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HEIGHTS IN FAMILIES OF ABELIAN VARIETIES AND THE
GEOMETRIC BOGOMOLOV CONJECTURE

ZIYANG GAO AND PHILIPP HABEGGER

Abstract. On an abelian scheme over a smooth curve over Q a symmetric relatively
ample line bundle defines a fiberwise Néron–Tate height. If the base curve is inside a
projective space, we also have a height on its Q-points that serves as a measure of each
fiber, an abelian variety. Silverman proved an asymptotic equality between these two
heights on a curve in the abelian scheme. In this paper we prove an inequality between
these heights on a subvariety of any dimension of the abelian scheme. As an application
we prove the Geometric Bogomolov Conjecture for the function field of a curve defined
over Q. Using Moriwaki’s height we sketch how to extend our result when the base
field of the curve has characteristic 0.
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10. Néron–Tate Height and Height on the Base 51
11. Application to the Geometric Bogomolov Conjecture 52
Appendix A. Passing from Q to any Field of Characteristic 0 54
Appendix B. Proposition 1.3 for Higher Dimensional Base 57
Appendix C. Hyperbolic Hypersurfaces of Abelian Varieties 59
References 61

1. Introduction

In 1998, Ullmo [48] and S. Zhang [66] proved the Bogomolov Conjecture over number
fields. However its analog over function fields, which came to be known as the Geometric
Bogomolov Conjecture, remains open in full generality.

The main goal of this paper is to prove a height inequality on a subvariety of an abelian
scheme over a smooth curve over Q, Theorem 1.4. It is then not hard to deduce the
Geometric Bogomolov Conjecture over the function field of a curve in the characteristic
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0 case. See §11 and Appendix A. Our height inequality may be of independent interest
and does not seem to follow from the Geometric Bogomolov Conjecture. It can serve
as a substitute in higher dimension of Silverman’s Height Limit Theorem [45], used by
Masser and Zannier [36] to prove a first case of the relative Manin–Mumford Conjecture
for sections of the base curve; we refer to Pink’s work [41] and Zannier’s book [63] on
such problems.

Let k be an algebraically closed field of characteristic 0, K a field extension of k, and
K a fixed algebraic closure of K. Let A be an abelian variety over K. We let AK/k

denote the K/k-trace of A ⊗K K; it is an abelian variety over k and we have a trace

map τA,K/k : AK/k ⊗k K → A⊗K K, which is a closed immersion since char(k) = 0. By

abuse of notation we consider AK/k ⊗kK as an abelian subvariety of A⊗K K. We refer
to §2 for references and more information on the trace.

Suppose now that K is the function field of a smooth projective curve over k. In
particular, we have trdeg(K/k) = 1.

Let L be a symmetric ample line bundle on A. We can attach to A,L, and K the
Néron–Tate height ĥK,A,L : A(K) → [0,∞), see §2.1 for additional background on the
Néron–Tate height. This height satisfies: For any P ∈ A(K) we have

ĥK,A,L(P ) = 0 if and only if P ∈ (AK/k ⊗k K)(K) + Ator,

here Ator denotes the subgroup of points of finite order of A(K).
A coset in an abelian variety is the translate of an abelian subvariety, we call it a

torsion coset if it contains a point of finite order.
Our main result towards the Geometric Bogomolov Conjecture is the following theo-

rem. We first concentrate on the important case k = Q.

Theorem 1.1. We keep the notation from above and assume k = Q. Let X be an
irreducible, closed subvariety of A defined over K such that X ⊗K K is irreducible and
not of the form B+(Z⊗kK) for some closed irreducible subvariety Z of AK/k and some
torsion coset B in A⊗K K. Then there exists a constant ε > 0 such that

{x ∈ X(K) : ĥK,A,L(x) ≤ ε}
is not Zariski dense in X.

In Appendix A we sketch a proof for when k is any algebraically closed field of char-
acteristic 0 using Moriwaki’s height.

Yamaki [59, Conjecture 0.3] proposed a general conjecture over function fields which
we will call the Geometric Bogomolov Conjecture; it allows trdeg(K/k) to be greater
than 1 and k algebraically closed of arbitrary characteristic. The reference to geometry
distinguishes Yamaki’s Conjecture from the arithmetic counterpart over a number field.

The Geometric Bogomolov Conjecture was proven by Gubler [25] when A is totally
degenerate at some place of K. He has no restriction on the characteristic of k and
does not assume that K/k has transcendence degree 1. When X is a curve embedded in
its Jacobian A and when trdeg(K/k) = 1, Yamaki dealt with nonhyperelliptic curves of
genus 3 in [57] and with hyperelliptic curves of any genus in [58]. If moreover char(k) = 0,
Faber [17] proved the conjecture for X of small genus (up to 4, effective) and Cinkir [13]
covered the case of arbitrary genus. Priori to these work, Moriwaki also gave some partial
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results in [37]. Yamaki [60] reduced the Geometric Bogomolov Conjecture to the case
where A has good reduction everywhere and has trivial K/k-trace. He also proved the

cases (co)dimX = 1 [62] and dim(A⊗KK/(AK/k⊗kK)) ≤ 5 [61]. As in Gubler’s setup,
Yamaki works in arbitrary characteristic and has no restriction on K/k. These results
involve techniques ranging from analytic tropical geometry [26] to Arakelov theory; the
latter method overlaps with Ullmo and S. Zhang’s original approach for number fields.

Our approach differs and is based on a height inequality on a model of A to be stated
below in Theorem 1.4 (see Appendix A for a version involving the Moriwaki height). In
a recent collaboration with Cantat and Xie [11] we were able to resolve the Geometric
Bogomolov Conjecture completely in characteristic 0. While the methods in [11] there
were motivated by those presented here, they do not bypass through or recover a height
inequality such as Theorem 1.4.

To prove Theorem 1.1 we must work in the relative setting. Let us setup the notation.
Let S be a smooth irreducible curve over k, and let π : A → S be an abelian scheme of
relative dimension g ≥ 1. Let A be the generic fiber of A → S; it is an abelian variety
over k(S), the function field of S. We will prove the Geometric Bogomolov Conjecture

for A and K = k(S). Let us also fix an algebraic closure k(S) of k(S).

Definition 1.2. An irreducible closed subvariety Y of A is called a generically special
subvariety of A, or just generically special, if it dominates S and if its geometric generic
fiber Y ×S Spec k(S) is a finite union of (Z⊗k k(S)) +B, where Z is a closed irreducible

subvariety of Ak(S)/k and B is a torsion coset in A⊗k(S) k(S).

For any irreducible closed subvariety X of A, we set

X∗ = X \
⋃

Y⊆X
Y is a generically special

subvariety of A

Y.

We start with the following proposition that clarifies the structure of X∗. Its proof relies
on a uniform version of Raynaud’s [43] resolution of the Manin–Mumford Conjecture in
characteristic 0 as well as the Lang–Néron Theorem, the generalization of the Mordell–
Weil Theorem to finitely generated fields.

Proposition 1.3. Let X and A be as above. There are at most finitely many generically
special subvarieties of A that are contained in X, maximal with respect to the inclusion
for this property. In particular, X∗ is Zariski open in X and it is empty if and only if
X is generically special.

Let us now assume k = Q and turn to height functions. We write h(·) for the absolute
logarithmic Weil height on projective space.

Let S be a smooth projective curve over Q containing S as a Zariski open and dense
subset. LetM be an ample line bundle on S and letM =M|S. The Height Machine [7,
Chapter 2.4] attaches to (S,M) a function S(Q)→ R that is well-defined up-to addition
of a bounded function. Let hS,M be the restriction to S(Q) of a representative of this class
of functions. As M is ample on S, we may take such a representative that hS,M(s) ≥ 0

for each s ∈ S(Q).
Let L be a relatively ample and symmetric line bundle on A/S defined over Q. Then

for any s ∈ S(Q), the line bundle Ls on the abelian variety As = π−1(s) is symmetric;
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note that As is defined over Q. Tate’s Limit Process provides a fiberwise Néron–Tate
height ĥAs,Ls : As(Q)→ [0,∞). It is determined uniquely by the restriction of L to As,
there is no need to fix a representative here. Finally define ĥA,L : A(Q) → [0,∞) to be

the total Néron–Tate height given by P 7→ ĥAπ(P ),Lπ(P )
(P ) for all P ∈ A(Q).

These two height functions are unrelated in the following sense. It is not difficult to
construct an infinite sequence of points P1, P2, . . . ∈ A(Q) such that ĥA,L(Pi) is constant
and hS,M(π(Pi)) unbounded; just take Pi of finite order in Aπ(Pi) and the sequence π(Pi)
of unbounded height.

The main technical result of this paper is a height inequality that relates these two
heights on an irreducible subvariety X of A. The discussion in the last paragraph
suggests that we should at least remove all curves in X that dominate S and contain
infinitely many points of finite order. This turns out to be insufficient and we must also
remove subvarieties that are contained in constant abelian subschemes of A. In fact, we
must remove precisely generically the special subvarieties of A from Definition 1.2 that
are contained in X.

Theorem 1.4. Let π : A → S, L and M be as above with k = Q and dimS = 1. Let X
be a closed irreducible subvariety of A over Q and let X∗ be as above Proposition 1.3.
Then there exists c > 0 such that

(1.1) hS,M(π(P )) ≤ c
(

1 + ĥA,L(P )
)

for all P ∈ X∗(Q).

Suppose X dominates S, so we think of X as a family of (dimX − 1)-dimensional
varieties. Then our height inequality (1.1) can be interpreted as a uniform version of the
Bogomolov Conjecture along the 1-dimension base S if hS,M(π(P )) ≥ 2c. Indeed, then

ĥA,L(P ) ≥ 1
2c
hS,M(π(P )). From this point of view it would be interesting to have an

extension of Theorem 1.4 to dimS > 1. For the main obstacle to pass from dimS = 1
to general case, we refer to §1.1, Part 1 and above.

