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SOLUTION OF FREE BOUNDARY PROBLEMS IN THE
PRESENCE OF GEOMETRIC UNCERTAINTIES

H. HARBRECHT AND M. PETERS

Abstract. The present article is concerned with solving Bernoulli’s exterior free

boundary problem in case of an interior boundary which is random. We model

this random free boundary problem such that the expectation and the variance

of the sought domain can be defined. In order to numerically approximate the

expectation and the variance, we propose a sampling method like the (quasi-)

Monte Carlo quadrature. The free boundary is determined for each sample by the

trial method which is a fixed-point like iteration. Extensive numerical results are

given in order to illustrate the model.

1. Introduction

Let T ⊂ Rn denote a bounded domain with boundary ∂T = Γ. Inside the domain

T we assume the existence of a simply connected subdomain S ⊂ T with boundary

∂S = Σ. The resulting annular domain T \ S is denoted by D. The topological

situation is visualized in Figure 1.1.

Σ D Γ

Figure 1.1. The domain D and its boundaries Γ and Σ.
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We consider the following overdetermined boundary value problem in the annular

domain D

(1.1)

∆u = 0 in D,

∥∇u∥ = f on Γ,

u = 0 on Γ,

u = 1 on Σ,

where f > 0 is a given constant. We like to stress that the non-negativity of the

Dirichlet data implies that u is positive in D. Hence, there holds the identity

(1.2) ∥∇u∥ ≡ −
∂u

∂n
on Γ

since u admits homogeneous Dirichlet data on Γ.

We arrive at Bernoulli’s exterior free boundary problem if the boundary Γ is the

unknown. In other words, we seek a domain D with fixed boundary Σ and unknown

boundary Γ such that the overdetermined boundary value problem (1.1) is solvable.

This problem has many applications in engineering sciences such as fluid mechanics,

see [10], or electromagnetics, see [6, 7] and references therein. In the present form,

it models, for example, the growth of anodes in electrochemical processes. For the

existence and uniqueness of solutions, we refer the reader to e.g. [3, 4, 17], see also

[9] for the related interior free boundary problem. Results concerning the geometric

form of the solutions can be found in [1] and the references therein.

In the present article, we try to model and to solve the free boundary problem

(1.1) in the case that the interior boundary is uncertain, i.e., if Σ = Σ(ω) with an

additional parameter ω ∈ Ω. This model is of practical interest in order to treat

for example tolerances in fabrication processes or if the interior boundary is only

known by measurements which typically contain errors. We are thus looking for a

tuple
(

D(ω), u(ω)
)

such that it holds

(1.3)

∆u(ω) = 0 in D(ω),

∥∇u(ω)∥ = f on Γ(ω),

u(ω) = 0 on Γ(ω),

u(ω) = 1 on Σ(ω).

The questions to be answered in the following are:

• How to model the random domain D(ω)? What is the associated expectation

and the variance?

• Do the expectation and the variance exist and are they finite?

• What is the expectation and the variance of the potential u(ω) if the domain

D(ω) is uncertain?
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• How to compute the solution to the random free boundary problem numer-

ically?

For sake of simplicity, we restrict our consideration to the two-dimensional situation.

Nevertheless, the extension to higher dimensions is straightforward and is left to the

reader.

The rest of this article is organized as follows. Section 2 is dedicated to answering the

first two questions. We start by defining appropriate function spaces to define the

stochastic model. Afterwards, we define the random inner boundary and the result-

ing random outer boundary. Especially, we provide a theorem which guarantees the

well-posedness of the random free boundary problem under consideration. Moreover,

we introduce here the expectation and the variance of the domain’s boundaries. Fi-

nally, we give an analytic example which shows that the solution of the free boundary

problem depends nonlinearly on the stochastic parameter. In Section 3, we answer

the latter two questions. We propose in this article the use of boundary integral

equations for the solution of the underlying boundary value problem. This signifi-

cantly decreases the effort for the numerical solution. In particular, we can describe

the related potential of the free boundary problem in terms of Green’s representa-

tion formula. This also allows us to define its expectation and its variance. For the

numerical approximation of the free boundary, we propose the use of a trial method

in combination with a Nyström discretization of the boundary integral equations.

Section 4 is then devoted to the numerical examples. We will present here four dif-

ferent examples in order to illustrate different aspects of the proposed approach. We

especially show that there is a clear difference between the expected free boundary

and the free boundary which belongs to the expected interior boundary. As an im-

portant result, it follows thus that one cannot ignore random influences in numerical

simulations. Finally, in Section 5, we state some concluding remarks.

