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Abstract. The present article is concerned with the identification of an obstacle or void

of different conductivity which is included in a two-dimensional domain by measurements of

voltage and currents at the boundary. In general, the voltage distribution is prescribed and

hence deterministic. Whereas, the current distribution is measured and contains measurement

errors. We assume that some information is given on these measurement errors which can

be described by means of a random field. We exploit this extra knowledge by minimizing a

linear combination of the expectation and the variance of the Kohn-Vogelius functional. It is

shown how these ideas can be realized in numerical computations. By numerical results, the

applicability and feasibility of our approach is demonstrated.

Introduction

Electrical impedance tomography is used in medical imaging to reconstruct the electric con-

ductivity of a part of the body from measurements of currents and voltages at the surface

[23]. The same technique is also used in geophysical explorations. An important special case

consists in reconstructing the shape of an unknown inclusion or void assuming (piecewise) con-

stant conductivities. In this case, only one pair of current/voltage measurements is necessary,

in principle.

The problem under consideration is a special case of the general conductivity reconstruction

problem and is severely ill-posed. It has been intensively investigated as an inverse problem.

We refer for example to [1, 4, 9, 21] for numerical algorithms and to [5, 17] for particular

results concerning uniqueness. Moreover, we refer to [7, 8] for methods using the full Dirichlet-

to-Neumann map at the outer boundary.

In [29], the problem under consideration has been reformulated as a shape optimization problem

for the Kohn-Vogelius functional (see [26]). Then, seeking the unknown inclusion is equivalent

to seeking the minimizer of an energy functional. Much attention has been spent on the analysis

of this approach ([2, 3, 13]) and its comparison with a least-squares tracking type functionals.

It is also sufficiently versatile to be used in the context of fluid mechanics [6].

HH has been supported by the Swiss National Science Foundation through the project H-matrix

based first and second moment analysis.
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Our objective in this article is to take advantage of properties of the noise to construct a

deterministic formulation which incorporates this knowledge. We assume that the measured

flux is given as a random field that models the measurement errors. We then aim at minimizing

a combination of the expectation and the variance of the Kohn-Vogelius functional. As we will

show, both quantities can easily be computed via deterministic quantities. The associated shape

gradients can likewise be deterministically computed.

The rest of this article is organized as follows. In Section 1, we present the physical model

and reformulate the identification problem as shape optimization problem. We introduce the

random model and compute the expectation and the variance of the shape functional and

their shape gradients. As we will see, both are given by deterministic expressions under some

structure assumptions on the random fields under consideration. Then, Section 2 is concerned

with the discretization of the shape optimization problem. We assume that the sought inclusion

is a starshaped domain which enables us to approximate it by a finite Fourier series. The state

equations are reformulated as boundary integral equations which are discretized by means of a

fast wavelet boundary element method of linear complexity. In Section 3, we present numerical

results which validate the feasibility of the present approach. Finally, in Section 4, we state

concluding remarks.

1. Problem formulation

1.1. Physical model. Let T ∈ Rd, d = 2, 3, be a simply connected domain with boundary

Σ = ∂T and assume that an unknown simply connected inclusion S with regular boundary

Γ = ∂S is located inside the domain T satisfying dist(Σ,Γ) > 0, cf. Figure 1.1. In order to

determine the inclusion S, we measure the current distribution g ∈ H−1/2(Σ) at the boundary

Σ for a given voltage distribution f ∈ H1/2(Σ). Hence, we are seeking a domain D := T \ S
and an associated harmonic function u, satisfying the system of equations

(1.1)

∆u = 0 in D,

u = 0 on Γ,

u = f,
∂u

∂n
= g on Σ.

This system is an overdetermined boundary value problem which admits a solution only for the

true inclusion S. In accordance with e.g. [25], the inclusion’s boundary Γ is uniquely determined

from f 6= 0 and g. Nonetheless, it is well known that the problem of finding the inclusion’s

boundary Γ is severely ill-posed. Especially, the measured data g contain noise.
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Γ

Σ

Figure 1.1. The domain D and its boundaries Γ and Σ.

