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Abstract

We develop and analyse two population-based models of the transmission dynamics of the
worm parasite Opisthorchis viverrini. The life cycle ofO. viverrini includes humans, cats
and dogs as debnitive hosts; and snails and bsh as intermediate hosts. The brst model has
only one debnitive host (humans) while the second model has two additional hosts: the
reservoir hosts, cats and dogs. We debne reproduction numbers and endemic equilibrium
points for the two models. We use prevalence data for the Pve hosts from two islands in Lao
PeopleOs Democratic Republic to estimate distributions of parameter values. We use these
distributions to compute the sensitivity index and the partial rank correlation co#icient of

the basic reproduction number and the endemic equilibrium point to the parameters. We
calculate distributions of the host-specibc type-reproduction number to show that humans
are necessary to maintain transmission and can sustain transmission without additional
reservoir hosts. Therefore interventions targeting humans could befBdient to interrupt
transmission ofO. viverrini.
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1. Introduction

Food-borne trematodiases are some of the most neglected of the so-called neglected
tropical diseases. They are caused by digenetic trematodes, which live in the biliary duct
of their host animal [1]. The disease opisthorchiasis is caused by the worm parasites
Opisthorchis viverrini, O. felineus and Clonorchis sinensis The liver Buke O. viverrini is
endemic in Asia, mainly in Thailand, Lao PeopleOs Democratic Republic (Lao PDR) and
Cambodia [2]. Worldwide 9D10 million people are infected with this liver Buke [2, 3] and
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67.3 million are at risk of infection. Transmission is found in areas where humans have the
habit of eating raw, pickled or undercooked Psh [4].

Figure 1 shows the life cycle 0O. viverrini (and correspondingly ofO. felineus and
C. sinensig). The brst intermediate hosts ofO. viverrini are snails of the genuithynia
[5]. Freshwater snails ingest eggs, where they hatch to become miracidia. After approx-
imately two months, infected snails release cercariae. The free-swimming cercariae pene-
trate through the skin of the second intermediate hosts, Cyprinidae psh [6], and become
fully infective metacercariae after 21 days [1].

The debnitive hosts 0. viverrini, humans and other mammals like cats and dogs, get
infected through the consumption of undercooked bsh infected with metacercariae. A dish
with raw Psh can contain hundreds of viabl®©. viverrini metacercariae [7]. The immature
worm of O. viverrini migrates from the duodenum into the biliary tract. After one month
the worm matures into an adult worm and mates within the lumen of the bile ducts and
gall bladder. The eggs of the worm travel through the bile ducts, enter the lumen and pass
out with the faeces [8]. The daily output of infected humans ranges between 3,000 and
36,000 eggs per gram of stool. The life span of the worms in humans is around ten years.
The whole life cycle ofO. viverrini has a duration of four months [2, 6].

Infection with worms leads to many liver diseases including cholangitis, obstructive
jaundice, hepatomegaly, biliary periductal Pbrosis, cholecystitis, and cholelithiasis. Treat-
ment of worms usually consists of three doses of praziquantel, which is cheap, safe and
effective in killing worms. However, treatment of any subsequent liver disease is expensive
and difficult. Chronic infection with O. viverrini can also lead to the bile duct cancer,
cholangiocarcinoma [8]. This kind of cancer is rare but with a poor prognosis [9].

Dogs
Cats

Humans\

Fish [«————|Cercariag« Snails

Figure 1: Schematic of the life cycle of O. viverrini



There are no published papers in mathematical modelling Gf. viverrini, but there is
one on modelling the related parasit€. sinensis Songet al. developed a catalytic model
to estimate equilibrium transmission rates [10]. However, catalytic models are based on
linear ordinary differential equations (ODES) with constant coficients, so they cannot
capture the nonlinear dynamics of transmission.

There are also many publications on modelling schistosomiasis, a similar disease with
only one intermediate host, the snail. Schistosome parasites infect the human as cercariae
in the free-swimming stage, wheread. viverrini cercariae infect bsh [11]. The Prst model
of schistosmiasis was by Hairston in 1965. He used life-tables to calculate the net repro-
ductive rate of the parasite, modelling female and male worms separately [12]. In the same
year, Macdonald developed a dynamic model with the probability of pairing worms and the
proportion of hosts with paired worms [13]. Giimann and Warren adopted the Kermack-
McKendrick susceptible-infectious-recovered (SIR) model to humans and snails, including
the free swimming miracidia and cercariae [14]. Nasell and Hirsch developed a stochastic
model of the intensity of infection [11]. Anderson and May developed an ODE model with
the mean worm burden in the human host. They split the snails into three groups: sus-
ceptible, latent and shedding [15]. Habbema simulated a stochastic model of the intensity
and prevalence in individual humans [16]. We base our model on Anderson and May by
tracking the mean worm burden instead of the prevalence of infection in humans, because
infectivity to snails and human morbidity depend on the intensity of infection. Similar to
previous schistosomiasis models for snails, we use susceptible-infectious models for snails
and psh.

To create a basis for the mathematical modelling of food-borne trematodes with population-
based models, we develop two ftierent models. We brst develop a simple model that only
includes infection in Psh, snails and humans. We then develop a second model that also
includes infection in cats and dogs. These models allow us to better understand the role
of domestic pets in the transmission dynamics @. viverrini.

For these models, we debne the equilibrium points, the basic reproduction number
and the host-specibc type-reproduction numbers. We support these debnitions by explicit
calculations supported by Mathematica 10.0.2. We then use data from Lao PeopleOs Demo-
cratic Republic to estimate reasonable distributions for the parameter values of the models.
We conduct sensitivity analysis using these distributions on the equilibrium points and the
reproduction numbers for both models to determine weak points in the parasiteOs life cycle
and the role of each mammalian host in maintaining transmission. We perform all the
numerical computations in Matlab R2016a.