Theorem 1.4 was proven by the second-named author [27] when A is a fibered power
of a non-isotrivial 1-parameter family of elliptic curves. This theorem had applications
towards special points problems [27, Theorems 1.1 and 1.2] and towards some cases of
the relative Manin–Mumford Conjecture [28].

After this work was submitted, Ben Yaacov and Hrushovski informed the authors of
their similar height inequality for a 1-parameter family of genus g ≥ 2 curves in an
unpublished note [4] by reducing it to Cinkir’s result [13].

In this paper we treat arbitrary abelian schemes over algebraic curves, possibly with
non-trivial isotrivial part, and hope to extend the aforemention applications in future
work.

Before proceeding, we point out that we shall prove Theorem 1.4 for a particular
relatively ample line bundle L on A/S that is fiberwise symmetric and a particular
ample line bundle M on S. Then Theorem 1.4 holds for arbitrary such L and M by
formal properties of the Height Machine. Moreover we will prove the following slightly
stronger form of Theorem 1.4.

We may attach a third height function on A in the following way. Let L′ = L⊗π∗M.
By [42, Théorème XI 1.4] and [21, Corollaire 5.3.3 and Proposition 4.1.4], our abelian
scheme admits a closed immersion ι : A → PMQ × S over S arising from (L′)⊗n for some
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n � 1. As we will see in §2.2 the existence of a closed immersion is more straight-
forward if we allow ourselves to remove finitely many points from S, a procedure that
is harmless in view of our application. Define the naive height of P to be hA,L′(P ) =
1
n
h(P ′) + hS,M(π(P )) where ι(P ) = (P ′, π(P )) ∈ PMQ (Q)× S(Q).

Theorem 1.4′. Let π : A → S and ι be as above with k = Q and dimS = 1. Let X be a
closed irreducible subvariety of A over Q and let X∗ be as above Proposition 1.3. Then
there exists c > 0 such that

hS,M(π(P )) ≤ hA,L′(P ) ≤ c
(

1 + ĥA,L(P )
)

for all P ∈ X∗(Q).

1.1. Outline of Proof of Theorems 1.1 and 1.4 and Organization of the Paper.
We give an overview of the proof of Theorem 1.4 in three parts.

Consider an abelian scheme π : A → S over a smooth algebraic curve S of relative
dimension g ≥ 1.

The Ax–Schanuel Theorem [3] is a function theoretic version of the famous and open
Schanuel Conjecture in transcendence theory. Stated for algebraic groups, the case of
an abelian variety deals with algebraic independence of functions defined using the uni-
formizing map. It has seen many applications to problems in diophantine geometry [63].

For our purpose we need an Ax-Schanuel property for families of abelian varieties,
which is not yet available. However the assumption dimS = 1 simplifies the situation:
Instead of the full power of functional transcendence, we only need to study a functional
constancy property. The first part of the proof deals with this functional constancy
property where the so-called Betti map plays the role of the uniformizing map. We
briefly explain this map and refer to §4 for more details.

Part 1: The Betti Map and a Functional Constancy Property. Any point
of S(C) has a complex neighborhood that we can biholomorphically identify with the
open unit disc ∆ ⊆ C. The fiber of A → S above a point s ∈ ∆ is biholomorphic to a
complex torus Cg/Ω(s)Z2g where the columns of Ω(s) ∈ Matg,2g(C) are a period lattice
basis. Of course Ω(s) is not unique. The choice of a period lattice basis Ω(s) enables us
to identify As with T2g as real Lie groups, with T the unit circle in C. As ∆ is simply
connected, we can arrange that the period map s 7→ Ω(s) is holomorphic on ∆. In turn
we can identify A∆ = π−1(∆) with the constant family ∆×T2g as families over ∆. This
can be done in away that we get group isomorphisms As(C)→ T2g fiberwise. Note that
the complex structure is lost, and that the isomorphism in play is only real analytic.

The Betti map b : A∆ → T2g is the composite of the isomorphism A∆
∼= ∆×T2g with

the projection to T2g. It depends on several choices, but two different Betti maps on
A∆ differ at most by composing with a continuous automorphism of T2g.

Let X be an irreducible closed subvariety of A that dominates S. In §5 we study the
restriction of b to Xan; the superscript an denotes complex analytification. We say that
X is degenerate if the restriction of b : A∆ → T2g to Xan ∩A∆ has positive dimensional
fibers on a non-empty, open subset Xan; being open refers to the complex topology. The
main result of §5, Theorem 5.1, states that a degenerate subvariety is generically special.
This will allow us to explain the analytic notion of degeneracy in purely algebraic terms.

Let us give some ideas of what goes into the proof of Theorem 5.1.
In general, the period mapping s 7→ Ω(s) cannot extend to the full base due to

monodromy. This obstruction is a powerful tool in our context. Indeed, fix a base point
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s ∈ San. Monodromy induces a representation on the fundamental group π1(San, s) →
Aut(H1(Aan

s ,Z)). Moreover, by transporting along the fibers of the Betti map above a
loop in San we obtain a representation π1(San, s)→ Aut(Aan

s ) whose target is the group of
real analytic automorphisms of As. This new representation induces the representation
on homology. Moreover, we can identify Aut(Aan

s ) with GL2g(Z) because As and T2g

are isomorphic in the real analytic category. So the canonical mapping Aut(Aan
s ) →

Aut(H1(Aan
s ,Z)) is an isomorphism of groups.

Now suppose that X is degenerate. The assumption dimS = 1 forces that Xan∩A∆ =
b−1(b(Xan ∩ A∆)).1 In other words the fibers Xs = π|−1

X (s) do not depend on s ∈ ∆
for the identification Aan

s = T2g. So the action of π1(San, s) on Aan
s leaves Xs invariant.

Thus it suffices to understand subsets of As that are invariant under the action of a
subgroup of GL2g(Z). We use Deligne’s Theorem of the Fixed Part [16] and the Tits
Alternative [47] to extract information from this subgroup. Indeed, under a natural
hypothesis on A, the image of the representation in GL2g(Z) contains a free subgroup
on two generators. In particular, the image is a group of exponential growth. We then
use a variant of the Pila–Wilkie Counting Theorem [39], due to Pila and the second-
named author, and Ax’s Theorem [3] for a constant abelian variety. From this we will
be able to conclude that X is generically special if it is degenerate.

Let us step back and put some of these ideas into a historic perspective. In the special
case where A is the fibered power of the Legendre family of elliptic curves, the second-
named author [27] used local monodromy to investigate degenerate subvarieties. In the
current work local monodromy is insufficient as S could be complete to begin with. So
we need global information. Zannier introduced the point counting strategy and together
with Pila gave a new proof of the Manin–Mumford Conjecture [40] using the Pila–Wilkie
Theorem [39]. Masser and Zannier [36] showed the usefulness of the Betti coordinates
for problems in diophantine geometry by solving a first case of the relative Manin–
Mumford Conjecture. Ullmo and Yafaev [49] exploited exponential growth in groups
in combination with the Pila–Wilkie Theorem to prove their hyperbolic Ax–Lindemann
Theorem for projective Shimura varieties. A recent result of André, Corvaja, and Zannier
[1] also deals with the rank of the Betti map on the moduli space of principally polarized
abelian varieties of a given dimension. More recently, Cantat, Xie, and the authors [11]
gave a different approach to the functional constancy problem that does not rely on the
Pila–Wilkie Theorem but rather on results from dynamical systems.

Part 2: Eliminating the Néron–Tate Height. The second part of the proof
deals with reducing the height inequality in Theorem 1.4 to one that only involves Weil
heights; we refer to §2.1 for nomenclature on heights.

We will embed S into Pm and A into PM×Pm such that π : A → S is compatible with
the projection PM×Pm → Pm and other technical conditions are full-filled. Let h(P,Q) =
h(P )+h(Q) for P ∈ PM(Q), Q ∈ Pm(Q), where h denotes the absolute logarithmic Weil
height on projective space. For an integer N let [N ] denote the multiplication-by-N
morphism A → A.

1This is no longer true if dimS > 1, making the remaining argument in this part fail for dimS > 1.
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Let N ≥ 1 be a sufficiently large integer (which we assume to be a power of 2 for
convenience). If X is not generically special we show in Proposition 9.1 that

(1.2) N2h(P ) ≤ c1h([N ](P )) + c2(N)

for all P ∈ U(Q) where U is Zariski open and dense in X and where c1 > 0 and c2(N)
are both independent of P . Note that U and c2(N) may depend on N .

One is tempted to divide (1.2) by N2 and take the limit N → ∞ as in Tate’s Limit
Process. However, this is not possible a priori, as U and c2(N) could both depend
on N . So we mimic Masser’s strategy of “killing Zimmer constants” explained in [63,
Appendix C]. This step is carried out in §10 where we terminate Tate’s Limit Process
after finitely many steps when N is large enough in terms of c1; for this it is crucial that
c1 is independent of N .

Part 3: Counting Lattice Points and an Inequality for the Weil Height. At
this stage we have reduced proving Theorem 1.4 to (1.2) if X is not generically special.
Recall that from Part 1 of the proof we know that X is not degenerate. Therefore,
the restricted Betti map b|Xan : Xan → T2g has discrete fibers. The image of this
restriction has the same real dimension as Xan (the dimension is well-defined as the
image is subanalytic).

Part 3a: The Hypersurface Case. To warm up let us assume for the moment that
X is a hypersurface in A, so dimX = g. In this case the image b(Xan ∩ A∆) contains
a non-empty, open subset of T2g. By a simple Geometry of Numbers argument in the
covering R2g → T2g, the image contains � N2g points of order dividing N ; the implicit
constant is independent of N . As the Betti map is a group isomorphism on each fiber
of A we find that X contains � N2g points of order dividing N .

