The Abelianisation
of the
real Cremona group

S. Zimmermann
THE ABELIANISATION OF THE REAL CREMONA GROUP

SUSANNA ZIMMERMANN

Abstract. We present the Abelianisation of the birational transformations of \(\mathbb{P}^2_{\mathbb{R}}\). Its kernel is equal to the normal subgroup generated by \(\text{PGL}_3(\mathbb{R})\), and contains all elements of degree \(\leq 4\). The description of the quotient yields the existence of normal subgroups of index \(2^n\) for any \(n\) and that the normal subgroup generated by any countable set of elements is a proper subgroup.

Contents

1. Introduction 1
2. Basic notions 3
3. A quotient of \(\mathcal{J}_6\) 6
 3.1. The group \(\mathcal{J}_6\) 6
 3.2. The quotient 11
4. A quotient of Bir\(_{\mathbb{R}}\)(\(\mathbb{P}^2\)) 13
5. The kernel of the quotient 18
 5.1. Geometry between cubic and quintic transformations 18
 5.2. The normal subgroup generated by Aut\(_{\mathbb{R}}\)(\(\mathbb{P}^2\)) 21
 5.3. The kernel is equal to \(<\langle\text{Aut}_{\mathbb{R}}(\mathbb{P}^2)\rangle>\) 22
6. Presentation of Bir\(_{\mathbb{R}}\)(\(\mathbb{P}^2\)) by generating sets and relations 25
References 37

1. Introduction

Let Bir\(_{\mathbb{R}}\)(\(\mathbb{P}^2\)) \(\subset\) Bir\(_{\mathbb{C}}\)(\(\mathbb{P}^2\)) be the groups of birational transformations of the projective plane defined over the respective fields of real and complex numbers, and Aut\(_{\mathbb{R}}\)(\(\mathbb{P}^2\)) \(\cong\) PGL\(_3\)(\(\mathbb{R}\)), Aut\(_{\mathbb{C}}\)(\(\mathbb{P}^2\)) \(\cong\) PGL\(_3\)(\(\mathbb{C}\)) the respective subgroups of linear transformations.

According to the Noether-Castelnuovo Theorem \([\text{Cas1901}]\), the group Bir\(_{\mathbb{C}}\)(\(\mathbb{P}^2\)) is generated by Aut\(_{\mathbb{C}}\)(\(\mathbb{P}^2\)) and the standard quadratic transformation \(\sigma_0:\ [x:y:z] \rightarrow [yz:zx:xy]\). As an abstract group, it is not simple \([\text{CL2013}]\), i.e. there exist non-trivial, proper normal subgroups \(N \subset\) Bir\(_{\mathbb{C}}\)(\(\mathbb{P}^2\)). However, all such groups have uncountable index (see Remark 4.10) and the isomorphism class of the corresponding quotients Bir\(_{\mathbb{C}}\)(\(\mathbb{P}^2\))/\(N\) is quite complicated (essentially as complicated as Bir\(_{\mathbb{C}}\)(\(\mathbb{P}^2\)) itself). Moreover, the normal subgroup generated by any non-trivial element which preserves a pencil of lines or which has degree \(d\leq 4\) is the whole 2010 Mathematics Subject Classification. 14E07, 14P99.

The author gratefully acknowledges support by the Swiss National Science Foundation Grant “Birational geometry” PP00P2_153026 /1.
group (see [Giz1994, Lemma 2] and Lemma 4.11) and the group is perfect [CD2013], which means that Bir\(_C(\mathbb{P}^2)\) is equal to its commutator subgroup.

As we will show, the situation for the group Bir\(_R(\mathbb{P}^2)\) is quite different. First of all, the group generated by Aut\(_R(\mathbb{P}^2) = \text{PGL}_3(\mathbb{R})\) and \(\sigma_0\) is certainly not the whole group, as all its elements have only real base-points. This is not the case for Bir\(_R(\mathbb{P}^2)\); for instance the quadratic involution \(\sigma_1 : [x : y : z] \rightarrow [xz : yz : x^2 + y^2]\) has non-real base-points. The group Bir\(_R(\mathbb{P}^2)\) however is generated by PGL\(_3(\mathbb{R})\), \(\sigma_0, \sigma_1\), and by a family of transformations of degree 5 [BM2012]. We will show that this set is not far from being a minimal set of generators. In particular, we obtain the following result, similar to the case of Bir\(_R(\mathbb{P}^n)\), \(n \geq 3\) [Pan1999].

Theorem 1.1. The group Bir\(_R(\mathbb{P}^2)\) is not generated by Aut\(_R(\mathbb{P}^2)\) and a countable set of elements.

The proof consists in finding explicit generators and relations for the group (see Proposition 2.9). This description also allows to construct a natural quotient, and gives our main result:

Theorem 1.2. The group Bir\(_R(\mathbb{P}^2)\) is not perfect: its Abelianisation is isomorphic to

\[
\text{Bir}_R(\mathbb{P}^2)/[\text{Bir}_R(\mathbb{P}^2), \text{Bir}_R(\mathbb{P}^2)] \simeq \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}.
\]

Moreover, the commutator subgroup \([\text{Bir}_R(\mathbb{P}^2), \text{Bir}_R(\mathbb{P}^2)]\) is the normal subgroup generated by Aut\(_R(\mathbb{P}^2) = \text{PGL}_3(\mathbb{R})\), and contains all elements of Bir\(_R(\mathbb{P}^2)\) of degree \(\leq 4\).

Corollary 1.3. The sequence of iterated commutator subgroups of Bir\(_R(\mathbb{P}^2)\) is stationary. More precisely: Let \(H := [\text{Bir}_R(\mathbb{P}^2), \text{Bir}_R(\mathbb{P}^2)]\). Then \([H, H] = H\).}

Let \(X\) be a real variety. We denote by \(X(\mathbb{R})\) its set of real points of and by Aut\(_X(\mathbb{R})\) \(\subset \text{Bir}(X)\) the subgroup of birational transformations defined at each point of \(X(\mathbb{R})\). It is also called the group of birational diffeomorphisms of \(X\), and is, in general, strictly larger than the group of automorphisms Aut\(_X(\mathbb{R})\) of \(X\) defined over \(\mathbb{R}\). The group Aut\(_(\mathbb{P}^2(\mathbb{R}))\) is generated by Aut\(_R(\mathbb{P}^2)\) and the standard quintic transformations (see Definition 2.2) [RV2005, BM2012]. Until now no similar result is known for Aut\(_{\mathbb{A}^2(\mathbb{R})}\).

Corollary 1.4. There exist surjective group homomorphisms

\[
\text{Aut}(\mathbb{P}^2(\mathbb{R})) \rightarrow \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}, \quad \text{Aut}(\mathbb{A}^2(\mathbb{R})) \rightarrow \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}.
\]

Corollary 1.5. For any \(n \in \mathbb{N}\) there is a normal subgroup of Bir\(_R(\mathbb{P}^2)\) of index \(2^n\) containing all elements of degree \(\leq 4\). The same statement holds for Aut\(_(\mathbb{P}^2(\mathbb{R}))\) and Aut\(_(\mathbb{A}^2(\mathbb{R}))\).

Corollary 1.6. The normal subgroup of Bir\(_R(\mathbb{P}^2)\) generated by any countable set of elements of Bir\(_R(\mathbb{P}^2)\) is a proper subgroup of Bir\(_R(\mathbb{P}^2)\). The same statement holds for Aut\(_(\mathbb{P}^2(\mathbb{R}))\) and Aut\(_(\mathbb{A}^2(\mathbb{R}))\).

The plan of the article is as follows: After giving the basic definitions and notations in Section 2, we define in Section 3 a surjective group homomorphism from
the subgroup $\mathcal{J}_0 \subset \text{Bir}_R(\mathbb{P}^2)$ of elements preserving a pencil of conics to the group $\mathbb{Z}/2\mathbb{Z}$. In Section 4, we extend the homomorphism to a surjective group homomorphism $\text{Bir}_R(\mathbb{P}^2) \to \mathbb{Z}/2\mathbb{Z}$ and give Theorem 1.1, Corollary 1.5 and Corollary 1.4. In Section 5, we prove that its kernel is the normal subgroup generated by $\text{Aut}_R(\mathbb{P}^2)$, which will turn out to be commutator subgroup of $\text{Bir}_R(\mathbb{P}^2)$. We will finally be able to prove Theorem 1.2.

In the proof of the main theorems we use a technical proposition (Proposition 2.9) that gives an explicit representation of $\text{Bir}_R(\mathbb{P}^2)$ by generators and relations, and which is independent of all the other results. Its proof is quite long and rather technical, so we devote the whole last section (Section 6) to proving it.

In [Pol2015] one can find another description of the group $\text{Bir}_R(\mathbb{P}^2)$, or rather, more specifically, a description of the elementary links between real rational surfaces and relations between them. However, this description was not used in the proof of Proposition 2.9.

Acknowledgements: I thank Jérémie Blanc for the priceless discussions about quotients and relations, and Jean-Philippe Further and Christian Urech for their useful remarks.

2. Basic notions

We now give some basic notations and definitions. Throughout the article, every variety and rational map is defined over \mathbb{R}, unless stated otherwise.

Definition 2.1. We define two rational fibrations

$$\pi_* : \mathbb{P}^2 \to \mathbb{P}^1$$

$$[x : y : z] \mapsto [y : z]$$

$$\pi_0 : \mathbb{P}^2 \to \mathbb{P}^1$$

$$[x : y : z] \mapsto [y^2 + (x + z)^2 : y^2 + (x - z)^2]$$

whose fibres are respectively the lines through $[1 : 0 : 0]$ and the conics through $p_1 : = [1 : i : 0], p_2 : = [0 : 1 : i], p_3 : = [1 : -i : 0], \tilde{p}_2 : = [0 : 1 : -i]$.

We define by $\mathcal{J}_*, \mathcal{J}_0$ the subgroups of $\text{Bir}_R(\mathbb{P}^2)$ preserving the fibrations π_*, π_0:

$$\mathcal{J}_* = \{ f \in \text{Bir}_R(\mathbb{P}^2) \mid \exists \hat{f} \in \text{Aut}_R(\mathbb{P}^2) : \hat{f} \pi_* = \pi_* f \}$$

$$\mathcal{J}_0 = \{ f \in \text{Bir}_R(\mathbb{P}^2) \mid \exists \hat{f} \in \text{Aut}_R(\mathbb{P}^2) : \hat{f} \pi_0 = \pi_0 f \}$$

Extending the scalars to \mathbb{C}, the analogues of these groups are conjugate in $\text{Bir}_C(\mathbb{P}^2)$ and are called de Jonquières groups. In $\text{Bir}_R(\mathbb{P}^2)$, the groups $\mathcal{J}_*, \mathcal{J}_0$ are not conjugate. This can, for instance, be seen as consequence of Proposition 4.3 (see Remark 4.9).

Definition 2.2. We define a type of real birational transformation called standard quintic transformation.

Let $q_1, \tilde{q}_1, q_2, \tilde{q}_2, q_3, \tilde{p}_3 \in \mathbb{P}^2$ be three pairs of non-real conjugate points of \mathbb{P}^2, not lying on the same conic. Denote by $\pi : X \to \mathbb{P}^2$ the blow-up of these points. The strict transforms of the six conics passing through exactly five of the six points are three pairs of non-real conjugate (-1)-curves. Their contraction yields a birational morphism $\eta : X \to \mathbb{P}^2$ which contracts the curves onto three pairs of non-real points
Let \(r_1, r_2, r_3, r_4, r_5 \in \mathbb{P}^2 \). We choose the order so that \(r_i \) is the image of the conic not passing through \(q_i \). The birational map \(\eta^{-1}: \mathbb{P}^2 \to \mathbb{P}^2 \) is contained in \(\text{Bir}_R(\mathbb{P}^2) \), is of degree 5 and is called standard quintic transformation.

Lemma 2.3. Let \(\theta \in \text{Bir}_R(\mathbb{P}^2) \) be a standard quintic transformation. Then:

1. The points \(q_1, q_2, q_3, q_4, q_5 \) are the base-points of \(\theta \) and \(r_1, r_2, r_3, r_4, r_5 \) are the base-points of \(\theta^{-1} \), and they are all of multiplicity 2.
2. For \(i, j = 1, 2, 3, i \neq j \), \(\theta \) sends the pencil of conics through \(q_i, q_j \) onto the pencil of conics through \(r_i, r_j \).
3. We have \(\theta \in \text{Aut}(\mathbb{P}^2(\mathbb{R})) \).

Proof. (1), (2) Let \(L \subset \mathbb{P}^2 \) be a general line. The strict transform of \(L \) on \(X \) by \(\pi^{-1} \) has self-intersection 1 and intersects the six curves contracted by \(\eta \) in 2 points. The image \(\theta(L) \) then has six singular points of multiplicity 2 and self-intersection 25. It is thus a quintic passing through the \(r_i \) with multiplicity 2. Therefore, the linear system of \(\theta^{-1} \) consists of quintics in \(\mathbb{P}^2 \) having multiplicity 2 at \(r_1, r_2, r_3, r_4, r_5 \).

The construction of \(\theta^{-1} \) being symmetric to the one of \(\theta \), the linear system of \(\theta \) consists of quintics having multiplicity 2 at \(q_1, q_2, q_3, q_4, q_5 \).

(3) This is shown by simply calculating the degree of the images of the conics and their multiplicities in the base-points.

(4) The birational morphisms \(\eta, \pi \) induce bijections \(X(\mathbb{R}) \to \mathbb{P}^2(\mathbb{R}) \) and hence \(\theta, \theta^{-1} \) are defined on each point of \(\mathbb{P}^2(\mathbb{R}) \).

The family of standard quintic transformations plays an important role in \(\text{Bir}_R(\mathbb{P}^2) \):

Let
\[
\sigma_0: [x:y:z] \mapsto [yz:xz:xy] \\
\sigma_1: [x:y:z] \mapsto [xz:yz:x^2+y^2]
\]

Theorem 2.4 ([RV2006],[BM2012]). The group \(\text{Bir}_R(\mathbb{P}^2) \) is generated by \(\sigma_0, \sigma_1, \text{Aut}_R(\mathbb{P}^2) \) and the infinite family of standard quintic transformations.

Lemma 2.5. For any standard quintic transformation \(\theta \) there exists \(\alpha, \beta \in \text{Aut}_R(\mathbb{P}^2) \) such that \(\beta \alpha \in \mathcal{J}_o \).

Proof. For any two non-collinear non-real pairs of conjugate points there exists \(\alpha \in \text{Aut}_R(\mathbb{P}^2) \) that sends the two pairs onto \(p_1 := [1:i:0], p_2 := [0:1:i] \) and their conjugates \(\bar{p}_1 = [1:-i:0], \bar{p}_2 = [0:1:-i] \). Let \(\theta \) be a standard quintic transformation. Then there exists \(\alpha, \beta \in \text{Aut}_R(\mathbb{P}^2) \) that send \(q_1, q_2 \) (resp. \(r_1, r_2 \)) onto \(p_1, p_2 \). The transformation \(\beta \alpha \) preserves the pencil of conics through \(p_1, p_2, \bar{p}_1, \bar{p}_2 \) (Lemma 2.3) and is thus contained in \(\mathcal{J}_o \).

Corollary 2.6. The group \(\text{Bir}_R(\mathbb{P}^2) \) is generated by \(\text{Aut}_R(\mathbb{P}^2), \mathcal{J}_o, \mathcal{J}_0 \).

Proof. By Theorem 2.4 and Lemma 2.5, \(\text{Bir}_R(\mathbb{P}^2) \) is generated by \(\text{Aut}_R(\mathbb{P}^2), \sigma_0, \sigma_1 \) and the family of standard quintic transformations contained in \(\mathcal{J}_o \). Observing that \(\sigma_0 \in \mathcal{J}_o, \sigma_1 \in \mathcal{J}_o \), the claim follows.

Using these generating groups, we can give a representation of \(\text{Bir}_R(\mathbb{P}^2) \) in terms of generating sets and relations:

Define \(S := \text{Aut}_R(\mathbb{P}^2) \cup \mathcal{J}_o \cup \mathcal{J}_o \) and let \(F_S \) be the free group generated by \(S \). Let \(w: S \to F_S \) be the canonical word map.
Remark 2.11. We may infinitely near, and call it via

Definition 2.7. We denote by G be the following group:

$$
F_S / \begin{cases}
 w(f)w(g)w(h), & f, g, h \in \text{Aut}_R(\mathbb{P}^2), \ fgh = 1 \text{ in } \text{Aut}_R(\mathbb{P}^2) \\
 w(f)w(g)w(h), & f, g, h \in \mathcal{S}, \ fgh = 1 \text{ in } \mathcal{S} \\
 w(f)w(g)w(h), & f, g, h \in \mathcal{J}, \ fgh = 1 \text{ in } \mathcal{J}
\end{cases}
$$

the relations in the list below

(1) Let $\theta_1, \theta_2 \in \mathcal{S}$ be standard quintic transformations and $\alpha_1, \alpha_2 \in \text{Aut}_R(\mathbb{P}^2)$.

$$w(\alpha_2)w(\theta_1)w(\alpha_1) = w(\theta_2) \text{ in } G \iff \alpha_2 \theta_1 \alpha_1 = \theta_2.
$$

(2) Let $\tau_1, \tau_2 \in \mathcal{S} \cup \mathcal{J}$ both of degree 2 or of degree 3 and $\alpha_1, \alpha_2 \in \text{Aut}_R(\mathbb{P}^2)$.

$$w(\tau_1)w(\alpha_1) = w(\alpha_2)w(\tau_2) \text{ in } G \iff \tau_1 \alpha_1 = \alpha_2 \tau_2.
$$

(3) Let $\tau_1, \tau_2, \tau_3 \in \mathcal{J}$ all of degree 2, or τ_1, τ_2 of degree 2 and τ_3 of degree 3, and $\alpha_1, \alpha_2, \alpha_3 \in \text{Aut}_R(\mathbb{P}^2)$.

$$w(\tau_2)w(\alpha_1)w(\tau_1) = w(\alpha_3)w(\tau_3)w(\alpha_2) \text{ in } G \iff \tau_2 \alpha_1 \tau_1 = \alpha_3 \tau_3 \alpha_2.
$$

Remark 2.8. Note that the group G is isomorphic to the quotient of the generalised amalgamated product of $\text{Aut}_R(\mathbb{P}^2)$, \mathcal{S}, \mathcal{J} along all intersections by the relations in the above list.

Since $\text{Bir}_R(\mathbb{P}^2)$ is generated by $\text{Aut}_R(\mathbb{P}^2)$, \mathcal{S}, \mathcal{J} (Corollary 2.6), there exists a natural surjective group homomorphism $F_S \to \text{Bir}_R(\mathbb{P}^2)$ which gives rise to a group homomorphism $G \to \text{Bir}_R(\mathbb{P}^2)$, since all relations above hold in $\text{Bir}_R(\mathbb{P}^2)$.

Proposition 2.9. The natural surjective group homomorphism $G \to \text{Bir}_R(\mathbb{P}^2)$ is an isomorphism.

The proof of Proposition 2.9 is quite long and technical, and we therefore prefer to present it in the last section. The proposition (and its proof) is independent of all the other results proven in this article. The method used in the proof has been described in [Bla2012], [Isk1985] and [Zim2015], and is to study linear systems and their base-points.

We now give some further notation used throughout the article.

Definition 2.10. Let $f \in \text{Bir}_R(\mathbb{P}^2)$ and p be a point that belongs to \mathbb{P}^2 as a proper or infinitely near point. Assume moreover that p is not a base-point of f. We define a point $f_*(p)$, which will also be in \mathbb{P}^2 or infinitely near. For this, take a minimal resolution of f

$$
\begin{array}{c}
S \\
\nu_1 \\
\nu_2
\end{array}
$$

where ν_1, ν_2 are sequences of blow-ups. Since p is not a base-point of f it corresponds via ν_1 to a point of S or infinitely near. Using ν_2 we view this point on \mathbb{P}^2, again maybe infinitely near, and call it $f_*(p)$.

Remark 2.11. Note that f_* is a one-to-one correspondence between the sets

$$
(\mathbb{P}^2 \cup \{\text{infinitely near points}\}) \setminus \{\text{base-points of } f\} \quad \text{and} \\
(\mathbb{P}^2 \cup \{\text{infinitely near points}\}) \setminus \{\text{base-points of } f^{-1}\}
$$

Furthermore, if p is a base-point of a linear system Λ of multiplicity m that is not base-point of f, then $f_*(p)$ is a base-point of $f(\Lambda)$ of multiplicity m [AC2002, §4.1].
Definition 2.12.

(1) Let \(C \subset \mathbb{P}^2 \) be an irreducible (closed) curve, \(f \in \text{Bir}(\mathbb{P}^2) \) and \(\text{Bp}(f) \) the set of base-points of \(f \). We denote by

\[
f(C) := f(C \setminus \text{Bp}(f))
\]

the (Zariski-) closure of the image by \(f \) of \(C \) minus the base-points of \(f \), and call it the image of \(C \) by \(f \).

(2) Throughout the article, we fix the notation \(p_1 := [1 : i : 0], p_2 := [0 : 1 : i] \) for these two specific points of \(\mathbb{P}^2 \), because we will use them extremely often.

(3) The following definition will be used for base-points of elements of \(\mathcal{J}_c \). Let \(\pi : X \to \mathbb{P}^2 \) be the blow-up of \(p_1, \bar{p}_1, p_2, \bar{p}_2 \). The morphism \(\tilde{\pi}_c := \pi \circ \eta : X \to \mathbb{P}^2 \) is a real conic bundle with fibres being the strict transforms of the conics passing through \(p_1, \ldots, \bar{p}_2 \).

\[
\begin{array}{ccc}
X & \xrightarrow{\eta} & \mathbb{P}^2 \\
\downarrow{\pi} & & \downarrow{\tilde{\pi}_c} \\
\mathbb{P}^2 & \to & \mathbb{P}^1
\end{array}
\]

Let \(\eta' : Y \to X \) be a birational morphism and \(q \in Y \). We define

\[
C_q := \pi_c^{-1}(\tilde{\pi}_c(\eta'(q))).
\]

It is the conic passing through \(p_1, p_1, \bar{p}_2, \bar{p}_2, \eta'(q) \), which is irreducible or the union of two lines. The latter case corresponds to \(\tilde{\pi}_c(\eta'(q)) \in \{(1 : 0), (0 : 1)\} \).

