Structure of conformal metrics on R^n with constant Q-curvature

Hyder, Ali. (2015) Structure of conformal metrics on R^n with constant Q-curvature. Preprints Fachbereich Mathematik, 2015 (07).

[img] PDF - Published Version

Official URL: https://edoc.unibas.ch/70009/

Downloads: Statistics Overview


In this article we study the nonlocal equation
(−∆)^{n/2} u = (n-1)! e^{bu} in \mathbb{R}^n, \int_{\mathbb{R}^n} e^{nu} dx < \infty,
which arises in the conformal geometry. Inspired by the previous work of C. S. Lin and L. Martinazzi in even dimension and T. Jin, A. Maalaoui, L. Martinazzi, J. Xiong in dimension three we classify all solutions to the above equation in terms of their behavior at infinity.
Faculties and Departments:05 Faculty of Science > Departement Mathematik und Informatik > Ehemalige Einheiten Mathematik & Informatik > Analysis (Martinazzi)
12 Special Collections > Preprints Fachbereich Mathematik
UniBasel Contributors:Hyder, Ali
Item Type:Preprint
Publisher:Universität Basel
edoc DOI:
Last Modified:09 May 2019 09:11
Deposited On:28 Mar 2019 09:52

Repository Staff Only: item control page