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TRACTABILITY OF THE QUASI-MONTE CARLO QUADRATURE WITH

HALTON POINTS FOR ELLIPTIC PDES WITH RANDOM DIFFUSION

HELMUT HARBRECHT, MICHAEL PETERS, AND MARKUS SIEBENMORGEN

Abstract. This article is dedicated to the computation of the moments of the solution to
stochastic partial differential equations with log-normal distributed diffusion coefficient by the

Quasi-Monte Carlo method. Our main result is the polynomial tractability for the Quasi-
Monte Carlo method based on the Halton sequence. As a by-product, we obtain also the strong

tractability of stochastic partial differential equations with uniformly elliptic diffusion coefficient

by the Quasi-Monte Carlo method. Numerical experiments are given to validate the theoretical
findings.

1. Introduction

In this article, we analyze the Quasi-Monte Carlo method based on the Halton sequence, cf. [19,
30], to determine the moments of the solution to partial differential equations with stochastic and
log-normally distributed diffusion coefficient. Precisely, we consider equations in divergence form,
i.e.

(1) � div
�
apx, ωq∇upx, ωq� � fpxq,

for which we impose for simplicity homogenous boundary conditions.
The efficient treatment of this type of equations has recently been the topic in several works,

see e.g. [3, 8, 9, 17, 18, 26, 39]. The method of choice to cope with these equations mainly depends
on the quantity of interest. Since the diffusion coefficient is modeled as a stochastic field, it is
clear that the solution itself will also be a stochastic field. Therefore, if the solution u itself is of
interest, methods like the stochastic Galerkin method, see e.g. [4, 13, 15, 29], or the stochastic
collocation method, see e.g. [3, 31], are feasible for its approximation. If one is rather interested
in distribution properties of the solution, it might be more convenient to directly approximate the
solution’s moments, i.e. the expected values of the powers up for p P N of u. In the latter case, one
ends up with a high-dimensional integration problem. The integration can either be performed
by stochastic sampling methods, like the well known Monte Carlo method, see e.g. [7], or even
randomly shifted deterministic quadrature rules, like randomly shifted lattice rules, see e.g. [41].
The latter quadrature rules belong to the class of Quasi-Monte Carlo methods. Unfortunately,
these methods only provide stochastic convergence in the mean square sense. Therefore, one might
aim at quadrature methods, which provide deterministic error estimates, like the conventional
Quasi-Monte Carlo method based on deterministic point sequences, see e.g. [7, 30], or the sparse
grid quadrature, also known as Smolyak’s construction, see e.g. [6, 14, 43, 46]. All of these methods
depend on the repeated evaluation of the integrand in different sample points or quadrature points.
Each such evaluation corresponds to the solution of the equation (1) for a different realization of
the parameter ω.

A recently popular approach to keep the computational cost low are multilevel techniques, like
the Multilevel Monte Carlo method, cf. [5, 9, 16, 22, 23]. Nevertheless, in [20, 21] it is shown,
that arbitrary quadrature rules can be accelerated by multilevel techniques, yielding the related
multilevel quadrature methods. Especially faster converging quadrature rules result in a faster
converging multilevel quadrature method.
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A common approach for the solution of (1) is based on the separation of the stochastic variable
and the spatial variable in the diffusion coefficient a by the so-called Karhunen-Loève expansion,
cf. [28]. This is a series expansion of a by L2-orthogonal functions. Thus the diffusion coefficient
depends in principle on infinitely many terms. Depending on the desired accuracy, this series has
to be truncated appropriately. Then, the dimensionality of the integration problem is directly
coupled to the length of the truncated Karhunen-Loève expansion and increases for higher accura-
cies. Therefore, it is crucial to construct methods which are as far as possible independent of the
length of the Karhunen-Loève expansion and thus do not suffer from the curse of dimensionality.
Especially, we want to avoid the exponential dependence of the computational cost on the dimen-
sionality. Methods providing this property are called tractable, see e.g. [32, 33, 34, 42, 45]. One can
distinguish between strong tractability, which refers to convergence being completely independent
of the dimensionality and polynomial tractability, which describes only a polynomial dependence
on the dimensionality. It can be proven that Quasi-Monte Carlo quadrature rules based on the
Halton sequence are polynomial tractable. More precisely, they converge up to a linear factor in-
dependently of the problem’s dimensionality, if the Karhunen-Loève expansion decays sufficiently
fast. This is the main result of this article. The idea of the proof is based on the fact that the
Halton sequence avoids the boundary of the integration domain, which has been shown in [35].

The rest of this article is organized as follows. Section 2 specifies the diffusion problem under
consideration and the corresponding framework. In particular, the parametric reformulation as
a high-dimensional deterministic problem is performed here. In Section 3, we derive the crucial
regularity estimates of the solution to the stochastic diffusion problem. In Section 4, we elaborate
on the Quasi-Monte Carlo quadrature based on the Halton sequence and prove its polynomial
tractability. At the end of this section, we refer also to the uniformly elliptic case. Finally,
Section 5 validates the theoretical findings by some basic one-dimensional numerical examples.
For more sophisticated examples, we refer to the recent work [20].

In the following, in order to avoid the repeated use of generic but unspecified constants, by
C À D we mean that C can be bounded by a multiple of D, independently of parameters which
C and D may depend on. Obviously, C Á D is defined as D À C, and C h D as C À D and
C Á D.

2. Problem setting

In the following, let D � Rd for d P N be a domain with Lipschitz continuous boundary and let
pΩ,F ,Pq be a probability space with σ-field F � 2Ω and a complete probability measure P, i.e. for
all A � B and B P F with PrBs � 0 it follows A P F . Let the random function upωq P H1

0 pDq be
the solution to the stochastic diffusion problem

(2) � div
�
apωq∇upωq� � f in D for almost every ω P Ω

with (deterministic) data f P L2pDq. Instead of directly approximating the probably infinite
dimensional solution u itself, we rather intend to compute the solution’s moments:

Mpu :� Erup�,yqps.
Especially, the solution’s expectation is given by

(3) Eupxq �
»
Rm

upx,yqρpyq dy P H1
0 pDq

and its variance by

(4) Vupxq � Eu2pxq � E2
upxq �

»
Rm

u2px,yqρpyq dy � E2
upxq PW 1,1

0 pDq.

