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Abstract

In this article we study the nonlocal equation

(��)
n
2 u = (n� 1)!enu in Rn,

Z

Rn

enudx < 1,

which arises in the conformal geometry. Inspired by the previous work of C. S. Lin and L.
Martinazzi in even dimension and T. Jin, A. Maalaoui, L. Martinazzi, J. Xiong in dimension
three we classify all solutions to the above equation in terms of their behavior at infinity.

1 Introduction to the problem and the main theorems

In this paper we consider the equation

(��)
n

2 u = (n� 1)!enu in Rn. (1)

Here we assume that

V :=

Z

Rn

enudx < 1, (2)

and we shall see both the left and right-hand side of (1) as tempered distributions. In order
to define the left-hand side of (1) as a tempered distribution, one possibility is to follow the

approach of [14], i.e. we see the operator (��)
n

2 as (��)
n

2 := (��)
1
2 � (��)

n�1
2 for n � 1 odd

integer with the convention that (��)0 is the identity, where (��)
1
2 is defined as follows. First

for s > 0 consider the space

L
s

(Rn) :=

⇢
v 2 L1

loc

(Rn) :

Z

Rn

|v(x)|
1 + |x|n+2s

dx < 1
�
. (3)

Then for v 2 L
s

(Rn) we define (��)sv as the tempered distribution defied by

h(��)sv,'i :=
Z

Rn

v(��)s'dx for every ' 2 S(Rn), (4)

⇤
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where

S(Rn) :=

⇢
u 2 C1(Rn) : sup

x2Rn

|x|N |D↵u(x)| < 1 for all N 2 N and ↵ 2 Nn

�

is the Schwartz space, and

\(��)s'(⇠) = |⇠|2s'̂(⇠), for ' 2 S(Rn).

Here the normalized Fourier transform is defined by

F(f)(⇠) := f̂(⇠) :=
1

(2⇡)n/2

Z

Rn

f(x)e�ix·⇠dx, f 2 L1(Rn).

Notice that the integral in (4) converges thanks to Proposition 2.1 below.
Then a possible definition of the equation

(��)
n

2 u = f in Rn (5)

is the following:

Definition 1.1 Given f 2 S 0(Rn), we say that u is a solution of (5) if

u 2 Wn�1,1

loc

(Rn), �
n�1
2 u 2 L 1

2
(Rn),

and
Z

Rn

(��)
n�1
2 u(x)(��)

1
2'(x)dx = hf,'i, for every ' 2 S(Rn). (6)

While Definition 1.1 is general enough for our purposes, requiring a priori that a solution to
(1) belongs to Wn�1,1

loc

(Rn) might sound unnecessarily restrictive. In fact it is possible to relax
Definition 1.1 as follows.

Definition 1.2 Given f 2 S 0(Rn), a function u 2 Ln

2
(Rn) is a solution of (5) if

Z

Rn

u(x)(��)
n

2 '(x)dx = hf,'i, for every ' 2 S(Rn). (7)

Notice again that the integral in (6) and (7) are converging by Proposition 2.1 below.

As we shall see, a function u solving (1)-(2) in the sense of Definition 1.2 also solves (1) in
the sense of Definition 1.1, and conversely, see Proposition 2.6 below. Therefore, from now on a
solution of (1)-(2) will be intended in the sense of Definition 1.1. In fact it turns out that such
solutions enjoy even more regularity:

Theorem 1.1 Let u be a solution of (1)-(2) (in the sense of Definition 1.1 or 1.2). Then u is
smooth.
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Geometrically any solution u of (1)-(2) corresponds to a conformal metric g
u

:= e2u|dx|2 on
Rn (|dx|2 is the Euclidean metric on Rn) such that the Q-curvature of g

u

is constant (n � 1)!.
Moreover the volume and the total Q-curvature of the metric g

u

are V =
R
Rn

enudx < 1 andR
Rn

(n � 1)!enudx < 1 respectively. When n = 1 a geometric interpretation of (1) in terms of

holomorphic immersion of D2 into C was given in [[7], Theorem 1.3]. If u is a solution of (1)
then for any constant c, ũ := u� c satisfies

(��)
n

2 ũ = (n� 1)!encenũ in Rn.

This shows that we could take any arbitrary positive constant instead of (n � 1)! in (1), but
we restrict ourselves to the fixed constant (n� 1)! because it is the constant Q-curvature of the
round sphere Sn.

Now we shall address the following question: What are the solutions to (1) and in particular
how do they behave at infinity?

It is well known that the equation (1) possess the following explicit solution

u(x) = log

✓
2

1 + |x|2

◆
,

obtained by pulling back the round metric on Sn via the stereographic projection.
By translating and rescaling this function u one can produce a class of solutions, namely

u
�,x0(x) := log

✓
2�

1 + �2|x� x
0

|2

◆
,

for every � > 0 and x
0

2 Rn. Any such u
�,x0 is called spherical solution. W. Chen-C. Li [6]

showed that these are the only solutions in dimension two but in higher dimension nonspherical
solutions do exist as shown by A. Chang-W. Chen [4]. C. S. Lin [16] for n = 4 and L. Martinazzi
[17] for n � 4 even classified all solutions of (1)-(2) and they proved:

Theorem A ([16], [17]) Any solution u of (1)-(2) with n even has the asymptotic behavior

u(x) = �P (x)� ↵ log |x|+ o(log |x|) (8)

where ↵ = 2V

|Sn| ,
o(log |x|)
log |x| ! 0 as |x| ! 1 and P is a polynomial bounded from below and of

degree at most n� 2.

A partial converse of Theorem A holds true. For a given 0 < ↵ < 2 and a given polynomial
P such that degree(P )  n� 2 and x·rP (x) ! 1 as |x| ! 1, J. Wei-D. Ye [21] in dimension
four and A. Hyder-L. Martinazzi [13] in even dimension n � 4 proved the existence of solutions
of (1)-(2) with asymptotic behavior given in (8).

When n is odd things are more complex as the operator (��)
n

2 is nonlocal. In a recent work
T. Jin, A. Maalaoui, L. Martinazzi, J. Xiong have proven the following theorem in dimension
three:

Theorem B ([14]) Let u be a smooth solution of (1)-(2) with n = 3. Then u has the asymptotic
behavior given by (8), where P is a polynomial of degree 0 or 2 bounded from below, ↵ 2 (0, 2]
and ↵ = 2 if and only if degree(P ) = 0. Moreover for every 0 < ↵ < 2 there exist at least one
smooth solution of (1)-(2).
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In analogy with Theorem A and B we study the asymptotic behavior of smooth solutions to
the problem (1)-(2) in odd dimension. In order to do that we define

v(x) :=
(n� 1)!

�
n

Z

Rn

log

✓
1 + |y|
|x� y|

◆
enu(y)dy, �

n

=
(n� 1)!

2
|Sn|, (9)

where u is a smooth solution of (1)-(2) and we prove

Theorem 1.2 Let n � 3 be any odd integer and let u be a smooth solution of (1)-(2). Then

u = v + P,

where P is a polynomial of degree at most n � 1 bounded from above, v is given by (9) and it
satisfies

v(x) = �↵ log |x|+ o(log |x|), as |x| ! 1,

where ↵ = 2V

|Sn| . Moreover

lim
|x|!1

D�v(x) = 0 for every multi-index � 2 Nn with 0 < |�|  n� 1.

Under certain assumptions on the polynomial P , a partial converse of Theorem 1.2 has been
proven by A. Hyder [12], namely

Theorem C ([12]) Let n � 3 be an odd integer. For any given V 2 (0, |Sn|) and any given
polynomial P of degree at most n� 1 such that

P (x) ! 1 as |x| ! 1, (10)

there exists u 2 C1(Rn) \ Ln

2
(Rn) solution of (1)-(2) having the asymptotic behavior given in

(8) with ↵ = 2V

|Sn| .