2. Modelling uncertain domains

2.1. Notation. In the sequel, let (Ω,F ,P) denote a complete and separable proba-

bility space with σ-algebra F and probability measure P. Here, complete means that

F contains all P-null sets. In the sequel, for a given Banach space X , the Bochner

space Lp
P
(Ω;X), 1 ≤ p ≤ ∞, consists of all equivalence classes of strongly measurable

functions v : Ω → X whose norm

∥v∥Lp
P
(Ω;X) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(
∫

Ω

∥v(·,ω)∥pX dP(ω)

)1/p

, p < ∞

ess sup
ω∈Ω

∥v(·,ω)∥X, p = ∞
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is finite. If p = 2 and X is a separable Hilbert space, then the Bochner space

is isomorphic to the tensor product space L2
P(Ω) ⊗ X . Note that, for notational

convenience, we will always write v(φ,ω) instead of
(

v(ω)
)

(φ) if v ∈ Lp
P
(Ω;X). For

more details on Bochner spaces, we refer the reader to [14].

2.2. Random interior boundary. Throughout the article, the domain D(ω) will

be identified by its boundaries Σ(ω) and Γ(ω). Indeed, we assume that Σ(ω) is P-

almost surely starlike. This enables us to parameterize this random boundary in

accordance with

Σ(ω) =
{

x = σ(φ,ω) ∈ R
2 : σ(φ,ω) = q(φ,ω)er(φ), φ ∈ I

}

.

Here, er(φ) := [cos(φ), sin(φ)]ᵀ is the radial direction and I := [0, 2π] is the param-

eter interval. The radial function q(φ,ω) ≥ c > 0 has to be in the Bochner space

L2
(

Ω;C2
per(I)

)

, where C2
per(I) denotes the Banach space of periodic, twice continu-

ously differentiable functions, i.e.,

C2
per(I) :=

{

f ∈ C(I) : f (i)(0) = f (i)(2π), i = 0, 1, 2
}

,

equipped with the norm

∥f∥C2
per(I)

:=
2

∑

i=0

max
x∈I

∣

∣f (i)(x)
∣

∣.

For our purposes, we assume that q(φ,ω) is described by its expectation

E[q](φ) =

∫

Ω

q(φ,ω) dP(ω)

and its covariance

Cov[q](φ,φ′) = E[q(φ,ω)q(φ′,ω)] =

∫

Ω

q(φ,ω)q(φ′,ω) dP(ω).

Then, q(φ,ω) can be represented by the so called Karhunen-Loève expansion, cf. [16],

q(φ,ω) = E[q](φ) +
N
∑

k=1

qk(φ)Yk(ω).

Herein, the functions {qk(φ)}k are scaled versions of the eigenfunctions of the Hilbert-

Schmidt operator associated to Cov[q](φ,φ′). Common approaches to numerically

recover the Karhunen-Loève expansion from these quantities are e.g. given in [13]

and the references therein. By construction, the random variables {Yk(ω)}k in the

Karhunen-Loève expansion are uncorrelated. For our modelling, we shall also sup-

pose that they are independent, which is a common assumption. Moreover, we as-

sume that they are identically distributed with img Yk(ω) = [−1, 1]. Note that it
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holds

V[q](φ) =

∫

Ω

{

q(φ,ω)− E[q](φ)
}2

dP(ω) =
N
∑

k=1

(

qk(φ)
)2
.

2.3. Random exterior boundary. If the interior boundary Σ(ω) is starlike, then

also the exterior boundary Γ(ω) is starlike. In particular, it also follows that the free

boundary Γ(ω) is C∞-smooth, see [2] for details. Hence, the exterior boundary can

likewise be represented via its parameterization:

(2.4) Γ(ω) =
{

x = γ(φ,ω) ∈ R
2 : γ(φ,ω) = r(φ,ω)er(φ), φ ∈ I

}

.

The following theorem guarantees us the well-posedness of the problem under con-

sideration, cf. [4, 17]. It shows that it holds r(φ,ω) ∈ L∞
P

(

Ω, C2
per(I)

)

if q(φ,ω) is

almost surely bounded and thus that γ(φ,ω) is well defined.

Theorem 2.1. Assume that q(φ,ω) is uniformly bounded almost surely, i.e.,

(2.5) q(φ,ω) ≤ R for all φ ∈ I and P-almost every ω ∈ Ω.

Then, there exists a unique solution
(

D(ω), u(ω)
)

to (1.3) for almost every ω ∈ Ω.

Especially, with some constant R > R, the radial function r(φ,ω) of the associated

free boundary (2.4) satisfies

q(φ,ω) < r(φ,ω) ≤ R for all φ ∈ I and P-almost every ω ∈ Ω.

