Fractional Adams-Moser-Trudinger type inequalities

Martinazzi, Luca. (2015) Fractional Adams-Moser-Trudinger type inequalities. Preprints Fachbereich Mathematik, 2015 (22).

[img] PDF - Published Version

Official URL: https://edoc.unibas.ch/69991/

Downloads: Statistics Overview


Extending several works, we prove a general Adams-Moser-Trudinger type inequality for the embedding of Bessel-potential spaces $\tilde{H}^{n/p,p}(\Omega)$ into Orlicz spaces for an arbitrary domain $\Omega$ with finite measure. In particular we prove
\sup_{u\in \tilde{H}^{n/p,p}(\Omega), \|(-\Delta)^{n/(2p)} u\|_{L^p(\Omega)}\le 1} \int_\Omega e^{\alpha_{n,p} u^{p/(p-1)} \d x \le c_{n,p} |\Omega|,
for a positive constant $\alpha_{n,p}$ whose sharpness we also prove. We further extend this result to the case of Lorentz-spaces (i.e. $(-\Delta)^{n/(2p)} u \in L^{(p,q)}$). The proofs are simple, as they use Green functions for fractional Laplace operators and suitable cut-off procedures to reduce the fractional results to the sharp estimate on the Riesz potential proven by Adams and its generalization proven by Xiao and Zhai.
We also discuss an application to the problem of prescribing the Q-curvature and some open problems.
Faculties and Departments:05 Faculty of Science > Departement Mathematik und Informatik > Ehemalige Einheiten Mathematik & Informatik > Analysis (Martinazzi)
12 Special Collections > Preprints Fachbereich Mathematik
UniBasel Contributors:Martinazzi, Luca
Item Type:Preprint
Publisher:Universität Basel
edoc DOI:
Last Modified:12 May 2019 21:07
Deposited On:28 Mar 2019 09:51

Repository Staff Only: item control page