2. Basic transmission model

In the basic transmission model we assume that only bsh, snails and humans are in-
volved into the life cycle ofO. viverrini, ignoring the reservoir hosts: cats and dogs. We
model the mean worm burden in human and the prevalences of infected snails and pbsh.
The deterministic population-based ordinary dierential equation (ODE) model represents



the base transmission dynamics d. viverrini. It is given by

d
% = Dhr Nidt — pphwh, (1a)
di
G = e Nhun(l - is) - pss, (1b)
di
% = Vs Nots(1 — i) — pus it (1c)

with the state variables shown in Table 1 and the parameters shown in Table 2.

Variable Description

Wh Mean worm burden per human host
Wy Mean worm burden per dog host
We Mean worm burden per cat host

Is Proportion of infectious snails

i Proportion of infectious bpsh

Table 1: State variables of the opisthrochiasis models

The mean worm burden per human hosi, increases with the consumption of infected
psh. This includes the number of bsh, the proportion of infectious Psh and the transmission
rate of parasites to humans per bsH,s Vi i, and decreases with the death of parasites,
tphwh. The proportion of infectious snailsis, depends on the total adult worm population
and the eggs they produce that enter the aquatic environmenitg, Nywn (1 —is). Shails are
infected until they die at a total rate, usis. The proportion of infectious bPsh has similar
dynamics. Their rate of infection depends on the number of infectious snails and the snailsO
rate of releasing cerceriad, s Ngis(1 — is). The Psh remain infected until they die at a
total rate, us is .

2.1. Existence and uniqueness of the solution
The system with the equations (1) is well-posed and epidemiologically relevant in the
strip S c R3. The strip S is dePned by the boundaries of the solutions of the system
(wh, is, if ),
| "
gz - 0 Ni !t
Hph

x [0,1F.

The right hand side of the ODE system (1) is continuous with continuous partial derivatives
in S. We assume that an initial condition exists in the stripS. We can then show that a
solution of the system cannot leave this strib"

(i) If wy =0, then

dwh

o Ui Nits — ppn @0 > 0,



Nt !t

and, if Wh = W’ then
dw _ , V¢ !
T; = Dt Nitr — pph @ Lphhf <0
(ii) If is = 0, then
di . .
ﬁ = L sn Nywn al—us ao > 0,
dt
and, if . = 1, then
di
£ = I sn NVhwhn éO—usélS 0.
(i) If i¢ =0, then
di
M = 1 (o Nuis &1 — s 80 > O,
d¢
and, if ir = 1, then
di , .
T = s Veis @0 — jus 0 <0

It Pnally follows with the Picard-Lindelof theorem that a unique solution exists for the
ODE system (1) in the strip S.

2.2. Equilibrium points
Definition 1 (Disease free equilibrium point). The disease free equilibrium, also called
trivial equilibrium point, is the steady state solution with no disease in the population.

Definition 2 (Endemic equilibrium point). The endemic equilibrium point is the steady
state solution with all state variables positive, where the disease persists in the population.

Setting the derivatives equal to zero, the equilibrium points are given as the solution of

0 = !ht Neif — pphwy,

0= snNnwp(1 — ig) — psts,
The system has two solutions, the disease free and the endemic equilibrium point. The
disease free equilibrium point is characterized by§M = (wy,4%,47) = (0,0,0). The



endemic equilibrium point EEM = (wy;, i%, if) corresponds to

o — ot tsn! s NsNo Nt — piph pispis

w 2a
" PshVhpaph (! £s Ns + pi1) (22)
= Pt ! sh! ts Vs Nn Nt — piph s fis (2b)
S i No(Uii VsnNaN; + pipnfis)
Vg Vsn! 1 Ns Nn N —
Z;k — - hfsh®fs [Vs{VhIVE Hph fbs LU (2C)

Pht DsnNaN; (Fis Ns + pie)
which is in the interior of S if !'ns ! sp! s NsNa Nt > pipnjtsfis -

2.3. Basic reproduction number

Definition 3 (Basic reproduction number). The basic reproduction numbeR is the
average number of new cases of an infection (or number of parasitgspring) caused by
one typical infected individual (or one parasite), from one generation to the next, in a
population with no pre-existing infections.

To determine R, we dePne the next-generation matrix (NGMXK. This matrix relates
the numbers of newly infected individuals or number of adult parasites in consecutive
generations.R is then debned as the dominant eigenvalue Bi.

The linearised infection subsystem describes the production of newly infected individu-
als and changes in the states of already infected individuals. To derive the next-generation
matrix K, we decompose the matrix, which describes the linearised model, into two matri-
ces, T and X. T describes transmission: the production of new infections; aldescribes
transition: the changes in state.K is debned as the product ofT and X~ and Ry is
the spectral radius,", of K. Therefore,Ry = "(-TX™1).

The interpretation of the (i,j)-th entry of -1 is the expected time that an individual,
who presently has the infected statg, will spend in the infected statei. The (7,5)-th entry
of T is the rate at which an individual in the infected statej produces individuals with the
infected statei. Therefore, the (,j)-th entry of the NGM K is the expected number of the
infected dfspring with the state « who are infected by an individual currently in infected
state j [17].

The transmission matrix is

# %
0 0 Uit Vs

T = $!shNh 0 0
O !fSNS 0

and the transition matrix is

# %
—pph 0 0

=% 0 —u O0&.
0 0 —m



The next-generation matrix of the basic model is therefore

# %

0 0 (lnNt h;f“f
K= —Tx 1= glanl suhp:‘h | 0 0
0 - fs NS 0

Hs

The eigenvalues of the next-generation matriX are

)

4 = 3 Uit sh! fs Vn Ns Vi

L=

,t)tph,usuf

= _(—1)} Pie ! sn! s Nn Ns NVt

,= —(—

) HphHsfht

ez ()39 if P sh! ts Vn Ns IVt

3= (— .

Hph s it

All eigenvalues have the same modulus, so the (not strictly) dominant eigenvaluefis the
only real and positive eigenvalue oK. Hence, it follows that

)
Roz 3

Pie P sh! £s IV Vs IV

3
Hph s 4t 3

The ecological debnition of the basic reproduction number is the number dfspring
adult worms produced by a single adult worm in its life time, in the absence of density-
dependence. This number corresponds to the cube®§ debned in (3) to include all life
stages of the parasite.