They correspond to the first and the second (centered) moment of the solution u. As we will show
later on, it holds more generally for a sufficiently smooth diffusion coefficient a and f P LppDq
that Mpu PW 1,1

0 pDq. Note, that the knowledge of all moments of u is sufficient to determine the
related distribution.
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We consider here the log-normal situation, where the logarithm of the diffusion coefficient is a
centered Gaussian field which can be represented by a Karhunen-Loève expansion, cf. [28],

(5) log
�
apx, ωq� � 8̧

k�1

a
λkϕkpxqψkpωq.

The functions tϕkuk are pairwise orthonormal functions which are assumed to be bounded in
L8pDq and tψkuk are independent, standard normally distributed random variables, i.e. ψkpωq �
N p0, 1q. For the convergence of the series in (5), we assume that the sequence

(6) γk :� ��aλkϕk��L8pDq
satisfies tγkuk P `1pNq.

For numerical issues it is reasonable to assume that the Karhunen-Loève expansion is either
finite of length m or needs to be appropriately truncated after m terms. We will explicitly make use
of this assumption in the following. Nevertheless, we allow mÑ 8 as the accuracy requirements
increase. The error in case of a truncated Karhunen-Loève expansion has been discussed in [8].

The orthogonality of the sequence tψkuk implies the stochastic independence in the Gaussian
case. Therefore, the pushforward measure Pψ :� P �ψ with respect to the measurable mapping

ψ : Ω Ñ Rm, ω ÞÑ ψpωq :� �ψ1pωq, . . . , ψmpωq
�

is given by a joint density function with respect to the Lebesgue measure, i.e.

(7) ρpyq :�
m¹
k�1

ρpykq, where ρpyq :� 1?
2π

exp

�
� y2

2



.

With this representation at hand, we can reformulate the stochastic problem (2) as a parametric
deterministic problem. To that end, we substitute the random variables ψk by the coordinates
yk P R. Then, we define the parameterized and truncated diffusion coefficient via

(8) apx,yq :� exp

� m̧

k�1

a
λkϕkpxqyk




for all x P D and y � py1, y2, . . . , ymq P Rm. Thus, we arrive at the parametric diffusion problem:

(9)
find u P L2

ρ

�
Rm;H1

0 pDq
�

such that

� div
�
apx,yq∇upx,yq� � fpxq in D for all y P Rm.

Here and in the sequel, for a given Banach space X, the Bochner space LpρpRm;Xq, 1 ¤ p ¤ 8,
consists of all functions v : Rm Ñ X whose norm

}v}Lp
ρpRm;Xq :�

$''&
''%
�»

Rm

}vp�,yq}pXρpyq dy


1{p
, p   8

ess sup
yPRm

}vp�,yqρpyq}X , p � 8

is finite. If p � 2 and X is a Hilbert space, then the Bochner space is isomorphic to the tensor
product space L2

ρpRmq b X. Note that, for notational convenience, we will always write vpx,yq
instead of

�
vpyq�pxq if v P LpρpRm;Xq.

The stochastic diffusion coefficient apx,yq is neither uniformly bounded away from zero nor
uniformly bounded from above for all y P Rm. Consequently, it is impossible to show unique
solvability in the classical way for elliptic boundary value problems. Especially, the Lax-Milgram
theorem does not directly apply to the problem (2). Nevertheless, we have for each fixed y P Rm
the bounds

(10) 0   aminpyq :� ess inf
xPD

apx,yq ¤ ess sup
xPD

apx,yq �: amaxpyq   8.

Obviously, it holds

aminpyq ¥ exp

�
�

m̧

k�1

|γkyk|



and amaxpyq ¤ exp

� m̧

k�1

|γkyk|


.
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Due to (10), for every fixed y P Rm, the problem to find u P H1
0 pDq such that

(11) � div
�
apx,yq∇upx,yq� � fpxq in D

is elliptic and admits a unique solution up�,yq P H1
0 pDq which satisfies

(12) }up�,yq}H1pDq À
1

aminpyq}f}L2pDq.

We refer the reader to e.g. [39] for a proof of this result.

Remark 2.1. In the framework of [39], the general case of mÑ8 is considered. Therefore, the
set

Γ :�
"

y P RN :
8̧

k�1

γk|yk|   8
*

is introduced which is shown to be of measure PψpΓq � 1. Then, the condition tγkuk P `1pNq
ensures for all y P Γ that

�� log
�
apx,yq���   8 holds uniformly in x P D. Obviously, we have

Γ � Rm for all m   8. In the following, we make use of the fact that condition (10) is always
satisfied in finite dimensions. Nevertheless, the case of an infinite dimensional stochastics, i.e.
m � 8, can be treated by straightforward modifications of the presented arguments.

3. Regularity of the solution

The topic we address in this article is the computation of the mean and the higher order
moments of the solution of (9) by a fully deterministic quadrature rule. Therfore, in order to
establish error bounds for the application of Quasi-Monte Carlo quadrature rules, we consider in
this section the regularity of the solution u and its powers, i.e., up for p P N. This issue has
already been discussed in [3, 8, 26, 39]. We will compile and augment here some of the results
which originate from those articles for our framework.

At first, we shall fix some notation. For a multiindex α � pα1, α2, . . . , αmq P Nm, the related
multidimensional derivative is denoted by

Bαy :�
m¹
k�1

� B
Byk


αk

.

Furthermore, we set |α| :� °m
k�1 αk and, for a vector β P Rm, we define βα :�±m

k�1 β
αk

k .

Remark 3.1. The Sobolev space H1
0 pDq is considered to be equipped with the norm

} � }H1pDq :� }∇ � }L2pDq.

Likewise, we use corresponding norms for the Sobolev spaces W 1,p
0 pDq, i.e.,

} � }W 1,ppDq :� }∇ � }rLppDqsd .

Since we only consider homogenous Dirichlet problems, by Sobolev’s norm equivalence theorem,
cf. [2], they all induce equivalent norms for these spaces. Of course, all results are straightforwardly
extendable to the case of non-homogenous Dirichlet problems.

The differentiability of u follows straightforwardly from the differentiability of the diffusion
coefficient a, cf. [26]. In particular, we shall use the following lemma from [26] which is adjusted
for our purposes.

Lemma 3.2. Set γ :� pγ1, γ2, . . . , γmq. Then, for the solution u to (9) and every y P Rm, the
following estimate holds

��Bαy up�,yq��H1pDq ¤ |α|!
�
γ

log 2


αd
amaxpyq
aminpyq }up�,yq}H1pDq.