Using Theorem 1.2 one can obtain necessary and su�cient conditions under which any
solution of (1)-(2) is spherical. More precisely we have the following theorem.

Theorem 1.3 Let u be a smooth solution of (1)-(2). Then the following are equivalent:

(i) u is a spherical solution.

(ii) deg(P ) = 0, where P is the polynomial given by Theorem 1.2.

(iii) u(x) = o(|x|2) as |x| ! 1.

(iv) lim|x|!1�
ju(x) = 0 for j = 1, 2, ..., n�1

2

.

(v) lim inf |x|!1 R
g

u

> �1, where R
g

u

is the scalar curvature of g
u

.

(vi) ⇡⇤g
u

can be extended to a Riemannian metric on Sn, where ⇡ is the stereographic projec-
tion.
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Moreover, if u is not a spherical solution then there exists a j with 1  j  n�1

2

and a constant
c < 0 such that

lim
|x|!1

�ju(x) = c. (11)

The equivalence (i) , (vi) was proven by Chang-Yang [5] for n � 3 odd or even using
moving plane technique.

In dimension 3 and 4 if u is a smooth solution of (1)-(2) then V 2 (0, |Sn|] (see [16], [14]) but
V could be greater than |Sn| in higher dimension. For instance in dimension 6, L. Martinazzi
[18] proved the existence of solution with large volume. In a recent work X. Huang-D. Ye [11] in
dimension n = 4k+2 with k � 1 have shown the existence of solution for any volume V 2 (0,1).
What would be the precise range of the volume V in dimension n � 5 odd or n is of the form
n = 4k and k � 2 is an open question.

We also mention that using di↵erent techniques F. Da Lio, L. Martinazzi and T. Rivière [7]
have discussed the case in one dimension, proving that all solutions are spherical.

2 Definitions, regularity issues and proof of Theorem 1.1

Proposition 2.1 For any s > 0 and ' 2 S(Rn) we have

|(��)s'(x)|  C

|x|n+2s

,

where (��)s' := (��)� � (��)k', where � 2 [0, 1), k 2 N and s = k + �.

In order to prove Proposition 2.1 let us introduce the spaces

S
k

(Rn) : = {' 2 S(Rn) : D↵'̂(0) = 0, for |↵|  k}

=

⇢
' 2 S(Rn) :

Z

Rn

y↵'(y)dy = 0, for |↵|  k

�
, k = 0, 1, 2, . . .

S�1

(Rn) : = S(Rn)

Proposition 2.1 easily follows from the remark that �k' 2 S
2k�1

(Rn) for k 2 N and ' 2 S(Rn),
and from Lemma 2.2 below.

Lemma 2.2 Let ' 2 S
k

(Rn) and � 2 (0, 1). Then

|(��)�'(x)|  C

|x|n+2�+k+1

, x 2 Rn.

Proof. Since (��)�' 2 C1(Rn) for ' 2 S(Rn), it su�ces to prove the lemma for large x. For
a fix x 2 Rn we split Rn into

A
1

:= B |x|
2

and A
2

:= Rn \B |x|
2
.

Then using (28) we have

|(��)�'(x)|  1

2
C
n,�

(I
1

+ I
2

) ,
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where

I
i

:=

����
Z

A

i

'(x+ y) + '(x� y)� 2'(x)

|y|n+2�

dy

���� i = 1, 2.

Noticing that on A
1

|'(x+ y) + '(x� y)� 2'(x)|  kD2'k
L

1
(B |x|

2

(x))

|y|2,

we get

I
1

 kD2'k
L

1
(B |x|

2

(x))

Z

A1

dy

|y|n�2+2�

 CkD2'k
L

1
(B |x|

2

(x))

|x|2�2�.

On the other hand

I
2

 2|'(x)|
Z

A2

dy

|y|n+2�

+ 2

����
Z

A2

'(x� y)

|y|n+2�

dy

����  2

����
Z

A2

'(x� y)

|y|n+2�

dy

����+ C|'(x)||x|�2�

=: 2I
3

+ C|'(x)||x|�2�.

Changing the variable y 7! x� y we have

I
3

=

�����

Z

|x�y|> |x|
2

'(y)

|x� y|n+2�

dy

����� 

�����

Z

|x�y|> |x|
2 ,|y|> |x|

2

'(y)

|x� y|n+2�

dy

�����+

�����

Z

|y|< |x|
2

'(y)

|x� y|n+2�

dy

�����



�����

Z

|y|< |x|
2

'(y)

|x� y|n+2�

dy

�����+ Ck'k
L

1
(A2)

|x|�2�

=: I
4

+ Ck'k
L

1
(A2)

|x|�2�.

Finally, to bound I
4

we use the fact that ' 2 S
k

. Setting f(x) = 1

|x|n+2� and using

X

|↵|k

D↵f(x)

↵!

Z

Rn

y↵'(y)dy = 0, x 6= 0,

we obtain
Z

|y|< |x|
2

'(y)

|x� y|n+2�

dy

=

Z

|y|< |x|
2

'(y)

|x� y|n+2�

dy �
X

|↵|k

D↵f(x)

↵!

Z

|y|< |x|
2

y↵'(y)dy �
X

|↵|k

D↵f(x)

↵!

Z

|y|> |x|
2

y↵'(y)dy

=

Z

|y|< |x|
2

'(y)

0

@f(x� y)�
X

|↵|k

y↵
D↵f(x)

↵!

1

A dy �
X

|↵|k

D↵f(x)

↵!

Z

|y|> |x|
2

y↵'(y)dy

=

Z

|y|< |x|
2

'(y)
X

|�|=k+1

y�R
�

(⇠
y

)dy �
X

|↵|k

D↵f(x)

↵!

Z

|y|> |x|
2

y↵'(y)dy,

where R
�

(⇠
y

) satisfies

f(x� y) =
X

|↵|k

y↵
D↵f(x)

↵!
+

X

|�|=k+1

y�R
�

(⇠
y

), |y| < |x|
2
, ⇠

y

2 B |x|
2
(x),
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and

|R
�

(⇠
y

)|  C max
|↵|=k+1

max
z2B |x|

2

(x)

|D↵f(z)|  C

|x|n+2�+k+1

.

Therefore,

I
4


X

|�|=k+1

Z

|y|< |x|
2

|'(y)||y||�||R
�

(⇠
y

)|dy +
X

|↵|k

|D↵f(x)|
↵!

Z

A2

|y||↵||'(y)|dy

 C

|x|n+2�+k+1

Z

Rn

|'(y)||y|k+1dy + k
p

|'|k
L

1
(A2)

X

|↵|k

|D↵f(x)|
↵!

Z

Rn

|y||↵|
p
|'(y)|dy,

and complete the proof. ⇤

Lemma 2.3 Let f 2 L1(Rn). We set

ṽ(x) =
1

�
n

Z

Rn

log

✓
1 + |y|
|x� y|

◆
f(y)dy, x 2 Rn. (12)

Then

(i) ṽ 2 Wn�1,1

loc

(Rn) and

D↵ṽ =
1

�
n

Z

Rn

D↵

x

log

✓
1 + |y|
|x� y|

◆
f(y)dy, 0  |↵|  n� 1.

(ii) D↵ṽ 2 L 1
2
(Rn) for every multi-index ↵ 2 Nn with 0  |↵|  n� 1.

(iii) For every ' 2 S(Rn)
Z

Rn

ṽ(x)(��)
n

2 '(x)dx =

Z

Rn

(��)
n�1
2 ṽ(x)(��)

1
2'(x)dx =

Z

Rn

'(x)f(x)dx,

that is ṽ solves (5) in the sense of Definition 1.1 and 1.2.