Proof. In view of (2.5), it follows that

Σ(ω) ⊂ BR(0) :=
{

x ∈ R
2 : ∥x∥ < R

}

for almost every ω ∈ Ω. Hence, for fixed ω ∈ Ω, [17, Theorem 1] guarantees the

unique solvability of (1.3). In particular, there exists a constant R > R such that

Γ(ω) ⊂ BR(0) whenever Σ(ω) ⊂ BR(0). Therefore, the claim follows since q(φ,ω) is

supposed to be uniformly bounded in ω ∈ Ω. "

2.4. Expectation and variance of the domain. Having the parameterizations

σ(ω) and γ(ω) at hand, we can obtain the expectation and the variance of the

domain D(ω).

Theorem 2.2. The expectation of the domain D(ω) is given via the expectations of

its boundaries’ parameterizations in accordance with

E[∂D(ω)] = E[Σ(ω)] ∪ E[Γ(ω)]

where

E[Σ(ω)] =
{

x ∈ R
2 : x = E[q(φ,ω)]er(φ), φ ∈ I

}

,

E[Γ(ω)] =
{

x ∈ R
2 : x = E[r(φ,ω)]er(φ), φ ∈ I

}

.
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Proof. For the proof, we introduce the global parameterization δ : [0, 4π) → ∂D(ω)

given by

(2.6) δ(φ,ω) =

⎧

⎨

⎩

σ(φ,ω), φ ∈ [0, 2π),

γ(φ− 2π,ω), φ ∈ [2π, 4π).

Then, it holds per definition that

E[∂D(ω)] =
{

x ∈ R
2 : x = E[δ(φ,ω)], φ ∈ [0, 4π)

}

.

Therefore, the expected boundary E[∂D(ω)] consists of all points x ∈ R2 with

x =

⎧

⎨

⎩

E[σ(φ,ω)], φ ∈ [0, 2π),

E[γ(φ− 2π,ω)], φ ∈ [2π, 4π).

This is equivalent to

x =

⎧

⎨

⎩

E[q(φ,ω)]er(φ), φ ∈ [0, 2π),

E[r(φ− 2π,ω)]er(φ− 2π), φ ∈ [2π, 4π),

which immediately implies the assertion. "

The variance of the domain D(ω) is obtained in a similar way as the expectation.

In particular, it suffices to take only the radial part of the variance into account due

to the star-shapedness.

Theorem 2.3. The variance of the domain D(ω) in the radial direction is given via

the variances of its boundaries parameterizations in accordance with

V[∂D(ω)] = V[Σ(ω)] ∪ V[Γ(ω)]

where

V[Σ(ω)] =
{

x ∈ R
2 : x = V[q(φ,ω)]er(φ), φ ∈ I

}

,

V[Γ(ω)] =
{

x ∈ R
2 : x = V[r(φ,ω)]er(φ), φ ∈ I

}

.

Proof. We shall again employ the global parameterization δ(φ,ω) from (2.6). For

sake of notational convenience, we denote its centered version by

δ0(φ,ω) := δ(φ,ω)− E[δ(φ,ω)],

and likewise for σ(φ,ω) and γ(φ,ω).

The variance of D(ω) can be determined as the trace of the covariance

Cov[∂D(ω)] =
{

X ∈ R
2×2 : X = E

[

δ0(φ,ω)δ0(φ
′,ω)ᵀ

]

, φ ∈ [0, 4π)
}

.
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From this representation, one concludes that Cov[∂D(ω)] consists of all (2 × 2)-

matrices X with

X =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

E
[

σ0(φ,ω)σ0(φ′,ω)ᵀ
]

, φ,φ′ ∈ [0, 2π),

E
[

σ0(φ,ω)γ0(φ
′ − 2π,ω)ᵀ

]

, φ ∈ [0, 2π),φ′ ∈ [2π, 4π),

E
[

γ0(φ− 2π,ω)σ0(φ′,ω)ᵀ
]

, φ ∈ [2π, 4π),φ′ ∈ [0, 2π),

E
[

γ0(φ− 2π,ω)γ0(φ
′ − 2π,ω)ᵀ

]

, φ,φ′ ∈ [2π, 4π).

The situation φ = φ′ can only appear in the first or last case. These can be refor-

mulated with φ,φ′ ∈ [0, 2π) as

Cov[σ,σ](φ,φ′) = E
[

σ0(φ,ω)σ0(φ
′,ω)ᵀ

]

= E
[(

q(φ,ω)− E[q](φ)
)(

q(φ′,ω)− E[q](φ)
)]

er(φ)er(φ
′)ᵀ

and likewise as

Cov[γ,γ](φ,φ′) = E
[

γ0(φ,ω)γ0(φ
′,ω)ᵀ

]

= E
[(

r(φ,ω)− E[r](φ)
)(

r(φ′,ω)− E[r](φ)
)]

er(φ)er(φ
′)ᵀ.