3. A Quotient of \(\mathcal{J}_c \)

We first construct a surjective group homomorphism \(\varphi_c : \mathcal{J}_c \to \bigoplus \mathbb{Z}/2\mathbb{Z} \) and then (in Section 4) use the representation of \(\text{Bir}(\mathbb{P}^2) \) by generators and relations (Proposition 2.9) to extend \(\varphi_c \) to a homomorphism \(\varphi : \text{Bir}(\mathbb{P}^2) \to \bigoplus \mathbb{Z}/2\mathbb{Z} \). Both quotients are generated by classes of standard quintic transformations contained in \(\mathcal{J}_c \), as we will see from the construction in Subsection 3.2.

In order to construct the surjective homomorphism \(\mathcal{J}_c \to \bigoplus \mathbb{Z}/2\mathbb{Z} \), we first need some additional information about the elements of \(\mathcal{J}_c \), such as their characteristic (Lemma 3.1) and their action on the pencil of conics passing through \(p_1, \bar{p}_1, p_2, \bar{p}_2 \) (Lemma 3.7).

3.1. The group \(\mathcal{J}_c \)

The next lemmata state the characteristic and some other properties of the elements of \(\mathcal{J}_c \) (recall that for \(f \in \text{Bir}(\mathbb{P}^2) \), the characteristic of \(f \) is the sequence \((\deg(f); m_1^e_1, \ldots, m_k^e_k)\) where \(m_1, \ldots, m_k \) are the multiplicities of the base-points of \(f \) and \(e_i \) is the number of base-points of \(f \) which have multiplicity \(m_i \) (see [AC2002, Definition 2.1.7])). We will use these properties to obtain the action of \(\mathcal{J}_c \) on the pencil of conics through \(p_1, \ldots, \bar{p}_2 \). The information will be used to construct the quotients. In Section 6 (proof of Proposition 2.9), we will use the properties to study linear systems and their base-points in connection with the relations given in Definition 2.7.
Lemma 3.1. Any element of \mathcal{J}_o of degree $d > 1$ has characteristic:

\[
\left(d, \frac{d - 1}{2}, \frac{d + 1}{2} \right), \quad \text{if } \deg(f) \text{ is odd}
\]

\[
\left(d, \frac{d^2 - 2}{2}, \frac{d^2 + 2}{2}, 1 \right), \quad \text{if } \deg(f) \text{ is even}
\]

and p_1, \ldots, \bar{p}_2 are (the) base-points of multiplicity $\frac{d}{2}, \frac{d - 1}{2}, \text{ or } \frac{d - 2}{2}$. Furthermore,

1. no two double points are contained in the same conic through $p_1, \bar{p}_1, p_2, \bar{p}_2$,
2. any element of \mathcal{J}_o exchanges or preserves the real reducible conics $C_1 := L_{p_1, \bar{p}_2} \cup L_{\bar{p}_1, p_2}$ and $C_2 := L_{p_1, \bar{p}_2} \cup L_{\bar{p}_1, p_2}$,
3. any element of \mathcal{J}_o of even degree contracts one of the lines $L_{p_i, \bar{p}_i}, i \in \{1, 2\}$ onto a point on a real conic different from C_1, C_2.

Proof. Let $f \in \mathcal{J}_o$ be of degree $d > 1$. Let C be a general conic passing through $p_1, \bar{p}_1, p_2, \bar{p}_2$. By definition of \mathcal{J}_o, the curve $f(C)$ is a conic through $p_1, \bar{p}_1, p_2, \bar{p}_2$. Let $m(q)$ be the multiplicity of f at the point q. Computing the intersection of C on the blow-up of the base-points of f with the linear system of f gives the degree of $f(C)$:

\[
2 = \deg(f(C)) = 2d - 2m(p_1) - 2m(p_2) = (d - 2m(p_1)) + (d - 2m(p_2)).
\]

Applying Bézout to the line through p_i, \bar{p}_i, we obtain that $d \geq 2m(p_i), i = 1, 2$. If $d - 2m(p_1) = d - 2m(p_2) = 1$, then

\[
m(p_1) = m(p_2) = \frac{d - 1}{2}.
\]

Else, $d - 2m(p_i) = 0$, $d - 2m(p_{3-i}) = 2$ for some $i \in \{1, 2\}$, and so

\[
m(p_i) = \frac{d}{2}, \quad m(p_{3-i}) = \frac{d - 2}{2}, \quad i \in \{1, 2\}.
\]

Let q be a base-point of f not equal to $p_1, \bar{p}_1, p_2, \bar{p}_2$ and C_q its associated conic through $p_1, \bar{p}_1, p_2, \bar{p}_2$ (see Definition 2.12). Then $2 \geq \deg(f(C_q)) \geq 0$ and

\[
0 \leq \deg(f(C_q)) \leq 2d - 2m(p_1) - 2m(p_2) - m(q) = 2 - m(q) \leq 2
\]

In particular, $m(q) \in \{1, 2\}$. Let D be a general member of the linear system of f. The genus formula

\[
0 = g(D) = \frac{(d - 1)(d - 2)}{2} - \sum_{q \text{ base-point of } f} \frac{m(q)(m(q) - 1)}{2}
\]

and $m(q) \in \{1, 2\}$ for all base-points q of f different from $p_1, \bar{p}_1, p_2, \bar{p}_2$ imply that

\[
\frac{(d - 1)(d - 2)}{2} = 2 \sum_{i=1}^{2} \frac{m(p_i)(m(p_i) - 1)}{2} + |\{\text{base-points of multiplicity } 2\}|
\]

and in particular that

\[
|\{\text{base-points of multiplicity } 2\}| = \begin{cases} \frac{d-1}{2}, & d \text{ odd} \\ \frac{d-2}{2}, & d \text{ even} \end{cases}
\]

It follows from the Noether equalities that f has exactly one simple base-point if d is even and none otherwise. This yields the characteristics. Bézout’s theorem implies that no two double points are contained in the same conic through $p_1, \bar{p}_1, p_2, \bar{p}_2$. The
conics \(C_1 = L_{p_1, p_2} \cup L_{\bar{p}_1, \bar{p}_2}, C_2 = L_{p_1, \bar{p}_2} \cup L_{\bar{p}_1, p_2}, C_3 := L_{p_1, \bar{p}_1} \cup L_{p_2, \bar{p}_2} \) are the only reducible conics through \(p_1, \ldots, p_2 \), and \(C_1, C_2 \) each consist of two non-real lines while \(C_3 \) consists of two real lines. If \(f \) has even degree, it contracts the line \(L_{p_i, \bar{p}_i} \), where \(m(p_i) = \frac{2}{3} \), onto the base-point of \(f^{-1} \) of multiplicity 1, and no other line is contracted (because \(f^{-1} \) has only one base-point of multiplicity 1). Because of this and the multiplicities of the base-points of \(f, f \) sends \(L_{p_i, \bar{p}_j}, L_{p_j, \bar{p}_i}, i \neq j \), onto non-real lines. This is also true if \(f \) has odd degree (simply because of the multiplicities of its base-points). Thus \(f \) preserves or exchanges \(C_1, C_2 \). In particular, the induced automorphism \(\bar{f} \) of \(f \) on \(\mathbb{P}^1 \) does not send \(\pi_0(C_3) \) onto either of \(\pi_0(C_1), \pi_0(C_2) \).

It follows that if \(f \) has even degree, the point \(f(L_{p_i, \bar{p}_i}) \) is contained in the conic \(\pi_0^{-1}(f(\pi_0(C_3))) \neq C_1, C_2 \). In particular, the simple base-point of \(f^{-1} \) (which is \(f(L_{p_i, \bar{p}_i}) \)) is not contained in \(C_1, C_2 \). By symmetry, the same holds for \(f \).

Remark 3.2. The group \(\mathcal{J}_0 \) contains standard quintic transformations (Lemma 2.5).

Remark that \(\sigma_1: [x : y : z] \mapsto [x : y : z] \) is contained in \(\mathcal{J}_0 \).

The linear map \([x : y : z] \mapsto [z : -y : x] \) exchanges \(p_1 \) and \(p_2 \) (and \(\bar{p}_1 \) and \(\bar{p}_2 \)), and the linear map \([x : y : z] \mapsto [-x : y : z] \) exchanges \(p_1 \) and \(\bar{p}_1 \) and fixes \(p_2 \). Both are contained in \(\text{Aut}_G(\mathbb{P}^2) \cap \mathcal{J}_0 \).

Lemma 3.3. For any \(q \in \mathbb{P}^2(\mathbb{R}) \) not collinear with any two of \(\{p_1, \bar{p}_1, p_2, \bar{p}_2\} \) except the pair \((p_2, \bar{p}_2) \), there exists \(f \in \mathcal{J}_0 \) of degree 2 with base-points \(p_1, \bar{p}_1, q \).

In particular: Let \(f \in \mathcal{J}_0 \) of even degree \(d \), the points \(p_i, \bar{p}_i \) its base-points of multiplicity \(\frac{d}{2} \) and \(r \) its simple base-point or the proper point of \(\mathbb{P}^2 \) to which the simple base-point is infinitely near.

Then there exists \(\tau \in \mathcal{J}_0 \) of degree 2 with base-points \(p_i, \bar{p}_i, r \).

Proof. Since \(q \) is not collinear with \(p_1, \bar{p}_1 \), there exists \(\alpha \in \text{Aut}_G(\mathbb{P}^2) \) that sends \(p_1, \bar{p}_1, q \) onto \(p_2, \bar{p}_2, [0 : 0 : 1] \). Let \(t := (\sigma_1 \alpha)^*(p_2) \). The quadratic transformation \(\sigma_1 \alpha \) has base-points \(p_1, \bar{p}_1, q \) and sends the pencil of conics through \(p_1, \bar{p}_1, p_2, \bar{p}_2 \) onto the pencil of conics through \(p_1, \bar{p}_1, t, \bar{t} \). By assumption, the point \(p_2 \) is not on the lines \(L_{p_1, \bar{p}_1}, L_{p_2, \bar{p}_2} \), and thus \(t, \bar{t} \) are proper points of \(\mathbb{P}^2 \) that are not collinear with \(p_1, \bar{p}_1 \). There exists \(\beta \in \text{Aut}_G(\mathbb{P}^2) \) that fixes \(p_1, \bar{p}_1 \) and sends \(t, \bar{t} \) onto \(p_2, \bar{p}_2 \). The quadratic transformation \(\beta \sigma_1 \alpha \) has base-points \(p_1, \bar{p}_1, q \) and sends the pencil of conics through \(p_1, \bar{p}_1, p_2, \bar{p}_2 \) onto itself, i.e. is contained in \(\mathcal{J}_0 \).

Let \(f \in \mathcal{J}_0 \) of even degree \(d \), \(p_i, \bar{p}_i \) its base-points of multiplicity \(\frac{d}{2} \) and \(r \) its simple base-point or the proper point of \(\mathbb{P}^2 \) to which the simple base-point is infinitely near. By Bézout, \(r, p_i, \bar{p}_i \) are not collinear and by Lemma 3.1 the points \(r, p_i, p_{3-i} \) and \(r, \bar{p}_i, p_{3-i} \) are not collinear. Hence there exists \(\tau \in \mathcal{J}_0 \) of degree 2 with base-points \(r, p_i, \bar{p}_i \).

To prove the next lemma (Lemma 3.6), we are forced to introduce another kind of quintic transformation, which is just a degeneration of standard quintic transformations. They will pop up again in Section 5, where we look at relations between quadratic and standard quintic transformations in order to prove that the kernel of the Abelianisation map is equal to the normal subgroup generated by \(\text{Aut}_G(\mathbb{P}^2) \).

Definition 3.4. We define a type of real birational transformation called **special quintic transformation**.

Let \(q_1, q_1, q_2, q_2 \in \mathbb{P}^2 \) be two pairs of non-real points of \(\mathbb{P}^2 \), not on the same line. Denote by \(\pi_1 : X_1 \rightarrow \mathbb{P}^2 \) the blow-up of the four points, and by \(E_1, \bar{E}_1 \subset X_1 \) the curves contracted onto \(q_1, \bar{q}_1 \) respectively. Let \(q_3 \in E_1 \) be a point, and \(\bar{q}_3 \in \bar{E}_1 \) its
conjugate. We assume that there is no conic of \(\mathbb{P}^2 \) passing through \(q_1, \bar{q}_1, q_2, \bar{q}_2, q_3, \bar{q}_3 \) and let \(\pi_2 : X_2 \to X_1 \) be the blow-up of \(q_1, \bar{q}_3 \).

On \(X_2 \) the strict transforms of the two conics \(C, \bar{C} \) of \(\mathbb{P}^2 \) passing through \(q_1, q_\bar{1}, q_2, q_\bar{2}, q_3, q_\bar{3} \) and \(q_1, q_\bar{1}, q_2, q_\bar{2}, q_3, q_\bar{3} \) respectively, are non-real conjugate disjoint \((-1)\) curves. The contraction of these two curves gives a birational morphism \(\eta_2 : X_2 \to Y_1 \), contracting \(C, \bar{C} \) onto two points \(r_3, \bar{r}_3 \). On \(Y_1 \) we find two pairs of non-real \((-1)\) curves, all four curves being disjoint. These are the strict transforms of the exceptional curves associated to \(q_1, \bar{q}_1 \), and of the conics passing through \(q_1, q_\bar{1}, q_2, q_\bar{2}, q_3, q_\bar{3} \) and \(q_1, q_\bar{1}, q_2, q_\bar{2}, q_3, q_\bar{3} \) respectively. The contraction of these curves gives a birational morphism \(\eta_1 : Y_1 \to \mathbb{P}^2 \) and the images of the four curves are points \(r_1, \bar{r}_1, r_2, \bar{r}_2 \) respectively. The real birational map \(\psi = \eta_1 \eta_2 (\pi_1 \pi_2)^{-1} : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2 \) is of degree 5 and called special quintic transformation.

Remark 3.5. Let \(\theta \) be a special quintic transformation and keep the notation of its definition. With similar argument as for the standard quintic transformations (Lemma 2.3) one shows that \(q_1, \ldots, q_3 \) are the base-points of \(\theta \), and are of multiplicity 2. Furthermore, \(\theta \) sends the pencil of conics through \(q_1, q_\bar{1}, q_2, q_\bar{2} \) onto the pencil of conics through \(r_1, \bar{r}_1, r_2, \bar{r}_2 \) and \(\theta \in \text{Aut}(\mathbb{P}^2(\mathbb{R})) \).

Lemma 3.6. The group \(\mathcal{J}_0 \) is generated by its linear, quadratic and standard quintic elements.

Proof. Let \(f \in \mathcal{J}_0 \). We use induction on the degree \(d \) of \(f \). We can assume that \(d > 2 \).

- If \(d \) is even, it has a (real) simple base-point. Denote by \(r \) the simple base-point of \(f \) or, if the simple base-points are not a proper point of \(\mathbb{P}^2 \), the proper point of \(\mathbb{P}^2 \) to which the simple base-point is infinitely near to. Let \(p_i, \bar{p}_i, i \in \{1, 2\} \) be the points of multiplicity \(\frac{d}{2} \) (Lemma 3.1). By Lemma 3.3 there exists a quadratic transformation \(\tau \in \mathcal{J}_0 \) with base-points \(p_i, \bar{p}_i, r \). The map \(f \tau^{-1} \in \mathcal{J}_0 \) is of degree \(\leq d - 1 \).

- Suppose that \(d \) is odd and has a real base-point \(q \). By Lemma 3.1, the points \(q, p_1, p_2 \) are of multiplicity \(\frac{d+1}{2}, \frac{d-1}{2} \) respectively. We can assume that \(q \) is a proper point of \(\mathbb{P}^2 \) (since no real point is infinitely near \(p_1, \ldots, p_3 \)). By Bézout, \(q \) is not collinear with \(p_i, p_j, i, j \in \{1, 2\} \), and so there exists \(\tau \in \mathcal{J}_0 \) of degree 2 with base-points \(q, p_1, p_1 \) (Lemma 3.3). The map \(f \tau^{-1} \in \mathcal{J}_0 \) is of degree \(d - 1 \).

- Suppose that \(d \) is odd and has no real base-points. If it has a double point \(q \) different from \(p_1, \ldots, p_2 \) which is a proper point of \(\mathbb{P}^2 \) then \(p_1, \bar{p}_1, p_2, \bar{p}_2, q, \bar{q} \) are not on the same conic (Lemma 3.1). In particular, there exists a standard quintic transformation \(\theta \in \mathcal{J}_0 \) with those points its base-points (Definition 2.2, Lemma 2.5). The map \(f \theta^{-1} \in \mathcal{J}_0 \) is of degree \(d - 4 \).

If it has no double points that are proper points of \(\mathbb{P}^2 \), there exists a double point \(q \) infinitely near one of the \(p_i \)'s. By Bézout, \(p_1, \bar{p}_1, p_2, \bar{p}_2, q, \bar{q} \) are not contained on one conic, hence there exists a special quintic transformation \(\theta \in \mathcal{J}_0 \) with base-points \(p_1, \bar{p}_1, p_2, \bar{p}_2, q, \bar{q} \) (Definition 3.4). The map \(f \theta^{-1} \in \mathcal{J}_0 \) is of degree \(d - 4 \). By [BM2012, Lemma 3.7] and Remark 3.2, \(\theta \) is the composition of standard quintic and linear transformations contained in \(\mathcal{J}_0 \).

Recall that for each element \(f \in \mathcal{J}_0 \) there exists \(\hat{f} \in \text{Aut}_\mathbb{R}(\mathbb{P}^1) \) such that \(\hat{f} \circ \pi_0 = \pi_0 \circ f \) (Definition 2.1). This induces a group homomorphism \(\mathcal{J}_0 \to \text{Aut}_\mathbb{R}(\mathbb{P}^1) \).
given by \(f \mapsto \hat{f} \) (see Definition 2.1). The next Lemma states that this action corresponds to a real scaling and that every scaling can be realised by a quadratic transformation. The cubic and standard quintic transformations scale by \(\pm 1 \).

Lemma 3.7. The action of \(J_6 \) on \(\mathbb{P}^1 \) gives rise to a surjective homomorphism

\[
J_6 \rightarrow (\mathbb{R}_{>0})^* \times \mathbb{Z}/2\mathbb{Z}
\]

where \((\mathbb{R}_{>0})^* \subset \text{PGL}_2(\mathbb{R})\) is given by diagonal maps \([x : y] \mapsto [ax : ay], \ a, b \in (\mathbb{R}_{>0})^* \) and \(\mathbb{Z}/2\mathbb{Z} \) is generated by \([x : y] \mapsto [y : x] \).

Moreover, any element of \((\mathbb{R}_{>0})^*\) is the image of a quadratic element of \(J_6 \) and \(\mathbb{Z}/2\mathbb{Z} \) is the image of a linear element.

Furthermore:

- The cubic transformations are sent onto \((1,0)\) if they contract \(L_{p_i,q} \) onto \(p_i \) or \(\bar{p}_i \), \(i = 1,2 \), where \(q \) is the double point, and onto \((1,1)\) otherwise.
- The standard quintic transformations are sent onto \((1,0)\) or \((1,1)\).

Proof. There are exactly three real reducible conics passing through \(p_1, \bar{p}_1, p_2, \bar{p}_2 \), namely

\[
C_1 := L_{p_1,p_2} \cup L_{\bar{p}_1,\bar{p}_2}, \quad C_2 := L_{p_1,\bar{p}_2} \cup L_{p_2,\bar{p}_1}, \quad C_3 := L_{\bar{p}_1,p_2} \cup L_{p_1,\bar{p}_2},
\]

and their images by \(\pi_0 : \mathbb{P}^2 \rightarrow \mathbb{P}^1 \) are

\[
\pi_0(C_1) = [0 : 1], \quad \pi_0(C_2) = [1 : 0], \quad \pi_0(C_3) = [1 : 1].
\]

Let \(f \in J_6 \) and \(\hat{f} \) the induced automorphism on \(\mathbb{P}^1 \). By Lemma 3.1, \(f \) preserves or exchanges \(C_1 \) and \(C_2 \), which yields that \(f \) is of the form \(f : [u : v] \mapsto [au : bv] \) or \(f : [u : v] \mapsto [av : bu], \ a, b \in \mathbb{R}^* \), where \([a : b] = \hat{f}(\pi_0(C_3)) = \pi_0(f(C_3)) \). This yields a homomorphism

\[
\psi : J_6 \rightarrow \mathbb{R}^* \times \mathbb{Z}/2\mathbb{Z}.
\]

Lets show that the image of \(\psi \) is \((\mathbb{R}_{>0})^* \times \mathbb{Z}/2\mathbb{Z}\) and that any element of \((\mathbb{R}_{>0})^*\) is the image of a quadratic transformation.

By Lemma 3.6, the group \(J_6 \) is generated by its linear, quadratic and standard quintic elements. The map \(\gamma : [x : y : z] \mapsto [-x : y : z] \) induces \(\hat{\gamma} : [u : v] \mapsto [v : u] \), i.e. \(\psi(\gamma) = (0,1) \). The linear transformations send lines onto lines, and hence are sent by \(\psi \) onto \((1,0)\) or \((1,1)\). The standard quintic transformations preserve the set \(\{C_1, C_2, C_3\} \) and are hence sent onto \((1,0)\) or \((1,1)\). Let \(\tau \in J_6 \) be a quadratic transformation. It has base-points \(p_i, \bar{p}_i, q \) for some \(i \in \{1,2,\} \), and sends \(p_{3-i}, \bar{p}_{3-i} \) onto proper points of \(\mathbb{P}^2 \). In particular, \(q \) is not collinear with any two of \(p_1, p_2, \bar{p}_2 \) except maybe \(p_{3-i}, \bar{p}_{3-i} \). It follows that \(q \in \mathbb{P}^2(\mathbb{R}) \setminus \{[1 : 0 : 1], [1 : 0 : -1]\} \). On the other hand, take \(q = [a : b : 1] \in \mathbb{P}^2(\mathbb{R}) \setminus \{[1 : 0 : 1], [1 : 0 : -1]\} \). Then \(q \) is not collinear with any two of \(p_1, p_2, p_2, \bar{p}_2 \) except maybe \(p_2, \bar{p}_2 \). By Lemma 3.3 there exists a quadratic transformation \(\tau \in J_6 \) with base-points \(q, p_1, \bar{p}_1 \).

