
Mathematical analysis of

the transmission dynamics

of the liver fluke,

Opisthorchis viverrini

C. Bürli, H. Harbrecht, P. Odermatt, S. Sayasone, N. Chitnis

Departement Mathematik und Informatik Preprint No. 2016-34
Fachbereich Mathematik December 2016
Universität Basel
CH-4051 Basel www.math.unibas.ch



Mathematical Analysis of the Transmission Dynamics of the Liver
Fluke,Opisthorchis viverrini

Christine B¬urlia,d,⇤, Helmut Harbrechtd, Peter Odermatta,b, Somphou Sayasonea,b,c, Nakul
Chitnisa,b

aSwiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
bUniversity of Basel, Basel, Switzerland

cNational Institute of Public Health, Vientiane, Lao PDR
dDepartment of Mathematics and Computer Science, University of Basel, Basel, Switzerland

Abstract

We develop and analyse two population-based models of the transmission dynamics of the
worm parasiteOpisthorchis viverrini. The life cycle ofO. viverrini includes humans, cats
and dogs as deÞnitive hosts; and snails and Þsh as intermediate hosts. The Þrst model has
only one deÞnitive host (humans) while the second model has two additional hosts: the
reservoir hosts, cats and dogs. We deÞne reproduction numbers and endemic equilibrium
points for the two models. We use prevalence data for the Þve hosts from two islands in Lao
PeopleÕs Democratic Republic to estimate distributions of parameter values. We use these
distributions to compute the sensitivity index and the partial rank correlation coe�cient of
the basic reproduction number and the endemic equilibrium point to the parameters. We
calculate distributions of the host-speciÞc type-reproduction number to show that humans
are necessary to maintain transmission and can sustain transmission without additional
reservoir hosts. Therefore interventions targeting humans could be su�cient to interrupt
transmission ofO. viverrini .
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1. Introduction

Food-borne trematodiases are some of the most neglected of the so-called neglected
tropical diseases. They are caused by digenetic trematodes, which live in the biliary duct
of their host animal [1]. The disease opisthorchiasis is caused by the worm parasites
Opisthorchis viverrini, O. felineus and Clonorchis sinensis. The liver ßukeO. viverrini is
endemic in Asia, mainly in Thailand, Lao PeopleÕs Democratic Republic (Lao PDR) and
Cambodia [2]. Worldwide 9Ð10 million people are infected with this liver ßuke [2, 3] and
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67.3 million are at risk of infection. Transmission is found in areas where humans have the
habit of eating raw, pickled or undercooked Þsh [4].

Figure 1 shows the life cycle ofO. viverrini (and correspondingly ofO. felineus and
C. sinensis). The Þrst intermediate hosts ofO. viverrini are snails of the genusBithynia
[5]. Freshwater snails ingest eggs, where they hatch to become miracidia. After approx-
imately two months, infected snails release cercariae. The free-swimming cercariae pene-
trate through the skin of the second intermediate hosts, Cyprinidae Þsh [6], and become
fully infective metacercariae after 21 days [1].

The deÞnitive hosts ofO. viverrini , humans and other mammals like cats and dogs, get
infected through the consumption of undercooked Þsh infected with metacercariae. A dish
with raw Þsh can contain hundreds of viableO. viverrini metacercariae [7]. The immature
worm of O. viverrini migrates from the duodenum into the biliary tract. After one month
the worm matures into an adult worm and mates within the lumen of the bile ducts and
gall bladder. The eggs of the worm travel through the bile ducts, enter the lumen and pass
out with the faeces [8]. The daily output of infected humans ranges between 3,000 and
36,000 eggs per gram of stool. The life span of the worms in humans is around ten years.
The whole life cycle ofO. viverrini has a duration of four months [2, 6].

Infection with worms leads to many liver diseases including cholangitis, obstructive
jaundice, hepatomegaly, biliary periductal Þbrosis, cholecystitis, and cholelithiasis. Treat-
ment of worms usually consists of three doses of praziquantel, which is cheap, safe and
e↵ective in killing worms. However, treatment of any subsequent liver disease is expensive
and di�cult. Chronic infection with O. viverrini can also lead to the bile duct cancer,
cholangiocarcinoma [8]. This kind of cancer is rare but with a poor prognosis [9].

Dogs
Cats

Humans

Eggs

SnailsCercariaeFish

Figure 1: Schematic of the life cycle of O. viverrini
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There are no published papers in mathematical modelling ofO. viverrini , but there is
one on modelling the related parasiteC. sinensis. Songet al. developed a catalytic model
to estimate equilibrium transmission rates [10]. However, catalytic models are based on
linear ordinary di↵erential equations (ODEs) with constant coe�cients, so they cannot
capture the nonlinear dynamics of transmission.

There are also many publications on modelling schistosomiasis, a similar disease with
only one intermediate host, the snail. Schistosome parasites infect the human as cercariae
in the free-swimming stage, whereasO. viverrini cercariae infect Þsh [11]. The Þrst model
of schistosmiasis was by Hairston in 1965. He used life-tables to calculate the net repro-
ductive rate of the parasite, modelling female and male worms separately [12]. In the same
year, Macdonald developed a dynamic model with the probability of pairing worms and the
proportion of hosts with paired worms [13]. Go↵mann and Warren adopted the Kermack-
McKendrick susceptible-infectious-recovered (SIR) model to humans and snails, including
the free swimming miracidia and cercariae [14]. Nûasell and Hirsch developed a stochastic
model of the intensity of infection [11]. Anderson and May developed an ODE model with
the mean worm burden in the human host. They split the snails into three groups: sus-
ceptible, latent and shedding [15]. Habbema simulated a stochastic model of the intensity
and prevalence in individual humans [16]. We base our model on Anderson and May by
tracking the mean worm burden instead of the prevalence of infection in humans, because
infectivity to snails and human morbidity depend on the intensity of infection. Similar to
previous schistosomiasis models for snails, we use susceptible-infectious models for snails
and Þsh.

