate that stimulus-predictive neurons could be involved in mental 

imagery, an effect that is consistent with predictive coding (see Introduction). 

Why is spatial decoding in CA1 poor in the virtual environment? 
 A particularly notable finding in this study is that the accuracy in decoding spatial location from 

neuronal activity is considerably lower in CA1 than in V1 (Fig. 7f), which appears to contradict previous 

research on spatial representations in the hippocampus (J O’Keefe and Dostrovsky 1971). A potential 

factor contributing to this effect is that, in order to image from CA1, we removed cortical tissue above it, 

primarily from secondary visual cortex (Dombeck et al. 2010). A deficit in visual input, which is important 

for the formation of spatial maps in the hippocampus (O’Keefe and Conway 1978), could potentially 

impair this process. However, activity in CA1 in our experiment was strongly locked to visual input (Fig. 

7e), suggesting that a lack of visual input may not have been a major contributor to poor decoding 
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accuracy. However, it could be that the presence of ipsilateral visual cortex is somehow necessary for 

the stability of spatial representations in CA1. 

Another culprit may be head fixation in virtual reality (Aghajan et al. 2014). However, this is not 

sufficient to explain the extent of the effect, since decoding accuracy was considerably higher in V1 and 

ACC under the same conditions (Fig. 7c, Fig. 12b).  

An alternative explanation might lie in the nature of the virtual environment itself. Unlike environments 

typically used in hippocampal studies (Harvey et al. 2009), the corridor used in this study is highly 

visually repetitive: all textures repeat except for the unique “landmark” stimuli. This might selectively 

impair the formation of spatial maps in CA1 but not in the cortical regions examined in this study. 

Alternatively, it could be that spatially tied CA1 activity does not reflect spatial location per se, but a 

conjunction of spatial location and sensory input at that location, e.g. via neurons that are responsive to 

gratings (Fig. 7e). The between-condition stability of CA1 neurons responsive to gratings was similar to 

that reported for place cells in previous studies (approximately 15%; Fig.10a,c) (Ziv et al. 2013).  

Another open question is why decoding accuracy in CA1 decreased with experience (Fig. 7f). In addition 

to decoding, stimulus selectivity (Fig. 9d) and stimulus responses (Fig. 13) also decreased. A potential 

explanation is that, over time, the representation of the virtual environment was transferred to cortex 

via systems consolidation (Dudai 2004). This hypothesis is consistent with the observation that decoding 

accuracy increases both in V1 and ACC with experience. It can also posit a mechanism for the emergence 

of stimulus-predictive responses in ACC and V1. Place-like activity in CA1, that is tied to visual elements 

of the environment, could act as a scaffold for spatially modulated and stimulus-predictive activity in 

ACC, which could then be relayed to V1 via top-down input.   

Conclusion 
In this study, we have found evidence that primary visual cortex carries predictions of upcoming visual 

stimuli that are based on the animal’s location in the environment, and that omitting an expected 

stimulus evokes a mismatch signal. These results are consistent with a predictive coding framework, and 

add to recent systems neuroscience literature showing signals in sensory areas expected within this 

framework (Eliades and Wang 2008; Keller et al. 2012; Keller and Hahnloser 2009; Saleem et al. 2013).  

The novelty of this study is twofold: first, it has described a top-down projection that may feed stimulus 

predictions to an early sensory area. Second, it provides evidence that internal models of space can act 

as a framework for forming predictions. Though this is, to our knowledge, the first time these findings 

have been reported in the mouse visual system, work on neural correlates of predictive coding has also 



 
 

37 
 

been done using fMRI imaging on humans (Alink et al. 2010; Kok et al. 2014), and is influential as a 

theoretical framework outside of systems neuroscience (Clark 2013). Further work on the systems 

neuroscience level is crucial for determining the validity of predictive coding as a fundamental functional 

principle of cortex, and the many subtle ways it could operate differently than theory suggests. 