Proof. Proof of (i) is trivial.
To prove (ii) first we consider 0 < |↵|  n� 1 and we estimate
Z

Rn

|D↵ṽ(x)|
1 + |x|n+1

dx

 C

Z

Rn

|f(y)|
✓Z

Rn

1

(1 + |x|n+1)|x� y||↵|
dx

◆
dy

= C

Z

Rn

|f(y)|
 Z

B1(y)

dx

(1 + |x|n+1)|x� y||↵|
+

Z

Rn\B1(y)

dx

(1 + |x|n+1)|x� y||↵|

!
dy

 C

Z

Rn

|f(y)|
 Z

B1(y)

dx

|x� y||↵|
+

Z

Rn\B1(y)

dx

(1 + |x|n+1)

!
dy

< 1.
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The case when ↵ = 0 follows from
Z

Rn

|ṽ(x)|
1 + |x|n+1

dx  1

�
n

Z

Rn

1

1 + |x|n+1

✓Z

Rn

����log
1 + |y|
|x� y|

���� |f(y)|dy
◆
dx

=
1

�
n

Z

Rn

|f(y)|
 Z

|x�y|>1

1

1 + |x|n+1

����log
1 + |y|
|x� y|

���� dx+

Z

|x�y|<1

1

1 + |x|n+1

����log
1 + |y|
|x� y|

���� dx
!
dy

 1

�
n

Z

Rn

|f(y)|
 Z

|x�y|>1

log(2 + |x|)
1 + |x|n+1

dx+

Z

|x�y|<1

✓
log(2 + |x|)
1 + |x|n+1

+ |log |x� y|| dx
◆!

dy

=
1

�
n

Z

Rn

|f(y)|
✓Z

Rn

log(2 + |x|)
1 + |x|n+1

dx+ k log(·)k
L

1
(B1)

◆
dy

< 1,

where in the first inequality we used

1

1 + |x| 
1 + |y|
|x� y|  2 + |x|, 1 + |y|  2 + |x| for |x� y| � 1.

(iii) follows from integration by parts and Lemma A.2. ⇤

Lemma 2.4 Let u be a solution of (5) with f 2 L1(Rn) in the sense of Definition 1.2. Let ṽ
be given by (12). Then p := u� ṽ is a polynomial of degree at most n� 1.

Proof. Let us consider a function  2 C1
c

(Rn \ {0}). We set

' := F�1

✓
 ̄

|⇠|n

◆
2 S(Rn),  ̄(x) :=  (�x), x 2 Rn.

Now the growth assumption to u in Definition 1.2 implies that u is a tempered distribution and
at the same time the function v is also a tempered distribution thanks to Lemma 2.3. Therefore
p 2 Ln

2
(Rn) and p̂ 2 S 0(Rn). Indeed,

hp̂, i =
Z

Rn

p ̂dx =

Z

Rn

p(x)(��)
n

2 '(x)dx = 0,

where the last equality follows from the Definition 1.2 and Lemma 2.3.
Thus p̂ is a tempered distribution with support p̂ ✓ {0} which implies that p is a polynomial

and combining with p 2 Ln

2
(Rn) we conclude that degree of p is at most n� 1. ⇤

Lemma 2.5 Let u be a solution of (5) with f 2 L1(Rn) in the sense of Definition 1.1 and let
ṽ be given by (12). If u also satisfies

Z

B

R

u+dx = o(R2n) or

Z

B

R

u�dx = o(R2n) as R ! 1, (13)

then p := u� ṽ is a polynomial of degree at most n� 1.
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Proof. We have �
n�1
2 p 2 L 1

2
(Rn) and it satisfies

Z

Rn

(��)
n�1
2 p(��)

1
2'dx = 0, for every ' 2 S(Rn), (14)

thanks to Lemma 2.3. Moreover, by Schauder’s estimate (see e.g. [14, Proposition 22]) for some
↵ > 0

k(��)
n�1
2 pk

C

0,↵
(B1)

 Ck(��)
n�1
2 pk

L 1
2
(Rn

)

.

Adapting the arguments in [14, Lemma 15] one can get that (��)
n�1
2 p is constant in Rn and

hence (��)
n+1
2 p = 0 in Rn. Noticing that v 2 Ln

2
(Rn) we conclude the proof by Lemma A.6

below. ⇤

Proposition 2.6 Let f 2 L1(Rn). Then the following are equivalent:

(i) u is a solution of (5) in the sense of Definition 1.2.

(ii) u is a solution of (5) in the sense of Definition 1.1 and u satisfies (13).

In particular, Definition 1.1 and Definition 1.2 are equivalent for the solutions of (1)-(2).

Proof. If p is a polynomial of degree at most n� 1 then p 2 Ln

2
(Rn) and

Z

Rn

p(��)
n

2 'dx =

Z

Rn

p(��)
n�1
2 (��)

1
2'dx = C

p

Z

Rn

(��)
1
2'dx = 0, ' 2 S(Rn),

where C
p

:= (��)
n�1
2 p is a constant and the second equality follows from integration by parts

(which can be justified thanks to Lemma 2.2). Now the equivalence of (i) and (ii) follows
immediately from Lemmas 2.3, 2.4 and 2.5. To conclude the lemma notice that the condition
(2) implies Z

B

R

u+dx =
1

n

Z

B

R

nu+dx  1

n

Z

B

R

enudx  V

n
.

⇤

2.1 Proof of Theorem 1.1

First we write (n � 1)!enu = f
1

+ f
2

where f
1

2 L1(Rn) \ L1(Rn) and f
2

2 L1(Rn). Let us
define the functions

u
i

(x) :=
1

�
n

Z

Rn

log

✓
1 + |y|
|x� y|

◆
f
i

(y)dy, x 2 Rn, i = 1, 2.
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Then we have that u
1

2 Cn�1(Rn) and u
2

2 Wn�1,1

loc

(Rn). Indeed, for p 2
⇣
0, �

n

kf2k

⌘
using

Jensen’s inequality

Z

B

R

enp|u2|dx =

Z

B

R

exp

✓Z

Rn

npkf
2

k
�
n

log

✓
1 + |y|
|x� y|

◆
f
2

(y)

kf
2

k dy

◆
dx


Z

B

R

Z

Rn

exp

✓
npkf

2

k
�
n

log

✓
1 + |y|
|x� y|

◆◆
|f

2

(y)|
kf

2

k dydx

=
1

kf
2

k

Z

Rn

|f
2

(y)|
Z

B

R

✓
1 + |y|
|x� y|

◆npkf2k
�

n

dxdy

 C(n, p, kf
2

k, R), (15)

where k· k denotes the L1(Rn) norm. Moreover, by Lemma 2.3 (with ṽ = u
i

and f = f
i

) we
have Z

Rn

(��)
n�1
2 u

i

(��)
1
2'dx =

Z

Rn

f
i

'dx, for every ' 2 S.

We set
u
3

:= u� u
1

� u
2

.

We claim that the function u
3

is smooth in Rn whenever u is a solution of (1)-(2) in the sense
of Definition 1.1 or 1.2. Then taking (15) into account we have enu 2 Lp

loc

(Rn) for every p < 1
and hence f

2

2 Lp

loc

(Rn) . Therefore, for every x 2 B
R

by Hölder’s inequality

|u
2

(x)|  C

Z

|y|<2R

����log
✓
1 + |y|
|x� y|

◆���� |f2(y)|dy + C

Z

|y|�2R

����log
✓
1 + |y|
|x� y|

◆���� |f2(y)|dy

 C
�
log(1 + 2R)kf

2

k
L

1
(B2R)

+ k log(· )k
L

2
(B3R)

kf
2

k
L

2
(B2R)

�
+ C log(3R)kf

2

k
L

1
(B

c

2R)

,

and for every 0 < |↵|  n� 1 again by Hölder’s inequality

|D↵u
2

(x)|  C

Z

|y|<2R

1

|x� y||↵|
|f

2

(y)|dy + C

Z

|y|�2R

1

|x� y||↵|
|f

2

(y)|dy

 Ck|(· )|�|↵|k
L

p

(B3R)

kf
2

k
L

p

0
(B2R)

+ CR�|↵|kf
2

k
L

1
(B

c

2R)

,

where p 2 (1, n

n�1

). Thus u
2

2 Wn�1,1
loc

(Rn) and by Sobolev embeddings we have u
2

2 Cn�2(Rn),

which implies that u = u
1

+ u
2

+ u
3

2 Cn�2(Rn). Now to prove u 2 C1(Rn) we proceed by
induction.

Set ũ = u
1

+ u
2

. Then for 0 < |↵|  n� 1

D↵ũ(x) =
(n� 1)!