By setting φ = φ′, we arrive at

Cov[σ,σ](φ,φ) = V[q](φ)er(φ)er(φ)
ᵀ and Cov[γ,γ](φ,φ) = V[q](φ)er(φ)er(φ)

ᵀ.

To get the radial part of the variances, we multiply the last expression by the radial

direction er which yields the desired assertion. "

Consequently, in view of having E[q(φ,ω)] and V[q(φ,ω)] given, we need just to com-

pute the expectation E[r(φ,ω)] and the variance V[r(φ,ω)] to obtain the expectation

and the variance of the random domain D(ω).

2.5. Stochastic quadrature method. For numerical simulation, we aim at ap-

proximating E[r(φ,ω)] and V[r(φ,ω)] with the aid of a (quasi-) Monte Carlo quad-

rature. To that end, we first parameterize the stochastic influences in q(φ,ω) by

considering the parameter domain " := [−1, 1]N and setting

q(φ,y) = E[q](φ) +
N
∑

k=1

qk(φ)yk for y = [y1, . . . , yN ]
ᵀ ∈ ".

Especially, we have q(φ,y) ∈ L∞
(

";C2
per(I)

)

if q(φ,ω) ∈ L∞
(

Ω;C2
per(I)

)

. Here,

the space L∞
(

";C2
per(I)

)

is equipped with the pushforward measure PY, where

Y = [Y1, . . . , YN ]ᵀ. This measure is of product structure due to the independence

of the random variables. If the measure PY is absolutely continuous with respect
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to the Lebesgue measure, then there exists a density ρ(y), which is also of product

structure, such that there holds

E[q](φ) =

∫

Ω

q(φ,ω) dP(ω) =

∫

"

q(φ,y)ρ(y) dy.

In complete analogy, we have for the variance

V[q](φ) =

∫

Ω

(

q(φ,ω)
)2

dP(ω)−
(

E[q](φ)
)2

=

∫

"

(

q(φ,y)
)2
ρ(y) dy −

(

E[q](φ)
)2
.

Now, if

(2.7) F : L∞
(

Ω;C2
per(I)

)

→ L∞
(

Ω;C2
per(I)

)

, q(φ,ω) .→ r(φ,ω)

denotes the solution map, the expectation and the variance of r(φ,ω) are given

according to

E[r](φ) = E[F (q)](φ) and V[r](φ) = V[F (q)](φ).

In view of this representation, we can apply a (quasi-) Monte Carlo quadrature in

order to approximate the desired quantities.

The Monte Carlo quadrature as well as the quasi-Monte Carlo quadrature approx-

imate the integral of a sufficiently smooth function f over " by a weighted sum

according to
∫

"

f(y) dy ≈
1

M

M
∑

i=1

f(yi).

Herein, the sample points {y1, . . . ,yM} are either chosen randomly with respect to

the uniform distribution, which results in the Monte Carlo quadrature, or according

to a deterministic low-discrepancy sequence, which results in the quasi-Monte Carlo

quadrature. The Monte Carlo quadrature can be shown to converge, in the mean

square sense, with a dimension independent rate of M−1/2. The quasi-Monte Carlo

quadrature based, for example, on Halton points, cf. [11], converges instead with the

rate M δ−1 for arbitrary δ > 0. Although, for the quasi-Monte Carlo quadrature, the

integrand has to provide bounded first order mixed derivatives. For more details on

this topic, see [5] and the references therein.

In our particular problem under consideration, the expectation E[r](φ) and the vari-

ance V[r](φ) are finally computed in accordance with

E[r](φ) = E[F (q)](φ) ≈
1

M

M
∑

i=1

F
(

q(φ,yi)
)

ρ(yi)

and

V[r](φ) = V[F (q)](φ) ≈
1

M

M
∑

i=1

(

F
(

q(φ,yi)
)

)2

ρ(yi)−
(

1

M

M
∑

i=1

F
(

q(φ,yi)
)

ρ(yi)

)2

.



SOLUTION OF FREE BOUNDARY PROBLEMS WITH GEOMETRIC UNCERTAINTIES 9

2.6. Analytical example. The calculations can be performed analytically if the

interior boundary Σ(ω) is a circle around the origin with radius q(ω). Then, due

to symmetry, also the free boundary Γ(ω) will be a circle around the origin with

unknown radius r(ω). We shall thus focus on this particular situation in order to

verify that the radius r(ω) depends nonlinearly on the stochastic input q(ω). Hence,

on the associated expected domain E[D(ω)], the overdetermined boundary value

problem (1.1) has, in general, no solution.