Methods5 

Animals and imaging. All experiments were carried out in accordance with protocols approved by the 

Veterinary Office of the Canton of Basel, Switzerland. For the V1 experiments, we used imaging data 

from a total of 9 female C57BL/6 mice, aged 75 to 90 days at the start of the imaging series. For CA1 

experiments, we used imaging data from a total of 6 female C57BL/6 mice, aged 60 to 80 days at the 

start of the imaging series, and for ACC experiments, a total of 5 female C57BL/6 mice, aged 71 days at 

the start of the imaging series. All animals were group-housed in a vivarium (light/dark cycle: 12/12 

hours). The data of two V1 animals with visible z-axis motion were discarded. No statistical methods 

were used to pre-determine sample sizes, but our sample sizes are similar to those generally employed 

in the field. Mice were water restricted for the duration of the experiment, but allowed to drink water 

ad libitum for one hour per day in addition to receiving water rewards during experiments. Weight of all 

mice remained above 80% of starting weight. Viral injections and window implantation were performed 

as previously described (Leinweber et al. 2014). Briefly, mice were anesthetized using a mix of fentanyl 

(0.05 mg/kg), medetomidine (0.5 mg/kg) and midazolam (5 mg/kg) for all surgical procedures. For 

primary visual cortex imaging experiments, a craniotomy was made over visual cortex and AAV2/1-Ef1a-

GCaMP6f-WPRE (titer 7.0 x 1010 or 5.0 x 1011 TU/ml) was injected, and the craniotomy was sealed with a 

4 mm or 5 mm glass coverslip. For hippocampus imaging experiments, a 3 mm craniotomy was made 

above either left or right dorsal hippocampus and posterior parts of cortex were aspirated, and AAV2/1-

Ef1a-NES-jRGECO1a-WPRE (Dana et al. 2016) (titer 1.2 x 1011 TU/ml) was injected into region CA1. The 

craniotomy was sealed with a 3 mm cover slip. For ACC axon imaging experiments, a craniotomy was 

made over visual cortex and sealed with a 4 mm glass coverslip. Additionally, a small craniotomy over 

ACC (0.3 mm lateral of bregma) was made and AAV2/1-Ef1a-GCaMP6f-WPRE (titer 1.0 x 1011 TU/ml) was 

injected before the region was sealed with cyanoacrylate. All viral vectors were injected at a volume of 

~150 nl per site. A titanium head bar was attached to the skull and stabilized with dental cement. 

Imaging commenced 10 to 14 days (primary visual cortex), 23 days (hippocampus) or 30 days (ACC) 

following injection, and was done using a custom built two-photon microscope (Leinweber et al. 2014). 

                                                           
5 The methods described in this paper have appeared in (Fiser et al. 2016) 
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Illumination source was an Insight DS laser (Spectra Physics) tuned to a wavelength of 910 nm. We used 

a 12 kHz resonance scanner (Cambridge Technology) for line scanning, which enabled frame rates of 60 

Hz at 400 x 750 pixels resolution. Imaging of ACC axons was performed using an 8 kHz resonance 

scanner (Cambridge Technology) resulting in frame rates of 40 Hz at 400 x 750 pixels resolution. In 

addition, we used a piezo actuator (Physik Instrumente) to move the objective (Nikon 16x, 0.8 NA) in 

steps of 15 µm between frames to acquire images at 4 different depths, thus reducing the effective 

frame rate to 15 Hz for the V1 and CA1 experiments, and 10 Hz for ACC experiments. Note, the use of 

different setups for axonal and cell body imaging were the result of lab logistics. 