This result shows the regularity of the solution u. For the regularity of u2, we have then the
following proposition.
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Proposition 3.3. The derivatives of u2, where u is the solution of (9), satisfy

(13)
��Bαy u2p�,yq��

W 1,1pDq À p|α| � 1q!
�
γ

log 2


α
amaxpyq
aminpyq }up�,yq}

2
H1pDq.

Proof. By the Leibniz rule we obtain

(14)
��Bαy u2p�,yq��

W 1,1pDq ¤
¸
β¤α

�
α

β


��Bα�βy up�,yqBβyup�,yq
��
W 1,1pDq.

Each summand can be estimated as follows��Bα�βy up�,yqBβyup�,yq
��
W 1,1pDq

� ��∇Bα�βy up�,yqBβyup�,yq � Bα�βy up�,yq∇Bβyup�,yq
��
L1pDq

¤ ��∇Bα�βy up�,yq��
L2pDq

��Bβyup�,yq��L2pDq �
��Bα�βy up�,yq��

L2pDq
��∇Bβyup�,yq��L2pDq

À ��Bα�βy up�,yq��
H1pDq

��Bβyup�,yq��H1pDq �
��Bα�βy up�,yq��

H1pDq
��Bβyup�,yq��H1pDq.

Application of Lemma 3.2 yields��Bα�βy up�,yqBβyup�,yq
��
W 1,1pDq À |β|! |pα� βq|!

�
γ

log 2


α
amaxpyq
aminpyq }up�,yq}

2
H1pDq.

By inserting this inequality into (14), we conclude��Bjyku2p�,yq��
W 1,1pDq À

¸
β¤α

�
α

β



|β|! |pα� βq|!

�
γ

log 2


α
amaxpyq
aminpyq }up�,yq}

2
H1pDq

�
�
γ

log 2


α
amaxpyq
aminpyq }up�,yq}

2
H1pDq

|α|̧

k�0

p|α| � kq! k!
¸

|β|�k

�
α

β



.

In view of
|α|̧

k�0

p|α| � kq! k!
¸

|β|�k

�
α

β



�

|α|̧

k�0

p|α| � kq! k!

�|α|
k



�

|α|̧

k�0

|α|! � p|α| � 1q!,

we finally arrive at the assertion (13). �

For higher order moments, we need some stronger regularity assumptions on the load f .

Proposition 3.4. Let D be a domain with sufficiently smooth boundary and let p ¡ 2. If the load
f satisfies f P LppDq, then the solution u to (11) is contained in W 1,p

0 pDq and meets the regularity
estimate

(15)
��up�,yq��

W 1,ppDq À
1

aminpyq}f}LppDq.

The derivatives of u with respect to the parametric variable y can be estimated by

(16)
��Bαy up�,yq��W 1,ppDq À |α|!

�
γ

log 2


α
amaxpyq
aminpyq }up�,yq}W 1,ppDq.

Additionally, the derivatives of the powers up with respect to the parametric variable y fulfill

(17)
��Bαy upp�,yq��W 1,1pDq À p|α|!

�
pγ

log 2


α�
amaxpyq
aminpyq


p
}up�,yq}pW 1,ppDq.

Proof. At first, we notice that the bilinear form

pu, vqH1
0 pDq :� p∇v,∇uqL2pDq

defines an inner product on the Hilbert space H1
0 pDq. Let 1   p, q   8 be dual exponents, i.e.

1{p� 1{q � 1. It is proven in [40] that for each function u PW 1,p
0 pDq the estimate

}u}W 1,p ¤ Cpp,Dq sup
0�vPW 1,q

0 pDq

pu, vqH1
0 pDq

}v}W 1,qpDq
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is valid. From this, we derive

}up�,yq}W 1,ppDq À sup
0�vPW 1,q

0 pDq

�
up�,yq, v�

H1
0 pDq

}v}W 1,qpDq
¤ 1

aminpyq sup
0�vPW 1,q

0 pDq

Bypu, vq
}v}W 1,qpDq

.

Here, we set

(18) Bypu, vq :�
»
D

apx,yq∇upx,yq∇vpxq dx,

which is the bilinear form related to the variational formulation of (11) for every fixed value of
the parameter y. In full, this variational formulation reads

(19) Bypu, vq � fpvq :�
»
D

fpxqvpxq dx for all v P H1
0 pDq.

Regard that H1
0 pDq � W 1,q

0 pDq. Since f P LppDq, it is easy to verify by a density argument that

equation (19) is still valid for v PW 1,q
0 pDq. Therefore, we have

sup
0�vPW 1,q

0 pDq

Bypu, vq
}v}W 1,qpDq

� sup
0�vPW 1,q

0 pDq

fpvq
}v}W 1,qpDq

¤ }f}LppDq,

which follows from the Hölder inequality and the estimate }v}LqpDq À }v}W 1,q . This establishes
the inequality (15).

The second assertion follows in complete analogy to the case p � 2 that is proven in [26]. We
sketch here the essential ideas of the proof which is based on induction. Concretely, we show

(20)
��ap�,yq∇Bαy up�,yq��rLppDqsd À |α|!

�
γ

log 2


α
}ap�,yq∇up�,yq}rLppDqsd

The case |α| � 0 is trivial. For |α| � k ¡ 0 we have

��ap�,yq∇Bαy up�,yq��rLppDqsd À sup
0�vPW 1,q

0 pDq

By

�Bαy up�,yq, v�
}v}W 1,qpDq

.

This follows from the fact that W 1,q
0 pDq is densely embedded into rLqpDqsd by the mapping

v ÞÑ ∇v, cf. [40]. Now, differentiation of the bilinear form (18) with respect to y yields

Bαy By

�
up�,yq, v� � By

�Bαy up�,yq, v�� ¸
0�β¤α

»
D

Bβyapx,yq∇Bα�βy upx,yq∇vpxq dx.

Therefore, from the differentiation of the variational formulation (19), we obtain

By

�Bαy up�,yq, v� ¤ ¸
0�β¤α

����Bβyap�,yqap�,yq
����
L8pDq

»
D

��apx,yq∇Bα�βy upx,yq∇vpxq�� dx

¤
¸

0�β¤α
γβ
��ap�,yq∇Bα�βy up�,yq��

LppDqd}v}W 1,qpDq.

The inequality (20) follows then by inserting the induction hypothesis and some combinatorial
estimates as in [26].

Finally, to establish estimate (17), we apply Faà di Bruno’s formula, cf. [11]. For n :� |α|, this
formula provides

(21) Bαy uppyq �
ņ

r�1

ppp� 1q � � � pp� r � 1qup�rpyq
¸

P pα,rq
α!

n¹
j�1

�Bβj
y upyq�kj
kj !βj !