�
n

Z

Rn

D↵

x

log

✓
1 + |y|
|x� y|

◆
enu(y)dy =:

Z

Rn

K
↵

(x� y)enu(y)dy, x 2 Rn.

Notice that the function K
↵

is smooth in Rn \ {0} and it also satisfies the estimate

|D�K
↵

(x)|  C
↵

|x||↵|+|�| , � 2 Nn, x 2 Rn \ {0}.

10



We rewrite the function D↵ũ(x) as

D↵ũ(x) =

Z

Rn

⌘(x� y)K
↵

(x� y)eny(y)dy +

Z

Rn

(1� ⌘(x� y))K
↵

(x� y)enu(y)dy

=

Z

Rn

⌘(x� y)K
↵

(x� y)eny(y)dy +

Z

Rn

(1� ⌘(y))K
↵

(y)enu(x�y)dy,

where ⌘ 2 C1(Rn) satisfies

⌘(x) =

⇢
0 if |x|  1
1 if |x| � 2.

If we assume u 2 Ck(Rn) for some integer k � 1 then observing that ⌘K
↵

2 C1(Rn), D�(⌘K
↵

) 2
L1(Rn) and 1� ⌘ is compactly supported, one has

D↵+�ũ(x) =

Z

Rn

D�

x

(⌘(x� y)K
↵

(x� y))eny(y)dy +

Z

Rn

(1� ⌘(y))K
↵

(y)D�

x

enu(x�y)dy, |�|  k.

Thus u 2 Ck+n�1(Rn) thanks to the claim that u
3

2 C1(Rn), which proves our induction
argument.

It remains to show that u
3

2 C1(Rn) whenever u is a solution of (1)-(2) in the sense of
Definition 1.1 or 1.2.

In the case of Definition 1.2 from Lemma 2.4 we have that u
3

is a polynomial of degree at
most n � 1 and hence it is smooth. On the other hand, if we consider Definition 1.1 then by

Lemma 2.3 we get �
n�1
2 u

3

2 L 1
2
(Rn) and it also satisfies (14) with p = u

3

. Therefore, by [20,

Proposition 2.22] we have �
n�1
2 u

3

2 C1(Rn) which implies that u
3

2 C1(Rn). ⇤

3 Classification of solutions

3.1 A fractional version of a lemma of Brézis and Merle

Theorem 3.2 below is a fractional version of a lemma of Brézis and Merle [2, Theorem 1], compare
also [7, Theorem 5.1], which we shall later need in the proof of Lemma 3.8. Although, in our
case Theorem 3.2 will be used in a smooth setting, here we shall prove it with more generality
because of its independent interest. Before stating the theorem we need the following definition,
partially inspired by [1, Section 3.3].

Definition 3.1 Let ⌦ be a smooth bounded domain in Rn. Assume f 2 L1(⌦) and g
j

2 L1(@⌦)
for j = 0, 1, ..., n�3

2

. We say that w 2 L 1
2
(Rn) is a solution of

(
(��)

n�1
2 (��)

1
2w = f in⌦

(��)j(��)
1
2w = g

j

on @⌦, j = 0, 1, ..., n�3

2

(16)

if w satisfies
Z

d(x,@⌦)<2,x2⌦c

|w(x)|p
�(x)

dx < 1, (17)

11



and there exists a function W 2 L1(⌦) such that (��)
1
2w = W in ⌦, i.e.

Z

Rn

w(��)
1
2'dx =

Z

⌦

W'dx for every ' 2 T
1

, (18)

and the function W satisfies
(

(��)
n�1
2 W = f in⌦

(��)jW = g
j

on @⌦, j = 0, 1, ..., n�3

2

,
(19)

i.e.

Z

⌦

W (��)
n�1
2 'dx =

Z

⌦

f'dx�

n�3
2X

j=0

Z

@⌦

g
j

@

@⌫
(��)

n�3
2 �j'd� for every ' 2 T

2

,

where the spaces of test functions T
1

and T
2

are defined by

T
1

:=

⇢
' 2 C1(⌦) \ C

1
2 (Rn) :

⇢
(��)

1
2' =  in ⌦

' = 0 on ⌦c

for some  2 C1
c

(⌦),

�
,

and

T
2

:=

⇢
' 2 Cn�1(⌦) : �j' = 0 on @⌦, j = 0, 1, . . . ,

n� 3

2

�
.

Notice that the left hand side of (18) is well-defined thanks to the assumption (17) and Lemma
3.4 below.

Lemma 3.1 (Maximum Principle) Let w be a solution of (16) with f, g
j

� 0 in the sense
of Definition 3.1. If w � 0 on ⌦c then w � 0 in ⌦.

Proof. First notice that the conditions f � 0, g
j

� 0 implies that W � 0 in ⌦, where W 2 L1(⌦)
is a solution of (19). Now consider a test function  2 C1

c

(⌦) such that  � 0 in ⌦. Let ' 2 T
1

be the solution of (��)
1
2' =  in ⌦. Then by classical maximum principle one has ' � 0 in ⌦.

Since the constant C
n,

1
2
> 0 in Proposition A.1 we get

(��)
1
2'(x) < 0 for x 2 Rn \ ⌦,

and from (18)
Z

⌦

w dx =

Z

⌦

w(��)
1
2'dx =

Z

⌦

W'dx�
Z

⌦

c

w(��)
1
2'dx � 0,

which completes the proof. ⇤

Theorem 3.2 Let f 2 L1(B
R

). Let u 2 L1(B
R

) be a solution of (16) (in the sense of Definition

3.1) with g
j

= 0 for j = 0, 1, ..., n�3

2

and u = 0 on Bc

R

. Then for any p 2
✓
0, �

n

kfk
L

1(B
R

)

◆

Z

B

R

enp|u|dx  C(p,R).

12



Proof. We set

W (x) =

Z

B

R

 (x� y)|f(y)|dy x 2 Rn,

where

 (x) :=
�(1

2

)

n2n�2|B
1

|�(n
2

)
�
n�3

2

�
!

1

|x| ,

is a fundamental solution of (��)
n�1
2 in Rn (see [9, Section 2.6]). Then W 2 L1(B

R

) satisfies

(
(��)

n�1
2 W = |f | inB

R

(��)jW � 0 on @B
R

, j = 0, 1, ..., n�3

2

,

and by maximum principle W � |W | in B
R

, where W 2 L1(B
R

) is a solution of (19). Let us
define

u(x) := � ⇤ (W�
B

R

)(x) =
(n�3

2

)!

2⇡
n+1
2

Z

Rn

1

|x� y|n�1

W (y)�
B

R

(y)dy, x 2 Rn,

where � is given in Lemma A.2 below. Noticing

1

�
n

= |Sn�1|
�(1

2

)

n2n�2|B
1

|�(n
2

)
�
n�3

2

�
!

(n�3

2

)!

2⇡
n+1
2

,

in view of Lemma 3.3 below one has

|u(x)|  C +
1

�
n

Z

|y|<R

|f(y)|| log |x� y||dy, x 2 Rn,

which yields
u 2 Lq

loc

(Rn) \ L1(Rn \B
R+�

), q 2 [1,1), � > 0.