We have \(\pi_0(\psi^{-1}(C_3)) = \pi_0(q) = [b^2 + (a + 1)^2 : b^2 + (a - 1)^2] \), which is not equal to \([0 : 1], [1 : 0] \). In particular, \(\psi(\tau^{-1}) \in (\mathbb{R}_{>0})^* \times \mathbb{Z}/2\mathbb{Z}, \) and it follows that \(\psi(\tau) \in (\mathbb{R}_{>0})^* \times \mathbb{Z}/2\mathbb{Z} \).

Note that \(\pi_0(\psi(\tau)) = \pi_0(q) \), so the image by \((\pi_0 \circ \psi) \) of the set of quadratic elements of \(J_6 \) is equal to the image by \(\pi_0 \) of the set \(\mathbb{P}^2(\mathbb{R}) \setminus \{[1 : 0 : 1], [1 : 0 : -1]\} \).

Claim: \(\pi_0(\mathbb{P}^2(\mathbb{R}) \setminus \{[1 : 0 : 1], [1 : 0 : -1]\}) = \{[a : 1] \in \mathbb{P}^1(\mathbb{R}) \mid a > 0\} \cong \mathbb{R}_{>0} \) is the set of points where \(\pi_0 : [x : y : z] \mapsto [y^2 + (x + z)^2 : y^2 + (x - z)^2] \) is not defined is \(\{p_1, p_2, \bar{p}_2\} \), hence \(\pi_0 \) is defined on \(\mathbb{P}^2(\mathbb{R}) \) and continuous on it. Thus...
The claim now follows with ψ which is a well-defined map according to Definition 3.8.

In conclusion, every element of $(\mathbb{R}_{>0})^*$ is the image of a quadratic element of \mathcal{J}_c, and ψ has image $(\mathbb{R}_{>0})^* \times \mathbb{Z}/2\mathbb{Z}$.

To complete the proof of the lemma, remark that cubic transformations preserve C_3 and they preserve C_1, C_2 if they contract $L_{p_i, q}$ onto p_i or \bar{p}_i, $i = 1, 2$, where q is the double point. \hfill \square

3.2. The quotient. Using Lemma 3.7, we now construct a surjective group homomorphism $\mathcal{J}_c \to \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}$.

Definition 3.8. Let $f \in \mathcal{J}_c$. For any non-real base-point q of f, we have $\pi_0(C_q) = \{a + ib : 1\}$ and $\pi_0(C_{\bar{q}}) = \{a - ib : 1\}$ for some $a, b \in \mathbb{R}, b \neq 0$ (see Definition 2.12 for the definition of C_q). We define

$$\nu(C_q) := \frac{a}{b} \in \mathbb{R}.$$

Note that $\nu(C_q) = \nu(C_{\bar{q}})$. Moreover, $\nu(C_q) = \nu(C_{\bar{q}})$ if and only if $\pi_0(C_q) = \lambda \pi_0(C_{\bar{q}})$ or $\pi_0(C_q) = \lambda \pi_0(C_{\bar{q}})$ for some $\lambda \in \mathbb{R}^*$.

Definition 3.9. We define $e_\delta \in \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}$ to be the "standard vector" given by

$$(e_\delta)_\epsilon = \begin{cases} 1, & \delta = \epsilon \\ 0, & \text{else} \end{cases}$$

Definition 3.10. Let $f \in \mathcal{J}_c$ and $S(f)$ be the set of non-real conjugate pairs of base-points of f different from p_1, \ldots, p_2. We define

$$\varphi_0 : \mathcal{J}_c \to \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}, \quad f \mapsto \sum_{(q, \bar{q}) \in S(f)} e_{\nu(C_q)}$$

which is a well defined map according to Definition 3.8.

Remark 3.11. The following remarks directly follow from the definition of φ_0.

1. If $S(f) = \emptyset$, then $\varphi_0(f) = 0$.
2. For every $f \in \mathcal{J}_c$ of degree ≤ 4 the set $S(f)$ is empty (follows from its characteristic; Lemma 3.1), hence in particular $\varphi_0(f) = 0$.
3. Let $\theta \in \mathcal{J}_c$ be a standard quintic transformation. Then $|S(f)| = 1$ and $\varphi_0(\theta)$ is a "standard vector".
Lemma 3.12. It follows from the definition of standard quintic transformations (Definition 2.2) that for every \(\delta \in \mathbb{R} \) there exists a standard quintic transformation \(\theta \in \mathcal{J}_0 \) such that \(\varphi_{\varphi}(\theta) = e_{\delta} \).

Let \(\theta_1, \theta_2 \in \mathcal{J}_0 \) be standard quintic transformations and \(S(\theta_i) = \{(q_i, \bar{q}_i)\} \), \(i = 1, 2 \). If \(C_{q_i} = C_{\bar{q}_i} \) (or \(C_{q_i} = C_{\bar{q}_i} \)), then \(\varphi_{\varphi}(\theta_i) = \varphi_{\varphi}(\theta_2) \).

Let \(\theta \in \mathcal{J}_0 \) be a standard quintic transformation. Let \(S(\theta) = \{(q_1, \bar{q}_1)\} \) and \(S(\theta^{-1}) = \{(q_2, \bar{q}_2)\} \). Since \(\theta \) induces \(\text{Id} \) or \([x : y] \mapsto [y : x] \) on \(\mathbb{P}^1 \) (Lemma 3.7), it follows that \(\nu(C_{q_1}) = \nu(C_{q_2}) \) and in particular \(\varphi_{\varphi}(\theta) = \varphi_{\varphi}(\theta^{-1}) \).

Let \(f \in \mathcal{J}_0 \) and \(C \) be any non-real conic passing through \(p_1, \ldots, p_2 \). The automorphism \(f \) on \(\mathbb{P}^1 \) induced by \(f \) is a scaling by a positive real number (Lemma 3.7), thus \(\nu \circ f = \nu \). In particular,

\[e_{\nu(f(C))} = e_{\nu(f(C))} = e_{\nu(C)}. \]

Let us finally prove that \(\varphi_{\varphi} \) is a homomorphism of groups.

Lemma 3.12. The map \(\varphi_{\varphi} : \mathcal{J}_0 \to \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z} \) is a surjective group homomorphism and its kernel contains all elements of degree \(\leq 4 \).

Proof. It suffices to show that \(\varphi_{\varphi} \) is a group homomorphism: the surjectivity and the assertion on the kernel then follow from Remark 3.11 (2) and (4).

Let \(f, g \in \mathcal{J}_0 \). We want to show that \(\varphi_{\varphi}(fg) = \varphi_{\varphi}(f) + \varphi_{\varphi}(g) \). The group \(\mathcal{J}_0 \) is generated by its linear, quadratic and standard quintic elements (Lemma 3.6), so we can assume that \(f \) is a linear, quadratic or standard quintic element of \(\mathcal{J}_0 \).

In particular, \(S(f) \) is empty if \(f \) is linear or quadratic (Remark 3.11 (2)), and \(|S(f)| = 1 \) if \(f \) is a standard quintic transformation.

Suppose that \(S(f) \cap S(g^{-1}) = \emptyset \), then \(S(fg) = S(g) \cup (g^{-1})^*(S(f)) \). [AC2002, Corollary 4.1.4]. If \(S(f) = \emptyset \), we have \(\varphi_{\varphi}(f) = 0 \) (Remark 3.11 (1)), \(S(fg) = S(g) \), and in particular \(\varphi_{\varphi}(fg) = \varphi_{\varphi}(f) + \varphi_{\varphi}(g) \). If \(S(f) \neq \emptyset \), then \(S(f) = \{(q, \bar{q})\} \).

By Remark 3.11 (7), we have

\[e_{\nu(C_{x^{-1}};_{(\alpha)})} = e_{\nu(g^{-1}(C_{\alpha}))} = e_{\nu(C_{\alpha})} \]

In particular,

\[\varphi_{\varphi}(fg) = \sum_{(p, \beta) \in S(fg)} e_{\nu(C_{\beta})} = e_{\nu(C_{x^{-1}};_{(\alpha)})} + \sum_{(p, \beta) \in S(g)} e_{\nu(C_{\beta})} \]

\[= e_{\nu(C_{\alpha})} + \sum_{(p, \beta) \in S(g)} e_{\nu(C_{\beta})} = \varphi_{\varphi}(f) + \varphi_{\varphi}(g) \]

Suppose that \(\emptyset \neq S(f) \subset S(g^{-1}) \). Then \(f \) is a standard quintic transformation. In order to make the argument a bit more simple, let’s prove that \(\varphi_{\varphi}(g^{-1}f^{-1}) = \varphi_{\varphi}(g^{-1}) + \varphi_{\varphi}(f^{-1}) \), which will yield the claim (since \(\varphi_{\varphi}(h) = \varphi_{\varphi}(h^{-1}) \) by Remark 3.11 (6)). Let \(S(f) = \{(q, \bar{q})\} \), \(S(f^{-1}) = \{(q', \bar{q}')\} \).

We claim that \(S((fg)^{-1}) = f^* \{ S(g^{-1}) \setminus \{(q, \bar{q})\} \} \). Indeed, the multiplicity of \((fg)^{-1} \) in \(q' \) is equal to the intersection of the strict transform of \(C_{q} \) with the strict transform of the linear system of \(g^{-1} \) in the blow-up of \(q, \bar{q}, p_1, p_2, \bar{p}_2 \) in \(\mathbb{P}^2 \). Since \(C_{q} \) contains exactly one base-point of \(g^{-1} \) (Lemma 3.1), which is \(q \), the intersection
is precisely
\[m_{(g^{-1})(q')} = 2 \deg(g^{-1}) - 2m_{g^{-1}}(p_1) - 2m_{g^{-1}}(p_2) - \sum_{r \in C_g} m_{g^{-1}}(r) \]
\[= 2 \deg(g) - 2(\deg(g) - 1) - m_{g^{-1}}(q) = 0 \]

On the other hand, \(f \) does not touch the base-points of \(g^{-1} \) different from \(q, \bar{q}, p_1, \bar{p}_1, p_2, \bar{p}_2 \).
It follows that \(S(g^{-1}f^{-1}) = f^* (S(g^{-1}) \setminus \{(q, \bar{q})\}) \) [AC2002, Corollary 4.1.14]. In particular, we have by Remark 3.11 \((6), (7)\)
\[\varphi_\circ (g^{-1}f^{-1}) = \sum_{(p, \bar{p}) \in S(g^{-1}f^{-1})} \epsilon_\mu(C_{p, \bar{p}}) = \sum_{(p, \bar{p}) \in f^*(S(g^{-1}) \setminus \{(q, \bar{q})\})} \epsilon_\mu(C_{p, \bar{p}}) \]
\[= \sum_{(p, \bar{p}) \in S(g^{-1}) \setminus \{(q, \bar{q})\}} \epsilon_\mu(C_{p, \bar{p}}) = \varphi_\circ (g^{-1}) - \epsilon_\mu(C_q) \]
\[= \varphi_\circ (g^{-1}) - \varphi_\circ (f) \quad \text{(6)} \]
\[\varphi_\circ (g^{-1}) + \varphi_\circ (f^{-1}) \]

4. A QUOTIENT OF Bir_{\mathbb{R}}(\mathbb{P}^2)

Let \(\varphi_\circ : \mathcal{J}_\circ \to \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z} \) be the map given in Definition 3.8. By Proposition 2.9, the group \(\text{Bir}_{\mathbb{R}}(\mathbb{P}^2) \) is isomorphic to \(\mathcal{G} \) (see Definition 2.7), which, according to Remark 2.8, is the quotient of the free product \(\text{Aut}_{\mathbb{R}}(\mathbb{P}^2) \ast \mathcal{J}_\circ \ast \mathcal{J}_\circ \) by the normal subgroup generated by all the relations given by the pairwise intersections of \(\text{Aut}_{\mathbb{R}}(\mathbb{P}^2), \mathcal{J}_\circ, \mathcal{J}_\circ \) and the relations \((1), (2), (3)\) of Definition 2.7. Define the map
\[\Phi: \text{Aut}_{\mathbb{R}}(\mathbb{P}^2) \ast \mathcal{J}_\circ \ast \mathcal{J}_\circ \longrightarrow \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}, \quad f \mapsto \begin{cases} \varphi_\circ (f), & f \in \mathcal{J}_\circ \\ 0, & f \in \text{Aut}_{\mathbb{R}}(\mathbb{P}^2) \cup \mathcal{J}_\circ \end{cases} \]

It is a surjective homomorphism of groups because \(\varphi_\circ \) is a surjective homomorphism of groups (Lemma 3.12).

We shall now show that there exists a homomorphism \(\varphi \) such that the diagram
\[\text{Aut}_{\mathbb{R}}(\mathbb{P}^2) \ast \mathcal{J}_\circ \ast \mathcal{J}_\circ \xrightarrow{\pi} \mathcal{G} \simeq \text{Bir}_{\mathbb{R}}(\mathbb{P}^2) \]
\[\bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z} \]

is commutative, where \(\pi \) is the quotient map. For this, it suffices to show that \(\ker(\pi) \subset \ker(\Phi) \). We will first show that the relations given by the pairwise intersections of \(\text{Aut}_{\mathbb{R}}(\mathbb{P}^2), \mathcal{J}_\circ, \mathcal{J}_\circ \) are contained in \(\ker(\Phi) \) and then it is left to prove that relations \((1), (2), (3)\) are contained \(\ker(\Phi) \).

Lemma 4.1.

(1) Let \(f_1 \in \text{Aut}_{\mathbb{R}}(\mathbb{P}^2), f_2 \in \mathcal{J}_\circ \) such that \(\pi(f_1) = \pi(f_2) \). Then \(\Phi(f_1) = \Phi(f_2) = 0 \).
(2) Let \(f_1 \in \mathcal{J}_\circ, f_2 \in \mathcal{J}_\circ \) such that \(\pi(f_1) = \pi(f_2) \). Then \(\Phi(f_1) = \Phi(f_2) = 0 \).

In particular, \(\Phi \) induces a homomorphism from the generalised amalgamated product of \(\text{Aut}_{\mathbb{R}}(\mathbb{P}^2), \mathcal{J}_\circ, \mathcal{J}_\circ \) along all pairwise intersections onto \(\bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z} \).

Proof. (1) We have \(\pi(f_1) = \pi(f_2) \in \text{Aut}_{\mathbb{R}}(\mathbb{P}^2) \cap \mathcal{J}_\circ \subset \mathcal{J}_\circ \). In particular, \(\varphi_\circ (\pi(f_1)) = 0, i = 1, 2 \) (Remark 3.11, (2)), and so \(\Phi(f_1) = \Phi(f_2) = 0 \) by definition of \(\Phi \).
(2) Let first figure out what exactly \(J_s \cap J_c \) consists of. First of all, it is not empty because the quadratic involution

\[
\tau: [x : y : z] \mapsto [y^2 + z^2 : xy : xz]
\]

is contained in it. Let \(f \in J_s \cap J_c \) be of degree \(d \). By Lemma 3.1, its characteristic is \((d; 3, 2, \frac{1}{2}, 2, \frac{1}{2})\) or \((d; 2, 2, \frac{1}{2}, 2, \frac{1}{2})\). Since \(f \in J_s \), it has characteristic \((d; d-1, 1, 2d-7)\). It follows that \(d \in \{1, 2, 3\} \).

Linear and quadratic elements of \(J_c \) are sent by \(\varphi_c \) onto \(0 \) (Remark 3.11 (2)). Elements of \(J_c \) of degree 3 decompose into quadratic elements of \(J_c \) and are hence sent onto zero by \(\varphi_c \) as well. In particular, \(\Phi(f_1) = \Phi(f_2) = 0 \).

Since \(\Phi(\text{Aut}_R(\mathbb{P}^2)) = \Phi(\mathcal{J}_c) = 0 \), (1) and (2) imply that \(\Phi \) induces a homomorphism from the generalised amalgamated product of \(\text{Aut}_R(\mathbb{P}^2), \mathcal{J}_s, \mathcal{J}_c \) onto \(\mathbb{R} / \mathbb{Z} \).

\[\Box\]

Lemma 4.2. Let \(\theta \in \mathcal{J}_c \) be a standard quintic with \(S(\theta) = \{(q, \bar{q})\} \). \(S(\theta^{-1}) = \{(q', \bar{q'})\} \).

Let \(\alpha, \alpha' \in \text{Aut}_R(\mathbb{P}^2) \) that fix \(p_1 \) and send \(q \) (resp. \(q' \)) onto \(p_2 \).

Then \(\theta' := \alpha' \theta (\alpha_0)^{-1} \in \mathcal{J}_c \) is a standard quintic transformation and

\[\Phi(\theta') = \Phi(\alpha' \theta (\alpha_0)^{-1}) = \Phi(\theta)\]

Note that the statement still holds if we write \(p_2 \) instead of \(p_2 \).

Proof. Remark that

\[S(\theta') = \{(\alpha_0(p_2), \alpha_0(p_2))\} \]

Hence we need to show that

\[\Phi(\theta') = \varphi_c(\theta') = \varphi_c(\alpha_0(p_2)) = \varphi_c(\alpha_0) = \varphi_c(\theta) = \Phi(\theta)\]

To do this, it suffices to show that \(\pi_0(C_{\alpha_0(p_2)}) = \lambda \pi_0(C_q) \) or \(\pi_0(C_{\alpha_0(p_2)}) = \lambda \pi_0(C_{\bar{q}}) \) for some \(\lambda \in \mathbb{R}^* \). For this, we need to understand the map \(\alpha_0 \). So, we study the non algebraic mapping

\[\psi: \mathbb{P}^2(\mathbb{C}) \setminus \{z = 0\} \rightarrow \mathbb{P}^2(\mathbb{C}) \setminus \{z = 0\}, \quad q \rightarrow \alpha_0(p_2)\]

which we can describe, via the parametrisation

\[\iota: \mathbb{R}^2 \rightarrow \mathbb{P}^2(\mathbb{C}), \quad (u, v, x, y) \mapsto [u + iv : x : y : 1],\]

by the real birational involution

\[\psi: \mathbb{R}^4 \rightarrow \mathbb{R}^4, \quad (u, v, x, y) \mapsto \left(\frac{ud - vx}{v^2 + y^2}, \frac{-v}{v^2 + y^2}, \frac{uv + xy}{v^2 + y^2}, \frac{y}{v^2 + y^2} \right).\]

The domain of \(\psi \) is \(\mathbb{R}^4 \setminus \{v = y = 0\} = \iota^{-1}(\mathbb{P}^2(\mathbb{C}) \setminus \{z = 0\} \cup \mathbb{P}^2(\mathbb{R})) \). To understand \(\psi(C_q \setminus \{z = 0\}) \), we use the parametrisation

\[\text{par}: \mathbb{C} \rightarrow C_q \setminus \{z = 0\}, \quad t \mapsto \left[\frac{(t - 1)(t + 1)(\lambda + \mu)}{\lambda + \mu + \lambda - \mu} ; \frac{t(i(\lambda t^2 + \mu t^2 + 2\lambda - 2\mu + \lambda + \mu)}{\lambda + \mu + \lambda - \mu} ; 1 \right].\]
which is the inverse of the projection of C_q centred at p_1. This yields the commutative diagram

$$
\begin{array}{ccc}
\mathbb{C} & \xrightarrow{\text{par}} & C_q \setminus \{z = 0\} \\
\downarrow{\psi} & & \downarrow{\psi} \\
\psi(C_q \setminus \{z = 0\}) & \rightarrow & \mathbb{P}^1
\end{array}
$$

The map $(\pi_0 \circ \psi \circ \text{par})$ is given by

$$x + iy \mapsto \frac{-\rho Q_q(x, y)}{4(\rho^2 + \nu^2)} + i \frac{-\nu Q_q(x, y)}{4(\rho^2 + \nu^2)} : 1$$

where $\rho, \nu \in \mathbb{R}$ are the real coordinates of $\pi_0(C_q)$, i.e. $\pi_0(C_q) = [\rho + i\nu : q]$, and $Q_q(x, y) \in \mathbb{R}[x, y]$ is of degree 2. This shows that the points $\pi_0(C_q)$ and $\pi_0(C_{(\omega^{-1} \cdot p_2)})$ are equal up to multiplication by $\frac{Q_q(x, y)}{4(\rho^2 + \nu^2)}$, which yields the claim.

Recall the definition of the homomorphism

$$\Phi: \text{Aut}_R(P^2) \ast \mathcal{J}_s \ast \mathcal{J}_0 \longrightarrow \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}, \quad f \mapsto \begin{cases}
\varphi_0(f), & f \in \mathcal{J}_0, \\
0, & f \in \text{Aut}_R(P^2) \cup \mathcal{J}_s
\end{cases}$$

Proposition 4.3. The homomorphism Φ induces a surjective homomorphism of groups

$$\varphi: \text{Bir}_R(P^2) \longrightarrow \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}$$

which is given as follows:

Let $f \in \text{Bir}_R(P^2)$ and write $f = f_n \cdots f_1$, where $f_1, \ldots, f_n \in \text{Aut}_R(P^2) \cup \mathcal{J}_s \cup \mathcal{J}_0$. Then $\varphi(\text{Aut}_R(P^2) \cup \mathcal{J}_s)) = 0$ and

$$\varphi(f) = \sum_{i=1}^{n} \Phi(f_i) = \sum_{f_i \in \mathcal{J}_s} \varphi_0(f_i)$$

Its kernel $\ker(\varphi)$ contains all elements of degree ≤ 4.