Virtual reality and behavior. The behavioral imaging setup was as previously described (Leinweber 

et al. 2014). Briefly, head-fixed mice were free to run on an air-supported polystyrene ball, the motion 

of which was restricted to the forward and backward directions by a pin (Fig. 6a). The ball’s rotation was 

coupled to linear displacement in the virtual environment that was projected onto a toroidal screen 

surrounding the mouse. The screen covered a visual field of approximately 240 degrees horizontally and 

100 degrees vertically. All elements of the tunnel including the gratings were calibrated to be 

isoluminant. Gratings were presented on a uniform gray area once the mouse entered the gray area. A 

reward zone was located at the end of the tunnel. Reaching the reward zone triggered a 5 s timeout 

during which the mouse could lick for a water reward provided by a spout located in front of the mouse. 

After the timeout, the mouse was teleported to the beginning of the tunnel to start the next trial. In 

early traversals animals were encouraged to run by applying occasional mild air puffs to the neck.  

Experimental design. Experimental sessions were one to two hours long, and each behavioral 

condition consisted of two such sessions, one per day, spaced on average 24 hours apart. Behavioral 

conditions occurred on subsequent days, with the exception of condition 5 (grating omission), which 

took place immediately following condition 4. For anesthetized recordings, mice were lightly 

anesthetized using a mix of fentanyl (0.025 mg/kg), medetomidine (0.25 mg/kg) and midazolam (2.5 

mg/kg) at half surgical dose, and head fixed on the setup and passively viewed the tunnel which was 

presented at a constant visual flow speed. The pre-experience anesthesia condition took place one day 

before condition 1, and post-experience anesthesia took place either immediately after condition 5 or 

the following day.  

Data analysis. Imaging data were full-frame registered using a custom-written software(Leinweber et 

al. 2014). Neurons were selected manually based on their mean fluorescence or maximum projection. 

This biased our selection towards active neurons. Regions of interest in the axonal data were 
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automatically selected by a combination of independent component analysis and image segmentation 

as previously described (Mukamel, Nimmerjahn, and Schnitzer 2009). Fluorescence traces were 

calculated as the mean pixel value in each region of interest per frame, and were then median-

normalized to calculate ΔF/F. ΔF/F traces were filtered as previously described (Dombeck et al. 2007). 

No blinding of experimental condition was performed in any of the analyses.  

V1 activity becomes descriptive of spatial location: For all plots of stimulus triggered fluorescence 

changes, fluorescence traces were mean-subtracted in a window 10 to 5 frames (-667 ms to -333 ms for 

V1 and CA1; -700ms to -300ms for ACC) preceding the stimulus onset unless noted otherwise. Neurons 

were classified as tunnel-responsive if their mean ΔF/F in a 10-frame (667 ms) window post-stimulus 

onset was at least 1.5% on average for any condition, for any grating or landmark stimulus in the tunnel.  

Classification of grating position using neuronal activity was done using Matlab’s TreeBagger algorithm. 

A separate classifier was trained on each condition for each animal. 500 classification trees were used 

for each classifier. The input to the classifier was the mean ΔF/F of each neuron for each grating 

presentation in each traversal within a 10-frame window post-grating onset. Traversals were randomly 

interleaved, and then activity was averaged over three of the randomly chosen traversals at a time. This 

was done to diminish the influence of trial-to-trial variability on classification. Traversals including an 

unexpected grating in position 5 in conditions 2 and 4 were omitted from the classification. Classification 

of spatial position was done as above except that activity was binned into each fifth of the virtual tunnel. 

For both paradigms, the training set consisted of one half of the randomly interleaved traversals in the 

condition. The classifier was tested on the other half of traversals. Performance of the classifier was 

evaluated as the mean accuracy, i.e. the mean of the diagonal of the confusion matrix for each condition 

per animal. When determining the effect of traversal speed on classification, we classified traversals 

with a mean speed of 15 cm/s or below as slow, and 19 cm/s and above as fast. For trace deconvolution, 

traces were first smoothed (mean in a sliding window of 5 frames (333 ms)). The smoothed traces were 

then deconvolved using an exponential decay kernel with a time constant τ = 0.5 s.  