,

Here, the set P pα, rq contains restricted integer partitions of a multiindex α into r non-vanishing
multiindices. For a definition of P pα, rq see Appendix A.
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Equation (21) together with the generalized Hölder inequality yields

}Bαy uppyq}W 1,1pDq

¤
ņ

r�1

ppp� 1q � � � pp� r � 1q
¸

P pα,rq

α!±n
j�1 kj !βj !

����up�rpyq
n¹
j�1

�
Bβj

y upyq
	kj ����

W 1,1pDq

À p

�
γ

log 2


α�
amaxpyq
aminpyq


p{2
}u}pW 1,ppDq

ņ

r�1

p!

pp� rq!
¸

P pα,rq

α!±n
j�1 kj !βj !

n¹
j�1

�|βj |!�kj .
From [11] we know that ¸

P pα,rq

α!±n
j�1 kj !βj !

� Sn,r,

where Sn,r are the Stirling numbers of the second kind, cf. [1]. Moreover, since
±n
j�1

�|βj |!�kj ¤
|α|!, we can further estimate

ņ

r�1

p!

pp� rq!
¸

P pα,rq

α!±n
j�1 kj !βj !

n¹
j�1

�|βj |!�kj ¤ |α|!
ņ

r�1

p!

pp� rq!Sn,r � |α|!pn.

The last inequality follows by the theory of generating functions for the Stirling numbers of the
second kind, see e.g. [1]. This completes the proof. �

4. Quasi-Monte Carlo Quadrature for the Stochastic Variable

In this section, we discuss the use of Quasi-Monte Carlo quadrature rules for the integral

Iv �
»
p0,1qm

vpzq dz.

These quadrature rules are classically of the form

Qv � 1

N

Ņ

i�1

vp�, ξiq,

where N denotes the number of samples and ξi P r0, 1sm is one sample point. For the error
estimation of the Quasi-Monte Carlo method, it is required that the integrand has integrable,
mixed first order derivatives. Then, the error of the standard Quasi-Monte Carlo method over the
unit cube r0, 1sm is bounded by means of the L8-star discrepancy

D�
8pΞq :� sup

tPr0,1sm

����Vol
�r0, tq�� 1

N

Ņ

i�1

1r0,tqpξiq
����

of the set of sample points Ξ � tξ1, . . . , ξNu � r0, 1sm, where Vol
�r0, tq� denotes the Lebesgue

measure of the cuboid r0, tq, cf. [30]. More precisely, it holds the famous Koksma-Hlawka-inequality

}pI�Qqv}X À D�
8pΞq}v}W 1,1

mixpr0,1sm;Xq,

where the Bochner space W 1,1
mix

�r0, 1sm;X
�

consists of all functions v : r0, 1sm Ñ X with finite
norm

(22) }v}W 1,1
mixpr0,1sm;Xq :�

¸
}α}8¤1

»
r0,1sm

��Bαy vpyq��X dy   8.

In case of certain, so-called low discrepancy, point sequences, e.g. the Halton sequence, this dis-
crepancy can typically be estimated to be of the order O

�
N�1plogNqm�, see e.g. [19, 30].

Remark 4.1. The estimation of the discrepancy of a set Ξ � r0, 1sm, especially for high dimen-
sions m, has been the topic of many publications in the past fifteen years. The aim is to avoid the
factor plogNqm in the estimation of the discrepancy which grows exponential in the dimension m.
This exponential dependence is called intractability in literature, cf. [32, 42].
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In the following, we assume that the sequence of integration points is given by the Halton
sequence.

Definition 4.2. Let b1, . . . , bm denotes the first m prime numbers. The m-dimensional Halton
sequence is given by

ξi � rhb1piq, . . . , hbmpiqsᵀ, i � 0, 1, 2, . . . ,

where hbj piq denotes the i-th element of the van der Corput sequence according to bj. That is, if
i � � � � c3c2c1 in radix bj, then hbj piq � 0.c1c2c3 � � � in radix bj.

We show that the Quasi-Monte Carlo quadrature based on this sequence is polynomial tractable
for the determination of the moments of the solution u to (11) under certain decay properties of
the sequence tγkuk. The proof is essentially based on the ideas in [35].

To obtain a Quasi-Monte Carlo method for the integration domain Rm, the sample points have
to be mapped to Rm by the inverse distribution function. Therefore, we define the cumulative
normal distribution

Φ: RÑ p0, 1q, with Φpyq :�
» y
�8

ρpy1q dy1

and its inverse

Φ�1 : p0, 1q Ñ R.
Then, for a function f P L1

ρpRq, it is well known that»
R
fpyqρpyq dy �

» 1

0

f
�
Φ�1pzq� dz

with the substitution z � Φpyq. Especially, we have f � Φ�1 P L1
�p0, 1q�. By defining Φpyq :�

rΦpy1q, . . . ,Φpymqsᵀ, we may extend the above integral transform to the multivariate case, i.e. f P
L1
ρpRmq and »

Rm

fpyqρpyq dy �
»
p0,1qm

f
�
Φ�1pzq�dz.

Although we have f �Φ�1 P L1
�p0, 1qm�, the integrand might be unbounded in a neighbourhood

of the hypercube’s boundary in our application, cf. (12). Thus, the corresponding W 1,1
mix-norm

might be unbounded, too. As a consequence, the Koksma-Hlawka inequality is not applicable.
The idea of [35] is now to consider subsets KN such that the first N points ξ1, . . . , ξN of the
Halton sequence are included in KN . Due to the definition of the Halton sequence this holds for

KN :�
m¡
k�1

rpbkNq�1, 1� pbkNq�1s.

Obviously, for the solution to (9), it holds for almost every x P D
ess sup
zPKN

u
�
x,Φ�1pzq�   8 for all n P N.

Let now ûpx, zq :� u
�
x,Φ�1pzq�. For z P p0, 1qmzKN , we replace û by its low-variation exten-

sion ûext, cf. [35], i.e.

(23) ûextpzq :� ûpz0q �
¸

}α}8�1

»
rpz0qα,pzqαs

1y_αz0PKN
Bαûpy _α z0q dpyqα.