To create a basis for the mathematical modelling of food-borne trematodes with population-
based models, we develop two di↵erent models. We Þrst develop a simple model that only
includes infection in Þsh, snails and humans. We then develop a second model that also
includes infection in cats and dogs. These models allow us to better understand the role
of domestic pets in the transmission dynamics ofO. viverrini .

For these models, we deÞne the equilibrium points, the basic reproduction number
and the host-speciÞc type-reproduction numbers. We support these deÞnitions by explicit
calculations supported by Mathematica 10.0.2. We then use data from Lao PeopleÕs Demo-
cratic Republic to estimate reasonable distributions for the parameter values of the models.
We conduct sensitivity analysis using these distributions on the equilibrium points and the
reproduction numbers for both models to determine weak points in the parasiteÕs life cycle
and the role of each mammalian host in maintaining transmission. We perform all the
numerical computations in Matlab R2016a.

2. Basic transmission model

In the basic transmission model we assume that only Þsh, snails and humans are in-
volved into the life cycle ofO. viverrini , ignoring the reservoir hosts: cats and dogs. We
model the mean worm burden in human and the prevalences of infected snails and Þsh.
The deterministic population-based ordinary di↵erential equation (ODE) model represents
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the base transmission dynamics ofO. viverrini . It is given by

dwh

dt
= ! hf Nf if � µphwh, (1a)

dis
dt

= ! shNhwh(1 � is) � µsis, (1b)

dif
dt

= ! fs Nsis(1 � if ) � µf if , (1c)

with the state variables shown in Table 1 and the parameters shown in Table 2.

Variable Description
wh Mean worm burden per human host
wd Mean worm burden per dog host
wc Mean worm burden per cat host
is Proportion of infectious snails
if Proportion of infectious Þsh

Table 1: State variables of the opisthrochiasis models

The mean worm burden per human hostwh increases with the consumption of infected
Þsh. This includes the number of Þsh, the proportion of infectious Þsh and the transmission
rate of parasites to humans per Þsh,! hf Nf if , and decreases with the death of parasites,
µphwh. The proportion of infectious snailsis, depends on the total adult worm population
and the eggs they produce that enter the aquatic environment,! shNhwh(1� is). Snails are
infected until they die at a total rate, µsis. The proportion of infectious Þsh has similar
dynamics. Their rate of infection depends on the number of infectious snails and the snailsÕ
rate of releasing cerceriae,! fs Nsis(1 � if ). The Þsh remain infected until they die at a
total rate, µf if .

2.1. Existence and uniqueness of the solution
The system with the equations (1) is well-posed and epidemiologically relevant in the

strip S ⇢ R3. The strip S is deÞned by the boundaries of the solutions of the system
(wh, is, if ),

S =
!
0,

Nf ! hf

µph

"
⇥ [0, 1]2 .

The right hand side of the ODE system (1) is continuous with continuous partial derivatives
in S. We assume that an initial condition exists in the stripS. We can then show that a
solution of the system cannot leave this stripS:

(i) If wh = 0, then

dwh

dt
= ! hf Nf if � µph á0 � 0,

4



and, if wh = Nf ! hf

µph
, then

dwh

dt
= ! hf Nf if � µph á

Nf ! hf

µph
 0.

(ii) If is = 0, then

dis
dt

= ! shNhwh á1� µs á0 � 0,

and, if is = 1, then

dis
dt

= ! shNhwh á0� µs á1  0.

(iii) If if = 0, then

dif
dt

= ! fs Nsis á1� µfs á0 � 0,

and, if if = 1, then

dif
dt

= ! fs Nsis á0� µfs á0  0.

It Þnally follows with the Picard-Lindel¬of theorem that a unique solution exists for the
ODE system (1) in the strip S.

2.2. Equilibrium points

Definition 1 (Disease free equilibrium point). The disease free equilibrium, also called
trivial equilibrium point, is the steady state solution with no disease in the population.

Definition 2 (Endemic equilibrium point). The endemic equilibrium point is the steady
state solution with all state variables positive, where the disease persists in the population.

Setting the derivatives equal to zero, the equilibrium points are given as the solution of

0 = ! hf Nf i
⇤
f � µphw

⇤
h,

0 = ! shNhw
⇤
h(1 � i

⇤
s) � µsi

⇤
s,

0 = ! fs Nsi
⇤
s(1 � i

⇤
f ) � µf i

⇤
f .

The system has two solutions, the disease free and the endemic equilibrium point. The
disease free equilibrium point is characterized byEBM

0 = ( w⇤
h, i

⇤
s, i

⇤
f ) = (0 , 0, 0). The
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endemic equilibrium pointEBM
e = ( w⇤

h, i
⇤
s, i

⇤
f ) corresponds to

w

⇤
h =

! hf ! sh! fs NsNhNf � µphµsµf

! shNhµph(! fs Ns + µf )
, (2a)

i

⇤
s =

! hf ! sh! fs NsNhNf � µphµsµf

! fs Ns(! hf ! shNhNf + µphµs)
, (2b)

i

⇤
f =

! hf ! sh! fs NsNhNf � µphµsµf

! hf ! shNhNf (! fs Ns + µf )
, (2c)

which is in the interior of S if ! hf ! sh! fs NsNhNf > µphµsµf .

2.3. Basic reproduction number

Definition 3 (Basic reproduction number). The basic reproduction numberR 0 is the
average number of new cases of an infection (or number of parasite o↵spring) caused by
one typical infected individual (or one parasite), from one generation to the next, in a
population with no pre-existing infections.

To determineR 0, we deÞne the next-generation matrix (NGM)K. This matrix relates
the numbers of newly infected individuals or number of adult parasites in consecutive
generations.R 0 is then deÞned as the dominant eigenvalue ofK.

The linearised infection subsystem describes the production of newly infected individu-
als and changes in the states of already infected individuals. To derive the next-generation
matrix K, we decompose the matrix, which describes the linearised model, into two matri-
ces,T and⌃. T describes transmission: the production of new infections; and⌃ describes
transition: the changes in state.K is deÞned as the product of�T and ⌃�1 and R 0 is
the spectral radius," , of K. Therefore,R 0 = " (�T⌃�1).