2.4. Stability of the equilibrium points

The basic reproduction number provides a threshold condition for the stability of the
disease free equilibrium point. IRy < 1, then the disease free equilibrium point is locally
asymptotically stable, and ifRy > 1 it is unstable. We conjecture that the disease free
equilibrium point is globally asymptotically stable ifRy < 1 because we do not expect any
non-equilibrium asymptotic dynamics but we do not have a proof for this.

The endemic equilibrium exists if and only ifl yt ! sp! s NnNs Nt > pipnptspes , that is
Ro > 1. To investigate the local stability of the endemic equilibrium point, we use the
Routh-Horwitz Criterion (Proposition 1 in the Appendix) to determine the signs of the
real parts of the eigenvalues of the Jacobian matrix.



The Jacobian matrix of the basic model at the endemic equilibrium point is

# %
—fiph 0 Ut Vi
J= B No(@ —i2) —(! shNpwit + pig) 0 &
" 0 ! f%/é\/s(l — Z;k) —(I fs NSZ; + ,uf)

=11 0 i3
=% jo1 —jo2 0 &,
0  Jjs2 —Js3
for wy, @ and ¢f, debned in (2). The eigenvalues of the Jacobian matrix are calculated

by setting the characteristic polynomialp(#) = det(J — #E) to zero. This leads to the
equation

#+ #2(jia + oo+ jaz) + #(jrid22 + j11d3z + j22733)
+ J1,1J2,2J33 — J1,3J2,1J32 = 0.

We can determine thea; of the Routh-Horwitz criterion in Proposition 1 fori =0,1, 2 3:

ap=1,

a1 = jia ¥t ja2t Jas,

az = j1aj22 t J1a1js3 t J22J33,
az = J1,1J2.20J33 — J1,3J2,1J3,2

With all the «;Os at hand, we can calculate tHEOs fork = 0,1,2 and see if they are
positive or negative:

T0:a0=1>0,
T1:a1>|0,

T, = det Zl ZO >0 Ui en! 1s NaNeN; > pipnpispti < Ro > 1.
3 2

From the Routh-Hurwitz criterion it follows that the roots of the characteristic poly-
nomial p(#) have negative real parts and thus the eigenvalues @f This means that the
endemic equilibrium is locally asymptotically stable wheneveR, > 1.

3. Model with reservoir hosts

In the second transmission model we add cats and dogs as reservoir hosts to the basic
transmission model. We extend the basic model (1) by including two additional variables:



the mean number of adult parasites per hosts in dogs{) and cats (w.). This leads to

dwh

o Unt Ni it — fiphwn, (4a)
dw .
Td =g Niis — HpdWd, (4b)
t
dw .
d—c =l Niig — HpcWe, (4c)
t
di . .
ditS = (! shNhIUh + ! stdwd + schwc)(l - ZS) — Hsls, (4d)
di . , .
ditf =1 fs Nsls(l - Zf) — s 25 . (4e)

The additional state variables are given in Table 1 and the additional parameters are given
in Table 2.

3.1. Existence and uniqueness of the solution

The existence and the uniqueness of the solutiony, wy, we, s, 7t ) of the ODE system
(4) follows in complete analogy to Section 2.1 in the strig C R® given by
I n I n I n
Nt ! - Ng! Nt !
D= 07 f+ hf 07 frd % 07 frcf
Hph Hpd Hpc

x [0, 1F.

3.2. Equilibrium points
For the model with reservoir hosts (4) we solve the following system

0 = D't Ny if — piphwp,
0="q4 Nrif — ppawy,
0="¢Niif — ppcwe,
0= (!shNnwp + T sgNawg + ! scNewg)(1 — 45) — pustig,
0= s Neit(l — i) — it
to determine the equilibrium points. We see thatbf™ = (wy, wy, w,i3,4;) = (0,0,0,0,0)
is the disease free equilibrium point and show the existence of at most one endemic equi-

librium point. We calculated an analytic expression for this endemic equilibrium but do
not present it here because of its length.



3.3. Basic reproduction number

To debne the reproduction number of the model with reservoir hosts (4), we use the
same method as for the basic model before. Hence, we obtain the transmission matrix

# %
—pign O 0O 0 O
. 0 —pgs O O O
T=. 0 0 —ppe O O
$ 0 0 0 —pus O
0 0 0 0 —m

The next-generation matrix is thus debned as

# 0 0 0 o ‘wNt %
0 o o o LM
K=-Tx'=. 0 O 0 O '{:Nf
'sh N 1'sgN I'scN¢
$ . e e O 0

'ts Ns
0 0 0 ™ 0

The eigenvalues of the next-generation matri¥ are the roots of the characteristic poly-
nomial:

N det(K — #Ei) =
454 H2 fs Vs !chf!sch+!std!de+!thf!shNh 10
Hs i Hpe Hpd  Hf 2 Hph

10



Straightforward calculation yields:

#H = #2 =0, )
Ha = 3 !fst3 !chf!sch_l_!std!de+!thf!shNh
3 - )
Hs ) e ) Hpc Mpd i e Hph
#4: _(_1)%3 !fst3 !chf !sch+ !std!de + !hf Nf !shNh’
) Hs ) Mt Hpc Hpd M4 Mt Hph
fe = ( 1)33 Pst Ns 5 Vet Vi !sch_I_ P Ni ! sa Vg N Uit Ni ! sh Vi
5 =(— .
Hs 2% Hpc 2 Hpd 2% Hph

Since#, and #5 are complex numbers#; is the dominant real eigenvalue oK, and the
reproduction number is
) )
Ry= ° Pis Ns 5 Vet Vi PseNG N PsalVa ! o Ny N Uit Ny ! snVh
Hs s Hpc Hpd Mt s Hph

The endemic equilibrium point exists if and only ifRy > 1. We expect that is locally
asymptotically stable forRy > 1 but did not prove this.