Obtaining (1.2) requires an auxiliary rational map ϕ : A 99K Pg. Suppose for simplicity
that we can choose ϕ such that ϕ−1([1 : 0 : · · · : 0]) is the image of the zero section
S → A. Then the composition ϕ ◦ [N ] restricts to a rational map X 99K Pg that maps
the � N2g torsion points constructed above to [1 : 0 : · · · : 0].

If we are lucky and all these torsion points are isolated in the fiber of ϕ ◦ [N ], then
deg(ϕ◦ [N ])� N2g. A height-theoretic lemma [27], restated here as Lemma 9.4, implies
(1.2) for N a power of 2. The factor N2 on the left in (1.2) equals N2 dimX/N2(dimX−1)

and has the following interpretation. The numerator comes from the degree lower bound
as dimX = g. The denominator is a consequence of the following fact. Given a suitable
embedding of an abelian variety into some projective space, the duplication morphism
can be described by a collection of homogeneous polynomials of degree 22 = 4. So [N ]
can be described by homogeneous polynomials of degree ≤ N2.

If we are less lucky and some torsion point is not isolated in ϕ◦[N ], then an irreducible
component of ker[N ] ⊆ A is contained in X. This situation is quite harmless, as roughly
speaking, it cannot happen too often for a variety that is not generically special.

The restriction dimX = g is more serious, however. The second-named author was
able to reduce [27] to the hypersurface case inside a fibered power of the Legendre family
of elliptic curves. This is not possible for general A, so we must proceed differently.

Part 3b: The General Case. For general X we will still construct a suitable
ϕ : X 99K PdimX as above and apply Lemma 9.4. As a stepping stone we first construct
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in §6 an auxiliary subvariety Z of A in sufficiently general position such that

(1.3) dimX + dimZ = dimA = g + 1.

The rational map ϕ is constructed using Z in §9, and one should think of Z as an
irreducible component of ϕ|−1

X ([1 : 0 : · · · : 0]). Being in general position and (1.3) mean
that ϕ|X has finite generic fiber on its domain.

Now we want ϕ◦ [N ] : X → PdimX to have degree� N2 dimX and for this it suffices to
find � N2 dimX isolated points in the preimage of [1 : 0 : · · · : 0]. As ϕ(Z) = [1 : 0 : · · · :
0] we need to find � N2 dimX isolated points in X ∩ [N ]−1(Z). (Additional verifications
must be made to ensure that isolated intersection points lead to isolated fibers.)

We ultimately construct these points using the Geometry of Numbers. More precisely,
we need a volume estimate and Blichfeldt’s Theorem. Since X is not degenerate we have
a point around which the local behavior of X is similar to the local behavior of its image
in T2g under the Betti map. This allows us to linearize the problem as follows. In order
to count the number of such X ∩ [N ]−1(Z), we can instead count points x ∈ T2g, coming
from points of X(C) under the Betti map, such that Nx = z lies in the image of Z(C).
If we let x, z range over the image under the Betti map of small enough open subsets of
X(C) and Z(C), then Nx− z ranges over an open subset of T2g. This conclusion makes
crucial use of the fact that X is not degenerate and that Z is in general position. Lifting
via the natural map R2g → T2g we are led to the counting lattices points. Indeed, we
must construct elements of Nx̃− z̃ ∈ Z2g where x̃, z̃ are lifts of points x, z as before. We
denote the set of all possible Nx̃− z̃ by UN . A careful volume estimate done in §7 leads
to vol(UN) � N2 dimX . So we expect to find this many lattice points. But there is no
reason to believe that UN is convex and it is not hard to imagine open subsets of R2g of
arbitrary large volume that meet Z2g in the empty set. To solve this problem we apply
Blichfeldt’s Theorem, which claims that some translate γ + UN of UN contains at least
vol(UN) lattice points in Z2g.

This approach ultimately constructs enough points to prove a suitable lower bound
for the degree of ϕ◦ [N ] and to complete the proof. However, additional difficulties arise.
For example, we must deal with non-zero γ and making sure that the points constructed
are isolated in X ∩ [N ]−1(Z). These technicalities are addressed in §8.

The Remaining Results. In §3 we prove Proposition 1.3. This section is mainly
self-contained and the main tool is a uniform version of the Manin–Mumford Conjecture
in characteristic 0.

The proof of Theorem 1.1 in §11 follows the blueprint laid out in [27]. We need to
combine our height bound, Theorem 1.4, with Silverman’s Height Limit Theorem [45]
used in his specialization result.

In Appendix A we sketch how to adapt our height inequality, Theorem 1.4, to more
general fields in characteristic 0. This shows how to deduce Theorem 1.1 for any alge-
braically closed field of characteristic 0. Appendix B contains some comments on the
situation when dimS > 1. Finally, in Appendix C we give a self-contained and quanti-
tative version of Brotbek’s Hyperbolicity Theorem [9] in the case of an abelian variety
(which is much simpler than the general case).
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ence “On Lang and Vojta’s conjectures” in Luminy 2014, where our collaboration began.
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2. Notation

Let N = {1, 2, 3, . . .} denote the set of positive integers. Let Q be the algebraic closure
of Q in C.

If X is a variety defined over C, then we write Xan for X(C) with its structure as a
complex analytic space, we refer to Grauert and Remmert’s book [20] for the theory of
complex analytic spaces.

Given an abelian scheme A over any base scheme and an integer N , we let [N ] denote
the multiplication-by-N morphism A → A. The kernel of [N ] is A[N ], it is a group
scheme over the base of A. An endomorphism of A is a morphism A → A that takes
the zero section to itself.

If A is an abelian variety over field K and if K ⊇ K is a given algebraic closure of K,
then Ator denotes the group of points of finite order of A(K).

Suppose k is a subfield of K whose algebraic closure in K equals k and char(k) = 0.
We write AK/k for the K/k-trace of A and let τA,K/k : AK/k ⊗k K → A denote the
associated trace map, we refer to [14, §6] for general facts and the universal property.
Note that our notation AK/k is denoted by TrK/k(A) in loc.cit. By [14, Theorem 6.2 and

below] τA,K/k is a closed immersion since char(k) = 0. We sometimes consider AK/k⊗kK
as an abelian subvariety of A.

By abuse of notation we sometimes abbreviate (A ⊗K K)K/k by AK/k and, in this

notation, consider AK/k ⊗k K as an abelian subvariety of A⊗k K.

2.1. Heights. A place of a number field K is an absolute value | · |v : K → [0,∞) whose
restriction to Q is either the standard absolute value or a p-adic absolute value for some
prime p with |p| = p−1. We set dv = [Kv : R] in the former and dv = [Kv : Qp] in the
latter case. The absolute, logarithmic, projective Weil height, or just height, of a point
P = [p0 : . . . : pn] ∈ PnQ(K) with p0, . . . , pn ∈ K is

h(P ) =
1

[K : Q]

∑

v

dv log max{|p0|v, . . . , |pn|v}

where the sum runs over all places v of K. The value h(P ) is independent of the choice
of projective coordinates by the product formula. For this and other basic facts we refer
to [7, Chapter 1]. Moreover, the height does not change when replacing K by another
number field that contains the p0, . . . , pn. Therefore, h(·) is well-defined on PnQ(K) where

K is an algebraic closure of K.
In this paper we also require heights in a function field K. With our results in mind,

we restrict to the case where K = k(S) and S is a smooth projective irreducible curve
over an algebraically closed field k. Let K be an algebraic closure of K. In this case, we
can construct a height hK : PnK(K)→ R as follows.
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The points S(k) correspond to the set of places | · |v of K. They extend in the usual
manner to finite extensions of K. If P = [p0 : · · · : pn] ∈ PnK(K) with p0, . . . , pn ∈ K ′,
where K ′ is a finite extension of K, then we set

hK(P ) =
1

[K ′ : K]

∑

v

dv log max{|p0|v, . . . , |pn|v}

where dv are again local degrees such that the product formula holds. We refer to [7, §1.3.
and 1.4.6] for more details or [14, §8] on generalized global fields. In the function field
case we keep K in the subscript of hK to emphasize that K is our base field. Indeed,
in the function field setting one must keep track of the base field “at the bottom” that
plays the role of Q in the number field setting.

Now let K be either a number field or a function field as above. Suppose that A is an
abelian variety defined over K that is embedding in some projective space PMK with a
symmetric line bundle. Tate’s Limit Process induces the Néron–Tate or canonical height
on A(K). If K is a number field, we write

(2.1) ĥA(P ) = lim
N→∞

h([2N ](P ))

4N

for the Néron–Tate height on A(K), we refer to [7, Chapter 9.2] for details. The Néron–
Tate height depends also on the choice of the symmetric, ample line bundle, but we do
not mention it in ĥA.

The construction in the function field is the same. For the same reason as above we
retain the symbol K and write ĥA,K for the Néron–Tate height on A(K).

2.2. Embedding our Abelian Scheme. In the paper we are often in the following
situation. Let k be an algebraically closed subfield of C. Let S be a smooth irreducible
algebraic curve over k and let A be an abelian scheme of relative dimension g ≥ 1 over
S with structural morphism π : A → S.

Let us now see how to embed A into PMS = PMk × S for some M > 0 after possibly
removing finitely many points from S. Note that removing finitely many points is
harmless in the context of our problems. Indeed, our Theorem 1.4 is not weakened by
this action and so we do it at leisure.

The generic fiber A of A → S is an abelian variety defined over the function field of
S. Let L be a symmetric ample line bundle on A. Then L⊗3 is very ample. Replace L
by L⊗3g. A basis of H0(A,L) gives a projectively normal closed immersion A → PMk(S)

for some M > 0.
We take the scheme theoretic image A′ of A → PMk(S) → PMS , hence A′ is the Zariski

closure of the image of A in PMS with the reduced induced structure. After removing
finitely many points of S we obtain an abelian scheme A′ ⊆ PMS such that the morphism
from A to the generic fiber of A′ → S is an isomorphism. An abelian scheme over S is
the Néron model of its generic fiber, so the Néron mapping property holds. Therefore
the canonical morphism A → A′ is an isomorphism and we have thus constructed a
closed immersion

ιS : A → PMS = PMk × S.
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Note that L is the generic fiber of the relatively very ample line bundle L = ι∗SOS(1)
on A/S. Moreover for any s ∈ S(k), we have that Ls is the g-th tensor-power of a very
ample line bundle on As.