The interpretation of the (i,j)-th entry of ⌃�1 is the expected time that an individual,
who presently has the infected statej, will spend in the infected statei. The (i,j)-th entry
of T is the rate at which an individual in the infected statej produces individuals with the
infected statei. Therefore, the (i,j)-th entry of the NGM K is the expected number of the
infected o↵spring with the state i who are infected by an individual currently in infected
state j [17].

The transmission matrix is

T =

#

$
0 0 ! hf Nf

! shNh 0 0
0 ! fs Ns 0

%

&
,

and the transition matrix is

⌃ =

#

$
�µph 0 0

0 �µs 0
0 0 �µf

%

&
.
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The next-generation matrix of the basic model is therefore

K = �T⌃�1 =

#

'
$

0 0 ! hf N f

µf
! sh Nh

µph
0 0

0 ! fs Ns

µs
0

%

(
& .

The eigenvalues of the next-generation matrixK are

#1 = 3

)
! hf ! sh! fs NhNsNf

µphµsµf
,

#2 = �(�1)
1
3 3

)
! hf ! sh! fs NhNsNf

µphµsµf
,

#3 = ( �1)
2
3 3

)
! hf ! sh! fs NhNsNf

µphµsµf
.

All eigenvalues have the same modulus, so the (not strictly) dominant eigenvalue is#1, the
only real and positive eigenvalue ofK. Hence, it follows that

R 0 = 3

)
! hf ! sh! fs NhNsNf

µphµsµf
. (3)

The ecological deÞnition of the basic reproduction number is the number of o↵spring
adult worms produced by a single adult worm in its life time, in the absence of density-
dependence. This number corresponds to the cube ofR 0 deÞned in (3) to include all life
stages of the parasite.

2.4. Stability of the equilibrium points

The basic reproduction number provides a threshold condition for the stability of the
disease free equilibrium point. IfR 0 < 1, then the disease free equilibrium point is locally
asymptotically stable, and if R 0 > 1 it is unstable. We conjecture that the disease free
equilibrium point is globally asymptotically stable ifR 0  1 because we do not expect any
non-equilibrium asymptotic dynamics but we do not have a proof for this.

The endemic equilibrium exists if and only if! hf ! sh! fs NhNsNf > µphµsµf , that is
R 0 > 1. To investigate the local stability of the endemic equilibrium point, we use the
Routh-Horwitz Criterion (Proposition 1 in the Appendix) to determine the signs of the
real parts of the eigenvalues of the Jacobian matrix.
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The Jacobian matrix of the basic model at the endemic equilibrium point is

J =

#

$
�µph 0 ! hf Nf

! shNh(1 � i

⇤
s) �(! shNhw

⇤
h + µs) 0

0 ! fs Ns(1 � i

⇤
f ) �(! fs Nsi

⇤
s + µf )

%

&

=:

#

$
�j1,1 0 j1,3

j2,1 �j2,2 0
0 j3,2 �j3,3

%

&
,

for w

⇤
h, i⇤s and i

⇤
f , deÞned in (2). The eigenvalues of the Jacobian matrix are calculated

by setting the characteristic polynomialp(#) = det( J � #E) to zero. This leads to the
equation

#3 + #2(j1,1 + j2,2 + j3,3) + #(j1,1j2,2 + j1,1j3,3 + j2,2j3,3)

+ j1,1j2,2j3,3 � j1,3j2,1j3,2
!= 0 .

We can determine theai of the Routh-Horwitz criterion in Proposition 1 for i = 0 , 1, 2, 3:

a0 = 1 ,

a1 = j1,1 + j2,2 + j3,3,

a2 = j1,1j2,2 + j1,1j3,3 + j2,2j3,3,

a3 = j1,1j2,2ij3,3 � j1,3j2,1j3,2.

With all the ai Õs at hand, we can calculate theTkÕs fork = 0 , 1, 2 and see if they are
positive or negative:

T0 = a0 = 1 > 0,

T1 = a1 > 0,

T2 = det
!
a1 a0

a3 a2

"
> 0 , ! hf ! sh! fs NhNsNf > µphµsµf , R 0 > 1.

From the Routh-Hurwitz criterion it follows that the roots of the characteristic poly-
nomial p(#) have negative real parts and thus the eigenvalues ofJ. This means that the
endemic equilibrium is locally asymptotically stable wheneverR 0 > 1.

3. Model with reservoir hosts

In the second transmission model we add cats and dogs as reservoir hosts to the basic
transmission model. We extend the basic model (1) by including two additional variables:
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the mean number of adult parasites per hosts in dogs (wd) and cats (wc). This leads to

dwh

dt
= ! hf Nf if � µphwh, (4a)

dwd

dt
= ! df Nf if � µpdwd, (4b)

dwc

dt
= ! cf Nf if � µpcwc, (4c)

dis
dt

= ( ! shNhwh + ! sdNdwd + ! scNcwc)(1 � is) � µsis, (4d)

dif
dt

= ! fs Nsis(1 � if ) � µf if . (4e)

The additional state variables are given in Table 1 and the additional parameters are given
in Table 2.

3.1. Existence and uniqueness of the solution

The existence and the uniqueness of the solution (wh, wd, wc, is, if ) of the ODE system
(4) follows in complete analogy to Section 2.1 in the stripS ⇢ R5 given by

D =
!
0,

Nf ! hf

µph

"
⇥

!
0,

Nf ! df

µpd

"
⇥

!
0,

Nf ! cf

µpc

"
⇥ [0, 1]2 .