1.2. Formulation as shape optimization problem. Following [29], we introduce the aux-

iliary harmonic functions v and w, satisfying

∆v = 0 ∆w = 0 in D,

v = 0 w = 0 on Γ,

∂v

∂n
= g w = f on Σ,

and consider the following shape optimization problem

(1.2) J(D) =

∫

D

‖∇(v − w)‖2 dx =

∫

Σ

(
g − ∂w

∂n

)
(v − f) dσ → inf .

Herein, the infimum has to be taken over all domains which have a void with sufficiently

regular boundary. We refer to [29] for the existence of optimal solutions with respect to this

shape optimization problem.

The shape gradient to (1.2) has also been computed in [29]. For variation fields V : Rd → R,

being sufficiently smooth, it holds that

(1.3) δJ(D)[V] =

∫

Γ

〈V,n〉
[(

∂v

∂n

)2

−
(
∂w

∂n

)2
]

dσ.

see also [29]. Given an inclusion Σ such the overdetermined boundary problem (1.1) has a solu-

tion, the necessary first order optimality condition δJ(D)[V] = 0 is satisfied for all admissible

variations V. Notice that the shape Hessian for (1.2) has been computed and analyzed in [13].

1.3. Random model. We shall now assume that we have some extra knowledge on the errors

which are caused by the measurement of g. Then, we can model g as a random field. To that

end, let (Ω,S,P) be a complete probability space and assume that g : Σ×Ω→ R is a random

field which belongs to the Bochner space L2
P(Ω, H−1/2(Σ)).
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Let us recall for the reader’s convenience the definition of Bochner spaces. Consider a real

number p ≥ 1. Then, for a Banach space X, the Bochner space Lp
P(Ω, X) consists of all functions

v : Ω→ X whose norm

‖v‖Lp
P(Ω,X) :=





(∫

Ω

‖v(·, ω)‖pX dP(ω)

)1/p

, p <∞,

ess sup
ω∈Ω

‖v(·, ω)‖X , p =∞,

is finite. If p = 2 and X is a Hilbert space, then the Bochner space is isomorphic to the tensor

product space L2
P(Ω)⊗X.

Since the data L2
P(Ω, H−1/2(Σ)) are random, also the state v will be a random field. It satisfies

v ∈ L2
P(Ω, H1(Ω)) by linearity of the underlying partial differential equation. As a consequence,

the shape functional J become also a random process.

Two strategies are a priori available to deal with such a random shape functional. The first one

consist in minimizing each realization of the objective and then taking an average of the min-

imizers. This strategy has been presented in the context of Bernoulli’s free boundary problem

in [11]. Nonetheless, this approach is unrealistic here due to its high computational cost.

We therefore propose in this article to address the second approach. Namely, we minimize an

averaged shape functional as considered in [10]. In particular, we will minimize a combination

of the expectation and the variance of the shape functional (1.2). In other words, we seek the

domain D with inclusion S such that either

(1.4) F (D) = (1− α)E
[
J(D,ω)

]
+ αV

[
J(D,ω)

]
→ inf

or even

(1.5) F (D) = (1− α)E
[
J(D,ω)

]
+ α

√
V
[
J(D,ω)

]
→ inf,

where the random shape functional reads as

(1.6) J(D,ω) =

∫

D

∥∥∇
(
v(ω)− w

)∥∥2
dx→ inf

and the states read as

∆v(ω) = 0 ∆w = 0 in D,

v(ω) = 0 w = 0 on Γ,(1.7)

∂v

∂n
(ω) = g(ω) w = f on Σ.

Let us explain the meaning of the averaged objective defined in (1.4) and (1.5), respectively.

When the weight α is equal to 0, we consider only the average value of the Kohn-Vogelius

functional. Its minimization means to be good on a regular base, but does not prohibit a flat
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distribution and, hence, being often with high values of the of the objective. In order to obtain

a shape around which the distribution of the objective is more narrow, we can penalize the

variance of the Kohn-Vogelius functional by increasing the weight α. Notice that the standard

deviation in scales like the expectation which makes (1.5) better suited to achieve this goal in

comparison with (1.4). The range of admissible α is [0, 1), since the expectation is neglected

when α = 1. Then, only the reduction of variance matters and not the average value at all,

losing all interest in the shape identification.