We considered neurons as having stable activity peaks if the peak of each neuron’s average activity in 

each condition was within 5% of tunnel length (5 bins), i.e. one texture length, between conditions.  

Selectivity indices for each neuron were calculated using the mean ΔF/F in the same window post-

grating onset. Neurons were assigned a selectivity index for a condition if at least one of the responses 

to a grating (mean A1 + A3 or mean B2 + B4) throughout the condition was at or above 1.5% ΔF/F. 

Otherwise, selectivity for the condition was set to 0. In Fig. 9, neurons were considered selective if their 
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absolute selectivity index (SI) was greater than 0.5 on average across the animals’ experience. In order 

to measure stability of selective neurons we correlated fluorescence traces for each neuron, mapped to 

spatial coordinates, between traversals. We only included activity in the first 85% of the tunnel, to avoid 

differences due to the variable grating in position 5.  

V1 develops predictive responses to upcoming visual stimuli. Predictive and visual neurons were 

sorted based on the position of the peak of their average ΔF/F post grating-onset over each condition. 

Predictive neurons were selected as exhibiting a peak within 333ms (5 frames) of grating onset, and 

visual neurons were selected as having a peak after 533 ms (8 frames). The window for calculating 

selectivity index was 133 ms pre- to 333 ms post grating onset (-2 to 5 frames) for predictive neurons, 

and 533 ms to 1000 ms (8 to 15 frames) post grating onset for visual neurons. In Fig. 2b and c, the 

baseline subtraction window for both plots was -1.33 s to -1 s (-15 to -10 frames). To compute the mean 

of predictive or visual neurons per traversal, the mean of each predictive neuron was taken in a 7-frame 

window post-grating onset (0 ms to 467 ms), and the mean of each visual neuron within a 8-frame to 15-

frame (533 ms to 1s) window post-grating onset. These windows were always used to compute the 

mean responses for the respective class of neurons in other figures. To compare visually evoked 

stimulus responses in trials with high predictive activity versus those with high visual activity, we chose 

presentations with a predictive activity in the top 20th percentile in the 10-frame window following 

grating onset, and compared them to presentations with predictive activity in the bottom 20th 

percentile. We removed outlying traversals (with average activity values above 3σ from the mean, for 

predictive and visual neuron activity) before making this comparison. In Figure 2j, traversals with 

average predictive activity below median were classified as low-predictive traversals, and those above as 

high-predictive traversals.  

ACC conveys stimulus predictive signals to V1. In the ACC experiments animals experienced the same 

tunnel for conditions 1 through 3. Imaging was only done in condition 1 and 4. To simplify comparison of 

Fig. 2h and Fig. 3e we use B to denote the stimulus the animal saw in position 5 in condition 4.  To select 

for stimulus-predictive ACC axons in Fig. 3d, we selected predictive axons as in V1 but on the second half 

of traversals in each condition, and then plotted the responses of the selected axons in the first half of 

traversals. For this analysis we excluded 2 (of 5) sites with a low number of traversals in the respective 

conditions. In all other aspects axon selection was identical to neuron selection in the V1 data. To 

calculate the mean of B-predictive and A-predictive axons in Fig. 12e, we first mean-subtracted as 

described above to select neurons, and then measured mean activity after a mean-subtraction of 1 s to 

500 ms preceding onset. 
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Omitting an expected stimulus drives strong responses in V1. Omission-selective neurons were 

selected as having a mean ΔF/F response larger than 10% to the omission and as having an omission 

selectivity index larger than 0.33. The omission selectivity index is defined as SIOM = (ROM – Rmax)/(ROM + 

Rmax), where ROM is the mean response to the omission for each neuron and Rmax is the largest mean 

response to any other grating in the tunnel. For statistical comparison of omission-selective neuron 

activity in traversals with high and low predictive activity (Fig. 13c), data were bootstrapped 10 times 

with random replacement then a Wilcoxon rank-sum test was performed on the bootstrapped data. 
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