For this formula we introduced some notation. For a vector z P Rm, we mean by pzqα P R|α|

the vector obtained by omitting every entry zi for which αi � 0 holds. This defines a projection

Πα : Rm Ñ R|α|. For two vectors y, z P Rm, we define y _α z :� �yαi
i z

p1�αiq
i

�m
i�1

. Note that any

element y P Π�1
α

�pyqα� in the preimage of pyqα is admissible for the occuring y P Rm in (23).
Moreover, for a given anchor point z0 P KN , the extension coincides by definition (23) with the
function û on KN , i.e. ûextpzq � ûpzq for all z P KN .
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Theorem 4.3. The Quasi-Monte Carlo quadrature using Halton points for approximating the
expectation of the solution u to (11) is polynomial tractable if the sequence tγkuk satisfies the
decay property γk À k�4�2ε for some arbitrary ε ¡ 0. More precisely, there exists for each δ ¡ 0
a sequence tδkuk¡0 P `1pNq with δk � k�1�ε and a δ̃ ¡ 0 with δ̃ �°8

k�1 δk   δ such that the error
of the Quasi-Monte Carlo quadrature with N Halton points satisfies

(24)

��pI�Qqû��
H1pDq À }f}L2pDq

�
mNmaxk�1,...,m δk�1 �N�1�δ̃�°m

k�1 δk
�

¤ }f}L2pDqpm� 1qN�1�δ.

The constant hidden in the above inequality depends on the sequence tδkuk¡0, on δ̃ and on δ.

The proof of this theorem is performed by splitting up the error of integration into three parts.
Namely, with respect to the extension ûext, we write

(25)
��pI�Qqû��

H1pDq ¤
��Ipû� ûextq

��
H1pDq �

��Qpû� ûextq
��
H1pDq �

��pI�Qqûext

��
H1pDq.

In this inequality, the second term on the right-hand-side vanishes since û
��
KN

� ûext

��
KN

. The

first term of the right-hand-side of (25) is estimated by Lemma 4.4 and the third term on the
right-hand-side of (25) is estimated in Lemma 4.6.

Lemma 4.4. Let the conditions of Theorem 4.3 hold and let ûext be defined according to (23).
Then, it holds

(26)
��Ipû� ûextq

��
H1pDq À }f}L2pDqNmaxj δj�1m.

Proof. We organize the proof in four steps.
(i.) On the one hand, from [12], we know that

Φ�1pzq  
b
� log

�
2πp1� zq2p1� logp2πp1� zq2qq� for all z P r0.9, 1s.

Furthermore, we have from [36] that

Φ�1pzq ¤
a
�2 logp1� zq � 2.30753� 0.27061

a�2 logp1� zq
1� 0.99229

a�2 logp1� zq � 0.08962 logp1� zq � 0.003

for all z P r0.5, 1s. These inequalities imply

Φ�1pzq ¤
a
�2 logp1� zq for all z P r0.5, 1s.

Due to the symmetry of the distribution, this shows that

|Φ�1pzq| ¤
a
�2 logpmintz, 1� zuq for all z P r0, 1s.

Therefore, we derive

BzΦ�1pzq �
?

2π exp

�
Φ�1pzq2

2



¤
?

2πmintz, 1� zu�1,

which implies the estimate����
m¹
k�1

�BzkΦ�1pzkq
�αk

���� ¤
m¹
k�1

�?
2πmintzk, 1� zku�1

�αk

for all non-negative integers αk ¥ 0.
(ii.) On the other hand, one verifies

exp
�
γk|Φ�1pzq|� ¤ Cpδk, γkqmintz, 1� zu�δk for all δk ¡ 0,

with the constant

Cpδk, γkq �
$&
%exp

�
γ2
k

2δk

	
, if δk ¤ γk?

2 log 2
,

expp?2 log 2γkq
exppδk log 2q , else.
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Hence, we find

gffe amax

�
Φ�1pzq�

amin

�
Φ�1pzq�3 ¤ exp

� m̧

k�1

2γk
��Φ�1pzkq

��
 ¤
m¹
k�1

�
Cpδk, 2γkqmintzk, 1� zku�δk

�
.

Consequently, with Lemma 3.2 and the stability estimate (12), for any multiindex α, we deduce

��Bαy u��,Φ�1pzq���
H1pDq

¤ |α|!
�
γ

log 2


αdamax

�
Φ�1pzq�

amin

�
Φ�1pzq�

��u��,Φ�1pzq���
H1pDq

¤ |α|!
�
γ

log 2


αgffe amax

�
Φ�1pzq�

amin

�
Φ�1pzq�3 }f}L2pDq

¤ }f}L2pDq|α|!
�
γ

log 2


α m¹
k�1

�
Cpδk, 2γkqmintzk, 1� zku�δk

	
.

(iii.) For an arbitrary multiindex α, it holds for all z P p0, 1qm that

(27)

��Bαz ûp�, zq��H1pDq �
��Bαz u��,Φ�1pzq���

H1pDq

�
����Bαy u��,Φ�1pzq� m¹

k�1

�BzkΦ�1pzkq
�αk

����
H1pDq

�
����
m¹
k�1

�BzkΦ�1pzkq
�αk

������Bαy u��,Φ�1pzq���
H1pDq.

From now on, we choose the anchor point z0 � p1{2, 1{2, . . . , 1{2q and define

(28) C̃ :�
?

2πmaxkPN Cpδk, 2γkq
log 2

.

Note that C̃   8 since there is an n0 P N such that Cpδk, 2γkq ¤ 1 for all n ¥ n0 under the decay
assumptions on the sequences tδkuk and tγkuk. Due to Φ�1p1{2q � 0, we easily get from item (ii.)
that

(29)
��Bαy u��,Φ�1pz_α z0q

���
H1pDq ¤ }f}L2pDq|α|!

�
γ

log 2


α m¹
k�1

�
Cpδk, 2γkqmintzk, 1�zku�δk

	αk

holds for all α with }α}8 � 1. Thus, by combining (27) with items (i.) and inequality (29), we
arrive at the estimate

(30)
��Bαz ûp�, z_α z0q

��
H1pDq ¤ |α|!}f}L2pDq

m¹
k�1

�
γkC̃ mintzk, 1� zku�1�δk

	αk

.

With (23), we obtain the identity

ûpzq � ûextpzq �
¸

}α}8�1

»
rpz0qα,pzqαs

1y_αz0RKN
Bαûpy _α z0q dpyqα.
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This, together with the estimate (30) on the derivates of û yields for z R KN , cf. [35],

}ûp�, zq � ûextp�, zq}H1pDq

¤
¸

}α}8�1

»
rpz0qα,pzqαs

1y_αz0RKN

��Bαû�y _α z0

���
H1pDqdpyqα

¤ }f}L2pDq
¸

}α}8�1

|α|!
m¹
k�1

pγkC̃qαk

»
rpz0qα,pzqαs

1y_αz0RKN

m¹
k�1

�
mintyk, 1� yku�1�δk

	αk

dpyqα

¤ }f}L2pDq
¸

}α}8�1

|α|!
m¹
k�1

�
γkC̃

» 1{2

mintzk,1�zku
y�1�δk
k dyk


αk

.