Concerning the existence of an optimal shape for the minimization of the objective defined in

(1.4) or (1.5), the situation is the same than for the original problem: minimizing J . In the

class of open subsets of T , we do not have an existence result. Existence holds once the class of

admissible domains is restricted to some class of domains for which one obtains compactness

and the continuity of the solution of the Dirichlet problem with respect to the shape (compare

[22]): the class of domains with a uniform exterior cone property for example.

For what follows, we should make the assumption that the Neumann data g are given by the

expansion

(1.8) g(x, ω) = g0(x) +
M∑

i=1

gi(x)Yi(ω),

where the random variable Yi(ω) are independent and identically distributed random variables,

Yi ∼ Y , being centered, E[Y ] = 0, normalized, V[Y ] = 1, and having finite fourth order

moments. Thus, there especially hold the identities

E[g(ω)] = g0 and V[g(ω)] =
M∑

i=1

g2
i .

Note that we have in mind several independent measurements of the current distribution for

the same voltage distribution, from which we can derive the sample mean and the sample

covariance. Then, assuming that g(x, ω) is a Gaussian random field, the expansion (1.8) can be

derived from by means of the Karhunen-Loève expansion, see [18, 27] for example.

Given the expansion (1.8), the linearity of the state equation (1.7) implies that

(1.9) v(x, ω) = v0(x) +
M∑

i=1

vi(x)Yi(ω),

where vi solves the equation

(1.10) ∆vi = 0 in D, vi = 0 on Γ,
∂vi
∂n

= gi on Σ.

In particular, if g is a Gaussian random field, then also v is a Gaussian random field.
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1.4. Expectation and variance of the random shape functional. We shall show that

the expectation and the variance of the random shape functional (1.6) can be computed from

deterministic quantities.

Proposition 1.1. It holds

(1.11) E
[
J(D,ω)

]
=

M∑

i=1

∫

Σ

vigi dσ +

∫

Σ

(
g0 −

∂w

∂n

)
(v0 − f) dσ.

Proof. Following the ideas from [10], using Fubini’s theorem for non negative functions, the

expectation of the random shape functional can be rewritten as

E
[
J(D,ω)

]
=

∫

Ω

∫

D

∥∥∇
(
v(ω)− w

)∥∥2
dx dP(ω)

=

∫

D

∫

Ω

∥∥∇
(
v(ω)− w

)∥∥2
dP(ω) dx

=

∫

D

[ ∫

Ω

〈
∇
(
v(x, ω)− w(x)

)
,∇
(
v(y, ω)− w(y)

)〉
dP(ω)

]∣∣∣∣
x=y

dx.

In view of the expansion (1.9), we thus conclude

E
[
J(D,ω)

]
=

∫

D

[ ∫

Ω

〈
∇
(
v0(x) +

M∑

i=1

vi(x)Yi(ω)− w(x)

)
,

∇
(
v0(y) +

M∑

j=1

vj(y)Yj(ω)− w(y)

)〉
dP(ω)

]∣∣∣∣
x=y

dx.

Making now use of the fact that Yi ∼ Y are independent and identically distributed random

variables, we arrive at

E
[
J(D,ω)

]
=

∫

D

[
M∑

i,j=1

〈∇vi(x),∇vj(y)〉E[YiYj]− 2
M∑

i=1

〈∇vi(x),∇
(
v0(y)− w(y)

)
〉E[Yi]

+ 〈∇
(
v0(x)− w(x)

)
,∇
(
v0(x)− w(y)

)
〉
]∣∣∣∣∣

x=y

dx

=

∫

D

[
M∑

i=1

‖∇vi(x)‖2E[Y 2]− 2
M∑

i=1

〈∇vi(x),∇
(
v0(x)− w(x)

)
〉E[Y ]

+
∥∥∇
(
v0(x)− w(x)

)∥∥2

]
dx.

Finally, we can exploit that Y is centered and normalized to arrive at

E
[
J(D,ω)

]
=

∫

D

[
M∑

i=1

‖∇vi(x)‖2 +
∥∥∇
(
v0(x)− w(x)

)∥∥2

]
dx.
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Integration by parts and observing ∂vi/∂n = gi in accordance with (1.10) yields thus (1.11). �

In complete analogy, one can derive a deterministic expression for the variance of the random

shape functional.