Using polar coordinates and making the ansatz ∥u(ρ,φ)∥ = y(ρ), the solution with

respect to the prescribed Dirichlet boundary condition of (1.1) has to satisfy

y′′ +
y′

ρ
= 0, y

(

q(ω)
)

= 1, y
(

r(ω)
)

= 0.

The solution to this boundary value problem is given by

y(ρ) =
log

(

ρ
r(ω)

)

log
( q(ω)
r(ω)

)
.

The desired Neumann boundary condition at the free boundary r(ω) yields the

equation

−y′
(

r(ω)
)

=
1

r(ω) log
( r(ω)
q(ω)

)

!
= f,

which can be solved by means of Lambert’s W -function:

(2.8) r(ω) =
1

fW
(

1
fq(ω)

) .

Thus, the free boundary r(ω) depends indeed nonlinearly on q(ω) since it generally

holds

(2.9) E[r(ω)] = E

[

1

fW
(

1
fq(ω)

)

]

̸=
1

fW
(

1
fE[q]

) .

Notice that the right hand side would be the (unique) solution of the free boundary

problem in case of the interior circle of radius E[q(ω)]. Thus, indeed the overdeter-

mined boundary value problem (1.1) will, in general, not be fulfilled on the expected

domain E[D(ω)].

3. Computing free boundaries

3.1. Trial method. For computing the expected domain E[D(ω)] and its variance

V[D(ω)], we have to be able to determine the free boundary Γ(ω) for each specific re-

alization of the fixed boundary Σ(ω). This will be done by the so-called trial method,

which is a fixed point type iterative scheme. For sake of simplicity in representation,

we omit the stochastic variable ω in this section, i.e., we assume that ω ∈ Ω is fixed.
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The trial method for the solution of the free boundary problem (1.1) requires an

update rule. Suppose that the current boundary in the k-th iteration is Γk and let

the current state uk satisfy

(3.10)

∆uk = 0 in Dk,

uk = 1 on Σ,

−
∂uk

∂n
= f on Γk.

The new boundary Γk+1 is now determined by moving the old boundary into the

radial direction, which is expressed by the update rule

γk+1 = γk + δrker.

The update function δrk ∈ C2
per([0, 2π]) is chosen such that the desired homogeneous

Dirichlet boundary condition is approximately satisfied at the new boundary Γk+1,

i.e.,

(3.11) 0
!
= uk ◦ γk+1 ≈ uk ◦ γk +

(

∂uk

∂er
◦ γk

)

δrk on [0, 2π],

where uk is assumed to be smoothly extended into the exterior of the domain Dk.

We decompose the derivative of uk in the direction er into its normal and tangential

components

(3.12)
∂uk

∂er
=

∂uk

∂n
⟨er,n⟩+

∂uk

∂t
⟨er, t⟩ on Γk

to arrive finally at the following iterative scheme (cf. [9, 18, 12]):

(1) Choose an initial guess Γ0 of the free boundary.

(2a) Solve the boundary value problem with the Neumann boundary condition

on the free boundary Γk.

(2b) Update the free boundary Γk such that the Dirichlet boundary condition is

approximately satisfied at the new boundary Γk+1:

(3.13) δrk = −
uk
∂uk

∂er

= −
uk

f⟨n, er⟩+ ∂uk

∂t ⟨t, er⟩

(3) Repeat step 2 until the process becomes stationary up to a specified accuracy.

Notice that the update equation (3.13) is always solvable at least in a neighbourhood

of the optimum free boundary Γ since there it holds −∂u/∂er = f⟨er,n⟩ > 0 due

to ∂uk/∂t = 0, f > 0 and ⟨er,n⟩ > 0 for starlike domains.
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3.2. Discretizing the free boundary. For the numerical computations, we dis-

cretize the radial function rk associated with the boundary Γk by a trigonometric

polynomial according to

(3.14) rk(φ) =
a0
2

+
n−1
∑

i=1

{

ai cos(iφ) + bi sin(iφ)
}

+
an
2

cos(nφ).

This obviously ensures that rk is always an element of C2
per(I). To determine the

update function δrk, represented likewise by a trigonometric polynomial, we insert

the m ≥ 2n equidistantly distributed points φi = 2πi/m into the update equation

(3.13):

δrk = −
uk

f⟨n, er⟩+ ∂uk

∂t ⟨t, er⟩
in all the points φ1, . . . ,φm.

This is a discrete least-squares problem which can simply be solved by the normal

equations. In in view of the orthogonality of the Fourier basis, this means just a

truncation of the trigonometric polynomial.

3.3. Boundary integral equations. Our approach to determine the solution uk of

the state equation (3.10) relies on the reformulation as a boundary integral equation

by using Green’s fundamental solution

G(x,y) = −
1

2π
log ∥x− y∥2.