Moreover, for every ' 2 S(Rn)

Z

B

R

W'dx =

Z

Rn

u(��)
1
2'dx =

Z

B

R

u(��)
1
2'dx+

Z

B

c

R

u(��)
1
2'dx, (20)

thanks to Lemma A.2 below.
We claim that (20) holds for ' 2 T

1

. Then for any ' 2 T
1

with ' � 0

Z

B

R

(u± u)(��)
1
2'dx =

Z

B

R

(W ±W )| {z }
�0

'dx�
Z

B

c

R

u (��)
1
2'| {z }

0

dx � 0,

and by maximum principle one has u � |u| in B
R

and the lemma follows at once.
To prove the claim we consider a mollifying sequence '

k

:= ' ⇤ ⇢
k

, where ⇢
k

(x) = kn⇢(kx).
Then (see [1, Section A])

(��)
1
2'

k

(x) = ' ⇤ (��)
1
2 ⇢

k

(x) x 2 Rn,

13



and

(��)
1
2'

k

(x) = ⇢
k

⇤ (��)
1
2'(x), dist(x, @B

R

) >
1

k
. (21)

Then the uniform convergence of '
k

to ' imply
Z

B

R

W'
k

dx
k!1���!

Z

B

R

W'dx.

Using the uniform convergence of (��)
1
2'

k

to (��)
1
2' on the compact sets in B

R

and the fact

that supp(��)
1
2'|

B

R

✓ B
R

we get

Z

B

R

u(��)
1
2'

k

dx
k!1���!

Z

B

R

u(��)
1
2'dx.

It remains to verify that
Z

B

c

R

u(��)
1
2'

k

dx
k!1���!

Z

B

c

R

u(��)
1
2'dx,

which follows immediately from

(��)
1
2'

k

k!1���! (��)
1
2' in Lq(B

R+1

\B
R

), for some q > 1, (22)

and

(��)
1
2'

k

k!1���! (��)
1
2' in L1(Bc

R+1

). (23)

With the help of Lemma 3.4 below and (21) one can get (23). To conclude (22) first notice

that (��)
1
2'

k

converges to (��)
1
2' point-wise and that (��)

1
2' 2 Lq(B

R+1

\ B
R

) for any
q 2 [1, 2) thanks to Lemma 3.4 below. By [15, Theorem 1.9 (Missing term in Fatou’s lemma)]
it is su�cient to show that for some q > 1

Z

R<|x|<R+1

|(��)
1
2'

k

(x)|qdx 
Z

R<|x|<R+1

|(��)
1
2'(x)|qdx+ o(1),

where o(1) ! 0 as k ! 1. Now using the estimate (see for instance [1, Section A])

|(��)
1
2 ⇢

k

(x)|  Ckn+1 x 2 Rn,

and fixing t and q such that

2n

2n+ 1
< t < 1, 1 < q < min

⇢
1 + nt

t+ nt
,
2nt+ t+ 2

2n+ 2

�
,

14



we bound
Z

R<|x|<R+1

|(��)
1
2'

k

(x)|qdx =

Z

R<|x|<R+

1
k

|(��)
1
2'

k

(x)|qdx+

Z

R+

1
k

<|x|<R+1

|(��)
1
2'

k

(x)|qdx

=

Z

R<|x|<R+

1
k

|' ⇤ (��)
1
2 ⇢

k

(x)|qdx+

Z

R+

1
k

<|x|<R+1

|⇢
k

⇤ (��)
1
2'(x)|qdx

 k'kq�1

L

1

Z

R<|x|<R+

1
k

Z

Rn

|(��)
1
2 ⇢

k

(y)|q|'(x� y)|dydx

+

Z

R+

1
k

<|x|<R+1

Z

Rn

|(��)
1
2'(y)|q⇢

k

(x� y)dydx

=

Z

R<|y|<R+1+

1
k

|(��)
1
2'(y)|q + k'kq�1

L

1

Z

R<|x|<R+

1
k

Z

|y|> 1
k

t

|(��)
1
2 ⇢

k

(y)|q|'(x� y)|dydx

+ k'kq�1

L

1

Z

R<|x|<R+

1
k

Z

|x�y|<R,|y|< 1
k

t

|(��)
1
2 ⇢

k

(y)|q|'(x� y)|dydx


Z

R<|y|<R+1+

1
k

|(��)
1
2'(y)|q + Ck'kq�1

L

1 kt(q+nq�n)�1 + Ck'kq�1

L

1 kq(n+1)�nt� t

2�1

=

Z

R<|y|<R+1

|(��)
1
2'(y)|q + o(1),

where in the last inequality we have used (for the second term)

Z

|x|> 1
k

t

|(��)
1
2 ⇢

k

(x)|qdx =

Z

|x|> 1
k

t

����C1/2

P.V.

Z

Rn

⇢
k

(x)� ⇢
k

(y)

|x� y|n+1

dy

����
q

dx

 C

Z

|x|> 1
k

t

Z

|y|<1

⇢(y)q

|x� y

k

|nq+q

dydx

 C

Z

|y|<1

Z

|x|> 1
k

t

1

|x|nq+q

dxdy

 Ckt(q+nq�n).

⇤

Lemma 3.3 Let ⌦ be a domain in Rn. Let p and q be two positive real numbers. Then

Z

⌦

dy

|x� y|n+p

 |Sn�1|
p

1

�(x)p
, if �(x) := dist(x,⌦) > 0,

and Z

⌦

dz

|x� z|p|y � z|q  C
n,p,q

|x� y|p+q�n

, if p+ q > n, p < n, q < n, x 6= y,

where the constant C
n,p,q

is given by (an explicit formula can be found in [15, Section 5.10])

C
n,p,q

=

Z

Rn

dz

|z|p|e
1

� z|q .
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In addition if we also assume that the domain ⌦ is bounded then
Z

⌦

dy

|x� y|n  |⌦|+ |Sn�1|| log �(x)| if �(x) > 0,

and
Z

⌦

dz

|x� z|p|y � z|q  C + |Sn�1| |log(|x� y|)| , if p+ q = n, p < n, q < n, x 6= y.

Proof. Let us denote the set {y � x : y 2 ⌦} by ⌦ � x. Using a change of variable z 7! z � x
and setting w = y � x we have

Z

⌦

dz

|x� z|p|y � z|q =

Z

⌦�x

dz

|z|p|w � z|q =: I.

If p+ q > n then changing the variable z 7! |w|z one has

I =
1

|w|p+q�n

Z

1
|w| (⌦�x)

dz

|z|p| w

|w| � z|q  1

|w|p+q�n

Z

Rn

dz

|z|p| w

|w| � z|q =
C
n,p,q

|w|p+q�n

.

In the case when p+ q = n, we split the domain ⌦� x into two disjoint domains:

⌦
1

:= (⌦� x) \B
1

, ⌦
2

= (⌦� x) \Bc

1

.

Then

I =
2X

i=1

I
i

, I
i

:=

Z

⌦

i

dz

|z|p|w � z|q .

Since ⌦
2

is bounded and q < n, we have

I
2


Z

⌦2

dz

|w � z|q  C.

Now using
1

| w

|w| � z| 
1

|z|

✓
1 +

2

|z|

◆
for |z| � 2,

and
(1 + x)q  1 + C

q

x for x 2 (0, 1),

we bound

I
1


Z

B1

dz

|z|p|w � z|q =

Z

|z| 1
|w|

dz

|z|p| w

|w| � z|q


Z

|z|2

dz

|z|p| w

|w| � z|q
| {z }

C

+

Z

2<|z| 1
|w|

1

|z|n

✓
1 +

2

|z|

◆
q

dz


Z

2<|z| 1
|w|

1

|z|n

✓
1 +

C

|z|

◆
dz

 C + |Sn�1|| log |w||.
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Finally, we conclude the lemma by showing that for x 2 Rn \ ⌦
Z

⌦

dy

|x� y|n+p


Z

|z|>�(x)

dy

|z|n+p

=
|Sn�1|

p

1

�(x)p
, p > 0,

and
Z

⌦

dy

|x� y|n  |⌦|+
Z

⌦\B1(x)

dy

|x� y|n  |⌦|+
Z

�(x)<|z|<1

dy

|z|n = |⌦|+ |Sn�1|| log �(x)|.