Proposition 1.2. It holds

(1.12)

V
[
J(D,ω)

]
= (E[Y 4]− 3)

M∑

i=1

(∫

Σ

vigi dσ

)2

− 4E[Y 3]
M∑

i=1

(∫

Σ

vigi dσ

)(∫

Σ

gi(v0 − f) dσ

)

+ 2
M∑

i,j=1

(∫

Σ

vigj dσ

)2

+ 4
M∑

i=1

(∫

Σ

gi(v0 − f) dσ

)2

.

Proof. Due to the knowledge of (1.11), the variance can be computed from the uncentered

second moment of the shape functional in accordance with

V
[
J(D,ω)

]
= E

[
J(D,ω)2

]
− E2

[
J(D,ω)

]
.

The starting point to derive the uncentered second moment is

E
[
J(D,ω)2

]
=

∫

Ω

[ ∫

D

∥∥∇
(
v(ω)− w

)∥∥2
dx

]2

dP(ω)

=

∫

D

∫

D

∫

Ω

∥∥∇
(
v(x, ω)− w(x)

)∥∥2∥∥∇
(
v(y, ω)− w(y)

)∥∥2
dP(ω) dy dx.
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By inserting again the expansion (1.9) of the random field v and straightforward calculation,

we obtain

E
[
J(D,ω)2

]
=

∫

D

∫

D

[
M∑

i,j,k,`=1

〈∇vi(x),∇vj(x)〉〈∇vk(y),∇v`(y)〉E[YiYjYkY`]

− 4
M∑

i,j,k=1

〈∇vi(x),∇vj(x)〉〈∇vk(y),∇
(
v0(y)− w(y)

)
〉E[YiYjYk]

+
M∑

i,j=1

{
2〈∇vi(x),∇vj(x)〉

∥∥∇
(
v0(y)− w(y)

)∥∥2

+ 4〈∇vi(x),∇
(
v0(x)− w(x)

)
〉〈∇vj(y),∇

(
v0(y)− w(y)

)
〉
}
E[YiYj]

− 4
M∑

i=1

〈∇vi(x),∇
(
v0(x)− w(x)

)
〉
∥∥∇
(
v0(y)− w(y)

)∥∥2E[Yi]

+
∥∥∇
(
v0(x)− w(x)

)∥∥2∥∥∇
(
v0(y)− w(y)

)∥∥2

]
dy dx.

Of course, this deterministic expression can further be simplified by using the independence of

the random variable Yi ∼ Y . Namely, in view of E[Y ] = 0 and V[Y ] = 1, it holds

E
[
J(D,ω)2

]
= E2

[
J(D,ω)

]
+ (E[Y 4]− 3)

M∑

i=1

(∫

D

‖∇vi(x)‖2 dx

)2

− 4E[Y 3]
M∑

i=1

(∫

D

‖∇vi(x)‖2 dx

)(∫

D

〈∇vi(y),∇
(
v0(y)− w(y)

)
〉 dx

)

+ 2
M∑

i,j=1

(∫

D

〈∇vi(x),∇vj(x)〉 dx

)2

+ 4
M∑

i=1

(∫

D

〈∇vi(x),∇
(
v0(x)− w(x)

)
〉 dx

)2

.

Finally, integration by parts yields the desired expression (1.12). �

We have a further simplification of (1.12) in the most important situation of Gaussian random

fields.

Corollary 1.3. If g is a Gaussian random field, then

(1.13) V
[
J(D,ω)

]
= 2

M∑

i,j=1

(∫

Σ

vigj dσ

)2

+ 4
M∑

i=1

(∫

Σ

gi(v0 − f) dσ

)2

.
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Proof. In the case of a Gaussian random field, the random variables obey the normal law, i.e.,

Y ∼ N (0, 1). By injecting that it thus holds E[Y 4] = 3 and E[Y 3] = 0, we derive the assertion

immediately from (1.12). �

This is the expression we will exploit in our numerical examples. Especially, for sake of con-

venience, we will provide the shape gradient only for the specific formula (1.13) in the next

subsection and not for the general case (1.12).