3.4. Type reproduction numbers

To determine the role of cats and dogs in maintaining transmission, we analyse host-
specibc type-reproduction numbers. They are given by the spectral radii of the next-
generation matrices with leaving out one or more host types [18]/; is the host-specibc
and @); is the host excluded reproduction number, which are debned as

Ui = "(Ki),
Q = "(I-Kj),

where K is the next-generation matrix of only including hosti. In this multi-host pop-
ulation with n types of hosts, the reservoir community is dePned as the minimum set
of hosts with U > 1. A maintenance host is the minimum ofm (m < n) different
hosts which satisfyU > 1 and @ < 1 [19]. With the type reproduction number, we
can debne the reservoir community and subdivide the hosts into maintenance and non-
maintenance hosts. Transmission is not possible without snails and bsh, so we always
include them in the model while determining the role of the three mammalian hosts, that
means: € {humans (), dogs @), cats (¢)}.

11



Non-Maintenance ho

Maintenance host (/ > 1)

Population with an endemic infectious diseaseR, > 1

Figure 2: Definition of reservoir, maintenance, and non-maintenance hosts in a population with an endemic
infectious disease, figure based on [19, Figure 3]

The different next-generation matrices and their spectral radii are given by

# 0O 00 O v 4
_ ]
0 00 O O
Un(= Qac) = "(Kn) =" -1 ON 00 O 0
:shNh
Sshe 00 % 0
0 0 == 0
) e
_ s NVt NaNsnt Psnl ts
M Hph s
0,
' #O 0 0 0 0 7
0 0 0 o0 M
Ud(= Qne) = "(Kg)="-0 . ?\1 0 0 0
sd Nd
$0 it 0 oN 0
0 0 0 == 0
) Hs
_ o NiNsNolg!ts! sa
i HpdHs
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0 O 0 0 0
-0 0 O O O
oo N
U= Qna)= "(Kg="21 0 0 0 0 ==
$0 O % | 0N 0
00 o0 N g
) Hs
- 3 Nf Nch! cf!fs!sc
Ui fhpclls
, # %
0 0 0 0 0
0 0 0 0 ‘eN
oo M
Qn(= Ug) = "(Kgg)="2: 0 0 0 0 <&
- !s N 'scN¢
. $ 0 prdd Hpe 0 0
0 o0 o =N g
) . Hs )
_ 2 Nslts NiNglalsa N Ni Neter ! sc
HUs M Hpd Hi Hpe
, # , %
0 0 0 O ”T'“f
-0 0 o o LM
- Kt
Qc(= Unhg) = "(Kng) = ": w0 0O 0O O 0
e g0 0 o
0 0% 0
) . Hs )
_ s Nslts NiNnlprlsn N Nt Ng! ¢! sd
HUs Kt Hph s Hpd
and
, # l %
0 0 O 0 i
- f
-0 0 0 0 0
o 1
Qu(= Une)= "(Kn)="21 0 0 0 0 &
- !s N 'scN¢
$ lfphh 0 Hpe \ ON 0
0 0 === 0
) . he
_ s Nslts Nt Nplni!sn N Ni Neter ! sc
Ms 4 Hph Hf Hpe
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4. Sensitivity analysis

Sensitivity analysis describes what happens to some dependent variables when one or
more independent parameters are changed [20]. Thus, we can see the inBuence of the
different parameter to the basic reproduction number, the host-specibc type-reproduction
number and the endemic equilibrium point.

4.1. Data and parameter values

Data on prevelance of infection in cats, dogs, snails, and Psh; and on intensity of
infection in humans was collected from two islands Don Khon and Don Som, Champasack
province, Lao PeopleOs Democratic Republic (Lao PDR), from October 2011 to August
2012. The number hosts tested and found positive is shown in Table 3 [21]. Additional
data on the number of worm eggs per gram of human stool is not shown here.

We assume triangular distributions as prior distributions for the model parameters and
estimate ranges and modes from the data in Table 3, literature, and expert opinions, as
shown in Tables 4 and 5. We assume that the mean life span of parasite in humang,)
is 10 years, mean life span of a snail{) is 1 year and of a bshy; ) is 2.5 years [22]. We
assume that parasites in cats(,c) and dogs (pq) die after 4 years, which is the average
life span of cats and dogs in the area. We use the population sizes of humans from the
study in Lao PDR [21]. From discussions with local village chiefs, we assume that there
are half as many dogs as humans and a third as many cats as humans. We further expect
that there are a lot more snails than bsh. We calculate the modes of the transmission
parameters () by assuming! ¢, = g = !¢ and solving the system of equations (4) of
the endemic equilibrium point for the data given in Table 3 (after converting the mean
worm burden in humans, cats, and dogs to prevalence as described in Section 4.2. For the
basic model (1), we multiply! s, from the reservoir model by three to account for increased
transmission from humans in the absence of reservoir hosts. We estimate wide ranges for
the transmission parameters and the population sizes of snails and bPsh because we have
little data on these values.

4.2. Sample construction and maximum likelihood estimation

We use a Bayesian sampling resampling approach to better estimate parameter distri-
butions. We brst draw 100,000 sample sets of parameter values, for both the basic and
the reservoir hosts models, from the prior triangular distributions with modes and ranges
described in Tables 4 and 5. We Pplter out samples that correspond to valuesRof < 1.

In the basic model 92,872 (93%) parameter sets correspondRe > 1 and in the reservoir
hosts model 84,548 (85%) correspond ®y > 1.