We may furthermore find an immersion (which need not be open or closed) of S into
some Pmk . Composing yields the desired immersion A → PMk ×Pmk . By abuse of notation
we consider A ⊆ PMk(S) and A ⊆ PMk × Pmk from now on. Let us recapitulate.

(A1) We have an immersion A → PMk ×Pmk such that the diagram involving π : A → S
and the projection PMk × Pmk → Pmk commutes. Moreover, for all s ∈ S(k) the
closed immersion As → PMk is induced by a symmetric very ample line bundle.

Of course this immersion depends on the choice of the immersions of A and of S.
The image of A in PMk(S) is projectively normal and [2]∗L is isomorphic to L⊗4. There-

fore, [2] is represented globally by M + 1 homogeneous polynomials of degree 4 on the
image of A. Here the base field is the function field k(S). But we can extend it to
the model after possibly removing finitely many points of S. So we may assume the
following.

(A2) The morphism [2] is represented globally on A ⊆ PMk × Pmk by M + 1 bi-
homogeneous polynomials, homogeneous of degree 4 in the projective coordinates
of PMk and homogeneous of a certain degree in the projective coordinates of Pmk .

Finally, we explain why we took the additional factor g in the exponent 3g of L⊗3g.
By Proposition C.1 we have the additional and useful property.

(A3) For given s ∈ S(k) and P ∈ As, any generic hyperplane section of As passing
through P does not contain a positive dimensional coset in As.

At the cost of possibly increasing the factor g we could also refer to Brotbek’s deep
result [9] for more general projective varieties.

An immersion ι : A → PMk × Pmk for which (A1), (A2), and (A3) above are satisfied
will be called admissible.

The construction above adapts easily to show the following fact. Let A be an abelian
variety defined over k(S). After possibly shrinking S we can realize A as the generic
fiber of an abelian scheme A → S with an admissible immersion A → PMk × Pmk .

If k = Q we have two height functions on A(Q).
Say P ∈ A(Q), we write P = (P ′, π(P )) with P ′ ∈ PMQ (Q) and π(P ) ∈ PmQ (Q). Then

(2.2) h(P ) = h(P ′) + h(π(P ))

defines our first height A(Q)→ [0,∞) which we call the naive height on A (relative to
the immersion A ⊆ PMQ × PmQ ).

The second height is the fiberwise Néron–Tate or canonical height

(2.3) ĥA(P ) = ĥAπ(P )
(P ),

cf. (2.1). We obtain a function ĥA : A(Q) → [0,∞). It is quadratic on each fiber as
the line bundle on the generic fiber A is symmetric and this extends along the fibers of
A → S.

In the end we explain these height functions in terms of Height Machine. Let A, resp.
S, be the Zariski closure of the image of the immersion A ⊆ PMQ ×PmQ , resp. S ⊆ PmQ . If

we let L′ = O(1, 1)|A and M = O(1)|S, then h(·) represents the class of functions hA,L′
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defined up-to O(1) and h ◦ π represents hS,M ◦ π. And the fiberwise Néron–Tate height

ĥA is the map P 7→ ĥAπ(P ),Lπ(P )
(P ), where L = ι∗SOS(1) as above.

3. Proof of Proposition 1.3

The goal of this section is to prove Proposition 1.3. In fact we will prove a statement
of independent interest which implies Proposition 1.3.

Let k be an algebraically closed field of characteristic 0. Let S be a smooth irreducible
curve over k and fix an algebraic closure K of the function field K = k(S). Let A be an
abelian variety over K.

Furthermore, let V0 be an irreducible variety defined over k and V = V0 ⊗k K. We
consider V0(k) as a subset of V (K).

The next proposition characterizes subvarieties V ×A that contain a Zariski dense set
of points in Σ = V0(k)×Ator ⊆ V (K)×A(K). See Yamaki’s [60, Proposition 4.6] for a
related statement.

Proposition 3.1. Suppose AK/k = 0 and let Y be an irreducible closed subvariety of
V × A.

(i) If Y (K)∩Σ is Zariski dense in Y , then Y = (W0⊗kK)× (P +B) with W0 ⊆ V0

an irreducible closed subvariety, P ∈ Ator, and B an abelian subvariety of A.
(ii) There are at most finitely many subvarieties of the form (W0 ⊗k K) × (P + B)

(with W0, P, and B as in (i)) that are contained in Y , maximal with respect to
the inclusion for this property.

Part (i) implies (ii) for the following reason. If W0, P, and B are as in the conclusion
of (i), then it suffices to observe that ((W0⊗k K)× (P +B))(K)∩Σ is Zariski dense in
(W0 ⊗k K)× (P +B).

The assumption dimS = 1 is used only at one place in the proof. In Appendix B, we
will explain how to remove it.

3.1. Proposition 3.1 implies Proposition 1.3. Now we go back to the setting of
Proposition 1.3: S is a smooth irreducible curve over k and π : A → S is an abelian
scheme of relative dimension g ≥ 1. Let A denote the geometric generic fiber of π, it is
an abelian variety over K.

By [14, Theorem 6.4 and below] there is a unique abelian subvariety A′ ⊆ A such that

(A/A′)K/k = 0 and such that we may identify A′ with AK/k ⊗k K.
We fix an abelian subvariety A′′ ⊆ A with A′+A′′ = A and such that A′∩A′′ is finite.

Then the addition morphism restricts to an isogeny ψ : A′ × A′′ → A and (A′′)K/k = 0.

Let W0 be an irreducible closed subvariety of AK/k, B an abelian subvariety of A′′,
and P ∈ A′′(K). We can map ψ((W0 ⊗k K) × (P + B)) ⊆ A to the generic fiber of A;
its Zariski closure is a generically special subvariety of A. Conversely, any generically
special subvariety of A arises this way.

Let X ⊆ A be an irreducible closed subvariety that dominates S and X ⊆ A its
geometric generic fiber. We apply Proposition 3.1 where AK/k, A′′ play the role of V0, A
respectively. There are at most finitely many subvarieties of A of the form (W0⊗kK)×
(P +B) that are contained in ψ−1(X), maximal for this property. This shows that there
are at most finitely many generically special subvarieties of A that are contained in X ,
maximal for this property. �
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3.2. Proof of Proposition 3.1. Now we prove Proposition 3.1. To do this we require
a uniform version of the Manin–Mumford Conjecture in characteristic 0.

Theorem 3.2 (Raynaud, Hindry, Hrushovski, Scanlon). Let K be as above, let A be an
abelian variety, and let V be an irreducible, quasi-projective variety, both defined over
K. Suppose Y is an irreducible closed subvariety of V × A. For v ∈ V (K) we let Yv
denote the projection of V ∩ ({v} ×A) to A. Then there exists a finite set M of abelian
subvarieties of A and D ∈ Z with the following property. For all v ∈ V (K) the Zariski
closure of Yv(K) ∩ Ator in Yv is a union of at most D translates of members of M by
points of finite order in Ator.

Proof. Raynaud proved the Manin–Mumford Conjecture in characteristic zero. Au-
tomatical uniformity then follows from Scanlon’s [44, Theorem 2.4]; see also work of
Hrushovski [33] and Hindry’s [31, Théorème 1] for k = Q. Indeed, the number of
irreducible components is uniformly bounded in an algebraic family. Moreover, it is
well-known that if an irreducible component of a fiber of an algebraic family is a coset
in A, then only finitely many possible underlying abelian subvarieties arise as one varies
over the fibers. �
Proof of Proposition 3.1. We have already seen that it suffices to prove (i). We keep the
notation Yv for fibers of Y above v ∈ V (K) introduced in Theorem 3.2. Let M and D
be as in this theorem.

For all v ∈ V (K) we have

Yv(K) ∩ Ator =
⋃

i

(Pv,i +Bv,i)

where Pv,i ∈ Ator, Bv,i ∈ M, and the union has at most D members. Note that for
v ∈ V (K) any torsion coset contained in Yv is contained in some Pv,i +Bv,i. Moreover,

(3.1) Y (K) ∩ Σ =
⋃

v∈V0(k)

⋃

i

{v} ×
(
Pv,i + (Bv,i)tor

)
.

We decompose Y (K) ∩ Σ into a finite union of

ΣB =
⋃

v∈V0(k)

⋃

i
Bv,i=B

{v} × (Pv,i +Btor)

by collecting entries on the right of (3.1) that come from B ∈ M . The set ΣB must
be Zariski dense in Y for some B ∈ M . There is possibly more than one such B so we
choose one that is maximal with respect to inclusion.

We fix a finite field extension F/K with F ⊆ K, such that Y,A, and B are stable
under the action of Gal(K/F ). For this proof we consider these three varieties and V

as over F . Note that AK/k = 0 remains valid.
Now suppose v ∈ V0(k) and let Pv,i be as in the definition of ΣB, hence Bv,i = B and

Pv,i +B ⊆ Y .
For all σ ∈ Gal(K/F ) we have σ(Pv,i) +B = σ(Pv,i +B) ⊆ σ(Yv) = Yv, by our choice

of F and since σ acts trivially on V0(k). So the torsion coset σ(Pv,i) + B is contained
in Pv,j + B′ for some B′ ∈ M and some j. This implies B ⊆ B′. If B ( B′, then by
maximality of B the Zariski closure ΣB′ is not all of Y . After replacing F by a finite
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extension of itself we may assume σ(ΣB′) = ΣB′ for all σ ∈ Gal(K/F ). In particular,
{v} × (Pv,i + B) ⊆ ΣB′ . We remove such torsion cosets from the union defining ΣB to
obtain a set Σ′ ⊆ Y (K) ∩ Σ that remains Zariski dense in Y .

