Linear Equations over Multiplicative Groups, Recurrences, and Mixing II

Derksen, Harm and Masser, David. (2014) Linear Equations over Multiplicative Groups, Recurrences, and Mixing II. Preprints Fachbereich Mathematik, 2014 (17).

[img] PDF - Published Version

Official URL: https://edoc.unibas.ch/70022/

Downloads: Statistics Overview


Let $u_1,...,u_m$ be linear recurrences with values in a field K of positive characteristic p. We show that the set of integer vectors $(k_1,..., k_m)$ such that $u_1(k_1) +...+ u_m(k_m) = 0$ is p-normal in a natural sense generalizing that of the first author, who proved the result for m = 1. Furthermore the set is effectively computable if K is. We illustrate this with an example for m = 4. We also show that the corresponding set for zero charac- teristic is not decidable for m = 557844, thus verifying a conjecture of Cerlienco, Mignotte, and Piras.
Faculties and Departments:05 Faculty of Science > Departement Mathematik und Informatik > Ehemalige Einheiten Mathematik & Informatik > Zahlentheorie (Masser)
12 Special Collections > Preprints Fachbereich Mathematik
UniBasel Contributors:Masser, David
Item Type:Preprint
Publisher:Universität Basel
Last Modified:12 May 2019 21:58
Deposited On:28 Mar 2019 09:52

Repository Staff Only: item control page