Herein, the integral can simply be bounded via its lower limit according to

}ûp�, zq � ûextp�, zq}H1pDq ¤ }f}L2pDq
¸

}α}8�1

|α|!
m¹
k�1

�
γkC̃ mintzk, 1� zku�δk

�αk

¤ }f}L2pDq
¸

}α}8�1

m¹
k�1

�
kγkC̃ mintzk, 1� zku�δk

�αk

� }f}L2pDq

�
m¹
k�1

�
1� mintzk, 1� zku�δkkγkC̃

δk



� 1

�

¤ }f}L2pDq
m¹
k�1

�
1� kγkC̃

δk



mintzk, 1� zku�δk .

Now, due to Bochner’s inequality, it follows��Ipû� ûextq
��
H1pDq

¤
»
p0,1qm

��ûpx, zq � ûextpx, zq
��
H1pDq dz �

»
p0,1qmzKN

��ûpx, zq � ûextpx, zq
��
H1pDq dz

À }f}L2pDq

»
p0,1qmzKN

m¹
k�1

mintzk, 1� zku�δk dz
m¹
k�1

�
1� kγkC̃

δk




¤ }f}L2pDq2m
m̧

j�1

» pbjNq�1

0

z
�δj
j dzj

m¹
i�1,i�j

» 1{2

0

z�δii dzi

m¹
k�1

�
1� kγkC̃

δk




¤ }f}L2pDq2m
m̧

j�1

pbjNqδj�12�m�12
°m

i�1 δi

m¹
k�1

��
1� kγkC̃

δk


�
1

1� δk


�

À }f}L2pDqNmaxj δj�1m
m¹
k�1

��
1� kγkC̃

δk


�
1

1� δk



2δk
�
.

(iv.) To prove tractability means to find an error bound which grows at most polynomially in m.
Therefore, it is now sufficient to show

(31)
8¹
k�1

��
1� kγkC̃

δk


�
1

1� δk



2δk
�
  8.

Since we may choose δk ¡ 0 arbitrarily, we can assume that the sequence tδkuk satisfies the
conditions of Theorem 4.3. Then, it holds

(32)
8¹
k�1

2δk � 2
°8

k�1 δk ¤ 2δ and
8¹
k�1

1

1� δk
� exp

�
�

8̧

k�1

logp1� δkq


.
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We make use of the fact that the Taylor expansion of the logarithm logpxq at x � 1 is given by

logp1� hq � �
8̧

k�1

hk

k
� �h�Oph2q, h ¡ 0.

By inserting this into the equation on the right of (32), we obtain

8¹
k�1

1

1� δk
¤ exp

� 8̧

k�1

�
δk �Opδ2

kq
�
 À exppδ � cδ2q

for some c ¡ 0. Since the sequence tγkuk decays asymptotically faster than k�4�2ε, we conclude
that

8¹
k�1

�
1� C̃kγk

δk



À

8¹
k�1

�
1� k�2�ε�   8

is also bounded independently of m. This establishes estimate (31) and, thus, finally the assertion
(26). �

Finally, we bound the third term in (25). In [24], the centered discrepancy is introduced to
establish an estimate for the error of integration. In the sequel, we will also make use of the
extreme discrepancy.

Definition 4.5. The pointwise centered discrepancy is defined for a given set of N sample points
Ξ � r0, 1sm and a point z P r0, 1sm by, cf. [25],

Dcpz,Ξq :�
m¹
k�1

�� zk � 1tzk¡1{2u
�� 1

N

¸
ξPΞ

m¹
k�1

�
1tzk¡1{2u � 1tzk¡ξku

�
.

Then, the centered discrepancy is given by

DcpΞq :� sup
zPr0,1sm

Dcpz,Ξq.

Furthermore, the extreme discrepancy is defined by

DextrpΞq � sup
x,yPRm

����Vol
�rx,yq�� 1

N

Ņ

i�1

1rx,yqpξiq
����.

Obviously, the centered discrepancy can be bounded by the extreme discrepancy. In the fol-
lowing, it is convenient to introduce the projection pΞqα of Ξ as pΞqα :� tpξqα, ξ P Ξu.
Lemma 4.6. Let the conditions of Theorem 4.3 hold and let ûext be defined by (23). Then it holds

(33)
��pI�Qqûext

��
H1pDq À }f}L2pDqN�1�δ̃�°m

k�1 δk .

Proof. With the above notation, the following estimate for the quadrature error holds, cf. [24],��pI�Qqûext

��
H1pDq ¤

¸
}α}8�1

»
r0,1s|α|

��Bαz ûextp�, z_α z0q
��
H1pDq dpzqα sup

pzαqPr0,1s|α|
Dc
�pzqα, pΞqα�.

To prove tractability we introduce weights wk P p0,8q for k � 1, . . . ,m and define the correspond-
ing product weights with respect to a multiindex α by wα :�±m

k�1 w
αk

k . Later on, we will specify
these weights by exploiting the decay properties of the occurring derivatives of the integrand.
Now, from the above inequality we deduce��pI�Qqûext

��
H1pDq

¤
¸

}α}8�1

w�1{2
α

»
r0,1s|α|

��Bαz ûextp�, z_α z0q
��
H1pDq dpzqαw1{2

α sup
pzαqPr0,1s|α|

Dc
�pzqα, pΞqα�

¤ sup
}α}8�1

w�1{2
α

»
r0,1s|α|

��Bαz ûextp�, z_α z0q
��
H1pDq dpzqα

¸
}α}8�1

w1{2
α sup

pzαqPr0,1s|α|
Dc
�pzqα, pΞqα�.
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Due to the definition of ûext, cf. (23), the derivative Bαz ûextp�, z_α z0q vanishes in r0, 1s|α|z�KN

�
α

and coincides with the derivative of û in
�
KN

�
α

. Therefore, with C̃ defined as in (28), we can
estimate

(34)

sup
}α}8�1

w�1{2
α

»
r0,1s|α|

��Bαz ûextp�, z_α z0q
��
H1pDq dpzqα

¤ }f}L2pDq sup
}α}8�1

w�1{2
α |α|!

»
pKN qα

m¹
k�1

�
γkC̃ mintzk, 1� zku�1�δk�αk dpzqα

¤ }f}L2pDq sup
}α}8�1

w�1{2
α 2|α|

m¹
k�1

�
kγkC̃

» 1{2

pbkNq�1

z
p�1�δkq
k dzk


αk

¤ }f}L2pDq sup
}α}8�1

w�1{2
α

m¹
k�1

�
2kγkC̃

δk


αk

pbkNqαkδk

� N
°m

k�1 αkδk}f}L2pDq
m¹
k�1

bαkδk
k À N

°m
k�1 αkδk}f}L2pDq.