1.5. Shape gradient of the expectation and of the variance. We shall compute next the

shape gradient of the expectation and of the variance. For a survey on the shape calculus, we

refer the reader to [12, 28, 30] and the references therein.

Obviously, due to linearity, the shape gradient δ
(
E
[
J(D,ω)

])
[V] of the shape functional E[J(D,ω)]

into the direction of the perturbation field V is just given by E
[
δJ(D,ω)[V]

]
. Hence, it is com-

puted according to

δ
(
E
[
J(D,ω)

])
[V] = E

[
δJ(D,ω)[V]

]

=

∫

Ω

∫

Γ

〈V,n〉
[(

∂v

∂n
(ω)

)2

−
(
∂w

∂n

)2
]

dσ dP(ω)

=

∫

Γ

〈V,n〉
{[∫

Ω

∂v

∂n
(x, ω)

∂v

∂n
(y, ω) dP(ω)

]∣∣∣∣
x=y

−
(
∂w

∂n
(x)

)2
}

dσ.

We insert the expansion (1.9) and exploit again that the random variables Yi ∼ Y are indepen-

dent, identically distributed, centered and normalized to arrive at the final expression:

δ
(
E
[
J(D,ω)

])
[V] =

∫

Γ

〈V,n〉
[

M∑

i=0

(
∂vi
∂n

)2

−
(
∂w

∂n

)2
]

dσ.

Of course, we could alternatively have computed the shape derivative of the deterministic shape

functional (1.11), yielding the same result.

In case of the variance of the random shape functional (1.6), the situation becomes somewhat

more difficult. It can be derived by using directly the derivative of the shape functional’s second

uncentered moment:

δ
(
E
[
J(D,ω)

])
[V] = δ

(∫

Ω

J2(D,ω) dP(ω)

)
[V] = 2

∫

Ω

J(D,ω)δJ(D,ω)[V] dP(ω).

However, since we are mainly interested in Gaussian random fields g(x, ω), i.e., Yi ∼ N (0, 1)

in (1.8) and (1.9), respectively, we will provide only the shape derivative of (1.13).
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Proposition 1.4. Assume that it holds Yi ∼ N (0, 1) in (1.8). Then, we have

δ
(
V
[
J(D,ω)

])
[V] = 4

M∑

i,j=1

(∫

Σ

vigj dσ

)(∫

Γ

〈V,n〉∂vi
∂n

∂vj
∂n

dσ

)

+ 8
M∑

i=1

(∫

Σ

gi(v0 − f) dσ

)(∫

Γ

〈V,n〉∂vi
∂n

∂v0

∂n
dσ

)
.

Proof. Since only the functions vi’s depend on the domain D, the shape derivative of (1.13)

reads

(1.14)

δ
(
V
[
J(D,ω)

])
[V] = 4

M∑

i,j=1

(∫

Σ

vigj dσ

)(∫

Σ

δvigj dσ

)

+ 8
M∑

i=1

(∫

Σ

gi(v0 − f) dσ

)(∫

Σ

giδv0 dσ

)
,

where the local shape derivatives δvi = δvi[V] satisfy the boundary value problems

(1.15) ∆δvi = 0 in D, δvi = −〈V,n〉∂vi
∂n

on Γ,
∂vi
∂n

= 0 on Σ.

Using that ∂vi/∂n = gi, we obtain for all i, j = 0, 1, . . . ,M by integration by parts
∫

Σ

δvigj dσ +

∫

Γ

δvi
∂vj
∂n

dσ =

∫

Σ

∂δvi
∂n︸︷︷︸
=0

vj dσ +

∫

Γ

∂δvi
∂n

vj︸︷︷︸
=0

dσ = 0.

This, in view of (1.15), means that
∫

Σ

δvigj dσ =

∫

Γ

〈V,n〉∂vi
∂n

∂vj
∂n

dσ

for all i, j = 0, 1, . . . ,M . By inserting the latter identities into (1.14), we arrive at the desired

assertion. �

We mention that the shape derivative of the standard deviation is given by the chain rule in

accordance with

δ
√
V
[
J(D,ω)

]
[V] =

δ
(
V
[
J(D,ω)

])
[V]

2
√
V
[
J(D,ω)

] .