3.2. Equilibrium points

For the model with reservoir hosts (4) we solve the following system

0 = ! hf Nf i
⇤
f � µphw

⇤
h,

0 = ! df Nf i
⇤
f � µpdw

⇤
d,

0 = ! cf Nf i
⇤
f � µpcw

⇤
c ,

0 = ( ! shNhw
⇤
h + ! sdNdw

⇤
d + ! scNcw

⇤
c)(1 � i

⇤
s) � µsi

⇤
s,

0 = ! fs Nsi
⇤
s(1 � i

⇤
f ) � µf i

⇤
f ,

to determine the equilibrium points. We see thatERM
0 = ( w⇤

h, w
⇤
d, w

⇤
c , i

⇤
s, i

⇤
f ) = (0 , 0, 0, 0, 0)

is the disease free equilibrium point and show the existence of at most one endemic equi-
librium point. We calculated an analytic expression for this endemic equilibrium but do
not present it here because of its length.
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3.3. Basic reproduction number

To deÞne the reproduction number of the model with reservoir hosts (4), we use the
same method as for the basic model before. Hence, we obtain the transmission matrix

T =

#

'
'
'
'
$

0 0 0 0 ! hf Nf

0 0 0 0 ! df Nf

0 0 0 0 ! cf Nf

! shNh ! sdNd ! scNc 0 0
0 0 0 ! fs Ns 0

%

(
(
(
(
&

and the transition matrix

⌃ =

#

'
'
'
'
$

�µph 0 0 0 0
0 �µpd 0 0 0
0 0 �µpc 0 0
0 0 0 �µs 0
0 0 0 0 �µf

%

(
(
(
(
&
.

The next-generation matrix is thus deÞned as

K = �T⌃�1 =

#

'
'
'
'
'
'
$

0 0 0 0 ! hf N f

µf

0 0 0 0 ! df N f

µf

0 0 0 0 ! cf N f

µf
! sh Nh

µph

! sd Nd
µpd

! sc Nc
µpc

0 0

0 0 0 ! fs Ns

µs
0

%

(
(
(
(
(
(
&

.

The eigenvalues of the next-generation matrixK are the roots of the characteristic poly-
nomial:

det(K� #E) =

�#5 + #2 ! fs Ns

µs

*
! cf Nf

µf

! scNc

µpc
+

! sdNd

µpd

! df Nf

µf
+

! hf Nf

µf

! shNh

µph

+
!= 0
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Straightforward calculation yields:

#1 = #2 = 0 ,

#3 = 3

)
! fs Ns

µs

3

)
! cf Nf

µf

! scNc

µpc
+

! sdNd

µpd

! df Nf

µf
+

! hf Nf

µf

! shNh

µph
,

#4 = �(�1)
1
3 3

)
! fs Ns

µs

3

)
! cf Nf

µf

! scNc

µpc
+

! sdNd

µpd

! df Nf

µf
+

! hf Nf

µf

! shNh

µph
,

#5 = ( �1)
2
3 3

)
! sf Ns

µs

3

)
! cf Nf

µf

! scNc

µpc
+

! df Nf

µf

! sdNd

µpd
+

! hf Nf

µf

! shNh

µph
.

Since#4 and #5 are complex numbers,#3 is the dominant real eigenvalue ofK, and the
reproduction number is

R 0 = 3

)
! fs Ns

µs

3

)
! cf Nf

µf

! scNc

µpc
+

! sdNd

µpd

! df Nf

µf
+

! hf Nf

µf

! shNh

µph
.

The endemic equilibrium point exists if and only ifR 0 > 1. We expect that is locally
asymptotically stable forR 0 > 1 but did not prove this.

3.4. Type reproduction numbers

To determine the role of cats and dogs in maintaining transmission, we analyse host-
speciÞc type-reproduction numbers. They are given by the spectral radii of the next-
generation matrices with leaving out one or more host types [18].Ui is the host-speciÞc
and Qj is the host excluded reproduction number, which are deÞned as

Ui = " (Ki ),

Qj = " (I�Kj ),

whereKi is the next-generation matrix of only including hosti. In this multi-host pop-
ulation with n types of hosts, the reservoir community is deÞned as the minimum set
of hosts with U > 1. A maintenance host is the minimum ofm (m  n) di↵erent
hosts which satisfyU > 1 and Q < 1 [19]. With the type reproduction number, we
can deÞne the reservoir community and subdivide the hosts into maintenance and non-
maintenance hosts. Transmission is not possible without snails and Þsh, so we always
include them in the model while determining the role of the three mammalian hosts, that
meansi 2 { humans (h), dogs (d), cats (c)} .
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Population with an endemic infectious disease:R 0 > 1

Reservoir community (U > 1 andQ < 1)

Maintenance host (U > 1)
Non-Maintenance host

Figure 2: Definition of reservoir, maintenance, and non-maintenance hosts in a population with an endemic

infectious disease, figure based on [19, Figure 3]

The di↵erent next-generation matrices and their spectral radii are given by

Uh(= Qd,c) = " (Kh) = "

,

-
-
-
-
-
.

#

'
'
'
'
'
$

0 0 0 0 ! hf N f

µf

0 0 0 0 0
0 0 0 0 0

! sh Nh
µph

0 0 0 0

0 0 0 ! fs Ns

µs
0

%

(
(
(
(
(
&

/

0
0
0
0
0
1

= 3

)
Nf NhNs! hf ! sh! fs

µf µphµs
,

Ud(= Qh,c) = " (Kd) = "

,

-
-
-
-
-
.

#

'
'
'
'
'
$

0 0 0 0 0
0 0 0 0 ! df N f

µf

0 0 0 0 0
0 ! sd Nd

µpd
0 0 0

0 0 0 ! fs Ns

µs
0

%

(
(
(
(
(
&

/

0
0
0
0
0
1

= 3

)
Nf NsNd! df ! fs ! sd

µf µpdµs
,
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Uc(= Qh,d) = " (Kc) = "

,

-
-
-
-
-
.

#

'
'
'
'
'
$

0 0 0 0 0
0 0 0 0 0
0 0 0 0 ! cf N f

µf

0 0 ! sc Nc
µpc

0 0

0 0 0 ! fs Ns

µs
0

%

(
(
(
(
(
&

/

0
0
0
0
0
1

= 3

)
Nf NsNc! cf ! fs ! sc

µf µpcµs
,

Qh(= Ud,c) = " (Kd,c) = "

,

-
-
-
-
-
-
.