If Pv,i + B is in the union defining Σ′, then B = B′ and σ(Pv,i + B) = Pv,j + B for
some j and there are at most D possibilities for σ(Pv,i +B) with σ ∈ Gal(K/F ).

Let ϕ : A → A/B be the canonical map, then σ(ϕ(Pv,i)) = ϕ(σ(Pv,i)) = ϕ(Pv,j).
We have proven that the Galois orbit of ϕ(Pv,i) has at most D elements, in particular
[F (ϕ(Pv,i)) : F ] ≤ D; recall that D is independent of v and i.

Claim: Without loss of generality we may assume that the torsion points Pv,i contribut-
ing to Σ′ have uniformly bounded order.

Indeed, we may replace each Pv,i by an element of Pv,i + Btor. So by a standard
argument involving a complement of B in A it is enough to show the following statement:
The order of any point in

(3.2) {P ∈ (A/B)tor : [F (P ) : F ] ≤ D}
is bounded in terms of A/B and D only.

This is the only place in the proof of Proposition 3.1 where we use the hypothesis
dimS = 1. In Appendix B we will explain how to remove this hypothesis.

Let S
′

be an irreducible smooth projective curve with k(S
′
) = F and P as in (3.2).

The inclusion F ⊆ F (P ) corresponds to a finite covering S
′′ → S

′
of degree [F (P ) : F ]

where S
′′

is another smooth projective curve with function field F (P ). Then A/B has
good reduction above S ′(k)\Z for some finite subset Z of S ′(k), where we have identified
S ′(k) with the set of places of F . Note that S ′ and Z are independent of P . All residue
characteristics are zero, so by general reduction theory of abelian varieties we find that
F (P )/F is unramified above the places in S ′(k)\Z. In other words, the finite morphism

S
′′ → S

′
is unramified above S ′ \ Z. So we get a finite étale covering of S \ Z of degree

[F (P ) : F ].
Let L be the compositum in K of all extensions of F of degree at most D that are

unramified above S ′ \ Z. Then L/F a finite field extension by [53, Corollary 7.11] if
k ⊆ C and for general k of characteristic 0 since the étale fundamental group of S ′ \ Z
is topologically finitely generated by [24, Exposé XIII Corollaire 2.12]. In particular,
P ∈ (A/B)(L) for all P in (3.2).

Now (A/B)K/k = 0 as the same holds for A. The extension L/k is finitely generated,
so the Lang–Néron Theorem, cf. [35, Theorem 1] or [14, Theorem 7.1], implies that
(A/B)(L) is a finitely generated group. Thus [N ](P ) = 0 for some N ∈ N that is
independent of P . Our claim follows.

Define a morphism ψ : V ×A→ V × (A/B) by ψ(v, t) = (v, [N ] ◦ϕ(P )). By choice of
N we have ψ(Σ′) ⊆ V × {0}, so Σ′ ⊆ V × (Θ +B) where Θ ⊆ Ator is finite. We pass to
the Zariski closure and find Y ⊆ V × (P +B) for some P ∈ Ator as Y is irreducible.

Let p : V ×A→ V be the first projection, it is proper and p(Y ) is Zariski closed in V .
A fiber of p|Y containing a point of Σ′ contains a subvariety of dimension dimB. We use
that Σ′ is Zariski dense in Y one last time together with the Fiber Dimension Theorem
[30, Exercise II.3.22] to conclude dimB ≤ dimY − dim p(Y ). As Y ⊆ p(Y ) × (P + B)
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we conclude

(3.3) Y = p(Y )× (P +B).

Finally, p(Σ′) is Zariski dense in p(Y ) ⊆ V . But p(Σ′) consists of elements in V0(k),
with k the base field of V0. We conclude p(Y ) = W0⊗kK for some irreducible subvariety
W0 ⊆ V0. We conclude the proposition from (3.3). �

4. The Betti Map

In this section we describe the construction of the Betti map.
Let S be a smooth, irreducible, algebraic curve over C and suppose π : A → S is an

abelian scheme of relative dimension g. We construct:

Proposition 4.1. Let A and S be as above. For all s ∈ S(C) there exists an open
neighborhood ∆ of s in San and a real analytic mapping b : A∆ → T2g, called Betti map,
with the following properties.

(i) For each s ∈ ∆ the restriction b|Aan
s

: Aan
s → T2g is a group isomorphism.

(ii) For each ξ ∈ T2g the preimage b−1(ξ) is a complex analytic subset of Aan
∆ .

(iii) The product (b, π|A∆
) : A∆ → T2g ×∆ is real bianalytic.

Remark 4.2. We remark that b from the proposition above is not unique as we can
compose it with a continuous group endomorphism of T2g. However, if b, b′ : A∆ → T2g

both satisfy the conclusion of the proposition and if ∆ is path-connected, then using
homotopy and (iii) we find b′ = α ◦ b for some α ∈ GL2g(Z).

Before giving the concrete construction, let us explain the idea. Assume S = Ag is
the moduli space of principally polarized abelian varieties with level-3-structure, and
A = Ag is the universal abelian variety. The universal covering H+

g → Ag, where H+
g is

the Siegel upper half space, gives a polarized family of abelian varieties AH+
g
→ H+

g

AH+
g

:= Ag ×Ag H
+
g

//

��

Ag

��
H+
g

// Ag

.

For the universal covering u : Cg×H+
g → AH+

g
and for each τ ∈ H+

g , the kernel of u|Cg×{τ}
is Zg + τZg. Thus the map Cg ×H+

g → Rg ×Rg ×H+
g → R2g, where the first map is the

inverse of (a, b, τ) 7→ (a+τb, τ) and the second map is the natural projection, descends to
a map AH+

g
→ T2g. Now for each s ∈ S(C) = Ag(C), there exists an open neighborhood

∆ of s in Aan
g such that A∆ = (Ag)|∆ can be identified with AH+

g
|∆′ for some open subset

of H+
g . The composite b : A∆

∼= AH+
g
|∆′ → T2g is clearly real analytic and satisfies the

three properties listed in Proposition 4.1. Thus b is the desired Betti map in this case.
Note that for a fixed (small enough) ∆, there are infinitely choices of ∆′; but for ∆ small
enough, if ∆′1 and ∆′2 are two such choices, then ∆′2 = α ·∆′1 for some α ∈ Sp2g(Z).

Now let us give the concrete construction. Let s0 ∈ San. By Ehresmann’s Theorem [51,
Theorem 9.3], there is an open neigborhood ∆ of s0 in San such that A∆ = π−1(∆) and
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As0 ×∆ are diffeomorphic as families over ∆. The map f in

(4.1)

As0 ×∆ A∆

∆

f

is a diffeomorphism, the diagonal arrow is the natural projection, and the vertical arrow
is the restriction of the structural morphism. After translating we may assume that
(0, s) maps to the unit element in As for all s ∈ ∆. We may assume that ∆ is simply
connected. Fiberwise we obtain a diffeomorphism fs : As0 → As.

As Aan is a complex analytic space we may assume that the fibers of f−1 in (4.1) are
complex analytic, see [51, Proposition 9.5].

We fix a basis γ1, . . . , γ2g of the Z-module H1(Aan
s0
,Z). Each γi is represented by a

loop γ̃i : [0, 1]→ Aan
s0

based at the origin of Aan
s0

.
For all s ∈ ∆ we have a map H1(Aan

s ,R) → H1(Aan
s0
,R) resp. H1(Aan

s ,C) →
H1(Aan

s0
,C) induced by fs, it is an isomorphism of R- resp. C-vector spaces. We denote

the latter by f ∗s and note that f ∗s (v) = f ∗s (v) where complex conjugation · is induced by
the real structure.

The Hodge decomposition yields

H1(Aan
s ,C) = H0(Aan

s ,Ω
1)⊕H0(Aan

s ,Ω
1)

where H0(Aan
s ,Ω

1) is the g-dimensional vector space of global holomorphic 1-forms on
Aan
s . As s varies over ∆ we obtain a collection

f ∗sH
0(Aan

s ,Ω
1)

of subspaces of H1(Aan
s0
,C). As f ∗s commutes with complex conjugation we have

H1(Aan
s0
,C) = f ∗sH

0(Aan
s ,Ω

1)⊕ f ∗s (H0(Aan
s ,Ω

1)).

For s ∈ ∆ the image f ∗sH
0(Aan

s ,Ω
1) corresponds to a point in the Grassmannian

variety of g-dimensional subspaces of H1(Aan
s0
,C). As a particular case of Griffith’s

Theorem, this association is a holomorphic function. We draw the following conclusion
from Griffith’s result.

Fix a basis ω0
1, . . . , ω

0
g of H0(Aan

s0
,Ω1); then ω0

1, . . . , ω
0
g , ω

0
1, . . . , ω

0
g is a basis H1(Aan

s0
,C).

There exist holomorphic functions

aij : ∆→ C and bij : ∆→ C (1 ≤ i, j ≤ g)

such that

f ∗sωi(s) =

g∑

j=1

(
aij(s)ω

0
j + bij(s)ω0

j

)

for all i ∈ {1, . . . , g} and all s ∈ ∆ where ω1(s), . . . , ωg(s) is a basis of H0(Aan
s ,Ω

1) with
ωi(s0) = ω0

i for all i.
For s ∈ ∆ we define the period matrix

Ω(s) =

(∫

fs∗γ̃j

ωi(s)

)

1≤i≤g
1≤j≤2g

∈ Matg,2g(C)
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for all s ∈ ∆; the integral is taken over the loop in Aan
s0

fixed above. Note that

∫

fs∗γ̃j

ωi(s) =

∫

γ̃j

f ∗sωi(s) =

g∑

j=1

(
aij(s)

∫

γ̃j

ω0
j + bij(s)

∫

γ̃j

ω0
j

)

by a change of variables. So Ω(s) is holomorphic in s. In this notation and with
A(s) = (aij(s)) ∈ Matg(C) and B(s) = (bij(s)) ∈ Matg(C) we can abbreviate the above
by

(4.2)

(
Ω(s)

Ω(s)

)
=

(
A(s) B(s)

B(s) A(s)

)(
Ω(0)

Ω(0)

)

here Ω(0) = Ω(s0). So the first matrix on the right of (4.2) is invertible.
Let P ∈ Aan where s = π(P ) ∈ ∆ and suppose γP is a path in Aan

s connecting 0 and
P . Let Q ∈ Aan

s0
with fs(Q) = P and γQ the path in Aan

s0
such that fs∗γQ = γP . We

define

(4.3) L(P ) =




∫
γP
ω1(s)
...∫

γP
ωg(s)


 =




∫
γQ
f ∗sω1(s)

...∫
γQ
f ∗sωg(s)


 = (A(s)B(s))

(
L∗(Q)

L∗(Q)

)

where

L∗(Q) =




∫
γQ
ω0

1(s)
...∫

γQ
ω0
g(s)


 .