For the resampling, we calculate probabilities from the likelihood that the solution of
the equations is at the equilibrium point corresponding to the data in Table 5 (and the
eggs per gram in each human tested). We debne the likelihood functibrof the model
with reservoir hosts (4) as

L= LhLchLSLf s

14



and of the basic model (1) as

L= LthLf R
where
np! . . _
Lp= —— (i) (1 — )M =Pn)
"7 pnl(nn — pn)! G (=)
- ng! S\ P 5\ (N —Pa)
Ly = )P (1L — g}) N TPa)
*7 pal(ng — po)! Ga™ {4~
— nC! <%\ P =\ (Nc—
Le= ———— (i5)P (1 — i) (MemPe)
¢ pc!(nc - pc)! ( C) ( C)
ns! . . _
Lo = Z* Ps 1_7/* (ns ps)’
S= o =)
| 2
Li = % Z?3Pf (1_i;‘)(nf —pf)’
pi (s — pr)!

assuming that the equilibrium prevalences;, 3, ¢, 5, and i are binomially distributed.
For the three mammalian hosts we need to convert the mean worm burden at the endemic
equilibrium into prevalence of infection. For humans we have data on both prevalence and
intensity of infection (eggs per gram in stool for each human). We use the pre-calculated
relationship from literature, y = 22 to convert the eggs per gram in stooly, into mean
worm burden, z, [23]. We assume a negative binomial distribution for the number of worms
per person, leading to the relation between mean number of eggs per persbf) énd the

prevalence ) [24], * +
—k

M
P=1- 1+-- . (5)

We assume that cats and dogs have the same relationship between mean worm burden
and eggs per gram in stool and the same distribution for the number of worms per host as
humans. The prevalence of infection in humans 18 = 0.6066 (calculated from Table 3) and
the mean number of eggs per personid = 1108.2, so from equation (5),k = 0.10020566.

It follows that the prevalences in cats and dogs are

4 5,
. (wg)®
ig=l— L

4 5,
=1 1e (00
d- k

We resample 2,000 sets of parameter values with probability proportional to the likelihood
function with replacement [25, 26].

IMatlabR2016a: bootstrp
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To optimize all the infection rates ( ), we maximizée the logarithm of the likelihood
function starting from the resampled parameter set with the highest likelihood [27, 28].
The maximum likelihood estimates are shown in Table 6.

200 1 1 500 r
| |
_150 | ! o
| |
2 : Ro 2300 |, Ro
() I _ () _
5 100 I - Ro—l S I - RO_
g . 9200 .
ff I —median qu 1 —median
50 | | 100 |
o i ‘ o L 1'H.7965 I
0 5 10 15 0 5 10 15
RO RO
(a) Basic model (b) Model with reservoir hosts

Figure 3: Distributions of the basic reproduction number R of the basic (1) and the model with reservoir
hosts (4) calculated for the resampled parameter distributions from Section 4.2.

4.3. Threshold conditions

The basic reproduction numbeR; calculated for each of these 2,000 samples is shown
in Figure 3. Note that values ofRy < 1 are excluded because we assume the existence of
the endemic equilibrium point. For this equilibrium point, we numerically show that all
eigenvalues of the Jacobian matrix have negative real parts so it is locally asymptotically
stable.

We calculate the distributions of the type reproduction numbers from the resampled
distributions of the parameter values (Figure 4). Humans, snails, and Psh belong to the
reservoir community because their host-specibc type-reproduction number is likely bigger
than 1 (U > 1) and their host excluded type-reproduction number is likely smaller than
1 (@ < 1). Humans, snails, and bsh are also maintenance-hosts, because they are the
minimum set which satisbed/ > 1. The host specibc type-reproduction number of cats
and dogs is smaller than 1{{y, U. < 1), so they are non-maintenance hosts.

The host-specibc type-reproduction numbers, calculated with the parameter values in

2MatlabR2016a; fminsearch
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Table 6 from the maximum likelihood estimation, are

Un = 1.0925 Qn = 0.4089
Uy = 0.3015 Q4 =1.1038
U.=0.7176 Qe = 1.1001

4.4. Local sensitivity analysis
The local sensitivity index is the ratio of the relative change in the variable and the
relative change in the variable. Hence, we debne the normalized forward sensitivity index
of a variableu and the parameterp as, see [29],
du p
To = — x —. 6
= (6)
We brst use the formula in (6) to calculate the sensitivity index oR in the basic
model (1) with respect to!  :

TRo = dRo ot 1 Pl NaNoNy o Dt
1 - — - 2 S ——
e d! Ro 33 [hph s 4 3 Uhf 'sh!ts NnNsNg
hf Hph HsHf
1
= 3

The calculation is similar for the sensitivity indices ofRo with respect to ! ¢n,! ts,Nh,Ns
and N;. For the sensitivity indices of Rg with respect to pn, 1s and i we have, for
example,

)
Ro — dRo _ ppn _ 1, 'ntlonlis NaNsN: o o Hph
T = dien  Ro =3 LLs i " T e s NaNaN;
Stiph Hph Hs Hr
1
= -5

Therefore if, for example,! + increases by 100%, themR, increases by 33%. Ifipn
increases by 100%, theRR o decreases by 33%. Since the sensitivity index Bf is inde-
pendent of any other parameters, it is valid locally and globally. Due to the same absolute
value of the sensitivity index, all parameters are equally important foR .

The sensitivity index of the state variables at the endemic equilibrium of the basic
model is for example
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dwy  lpe _ Ush! ts Nn Nt Ns | Psh Nhpiph (! rs Ns + p15)

X — = X f
dlne  wh P snNappn(is Ns + pir) PhePsh! ts No Nt Ns — fphfis s
Uit P sn! £s Vn IVt N

Uit Vel ts NnN; Ns — pipnfispis

Figure 6 (a) shows the sensitivity index ofu; for the parameter values from Table 4. The
local sensitivity analysis for the model with reservoirs host (4) is performed as described
in formula (6). The results for Ry are shown in Figure 5 (b) and the results fow; are
shown in Figure 6 (b).

4.5. Global sensitivity analysis and numerical simulation

We use partial rank correlation co#ficients (PRCC) to analyse the sensitivity globally
and to compare the inBuence of the parameters dRy and on the endemic equilibrium
point. To calculate the PRCC, we used the Matlab implementation of the PRCC function
developed in [3G] The function was run on the 2,000 samples from Section 4.2.

Figures 5 (c) and (d) show, from the top to the bottom, the inBuence of the change
in the parameter onR and Figures 6 (c) and (d) show the inRuence omy, in the basic
model (1) and in the model with reservoir hosts (4). The closer the absolute value is to
one, the more inBuence the parameter has on the output.