2. Numerical realization

Since the numerical realization is based on the adaptation of the classical Kohn-Vogelius ap-

proach for electrical impedance tomography, we briefly recall the ingredients and refer to [13, 14]

for more details.
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2.1. Boundary integral equations. We will compute the unknown boundary data of the

state functions v and w by boundary integral equations. We introduce the single layer and the

double layer operator with respect the boundaries Φ,Ψ ∈ {Γ,Σ} by

(VΦΨu)(x) := − 1

2π

∫

Φ

log ‖x− y‖u(y) dσy, x ∈ Ψ,

(KΦΨu)(x) :=
1

2π

∫

Φ

〈x− y,ny〉
‖x− y‖2

u(y) dσy, x ∈ Ψ.

For sake of simplicity, we suppose that diamD < 1 to ensure that VΦΦ is invertible, cf. [24].

Then, the normal derivative of w is given by the Dirichlet-to-Neumann map

(2.16)

[
VΓΓ VΣΓ

VΓΣ VΣΣ

][
∂w
∂n

∣∣
Γ

∂w
∂n

∣∣
Σ

]
=

[
1
2

+KΓΓ KΣΓ

KΓΣ
1
2

+KΣΣ

][
0

f

]
,

cf. (1.7). Likewise, the unknown boundary data of vi are determined by

(2.17)

[
VΓΓ −KΣΓ

−VΓΣ
1
2

+KΣΣ

][
∂v
∂n

∣∣
Γ

v|Σ

]
=

[
1
2

+KΓΓ −VΣΓ

−KΓΣ VΣΣ

][
0

gi

]
.

2.2. Boundary element method. The shape functional and its gradient can be computed

from the knowledge of the boundary data of the state equations (1.7) and (1.10). These data

are given by the boundary integral equations (2.16) and (2.17). Hence, it is rather convenient

to employ a boundary element method to compute the required boundary data of the state

equations. We use a Galerkin discretization by NΦ piecewise linear functions {θΦ
i }NΦ

i=1 on each

boundary Φ ∈ {Σ,Γ}. For Φ,Ψ ∈ {Σ,Γ}, we introduce the system matrices

VΦΨ = − 1

2π

[∫

Ψ

∫

Φ

log ‖x− y‖θΦ
i (y)θΨ

j (x) dσy dσx

]

i=1,...,NΦ, j=1,...,NΨ

,

KΦΨ =
1

2π

[∫

Ψ

∫

Φ

〈x− y,ny〉
‖x− y‖2

θΦ
i (y)θΨ

j (x) dσy dσx

]

i=1,...,NΦ, j=1,...,NΨ

,

and the mass matrices

MΦ =

[∫

Φ

θΦ
i (x)θΦ

j (x) dσx

]

i,j=1,...,NΦ

,

and the load vectors of Dirichlet data fΣ and Neumann data gi,Σ

fΣ =

[∫

Σ

θΣ
i (x)f(x) dσx

]

i=1,...,NΣ

, gi,Σ =

[∫

Σ

θΣ
i (x)gi(x) dσx

]

i=1,...,NΣ

.

Then, the linear system of equations

(2.18)

[
VΓΓ VΣΓ

VΓΣ VΣΣ

][
aΓ

aΣ

]
=

[
1
2
MΓ + KΓΓ KΣΓ

KΓΣ
1
2
MΣ + KΣΣ

][
0

M−1
Σ fΣ

]
,
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gives us the Neumann data (∂w/∂n)|Γ ≈
∑NΓ

j=1[aΓ]jθ
Γ
j on Γ and (∂w/∂n)|Σ ≈

∑NΣ

j=1[aΣ]jθ
Σ
j on

Σ from the Dirichlet data f on Σ. Likewise, the system

(2.19)

[
VΓΓ −KΣΓ

−VΓΣ
1
2
MΣ + KΣΣ

][
bΓ

bΣ

]
=

[
1
2
MΓ + KΓΓ −VΣΓ

−KΓΣ VΣΣ

][
0

M−1
Σ gi,Σ

]
,

yields the Dirichlet data vi|Γ =
∑NΓ

j=1[bΓ]jθ
Γ
j on Γ and the Neumann data (∂vi/∂n)|Σ ≈∑NΣ

j=1[bΣ]jθ
Σ
j on Σ from the given Neumann data gi,Σ on Σ.