Replacing γP by another path connecting 0 and P in Aan
s will translate the value of

L(P ) by a period in Ω(s)Z2g. By passing to the quotient we obtain the Albanese map
Aan
s → Cg/Ω(s)Z2g. It is a group isomomorphism.
We set further

b̃(P ) =

(
Ω(s)

Ω(s)

)−1( L(P )

L(P )

)
.

and observe b̃(P ) ∈ R2g as these are the coordinates of L(P ) in terms of the period
lattice basis Ω(s).

By replacing γP by another path connecting 0 and P we find that b̃(P ) is translated

by a vector in Z2g. Therefore, b̃ induces a real analytic map b : A∆ → T2g, where T is
the circle group which we identify with R/Z. We will prove that b satisfies the three
properties listed in Proposition 4.1.

On a given fiber, i.e. for fixed s, the map b restricts to a group isomorphism As → T2g

as we have seen above. So part (i) of Proposition 4.1 holds.
Let us investigate such a fiber. For this we recall (4.3). By the period transformation

formula (4.2) we see

b̃(P ) =

(
Ω(0)

Ω(0)

)−1( L∗(Q)

L∗(Q)

)
.

Fixing the value of b̃ amounts to fixing the value of L∗(Q). As L∗ induces the Al-
banese map on Aan

s , fixing b amounts to fixing Q. Recall that Q maps to P under the



18

trivialization (4.1). Therefore, a fiber of b equals a fiber of the trivialization. As these
fibers are complex analytic we obtain part (ii) of Proposition 4.1.

Finally, the association

(ξ + Z2g, s) 7→
((

Ω(0)

Ω(0)

)
(ξ + Z2g), s

)
7→ (Q, s) 7→ fs(Q) ∈ A∆

induces the inverse of the product A∆ → T2g ×∆. This is part (iii) of Proposition 4.1.

5. Degenerate Subvarieties

Let S be a smooth irreducible algebraic curve over C and let π : A → S be an abelian
scheme of relative dimension g ≥ 1. We define and characterize the degenerate subvari-
eties of A in this section. Let Y be an irreducible closed subvariety of A that dominates
S.

Let s0 ∈ S(C) and let ∆ ⊆ San be an open neighborhood of s0 in San with the Betti
map b : A∆ = π−1(∆)→ T2g as in Proposition 4.1 with T ⊆ C the circle group. We say
that a point P ∈ Y sm,an∩A∆ is degenerate for Y if it is not isolated in b|−1

Y sm,an∩A∆
(b(P )).

We say that Y is degenerate if there is a non-empty and open subset of Y sm,an ∩ A∆

consisting of points that are degenerate for Y .
For technical purposes our notation of degeneracy formally depends on the choice of

∆. But this dependency is harmless as we will see.
Recall that generically special subvarieties of A were introduced in Definition 1.2. A

generically special subvariety is degenerate. In this section we prove the converse.

Theorem 5.1. An irreducible closed subvariety of A that is degenerate is a generically
special subvariety of A.

This proposition, which has a definite Ax–Schanuel flavor, is proved using a variant of
the Pila–Wilkie Counting Theorem for definable sets in an o-minimal structure. Abun-
dantly many rational points arise from the exponential growth of a certain monodromy
group.

5.1. Invariant Subsets of the Torus. We write | · |2 for the `2-norm on Rn.
For n ∈ N we consider the real n-dimensional torus Tn equipped with the standard

topology. We will use the continuous left-action of GLn(Z) on Tn and use the additive
notation for Tn. Suppose X is a closed subset of Tn such that

γ(X) = X

for all γ in a subgroup Γ of GLn(Z). What can we say about X?
To rule out subgroups that are too small we ask that Γ contains a (non-abelian) free

subgroup on 2 generators. Moreover, we will assume that X is sufficiently “tame” as a
set.

To formulate the last property precisely, let exp: Rn → Tn denote the exponential
map (t1, . . . , tn) 7→ (e2πit1 , . . . , e2πitn). Let X ⊆ Tn be a subset and

X = exp |−1
[0,1]n(X).

We will work in a fixed o-minimal structure and call X definable if X is a definable
subset of Rn in the given o-minimal structure. We refer to van den Dries’ book [50]
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for the theory of o-minimal structures. We will work with Ran, the o-minimal structure
generated by restricting real analytic functions on Rn to [−1, 1]n.

We say that X ⊆ Tn is of Ax-type if it satisfies the following property. For any
continuous, semi-algebraic map y : [0, 1] → X that is real-analytic on (0, 1), there is a
closed subgroup G ⊆ Tn such that exp ◦y([0, 1]) ⊆ y(0) +G ⊆ X.

The main example comes from a g-dimensional abelian variety A defined over C.
Indeed, then there is a real bianalytic map Aan → T2g. Moreover, the image of X(C) is
definable and of Ax-type for any Zariski closed subset of A; for the latter claim we refer
to Ax’s Theorem [2].

Lemma 5.2. Let X ⊆ Tn be a closed definable set of Ax-type. Let Γ be a free subgroup
of GLn(Z) on 2 generators such that γ(X) = X for all γ ∈ Γ. Then one of the following
properties holds true:

(1) The set X is contained in a finite union of closed and proper subgroups of Tn.
(2) There is a non-empty, open subset U of X and a closed, connected, infinite

subgroup G ⊆ Tn with U +G ⊆ X.

Proof. By assumption, Γ is generated by elements γ1, γ2 that do not satisfy any non-
trivial relation. Any element γ ∈ Γ is uniquely represented by a reduced word in γ±1

1 , γ±1
2

whose length is l(γ). For all real t ≥ 1 we have

#{γ ∈ Γ : l(γ) ≤ t} ≥ 2t.

We define c1 = max{2, |γ1|2, |γ1|2} ≥ 2 and observe |γ|2 ≤ c
l(γ)
1 for all γ ∈ Γ. The

height H(b) of any integral vector b = (b1, . . . , bm) ∈ Zm is max{1, |b1|, . . . , |bm|}. So

H(γ) ≤ c
l(γ)
1 .

Let T ≥ c1 and let t = (log T )/(log c1) ≥ 1. There are at least 2t = T (log 2)/ log c1

elements γ ∈ Γ with H(γ) ≤ T .
Let x ∈ X = exp |−1

[0,1]n(X). For all γ ∈ Γ there is a = aγ ∈ Zn such that yγ =

γx− aγ ∈ X . Then (x, γ, aγ, yγ) lies in the definable set

Z = {(x, γ, a, y) ∈ X ×GLn(R)× Rn ×X : γx− a = y} .
We view it as a family of definable sets parametrized by x ∈ X with fibers Xx ⊆ Rn2+n+n.
Moreover,

H(aγ) ≤ max{1, |aγ|2} = max{1, |γx− yγ|2}(5.1)

≤ max{1, |γ|2|x|2 + |yγ|2} ≤
√
n(|γ|2 + 1) ≤ 2n2H(γ).

Let c2 be the constant from the semi-rational variant of the Pila–Wilkie Theorem [29,
Corollary 7.2] applied to the family Z and ε = (log 2)/(2 log c1). Here the coordinates
assigned to (γ, a) are treated as rational and the coordinates assigned to y are not. We
fix T large enough in terms of c1 and c2, more precisely we will assume that T ≥ c1 and

(5.2) T (log 2)/ log c1 > c2(2n2T )(log 2)/(2 log c1).

We keep x fixed and vary γ. Let us first see how to reduce to the case that many
different yγ must arise this way if H(γ) ≤ T .

Indeed, suppose γ′ ∈ Γ satisfies H(γ′) ≤ T . Then y′γ′ = γ′x−a′γ′ ∈ X for some a′ ∈ Z.
If yγ = y′γ′ , then γx− aγ = γ′x− a′γ′ , so γx− γ′x ∈ Zn. Then exp(x) lies in the closed
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subgroup of Tn defined by the kernel of γ−1γ′ − 1 6= 0, i.e. the largest subgroup of Tn
stabilized by γ−1γ′. So it lies in a finite union G1∪· · ·∪GN of closed proper subgroups of
Tn, each defined as the subgroup stabilized by some γ−1γ′ as above. Here N is bounded
only in terms of T and thus only in terms of c1, c2, and n. It is independent of x.

If X ⊆ G1 ∪ · · · ∪GN , then we are in case (1).
Otherwise V = X \ (G1 ∪ · · · ∪GN) lies open in X and is non-empty.
Now suppose x ∈ X with exp(x) ∈ V and γ ∈ G with H(γ) ≤ T . Recall that

yγ = γx − aγ ∈ X . By our choice of V and the arguments above the number of yγ
that arise is the number of elements in Γ of height at most T . This number is at least
T (log 2)/ log c1 . Note that the height of (γ, aγ) equals max{H(γ), H(aγ)} and this is at
most 2n2T by (5.1).