The estimate is valid for the weights

w1{2
α :�

m¹
k�1

�
2kγkC̃

δk


αk

.

Thus, we have

wk � 8πCpδk, 2γkq2k2γ2
k

δ2
k log2 2

.

The last step in (34) follows since bk   2k logpk � 2q by the prime number theorem, see e.g. [38],
which implies

8¹
k�1

bδkk � exp

� 8̧

k�1

δk log bk



À exp

� 8̧

k�1

k�1�ε log
�
2k logpk � 2q�
   8.

In order to bound the weighted sum of the centered discrepancies, we use the following result from
[30]. It holds

DextrpΞq ¤ 2mD�
8pΞq.

Hence, we have ¸
}α}8�1

w1{2
α sup

pzαqPr0,1s|α|
Dc
�pzqα, pΞqα� ¤ ¸

}α}8�1

w1{2
α 2|α|D�

8
�pΞqα�

Under the decay property
8̧

k�1

w̃
1{2
k k log k   8.

of the weights w̃k :� 4wk, it is shown in [44] that¸
}α}8�1

w̃1{2
α D�

8
�pΞqα� À �N�1�δ̃�

holds for all δ̃ ¡ 0 with a constant which is independent of the dimension m. This condition is

satisfied, if the weights fulfill w̃
1{2
k À k�2�ε. Thus, we get the following condition on the decay of

γk:

4kγkC̃

δk
À k�2�ε ùñ γk À δk

4C̃
k�3�ε � k�4�2ε.

�

With the preceding two Lemmata at hand, we can establish the estimate (25). This completes
the proof of Theorem 4.3.
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Remark 4.7. In this section, we have only shown approximation results of the Quasi-Monte
Carlo quadrature based on Halton points for the mean of the function u, i.e. Eu. Note, that if
f P LppDq due to the regularity estimates proven in Section 3, the results in this section hold in
complete analogy for the p-th moments Mpu of the solution u to (9). This is due to the similar
behaviour of the solutions derivatives and its powers.

Corollary 4.8. Let f P LppDq for p ¥ 2. Under the conditions of Theorem 4.3 and the slightly
stronger assumption pγk À k�4�2ε, the Quasi-Monte Carlo quadrature using Halton points for
approximating the p-th moment of the solution u to (11) is polynomial tractable and provides the
error estimate ��pI�Qqûp��

W 1,ppDq À p}f}pLppDqmN
�1�δ.

We want to close this section by a brief note on the uniformly elliptic case. Therefore, let us
consider a uniformly elliptic parametric boundary value equation. The problem has the same form
as (9), but here the diffusion coefficient itself and not its exponential is given by a Karhunen-Loève
expansion i.e.

apx,yq � Eapxq �
8̧

k�1

a
λkϕkpxqyk.

The eigenvalues λk and the eigenfunctions ϕk are supposed to have the same properties as in the
log-normal case and, without loss of generality, we assume that the parameters yk are uniformly
distributed on the interval r�1{2, 1{2s. Therefore, the corresponding density function is constant
and equal to 1. The uniform ellipticity guarantees the existence of constants amin, amax ¡ 0 being
independent of y, such that for almost every y P r�1{2, 1{2s8 it holds

amin   apx,yq   amax.

For the uniformly elliptic case the proof of tractability of the Quasi-Monte Carlo quadrature with
Halton points is much easier since we have to deal neither with an unbounded integration domain
nor with unbounded integrands. The sampling points in the cube r�1{2, 1{2s8 are straightfor-
wardly obtained from those in r0, 1s8 by shifting each coordinate by 1{2.

Theorem 4.9. For the uniformly elliptic case there exists for all δ ¡ 0 a constant such that
the Quasi-Monte Carlo quadrature based on Halton points for approximating the expectation of the
solution u is strongly tractable if the sequence tγkuk admits at least the decay behaviour γk � k�3�ε

for arbitrary ε ¡ 0.

Proof. The proof is quite similar to the proof of Lemma 4.6. We can apply the Zaremba-Hlawka
inequality, cf. [27],

pI�Qqupxq �
¸

}α}8�1

p�1q|α|
»
r�1{2,1{2s|α|

Bαy upx,y _α 1{2qdisc
�pΞqα, pyqα�dpyqα.

Here, the local discrepancy is defined by

discpΞ, zq :� Vol
�r�1{2,ys�� 1

N

Ņ

i�1

1r�1{2,yspξiq.

We obtain with Hölder’s inequality and the introduction of appropriate weights, cf. [27],

}pI�Qqu}H1pDq ¤
¸

}α}8�1

w�1{2
α

»
r�1{2,1{2s|α|

}Bαy up�,y _α 1{2q}H1pDq dpyqαw1{2
α D�

8
�pΞqα�

À sup
}α}8�1

w�1{2
α

»
r�1{2,1{2s|α|

}Bαy up�,y _α 1{2q}H1pDq dpyqα
¸

|α|�1

w1{2
α D�

8
�pΞqα�.

In the uniformly elliptic case, the coefficient is bounded from below and above independently of
y. The regularity estimates for the solution are quite similar to those of Section 3. It holds, cf.
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[10],

}Bαy up�,y _α 1{2q}H1pDq À |α|!
�

γ

amin log 2


α
}f}L2pDq ¤ }f}L2pDq

m¹
k�1

�
kγk

amin log 2


αk

.

Now, let wα �
±m
k�1 w

αk

k with

wk :� k2γ2
k

amin log2 2
.

Then, we arrive at the estimate

}pI�Qqu}H1pDq À }f}L2pDq
¸

}α}8�1

w
1{2
k D�

8
�pΞqα�,

which yields the assertion with the same arguments as in the proof of Lemma 4.6. �

Remark 4.10. In analogy to the log-normal case one can establish estimates on the derivatives
of the powers up of u. Hence, the approximation of the moments with a Quasi-Monte Carlo
quadrature based on Halton points remains strongly tractable in the uniform elliptic case.

5. Numerical results

In this section, we present numerical examples to validate the theoretical findings. Therefore,
we consider the one-dimensional diffusion problem

(35) �Bx
�
apx,yqBxupx,yq

� � 1 in D � p0, 1q
with homogenous boundary conditions, i.e. up0,yq � up1,yq � 0. The logarithm of the diffusion
coefficient a is given by the Karhunen-Loève expansion,

log
�
apx,yq� � 8̧

k�1

a
λkϕkpxqyk.