We mention that the appearing system matrices have to be computed only once for each domain

while the system (2.19) has to be solved M + 1 times to get the vi’s from the gi’s. We will use

the wavelet Galerkin scheme which yields quasi sparse system matrices and, hence, a linear

overall complexity with respect to the number NΓ +NΣ of degrees of freedom. We refer to [20]

for all the details on the wavelet based fast solution of boundary integral equations.

2.3. Approximation of the free boundary. For the numerical computations, we restrict

ourselves to inclusions which are starshaped with respect to the origin 0. Then, the inclusion

can be parametrized in accordance with

γ : [0, 2π]→ Γ, φ 7→ r(φ)

[
cosφ

sinφ

]
,

i.e., we can identify the inclusion via a radial function

r(φ) = a0 +
∞∑

n=1

an cos(nφ) + a−n sin(nφ) ∈ C2
per([0, 2π]),

which depends only on the polar angle. Hence, it is reasonable to make for the sought inclusion

the ansatz

(2.20) rNr(φ) = a0 +
Nr∑

n=1

an cos(nφ) + a−n sin(nφ).

Since rNr admits 2Nr + 1 degrees of freedom a−Nr , a1−Nr , . . . , aNr , we arrive at a finite dimen-

sional optimization problem in the open set

ANr :=
{
a−Nr , a1−Nr , . . . , aNr ∈ R : rNr(φ) > 0, φ ∈ [0, 2π]

}
⊂ R2Nr+1.

Hence, via the identification rNr ⇔ DNr , the finite dimensional approximation of shape mini-

mization problem (1.2) reads as

(2.21) F (DNr)→ min
ANr

.

The associated gradient has to be computed with respect to all directions under consideration:

V(φ) = cos(Nrφ)er(φ), cos
(
(Nr − 1)φ

)
er(φ), . . . , sin

(
(Nr − 1)φ

)
er(φ), sin(Nrφ)er(φ).

Herein, er(φ) = (cosφ, sinφ) is the radial direction.
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We will apply the quasi-Newton method, updated by the inverse BFGS-rule without damping,

in combination with a quadratic line-search in order to solve the minimization problem (2.21).

For all the details and a survey on available optimization algorithms, we refer to [15, 16, 19]

and the references therein.

3. Numerical results

In our numerical example, we consider D to be the ellipse with semi-axes 0.45 and 0.3, having

a starshaped inclusion in its interior. This inclusion is to be determined from measurements of

the Neumann data for the single voltage distribution f(x) = x2
1 − x2

2 at the outer boundary Σ.

We consider the situation that the noisy measurement g(x, ω) is a Gaussian random field. Then,

the Neumann data g(x, ω) are given in accordance with (1.8), being fully described by having

normalized Gaussian random variables Yi ∼ N (0, 1) and a certain covariance kernel

Cor(x,y) =

∫

Ω

(
g(x, ω)− g0(x)

)(
g(y, ω)− g0(y)

)
dP(ω).

We assume for our test that the covariance kernel is a Gaussian kernel

Cor(x,y) = β exp

(
− ‖x− y‖2

`2

)

with correlation length ` > 0. Hence, by means of the Karhunen-Loève expansion and an

appropriate random number generator, we are able to simulate the Gaussian random field

numerically, see [18, 27] for example.

The discretization of the shape optimization problem is as follows. The sought inclusion is

approximated by a Fourier expansion of with 33 Fourier coefficients, i.e., it holds Nr = 16 in

(2.20). Notice that the sought inclusion cannot be exactly represented by this Fourier expansion.

Moreover, the solutions of the boundary integral equations (2.16) and (2.17) are approximately

computed by using 512 piecewise linear wavelets per boundary. We use always the circle of radius

0.2 as initial guess and stop the quasi-Newton method after 25 steps since the underlying shape

identification problem is severely ill-posed.