#

'
'
'
'
'
'
$

0 0 0 0 0
0 0 0 0 ! df N f

µf

0 0 0 0 ! cf N f

µf

0 ! sd Nd
µpd

! sc Nc
µpc

0 0

0 0 0 ! fs Ns

µs
0

%

(
(
(
(
(
(
&

/

0
0
0
0
0
0
1

= 3

)
Ns! fs

µs

*
Nf Nd! df ! sd

µf µpd
+

Nf Nc! cf ! sc

µf µpc

+
,

Qc(= Uh,d) = " (Kh,d) = "

,

-
-
-
-
-
-
.

#

'
'
'
'
'
'
$

0 0 0 0 ! hf N f

µf

0 0 0 0 ! df N f

µf

0 0 0 0 0
! sh Nh

µph

! sd Nd
µpd

0 0 0

0 0 0 ! fs Ns

µs
0

%

(
(
(
(
(
(
&

/

0
0
0
0
0
0
1

= 3

)
Ns! fs

µs

*
Nf Nh! hf ! sh

µf µph
+

Nf Nd! df ! sd

µf µpd

+
,
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+
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.
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4. Sensitivity analysis

Sensitivity analysis describes what happens to some dependent variables when one or
more independent parameters are changed [20]. Thus, we can see the inßuence of the
di↵erent parameter to the basic reproduction number, the host-speciÞc type-reproduction
number and the endemic equilibrium point.

4.1. Data and parameter values

Data on prevelance of infection in cats, dogs, snails, and Þsh; and on intensity of
infection in humans was collected from two islands Don Khon and Don Som, Champasack
province, Lao PeopleÕs Democratic Republic (Lao PDR), from October 2011 to August
2012. The number hosts tested and found positive is shown in Table 3 [21]. Additional
data on the number of worm eggs per gram of human stool is not shown here.

We assume triangular distributions as prior distributions for the model parameters and
estimate ranges and modes from the data in Table 3, literature, and expert opinions, as
shown in Tables 4 and 5. We assume that the mean life span of parasite in humans (µph)
is 10 years, mean life span of a snail (µs) is 1 year and of a Þsh (µf ) is 2.5 years [22]. We
assume that parasites in cats (µpc) and dogs (µpd) die after 4 years, which is the average
life span of cats and dogs in the area. We use the population sizes of humans from the
study in Lao PDR [21]. From discussions with local village chiefs, we assume that there
are half as many dogs as humans and a third as many cats as humans. We further expect
that there are a lot more snails than Þsh. We calculate the modes of the transmission
parameters (! ) by assuming! sh = ! sd = ! sc and solving the system of equations (4) of
the endemic equilibrium point for the data given in Table 3 (after converting the mean
worm burden in humans, cats, and dogs to prevalence as described in Section 4.2. For the
basic model (1), we multiply! sh from the reservoir model by three to account for increased
transmission from humans in the absence of reservoir hosts. We estimate wide ranges for
the transmission parameters and the population sizes of snails and Þsh because we have
little data on these values.

4.2. Sample construction and maximum likelihood estimation

We use a Bayesian sampling resampling approach to better estimate parameter distri-
butions. We Þrst draw 100,000 sample sets of parameter values, for both the basic and
the reservoir hosts models, from the prior triangular distributions with modes and ranges
described in Tables 4 and 5. We Þlter out samples that correspond to values ofR 0 < 1.
In the basic model 92,872 (93%) parameter sets correspond toR 0 > 1 and in the reservoir
hosts model 84,548 (85%) correspond toR 0 > 1.

For the resampling, we calculate probabilities from the likelihood that the solution of
the equations is at the equilibrium point corresponding to the data in Table 5 (and the
eggs per gram in each human tested). We deÞne the likelihood functionL of the model
with reservoir hosts (4) as

L = LhLdLcLsLf ,
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and of the basic model (1) as
L = LhLsLf ,

where

Lh =
nh!

ph!(nh � ph)!
(i⇤h)ph (1 � i

⇤
h)(nh �ph )

,

Ld =
nd!

pd!(nd � pd)!
(i⇤d)pd (1 � i

⇤
d)(nd�pd )

,

Lc =
nc!

pc!(nc � pc)!
(i⇤c)pc (1 � i

⇤
c)(nc�pc)

,

Ls =
ns!

ps!(ns � ps)!
(i⇤s)ps (1 � i

⇤
s)(ns�ps )

,

Lf =
nf !

pf !(nf � pf )!

2
i

⇤
f

3pf (1 � i

⇤
f )(nf �pf )

,

assuming that the equilibrium prevalencesi⇤h, i⇤d, i⇤c, i⇤s, and i

⇤
f are binomially distributed.

For the three mammalian hosts we need to convert the mean worm burden at the endemic
equilibrium into prevalence of infection. For humans we have data on both prevalence and
intensity of infection (eggs per gram in stool for each human). We use the pre-calculated
relationship from literature, y = x

2 to convert the eggs per gram in stool,y, into mean
worm burden,x, [23]. We assume a negative binomial distribution for the number of worms
per person, leading to the relation between mean number of eggs per person (M ) and the
prevalence (P ) [24],

P = 1 �
*

1 +
M

k

+�k

. (5)

We assume that cats and dogs have the same relationship between mean worm burden
and eggs per gram in stool and the same distribution for the number of worms per host as
humans. The prevalence of infection in humans isP = 0 .6066 (calculated from Table 3) and
the mean number of eggs per person isM = 1108.2, so from equation (5),k = 0 .10020566.
It follows that the prevalences in cats and dogs are

i

⇤
c = 1 �

4

1 +
(w⇤

c)2

k

5 �k

,

i

⇤
d = 1 �

4

1 +
(w⇤

d)2

k

5 �k

.

We resample 2,000 sets of parameter values with probability proportional to the likelihood
function with replacement1 [25, 26].