⇤

Lemma 3.4 Let ⌦ be a bounded domain in Rn. Let ' 2 Ck,�(Rn) for some nonnegative integer
k and 0  �  1 be such that ' = 0 on Rn \ ⌦. Then for 0 < s < 1 and for x 2 Rn \ ⌦

|(��)s'(x)|  C

8
<

:

min{max{1, �(x)�2s+k+�}, �(x)�n�2s} if k + � 6= 2s

min{| log �(x)|, �(x)�n�2s} if k + � = 2s,

where �(x) := dist(x,⌦).
Proof. We claim that

|'(y)|  C|x� y|k+�, x 2 Rn \ ⌦, y 2 ⌦,

which can be verified using the Taylor’s expansion

'(y) =
X

|↵|k�1

1

↵!
D↵'(x)| {z }

=0

(y � x)↵ +
X

|�|=k

|�|
�!

(y � x)�
Z

1

0

(1� t)|�|�1D�'(x+ t(y � x))dt,

and

|D�'(x+ t(y � x))| = |D�'(x+ t(y � x))�D�'(x)|  C|t(x� y)|�  C|x� y|�.

Therefore, by Proposition A.1

|(��)s'(x)| =
����Cn,s

Z

⌦

'(y)

|x� y|n+2s

dy

����  C

Z

⌦

dy

|x� y|n+2s�k��

, x 2 Rn \ ⌦,

and

|(��)s'(x)|  C

Z

⌦

|'(y)|
|x� y|n+2s

dy  C

Z

⌦

|'(y)|
�(x)n+2s

dy  C

�(x)n+2s

, x 2 Rn \ ⌦.

Now the proof follows at once from Lemma 3.3. ⇤
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3.2 Proof of Theorem 1.2

First we study the asymptotic behavior of v defined in (9).

Lemma 3.5 Let u be a smooth solution of (1)-(2) and let v be given by (9). Then there exists
a constant C > 0 such that

v(x) � �↵ log |x|� C, |x| � 4.

Proof. The proof follows as in the proof of [16, Lemma 2.1]. ⇤
A consequence of the above lemma is the following Proposition, compare Lemmas 2.4, 2.5.

Proposition 3.6 Let u be a smooth solution of (1)-(2) in the sense of Definition 1.1 or 1.2
and let v be defined by (9). Then the function

P (x) := u(x)� v(x), x 2 Rn,

is a polynomial of degree at most n� 1 and P is bounded above.

Proof. Since (2) implies (13), by Lemmas 2.4 and 2.5 we have that P is a polynomial of degree
at most n� 1. On the other hand, using Lemma 3.5 one can get that P is bounded above (the
proof is very similar to [17, Lemma 11]. ⇤

Lemma 3.7 Let n � 3 be an odd integer and let u be a smooth solution of (1)-(2) and v be
given by (9). Then

(i) v 2 C1(Rn) and D↵v 2 L 1
2
(Rn) for every multi-index ↵ 2 Nn with 0  |↵|  n� 1.

(ii) There exists a constants C > 0 such that
Z

@B4(x)

|(��)j(��)
1
2 v(y)|d�(y)  C for every x 2 Rn, j = 0, 1, 2, ...,

n� 3

2
.

(iii) v is a poitwise solution of

(��)
1
2 (��)

n�1
2 v = (n� 1)!enu in Rn.

(iv) v solves (16) with f = (n� 1)!enu and g
j

= (��)j(��)
1
2 v for every j = 0, 1, 2, . . . , n�3

2

.

Proof. We divide the proof into several steps.
Step 1. From Proposition 3.6 we have the smoothness of v and by Lemma 2.3 we get D↵v 2
L 1

2
(Rn) for every multi-index ↵ 2 Nn with 0  |↵|  n� 1.

Step 2. In this step we use (i) to prove (ii). In fact by Lemmas A.3, A.5, below we have
Z

@B4(x)

|(��)j(��)
1
2 v(y)|d�(y) =

Z

@B4(x)

|(��)
1
2 (��)jv(z)|d�(z)

 C

Z

@B4(x)

Z

Rn

enu(y)

|y � z|2j+1

dyd�(z)

= C

Z

Rn

enu(y)
Z

@B4(x)

1

|y � z|2j+1

d�(z)dy

 C.
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Step 3. We claim that for g 2 C1(Rn) \ L 1
2
(Rn)

Z

Rn

(��)
1
2 g'dx =

Z

Rn

g(��)
1
2'dx for every ' 2 C1

c

(Rn).

To prove the claim we consider a approximating sequence

g
k

(x) := g(x) (
x

k
),  2 C1(Rn),  (x) =

⇢
1 if |x| < 1
0 if |x| > 2.

Then g
k

2 S(Rn) and hence
Z

Rn

(��)
1
2 g

k

'dx =

Z

Rn

g
k

(��)
1
2'dx.

Now the claim follows from the locally uniform convergence of (��)
1
2 g

k

to (��)
1
2 g and the

L 1
2
(Rn) convergence of g

k

to g.

Step 4. Using Step 3 with g = (��)
n�1
2 v we have

Z

Rn

(��)
1
2 (��)

n�1
2 v'dx =

Z

Rn

(��)
n�1
2 v(��)

1
2'dx = (n� 1)!

Z

Rn

enu'dx,

for every ' 2 C1
c

(Rn), which implies (iii).

To complete (iv) it su�ces to show that W := (��)
1
2 v 2 C1(Rn) and it satisfies (17)-(19)

with w = v.
The smoothness of v implies W 2 C1(Rn) and (17). Moreover, using integration by parts

(see [1, Proposition 1.2.1]) one can get (18).
One must notice that the function u in [1, Proposition 1.2.1] is in C1+"(⌦) \ L1(Rn) but

still we can use it since our function v 2 C1(Rn) \ L 1
2
(Rn).

Finally, we prove (19) by showing that W is a classical solution of (19). Since W is smooth
in Rn clearly it satisfies the boundary conditions. Using step 3 (with g = v) and Lemma 2.3
(with f = (n� 1)!enu) we have for every ' 2 C1

c

(⌦)
Z

⌦

(��)
n�1
2 W'dx =

Z

⌦

W (��)
n�1
2 'dx =

Z

Rn

(��)
1
2 v(��)

n�1
2 'dx

=

Z

Rn

v(��)
1
2 (��)

n�1
2 'dx = (n� 1)!

Z

Rn

enu'dx,

that is
(��)

n�1
2 W = (n� 1)!enu in ⌦.

⇤
The following lemma is the crucial part in the proof of Theorem 1.2.

Lemma 3.8 Let u be a smooth solution of (1)-(2) and v be given by (9). Then for any " > 0
there exists R > 0 such that for |x| > R

v(x)  (�↵+ ") log |x|.
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Proof. Step 1. For any " > 0 there exists a R > 0 such that for |x| � R

v(x)  (�↵+
"

2
) log |x|� (n� 1)!

2

Z

B1(x)

log |x� y|enu(y)dy. (24)

The proof of (24) is very similar to the proof of [16, Lemma 2.4 ]. As a consequence of (24)
using Jensen’s inequality we have the following estimate

kv+k
L

p

(Rn

)

 |↵� "

2
|k log k

L

p

(B1)
+

(n� 1)!

2
kenuk

L

1
(Rn

)

k log k
L

p

(B1)
, 1  p < 1. (25)

Step 2. We claim that there exists p > 1 and C > 0 independent of x
0

such that kenuk
L

p

(B1(x0))


C. Then using Hölder inequality one can bound the second term on the right hand side of (24)
uniformly in x and that completes the proof of the lemma.

To prove the claim, first notice that it is su�cient to consider x
0

2 Rn \ B
R

for any fixed
R > 0. We choose R > 0 large enough such that

(n� 1)!kenuk
L

1
(B

c

R�1)
<
�
n

2
.