Namely, the solution uk(x) of (3.10) is given in each point x ∈ D by Green’s repre-

sentation formula

(3.15) uk(x) =

∫

Γk∪Σ

{

G(x,y)
∂uk

∂n
(y)−

∂G(x,y)

∂ny

uk(y)

}

dσy.

Using the jump properties of the layer potentials, we obtain the direct boundary

integral formulation of the problem

(3.16)
1

2
uk(x) =

∫

Γk∪Σ

G(x,y)
∂uk

∂n
(y) dσy −

∫

Γk∪Σ

∂G(x,y)

∂ny

uk(y) dσy,

where x ∈ Γk∪Σ. If we label the boundaries by A,B ∈ {Γk,Σ}, then (3.16) includes

the single layer operator

(3.17) V : C(A) → C(B),
(

VABρ
)

(x) = −
1

2π

∫

A

log ∥x− y∥2 ρ(y) dσy

and the double layer operator

(3.18) K : C(A) → C(B),
(

KABρ
)

(x) =
1

2π

∫

A

⟨x− y,ny⟩
∥x− y∥22

ρ(y) dσy
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with the densities ρ ∈ C(A) being the Cauchy data of u on A. The equation (3.16) in

combination with (3.17) and (3.18) indicates the Neumann-to-Dirichlet map, which

for problem (3.10) induces the following system of integral equations

(3.19)

[

1
2I +KΓΓ −VΣΓ

KΓΣ −VΣΣ

][

uk|Γ
∂uk

∂n

∣

∣

Σ

]

=

[

VΓΓ −KΣΓ

VΓΣ −
(

1
2I +KΣΣ

)

] [

−f

1

]

.

The boundary integral operator on the left hand side of this coupled system of

boundary integral equation is continuous and satisfies a G̊arding inequality with

respect to the product Sobolev space L2(Γ)×H−1/2(Σ) provided that diam(Ω) < 1.

Since its injectivity follows from potential theory, this system of integral equations

is uniquely solvable according to the Riesz-Schauder theory.

The next step to the solution of the boundary value problem is the numerical ap-

proximation of the integral operators included in (3.19) which first requires the

parameterization of the integral equations. To that end, we insert the parameteriza-

tions σ and γk of the boundaries Σ and Γk, respectively. For the approximation of

the unknown Cauchy data, we use the collocation method based on trigonometric

polynomials. Applying the trapezoidal rule for the numerical quadrature and the

regularization technique along the lines of [15] to deal with the singular integrals,

we arrive at an exponentially convergent Nyström method provided that the data

and the boundaries and thus the solution are arbitrarily smooth.

3.4. Expectation and variance of the potential. We shall comment on the

expectation and the variance of the potential. To that end, we consider a specific

sample ω ∈ Ω and assume that the associated free boundary Γ(ω) is known. Then,

with the aid of the parameterizations

σ(ω) : [0, 2π] → Σ(ω) and γ(ω) : [0, 2π] → Γ(ω),

we arrive, in view of (3.15), for x ∈ D(ω) at the potential representation

(3.20) u(x,ω) =
∑

A∈{Σ(ω),Γ(ω)}

∫ 2π

0

{

kV
A(x,φ,ω)ρ

V
A(φ,ω)− kK

A(x,φ,ω)ρ
K
A(φ,ω)

}

dφ,

where

kV
Σ(ω)(x,φ,ω) = G

(

x,σ(φ,ω)
)

∥σ′(φ,ω)∥2,

kV
Γ(ω)(x,φ,ω) = G

(

x,γ(φ,ω)
)

∥γ ′(φ,ω)∥2,
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and

kK
Σ(ω)(x,φ,ω) =

∂G
(

x,σ(φ,ω)
)

∂ny

∥σ′(φ,ω)∥2,

kK
Γ(ω)(x,φ,ω) =

∂G
(

x,γ(φ,ω)
)

∂ny

∥γ ′(φ,ω)∥2.

Moreover, the related densities are given according to

ρVΣ(ω)(φ,ω) =
∂u

∂n

(

σ(φ,ω)
)

, ρVΓ(ω)(φ,ω) =
∂u

∂n

(

γ(φ,ω)
)

,

ρKΣ(ω)(φ,ω) = u
(

σ(φ,ω)
)

, ρKΓ(ω)(φ,ω) = u
(

γ(φ,ω)
)

.

These densities coincide with the Cauchy data of the potential u(ω) on the boundary

∂D(ω).

In view of the representation (3.20), we observe that the expectation E[u](x) and the

variance V[u](x) of the potential depend nonlinearly on the random parameter ω ∈
Ω. This is due to the fact that, in contrast to e.g. [8], not only the density depends

on ω but also the kernel function because of the parameterization. Nevertheless,

if desired, these quantities can easily be approximated by sampling the expression

(3.20) and its squared form for different realizations of the random parameter ω ∈ Ω

by a (quasi-) Monte Carlo method as already discussed in Subsection 2.4 for r(φ,ω).