1
MatlabR2016a: bootstrp
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To optimize all the infection rates (! ), we maximize2 the logarithm of the likelihood
function starting from the resampled parameter set with the highest likelihood [27, 28].
The maximum likelihood estimates are shown in Table 6.
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Figure 3: Distributions of the basic reproduction number R 0 of the basic (1) and the model with reservoir

hosts (4) calculated for the resampled parameter distributions from Section 4.2.

4.3. Threshold conditions

The basic reproduction numberR 0 calculated for each of these 2,000 samples is shown
in Figure 3. Note that values ofR 0 < 1 are excluded because we assume the existence of
the endemic equilibrium point. For this equilibrium point, we numerically show that all
eigenvalues of the Jacobian matrix have negative real parts so it is locally asymptotically
stable.

We calculate the distributions of the type reproduction numbers from the resampled
distributions of the parameter values (Figure 4). Humans, snails, and Þsh belong to the
reservoir community because their host-speciÞc type-reproduction number is likely bigger
than 1 (U > 1) and their host excluded type-reproduction number is likely smaller than
1 (Q < 1). Humans, snails, and Þsh are also maintenance-hosts, because they are the
minimum set which satisÞesU > 1. The host speciÞc type-reproduction number of cats
and dogs is smaller than 1 (Ud, Uc < 1), so they are non-maintenance hosts.

The host-speciÞc type-reproduction numbers, calculated with the parameter values in

2
MatlabR2016a: fminsearch
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Table 6 from the maximum likelihood estimation, are

Uh = 1 .0925, Qh = 0 .4089,

Ud = 0 .3015, Qd = 1 .1038,

Uc = 0 .7176, Qc = 1 .1001.

4.4. Local sensitivity analysis

The local sensitivity index is the ratio of the relative change in the variable and the
relative change in the variable. Hence, we deÞne the normalized forward sensitivity index
of a variableu and the parameterp as, see [29],

⌥u
p :=

du
dp

⇥ p

u

. (6)

We Þrst use the formula in (6) to calculate the sensitivity index ofR 0 in the basic
model (1) with respect to! hf :

⌥R 0
! hf

=
dR 0

d! hf
⇥ ! hf

R 0
=

1

3!
2
3
hf

3

)
! sh! fs NhNsNf

µphµsµf
⇥ ! hf

3

6
! hf ! sh ! fs Nh Ns Nf

µph µs µf

=
1
3
.

The calculation is similar for the sensitivity indices ofR 0 with respect to ! sh,! fs ,Nh,Ns

and Nf . For the sensitivity indices of R 0 with respect to µph, µs and µf we have, for
example,

⌥R 0
µph

=
dR 0

dµph
⇥ µph

R 0
= � 1

3µ
4
3
ph

3

)
! hf ! sh! fs NhNsNf

µsµf
⇥ µph

3

6
! hf ! sh ! fs Nh Ns Nf

µph µs µf

= �1
3
.

Therefore if, for example,! hf increases by 100%, thenR 0 increases by 33%. Ifµph

increases by 100%, thenR 0 decreases by 33%. Since the sensitivity index ofR 0 is inde-
pendent of any other parameters, it is valid locally and globally. Due to the same absolute
value of the sensitivity index, all parameters are equally important forR 0.

The sensitivity index of the state variables at the endemic equilibrium of the basic
model is for example
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dw⇤
h

d! hf
⇥ ! hf

w

⇤
h

=
! sh! fs NhNf Ns

! shNhµph(! fs Ns + µf )
⇥ ! hf

! shNhµph(! fs Ns + µf )
! hf ! sh! fs NhNf Ns � µphµsµf

=
! hf ! sh! fs NhNf Ns

! hf ! sh! fs NhNf Ns � µphµsµf
.

Figure 6 (a) shows the sensitivity index ofw⇤
h for the parameter values from Table 4. The

local sensitivity analysis for the model with reservoirs host (4) is performed as described
in formula (6). The results for R 0 are shown in Figure 5 (b) and the results forw⇤

h are
shown in Figure 6 (b).

4.5. Global sensitivity analysis and numerical simulation

We use partial rank correlation coe�cients (PRCC) to analyse the sensitivity globally
and to compare the inßuence of the parameters onR 0 and on the endemic equilibrium
point. To calculate the PRCC, we used the Matlab implementation of the PRCC function
developed in [30]3. The function was run on the 2,000 samples from Section 4.2.

Figures 5 (c) and (d) show, from the top to the bottom, the inßuence of the change
in the parameter onR 0 and Figures 6 (c) and (d) show the inßuence onw⇤

h in the basic
model (1) and in the model with reservoir hosts (4). The closer the absolute value is to
one, the more inßuence the parameter has on the output.

In the basic model (1), the death rate of snails (µs) has the most global inßuence on
R 0, followed by the death rate of parasites in humans (µph) and the death rate of Þsh (µf ).
However there is little di↵erence between the parameter values, so the basic model is not
able to di↵erentiate between the sensitivity of the parameters onR 0. For the model with
reservoir hosts (4), the death rates of snails and Þsh (µs, µf ), followed by death rate of
parasites in humans (µph) have the most global inßuence onR 0.

The death rate of parasites in humans (µph) has the most global inßuence on the mean
worm burden of humans at the endemic equilibrium pointw⇤

h in both models, followed by
the Þsh to human transmission rate (! hf ) and the number of Þsh (Nf ).

In Figure 7 we show two dimensional sensitivity analysis ofR 0 (of both models) to the
population sizes of the Þve hosts with all other parameters as in Table 6. Figure 7 (a)
shows the dependence ofR 0 of the basic model (1) when the numbers of snails (Ns) and
Þsh (Nf ) are varied. R 0 depends more strongly on the population size of snails than of
Þsh. The sensitivity ofR 0 for the model with reservoir hosts (4) is presented in Figures 7
(b)Ð(d). Figure 7 (b) shows the variation ofR 0 to the number of snails (Ns) and Þsh (Nf ).
Similar to the basic model,R 0 increases faster with more snails faster than with more Þsh.
In Figure 7 (c), we see thatR 0 increases faster with the number of dogs (Nd) than with
the number of cats (Nc). Figure 7 (d) shows that when the numbers of humans (Nh) and
cats (Nc) are varied,R 0 increases more rapidly with the number of cats.