Let w 2 C0(Rn) be the solution of
8
><

>:

(��)
n�1
2 (��)

1
2w = (n� 1)!enu inB

4

(x
0

) ⇢ Rn

(��)j(��)
1
2w = 0 on @B

4

(x
0

), for j = 0, 1, ..., n�3

2

w = 0 onRn \B
4

(x
0

),

in the sense of Definition 3.1. Since u is smooth by Schauder’s estimates and bootstrap ar-
gument we have W = (��)

1
2w 2 C1(B

4

(x
0

)) which solves (16) with f = (n � 1)!enu and

g
j

= (��)j(��)
1
2 v for every j = 0, 1, 2, . . . , n�3

2

. Then using Green’s representation formula

(see [3, Theorem 3]) one can get w 2 C0(Rn) (in fact w 2 C
1
2 (Rn), see [19]), which is the

poitwise continuous unique solution of

(��)
1
2w = W in B

4

(x
0

), w = 0 on B
4

(x
0

)c.

Moreover, w satisfies (18) thanks to [1, Proposition 3.3.3].

We set h = v � w. Then we have that h 2 C0(Rn), (��)
1
2h 2 C1(B

4

(x
0

)) and
8
><

>:

(��)
n�1
2 (��)

1
2h = 0 inB

4

(x
0

)

(��)j(��)
1
2h = (��)j(��)

1
2 v on @B

4

(x
0

), j = 0, 1, ..., n�3

2

h = v onRn \B
4

(x
0

),

(26)

thanks to Lemma 3.7. Indeed, by Lemma 3.9 below there exists a constant C > 0 independent
of the choice of x

0

2 Rn such that

h(x)  C for every x 2 B
1

(x
0

).

Hence by Proposition 3.6
u = v + P  C + h+ w  C + w,
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and by Theorem 3.2 we have the proof. ⇤
A simple consequence of Lemma 3.8 is that

lim
|x|!1

u(x) = �1, (27)

thanks to Proposition 3.6. Using (27) one can show that

lim
|x|!1

D�v(x) = 0 for every � 2 Nn with 0 < |�| < n� 1 .

Now the proof of Theorem 1.2 follows at once from Lemmas 3.5, 3.8 and Proposition 3.6.

Lemma 3.9 Let h 2 C0(Rn) be given by (26). Then there exists a constant C > 0 (independent
of x

0

) such that
h(x)  C, for every x 2 B

1

(x
0

).

Proof. Let us write h = h
1

+ h
2

where h
1

, h
2

2 C0(Rn) be such that

⇢
(��)

1
2h

1

= (��)
1
2h inB

4

(x
0

)
h
1

= 0 onB
4

(x
0

)c,

and ⇢
(��)

1
2h

2

= 0 inB
4

(x
0

)
h
2

= h = v onB
4

(x
0

)c.

Let h
3

2 C0(Rn) be such that

⇢
(��)

1
2h

3

= 0 inB
4

(x
0

)
h
3

= v+ onB
4

(x
0

)c.

Then by maximum principle
h
2

 h
3

on Rn.

Without loss of generality we can assume that x
0

= 0. Then the Poisson formula gives (see [3,
Theorem 1])

h
3

(x) =

Z

|y|>4

P (x, y)v+(y)dy, x 2 B
4

,

where

P (x, y) = C
n

✓
16� |x|2

|y|2 � 16

◆ 1
2 1

|x� y|n .

Now for x 2 B
2

by Hölder’s inequality we get

|h
3

(x)|  C

Z

|y|>4

✓
1

|y|2 � 16

◆ 1
2 1

|y|n v
+(y)dy

 C

 Z

|y|>4

v+(y)3dy

! 1
3
 Z

|y|>4

1

(|y|2 � 16)
3
4

1

|y|
3n
2

dy

! 2
3

 Ckv+k
L

3
(Rn

)

 C,
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where the last inequality follows from (25). By Lemma 3.10 below we have

h  C, for every x 2 B
1

(x
0

),

where C being independent of x
0

. ⇤

Lemma 3.10 Let h 2 C0(Rn) solves (26). Let h
1

2 C0(Rn) be the solution of
(

(��)
1
2h

1

= (��)
1
2h inB

4

(x
0

)
h
1

= 0 onB
4

(x
0

)c.

Then there exists a constant C = C(n) such that

kh
1

k
L

1
(B1(x0))

 C.

Proof. We assume that x
0

= 0. Using Green’s representation formula (see [3, Theorem 3]) the
solution is given by

h
1

(x) =

Z

B4

G
2

(x, y)(��)
1
2h(y)dy, x 2 B

4

,

where

G
2

(x, y) = C
n

|x� y|1�n

Z
r0(x,y)

0

r
1
2�1

(1 + r)
n

2
dr, r

0

(x, y) =
(16� |x|2)(16� |y|2)

|x� y|2 .

Since
r�

1
2

(1 + r)
n

2
2 L1((0,1)),

we have
|G

2

(x, y)|  C|x� y|1�n.

For |z|  1 using (26), Lemma 3.7 and Lemma A.4 below we bound

|h
1

(z)| 
Z

B4

|G
2

(z, y)||(��)
1
2h(y)|dy



n�3
2X

i=0

Z

B4

|G
2

(z, y)|
✓Z

@B4

���(��)i(��)
1
2 v(x)

���
����
@

@⌫

⇣
(��)

n�3
2 �iG(y, x)

⌘���� d�(x)
◆
dy

 C

n�3
2X

i=0

Z

B4

|z � y|1�n

✓Z

@B4

���(��)i(��)
1
2 v(x)

��� |x� y|1+2i�n d�(x)

◆
dy

= C

n�3
2X

i=0

Z

|x|=4

���(��)i(��)
1
2 v(x)

���

 Z

|y|<4

|z � y|1�n |x� y|1+2i�n dy

!
d�(x)

 C

n�3
2X

i=0

Z

|x|=4

���(��)i(��)
1
2 v(x)

��� d�(x)

 C.

⇤
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3.3 Proof of Theorem 1.3

One can verify easily that (i) ) (ii)-(vi). On the other hand, by Theorem 1.2 (ii) to (iv) are
equivalent. Moreover, (ii) ) (i) thanks to [22, Theorem 4.1]. To show that (v) ) (i) and
(vi) ) (i) one can follow the arguments in [17].

Finally to prove (11) we use [17, Theorem 6 and Lemma 3]. Since the polynomial P is
bounded from above, deg(P ) must be even and let it be 2k. Then �kP = C

0

on Rn and
�k+1P = 0 on Rn. By [17, Lemma 3] we have

kX

i=0

c
i

R2i�iP (0) =
1

|B
R

|

Z

B

R

P (x)dx  sup
Rn

P  C, for every R > 0,

where the constants c0
i

s are positive and hence C
0

= �kP (0)  0. We claim that C
0

< 0. Oth-
erwise, by Theorem 1.2 and [17, Theorem 6] one gets deg(P )  2k� 2, which is a contradiction.

A Appendix

Combining [20, Proposition 2.4] and [8, Lemma 3.2] we state the following proposition:

Proposition A.1 Let ⌦ be an open set in Rn. Let u 2 C2�+✏(⌦) \ L
�

(Rn) for some � 2 (0, 1)
and ✏ > 0. Then (��)�u is continuous in ⌦ and for every x 2 ⌦ we have

(��)�u(x) = C
n,�

P.V.

Z

Rn

u(x)� u(y)

|x� y|n+2�

dy

= �1

2
C
n,�

P.V.

Z

Rn

u(x+ y) + u(x� y)� 2u(x)

|y|n+2�

dy, (28)

where C2�+✏(⌦) := C0,2�+✏(⌦) for 2� + ✏  1 and C2�+✏(⌦) = C1,2�+✏�1(⌦) for 2� + ✏ > 1 and
the constant C

n,�

is given by

C
n,�

:=

✓Z

Rn

1� cosx
1

|x|n+2�

dx

◆�1

.