In the basic model (1), the death rate of snails;(;) has the most global inBuence on
Ro, followed by the death rate of parasites in humangy;,) and the death rate of Psh (s ).
However there is little diference between the parameter values, so the basic model is not
able to differentiate between the sensitivity of the parameters oRy. For the model with
reservoir hosts (4), the death rates of snails and Pshg( 1), followed by death rate of
parasites in humans fi,n) have the most global inBuence oRg.

The death rate of parasites in humans(,,) has the most global inBuence on the mean
worm burden of humans at the endemic equilibrium point; in both models, followed by
the bsh to human transmission rate!(,s ) and the number of bPsh {V;).

In Figure 7 we show two dimensional sensitivity analysis &, (of both models) to the
population sizes of the bPve hosts with all other parameters as in Table 6. Figure 7 (a)
shows the dependence @&, of the basic model (1) when the numbers of snailsV{) and
bPsh (Vi) are varied. Ry depends more strongly on the population size of snails than of
bPsh. The sensitivity ofR for the model with reservoir hosts (4) is presented in Figures 7
(b)D(d). Figure 7 (b) shows the variation oR o to the number of snails (Vs) and bsh (V;).
Similar to the basic model,R increases faster with more snails faster than with more bsh.
In Figure 7 (c), we see thatR, increases faster with the number of dogs\y) than with
the number of cats (V). Figure 7 (d) shows that when the numbers of humans\;,) and
cats (\V.) are varied, R increases more rapidly with the number of cats.

Shttp://malthus.micro.med.umich.edu/lab/usanalysis.html (24.10.2016)
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We show numerical simulations of the basic model (1) and of the model with reservoir
hosts (4) in Figure 8. For both models the parameter values are given in Table 6 and the
initial conditions are w, =1, wqg =1, w. =1, is =0 and ¢ = 0. We use the Dormand-
Prince method* to integrate over the time interval [Q 70000], which corresponds to a time
period of 190 years.

5. Discussion

We analysed two population-based models of transmission dynamics of e viver-
rini. The basic model (1) includes the intermediate hosts snails and pPsh, and humans as
dePnitive hosts. We extended this model to a model with reservoir hosts (4) by including
cats and dogs as additional debnitive hosts. We proved that the models are mathemat-
ically and epidemiologically well-posed. We obtained an explicit expression for the basic
reproduction numberR,. We debned the disease-free and the endemic equilibrium points,
showed the criterion for the existence of these points points, and investigated their stability
with respect to Ryo. We used Bayesian sampling-resampling with data from two islands
in Lao PDR to construct distributions for the parameter values. We Pnally simulated the
mean worm burden in the debnitive hosts and the prevalence in the intermediate hosts
over time.

The host-specibc type-reproduction number debnes the number of new infection from
one infected individual when certain types of hosts are excluded from the model. It helps
to identify the reservoir community and their maintenance hosts. We showed that humans,
snails, and bsh are maintenance-hosts because they can sustain transmission on their own.
Furthermore, transmission is not possible if any of these species is removed from the cycle,
so they are also reservoir hosts. This implies that it is possible to interrupt transmission
with interventions that only target humans and ignore cats and dogs. For example, im-
proving sanitation to an high enough level would be gkicient to eliminate opisthorchis
transmission in Lao PDR.

The basic model could not dierentiate between the sensitivity of the parameters on
the basic reproduction numberR . Sensitivity analysis of the model with reservoir hosts
showed thatR, depends mostly on the death rate of parasites in humang), of snails
(us), and of bsh (i ), and the population sizes of snails/{s) and bPsh (Vi ). Increasing the
death rate of parasites in humans) is possible through regular treatment of humans
with praziquantel. Increasing the death rates of snailsu¢) and Psh () is more dificult,
but reducing the number of snails is possible through snail control. Improved sanitation
(which lowers! ¢) and safe bsh production (which lowersy; ) have a moderate #ect on
reducingRo.

There are some dferences in the sensitivity indices of the equilibrium mean worm
burden in humans (v;) between the basic and the model with reservoir hosts and between
the local and global analysis (Figure 6). However, the death rate of parasites in humans

4MatlabR2016a: ode45
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(1ph), the transmission rate from Psh to humans!¢s) and the number of bPsh {V; ) most
often have a high sensitivity index. This suggests that regular treatment of humans and
safe bsh production are the mostfiective intervention in reducing the parasite burden in
humans. Sensitivity analysis of the model with reservoir hosts (4) showed that the cats
have more inBuence on the worm burden in humans than dogs.

In both models, we ignored seasonality, the age of humans, the dynamics of infection
in bPsh and the latent period in snails and bsh. Transmission @f. viverrini follows a
seasonal pattern because of increases in the number of snails and Psh in the rainy season.
This implies that interventions could be more #ective if targeted in the right season.
Additionally it may also be possible that in the rainy season, cats or dogs could sustain
transmission. We also assume all humans are the same and ignore the fact that babies
are born without infection and children have a lower worm burden than adults. Since
humans accumulate parasites over their life times, heterogeneity in the distribution of
worms in humans may lead to sustained transmission even at lower mean worm burdens.
The infection rate from Pbsh to the debnitive hosts! (s ,! ,! ¢f) depends on the intensity
of infection in bsh. We ignore the intensity of infection in bsh, but model the prevalence
of infected bsh. Similar to the heterogeneity in humans, the heterogeneity of intensity of
infection in Psh could lead to higher transmission. Infected snails and Psh are not infectious
immediately but need some time for the parasite to develop. This latent period could lead
to a lower prevalence of infectious snails and bsh, because infected snails and bsh can die
before becoming infectious. We plan to investigate the implication of these assumptions in
future work.

This work suggests that including cats and dogs in a model of opisthorchis allows us
to better differentiate the most important parameters for maintaining transmission and
reducing worm burden in humans. However cats and dogs are not necessary to maintain
transmission so it would be possible to eliminat®. viverrini by only targeting humans
with effective interventions such as regular treatment, safe bsh production and improved
sanitation.