3
http://malthus.micro.med.umich.edu/lab/usanalysis.html (24.10.2016)
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We show numerical simulations of the basic model (1) and of the model with reservoir
hosts (4) in Figure 8. For both models the parameter values are given in Table 6 and the
initial conditions are wh = 1, wd = 1, wc = 1, is = 0 and if = 0. We use the Dormand-
Prince method4 to integrate over the time interval [0, 70000], which corresponds to a time
period of 190 years.

5. Discussion

We analysed two population-based models of transmission dynamics of theO. viver-
rini . The basic model (1) includes the intermediate hosts snails and Þsh, and humans as
deÞnitive hosts. We extended this model to a model with reservoir hosts (4) by including
cats and dogs as additional deÞnitive hosts. We proved that the models are mathemat-
ically and epidemiologically well-posed. We obtained an explicit expression for the basic
reproduction numberR 0. We deÞned the disease-free and the endemic equilibrium points,
showed the criterion for the existence of these points points, and investigated their stability
with respect to R 0. We used Bayesian sampling-resampling with data from two islands
in Lao PDR to construct distributions for the parameter values. We Þnally simulated the
mean worm burden in the deÞnitive hosts and the prevalence in the intermediate hosts
over time.

The host-speciÞc type-reproduction number deÞnes the number of new infection from
one infected individual when certain types of hosts are excluded from the model. It helps
to identify the reservoir community and their maintenance hosts. We showed that humans,
snails, and Þsh are maintenance-hosts because they can sustain transmission on their own.
Furthermore, transmission is not possible if any of these species is removed from the cycle,
so they are also reservoir hosts. This implies that it is possible to interrupt transmission
with interventions that only target humans and ignore cats and dogs. For example, im-
proving sanitation to an high enough level would be su�cient to eliminate opisthorchis
transmission in Lao PDR.

The basic model could not di↵erentiate between the sensitivity of the parameters on
the basic reproduction number,R 0. Sensitivity analysis of the model with reservoir hosts
showed thatR 0 depends mostly on the death rate of parasites in humans (µph), of snails
(µs), and of Þsh (µf ), and the population sizes of snails (Ns) and Þsh (Nf ). Increasing the
death rate of parasites in humans (µph) is possible through regular treatment of humans
with praziquantel. Increasing the death rates of snails (µs) and Þsh (µf ) is more di�cult,
but reducing the number of snails is possible through snail control. Improved sanitation
(which lowers ! sh) and safe Þsh production (which lowers! hf ) have a moderate e↵ect on
reducingR 0.

There are some di↵erences in the sensitivity indices of the equilibrium mean worm
burden in humans (w⇤

h) between the basic and the model with reservoir hosts and between
the local and global analysis (Figure 6). However, the death rate of parasites in humans

4
MatlabR2016a: ode45
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(µph), the transmission rate from Þsh to humans (! fs ) and the number of Þsh (Nf ) most
often have a high sensitivity index. This suggests that regular treatment of humans and
safe Þsh production are the most e↵ective intervention in reducing the parasite burden in
humans. Sensitivity analysis of the model with reservoir hosts (4) showed that the cats
have more inßuence on the worm burden in humans than dogs.

In both models, we ignored seasonality, the age of humans, the dynamics of infection
in Þsh and the latent period in snails and Þsh. Transmission ofO. viverrini follows a
seasonal pattern because of increases in the number of snails and Þsh in the rainy season.
This implies that interventions could be more e↵ective if targeted in the right season.
Additionally it may also be possible that in the rainy season, cats or dogs could sustain
transmission. We also assume all humans are the same and ignore the fact that babies
are born without infection and children have a lower worm burden than adults. Since
humans accumulate parasites over their life times, heterogeneity in the distribution of
worms in humans may lead to sustained transmission even at lower mean worm burdens.
The infection rate from Þsh to the deÞnitive hosts (! hf , ! df , ! cf ) depends on the intensity
of infection in Þsh. We ignore the intensity of infection in Þsh, but model the prevalence
of infected Þsh. Similar to the heterogeneity in humans, the heterogeneity of intensity of
infection in Þsh could lead to higher transmission. Infected snails and Þsh are not infectious
immediately but need some time for the parasite to develop. This latent period could lead
to a lower prevalence of infectious snails and Þsh, because infected snails and Þsh can die
before becoming infectious. We plan to investigate the implication of these assumptions in
future work.

This work suggests that including cats and dogs in a model of opisthorchis allows us
to better di↵erentiate the most important parameters for maintaining transmission and
reducing worm burden in humans. However cats and dogs are not necessary to maintain
transmission so it would be possible to eliminateO. viverrini by only targeting humans
with e↵ective interventions such as regular treatment, safe Þsh production and improved
sanitation.

Appendix

Proposition 1 (Routh-Horwitz criterion, see [31]). For a polynomial

f (x) = a0x
3 + a1x

2 + a2x + a3 = 0 (.1)

with ai 2 R for i = 0 , 1, 2, 3, the number of roots with positive real parts is equal to the
number of sign changes in either one of the sequences

T0, T1,
T2

T1

or

T0, T1, T1T2,
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where

T0 = a0 > 0, T1 = a1, T2 = det
!
a1 a0

a3 a2

"
.