4. Numerical results

In this section, we provide several numerical examples in order to illustrate our

approach. For the numerical solution of the free boundary problem for each instance

of the random parameter ω ∈ Ω, we apply the trial method proposed in the preceding

section. The iteration is stopped if the ℓ∞-norm of the update becomes smaller

than 10−7. For the discretization of the free boundary, we employ a trigonometric

polynomial of order 32, i.e., n = 16 in (3.14). For the collocation method, we use

m = 200 collocation points.

4.1. First example. Our first example refers to the analytical example presented

in Subsection 2.6. Especially, we want to illustrate that the expectation of the free

boundary Γ(ω) differs from the free boundary obtained for given E[Σ]. To that

end, we consider the following situation: In (1.3), we set u(ω) = 1 on Σ(ω) and

∥∇u(ω)∥2 = 10 on Γ(ω). Moreover, we set q(φ,ω) = 0.2 + 0.195X(ω), where X is

distributed with respect to the counting measure µ(x) = 0.5 · δ−1(x) + 0.5 · δ1(x).
Therefore, we can exactly determine the expectation and the variance of the free

boundary by just two realizations of q(φ,ω).
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Figure 4.2. Expectation of the solution to the free boundary prob-

lem (left) and related expectations of the radii (right) for the first

example.

On the left hand side of Figure 4.2, a visualization of the random domain’s statistics

is found. The green line belongs to the expectation of the inner boundary E[Σ]. The

expectation of the free boundary E[Γ] is indicated by the blue line. The grey shaded

area refers to the standard deviation of Γ with respect to the expectation, i.e., the

area which is bounded by E[Γ] ±
√

V[Γ]. Moreover, we have depicted the solution

to the free boundary problem for the fixed inner boundary E[Σ], i.e., the boundary

related to the radius F (E[q]), see (2.7), by the black dashed line. It can clearly be

seen that this solution differs from the expectation E[Γ] due to the nonlinearity of

the problem. This is also indicated by the plot of the related radial functions on the

right hand side of Figure 4.2. Here, we show the expectation E[r](φ) (blue line), the

radius F (E[q]) of the solution for the fixed inner boundary E[Σ] (black dashed line),

the radius of the inner boundary E[q](φ) (green) and the radius of the standard

deviation
√

V[Γ](φ) (red).

In order to make the nonlinearity in the problem better visible, Figure 4.3, shows

the radius r(φ,ω) (blue) computed by (2.8) with respect to q(φ,ω) ∈ [0.005, 0.395].

Moreover, we have depicted the sensitivity of r(φ,ω) with respect to q(φ,ω), i.e.,

the derivative with respect to q(φ,ω), in red. As it turns out, we have a strong

nonlinearity only for very small values of q(φ,ω). For larger values of q(φ,ω), the

problem exhibits a rather linear behavior. Finally, the black dot in the picture

refers to the radius r that is obtained for E[q] = 0.2, i.e., F (0.2), and the blue

dot on the secant connecting the extremal values of r(φ,ω) (green) refers to E[r] =

0.5
(

F (0.005) + F (0.395)
)

, cf. (2.7). As they obviously do not coincide, this also

confirms the statement (2.9).
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Figure 4.3. Dependency and sensitivity of r(φ,ω) on q(φ,ω).

4.2. Second example. For the second example, the same boundary conditions are

chosen as in the previous example. Moreover, the radial function of Σ(ω) is defined

according to

q(φ,ω) = 0.25 + 0.05
5

∑

k=1

√
2

k

{

sin(kφ)X2k−1(ω) + cos(kφ)X2k(ω)
}

,

where the random variables {Xk}k are independent and distributed with respect to

the counting measure µ as before. In the spirit of the previous example, we have

here to determine the 1024 realizations of the free boundary related to the 1024

possible realizations of q(φ,ω) in order to exactly determine the expectation and

the variance of the free boundary. Thus, this example may be considered a more

complex version of the previous one.
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Figure 4.4. Expectation of the solution to the free boundary prob-

lem (left) and related expectations of the radii (right) for the second

example.
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Figure 4.4 visualizes the expectation and the standard deviation of the free boundary

and the related radii. On the left hand side, one finds the random domain’s statistics

and on the right hand side the associated radial functions. Again, we see that there

is a mismatch between the domain’s expectation (blue line) and the free boundary

which belongs to the expected interior boundary (black dashed line).