Proof. Let $\pi: \text{Aut}_R(P^2) \ast \mathcal{J}_s \ast \mathcal{J}_0 \rightarrow \mathcal{G} \simeq \text{Bir}_R(P^2)$ be the quotient map (Remark 2.8). We want to show that there exists a homomorphism $\varphi: \text{Bir}_R(P^2) \rightarrow \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}$ such that the diagram

$$
\begin{array}{ccc}
\text{Aut}_R(P^2) \ast \mathcal{J}_s \ast \mathcal{J}_0 & \xrightarrow{\Phi} & \mathcal{G} \simeq \text{Bir}_R(P^2) \\
\downarrow{\varphi} & & \downarrow{\Phi}
\end{array}
$$

is commutative. For this, it suffices to show that $\ker(\pi) \subset \ker(\Phi)$. By Lemma 4.1, Φ induces a homomorphism from the generalised amalgamated product of $\text{Aut}_R(P^2), \mathcal{J}_s, \mathcal{J}_0$ along all intersections onto $\bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}$. So, by Remark 2.8 it suffices to show that Φ sends the relations (1), (2), (3) in Definition 2.7 onto zero.
Linear, quadratic and cubic transformations in \(J_0 \) and the group \(J_\ast \) are sent onto zero by \(\varphi \) (definition of \(\Phi \) and Remark 3.11 (2)), hence relations (2) and (3) are contained in \(\ker(\Phi) \). So, we just have to bother with relation (1):

Let \(\theta_1, \theta_2 \in J_\ast \) be standard quintic transformations, \(\alpha_1, \alpha_2 \in \text{Aut}(\mathbb{R}(\mathbb{P}^2)) \) such that

\[
\theta_2 = \alpha_2 \theta_1 \alpha_1
\]

If \(\alpha_1, \alpha_2 \) are contained in \(J_\ast \), then \(\Phi(\alpha_2 \theta_1 \alpha_1 (\theta_2)^{-1}) = \varphi_\circ (\alpha_2 \theta_1 \alpha_1 (\theta_2)^{-1}) = \varphi_\circ (\text{Id}) = 0 \).

So, let\(\alpha_1, \alpha_2 \not\in J_\ast \) and define \(q := (\bar{q}, \bar{q}) \) for \(q \in \mathbb{P}^2 \). Denote \(S(\theta_1) = \{ p_1 \}, S(\theta_1)^{-1} = \{ p_2 \} \). There exist \(i, j \in \{1, 2, 3\} \) such that \((\alpha_1)^{-1}(p_i) = p_1 \). \((\alpha_1)^{-1}(p_i) = p_2 \). Since \(\alpha_1 \not\in J_\ast \), we have \(3 \in \{i, j\} \). By Remark 3.2 there exist \(\beta, \gamma \in J_\ast \cap \text{Aut}(\mathbb{P}^2) \) such that \((\alpha_1)^{-1}(\beta)(p_i) = p_1 \) and \((\alpha_2)^{-1}(\gamma)(p_i) = p_1 \). We obtain that \((\beta \alpha_1)^{-1}(p_i) = p_2 \) and \((\alpha_2 \gamma)(p_i) = p_2 \). It follows from Lemma 4.2 that

\[
\Phi(\beta) = \Phi(\gamma) = \Phi(\gamma^{-1}(\beta))(\beta \alpha_1) = \Phi(\theta_1),
\]

i.e. \(\Phi \) sends relation (1) onto zero. The surjectivity of \(\varphi \) follows from the surjectivity of \(\varphi_\circ \) (Lemma 3.12).

If \(f \in \text{Bir}_\mathbb{R}(\mathbb{P}^2) \) is of degree 2 or 3 there exists \(\alpha, \beta \in \text{Aut}(\mathbb{P}^2) \) such that \(\beta \alpha \in J_\ast \). Hence \(\varphi(f) = 0 \). If \(\deg(f) = 4 \), \(f \) is a composition of quadratic maps, hence \(\varphi(f) = 0 \).

Let \(X \) be a real variety. We denote by \(X(\mathbb{R}) \) its set of real points of and by \(\text{Aut}(X(\mathbb{R})) \subset \text{Bir}(X) \) the subgroup of transformations defined at each point of \(X(\mathbb{R}) \). It is also called the group of birational diffeomorphisms of \(X \), and is, in general, strictly larger than the group of automorphisms \(\text{Aut}_\mathbb{R}(X) \) of \(X \) defined over \(\mathbb{R} \). The group \(\text{Aut}(\mathbb{P}^2(\mathbb{R})) \) is generated by \(\text{Aut}_\mathbb{R}(\mathbb{P}^2) \) and the standard quintic transformations [RV2005, BM2012]. Until now no similar result was found for \(\text{Aut}(\mathbb{A}^2(\mathbb{R})) \).

Corollary 4.4 (Corollary 1.4). There exist surjective group homomorphisms

\[
\text{Aut}(\mathbb{P}^2(\mathbb{R})) \to \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}, \quad \text{Aut}(\mathbb{A}^2(\mathbb{R})) \to \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z}.
\]

Proof. We identify \(\mathbb{A}^2(\mathbb{R}) \) with \(\mathbb{P}^2(\mathbb{R}) \setminus L_{p_1, p_2} \). All quintic transformations are contained in \(\text{Aut}(\mathbb{P}^2(\mathbb{R})) \) (Lemma 2.3) and preserve \(C_1 := L_{p_1, p_2} \cup L_{p_2, p_3} \). For any standard quintic transformation \(\theta \) there exists a permutation \(\alpha \) of \(p_1, \ldots, p_5 \) such that \(\alpha \theta \) preserves \(L_{p_i, p_{i+1}}, i = 1, 2 \). i.e. is contained in \(\text{Aut}(\mathbb{A}^2(\mathbb{R})) \). Therefore, the restriction of \(\varphi \) onto \(\text{Aut}(\mathbb{P}^2(\mathbb{R})) \) and \(\text{Aut}(\mathbb{A}^2(\mathbb{R})) \) is surjective.

Corollary 4.5 (Corollary 1.5). For any \(n \in \mathbb{N} \) there is a normal subgroup of \(\text{Bir}_\mathbb{R}(\mathbb{P}^2) \) of index \(2^n \) containing all elements of degree \(\leq 4 \). The same statement holds for \(\text{Aut}(\mathbb{P}^2(\mathbb{R})) \) and \(\text{Aut}(\mathbb{A}^2(\mathbb{R})) \).

Proof. Let \(pr_{\delta_1, \ldots, \delta_n} : \bigoplus_{\mathbb{R}} \mathbb{Z}/2\mathbb{Z} \to (\mathbb{Z}/2\mathbb{Z})^n \) be the projection onto the \(\delta_1, \ldots, \delta_n \)-th factors. Then \(pr_{\delta_1, \ldots, \delta_n} \circ \varphi \) has kernel of index \(2^n \) containing \(\ker(\varphi) \) and thus all elements of degree \(\leq 4 \). By Corollary 1.4, the same argument works for \(\text{Aut}(\mathbb{P}^2(\mathbb{R})) \) and \(\text{Aut}(\mathbb{A}^2(\mathbb{R})) \).

Lemma 2.5 and Theorem 2.4 imply that \(\text{Bir}_\mathbb{R}(\mathbb{P}^2) \) is generated by \(\text{Aut}_\mathbb{R}(\mathbb{P}^2), \sigma_1, \sigma_0 \) and all standard quintic transformations in \(J_\ast \). This generating set is not far from being minimal:
Corollary 4.6 (Theorem 1.1). The group Bir(R(2)) is not generated by Aut(R(2)) and a countable family of elements.

Proof. If Bir(R(2)) was generated by Aut(R(2)) and a countable family \{f_n\}_{n \in \mathbb{N}} of elements of Bir(R(2)) then by Proposition 4.3, the countable family would yield a countable generating set of \(\bigoplus \mathbb{Z}/2\mathbb{Z} \), which is impossible.

Note that the same argument works for Aut(P^2(R)) and also for Aut(A^2(R)) if we replace Aut(R(2)) by the subgroup of affine automorphisms of A^2, which corresponds to Aut(R(2))^\circ \cap Aut(A^2(R)).

Corollary 4.7 (Corollary 1.6). The normal subgroup of Bir(R(2)) generated by any countable set of elements of Bir(R(2)) is a proper subgroup of Bir(R(2)).

The same statement holds for Aut(P^2(R)) and Aut(A^2(R)).

Proof. Let \(S \subset Bir(R(2)) \) be a countable set of elements. Its image \(\pi(S) \subset \bigoplus \mathbb{Z}/2\mathbb{Z} \) is a countable set and hence a proper subset of \(\bigoplus \mathbb{Z}/2\mathbb{Z} \). Since \(\pi \) is surjective (Proposition 4.3), the preimage \(\pi^{-1}(\pi(S)) \subseteq Bir(R(2)) \) is a proper subset. The group \(\bigoplus \mathbb{Z}/2\mathbb{Z} \) is Abelian, so the set \(\pi^{-1}(\pi(S)) \) contains the normal subgroup of Bir(R(2)) generated by \(S \), which in particular is a proper subgroup of Bir(R(2)).

Remark 4.8. The group homomorphism \(\varphi : \text{Bir}(\mathbb{P}^2) \to \bigoplus \mathbb{Z}/2\mathbb{Z} \) does not have any sections: If it had a section, then for any \(k \in \mathbb{N} \), the group \((\mathbb{Z}/2\mathbb{Z})^k \) would embed into Bir(R(2)), which is not possible by [Beu2007].

Remark 4.9. Over \(\mathbb{C} \), the group \(J_o \) is conjugate to \(J_e \) (i.e. by any quadratic transformation having base-points \(p_1, p_1, p_2 \) and sending \(\bar{p}_2 \) onto \([1 : 0 : 0] \)). This is not true over \(\mathbb{R} \): By Proposition 4.3, one is contained in \(\ker(\varphi) \) and the other is not.

Remark 4.10.

(1) No proper normal subgroup of Bir(R(2)) of finite index is closed with respect to the Zariski or the Euclidean topology because Bir(R(2)) is connected with respect to either topology [Blu2010].

(2) The group Bir(C(2)) does not contain any proper normal subgroups of countable index: Assume that \(\{\text{Id}\} \neq N \) is a normal subgroup of countable index. The image of PGL_3(C) in the quotient is countable, hence PGL_3(C) \cap N is non-trivial. Since PGL_3(C) is a simple group, we have PGL_3(C) \cap N \neq N. Since the normal subgroup generated by PGL_3(C) is Bir(C(2)) [Giz1994, Lemma 2], we get that \(N = \text{Bir}_C(\mathbb{P}^2) \).

Lemma 4.11. The normal subgroup of Bir(C(2)) generated by any non-trivial element of degree \(\leq 4 \) is equal to Bir(C(2)).

Proof. The claim is stated in [Giz1994, Remark on Lemma 2, p. 42] for degree \(\leq 7 \) but only a partial proof is given, which works for all transformations preserving a pencil of lines [Giz1994, Lemma 2].

(deg 1:) For degree 1, it is the fact that the normal subgroup generated by PGL_3(C) is equal to Bir(C(2)) [Giz1994, Lemma 2, Case 1 of proof].

(deg 2, 3:) Let \(f \in Bir(R(2)) \) be of degree 2 or 3. There exists a proper base-point \(q \) (resp. \(q' \)) of \(f \) (resp. \(f^{-1} \)) such that \(f \) sends the pencil of lines through \(q \) onto the pencil of lines through \(q' \). Pick \(\alpha \in PGL_3(C) \) that exchanges \(q, q' \) and such that \(f\alpha^{-1}f\alpha \neq \text{Id} \). Then \(\text{Id} \neq f\alpha^{-1}f\alpha \) is contained in the normal subgroup generated by \(f \) and preserves the pencil of lines through \(q' \). Hence the normal subgroup generated by \(f \) is Bir(C(2)) [Giz1994, Lemma 2].
Lemma 5.3. By Bézout the (real) double point is not collinear with any two of the map p.

Remark 5.2. We have to dig into the geometry of cubic maps. Which in turn can be written as composition of quadratic maps. For this, we first from the other by composing from the right and the left with suitable cubic maps, formations are sent onto the same standard vector in \mathbb{P}^2. The proof that \ker is the normal subgroup generated by $\text{Aut}_G(\mathbb{P}^2)$, which will turn out to be the commutator subgroup of $\text{Bir}_G(\mathbb{P}^2)$. It implies that the quotient $\varphi: \text{Bir}_G(\mathbb{P}^2) \to \mathbb{Z}/2\mathbb{Z}$ is in fact the Abelianisation of $\text{Bir}_G(\mathbb{P}^2)$.

For this, we will again use the presentation of $\text{Bir}_G(\mathbb{P}^2)$ in terms of generators and relations given in Proposition 2.9. We will see that $\ker(\varphi)$ is the normal subgroup generated by $\text{Aut}_G(\mathbb{P}^2)$, J_ε and $\ker(\varphi_0)$, and then it suffices to prove that J_ε and $\ker(\varphi_0)$ are contained in the normal subgroup generated by $\text{Aut}_G(\mathbb{P}^2)$.

The key idea is to show that if two standard quintic transformations θ_1, θ_2 are sent by φ_0 onto the same image, then θ_2 can be obtained by composing θ_1 with a suitable amount of quadratic elements, which will imply that $\theta_1(\theta_2)^{-1}$ is contained in the normal subgroup of $\text{Bir}_G(\mathbb{P}^2)$ generated by $\text{Aut}_G(\mathbb{P}^2)$. For this to be useful, we need to be able to put the quintic elements next to each other when decomposing an element of J_ε into quadratic and standard quintic elements. To do this we need to slide off to involve special quintic transformations (see Definition 3.4), which is why they pop up again in this section.

More precisely, Lemma 5.6 shows that if two standard or special quintic transformations in J_ε have the same image via φ_0, we can obtain one from the other by composing with a suitable amount of quadratic transformations in J_ε. We then show that every quadratic transformation in $\text{Bir}_G(\mathbb{P}^2)$ is contained in the normal subgroup generated by $\text{Aut}_G(\mathbb{P}^2)$ (Lemma 5.8). Lemma 5.9 shows that J_ε is contained in the normal subgroup generated by $\text{Aut}_G(\mathbb{P}^2)$. All of this will yield that that the kernel of φ is indeed the normal subgroup generated by $\text{Aut}_G(\mathbb{P}^2)$ (Proposition 5.13).

Definition 5.1. We denote by $(\text{Aut}_G(\mathbb{P}^2))$ the normal subgroup of $\text{Bir}_G(\mathbb{P}^2)$ generated by $\text{Aut}_G(\mathbb{P}^2)$.

5.1. Geometry between cubic and quintic transformations. One idea in the proof that $\ker(\varphi) = (\langle \text{Aut}_G(\mathbb{P}^2) \rangle)$ is to see that if two standard quintic transformations are sent onto the same standard vector in $\mathbb{Z}/2\mathbb{Z}$, then one is obtained from the other by composing from the right and the left with suitable cubic maps, which in turn can be written as composition of quadratic maps. For this, we first have to dig into the geometry of cubic maps.

Remark 5.2. Let $f \in J_\varepsilon$ of degree 3 and $r \in \mathbb{P}^2(\mathbb{R})$ its double point. The points p_1, \ldots, p_2 are base-points of f of multiplicity 1 (Lemma 3.1). Note that for $i \in \{1, 2\}$, the map f contracts the line passing through r, p_i onto one of p_1, p_1, p_2, p_2 and that by Bézout the (real) double point is not collinear with any two of p_1, p_1, p_2, p_2.

Lemma 5.3. For every $r \in \mathbb{P}^2(\mathbb{R})$ not collinear with any two of p_1, p_1, p_2, p_2 there exists $f \in J_\varepsilon$ of degree 3 with base-points r, p_1, p_1, p_2, p_2 (with double point r).
Proof. Since \(r \) is not collinear with any two of \(p_1, \bar{p}_1, p_2, \bar{p}_2 \), there exists \(\tau_1 \in \mathcal{J}_0 \) quadratic with base-points \(r, p_1, \bar{p}_1 \) (Lemma 3.3). The base-points of its inverse are \(s, p_1, \bar{p}_1 \) for some \(s \in \mathbb{P}^2(\mathbb{R}) \) and \(i \in \{1, 2\} \). We can assume that \(i = 1 \) by exchanging \(p_1, p_2 \) if necessary (Remark 3.2). Since \(r, p_2, \bar{p}_2 \) are not collinear, also \(s, p_2, \bar{p}_2 \) are not collinear because \(\tau_1 \) sends the lines through \(r \) onto the lines through \(s \) and preserves \(\{p_2, \bar{p}_2\} \). Moreover, \(s \) is not collinear with \(p_1, p_2 \) because \((\tau^{-1}_1)_*(p_2) \in \{p_2, \bar{p}_2\} \) is a proper point of \(\mathbb{P}^2 \). Hence there exists \(\tau_2 \in \mathcal{J}_0 \) of degree 2 with base-points \(s, p_2, \bar{p}_2 \) (Lemma 3.3). The map \(\tau_2 \tau_1 \in \mathcal{J}_0 \) is of degree 3 with base-points \(r, p_1, \bar{p}_1, p_2, \bar{p}_2 \).

\[\text{FIGURE 2. The cubic transformation of Lemma 5.4} \]

Lemma 5.4. Let \(q \in \mathbb{P}^2(\mathbb{C}) \setminus \{p_1, \bar{p}_1, p_2, \bar{p}_2\} \) be a non-real point such that \(C_q = \pi^{-1}_0(\pi_c(q)) \) is irreducible. Then there exists a real point \(r \in \mathbb{P}^2(\mathbb{C}) \) and \(f \in \mathcal{J}_0 \) of degree 2 or 3 with \(r \) among its base-points such that

1. \(f(C_q) = C_q \)
2. \(f_*(q) \) is infinitely near \(p_1 \) corresponding to the tangent direction of \(f(C_q) \)
3. either \(\deg(f) = 3 \) and \(C_r \) is irreducible or \(\deg(f) = 2 \) and \(C_r \) is singular.
4. \(q \in L_{r, \bar{p}_2} \).

Proof. Let \(L \) be the line passing through \(q, \bar{p}_2 \). Since \(C_q \) is irreducible, \(q \) is not collinear with any of \(p_1, \bar{p}_1, p_2, \bar{p}_2 \). It follows that \(L \neq L \), and so \(L \) and \(\bar{L} \) intersect in exactly one point \(r \), which is a real point.

If \(r \) is not collinear with any two of \(p_1, \bar{p}_1, p_2, \bar{p}_2 \), then Lemma 5.3 states that there exists \(f \in \mathcal{J}_0 \) of degree 3 with singular point \(r \). The line \(L \) is contracted onto \(p_i \) or \(\bar{p}_i \), \(i \in \{1, 2\} \). By composing with elements of \(\text{Aut}_2(\mathbb{P}^2) \cap \mathcal{J}_0 \), we can assume that \(L \) is contracted onto \(p_1 \) and that \(f \) preserves the conic \(L_{p_1, p_2} \cup L_{\bar{p}_1, \bar{p}_2} \), and thus induces the identity map on \(\mathbb{P}^1 \) (Lemma 3.7), and therefore preserves \(C_q \). It follows that \(f^*(q) \) is infinitely near \(p_1 \) and corresponds to the tangent direction of \(f(C_q) = C_q \).

If \(r \) is collinear with two of \(p_1, \bar{p}_1, p_2, \bar{p}_2 \), it is collinear with \(p_1, \bar{p}_1 \) and not collinear with any other two. Lemma 3.3 implies that there exists \(f \in \mathcal{J}_0 \) of degree 2 with base-points \(r, p_2, \bar{p}_2 \), and we can choose \(f \) such that the line \(L \) (through \(q, \bar{p}_2, r \)) is contracted onto \(p_1 \) (then \(f((p_1, \bar{p}_1)) = \{p_2, \bar{p}_2\} \)) and such that \(f(p_1) = p_2 \). Then
Lemma 5.5. Let $\theta_1, \theta_2 \in \mathcal{J}_0$ be special quintic transformations with $S(\theta_i) = \{(q_i, \bar{q}_i)\}$. If $C_{q_1} = C_{q_2}$ or $C_{\bar{q}_1} = C_{\bar{q}_2}$, then $q_1 = q_2$ or $\bar{q}_1 = \bar{q}_2$ respectively. In particular, there exist $\alpha_1, \alpha_2 \in \mathcal{J}_0 \cap \text{Aut}_k(\mathbb{P}^2)$ such that $\theta_2 = \alpha_2 \theta_1 \alpha_1$.

Lemma 5.6. Let $\theta_1, \theta_2 \in \mathcal{J}_0$ be standard quintic transformations with $S(\theta_i) = \{(q_i, \bar{q}_i)\}$, $i = 1, 2$. Assume that $C_{q_1} = C_{q_2}$ or $C_{\bar{q}_1} = C_{\bar{q}_2}$.

Then there exist $\tau_1, \ldots, \tau_8 \in \mathcal{J}_0$ of degree ≤ 2 such that $\theta_2 = \tau_8 \cdots \tau_1 \theta_1 \tau_4 \cdots \tau_1$.

Proof. By exchanging the names of q_2, \bar{q}_2, we can assume that $C_{q_1} = C_{q_2}$. It suffices to show that there exist $q_1, \ldots, q_4 \in \mathcal{J}_0$ of degree ≤ 3 such that $\theta_2 = g_1 g_2 \theta_1 g_2 g_2$, since every element of \mathcal{J}_0, of degree 3 can be written as a product of two quadratic elements of \mathcal{J}_0. We give an explicit construction of the q_i’s.