Given a0 > 0, all roots have negative real parts if and only ifT0, T1 and T2 are all positive.
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Parameter Description Dimension
Nh Population size of humans Animals
Nd Population size of dogs Animals
Nc Population size of cats Animals
Ns Population size of snails Animals
Nf Population size of Þsh Animals
µph Per capita death rate of adult parasites in

humans (includes additional mortality due to
death of humans)

1/Time

µpd Per capita death rate of adult parasites in
dogs (includes additional mortality due to
death of dogs)

1/Time

µpc Per capita death rate of adult parasites in cats
(includes additional mortality due to death of
cats)

1/Time

µs Per capita death rate of snails 1/Time
µf Per capita death rate of Þsh including mor-

tality through Þshing by humans
1/Time

! hf Transmission rate from infectious Þsh to hu-
mans per person per Þsh

1/(Time ⇥ Animals)

! df Transmission rate from infectious Þsh to dogs
per dog per Þsh

1/(Time ⇥ Animals)

! cf Transmission rate from infectious Þsh to cats
per cat per Þsh

1/(Time ⇥ Animals)

! sd Infection rate of snails per parasite in a dog
host

1/(Time ⇥ Animals)

! sc Infection rate of snails per parasite in a cat
host

1/(Time ⇥ Animals)

! sh Infection rate of snails per parasite in a hu-
man host

1/(Time ⇥ Animals)

! fs Infection rate of Þsh per snail 1/(Time⇥ Animals)

Table 2: Parameters of the opisthorchiasis model
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Variable Description Value
nh number of tested humans 994
ph number of positive tested humans 603
nd number of tested dogs 68
pd number of positive tested dogs 17
nc number of tested cats 64
pc number of positive tested cats 34
ns number of tested snails 3102
ps number of positive tested snails 9
nf number of tested Þsh 628
pf number of positive tested Þsh 169

Table 3: Total number tested and positive hosts from two islands in Lao PDR [21].

Variable Value Range Unit
! hf 4.898⇥ 10�5 [4.898⇥ 10�6

, 9.795⇥ 10�5] 1/(Animal x Day)
! sh 9.160⇥ 10�11 [9.160⇥ 10�12

, 1.832⇥ 10�10] 1/(Animal x Day)
! fs 3.477⇥ 10�5 [3.477⇥ 10�6

, 6.954⇥ 10�5] 1/(Animal x Day)
Nh 14542 [1454.2, 29084] Animals
Ns 20000 [2000, 40000] Animals
Nf 8000 [800, 16000] Animals
µph

1
10⇥365

7
1

20⇥365,
1

1⇥365

8
1/Days

µs
1

1⇥365

7
1

2⇥365,
1

0.1⇥365

8
1/Days

µf
1

2.5⇥365

7
1

5⇥365,
1

0.25⇥365

8
1/Days

Table 4: Parameter values and ranges of the basic model (1)
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Variable Value Range Unit
! hf 4.898⇥ 10�5 [4.898⇥ 10�6

, 9.795⇥ 10�5] 1/(Animal x Day)
! df 4.110⇥ 10�6 [4.110⇥ 10�7

, 8.220⇥ 10�6] 1/(Animal x Day)
! cf 4.414⇥ 10�5 [4.414⇥ 10�6

, 8.829⇥ 10�5] 1/(Animal x Day)
! sh 3.053⇥ 10�11 [3.053⇥ 10�12

, 6.107⇥ 10�11] 1/(Animal x Day)
! sd 3.053⇥ 10�11 [3.053⇥ 10�12

, 6.107⇥ 10�11] 1/(Animal x Day)
! sc 3.053⇥ 10�11 [3.053⇥ 10�12

, 6.107⇥ 10�11] 1/(Animal x Day)
! fs 3.477⇥ 10�5 [3.477⇥ 10�6

, 6.954⇥ 10�5] 1/(Animal x Day)
Nh 14542 [7271, 21813] Animals
Nd 7271 [3635.5, 10906.5] Animals
Nc 4847 [2423.5, 7270.5] Animals
Ns 20000 [2000, 40000] Animals
Nf 8000 [800, 16000] Animals
µph

1
10⇥365

7
1

20⇥365,
1

1⇥365

8
1/Days

µpd
1

4⇥365

7
1

8⇥365,
1

0.4⇥365

8
1/Days

µpc
1

4⇥365

7
1

8⇥365,
1

0.4⇥365

8
1/Days

µs
1

1⇥365

7
1

2⇥365,
1

0.1⇥365

8
1/Days

µf
1

2.5⇥365

7
1

5⇥30,
1

0.25⇥365

8
1/Days

Table 5: Parameter values and ranges of the model with reservoir hosts (4)
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Basic model Model with reservoir hosts
Parameter MLE MLE
! hf 3.5004⇥ 10�5 5.0034⇥ 10�5

! df - 2.5322⇥ 10�6

! cf - 1.6864⇥ 10�5

! sh 8.8758⇥ 10�11 7.3474⇥ 10�11

! sd - 8.3955⇥ 10�11

! sc - 1.9027⇥ 10�11

! fs 1.5144⇥ 10�5 4.0902⇥ 10�5

Nh 9, 045 17, 006
Nd - 8, 062
Nc - 4, 951
Ns 23, 337 22, 321
Nf 4, 593 5, 152
µph

1
2.1641⇥365

1
1.3148⇥365

µpd - 1
1.0081⇥365

µpc - 1
1.6260⇥365

µs
1

1.6998⇥365
1

1.8210⇥365
µf

1
1.7099⇥365

1
0.3808⇥365

Reproduction number
R 0 1.1112 1.1112

Table 6: Maximum likelihood estimation (MLE) and the corresponding basic reproduction number (R 0)
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Figure 4: Distributions of the host-specific type-reproduction numbers of the model with reservoir hosts

(4) calculated from the resampled parameter distributions from Section 4.2.28
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Figure 5: Local sensitivity indices and partial rank correlation coe! cients (PRCC) of the basic reproduc-

tion number R 0 for the basic model (1) and the model with reservoir hosts (4).
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Figure 6: Local sensitivity indices and partial rank correlation coe! cients (PRCC) of mean worm burden

in humans at the endemic equilibrium point w!
h of the basic model (1) and the model with reservoir hosts

(4).
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Figure 7: Basic reproduction number R 0 for the basic model (1) and the model with reservoir hosts (4)

varying population sizes of two hosts with all other parameters as in Table 6.
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(b) Model with reservoir hosts

Figure 8: Numerical simulations of the opisthorchiasis models (1) and (4) with the Dormand-Prince method

over a time line of 70,000 days. The initial values are 1 for the worm burdens and 0 for the prevalences.

The parameter values are in Table 6.
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