3.1. Classical approach. The classical approach would be to sample the process g and to

minimize the Kohn-Vogelius functional for each realization. In Figure 3.2, we plotted ten re-

constructions which were derived from a single measurement, where the correlation length is

set to ` = 0.1 and the noise level β is chosen such that the perturbation ‖g(ω) − g0‖L2(Σ) is

about 5 percent of ‖g0‖L2(Σ). We observe a great variance of the reconstructions in Figure 3.2.

In particular, the reconstructions differ mostly considerably from the exact inclusion, which is

indicated in dark gray.

Since we are using a parametrization (2.20) based on Fourier coefficients, we can compute the

mean of the Fourier coefficients of the reconstructions. Doing so for the ten reconstructions found
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Figure 3.2. Reconstructions for ten different realizations of the noisy data.

in Figure 3.2, we obtain the inclusion seen in Figure 3.3. One clearly observes an improvement

of the reconstruction. Nonetheless, this parametrization based notion of the mean shape is not

generally possible. In particular, it is computationally extremely expensive.

Figure 3.3. Mean of the reconstructed inclusions.

3.2. Expected Kohn-Vogelius functional. To realize the new approach proposed on this

article, we repeat the measurement M times, yielding samples g(1), g(2), . . . , g(M) of the unknown
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random field g(ω). From these measurements, we compute the sample mean

g(x) =
1

M

M∑

m=1

g(m)(x)

to approximate the mean g0 in (1.8). The random variation is approximated by means of the

Karhunen-Loève expansion with respect to the sample covariance

Q(x,y) =
1

M − 1

M∑

m=1

g(m)(x)g(m)(y).

Figure 3.4. Reconstructions for the expected Kohn-Vogelius functional in case

of 10 samples.

If we run the optimization for the expected Kohn-Vogelius functional, i.e., for the objective

(1.5) with α = 0, then we obtain the reconstructions found Figure 3.4. Here, we have repeated

the reconstruction algorithm four times based on M = 10 samples each. One observes much

better reconstructions than those which are obtained from a single measurement. Nonetheless,

there is still a slight deviation of the reconstructions. This stems from the fact that ten samples

are not sufficient to reliably estimate the expectation and the covariance. The situation changes

if we exploit 100 measurements. In this case, we obtain a slightly improved reconstruction, see

Figure 3.5. Especially, there is no more difference when repeating the experiment.
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Figure 3.5. Reconstruction for the expected Kohn-Vogelius functional in case

of 100 samples.

3.3. Influence of the coupling parameter α. So far, we only considered the minimization of

the expected Kohn-Vogelius functional, which means the particular choice α = 0 in the objective

(1.4) and (1.5), respectively. Therefore, we shall study the dependence of the reconstruction

algorithm on the coupling parameter α. To that end, we choose M = 100 samples in order to

ensure that the reconstruction does not depend on the particular samples.

We consider objective (1.5), since the standard deviation exhibits the same scaling as the

expectation. For our test example, both quantities have a similar size for the initial shape.

For increasing coupling parameter α, the standard deviation of the Kohn-Vogelius functional

becomes more and more important compared with its expectation. Nonetheless, the reconstruc-

tion is basically the same as seen in Figure 3.6. Here, one finds the reconstructions for α = 1/2,

α = 3/4, α = 7/8, and α = 15/16.

What differs for different values of the coupling parameter α is the convergence behaviour of

the reconstruction algorithm. Increasing α enforces faster convergence in the beginning of the

minimization algorithm, see also Figure 3.7, where the convergence histories of the objective

(1.5) are found for different values of the coupling parameter α. Nonetheless, one also figures out

that the functional becomes more flat as α increases. Notice that the reconstruction algorithm

does not converge anymore for values of α higher than α = 15/16.

4. Conclusion

In the present article, we have proposed a method which enables to reconstruct inclusions or

void in electrical impedance tomography also in case of very noisy data. Namely, we modeled

the measurement data as random field which can approximately be determined from repeated

measurements. An objective which combines the expectation and variance of the Kohn-Vogelius

functional is then mimimized to reconstruct the sought inclusion. In particular, it is shown that
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Figure 3.6. Influence of the coupling parameter: α = 1/2, 3/4, 7/8, 15/16 (from the

top to the bottom and from the the left to the right).

the objective as well as its shape gradient is a deterministic quantity. Numerical results are

present which show the capability and feasibility of the proposed approach.
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