4.3. Third example. In our third example, we consider the approximation of the

expectation and the variance of the solution to (1.3) in case of a perturbed potato

shaped inner domain. For the data, we prescribe the boundary conditions u(ω) = 1

on Σ(ω) and ∥∇u(ω)∥2 = 6 on Γ(ω). The radial function for Σ(ω) is given by

q(φ,ω) = 0.2 + 0.01f(φ) +
10
∑

k=1

√
2

k

{

sin(kφ)X2k−1(ω) + cos(kφ)X2k(ω)
}

,

where f(φ) is a trigonometric polynomial with coefficients, cf. (3.14),

[a5, . . . , a0, b1, . . . , b4] = [0.33, 0.26, 0.51, 0.70, 0.89, 0.48, 0.55, 0.14, 0.15, 0.26].

The random variables {Xk}k are chosen to be independent and uniformly distributed

in [−1, 1]. The approximation of the expectation E[r](φ) and the variance V[r](φ)

is performed by the application of a quasi-Monte Carlo quadrature based on 10 000

Halton points, cf. [11]. As already pointed out in Subsection 2.4, the application

of the quasi-Monte Carlo quadrature requires mixed smoothness of the integrand.

Although this is not proven here, we have strong evidence that the function r(φ,ω)

exhibits this smoothness. This is also validated by this example.
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Figure 4.5. Expectation of the solution to the free boundary prob-

lem (left) and related expectations of the radii (right) for the third

example.

On the left hand side of Figure 4.5, a visualization of the random domain’s statistics

is found. The left hand side of Figure 4.5 shows the expectation E[Σ] (green) and
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the expectation E[Γ] (blue). The grey shaded area refers to the standard deviation

of Γ. Moreover, the free boundary that corresponds to E[Σ] is indicated by the black

dashed line. It differs again clearly from the expectation E[Γ]. The right hand side

of of Figure 4.5 shows the related radius functions. Here, the standard deviation is

indicated in red.
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Figure 4.6. Convergence of the Monte Carlo quadrature to the ap-

proximation based on the quasi-Monte Carlo quadrature.

Finally, in order to justify the application of the quasi-Monte Carlo quadrature

based on Halton points, we have also considered the convergence of the Monte

Carlo quadrature towards the approximation of the expectation obtained by the

quasi-Monte Carlo quadrature. The related plot is found in Figure 4.6. The green

line refers to the approximation of the expectation of the inner boundary E[Σ], which

is a linear problem. The blue line indicates the convergence of the expectation of

the outer boundary E[Γ], which is a nonlinear problem. We have measured here the

relative error in the ℓ∞-norm of the boundaries evaluated in the collocation points.

The theoretical rate of convergence, given by M−1/2 where M denotes the number

of Monte Carlo samples, is visualized by the black dashed line. As it turns out, we

obtain in both cases convergence of the Monte Carlo quadrature towards the solution

obtained by the quasi-Monte Carlo quadrature. This validates the approximation

obtained by the quasi-Monte Carlo quadrature, which will also be used as stochastic

quadrature method in the following example.

4.4. Fourth example. Finally, we consider an example where the inner boundary

Σ(ω) is given by four circles of radius 0.05 with randomly varying midpoints
[

0.1(−1)i + 0.04X2(2i+j)(ω), 0.1(−1)j + 0.04X2(2i+j)+1(ω)
]ᵀ

for i, j = 0, 1.

Here, the random variables X1, . . . , X8 are independent and uniformly distributed

on [−1, 1]. The radii and midpoints of the circles are chosen such that they cannot
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overlap. In order to illustrate the situation under consideration, we have depicted six

different realizations of Σ(ω) and of the related free boundaries Γ(ω) in Figure 4.7.

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

Figure 4.7. Different realizations of the random boundary Σ(ω) and

corresponding free boundary Γ(ω) for the fourth example.
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For this example, the boundary conditions are chosen as u(ω) = 1 on Σ(ω) and

∥∇u(ω)∥2 = 8. The visualization of the computed expectation and the standard

deviation of the free boundary as well as the related radii are presented in Figure

4.8. Even though the interior boundaries vary a lot, the difference between the free

boundary related to E[Σ] and E[Γ] is relatively small.
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Figure 4.8. Expectation of the solution to the free boundary prob-

lem (left) and related expectations of the radii (right) for the fourth

example.

5. Conclusion

In the present article, Bernoulli’s exterior free boundary problem has been considered

in case of an interior boundary which is random. Such uncertainties may arise from

tolerances in fabrication processes or from measurement errors. We modeled this

problem mathematically and showed its well-posedness. Expectation and variance

of the resulting random domain have been introduced and numerically computed.

Establishing regularity results with respect to the random parameter will be subject

of future work in order to rigorously prove the convergence of the present quasi-

Monte Carlo method and even more sophisticated quadrature methods.
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