By (5.2) we have enough yγ to apply the counting result [29, Corollary 7.2]. We thus
obtain continuous, definable maps γ : [0, 1]→ GLn(R), a : [0, 1]→ Rn, and y : [0, 1]→ X
such that γ and a are semi-algebraic, y is non-constant, and

γ(s)x− a(s) = y(s)

for all s ∈ [0, 1]. So s 7→ y(s) is semi-algebraic too and exp ◦y([0, 1]) ⊆ X. After
rescaling [0, 1] we may assume that y is real-analytic on (0, 1). By looking at the proof
of [29, Corollary 7.2(iii)] we may arrange γ(0) ∈ Γ and a(0) ∈ Zn. Recall that X is of Ax-
type. So there is a closed subgroup G′x ⊆ Tn with exp ◦y([0, 1]) ⊆ exp(y(0)) +G′x ⊆ X.
We may assume that G′x is connected. Observe that G′x is infinite as exp ◦y is continuous
and non-constant. We find exp(x) +Gx ⊆ γ(0)−1(X) = X where Gx = γ(0)−1G′x.

We have proved that for any x ∈ X with exp(x) ∈ V we have

exp(x) +Gx ⊆ X

for some connected, closed, infinite subgroup Gx ⊆ Tn.
For any connected closed subgroup G ⊆ Tn we define

E(G) = {z ∈ V : z +G ⊆ X} = V ∩
⋂

g∈G
(X − g).

Then E(G) is closed in V . Our conclusion from above can be restated as

V =
⋃

x∈exp |−1
X (V )

E(Gx).

By Kronecker’s Theorem Tn has countably many closed subgroups. So this union
countains at most countably many different members. Now V , being non-empty, Haus-
dorff, and locally compact satisfies the hypothesis of Baire’s Theorem. Hence there exists
an connected, closed, infinite subgroup G ⊆ Tn such that V \ E(G) is not dense in V .
So E(G) contains a non-empty and open subset of X, as claimed in (2). �

Now suppose that A is an abelian variety of dimension g ≥ 1 defined over C.
We attach to A the associated complex manifold Aan whose underlying set of points

is A(C). There is a real bi-analytic map b : Aan → T2g which is a group isomorphism,
we will not need to vary A in a family here as in Proposition 4.1.

Suppose a group Γ acts faithfully and continuously on Aan; we do not ask for elements
of Γ to act by holomorphic maps. Any continuous group automorphism of T2g can be
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identified with an element of GL2g(Z). So using b we may consider Γ as a subgroup of
GL2g(Z).

We say that the action of Γ is of monodromy-type if γ(B(C)) = B(C) for all γ ∈ Γ
and all abelian subvarieties B ⊆ A.

Later we will study the action of the fundamental group of an abelian scheme on a
fixed fiber in sufficiently general position. This action will leave the abelian subvarieties
of the said fiber invariant and is thus of monodromy-type.

Proposition 5.3. Let A, g, b, and Γ ⊆ GL2g(Z) be above, so in particular Γ acts con-
tinuously on Aan and is of monodromy-type. We assume in addition that Γ contains a
free subgroup on 2 generators and that there are no Γ-invariant elements in Z2g \ {0}.
Let Z be an irreducible closed subvariety of A with γ(Z(C)) = Z(C) for all γ ∈ Γ. Then
one of the following properties holds:

(1) The subvariety Z is contained in a proper torsion coset in A.
(2) There exists an abelian subvariety B ⊆ A with dimB ≥ 1 and Z +B = Z.

Proof. We write X for the image of Z(C) under the real analytic isomorphism b : Aan →
T2g. Then X is closed and definable in the sense as introduced before Lemma 5.2. By
Ax’s Theorem [2], the set X is of Ax-type. We apply Lemma 5.2 to a free subgroup of
Γ on 2 generators.

If we are in case (1) of Lemma 5.2, then X is contained in a finite union of proper
closed subgroups G1, . . . , GN ( T2g. By the Baire Category Theorem we may assume
that X ∩G1 has non-empty interior in X.

The analytification Zan is an irreducible complex analytic space and Zsm,an is arc-wise
connected by [20, Theorems 9.1.2 and 9.3.2]. Moreover, Zsm,an is an open and dense
subset of Zan.

Let P,Q ∈ Zsm,an and suppose b(P ) lies in the interior of X ∩G1. We can connect P
and Q via an arc [0, 1]→ Zsm,an whose restriction to (0, 1) is piece-wise real analytic on
finitely many pieces. A neighborhood of b(P ) in X lies in G1 and G1 is defined globally
by relations in integer coefficients. By analytic continuation we find that b(Q) ∈ G1.
In particular, b(Zsm,an) ⊆ G1 and thus b(Zan) ⊆ G1. So Zan is contained in the proper
subgroup b−1(G1) ( Aan.

The sum of sufficiently many copies of Z − Z is an abelian subvariety B of A. We
have B 6= A because B(C) lies in b−1(G1). So Z ⊆ P +B for some P ∈ A(C). Moreover,
any coset in A containing Z must contain P +B.

Let B′ be the complementary abelian subvariety of B in A with respect to a fixed
polarization, see [5, §5.3]. So B + B′ = A and B ∩ B′ is finite. By the former property
we may assume P ∈ B′(C).

By hypothesis we have Z(C) = γ(Z(C)) ⊆ γ(P ) + γ(B(C)) = γ(P ) + B(C) for all
γ ∈ Γ. Thus γ(P ) − P ∈ B(C) for all γ ∈ Γ. As B′ is invariant under γ we find
γ(P )− P ∈ (B ∩B′)(C). So γ(Q)−Q = 0 for all γ ∈ Γ where Q = [#B ∩B′](P ).

The point b(Q) ∈ T2g is the image of some t ∈ R2g under the canonical map R2g → T2g.
Our action of Γ on Aan was defined using b and Γ acts on T2g via a matrix in Mat2g(Z).
We find that γ(t)− t ∈ Z2g for all γ ∈ Γ with the standard action of GL2g(Z) on R2g.

Thus t ∈ R2g is the solution of a system of inhomogenous linear equations, parametrized
by Γ, with integral coefficients and integral solution vector. The corresponding homo-
geneous equation has only the trivial solution as there are no non-trivial Γ-invariant
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vectors in Z2g. So t was the unique solution and we conclude t ∈ Q2g. Therefore Q and
thus P have finite order. So P +B is a torsion coset in A and we are in case (1) of the
current proposition.

Now suppose we are in case (2) of Lemma 5.2 and U and G are as in therein. Then⋂
P∈b−1(G)(Z − P ) is Zariski closed in Z since 0 ∈ G. By Lemma 5.2 its complex points

contain b−1(U), which is Zariski dense in Z. So Z − P = Z for all P ∈ b−1(G). This
equality continues to hold for C-points in the Zariski closure B of b−1(G) in A. As G
is a connected subgroup of Aan we find that B is an abelian subvariety of A. Moreover,
dimB ≥ 1 since G is infinite. So we are in case (2) of the proposition. �

5.2. Degeneracy and Global Information. Let S be an irreducible and smooth curve
over C and let A be an abelian scheme over S of relative dimension g ≥ 1.

Recall that Betti maps were introduced in §4. Around each point of San we fix an open
neighborhood in San and a Betti map as in Proposition 4.1. This yields an open cover
of San which we now refine for our application later on. After shrinking each member
we may assume that each member is bounded and diffeomorphic to an open subset of
R2. As San is paracompact we may refine this cover to obtain an open cover of San that
is locally finite. Each member of this cover is relatively compact. We may refine the
cover again and assume that a finite intersection of members is empty or contractible,
see Weil’s treatment [55, §1]. A non-empty open subset of San is naturally a Riemann
surface; if it is contractible then it is homeomorphic to the open unit disc. Therefore, a
finite intersection of members of our cover is empty or homeomorphic to the open unit
disc.

Let s ∈ San be a base point. We describe the monodromy representation of π1(San, s)
using the Betti map.

Let γ : [0, 1] → San be a loop around s. We can find a Betti map in a neighborhood
around each point of γ([0, 1]). As this image is compact we find 0 = a0 < a1 < · · · <
an = 1 such that γ([ai−1, ai]) ⊆ ∆i where ∆i is a member of the cover above and bi is
its associated Betti map.

We can glue the Betti maps as follows. For each i ∈ {1, . . . , n−1} we have si = γ(ai) ∈
∆i ∩ ∆i+1. So bi|Aan

si
◦ (bi+1|Aan

si
)−1 is a continuous group isomorphism M : T2g → T2g,

thus represented by a matrix in GL2g(Z). On replacing bi+1 by M ◦ bi+1 we may arrange
that bi and bi+1 coincide on Aan

si
.

Now γ(0) = γ(1) = s and both b1 and bn define homeomorphisms Aan
s → T2g. By com-

posing we obtain a homeomorphism Aan
s → Aan

s that is a group isomomorphism. This
homeomorphism induces an automorphism of the Z-module H1(Aan

s ,Z) which depends
on the loop γ. Another loop that is homotopic to γ relative {0, 1} will lead to the same
automorphism of H1(Aan

s ,Z). The induced mapping π1(San, s) → Aut(H1(Aan
s ,Z)) is

the monodromy representation from [52, §3.1.2]. We denote its dual by

(5.3) ρ : π1(San, s)→ Aut(H1(Aan
s ,Z)).

Proposition 5.4. In the notation above there is a group homomorphism
(5.4)
ρ̃ = ρ̃A : π1(San, s)→ {homeomorphisms Aan

s → Aan
s that are group homomorphisms}
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that satisfies

(5.5) ρ̃(h)∗ = ρ(h) for all h ∈ π1(San, s)

with the following properties.

(i) There exists a path-connected open neighborhood ∆ ⊆ San of s and b a Betti
map on A∆ as in Proposition 4.1. Let Y ⊆ A be an irreducible closed subvariety
such that P ∈ Y an with π(P ) = s is not isolated in the fiber of b|Y an∩A∆

. Then
ρ̃(h)(P ) ∈ Y an for all h ∈ π1(San, s). Moreover, if P has finite order N in As(C)
then dimP Y ∩ A[N ] ≥ 1.