Appendix

Proposition 1 (Routh-Horwitz criterion, see [31]). For a polynomial
f(z) = aol‘3 + alxz + azx+ az3=0 (1)

with ¢; € R for ¢« = 0,1, 2,3, the number of roots with positive real parts is equal to the
number of sign changes in either one of the sequences

15
To, Ty, —
0 17T1
or
To, 11,1175,
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where
I n

a a
To=ao >0, 1= a, T, = det 10 .
az az

Given ag > 0, all roots have negative real parts if and only ify, 77 and 75 are all positive.

Acknowledgement

CB is supported by the Swiss National Science Foundation grant number 3100363057
The authors thank Thomas Smith for helpful comments and discussions.

References
References

[1] S. Kaewkes, Taxonomy and biology of liver Bukes, Acta Tropica 88 (3) (2003) 177 b
186.

[2] P. Sithithaworn, M. Haswell-Elkins, Epidemiology ofOpisthorchis viverrini, Acta
Tropica 88 (3) (2003) 187 b 194.

[3] J. Keiser, J. Utzinger, Food-borne trematodiases, Clinical Microbiology Reviews 22 (3)
(2009) 466D483.

[4] T. Farst, U. Duthaler, B. Sripa, J. Utzinger, J. Keiser, Trematode infections: Liver
and lung RBukes, Infectious Disease Clinics of North America 26 (2) (2012) 399 b 419.

[5] A. Forrer, S. Sayasone, P. Vounatsou, Y. Vonghachack, D. Bouakhasith, S. Vogt,
R. Glaser, J. Utzinger, K. Akkhavong, P. Odermatt, Spatial distribution of, and risk
factors for, opisthorchis viverrini infection in southern lao PDR, PLoS Negl Trop Dis
6 (2) (2012) e1481.

[6] E. Upatham, V. Viyanant, Opisthorchis viverrini and opisthorchiasis: a historical
review and future perspective, Acta Tropica 88 (3) (2003) 171 b 176.

[7] K. Phongluxa, P. van Eeuwijk, P. A. Soukhathammavong, K. Akkhavong, P. Oder-
matt, Perceived illness drives participation in mass deworming campaigns in laos, Acta
Tropica 141, Part B (2015) 281 b 288.

[8] P. J. Brindley, J. M. C. da Costa, B. Sripa, Why does infection with some helminths
cause cancer?, Trends in Cancer 1 (3) (2015) 174D182.

21



[9] S. Sayasone, O. Rasphone, M. Vanmany, P. Vounatsou, J. Utzinger, M. Tanner,
K. Akkhavong, C. Hatz, P. Odermatt, Severe morbidity due to opisthorchis viver-
rini and schistosoma mekongi infection in Lao PeopleOs Democratic Republic, Clinical
Infectious Diseases 55 (6) (2012) e54be57.

[10] S. K. Won, K. S. Yong, L. S. Hyung, A mathematical approach to the mode of trans-
mission of clonorchiasis in the inhabitants of nak-dong and han river basin, Korean J
Parasitol 17 (2) (1979) 114D120.

[11] I. Nasell, W. M. Hirsch, The transmission dynamics of schistosomiasis, Communica-
tions on Pure and Applied Mathematics 26 (4) (1973) 395D453.

[12] N. G. Hairston, On the mathematical analysis of schistosome populations, Bulletin of
the World Health Organization 33 (1) (1965) 45D62.

[13] G. Macdonald, The dynamics of helminth infections, with special reference to schis-
tosomes, Transactions of the Royal Society of Tropical Medicine and Hygiene 59 (5)
(1965) 489D506.

[14] W. Goffman, K. S. Warren, An Application of the Kermack-McKendrick Theory to
the Epidemiology of Schistosomiasis, The American Journal of Tropical Medicine and
Hygiene 19 (2) (1970) 278D283.

[15] R. M. Anderson, R. M. May, Helminth infections of humans: mathematical models,
population dynamics, and control., Advances in Parasitology 24 (1985) 1b101.

[16] J. D. F. Habbema, S. J. D. Vlas, A. P. Plaisier, G. V. Oortmarsen, The mircosimula-
tion approach to epidemiologic modeling of helminth infections, with special reference
to schistosomiasis, The American Journal of Tropical Medicine and Hygiene 55 (5)
(1996) 165D169.

[17] O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts, The construction of next-
generation matrices for compartmental epidemic models, Journal of The Royal Society
Interface 7 (47) (2010) 873D885.

[18] M. G. Roberts, J. A. P. Heesterbeek, A new method for estimating thefert required
to control an infectious disease, Proceedings of the Royal Society B: Biological Sciences
270 (1522) (2003) 1359D1364.

[19] H. Nishiura, B. Hoye, M. Klaassen, S. Bauer, H. Heesterbeek, How to bnd natural
reservoir hosts from endemic prevalence in a multi-host population: A case study of
inBuenza in waterfowl, Epidemics 1 (2) (2009) 118 b 128.

[20] H. Caswell, Matrix Population Models, Second Edition (Paperback), Sinauer Asso-
ciates, Inc., 2001.

22



[21] Y. Vonghachack, P. Odermatt, K. Taisayyavong, S. Phounsavath, K. Akkavong,
S. Sayasone, Transmission d@pisthorchis viverrini, Schistosoma mekongand soil-
transmitted helminthes on Mekong Islands, Southern Lao PDR, Submitted.

[22] W. Y. Brockelman, E. Upatham, V. Viyanant, S. Ardsungnoen, R. Chantanawat,
Field studies on the transmission of the human liver Bukeé)pisthorchis viverrini, in
northeast thailand: population changes of the snail intermediate host, International
Journal for Parasitology 16 (5) (1986) 545B552.

[23] D. B. Elkins, P. Sithithaworn, M. Haswell-Elkins, S. Kaewkes, P. Awacharagan,
S. Wongratanacheewin,Opisthorchis viverrini: relationships between egg counts,
worms recovered and antibody levels within an endemic community in northeast thai-
land, Parasitology 102 (02) (1991) 283D288.