According to Lemma 5.4 there exist for $i = 1, 2$ a real point r_i and $f_i \in \mathcal{J}_0$ of degree $d_i \in \{2, 3\}$ with base-point r_i such that f_i preserves C_{q_i} and $t_i := (f_i)_s(q_i)$ is infinitely near p_1 corresponding to the tangent direction of C_{q_i}, and that $q_i \in L_{r_i, p_2} : L$. Since C_{q_i} is real, r_i is not on a conic contracted by θ_i, and so $s_i := (\theta_i)_s(r_i) = \theta_i(r_i)$ is a proper point of \mathbb{P}^2.

If C_{q_i} is irreducible (and hence $d_i = 3$), then r_i is not collinear with any two of p_1, \ldots, p_2, and so s_i is not collinear with any two of p_1, \ldots, p_2 either. Therefore, there exists $h_i \in \mathcal{J}_0$ of degree 3 with singular base-point s_i (Lemma 5.3). If C_{q_i} is singular (and hence $d_i = 2$), then $r_i \in L_{p_1, p_2}$, and so $s_i \in \theta_i(L_{p_1, p_2}) = L_{p_1, p_2}$ for some $j \in \{1, 2\}$. Therefore, there exists $h_i \in \mathcal{J}_0$, of degree 2 with base-points s_i, p_{3-j}, p_{3-j} (Lemma 3.3).

By composing h_i with elements in $\mathcal{J}_0 \cap \text{Aut}_k(\mathbb{P}^2)$, we can assume that h_i sends the line $\theta_i(L_{r_i, p_2})$ onto p_1 (Remark 5.2). Then $h_i \theta_i(f_i)^{-1} \in \mathcal{J}_0$ is of degree 5. Its base-points are $p_1, p_1, p_2, p_2, (f_i)_s(q_i), (f_i)_s(\bar{q}_i)$, where the latter ones are infinitely near p_1, p_1 corresponding to the tangent direction of $C_{q_i}, C_{\bar{q}_i}$. By Remark 5.5, $h_i \theta_i(f_i)^{-1}$ and $h_2 \theta_2(f_2)^{-1}$ have exactly the same base-points, hence $h_i \theta_i(f_2)^{-1} = \beta h_2 \theta_2(f_2)^{-1}$ for some $\alpha, \beta \in \text{Aut}_k(\mathbb{P}^2) \cap \mathcal{J}_0$. In particular, $\theta_2 = (h_2)^{-1} \beta \theta_1 (f_2)^{-1} \alpha^{-1} f_2$. The claim follows with $g_1 = \alpha^{-1} f_2$, $g_2 = (f_1)^{-1}$, $g_3 = \beta^{-1} h_2$, $g_4 = (h_2)^{-1}$.

Lemma 5.7. Let $\theta_1, \theta_2 \in \mathcal{J}_0$ be a standard and a special quintic transformation respectively with $S(\theta_i) = \{(q_i, \bar{q}_i)\}$. Assume that $C_{q_1} = C_{q_2}$ or $C_{\bar{q}_1} = C_{\bar{q}_2}$.

Then there exist $\tau_1, \ldots, \tau_4 \in \mathcal{J}_0$ of degree ≤ 2 such that $\theta_2 = \tau_4 \tau_3 \theta_1 \tau_2 \tau_1$.

Proof. By exchanging the names of q_1, q_2, \bar{q}_2, we can assume that $C_{q_1} = C_{q_2}$ and that q_2 is infinitely near p_1, $i \in \{1, 2\}$. By Lemma 5.4 there exists $f \in \mathcal{J}_0$ of degree $d \in \{2, 3\}$ such that $f(C_{q_i}) = C_{\bar{q}_1} = C_{q_2}$ and $f_s(q_i)$ is infinitely near p_1. Let r be the real base-point of f. Since r is real, it is not on a conic contracted by θ_1, and so $(\theta_1)_s(r) = \theta_1(r)$ is a proper point of \mathbb{P}^2.

If C_r is irreducible (i.e. $d = 3$), the conic $\theta_1(C_r) = C_{\bar{q}_1(r)}$ is irreducible as well. By Lemma 5.3 there exists $g \in \mathcal{J}_0$ of degree 3 with double point $\theta_1(r)$. If C_r is singular (i.e. $d = 2$), the conic $\theta_1(C_r) = C_{\bar{q}_1(r)}$ is singular as well. By Lemma 3.3 there exists $g \in \mathcal{J}_0$ of degree 2 with $\theta(r)$ among its base-points.
The map \(g \theta_f^{-1} \) is of degree 5 with base-points \(p_1, \bar{p}_1, p_2, \bar{p}_2, f_*(q_1), f_*(q_1) \), where the latter two are infinitely near \(p_1, \bar{p}_1 \) corresponding to the tangent directions \(C_{q_1} = C_{\bar{q}_1}, C_{q_2} \). Hence there exists \(\alpha \in \text{Aut}_R(\mathbb{P}^2) \cap \mathcal{J}_2 \) such that \(\alpha g \theta_f^{-1} = \theta_2 \). The claim follows from the fact that we can write \(f, g \) as composition of at most two quadratic transformations in \(\mathcal{J}_2 \).

5.2. The normal subgroup generated by \(\text{Aut}_R(\mathbb{P}^2) \). Lemma 5.6 implies that if two standard or special quintic transformations \(\theta_1, \theta_2 \) contract the same conics through \(p_1, \bar{p}_1, p_2, \bar{p}_2 \), then \(\theta_2 \) is obtained from \(\theta_1 \) by composing with suitable quadratic transformations. So, one step of proving that \(\ker(\varphi) = \langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \) is to see that all quadratic transformations are contained in \(\langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \).

Lemma 5.8. Any quadratic map in Bir_R(\mathbb{P}^2) is contained in \(\langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \).

Proof. Let \(\tau \in \text{Bir}_R(\mathbb{P}^2) \) be of degree 2. Pick two base-points \(q_1, q_2 \) of \(\tau \) that are either a pair of non-real conjugate points or two real base-points, such that either both are proper points of \(\mathbb{P}^2 \) or \(q_2 \) is a proper point of \(\mathbb{P}^2 \) and \(q_2 \) is in the first neighbourhood of \(q_1 \). Let \(t_1, t_2 \) be base-points of \(\tau^{-1} \) such that \(\tau \) sends the pencil of conics through \(q_1, q_2 \) onto the pencil of conics through \(t_1, t_2 \). Pick a general point \(r \in \mathbb{P}^2 \) and let \(s := \tau(r) \). There exists \(\alpha \in \text{Aut}_R(\mathbb{P}^2) \) that sends \(q_1, q_2 \) onto \(t_1, t_2 \) and exchanges \(r, s \). The map \(\tilde{\tau} := \tau \alpha \) is of degree 2, fixes \(s \), and \(t_1, t_2 \) are base-points of \(\tilde{\tau} \) and \(\tilde{\tau}^{-1} \).

Since \(r \) is general, also \(s \) is general, and there exists \(\theta \in \text{Bir}_R(\mathbb{P}^2) \) of degree 2 with base-points \(t_1, t_2, s \). Observe that the map \(\theta \tilde{\tau}^{-1} \) is linear. In particular, \(\tau \) is contained in \(\langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \).

Recall that \(\mathcal{J}_* \) is contained in \(\ker(\varphi) \). Using Lemma 5.8, we now prove that \(\mathcal{J}_* \) is contained in \(\langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \).

Lemma 5.9. The group \(\mathcal{J}_* \) is generated by its quadratic and linear elements. In particular, \(\mathcal{J}_* \subset \langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \).

Proof. Let \(f \in \mathcal{J}_* \). We do induction on the degree \(d = \deg(f) \) of \(f \). If \(f \) is linear or quadratic, there is nothing to do. So, we can assume that \(d \geq 3 \).

Case 1: Assume that there exist two simple base-points \(q_1, q_2 \) of \(f \) that are proper points of \(\mathbb{P}^2 \) and either non-real conjugate points or both real points. The points \([1 : 0 : 0], q_1, q_2 \) are not collinear by Bézout, hence there exists a quadratic map \(\tau \in \mathcal{J}_* \) with base-points \([1 : 0 : 0], q_1, q_2 \). The map \(f \tau^{-1} \in \mathcal{J}_* \) is of degree \(d - 1 \).

Case 2: Assume that \(f \) has exactly one simple (real) base-point \(q \) that is a proper point of \(\mathbb{P}^2 \). Let \(r \) be a general real point in \(\mathbb{P}^2 \). There exists \(\tau_1 \in \mathcal{J}_* \) of degree 2 with base-points \([1 : 0 : 0], q, r \) and the map \(f(\tau_1)^{-1} \in \mathcal{J}_* \) is of degree \(d \). If \(t \) is a base-point of \(f \) in the first neighbourhood of \([1 : 0 : 0] \) or \(q \), then \((\tau_1)^*(t) \) is a base-point of \(f(\tau_1)^{-1} \) that is a proper point of \(\mathbb{P}^2 \). Thus \(f(\tau_1)^{-1} \) has at least two simple base-points that are proper points of \(\mathbb{P}^2 \) and either non-real conjugate points (if \(t \) is non-real) or both real (if \(t \) is real). We proceed as above.

Case 3: Assume that \(f \) has no simple proper base-points at all, i.e. any simple base-point is infinitely near \([1 : 0 : 0] \).

- If there are at least two base-points \(q_1, q_2 \) in the first neighbourhood of \([1 : 0 : 0] \), let \(r, s \in \mathbb{P}^2 \) be general points. There exists \(\tau_1 \in \mathcal{J}_* \) of degree 2 with base-points \([1 : 0 : 0], r, s \) that the base-points of \((\tau_1)^{-1} \). The map \(f(\tau_1)^{-1} \) is of degree \(d + 1 \). We may assume that \(q_1, q_2 \) are both real or a pair of non-real conjugate points. Then \((\tau_1)^*(q_1), (\tau_1)^*(q_2) \) are proper points of \(\mathbb{P}^2 \) and base-points of \(f(\tau_1)^{-1} \).
Since $[1 : 0 : 0], \tau_1(q_1), \tau_1(q_2)$ are not collinear, there exists $\tau_2 \in \mathcal{J}_s$ of degree 2 with base-points $[1 : 0 : 0], \tau_1(q_1), \tau_1(q_2)$. The map $f(\tau_1)^{-1}(\tau_2)^{-1}$ is of degree d. We claim that the image by $(\tau_2)_{\ast}((\tau_1)_{\ast})^\ast$ of all base-points of f different from q_1, q_2 in the first neighbourhood of $[1 : 0 : 0]$ or of q_1, q_2 are base-points of $f(\tau_1)^{-1}(\tau_2)^{-1}$ that are proper points of \mathbb{P}^2 or are in the 1^{st} neighbourhood of $[1 : 0 : 0]$. Indeed, let t be a base-point of f in the 1^{st} neighbourhood of $[1 : 0 : 0]$ or q_1. Then $(\tau_1)_{\ast}(t)$ is either a proper point of \mathbb{P}^2 on the line L_{τ_1}' or is infinitely near $\tau_1(q_1)$. By Bézout, $[1 : 0 : 0], \tau_1(q_1), (\tau_1)_{\ast}(t)$ are not collinear. It follows that $(\tau_2)_{\ast}((\tau_1)_{\ast}(t))$ is either in the 1^{st} neighbourhood of $[1 : 0 : 0]$ or is of degree of any base-point in the first neighbourhood of q_1 and proximate to $[1 : 0 : 0]$ or a proper point of \mathbb{P}^2 (if t is in the 1^{st} neighbourhood of $[1 : 0 : 0]$ or q_1 and proximate to $[1 : 0 : 0]$). The situation is visualised in the following picture:

![Diagram](image)

Figure: The quadratic maps τ_1, τ_2, and the possibilities for the point $(\tau_2)_{\ast}((\tau_1)_{\ast}(t))$.

Since not all base-points of f are proximate to $[1 : 0 : 0]$, we can repeat all of this until we obtain an element of \mathcal{J}_s of degree d with simple proper base-points. We continue as in Case 1 or Case 2.

- If there is exactly one base-point q of f in the first neighbourhood of $[1 : 0 : 0]$, then in particular, q is a real point. Let $r \in \mathbb{P}^2$ be a general real point. There exists $\tau \in \mathcal{J}_s$ of degree 2 with base-points $[1 : 0 : 0], q, r$. The map $f r^{-1} \in \mathcal{J}_s$ is of degree d and the image by τ_{\ast} of any base-point in the first neighbourhood of q is a base-points of $f r^{-1}$ in the first neighbourhood of $[1 : 0 : 0]$. We repeat this step until we reach one of the above cases or until we obtain a linear map.

5.3. **The kernel is equal to $\langle \langle \text{Aut}_2(\mathbb{P}^2) \rangle \rangle$.** It now remains to actually prove that $\ker(\varphi) = \langle \langle \text{Aut}_2(\mathbb{P}^2) \rangle \rangle$. Take an element of $\ker(\varphi)$. It is the composition of linear, quadratic and standard and special quintic elements (Lemma 3.6). The next three lemmata show that we can choose the order of the linear, quadratic and standard and special quintic elements so that the ones belonging to the same coset are just one after another. These lemmata will be the remaining ingredients to prove that $\ker(\varphi) = \langle \langle \text{Aut}_2(\mathbb{P}^2) \rangle \rangle$.

Lemma 5.10. Let $\tau, \theta \in \mathcal{J}_s$ be a quadratic and a standard (or special) quintic transformation respectively. Then there exist $\tilde{\tau}_1, \tilde{\tau}_2 \in \mathcal{J}_s$ of degree 2 and $\tilde{\theta}_1, \tilde{\theta}_2 \in \mathcal{J}_s$ standard (or special quintic) transformations such that $\tau \theta = \tilde{\tau}_1 \tilde{\theta}_1$ and $\theta \tau = \tilde{\tau}_2 \tilde{\theta}_2$, i.e. we can "permute" τ, θ.

Proof. The map τ^{-1} has base-points p_i, \bar{p}_i, r_i for some $r_i \in \mathbb{P}^2(R), i \in \{1, 2\}$. Since r is not on a conic contracted by θ, the point $\theta_{\ast}(r) = \theta(r)$ is a proper point of \mathbb{P}^2 that is a base-point of $(\theta \tau)^{-1}$. Let p_i be the image by θ of the contracted conic not passing through p_i. The map θr is of degree 6 and p_i, \bar{p}_i are base-points
Lemma 5.11. Let \(\theta_1, \theta_2 \in \mathcal{J}_0 \) be standard or special quintic transformations (both can be either) such that \(\varphi_0(\theta_1) \neq \varphi_0(\theta_2) \). Then there exist \(\theta_3 \in \mathcal{J}_0 \) such that

\[
\varphi_0(\theta_1) = \varphi_0(\theta_3), \quad \varphi_0(\theta_2) = \varphi_0(\theta_3)
\]

i.e. we can "permute" \(\theta_1, \theta_2 \).

Proof. Let \(S(\theta_1) = \{(p_3, \bar{p}_3)\} \) and \(S(\theta_2) = \{(p_4, \bar{p}_4)\} \). By definition of \(\varphi_0 \) the assumption \(\varphi_0(\theta_1) \neq \varphi_0(\theta_2) \) implies \(p_3 \notin C_{p_4} \cup C_{\bar{p}_4} \).

The point \(p_5 := ((\theta_1)^{-1})_*(p_4) \) is either a proper point of \(\mathbb{P}^2 \) or in the first neighbourhood of one of \(p_1, p_2, p_5, p_6 \). Because \(p_5, \bar{p}_5, p_1, p_2, \bar{p}_2 \) are not on one conic, the points \(p_5, \bar{p}_5, p_1, \ldots, \bar{p}_2 \) are not on one conic. So, there exists a standard or special quintic transformation \(\theta_3 \in \mathcal{J}_0 \) with base-points \(p_1, \ldots, p_5, \bar{p}_5, \bar{p}_2 \). The map \(\theta_3 := \theta_2 \theta_1 \theta^{-1} \in \mathcal{J}_0 \) is a standard or special quintic transformation. In fact, its inverse has base-points \(p_1, \ldots, p_2, \bar{p}_2, \theta_2(p_3), \theta_2(p_4) \). We have by construction \(\theta_3 \theta_1 = \theta_3 \theta_2 \). The equalities \(\varphi_0(\theta_1) = \varphi_0(\theta_3) \) and \(\varphi_0(\theta_2) = \varphi_0(\theta_3) \) follow from the construction and Remark 3.11 (7). \(\square \)

Lemma 5.12. Let \(\theta_1, \theta_2 \in \mathcal{J}_0 \) be standard or special quintic transformations (both can be either) such that \(\varphi_0(\theta_1) = \varphi_0(\theta_2) \). Then \(\theta_1(\theta_2)^{-1} \in \langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \).

Proof. Let \(S(\theta_1) = \{(p_3, \bar{p}_3)\} \) and \(S(\theta_2) = \{(p_4, \bar{p}_4)\} \). The assumption \(\varphi_0(\theta_1) = \varphi_0(\theta_2) \) implies that there exists some \(\lambda \in \mathbb{R}_{>0} \) such that \(\pi_{\lambda}(C_{p_3}) = \lambda \pi_{\lambda}(C_{p_4}) \) or \(\tau_{\lambda}(C_{p_3}) = \lambda \tau_{\lambda}(C_{p_4}) \) in \(\mathbb{P}^1 \). By Lemma 3.7 there exist \(\tau_1 \in \mathcal{J}_0 \) of degree 2 such that \(\pi_{\lambda}(\tau_1(C_{p_3})) = \pi_{\lambda}(C_{p_4}) \) (resp. \(\tau_{\lambda}(C_{p_3}) = C_{p_4} \) (resp. \(\tau_{\lambda}(C_{p_3}) \)). Let \(r \) be the real base-points of \(\tau \). Since \(C_{p_4} \) is a real conic, it is not contracted by \(\theta_1 \) and hence \((\theta_1)_*(\tau) = \theta_1(\tau) \) is a proper point of \(\mathbb{P}^2 \) and a base-point of \((\theta_1 \tau)^{-1} \). Let \(p_5 \) be the image by \(\theta_1 \) of the contracted conic not passing through \(p_4 \). The map \(\tau_2 \theta_1 \tau^{-1} \in \mathcal{J}_0 \) is of degree 6 and \(p_5, \bar{p}_5 \) are base-points of \((\theta_1 \tau)^{-1} \) of multiplicity 3. By Lemma 3.3 there exists \(\tau_2 \in \mathcal{J}_0 \) of degree 2 with base-points \(\theta_2(r), p_5, \bar{p}_5 \). The map \(\tau_2 \theta_1 \tau^{-1} \in \mathcal{J}_0 \) is standard or special quintic transformation contracting the conics \(C_{p_4}, C_{p_5} \). Hence, by Lemma 5.6, Remark 5.5 and Lemma 5.7, there exist \(n_1 \leq 2 \) such that \(\theta_2 = \nu_1 \cdots \nu_{m+1} \cdot \nu_{m+1}^{-1}(\tau_2 \theta_1 \tau_1^{-1}) \nu_m \cdots \nu_1 \). Then

\[
\theta_1(\theta_2)^{-1} = (\theta_2 \nu_m \cdots \nu_1)^{-1}(\tau_2 \theta_1 \tau_1^{-1})(\nu_2 \cdots \nu_{m+1})^{-1}.
\]

By Lemma 5.8, all quadratic elements of \(\mathcal{J}_0 \) belong to \(\langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \), so \(\theta_1(\theta_2)^{-1} \) is contained in \(\langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \). \(\square \)

Proposition 5.13. Let \(\varphi : \text{Bir}_2(\mathbb{P}^2) \to \bigoplus \mathbb{Z}/2\mathbb{Z} \) be the surjective group homomorphism defined in Theorem 4.3. Then

\[
\ker(\varphi) = \langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle.
\]
Proof. By definition of \(\varphi \) (see Proposition 4.3), \(\text{Aut}_R(\mathbb{P}^2) \) is contained in \(\ker(\varphi) \), hence \(\langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \subset \ker(\varphi) \). Let’s prove the other inclusion. Consider the commutative diagram from Proposition 4.3:

\[
\begin{array}{ccc}
\text{Aut}_R(\mathbb{P}^2) & \ast & J_c \ast J_c \\
\downarrow \phi & & \Downarrow \psi \\
\mathbb{R} & \oplus & \zeta/2\zeta \\
\end{array}
\]

It follows that \(\ker(\varphi) = \pi(\ker(\Phi)) \), which is the normal subgroup generated by \(\text{Aut}_R(\mathbb{P}^2) \), \(J_c \) and \(\ker(\varphi) \). Moreover, \(\text{Aut}_R(\mathbb{P}^2) \) and \(J_c \) are contained in \(\langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \) (Lemma 5.9), thus it suffices to prove that \(\ker(\varphi_0) \) is contained in \(\langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \).

By Lemma 3.6, every \(f \in \ker(\varphi_0) \) is the composition of linear, quadratic and standard quintic elements of \(J_c \). Note that a quadratic or quintic element composed with a linear element is still a quadratic or standard quintic element respectively, so we can assume that \(f \) decomposes into quadratic and standard quintic elements. For every \(\delta \in \mathbb{R} \) the number of standard quintic elements in the decomposition of \(f \) with image \(e_\delta \) is even. According to Lemma 5.10 and Lemma 5.11, we can write \(f \) as a composition of quadratic, and standard and special quintic transformations, such that for each \(\delta \in \mathbb{R} \), all the standard and special quintic transformations with image \(e_\delta \) are next to each other. In particular, for any \(\delta \) the number of standard and special quintic transformations next to each other that are sent onto \(e_\delta \) is even. It follows from Lemma 5.12, Lemma 5.8 and \(\varphi_0(\theta) = \varphi_0(\theta^{-1}) \) (Remark 3.11 (6)) that \(f \in \langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \). \(\square \)

Corollary 5.14. We have

\[
\langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle = \ker(\varphi) = [\text{Bir}_R(\mathbb{P}^2), \text{Bir}_R(\mathbb{P}^2)]
\]

Proof. The first equality is Proposition 5.13. The normal subgroup \([\text{Bir}_R(\mathbb{P}^2), \text{Bir}_R(\mathbb{P}^2)]\) contains non-trivial linear elements, and since \(\text{Aut}_R(\mathbb{P}^2) \) is a simple group, \([\text{Bir}_R(\mathbb{P}^2), \text{Bir}_R(\mathbb{P}^2)]\) contains \(\text{Aut}_R(\mathbb{P}^2) \) and therefore also \(\langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \). Thus, the Abelianisation homomorphism factors through \(\varphi \). As \(\varphi \) is a homomorphism onto an Abelian group it implies that \(\varphi \) is the Abelianisation homomorphism. \(\square \)

Corollary 5.15 (Corollary 1.3). The sequence of iterated commutated subgroups of \(\text{Bir}_R(\mathbb{P}^2) \) is stationary. More specifically: Let \(H := [\text{Bir}_R(\mathbb{P}^2), \text{Bir}_R(\mathbb{P}^2)] \). Then \([H, H] = H \).