Here, the eigenpairs pλk, ϕkq are obtained by solving the eigenproblem for the diffusion coefficient’s
correlation, i.e. » 1

0

kpx, x1qϕkpx1q dx1 � λkϕkpxq,
where we assume that this correlation is given by a positive definite function

kpx, x1q :�
»

Ω

log
�
apx, ωq� log

�
apx1, ωq�dPpωq.

The knowledge of kpx, x1q together with Erapx, ωqs � 0 provides the unique description of a since
the underlying random process is Gaussian.

Let r � |x� x1|. In the sequel, we consider the class of Matérn correlation kernels, i.e.

kνprq :� 21�ν

Γpνq
�?

2νr

`


ν
Kν

�?
2νr

`



with `, ν P p0,8q. Here, Kν denotes the modified Bessel function of the second kind, cf. [1]. For
half integer values of ν, i.e. ν � p� 1{2 for p P N, this expression simplifies to

kp�1{2prq � exp

��?2νr

`



p!

p2pq!
p̧

i�0

pp� iq!
i!pp� iq!

�?
8νr

`


p�i
.

In the limit case ν Ñ8, we obtain the Gaussian correlation

k8prq � exp

��r2

2`2



,

cf. [37]. The Sobolev smoothness of the kernel kν is controlled by the smoothness parameter ν. A
visualization of this kernels for different values of ν is given in Figure 1.

The eigenvalues of the Matérn correlation kernels decay like

λk ¤ Ck�p1�2ν{dq
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Figure 1. Different values for the smoothness parameter ν.

for some C ¡ 0, cf. [18]. Hence, we consider ν � 5{2, 7{2, 9{2. For the parameter value ν � 5{2 the
eigenvalues of the correlation function decay too slowly and we are thus outside our regime. The
parameter value ν � 7{2 is exactly the limit case for the decay of the eigenvalues and the value
ν � 9{2 leads to an eigenvalue decay perfectly fitting our assumptions. The correlation length is
set to ` � 1{2 for each of the kernels.

We have discretized (35) by piecewise linear finite elements and chose piecewise constant el-
ements for the discretization of the diffusion coefficient. As a reference, we have computed the
solution to (35) on level 13, i.e. we have the meshwidth h � 2�13, and avaraged 10 runs of a Monte
Carlo quadrature each of them with N � 106 samples. In each example, the Karhunen-Loève ex-
pansion is truncated appropriately to sustain the precision of the finite element discretization.
Unfortunately, although we observe convergence of our Quasi-Monte Carlo quadrature with re-
spect to this reference solution, the error decay stagnates for increasing number of samples. Thus,
we assume that the reference solution is not accurate enough. Therefore, we additionally pro-
vide a reference solution computed by the Quasi-Monte Carlo quadrature with Halton points and
N � 7 � 106 samples. The computations for the approximation error were also performed on level
13. This means, we have kept the level fixed and successively increased the number of sample
points.

The Matérn kernel for ν � 9{2. For the smoothness parameter ν � 9{2, we have truncated the
Karhunen-Loève expansion after m � 21 terms. The left plot in Figure 2 shows a visualization of
the mean’s and the moment’s errors with respect to the Monte Carlo reference solution measured
in the respective norms for increasing numbers of samples N . The analogous representation for the
Quasi-Monte Carlo reference can be found in the right plot of the same figure. The slopes indicated
in the plots correspond to a linear least-squares fit for the respective curve. The correlation kernel
under consideration, i.e. k9{2, perfectly fits our smoothness assumptions. We observe convergence
with respect to both references and rates that are higher than that of a Monte Carlo quadrature,
at least for the mean and the second moment. The successive decrease of the rate of convergence
for the higher moments can be explained by the exponential dependence of the constants in (17)
on p in the pre-asymptotic regime. We would like to emphasize, that we observed exactly the same
phenomena for a Monte Carlo quadrature. Nevertheless, we saw no additional benefit in showing
the related plots here, since we think that this exceeds the scope of this article.

The Matérn kernel for ν � 7{2. For the smoothess parameter ν � 7{2, we have truncated
the Karhunen-Loève expansion after m � 32 terms. Figure 3 shows the error plots related to the
Matérn kernel k7{2. As already mentioned, this is the limit case for the required smoothness of
the correlation kernel. We observe the same decay of the errors as in the previous example for the
smoothness parameter ν � 9{2. Again, the error plot with respect to the Monte Carlo reference
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Figure 2. Errors for ν � 9{2 with Monte Carlo reference (left) and Quasi-Monte
Carlo reference (right).
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Figure 3. Errors for ν � 7{2 with Monte Carlo reference (left) and Quasi-Monte
Carlo reference (right).

is found on the left-hand side in Figure 3 and the error with respect to the Quasi-Monte Carlo
reference on the right-hand side of this figure.
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Figure 4. Errors for ν � 5{2 with Monte Carlo reference (left) and Quasi-Monte
Carlo reference (right).
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The Matérn kernel for ν � 5{2. For the smoothness parameter ν � 5{2, we have truncated
the Karhunen-Loève expansion after m � 88 terms. Although, the correlation kernel k5{2 does not
meet the required smoothness assumptions anymore, we essentially obtain the same error rates, as
in the previous two examples. The same effect has already been observed in [18]. A visualization
of the corresponding errors for increasing number of samples is given in Figure 4.

The numerical examples indicate the tractability of the Quasi-Monte Carlo quadrature based on
Halton points for log-normal diffusion problems in concordance with our theoretical findings. Nev-
ertheless, the numerical results also imply that the claimed smoothness assumptions can probably
be weakened.

Appendix A

The set P pα, rq of restricted integer partitions of a multiindex α into r non vanishing multi-
indices is defined by

P pα, rq :�
"�pk1,β1q, . . . , pkn,βnq

� P pN0 � Nm0 qn :
ņ

i�1

kiβi � α,
ņ

i�1

ki � r, and D 1 ¤ s ¤ n
��

ki � 0 and βi � 0 for all 1 ¤ i ¤ n� s,

ki ¡ 0 for all n� s� 1 ¤ i ¤ n and 0   βn�s�1   � � �   βn
*
.

Herein, for multiindices β,β1 P Nm, the relation β   β1 means either |β|   |β1| or, if |β| � |β1|,
it denotes the lexicographical order which means that it holds that β1 � β11, . . . , βk � β1k and
βk�1   β1k�1 for some 0 ¤ k   m.
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