[24] H. L. Guyatt, T. Smith, B. Gryseels, C. Lengeler, H. Mshinda, S. Siziya, B. Salanave,
N. Mohome, J. Makwala, K. P. Ngimbi, M. Tanner, Aggregation in schistosomiasis:
comparison of the relationships between prevalence and intensity irffdrent endemic
areas, Parasitology 109 (01) (1994) 45b55.

[25] A. F. M. Smith, A. E. Gelfand, Bayesian statistics without tears: A samplingresam-
pling perspective, The American Statistician 46 (2) (1992) 84D88.

[26] C. M. Stone, N. Chitnis, Implications of heterogeneous biting exposure and animal
hosts on trypanosomiasis brucei gambiense transmission and control, PLOS Compu-
tational Biology 11 (10) (2015) 1b22.

[27] I. J. Myung, Tutorial on maximum likelihood estimation, Journal of Mathematical
Psychology 47 (1) (2003) 90  100.

[28] A. Ziegler, Generalized Estimating Equations, Springer New York, 2011.

[29] N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the
spread of malaria through the sensitivity analysis of a mathematical model, Bulletin
of Mathematical Biology 70 (5) (2008) 1272D1296.

[30] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing
global uncertainty and sensitivity analysis in systems biology, Journal of Theoretical
Biology 254 (1) (2008) 178D196.

[31] G. Korn, T. Korn, Mathematical Handbook for Scientists and Engineers: Debpnitions,
Theorems, and Formulas for Reference and Review, Dover Civil and Mechanical En-
gineering Series, Dover Publications, 2000.

23



Parameter Description Dimension

Nh Population size of humans Animals
Ny Population size of dogs Animals
N Population size of cats Animals
Ns Population size of snails Animals
Nt Population size of bsh Animals
Lph Per capita death rate of adult parasites in 1/Time

humans (includes additional mortality due to
death of humans)
Hpd Per capita death rate of adult parasites in 1/Time
dogs (includes additional mortality due to
death of dogs)

Hpc Per capita death rate of adult parasites in cats 1/Time
(includes additional mortality due to death of
cats)

Iis Per capita death rate of snails 1/Time

L Per capita death rate of bsh including mor- 1/Time
tality through Pshing by humans

! h Transmission rate from infectious bsh to hu- 1/(Time x Animals)
mans per person per psh

g Transmission rate from infectious Psh to dogs1/(Time x Animals)
per dog per bsh

Do Transmission rate from infectious Psh to cats 1/(Time x Animals)
per cat per bsh

'sd Infection rate of snails per parasite in a dog 1/(Time x Animals)
host

'sc Infection rate of shails per parasite in a cat 1/(Time x Animals)
host

I'sh Infection rate of snails per parasite in a hu- 1/(Time x Animals)
man host

Dts Infection rate of bsh per snalil 1/(Timex Animals)

Table 2: Parameters of the opisthorchiasis model
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Variable Description Value

Nh number of tested humans 994
Dh number of positive tested humans 603
ng number of tested dogs 68
Dd number of positive tested dogs 17
Ne number of tested cats 64
Pe number of positive tested cats 34
Ng number of tested snails 3102
Ds number of positive tested snails 9

ng number of tested psh 628
Dt number of positive tested bsh 169

Table 3: Total number tested and positive hosts from two islands in Lao PDR [21].

Variable Value Range Unit

e 4.898x 105 [4.898x 10 °,9.795x 10°5]  1/(Animal x Day)
! h 9.160x 1011 [9.160x 10-%2,1.832x 1019 1/(Animal x Day)
I'ts 3477x10°° [3477x10°%.6.954x 10°]  1/(Animal x Day)
Ny 14542 [1454,29084] Animals

Ns 20000 [200040000] Animals

Nt 8000 -1[80016000] 8 Animals

[ph ﬁges 7@, @ 3 1/Days

Is Ts,l% 72Xf65, O.Tl:ses 8 1/Days

Hit 2.5x365 5x365’ 0.25x365 1/Days

Table 4: Parameter values and ranges of the basic model (1)
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Variable Value

Range

Unit

Dt

D

!cf

!sh

!sd

!SC

I'ts

Hph
Hpd
Hpc
s
2

4.898x 10°°
4.110x 10°®
4414x 10°°
3.053x 10711
3.053x 10711
3.053x 10711
3477x 107°
14542
7271
4847
20000
8000
10,355
1
%365
_1
%365
_1
%365

1
2.5%365

[4.898% 10°9,9.795x 10 ]
[4.110% 10~7,8.220x 10°]
[4.414% 1076,8.829x 10°9]
[3.053x 10-12,6.107 x 10~14]
[3.053x 10712,6.107 x 10~]
[3.053x 10712,6.107 x 10°1]
[3.477x 1075,6.954x 10°9]

[727121813]

[3635%, 109065]

[2423,72705]
[200040000]
180016000] g
720,365" 1365 8
783057 04,3858
783657 0.4,3658
72365 01:3658
5x30’ 0.25x365

1/(Animal x Day)
1/(Animal x Day)
1/(Animal x Day)
1/(Animal x Day)
1/(Animal x Day)
1/(Animal x Day)
1/(Animal x Day)
Animals
Animals
Animals
Animals
Animals

1/Days

1/Days

1/Days

1/Days

1/Days
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Basic model

Model with reservoir hosts

Parameter MLE MLE
! bt 3.5004x 10° 5.0034x 10>
| g - 2.5322x 107
[ - 1.6864x 10°°
!sh 8.8758x 1011 7.3474x 1011
! sd - 8.3955x 1011
! SC = 1.9027X 10_11
!ts 1.5144x 105 4.0902x 10°°
Ny 9,045 17006
Ny - 8,062
Ne - 4,951
Ns 23 337 22321
N; 4,593 5152

1 1
Hph 2.1641x 365 13148365
Hpd B 1.0081x 365

1

Hpc B 1.6260x 365

1 1
Hs 1.6998x 365 1.8210x 365

1 1
i _ 1.7099x 365 0.3808x365
Reproduction number
Ro 1.1112 1.1112

Table 6: Maximum likelihood estimation (MLE) and the corresponding basic reproduction number (Rg)
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The parameter values are in Table 6.
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