Proof. Since \(\text{Aut}_R(\mathbb{P}^2) \subset H \), the group \([H, H] \) contains non-trivial elements of \(\text{Aut}_R(\mathbb{P}^2) \). But \(\text{Aut}_R(\mathbb{P}^2) \) is simple, hence \(\text{Aut}_R(\mathbb{P}^2) \subset [H, H] \). By Corollary 5.14, we have

\[
H = \langle \langle \text{Aut}_R(\mathbb{P}^2) \rangle \rangle \subset [H, H].
\]

\(\square \)

Theorem 5.16 (Theorem 1.2). The group \(\text{Bir}_R(\mathbb{P}^2) \) is not perfect: its Abelianisation is isomorphic to

\[
\text{Bir}_R(\mathbb{P}^2)/[\text{Bir}_R(\mathbb{P}^2), \text{Bir}_R(\mathbb{P}^2)] \simeq \bigoplus \mathbb{R}/2\mathbb{Z}.
\]
Moreover, the commutator subgroup of \([\text{Bir}_\mathbb{R}(\mathbb{P}^2), \text{Bir}_\mathbb{R}(\mathbb{P}^2)]\) is the normal subgroup generated by \(\text{Aut}_\mathbb{R}(\mathbb{P}^2) = \text{PGL}_3(\mathbb{R})\), and contains all elements of \(\text{Bir}_\mathbb{R}(\mathbb{P}^2)\) of degree \(\leq 4\).

Proof. Follows from Proposition 4.3, Proposition 5.13 and Corollary 5.14. \(\square\)

Remark 5.17. The kernel of \(\varphi\) is the normal subgroup \(N\) generated by all squares in \(\text{Bir}_\mathbb{R}(\mathbb{P}^2)\): On one hand, for any group \(G\), its commutator subgroup \([G, G]\) is contained in the normal subgroup of \(G\) generated by all squares. On the other hand, since \(\bigoplus_2 \mathbb{Z}/2\mathbb{Z}\) is Abelian and all its elements are of order 2, the normal subgroup of \(\text{Bir}_\mathbb{R}(\mathbb{P}^2)\) generated by the squares is contained in \(\ker(\varphi)\). The claim now follows from \(\ker(\varphi) = [\text{Bir}_\mathbb{R}(\mathbb{P}^2), \text{Bir}_\mathbb{R}(\mathbb{P}^2)]\) (Corollary 5.14).

Remark 5.18. Endowed with the Zariski topology or the Euclidean topology (see [BF2013]), the group \(\text{Bir}_{\mathbb{R}}(\mathbb{P}^2)\) does not contain any non-trivial proper closed normal subgroups and \(\langle\langle \text{Aut}_{\mathbb{R}}(\mathbb{P}^2)\rangle\rangle\) is dense in \(\text{Bir}_{\mathbb{R}}(\mathbb{P}^2)\) [BZ2015]. In particular, the quotient topology on \(\bigoplus_2 \mathbb{Z}/2\mathbb{Z}\) is the trivial topology.

6. Presentation of Bir\(_\mathbb{R}(\mathbb{P}^2)\) by generating sets and relations

This section is devoted to the rather technical proof of Proposition 2.9. We remind of the notation \(p_1 := [1 : i : 0], p_2 := [0 : 1 : i]\).

Recall that \(\text{Bir}_\mathbb{R}(\mathbb{P}^2)\) is generated by \(\text{Aut}_\mathbb{R}(\mathbb{P}^2), \mathcal{J}_2, \mathcal{J}_3, \mathcal{J}_5\) (Corollary 2.6).

Consider \(F_S\), the free group generated by the set

\[S = \text{Aut}_\mathbb{R}(\mathbb{P}^2) \cup \mathcal{J}_2 \cup \mathcal{J}_3.\]

There is a natural word map \(w: S \to F_S\), sending an element to its corresponding word.

Remark 6.1. Let \(\mathcal{G}\) as in Definition 2.7. There exists a natural surjective homomorphism \(\mathcal{G} \to \text{Bir}_\mathbb{R}(\mathbb{P}^2)\). By abuse of notation, we also denote by \(w: \text{Aut}_\mathbb{R}(\mathcal{J}_2, \mathcal{J}_3) \to \mathcal{G}\) the composition of \(S \to F_S\) with the canonical projection \(F_S \to \mathcal{G}\).

Remark 6.2. In the proof that \(\mathcal{G} \simeq \text{Bir}_\mathbb{R}(\mathbb{P}^2)\) (Proposition 2.9) the relations given in the definition of \(\mathcal{G}\) (list in Definition 2.7) mostly turn up in the form of the following examples:

1. Let \(\theta \in \mathcal{J}_2\) be a standard quintic transformation (see Definition 2.2).
 Call its base-points \(p_1, \hat{p_1}, p_2, \hat{p_2}, p_3, \hat{p_3}\), and the base-points of its inverse \(p_1, \hat{p_1}, p_2, \hat{p_2}, p_3, \hat{p_3}\) where \(p_3, \hat{p_3}\) are non-real proper points of \(\mathbb{P}^2\). There exist \(i, j \in \{1, 2\}\) such that \(\theta\) sends the pencil of conics passing through \(p_i, \hat{p_i}, p_3, \hat{p_3}\) onto the pencil of conics passing through \(p_j, \hat{p_j}, p_3, \hat{p_3}\). Let \(\alpha_1, \alpha_2 \in \text{Aut}_{\mathbb{R}}(\mathbb{P}^2)\) such that \(\alpha_1\) sends the set \(\{p_1, \hat{p_1}, p_2, \hat{p_2}\}\) onto \(\{p_1, \hat{p_1}, p_3, \hat{p_3}\}\), and \(\alpha_2\) sends the set \(\{p_j, \hat{p_j}, p_4, \hat{p_4}\}\) onto the set \(\{p_1, \hat{p_1}, p_2, \hat{p_2}\}, i \in \{1, 2\}\).
 Then \(\alpha_2\theta\alpha_1 \in \mathcal{J}_2\) is a standard quintic transformation. The relation \(w(\alpha_2)w(\theta)w(\alpha_1)\) holds in \(\mathcal{G}\) (Definition 2.7 (1)).

2. Let \(\tau \in \mathcal{J}_3\) be of degree 2 or 3. Let \(r\) be the real base-point of \(\tau\) and \(s\) the real base-point of \(\tau^{-1}\). Observe that \(\tau\) sends the pencil of lines through \(r\) onto the pencil of lines through \(s\). There exist \(\alpha_1, \alpha_2 \in \text{Aut}_{\mathbb{R}}(\mathbb{P}^2)\) such that \((\alpha_1)^{-1}(r) = [1 : 0 : 0] = \alpha_2(s)\). Then \(\alpha_2 \tau \alpha_1\) is an element of \(\mathcal{J}_3\) and the relation \(w(\alpha_2)w(\tau)w(\alpha_1) = w(\alpha_2 \tau \alpha_1)\) holds in \(\mathcal{G}\) (Definition 2.7 (2)).
(3) Let \(\tau_1, \tau_2 \in \mathcal{J}_0 \) of degree 2 with base-points \(p_i, \tilde{p}_i, r \) and \(p_j, \tilde{p}_j, s \) respectively, and \(\alpha \in \text{Aut}_R(\mathbb{P}^2) \) such that \(\alpha(p_i) = p_j \) and \(\alpha(r) = s \). Then \(\tau_2 \alpha(\tau_1)^{-1} \) is linear. The relation \(w(\tau_2)w(\alpha)w((\tau_1)^{-1}) = w(\tau_2 \alpha(\tau_1)^{-1}) \) holds in \(\mathcal{G} \) (Definition 2.7 (2)).

(4) Let \(\tau_1, \tau_2 \in \mathcal{J}_0 \) be of degree 2 with base-points \(p := [1:0:0], r_1, r_2 \) and \(p, s_1, s_2 \) respectively, and \(\alpha \in \text{Aut}_R(\mathbb{P}^2) \) with \(\alpha(r_i) = s_i \) but \(\alpha(p) \neq p \) (i.e. \(\alpha \not\in \mathcal{J}_0 \)). Suppose that the base-points of \((\tau_1)^{-1}, (\tau_2)^{-1} \) are \(p, r'_1, r'_2 \) and \(p, s'_1, s'_2 \) respectively. Then \(\tau_3 := \tau_2 \alpha(\tau_1)^{-1} \) is quadratic with base-points \(r'_1, r'_2, s'_1, s'_2, \tau_2(\alpha(p)) \). There exist \(\beta_1, \beta_2 \in \text{Aut}_R(\mathbb{P}^2), \tilde{\tau}_3 \in \mathcal{J}_0 \) of degree 2 such that \(\tau_3 = \beta_2 \tilde{\tau}_3 \beta_1 \). The relation \(w(\beta_2)w(\tilde{\tau}_3)w(\beta_1) = w(\tau_2)w(\alpha)w(\tau_1) \) holds in \(\mathcal{G} \) (Definition 2.7 (3)).

Remark 6.3. Suppose \(\theta_1, \theta_2 \in \mathcal{J}_0 \) are special quintic transformations (see Definition 3.4). If there exist \(\alpha_1, \alpha_2 \in \text{Aut}_R(\mathbb{P}^2) \) such that \(\theta_2 = \alpha_2 \theta_1 \alpha_1 \) then \(\alpha_1, \alpha_2 \) permute \(p_1, p_1, p_2, p_2 \) and are thus contained in \(\mathcal{J}_0 \). So, the relation

\[
\begin{align*}
\theta_2 = \alpha_2 \theta_1 \alpha_1 \text{ in } \text{Bir}_R(\mathbb{P}^2)
\end{align*}
\]

is true in \(\mathcal{G} \) and even in the generalised amalgamated product of \(\text{Aut}_R(\mathbb{P}^2) \mathcal{J}_0, \mathcal{J}_0 \) along all the pairwise intersections.

Lookout 6.4. We are going to look at the following three situations: Let \(g \in \text{Aut}_R(\mathbb{P}^2) \) and \(f, h \in \text{Bir}_R(\mathbb{P}^2) \) belonging to \(\mathcal{J}_0 \) or being standard quintic transformations.

Suppose that \(\Lambda \) is a real linear system of degree \(D := \text{deg}(\Lambda) \) and that

\[
\text{deg}(h^{-1}(\Lambda)) \leq D, \quad \text{deg}(fg(\Lambda)) < D
\]

We want to find \(\theta_1, \ldots, \theta_n \in \text{Aut}_R(\mathbb{P}^2) \cup \mathcal{J}_0 \cup \mathcal{J}_0 \) such that \(w(f)w(g)w(h) = w(\theta_n) \cdots w(\theta_1) \)

and such that the successive images of \(h^{-1}(\Lambda) \) have degree \(< D \) or such that the degree certain elements \(\theta_i \in \mathcal{J}_0 \) drop (Lemma 6.7, Lemma 6.10, Lemma 6.11).

This will then be the key ingredient to prove that \(\mathcal{G} \) is isomorphic to \(\text{Bir}_R(\mathbb{P}^2) \) (Proposition 6.12).

Lemma 6.5. Let \(f \in \mathcal{J}_0 \cup \mathcal{J}_0 \) be non-linear and \(\Lambda \) be a real linear system of degree \(\text{deg}(\Lambda) = D \). Suppose that

\[
\text{deg}(f(\Lambda)) \leq D \quad (\text{resp. } \text{deg}(f(\Lambda)) < D).
\]

(1) If \(f \in \mathcal{J}_0 \), there exist two real or a pair of non-real conjugate base-points \(q_1, q_2 \) of \(f \) such that

\[
m_{\Lambda}([1:0:0]) + m_{\Lambda}(q_1) + m_{\Lambda}(q_2) \geq D \quad (\text{resp. } > D)
\]

(2) Suppose that \(f \in \mathcal{J}_0 \). Then there exists a base-point \(q \notin \{p_1, \ldots, p_2\} \) of \(f \) of multiplicity 2 such that

(2.1) \[
m_{\Lambda}(p_1) + m_{\Lambda}(p_2) + m_{\Lambda}(q) \geq D \quad (\text{resp. } > D)
\]
or \(f \) has a simple base-point \(r \) and there exists \(i \in \{1, 2\} \) such that

\[
2m_\Lambda(p_i) + m_\Lambda(r) \geq D \quad \text{(resp. >)}.
\]

Moreover, if inequality (2.1) does not hold, we can replace \(\geq \) with \(> \) in (2.2) if \(\deg(f) > 2 \).

Proof. Define \(d := \deg(f) \) to be the degree of \(f \).

(1) Suppose that \(f \in \mathcal{J}_p \). Its characteristic is \((d; d - 1,1^{2d-2}) \). Let \(r_1, \ldots, r_{2d-2} \) be its simple base-points. Since non-real base-points come in pairs, \(f \) has an even number \(N \) of real base-points. Call \(m_i := m_\Lambda(r_i) \) the multiplicity of \(\Lambda \) in \(r_i \) and \(m_0 = m_\Lambda([1 : 0 : 0]) \) the one in \([1 : 0 : 0]\). We order the base-points such that either \(r_{2i-1}, r_{2i} \) are real or \(r_{2i} = r_{2i-1} \) for \(i = 1, \ldots, d - 1 \). Then

\[
D \geq \deg(f(\Lambda)) = dD - (d - 1)m_0 - \sum_{i=1}^{d-1}(m_{2i-1} + m_{2i})
\]

\[
= dD + \sum_{i=1}^{d-1}(D - m_0 - m_{2i-1} - m_{2i})
\]

Hence there exists \(i_0 \) such that \(D \leq m_0 - m_{2i_0-1} - m_{2i_0} \). The claim for "\(> \)" follows analogously.

(2) Suppose that \(f \in \mathcal{J}_c \). By Lemma 3.1, its characteristic is \((d; d-1^{4}, 2\frac{d+1}{d-1}) \) or \((d; \frac{d+1}{d}, 2\frac{d+1}{d}, 2, 1) \).

Assume that \(f \) has no simple base-point. Call \(r_1, \ldots, r_{(d-1)/2} \) its base-points of multiplicity 2. Let \(m_i := m_\Lambda(p_i) \) be the multiplicity of \(\Lambda \) in \(p_i \), \(i = 1, 2 \) and \(a_i := m_\Lambda(r_i) \) the one in \(r_i \). Then

\[
D \geq \deg(f(\Lambda)) = dD - 2m_1 \cdot \frac{d - 1}{2} - 2m_2 \cdot \frac{d - 1}{2} - 2 \sum_{i=1}^{(d-1)/2} a_i
\]

\[
= D + 2 \sum_{i=1}^{(d-1)/2}(D - m_1 - m_2 - a_i)
\]

which implies that there exists \(i_0 \) such that \(0 \geq D - m_1 - m_2 - a_{i_0} \). The claim for "\(> \)" follows analogously.

Assume that \(f \) has a simple base-point \(r \). Let \(r_1, \ldots, r_{(d-2)/2} \) be its base-points of multiplicity 2, \(a_i := m_\Lambda(r_i) \) the multiplicity of \(\Lambda \) in \(r_i \), and \(m_i := m_\Lambda(p_i) \) the one in \(p_i \). Then

\[
D \geq \deg(f(\Lambda)) = dD - 2m_j \cdot \frac{d}{2} - 2m_k \cdot \frac{d - 2}{2} - 2 \sum_{i=1}^{(d-2)/2} a_i - m_\Lambda(r)
\]

\[
= D + (D - 2m_j - m_\Lambda(r)) + 2 \sum_{i=1}^{(d-2)/2}(D - m_j - m_k - a_i)
\]

where \(\{j, k\} = \{1, 2\} \). The inequality implies there exist \(i_0 \) such that \(0 \geq D - m_j - m_k - a_{i_0} \) or that \(0 \geq D - 2m_j - m_\Lambda(r) \). The claim for "\(> \)" follows analogously.
Suppose that \(0 < D - m_j - m_k - a_i\) for all \(i = 1, \ldots, \frac{d-2}{2}\), i.e., \(1 \leq D - m_j - m_k - a_i\) for all \(i = 1, \ldots, \frac{d-2}{2}\). We obtain from the calculations above that

\[
0 \geq (D - 2m_j - m_A(r)) + 2 \sum_{i=1}^{(d-2)/2} (D - m_j - m_k - a_i) \\
\geq (D - 2m_j - m_A(r)) + (d - 2)
\]

Assume that \(d > 2\), i.e. since \(d\) is even here, \(d \geq 4\). The inequality above implies

\[-2 \geq -(d - 2) \geq D - 2m_j - m_A(r)
\]

and so

\[2m_j + m_A(r) \geq D + 2 > D.\]

\[\Box\]

Notation 6.6. For a pair of non-real points \(q, \bar{q} \in \mathbb{P}^2\) or infinitely near, we denote by \(q\) the set \([q, \bar{q}]\).

Lemma 6.7. Let \(f, h \in \mathcal{J}_c\) be standard or special quintic transformations, \(g \in \text{Aut}_k(\mathbb{P}^2)\) and \(\Lambda\) be a real linear system of degree \(D\). Suppose that

\[\deg(h^{-1}(\Lambda)) \leq D\quad\text{and}\quad\deg(fg(\Lambda)) < D.\]

Then there exists \(\theta_1 \in \text{Aut}_k(\mathbb{P}^2), \theta_2, \ldots, \theta_n \in \text{Aut}_k(\mathbb{P}^2) \cup \mathcal{J}_c\) such that

1. \(w(f)w(g)w(h) = w(\theta_n) \cdots w(\theta_1)\) holds in \(\mathcal{G}\), i.e. the following diagram corresponds to a relation in \(\mathcal{G}\):

\[
\xymatrix{ & \Lambda \ar[ld]_-{h} \ar[rd]^-{f} & \\
& h^{-1}(\Lambda) \ar[r]_-{\theta_i} & fg(\Lambda) \\
& \theta_i \ar@{.>}[ru] & }
\]

2. \(\deg(\theta_i \cdots \theta_i h^{-1}(\Lambda)) < D\) for \(i = 2, \ldots, n\).

Proof. The maps \(h^{-1}\) and \(f\) have base-points \(p_1, \bar{p}_1, p_2, \bar{p}_2, p_3, \bar{p}_3\) and \(p_1, \bar{p}_1, p_2, \bar{p}_2, p_3, \bar{p}_3\) respectively, for some non-real points \(p_3, \bar{p}_4\) that are in \(\mathbb{P}_2\) or infinitely near one of \(p_1, \ldots, \bar{p}_2\). Denote by \(m(q) := m_\Lambda(q)\) the multiplicity of \(\Lambda\) at \(q\). According to Lemma 6.5 we have

\[\text{(Ineq}^0)\quad m(p_1) + m(p_2) + m(p_3) \geq D,\quad m_\Lambda(p_1) + m_\Lambda(p_2) + m_\Lambda(p_4) > D\]

We choose \(\tau_1, \tau_2, \tau_3, \tau_4, \tau_5\) with \(\{\tau_1, \tau_2, \tau_3\} = \{p_1, p_2, p_3\}\) such that \(m(\tau_1) \geq m(\tau_2) \geq m(\tau_3)\) and such that if \(r_i\) is infinitely near \(r_j\), then \(j < i\). Similarly, we choose \(\tau_1, \tau_2, \tau_5\) with \(\{\tau_4, \tau_5, \tau_6\} = g^{-1}(\{p_1, p_2, p_3\})\). In particular, \(r_1, r_4\) are proper points of \(\mathbb{P}_2\).

The two inequalities \(\text{(Ineq}^0)\) translate to

\[\text{(Ineq}^1)\quad m(r_1) + m(r_2) + m(r_3) \geq D,\quad m(r_4) + m(r_5) + m(r_6) > D\]

We now look at four cases, depending on the number of common base-points of \(fg\) and \(h^{-1}\).

Case 0: If \(h^{-1}\) and \(fg\) have six common base-points, then \(\alpha := fgh\) is linear and \(w(\bar{g})w(h)w(\alpha^{-1}) = w(f^{-1})\) (Definition 2.7 (1)).
Case 1: Suppose that h^{-1} and f have exactly four common base-points. There exists $\alpha_1 \in \text{Aut}_2(\mathbb{P}^2)$ such that α_1 sends the common base-points onto p_1, \ldots, p_2 if all the common points are proper points of \mathbb{P}^2, and onto $p_1, \bar{p}_1, p_3, \bar{p}_3$ if p_3, \bar{p}_3 are infinitely near p_1, \bar{p}_1 (cf. Remark 6.2). There exist $\alpha_2, \alpha_3 \in \text{Aut}_2(\mathbb{P}^2)$ such that $f := \alpha_3 f g(\alpha_1)^{-1} \in \mathcal{J}_c$ and $\bar{h} := \alpha_1 h \alpha_2 \in \mathcal{J}_c$ (see Lemma 2.5). The commutative diagram

\[
\begin{array}{ccc}
h^{-1}(\Lambda) & \xrightarrow{\alpha_2} & \alpha_2 h^{-1}(\Lambda) \\
\downarrow{h} & & \downarrow{h} \\
\alpha_1 & \xrightarrow{fg} & \alpha_1(\Lambda) & \xrightarrow{\alpha_3} & \alpha_3 f g(\Lambda) \\
\downarrow{f} & & \downarrow{f} & & \downarrow{f} \\
\alpha_3 f g(\Lambda) & \xrightarrow{\alpha_3} & f g(\Lambda)
\end{array}
\]

is generated by relations in \mathcal{G} (Definition 2.7 (1), Remark 6.2, Remark 6.3). Write $\theta_2 := f \bar{h} \in \mathcal{J}_c$. The claim now follows with $\theta_1 := \alpha_1, \theta_2, \theta_3 := (\alpha_3)^{-1}$.