The advantage of (28) is that the integral is not singular at the origin for a C2 function.
Proof of the following lemma can be found in [12].

Lemma A.2 (Fundamental solution) For n � 3 odd integer the function

�(x) :=
(n�3

2

)!

2⇡
n+1
2

1

|x|n�1

=
1

�
n

(��)
n�1
2 log

1

|x|

is a fundamental solution of (��)
1
2 in Rn in the sense that for all f 2 L1(Rn) we have � ⇤ f 2

L 1
2
(Rn) and for all ' 2 S(Rn)

Z

Rn

(��)
1
2 (� ⇤ f)'dx :=

Z

Rn

(� ⇤ f)(��)
1
2'dx =

Z

Rn

f'dx.
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Lemma A.3 Let ` be a nonnegative integer. Let v be a smooth function on Rn such that
D↵v 2 L 1

2
(Rn) for every multi-index ↵ with |↵|  `. Then

(��)
1
2D↵v(x) = D↵(��)

1
2 v(x), for every x 2 Rn, |↵|  `.

Proof. It su�ces to show the case for |↵| = 1. Let ' 2 C1
c

(B
2

) be such that ' = 1 on B
1

and
0  '  1. Let us define v

k

(x) := '(x
k

)v(x). Then we have

(��)
1
2D↵v

k

(x) = D↵(��)
1
2 v

k

(x). (29)

We claim that
(��)

1
2D↵v

k

k!1���! (��)
1
2D↵v in C0

loc

(Rn), |↵| = 0, 1.

To prove our claim first we fix a R > 0. Then for x 2 B
R

and k � R+ 1 we get

���(��)
1
2D↵v

k

(x)� (��)
1
2D↵v(x)

��� = C
n,

1
2

����P.V.
Z

Rn

D↵v
k

(x)�D↵v
k

(y)�D↵v(x) +D↵v(y)

|x� y|n+1

dy

����

 C
n,

1
2

Z

|y|>k

2|D↵v(y)|+ |↵|k�1|(D↵')( y
k

)||v(y)|
|x� y|n+1

dy

k!1���! 0.

Thus {D↵(��)
1
2 v

k

}1
k=1

= {(��)
1
2D↵v

k

}1
k=1

and {(��)
1
2 v

k

}1
k=1

are Cauchy sequences in C0

loc

(Rn)
and consequently

D↵(��)
1
2 v

k

(x)
k!1���! D↵(��)

1
2 v(x),

and together with (29) complete the proof. ⇤

Lemma A.4 Let h 2 Cn�1(B̄
r

) be such that

(
(��)

n�1
2 h = 0 inB

r

(��)jh = f
j

on @B
r

, j = 0, 1, ..., n�3

2

.
(30)

Then for every x 2 B
r

h(x) = �

n�3
2X

i=0

Z

@B

r

f
i

(y)
@

@⌫

⇣
(��)

n�3
2 �iG(x, y)

⌘
d�(y),

and

|h(x)|  C

n�3
2X

i=0

Z

@B

r

|f
i

(y)| 1

|x� y|n�1�2i

d�(y), (31)

where G is the Green’s function corresponding to the problem (30).
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Proof. Using integration by parts we have

0 =

Z

B

r

G(x, y)(��)
n�1
2 h(y)dy

=

n�3
2X

i=0

Z

@B

r

(��)ih(y)
@

@⌫

⇣
(��)

n�3
2 �iG(x, y)

⌘
d�(y) +

Z

B

r

(��)
n�1
2 G(x, y)h(y)dy

= h(x) +

n�3
2X

i=0

Z

@B

r

f
i

(y)
@

@⌫

⇣
(��)

n�3
2 �iG(x, y)

⌘
d�(y)

To get (31) we only need to show that
����
@

@y
i

(��)jG(x, y)

���� 
1

|x� y|2+2j

, x, y 2 B
r

, 0  j  n� 3

2
.

In order to do that we use the following representation formula of G given by (see e.g. [10])

G(x, y) =

Z

B

r

. . .

Z

B

r| {z }
n�3
2 times

G
1

(x, z
1

)G
1

(z
1

, z
2

) . . . G
1

(zn�3
2
, y)dz

1

dz
2

. . . dzn�3
2
, x, y 2 B

r

,

where

G
1

(x, y) =
1

n(n� 2)|B
1

|

 
1

|x� y|n�2

� rn�2

||x|(y � r

2
x

|x|2 )|n�2

!
x, y 2 B

r

,

is the Green’s function for Laplacian on B
r

. Then for 0  j  n�3

2

(��)jG(x, y) =

Z

B

r

. . .

Z

B

r| {z }
n�3�2j

2 times

G
1

(x, z
1

)G
1

(z
1

, z
2

) . . . G
1

(z
n�3�2j

2
, y)dz

1

dz
2

. . . dz
n�3�2j

2
,

and

@

@y
i

(��)jG(x, y) =

Z

B

r

. . .

Z

B

r| {z }
n�3�2j

2 times

G
1

(x, z
1

)G
1

(z
1

, z
2

) . . .
@

@y
i

G
1

(z
n�3�2j

2
, y)dz

1

dz
2

. . . dz
n�3�2j

2
.

A repeated use of Lemma 3.3 and the estimate

0 < G
1

(x, y)  C

|x� y|n�2

and

����
@

@x
i

G
1

(x, y)

���� 
C

|x� y|n�1

x, y 2 B
r

,

gives
����
@

@y
i

(��)jG(x, y)

����  C

Z

B

r

1

|x� z|3+2j

1

|y � z|n�1

dz  C
1

|x� y|2+2j

, 0  j  n� 3

2
.

⇤
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Lemma A.5 We set

f
0

(x) := log |x|, f
j

(x) :=
1

|x|j for j = 1, 2, . . . , n� 1.

Then for 0 < � < 1 we have

(��)�f
j

(x) =
1

|x|j+2�

(��)�f
j

(e
1

), for |x| > 0 and 0  j  n� 1.

Proof. Since f
j

2 C1(Rn \ {0}) \ L 1
2
(Rn) using (28) we get

(��)�f
j

(x) = (��)�f
j

(|x|e
1

) = c
n

P.V.

Z

Rn

f
j

(|x|e
1

)� f
j

(y)

||x|e
1

� y|n+2�

dy

=
1

|x|j+2�

c
n

P.V.

Z

Rn

f
j

(e
1

)� f
j

(y)

|e
1

� y|n+2�

dy

=
1

|x|j+2�

(��)�f
j

(e
1

),

where in the first equality we used that the function (��)�f
j

is radially symmetric. ⇤
The following lemma is a variant of [17, Theorem 6].

Lemma A.6 Let v 2 Ln

2
(Rn) and let h = u� v be n+1

2

-harmonic in Rn i.e.

�
n+1
2 h = 0, in Rn.

If u satisfies (13) then h is a polynomial of degree at most n� 1.

Proof. First notice that the condition v 2 Ln

2
(Rn) implies that

Z

B

R

|v|dx = o(R2n) as R ! 1.

For a fixed x 2 Rn by [17, Proposition 4] we have

|D↵h(x)|  C

R2n

Z

B

R

(x)

|h(y)|dy  C

R2n

Z

B2R

|h(y)|dy, ↵ 2 Nn with |↵| = n, as R ! 1.

Now using (13)

Z

B

R

h+dx 
Z

B

R

(u+ + |v|)dx = o(R2n) or

Z

B

R

h�dx 
Z

B

R

(u� + |v|)dx = o(R2n).

On the other hand, Pizzetti’s formula (see e.g. [17, Lemma 3]) implies that

Z

B

R

hdx = O(R2n�1), as R ! 1.
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Therefore,

|D↵h(x)|  C

R2n

min

⇢Z

B2R

(2h+ � h)dy,

Z

B2R

(2h� + h)dy

�
=

1

R2n

�
O(R2n�1) + o(R2n)

�

R!1����! 0,

and hence h is a polynomial of degree at most n� 1. ⇤
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