Case 2: Suppose that the set $\tau_1 \cup \tau_2 \cup \tau_3$ consists of 6 points $\tau_1, \tau_2, \ldots, \tau_5, \tau_6$. If at least four of them are proper points of \mathbb{P}^2, inequality (Ineq 1) yields

\[
2m(r_{i_1}) + 2m(r_{i_2}) + 2m(r_{i_3}) > D,
\]

which implies that the six points $\tau_1, \tau_2, \ldots, \tau_5, \tau_6$ are not contained in one conic. By this and by the chosen ordering of the points, there exists a standard or special quintic transformation $\theta \in \mathcal{J}_c, \alpha \in \text{Aut}_2(\mathbb{P}^2)$ such that those six points are the base-points of $\theta \alpha$. By construction, we have

\[
\deg(\theta \alpha(\Lambda)) = 5D - 4m(r_{i_1}) - 4m(r_{i_2}) - 4m(r_{i_3}) < D,
\]

and $h^{-1}, \theta \alpha$ and $\theta \alpha, f g$ each have four common base-points. We apply Case 1 to h, α, θ and to $\theta^{-1}, \alpha^{-1}, f$.

If only two of the six points are proper points of \mathbb{P}^2, then the chosen ordering yields $q = \tau_1 = \tau_2$ and the points in $\tau_2 \cup \tau_3$ are infinitely near points. Since h, f are standard or special quintic transformations, it follows that r_3, r_6 are both proper points of \mathbb{P}^2. We choose $i \in \{3, 6\}, j \in \{2, 5\}$ with $m(r_i) = \max\{m(r_3), m(r_6)\}$ and $m(r_j) = \max\{m(r_2), m(r_5)\}$. We have

\[
2m(r_i) + 2m(r_j) + 2m(r_i) \geq 2m(r_3) + 2m(r_6) + 2m(r_2) > D.
\]

Thus the six points in $\tau_1 \cup \tau_2 \cup \tau_3$ are not contained on one conic and there exists a standard or special quintic transformation $\theta \in \mathcal{J}_c, \alpha \in \text{Aut}_2(\mathbb{P}^2)$ such that the base-points of $\theta \alpha$ are $\tau_1 \cup \tau_2 \cup \tau_3$. Again, the maps $h^{-1}, \theta \alpha$ and $\theta \alpha, f g$ have four common base-points, $\deg(\theta \alpha(\Lambda)) < D$ and we apply Case 1 to h, α, θ and to $\theta^{-1}, \alpha^{-1}, f$.

Case 3: Suppose that $\tau_1 \cup \tau_2 \cup \tau_3 \cup \tau_4$ consists of eight points. Then $\tau_1 \cup \tau_2 \cup \tau_3$ and $\tau_1 \cup \tau_4 \cup \tau_5$ each consist of six points. We have by inequality Ineq 1 and by the chosen ordering that

\[
2m(r_1) + 2m(r_2) + 2m(r_3) > 2D,
\]

so the points in each set $\tau_1 \cup \tau_2 \cup \tau_3$ and $\tau_1 \cup \tau_4 \cup \tau_5$ are not on one conic. Moreover, at least four points in each set are proper points of $\mathbb{P}^2 (r_1, r_4 \in \mathbb{P}^2)$. Therefore, there exist standard or special quintic transformations $\theta_1, \theta_2 \in \mathcal{J}_c, \alpha_1, \alpha_2 \in \text{Aut}_2(\mathbb{P}^2)$ such that $\theta_1 \alpha_1$ (resp. $\theta_2 \alpha_2$) has base-points $\tau_1 \cup \tau_2 \cup \tau_3$ (resp. $\tau_1 \cup \tau_4 \cup \tau_5$). Then
We are going to look at three cases, depending on the common base-points of \(f \). Then by Bézout, the points \([1 : 0 : 0], q_1, q_2\) are not collinear. (This means that they do not belong, as proper points of \(\mathbb{P}^2 \) or infinitely near points, to the same line.)

Remark 6.8. Let \(f \in \mathcal{J}_c \) and \(q_1, q_2 \) two simple base-points of \(f \). Then by Bézout, the points \([1 : 0 : 0], q_1, q_2\) are not collinear. (This means that they do not belong, as proper points of \(\mathbb{P}^2 \) or infinitely near points, to the same line.)

Notation 6.9. In the following diagrams, the points in the brackets are the base-points of the corresponding birational map (arrow). A dashed arrow indicates a birational map, and a drawn out arrow a linear tranformation.

Lemma 6.10. Let \(f, h \in \mathcal{J}_c \), \(g \in \text{Aut}_\mathbb{R}(\mathbb{P}^2) \) and \(\Lambda \) be a real linear system of degree \(D \). Suppose that

\[
\deg(h^{-1}(\Lambda)) \leq D, \quad \deg(fg(\Lambda)) < D
\]

Then there exist \(\theta_1, \ldots, \theta_n \in \text{Aut}_\mathbb{R}(\mathbb{P}^2) \cup \mathcal{J}_c \cup \mathcal{J}_s \) such that

1. \(w(f)w(g)w(h) = w(\theta_1) \cdots w(\theta_n) \) holds in \(\mathcal{G} \), i.e. the following commutative diagram corresponds to a relation in \(\mathcal{G} \):

 \[
 \begin{array}{ccc}
 \Lambda & \overset{g}{\longrightarrow} & g(\Lambda) \\
 h & \overset{\theta_i}{\longrightarrow} & \theta_i(\Lambda) \\
 h^{-1}(\Lambda) & \overset{\theta_i}{\longrightarrow} & \theta_i^{-1}(\theta_i(\Lambda)) = f\theta_i(\Lambda) \\
 \end{array}
 \]

2. \(\theta_1 \in \text{Aut}_\mathbb{R}(\mathbb{P}^2) \), \(\deg(\theta_1 \cdots \theta_1 h^{-1}(\Lambda)) < D \) for \(i = 2, \ldots, n \)

3. \(\theta_1 \in \mathcal{J}_c \), \(\theta_2 \in \text{Aut}_\mathbb{R}(\mathbb{P}^2) \), \(\deg(\theta_1) = \deg(h) - 1 \) and \(\deg(\theta_1(\Lambda)) = \deg(\theta_2 \theta_1(\Lambda)) \leq D \)

\[
\deg(\theta_1 \cdots \theta_1 h^{-1}(\Lambda)) < D, \quad i = 3, \ldots, n.
\]

Proof. If \(g \in \mathcal{J}_c \), then \(w(f)w(g)w(h) = w(fgh) \) in \(\mathcal{J}_c \). So, let us assume that \(g \notin \mathcal{J}_c \). Let \(p := [1 : 0 : 0], q := g^{-1}(1 : 0 : 0) \). Let \(m(q) \) be the multiplicity of \(\Lambda \) in \(q \). By Lemma 6.5 there exists \(r_1, r_2 \) base-points of \(h^{-1} \) and \(s_1, s_2 \) base-points of \(fg \) such that

\[
(\star) \quad m(p) + m(r_1) + m(r_2) \geq D, \quad m(q) + m(s_1) + m(s_2) > D
\]

and either \(r_1, r_2 \) (resp. \(s_1, s_2 \)) are both real or a pair of non-real conjugate points. We can assume that \(m(r_1) \geq m(r_2), m(s_1) \geq m(s_2) \) and that \(r_1 \) (resp. \(s_1 \)) is a proper point of \(\mathbb{P}^2 \) or in the first neighbourhood of \(p \) (resp. \(q \)) and that \(r_2 \) (resp. \(s_2 \)) is a proper point of \(\mathbb{P}^2 \) or in the first neighbourhood of \(p \) (resp. \(q \)) or \(r_1 \) (resp. \(s_1 \)).

Note that if \(\deg(h^{-1}(\Lambda)) < D \), then by Lemma 6.5 \(" > " \) holds in all inequalities.

We split the remainder of the proof into three situations, depending on whether or not there exist \(r_1, r_2 \in \text{Bir}_\mathbb{R}(\mathbb{P}^2) \) with base-point \(p, r_1, r_2 \) and \(p = g(q), g(s_1), g(s_2) \) respectively.

- **Situation 1** - Assume that there exist \(r_1, r_2 \in \mathcal{J}_c \) of degree 2 with base-points \(p, r_1, r_2 \) and \(p = g(q), g(s_1), g(s_2) \) respectively, and that \(r_1, r_2, q \) have common base-points.

 Observe that \(r_1h, f(r_2)^{-1} \in \mathcal{J}_c \) and \(\deg(r_1h) = \deg(h) - 1 \), and by inequality \((\star)\) that

 \[
 \deg(r_1(\Lambda)) = 2D - m(p) - m(r_1) - m(r_2) \leq D,
 \]

 \[
 \deg(r_2(\Lambda)) = 2D - m(q) - m(s_1) - m(s_2) < D
 \]

 We are going to look at three cases, depending on the common base-points of \(r_1, r_2 \).
• If \(\tau_1 \) and \(\tau_2g \) have three common base-points, the map \(\tau_2g(\tau_1)^{-1} \) is linear. The commutative diagram

\[
\begin{array}{ccc}
\Lambda & \overset{g}{\longrightarrow} & \tau_1(\Lambda) \\
| & | & | \\
| & f & |
\end{array}
\]

is generated by relations in \(\mathcal{G} \) (Definition 2.7 (2)), and the claim follows with \(\theta_1 := \text{Id} \), \(\theta_2 := \tau_1h \), \(\theta_3 := \tau_2g(\tau_1)^{-1} \), \(\theta_4 := f(\tau_2)^{-1} \).

• If \(\tau_1 \) and \(\tau_2g \) have exactly two common base-points, the map \(\tau_2g(\tau_1)^{-1} \) is of degree 2 and there exists \(\alpha_1, \alpha_2 \in \text{Aut}_k(\mathbb{P}^2) \), \(\tau_3 \in \mathcal{J}_s \) such that \(\tau_2g(\tau_1)^{-1} = \alpha_2\tau_3\alpha_1 \).

The situation is summarised in the following commutative diagram

\[
\begin{array}{ccc}
h^{-1}(\Lambda) & \overset{h}{\longrightarrow} & \tau_1(\Lambda) \\
| & | & | \\
deg(h)^{-1} & \overset{\tau_3}{\longrightarrow} & \tau_2\alpha_1(\Lambda) \\
| & | & | \\
\overset{\alpha_1}{\longrightarrow} & \tau_3\alpha_1\tau_1(\Lambda) \\
| & | & | \\
| & f & |
\end{array}
\]

Observe that is generated by relations in \(\mathcal{G} \) (Definition 2.7 (3)) and that

\[
\text{deg}(\alpha_1\tau_1(\Lambda)) = \text{deg}(\tau_1(\Lambda)) \leq D, \quad \text{deg}(\tau_3\alpha_1(\Lambda)) = \text{deg}(\tau_2(\Lambda)) < D.
\]

The claim follows with \(\theta_1 := \tau_1h \), \(\theta_2 := \alpha_1 \), \(\theta_3 := \tau_3 \), \(\theta_4 := \alpha_2 \). \(\theta_5 := f(\tau_2)^{-1} \).

• If \(\tau_1 \) and \(\tau_2g \) have exactly one common base-point, then \(\tau_2g(\tau_1)^{-1} \) is of degree 3 and there exists \(\alpha_1, \alpha_3 \in \text{Aut}_k(\mathbb{P}^2) \), \(\tau_3 \in \mathcal{J}_s \) of degree 3 such that \(\tau_2g(\tau_1)^{-1} = \alpha_2\tau_3\alpha_1 \), which corresponds to a relation in \(\mathcal{G} \) (Definition 2.7 (3)). The situation can be visualised with the diagram of the previous case, and here too, \(\text{deg}(\alpha_1\tau_1(\Lambda)) = \text{deg}(\tau_1(\Lambda)) \leq D \), \(\text{deg}(\tau_3\alpha_1(\Lambda)) = \text{deg}(\tau_2(\Lambda)) < D \). The claim follows, as above, with \(\theta_1 := \tau_1h \), \(\theta_2 := \alpha_1 \), \(\theta_3 := \tau_3 \), \(\theta_4 := \alpha_2 \), \(\theta_5 := f(\tau_2)^{-1} \).

- Situation 2 - As in Situation 1, we assume that there exist \(\tau_1, \tau_2 \in \mathcal{J}_s \) of degree 2 with base-points \(p, r_1, r_2 \) and \(p = g(q), s_1, s_2 \) respectively. Opposed to Situation 1, we now assume that \(\tau_1, \tau_2g \) have no common base-points.

We put \(\theta_1 := \tau_1h \), \(\theta_3 := f(\tau_2)^{-1} \) and construct \(\theta_2, \ldots, \theta_{n-3} \) as follows in the below three cases, which depend on the \(\tau_i \)'s and \(s_i \)'s begin real point or non-real points:

• If \(r_1, r_2, s_1, s_2 \) are real points, let \(\{a_1, a_2, a_3\} = \{p, r_1, r_2\} \) and \(\{b_1, b_2, b_3\} = \{g(q), s_1, s_2\} \) such that \(m(a_1) \leq m(a_{i+1}) \) and \(m(b_i) \leq m(b_{i+1}) \), \(i = 1, 2, 3 \), and if \(a_i \) (resp. \(b_i \)) is infinitely near \(a_j \) (resp. \(b_j \)) then \(j > i \). From inequalities (**) we obtain

\[
m(a_1) + m(a_2) + m(b_1) > D, \quad m(a_1) + m(b_1) + m(b_2) > D.
\]

By them and the chosen ordering, there exists \(\tau_1, \tau_3 \in \mathcal{J}_s \) of degree 2, \(\alpha_1, \alpha_2 \in \text{Aut}_k(\mathbb{P}^2) \) such that \(\tau_3\alpha_1, \tau_3\alpha_2 \) have base-points \(a_1, a_2, b_1 \) and \(a_1, b_1, b_2 \) respectively.

The situation is summarised in the following commutative diagram

\[
\begin{array}{ccc}
h^{-1}(\Lambda) & \overset{h}{\longrightarrow} & \tau_1(\Lambda) \\
| & | & | \\
\overset{\alpha_1}{\longrightarrow} & \tau_3\alpha_1(\Lambda) \\
| & | & | \\
| & f & |
\end{array}
\]
By construction of τ_3, τ_4, we have
\[\deg(\tau_3\alpha(\Lambda)) = 2D - m(a_1) - m(a_2) - m(b_1) < D, \]
\[\deg(\tau_4\alpha g(\Lambda)) = 2D - m(a_1) - m(b_1) - m(b_2) < D. \]
The maps $\tau_1, \tau_3\alpha_1$, the maps $\tau_3\alpha_1, \tau_4\alpha_2$ and the maps $\tau_4\alpha_2, \tau_2$ each have two common base-points, and we proceed with each pair as in Situation 1 to obtain $\theta_2, \ldots, \theta_{n-1}$.

- Assume that $r_2 = \bar{r}_1$ and s_1, s_2 are real points. If $m(q) \geq m(p)$, then
 \[m(q) + 2m(r_1) > D \]
hence there exists $\tau_3 \in \mathcal{J}_r$ of degree 2 with base-points $g(q), g(r_1), g(r_2)$.

If $m(q) < m(p)$, then
\[m(p) + m(q) + m(s_1) > m(q) + m(s_1) + m(s_2) > D \]
hence there exists $\tau_4 \in \mathcal{J}_r$ of degree 2 with base-points p, q, s_1. Note that $\tau_2(\tau_3)^{-1}, \tau_4(\tau_1)^{-1} \in \mathcal{J}_r$. The situation is summarised in the following commutative diagrams.

\[\begin{array}{ccc}
\Lambda & g(\Lambda) \\
\downarrow & g(\Lambda) \\
\tau_1(\Lambda) & \tau_3(\Lambda) & \tau_4(\Lambda) \\
\downarrow & \downarrow & \downarrow \\
\gamma & \tau_2 g(\Lambda) & \tau_2 g(\Lambda)
\end{array} \]

By construction of τ_3, τ_4, we have
\[\deg(\tau_3 g(\Lambda)) < D, \quad \deg(\tau_4(\Lambda)) < D \]
The maps $\tau_1, \tau_3 g$, the maps $\tau_4, \tau_2 g$ are of degree 2 with one common base-point and we obtain $\theta_2, \ldots, \theta_{n-1}$ as in Situation 1.

- If $r_2 = \bar{r}_1$ and $s_2 = \bar{s}_1$, then $r_1, \bar{r}_2, s_1, \bar{s}_1$ are proper points of \mathbb{P}^2. Moreover, no three collinear: Else, all four would be on one line and so $2m(r_1) + 2m(s_1) \leq D$.

But then the inequality (obtained from inequalities (\star))
\[(\text{ineq}^3) \]
would imply $m(p) + m(q) > D$, which is impossible by Bézout. Since no three are collinear, there exist $\alpha, \beta, \gamma \in \text{Aut}_k(\mathbb{P}^2)$ such that $\alpha(r_1) = p_1, \alpha(s_1) = p_2$ and $\bar{r}_1 := \beta(\alpha) \alpha^{-1} \in \mathcal{J}_r, \bar{r}_2 := \gamma \tau_2 g \alpha^{-1} \in \mathcal{J}_r$ (see Remark 6.2). These correspond to relations in g (Definition 2.7 (2)).

\[\begin{array}{ccc}
\Lambda & g(\Lambda) \\
\downarrow & g(\Lambda) \\
\tau_1(\Lambda) & \tau_2(\Lambda) & \gamma \tau_2 g(\Lambda) \\
\downarrow & \downarrow & \downarrow \\
\beta \tau_1(\Lambda) & \beta \tau_2(\Lambda) & \gamma \tau_2 g(\Lambda)
\end{array} \]

Note that $\bar{r}_2(\bar{r}_1)^{-1} \in \mathcal{J}_r$ and we get from the inequalities at the very beginning of the proof that
\[\deg(\beta_1 \tau_1(\Lambda)) = \deg(\tau_1(\Lambda)) \leq D, \quad \deg(\gamma \tau_2 g(\Lambda)) = \deg(\tau_2 g(\Lambda)) < D. \]
The claim follows with $\theta_2 := \beta, \theta_1 := \tau_2^2(\bar{\tau}_1)^{-1}, \theta_1 = \theta_{n-1} = \gamma^{-1}.$

- **Situation 3** - Assume that there exists no $\tau_1 \in \mathcal{J}_s$ or no $\tau_2 \in \mathcal{J}_s$ of degree 2 with base-points p, r_1, r_2 and $p = g(q), g(s_1), g(s_2)$ respectively.

We essentially look at two cases, depending on who of τ_1, τ_2 exists:

- Assume that neither τ_1 nor τ_2 exists. Since p, r_1, r_2 (resp. q, s_1, s_2) are collinear by Lemma 6.8, it follows that r_1, r_2 are both proximate to p and s_1, s_2 are both proximate to q [AC2002, §2]. Then $m(p) \geq m(r_1) + m(r_2)$, and from Inequalities (★) we obtain $2m(p) \geq m(p) + m(r_1) + m(r_2) \geq D$. Similarly we get $2m(q) > D$. But then $m(p) \geq \frac{D}{2}$ and $m(q) > \frac{D}{2}$, which is impossible by Bézout. So, this case does not appear.

- Assume that τ_1 exists, but τ_2 does not. As above, it follows that s_1, s_2 are both proximate to q and hence $m(q) > \frac{D}{2}$. In particular, by Bézout, $m(q) > m(s_1), m(s_2), m(p), m(r_1), m(r_2)$.

Furthermore, $\tau_1 h \in \mathcal{J}_s$ and (from Inequalities (★))

$$\deg(\tau_1 h) = \deg(h) - 1, \quad \deg(\tau_1(\Lambda)) = 2D - m(p) - m(r_1) - m(r_2) \leq D.$$

We define $\theta_1 := \tau_1 h$ and construct $\theta_2, \ldots, \theta_n$.

If r_1, r_2 are real, let $\{t_1, t_2, t_3\} = \{p, r_1, r_2\}$ such that $m(t_i) \geq m(t_{i+1})$ and such that if t_i is infinitely near t_j then $i > j$. By the chosen ordering, we have

$$m(t_1) + m(t_2) + m(q) \geq \frac{2D}{3} + \frac{D}{2} > D.$$

Moreover, t_1, t_2 are proper points of \mathbb{P}^2 or t_2 is in the first neighbourhood of t_1, hence there exist $\tau_3 \in \mathcal{J}_s$ with base-points $\{1 : 0 : 0\} = g(q), g(t_1), g(t_2)$.

If $r_2 = \bar{r}_1$, then r_1, r_2 are proper points of \mathbb{P}^2 (they are base-points of τ_1). We have from Inequalities (★) and $m(q) > m(p)$ and that

$$m(q) + 2m(r_1) > m(p) + 2m(r_1) \geq D.$$

Thus there exists $\tau_4 \in \mathcal{J}_s$ with base-points $\{1 : 0 : 0\} = g(q), g(r_1), g(r_2)$.

The maps $f(\tau_3)^{-1}$ and $f(\tau_4)^{-1}$ are contained in \mathcal{J}_s and

$$\deg(\tau_3 g(\Lambda)) = 2D - m(q) - m(t_1) - m(t_2) < D,$$

$$\deg(\tau_4 g(\Lambda)) = 2D - m(q) - 2m(r_1) < D$$

Define $\theta_1 := f(\tau_3)^{-1}$ (resp. $\theta_0 := f(\tau_4)^{-1}$). We obtain $\theta_1, \ldots, \theta_6$ by applying Situation 1 to $\tau_1, \tau_3 g$ (resp. $\tau_1, \tau_4 g$).

- The case where τ_1 does not exist and τ_2 exists is treated similarly. □

Lemma 6.11. Let $f \in \mathcal{J}_s$ be a standard or special quintic transformation, $h \in \mathcal{J}_s$, $g \in \text{Aut}_8(\mathbb{P}^2)$ and Λ be a real linear system of degree D. Suppose that

$$\deg(h^{-1}(\Lambda)) \leq D, \quad \deg(f g(\Lambda)) < D.$$

Then there exist $\theta_1, \ldots, \theta_6 \in \text{Aut}_8(\mathbb{P}^2) \cup \mathcal{J}_s \cup \mathcal{J}_s$ such that
(1) \(w(f)w(g)w(h) = w(\theta_0)\cdots w(\theta_1) \) holds in \(\mathcal{G} \), i.e. the following commutative diagram corresponds to a relation in \(\mathcal{G} \):

\[
\begin{array}{ccc}
\Lambda & \xrightarrow{g} & g(\Lambda) \\
\downarrow h & \downarrow f & \\
\downarrow h^{-1}(\Lambda) & \xrightarrow{\theta_1} & \theta_1 \cdots \theta_j f(g(\Lambda))
\end{array}
\]

(2) \(\theta_1 \in \text{Aut}\mathbb{R}(\mathbb{P}^2), \deg(\theta_i \cdots \theta_j h^{-1}(\Lambda)) < D \) for \(i = 2, \ldots, n \)
or \(\theta_1 \in \mathcal{J}_c, \theta_2 \in \text{Aut}\mathbb{R}(\mathbb{P}^2), \deg(\theta_1) = \deg(h) - 1 \) and
\[
\deg(\theta_i(\Lambda)) = \deg(\theta_2\theta_1(\Lambda)) \leq D,
\]
\[
\deg(\theta_i \cdots \theta_j h^{-1}(\Lambda)) < D, \quad i = 3, \ldots, n.
\]

(3) If \(h \in \mathcal{J}_c \) is a standard or special quintic transformation and \(f \in \mathcal{J}_c \), the same statements holds with \(\theta_1 \in \text{Aut}\mathbb{R}(\mathbb{P}^2), \deg(\theta_1 \cdots \theta_j h^{-1}(\Lambda)) < D, \ i = 2, \ldots, n \)
If \(\deg(h^{-1}(\Lambda)) < D \), then "<" holds everywhere.

\textbf{Proof.} We only look at the situation, where \(f \in \mathcal{J}_c, h \in \mathcal{J}_c \), since for \(f \in \mathcal{J}_c, h \in \mathcal{J}_c \), the proof works similarly.

Let \(p := [1 : 0 : 0] \), and define \(m(q) := m_\Lambda(q) \) to be the multiplicity of \(\Lambda \) at \(q \).
Call \(p_1, \ldots, p_2, p_3, \tilde{p}_3 \) the base-points of \(f \). By Lemma 6.5 we have

\[
\text{(Ineq3)} \quad m(p_1) + m(p_2) + m(p_3) > D
\]

By Lemma 6.5 there exist two real or two non-real conjugate base-points \(r_1, r_2 \) of \(h \), such that

\[
\text{(Ineq4)} \quad m(p) + m(r_1) + m(r_2) \geq D
\]

Note that if \(\deg(h^{-1}(\Lambda)) < D \), then "\(> \)" holds everywhere (Lemma 6.5) and we will have "\(< \)" everywhere.

We order \(r_1, r_2 \) such that \(m(r_1) \geq m(r_2) \) and such that \(r_1 \) is a proper point of \(\mathbb{P}^2 \) or infinitely near \(p \) and \(r_2 \) is a proper base-point of \(\mathbb{P}^2 \) or infinitely near \(p \) or \(r_1 \).
Let \(s_1 \cup s_2 \cup s_3 = g^{-1}(p_1 \cup p_2 \cup p_3) \) such that \(m(s_1) \geq m(s_2) \geq m(s_3) \) and if \(s_i \) is infinitely near \(s_j \), then \(i > j \). In particular, \(s_1 \) is a proper point of \(\mathbb{P}^2 \). We now look at two cases, depending on whether \(r_1, r_2 \) are real or not. Inequality (Ineq4) translates to

\[
\text{(Ineq5)} \quad m(s_1) + m(s_2) + m(s_3) > D
\]

We look at two cases, depending on whether \(r_1, r_2 \) are real or not.

Case 1: Suppose that \(r_1, r_2 \) are real points. Let \(t \in \{p, r_1, r_2\} \cap \mathbb{P}^2 \) such that \(m(t) = \max\{m(p), m(r_1), m(r_2)\} \). Then
\[
m(t) + 2m(s_1) > D
\]

There exists \(\tau \in \mathcal{J}_c \) of degree 2, \(\alpha \in \text{Aut}\mathbb{R}(\mathbb{P}^2) \) such that \(\theta_0 \) has base-points \(t, s_1, \tilde{s}_1 \).
There exists \(\beta_1, \beta_2, \beta_3 \in \text{Aut}\mathbb{R}(\mathbb{P}^2) \) such that \(\tilde{\tau} := \beta_1 g(\tau \alpha)^{-1} \beta_1, \tilde{\tau} := \beta_3 f(\beta_2)^{-1} \in \text{Aut}\mathbb{R}(\mathbb{P}^2) \).
There exists a standard or special quintic transformation \(\tau \). Furthermore, from inequality (\ref{ineq:2}), the claim follows with \(\beta \). It is generated by relations in \(G \) (Definition \ref{def:2.7} (2)). Moreover,
\[
\text{deg}(\beta^{-1}) \leq \text{deg}(\tau \alpha(\Lambda)) = 2D - \text{deg}(\tau \alpha(\Lambda)) < D
\]
The claim now follows from applying Lemma \ref{lem:6.10} to \(h, \alpha, \tau \).

Case 2: Assume that \(r_2 = r_1 \). If \(r_1, r_1 \in s_1 \cup s_2 \cup s_2 \), then in particular, \(r_1, r_1 \) are proper points of \(\mathbb{P}^2 \), and by Remark \ref{rem:6.8} the points \(p, r_1, r_1 \) are not collinear.

So, there exists \(\tau \in J \) of degree 2 with base-points \(p, r_1, r_1 \). Let \(\alpha_1, \alpha_2, \alpha_3 \in J_0 \) such that \(\tau := \alpha_2 \alpha_1 \in J_0 \), \(\beta := \alpha_3 f \alpha_1 \in J_0 \). The situation is summarised in the following commutative diagram:

\[
\begin{array}{ccc}
\Lambda & \xrightarrow{\alpha_1} & g(\Lambda) \\
\downarrow \tau & & \downarrow f \\
\tau \alpha(\Lambda) & \xrightarrow{\beta} & \beta \alpha(\Lambda) \\
\downarrow \beta & & \downarrow \beta \\
\beta \alpha(\Lambda) & \xrightarrow{\beta} & f g(\Lambda)
\end{array}
\]

It is generated by relations in \(G \) (Definition \ref{def:2.7} (2)). Note that \(\text{deg}(\tau h) = \text{deg}(h) - 1 \) and
\[
\text{deg}(\beta^{-1}) = \text{deg}(\tau \alpha(\Lambda)) \leq D, \quad \text{deg}(\alpha_3 f \alpha h(\Lambda)) = \text{deg}(f g(\Lambda)) < D
\]
The claim follows with \(\theta_1 := \tau h, \theta_2 := \alpha_2, \theta_3 := \beta \beta, \theta_4 := (\alpha_3)^{-1} \).

So, let \(r_1, r_1 \notin s_1 \cup s_2 \cup s_2 \).

- If \(m(p) < m(r_1) \), then in particular \(r_1, r_1 \) are proper points of \(\mathbb{P}^2 \) and there exists \(\tau \in J \) with base-points \(p, r_1, r_1 \). Remark that
\[
\text{deg}(\tau(\Lambda)) \leq D, \quad \text{deg}(\tau h) = \text{deg}(h) - 1.
\]

Furthermore, from inequality (\ref{ineq:5}) and the order of the \(s_i \)’s we derive the inequality \(2m(r_1) + 2m(s_1) + 2m(s_2) > 2D \). Since moreover \(r_1, s_1 \) are proper points of \(\mathbb{P}^2 \), there exists a standard or special quintic transformation \(\theta \in J_0, \alpha \in \text{Aut}_3(\mathbb{P}^2) \) such that \(\theta \alpha \) has base-points \(g(r_1, s_1, s_2) \). Consider the following diagram:

\[
\begin{array}{ccc}
\Lambda & \xrightarrow{g} & g(\Lambda) \\
\downarrow \tau & & \downarrow f \\
\tau \alpha(\Lambda) & \xrightarrow{\theta \alpha} & \theta \alpha(\Lambda) \\
\downarrow \theta \alpha & & \downarrow \theta \alpha \\
\theta \alpha(\Lambda) & \xrightarrow{\theta \alpha} & f g(\Lambda)
\end{array}
\]

Note that by construction of \(\theta \), we have
\[
\text{deg}(\theta \alpha(\Lambda)) = 5D - 4m(r_1) - 4m(s_1) - 4m(s_2) < D
\]
The maps τ, ϕ, θ are in the situation of the Case 1, and θ, α, f satisfy the assumptions of Lemma 6.7, and the claim follows from them.

- If $m(p) \geq m(r_1)$, then $m(p) + 2m(s_1) > D$ and so there exists $\tau \in \mathcal{J}_s$ with base-points p, s_1, \bar{s}_1. We proceed as in Case 1 (where r_1, r_2 are real but the map we construct is of the same kind).

\begin{proposition} \text{([Proposition 2.9])} \label{prop:6.12} \text{Let } f_1, \ldots, f_m \in \text{Aut}_R(\mathbb{P}^2) \cup \mathcal{J}_s \cup \mathcal{J}_0 \text{ such that}

\[f_m \cdots f_1 = \text{Id} \quad \text{in } \text{Bir}_R(\mathbb{P}^2). \]

\text{Then}

\[w(f_m) \cdots w(f_1) = 1 \quad \text{in } \mathcal{G}. \]

\text{In particular, the natural surjective homomorphism } \mathcal{G} \to \text{Bir}_R(\mathbb{P}^2) \text{ is an isomorphism.}

\begin{proof}

Let Λ_0 be the linear system of lines in \mathbb{P}^2, and define

\[\Lambda_i := (f_1 \cdots f_i)(\Lambda_0) \]

It is the linear system of the map $(f_1 \cdots f_i)^{-1}$ and of degree $d_i := \deg(f_1 \cdots f_i)$.

Define

\[D := \max\{d_i \mid i = 1, \ldots, m\}, \quad n := \max\{i \mid d_i = D\}, \quad k := \sum_{i=1}^n (\deg(f_i) - 1) \]

We use induction on the lexicographically ordered pair (D, k).

If $D = 1$, then f_1, \ldots, f_m are linear maps, and thus $w(f_m) \cdots w(f_1) = 1$ holds in $\text{Aut}_R(\mathbb{P}^2)$ (and hence in \mathcal{G}). So, let's assume that $D > 1$. Note that by construction $\deg(f_{n+1}) \geq 2$. We may assume that f_n is a linear map - else we can insert Id after f_n, i.e. $w(f_m) \cdots w(f_1) = w(f_m) \cdots w(f_{n+1})w(\text{Id})w(f_n) \cdots w(f_1)$, which does not change (D, k).

We now construct maps $\theta_1, \ldots, \theta_N \in \text{Aut}_R(\mathbb{P}^2) \cup \mathcal{J}_s \cup \mathcal{J}_0$ such that

\[w(f_{n+1})w(f_n)w(f_{n-1}) = w(\theta_N) \cdots w(\theta_1) \]

and such that the pair (\tilde{D}, \tilde{k}) associated to $f_m \cdots f_{n+1}\theta_N \cdots \theta_1f_{n-2} \cdots f_1$ is strictly smaller than (D, k).

If $f_{n-1}, f_{n+1} \in \mathcal{J}_s$, we apply Lemma 6.10 to f_{n-1}, f_n, f_{n+1} to decrease (D, k).

If $f_{n-1} \in \mathcal{J}_0$ or $f_{n+1} \in \mathcal{J}_0$, we have to look at three cases, depending on to which group they belong to. We will only do one case as the other two are done similarly.

Suppose that $f_{n-1} \in \mathcal{J}_0$ and $f_{n+1} \in \mathcal{J}_s$. By Lemma 6.5, there exists a base-point q of $(f_{n-1})^{-1}$ of multiplicity 2 such that $m(p_1) + m(p_2) + m(q) \geq D$, or there exists $i \in \{1, 2\}$ such that $2m(p_i) + m(r) \geq D$, where r is the simple base-point of $(f_{n-1})^{-1}$. We can assume that q is either a proper point of \mathbb{P}^2 or in the first neighbourhood of one of $p_1, \bar{p}_1, p_2, \bar{p}_2$.

- If $m(p_1) + m(p_2) + m(q) \geq D$ for some non-real base-point q of $(f_{n-1})^{-1}$ of multiplicity 2, then $p_1, \bar{p}_2, q, \bar{q}$ are not one conic (Lemma 3.1). So, there exists a
There exist standard or special quintic transformation \(\theta \in \mathcal{J}_0 \) with base-points \(p_1, \ldots, \bar{p}_2, q, \bar{q} \). Then \(\theta f_{n-1} \in \mathcal{J}_0 \) and

\[
(*) \quad \deg(\theta f_{n-1}) = \deg(f_{n-1}) - 4 < \deg(f_{n-1}), \quad \deg(\theta(A_{n-1})) \leq D.
\]

Applying Lemma 6.11 to \(\theta^{-1}, f_n, f_{n+1} \) decreases \((D, k)\).

- If \(m(p_1) + m(p_2) + m(q) \geq D \) for some real base-point \(q \) of \(f \) of multiplicity 2, then \(q \) is a proper point of \(\mathbb{P}^2 \). If \(\deg(f_{n-1}) \) is odd, then by Bézout, \(q \) is not collinear with any two of \(p_1, \bar{p}_1, p_2, \bar{p}_2 \), and there exists \(\tilde{\theta} \in \mathcal{J}_0 \) of degree 3 with base-points \(q, p_1, \ldots, \bar{p}_2 \) (Lemma 5.3). If \(\deg(f_{n-1}) \) is even, let \(p_i \) be a base-point of multiplicity \(\deg(f_{n-1}) \). By Bézout, \(q \) is not collinear with any two of \(\{p_1, \bar{p}_1, p_2, \bar{p}_2\} \) except maybe \(p_3, \bar{p}_3 \). It follows from Lemma 3.3 that there exists \(\theta_2 \in \mathcal{J}_0 \) of degree 2 with base-points \(q, p_i, \bar{p}_i \). Note that for \(i = 1, 2 \), \(\theta_i f_{n+1} \in \mathcal{J}_0 \) and

\[
(**) \quad \deg(\theta_i f_{n-1}) = \deg(f_{n-1}) - 2 < \deg(f_{n-1}), \quad \deg(\theta(A_{n-1})) \leq D
\]

There exist \(\tilde{\theta} \in \mathcal{J}_0 \) and \(\alpha, \alpha_1 \in \text{Aut}_0(\mathbb{P}^2) \) such that \(\theta = \alpha \tilde{\theta} \alpha_1 \). By Definition 2.7 (2), \(w(\theta_1) = w(\alpha_2)w(\tilde{\theta})w(\alpha_1) \) and we can apply Lemma 6.10 to \(\theta^{-1}, f_n(\alpha_1)^{-1}, f_{n+1} \), which decreases \((D, k)\).

- Suppose that there is no base-point \(q \) of multiplicity 2 such that \(m(p_i) + m(p_{i+1}) + m(q) \geq D \), which means by Lemma 6.5 that

\begin{enumerate}
 \item \(d \) is even,
 \item \(m(r) + 2m(p_i) \geq D, i \in \{1, 2\} \),
 \item \(2m(p_i) + m(r) > D \) if \(\deg(f_{n-1}) \) is odd.
\end{enumerate}

If \(\deg(f_{n-1}) = 2 \), there exist \(\alpha, \beta \in \text{Aut}_0(\mathbb{P}^2), \tau \in \mathcal{J}_0 \) such that \(f_{n-1} = \beta \tau \alpha \in \mathcal{J}_0 \).

Applying Lemma 6.10 to \(\tau, f_n(\alpha_1)^{-1}, f_{n+1} \) decreases \((D, k)\).

If \(\deg(f_{n-1}) \) is odd, the point \(r \) may not be a proper point of \(\mathbb{P}^2 \). We denote by \(\tilde{r} \) the proper point of \(\mathbb{P}^2 \) to which \(r \) is infinitely near to, if \(r \) is not a proper point of \(\mathbb{P}^2 \), and \(s = r \) if \(r \) is a proper point of \(\mathbb{P}^2 \). The above list still holds if we write \(s \) instead of \(r \). In particular, \(p_i, \bar{p}_i, s \) are not collinear and so there exists \(\tau \in \mathcal{J}_0 \) of degree 2 with base-points \(s, p_i, \bar{p}_i \) (Lemma 3.3). Then \(\tau f_{n-1} \in \mathcal{J}_0 \) and

\[
\deg(\tau(A_{n-1})) = 2D - m(r) - 2m(p_i) < D.
\]

The situation is summarised in the following commutative diagram:

\[
\begin{array}{c}
\Lambda_{n-1} \\
\downarrow f_{n-1} \\
\Lambda_n \downarrow f_n \\
\downarrow \tau \downarrow f_{n+1} \\
\Lambda_{n-1} \rightarrow \tau(A_{n-1})
\end{array}
\]

There exist \(\alpha, \beta \in \text{Aut}_0(\mathbb{P}^2), \tilde{\tau} \in \mathcal{J}_0 \) of degree 2 such that \(\tau = \beta \tilde{\tau} \alpha \). Applying Lemma 6.10 to \(\tau, f_n(\alpha_1)^{-1}, f_{n+1} \) decreases \((D, k)\).

\[\square\]

REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-11</td>
<td>G. Crippa, N. Gusev, S. Spirito, E. Wiedemann</td>
<td>Non-Uniqueness and Prescribed Energy for the Continuity Equation</td>
</tr>
<tr>
<td>2015-12</td>
<td>G. Crippa, S. Spirito</td>
<td>Renormalized Solutions of the 2D Euler Equations</td>
</tr>
<tr>
<td>2015-13</td>
<td>G. Crippa, E. Semenova, S. Spirito</td>
<td>Strong Continuity for the 2D Euler Equations</td>
</tr>
<tr>
<td>2015-14</td>
<td>J. Diaz, M. J. Grote</td>
<td>Multi-Level Explicit Local Time-Stepping Methods for Second-Order Wave Equations</td>
</tr>
<tr>
<td>2015-15</td>
<td>F. Da Lio, L. Martinazzi, T. Riviere</td>
<td>Blow-up analysis of a nonlocal Liouville-type equation</td>
</tr>
<tr>
<td>2015-16</td>
<td>A. Maalaoui, L. Martinazzi, A. Schikorra</td>
<td>Blow-up behaviour of a fractional Adams-Moser-Trudinger type inequality in odd dimension</td>
</tr>
<tr>
<td>2015-17</td>
<td>T. Boulenger, E. Lenzmann</td>
<td>Blowup for Biharmonic NLS</td>
</tr>
<tr>
<td>2015-18</td>
<td>D. Masser, U. Zannier (with Appendix by V. Flynn)</td>
<td>Torsion point on families of simple abelian surfaces and Pell's equation over polynomial rings</td>
</tr>
<tr>
<td>2015-20</td>
<td>J. Dölz, H. Harbrecht, M. Peters</td>
<td>An interpolation-based fast multipole method for higher order boundary elements on parametric surfaces</td>
</tr>
<tr>
<td>2015-21</td>
<td>A. Schikorra</td>
<td>Nonlinear Comutators for the fractional p-Laplacian and applications</td>
</tr>
<tr>
<td>2015-22</td>
<td>L. Martinazzi</td>
<td>Fractional Adams-Moser-Trudinger type inequalities</td>
</tr>
</tbody>
</table>

Preprints are available under https://math.unibas.ch/research/publications
<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-23</td>
<td>P. Habegger, J. Pila</td>
<td>O-Minimality and certain atypical intersections</td>
</tr>
<tr>
<td>2015-24</td>
<td>P. Habegger</td>
<td>Singular Moduli that are Algebraic Units</td>
</tr>
<tr>
<td>2015-25</td>
<td>P. Habegger, F. Pazuki</td>
<td>Bad Reduction of genus 2 curves with CM jacobian varieties</td>
</tr>
<tr>
<td>2015-26</td>
<td>A. Bohun, F. Bouchut, G. Crippa</td>
<td>Lagrangian solutions to the 2D Euler system with L^1 vorticity and infinite energy</td>
</tr>
<tr>
<td>2015-28</td>
<td>P. Habegger, G. Jones, D. Masser</td>
<td>Six unlikely intersection problems in search of effectivity</td>
</tr>
<tr>
<td>2015-29</td>
<td>M. Griebel, H. Harbrecht, M. Peters</td>
<td>Multilevel quadrature for elliptic parametric partial differential equations on non-nested meshes</td>
</tr>
<tr>
<td>2015-30</td>
<td>M. J. Grote, M. Kray, F. Nataf, F. Assous</td>
<td>Time-dependent wave splitting and source separation</td>
</tr>
<tr>
<td>2015-31</td>
<td>T. Boulenger, D. Himmelsbach, E. Lenzmann</td>
<td>Blowup for fractional NLS</td>
</tr>
<tr>
<td>2015-32</td>
<td>A. Hyder</td>
<td>Moser functions and fractional Moser-Trudinger type inequalities</td>
</tr>
<tr>
<td>2015-33</td>
<td>S. Zimmermann</td>
<td>The Cremona group of the plane is compactly presented</td>
</tr>
<tr>
<td>2015-34</td>
<td>S. Zimmermann</td>
<td>The Abelianisation of the real Cremona group</td>
</tr>
</tbody>
</table>

Preprints are available under https://math.unibas.ch/research/publications