(ii) Let B be a further abelian scheme over S and α : A → B a morphism of abelian
schemes over S. Then

ρ̃B(h)(α|Aan
s

) = (α|Aan
s

)ρ̃A(h)

for all h ∈ π1(San, s)

Although the Betti map b in Proposition 4.1 is not uniquely determined, Remark 4.2
implies that the non-isolation condition in the hypothesis above is independent of any
choice of b.

Before we come to the proof we will patch together the Betti maps and extract global
information.

Suppose i ∈ {1, . . . , n− 1} and set ∆ = ∆i ∩∆i+1 3 γ(ai). We consider the two real
bi-analytic maps

b∗i |A∆
and b∗i+1|A∆

: A∆ → T2g ×∆

where the star signifies passing to the product as in Proposition 4.1(iii). By composing
we obtain

(5.6) b∗i+1|A∆
◦ (b∗i |A∆

)−1 : T2g ×∆→ T2g ×∆

which is, over each fiber of ∆, a continuous group isomorphism T2g → T2g. By con-
struction it is the identity over γ(ai) ∈ ∆. Each continuous group isomorphism of T2g is
represented by a matrix in GL2g(Z). By homotopy, (5.6) is the identity above all points
in the path component of ∆ containing γ(ai). But ∆ is path connected by construction,
and therefore bi|A∆

= bi+1|A∆
for all i ∈ {1, . . . , n− 1}.

Proof of Proposition 5.4. Let s, Y, and P be as in the hypothesis. We abbreviate Y∆1 =
Y an ∩ A∆1 , it is a complex analytic space.

We will transport P in Aan above along a loop γ in San based at s and keep the
Betti coordinates fixed. After completing the loop we will have returned to the fiber
As. But P will have transformed according to the monodromy representation (5.3).
The degeneracy condition imposed on P implies that this new point lies again in Y .
This is guaranteed by the fact that the Betti fibers are complex analytic, see (ii) of
Proposition 4.1 and our hypothesis dimS = 1.

Let us check the details. We set P0 = P and ξ = b1(P0) and define

Z1 = b−1
1 (ξ).

So Z1 is a complex analytic subset of the complex analytic space A∆1 by (ii) of Propo-
sition 4.1. Therefore, Z1 ∩ Y∆1 is complex analytic in Y∆1 . As P0 is not isolated in
Z1 ∩ Y∆1 , we find dimP0 Z1 ∩ Y∆1 ≥ 1, see [20, Chapter 5] for the dimension theory of
complex analytic spaces.
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If P = P0 happens to be a point of finite order N in Aπ(P )(C), then all points of Z1

have order N in their respective fibers as β is fiberwise a group isomorphism. From the
degeneracy of P we conclude dimP Y ∩A[N ] ≥ 1 and this yields the second claim of (i).

The natural projection Z1 7→ ∆1 is holomorphic and a homeomorphism. So dimQ Z1 ≤
dimπ(Q) ∆1 = 1 for all Q ∈ Z1. So we conclude dimP0 Z1 ∩ Y∆1 = dimP0 Z1 = 1 and
dimZ1 = 1. The singular points of Z1 are isolated in Z1, see [20, Chapter 6, §2.2]. Since
Z1 is homeomorphic to ∆1 and the latter is homeomorphic to the open unit disc we
conclude that the smooth locus of Z1 is path connected. Therefore, we can apply the
Identity Lemma [20, Chapter 9, §1.1] to conclude that Z1 ∩ Y∆1 = Z1, hence

Z1 ⊆ Y∆1 .

In particular, the point P1 = b−1
1 (ξ, γ(a1)) ∈ Z1 lies in Y∆1 , too.

Observe that we used the fact that San is a curve in a crucial way. Indeed, for higher
dimensional S we cannot exclude dimZ1 ∩ Y∆1 < dimZ1 in the paragraph above. This
makes applying the Identity Lemma impossible.

We have reached γ(a1) and will continue on the circuit along γ. However, by con-
struction b∗1 and b∗2 agree on Aan

s1
where s1 = γ(a1). They also agree on Aan

s for all
s sufficiently close to s1. Let t1, t2, . . . be a sequence of elements in [0, a1] with limit
a1. Then b∗1

−1(ξ, γ(tk)) converges to P1 as k → ∞. For k sufficiently large we have
γ(tk) ∈ ∆2 and therefore b∗1

−1(ξ, γ(tk)) = b∗2
−1(ξ, γ(tk)). So P1 ∈ π−1

1 (∆1 ∩ ∆2) is not
isolated in the fiber of b2 : A∆2 → T2g restricted to Y∆2 above ξ.

Now we repeat the process and transport P1 along γ([a1, a2]) to obtain P2 ∈ Y∆2 with
π(P2) = γ(a2) that is not isolated in b3|Y∆3

. Eventually, we will have returned to the
fiber As. The final point lies in Y an

s and it is obtained from P0 ∈ Y an by a continuous
group automorphism of Aan

s that depends on the homotopy class of γ relative to {0, 1}.
More precisely, by construction the final point is ρ̃([γ])(P0) where

ρ̃ : π1(San, s)→ {homeomorphisms Aan
s → Aan

s that are group homomorphisms}
is a group homomorphism that is compatible with the monodromy representation (5.3),
indeed

ρ̃(h)∗ = ρ(h) for all h ∈ π1(San, s)

and part (i) follows.
The proof of (ii) relies on (5.5) and some basic functoriality. Let s ∈ San. A ho-

momorphism α : A → B of abelian schemes over S induces a group homomorphism
(α|Aan

s
)∗ : H1(Aan

s ,Z)→ H1(Ban
s ,Z). Moreover, this group homomorphism is equivariant

with respect to the action of π1(San, s) on both homology groups. By abuse of notation
let ρ̃ denote the continuous action of π1(San, s) on As and Bs and ρ the induced action
on homology. We find

(
ρ̃(h)α|Aan

s

)
∗ = ρ(h)(α|Aan

s
)∗ = (α|Aan

s
)∗ρ(h) = (α|Aan

s
ρ̃(h))∗

for all h ∈ π1(San, s), the first and third equality follow from (5.5), the second one follows
since the monodromy action commutes with homomorphisms of abelian varieties. Both
self-maps ρ̃(h)α|Aan

s
and α|Aan

s
ρ̃(h) are continuous group endomorphisms of Aan

s which is
homeomorphic to T2g. As their induced maps on homology coincide, they must coincide
as well. �
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5.3. Monodromy on Abelian Schemes. Let S be an irreducible and smooth curve
over C and let A be an abelian scheme over S of relative dimension g ≥ 1. We write
C(S) for an algebraic closure of the function field C(S) of S.

For a base point s ∈ S(C) the monodromy representation is (5.3). Let Gs denote
the Zariski closure of Γs = ρ(π1(San, s)) in AutQH1(Aan

s ,Q) and let G0
s be its connected

component containing the unit element. Deligne proved in [16, Corollaire 4.2.9] that G0
s

is a semisimple algebraic group.
The next lemma uses a Theorem of Tits connected to his famous “alternative”.

Lemma 5.5. In the notation above suppose that G0
s is not trivial, then any finite index

subgroup of Γs has a free subgroup on 2 generators.

Proof. Let Γ′ be a finite index subgroup of Γs. As G0
s is of finite index in Gs we see that

Γ′ ∩G0
s(Q) lies Zariski dense in G0

s. Our lemma follows from [47, Theorem 3] applied to
G0
s and Γ′ ∩G0

s(Q). �
Certainly, Gs and G0

s etc. depend on s. However their isomorphism classes do not
and the index [Gs : G0

s] is independent of s ∈ San, see the comments before Zarhin’s [64,
Theorem 3.3].

Lemma 5.6. Let A be the generic fiber of A → S, it is an abelian variety over C(S). If
s ∈ S(C) and H1(Aan

s ,Z) has a non-zero element that is invariant under the monodromy
action (5.3), then the C(S)/C-trace of A is non-zero.

Proof. We write H1(Aan
s ,Z)ρ for the elements in H1(Aan

s ,Z) that are invariant under
(5.3). A conclusion of Deligne’s Theorem of the Fixed Part, see [16, Corollaire 4.1.2],
implies that the weight −1 Hodge structure on H1(Aan

s ,Z) restricts to a Hodge structure
on H1(Aan

s ,Z)ρ.
It is well-known that Hodge substructures of H1(Aan

s ,Z) come from abelian subvari-
eties of As. Hence H1(Aan

s ,Z)ρ gives rise to an abelian subvariety B ⊆ As of dimension
1
2
RankH1(Aan

s ,Z)ρ. As H1(Aan
s ,Z)ρ 6= 0 by hypothesis we have dimB ≥ 1.

Then B = B ×Spec (C) S is a constant abelian scheme over S. The monodromy rep-
resentation π1(San, s) → Aut(H1(Ban

s ,Z)) is certainly trivial. The inclusion Bs → As
induces a homomorphism H1(Ban

s ,Z) → H1(Aan
s ,Z) and the restriction of ρ from (5.3)

to the image of this homomorphism is trivial. A theorem of Grothendieck [23] implies,
that any element in

Hom(Bs,As) ∩ Hom(H1(Ban
s ,Z), H1(Aan

s ,Z))

is induced by the restriction of a morphism ϕ : B → A over S to Bs such that ϕ◦0B = 0A
which 0A : S → A and 0B : S → B the zero sections. See also [16, 4.1.3.2].

The restriction of ϕ to the generic fiber of B is a homomorphism B ⊗C C(S) →
A×S SpecC(S) = A of abelian varieties over C(S). If the C(S)/C-trace of A is trivial,
then the said homomorphism is trivial. In this case, the morphism ϕ and the zero section
both extend B ⊗C C(S) → A to a morphism B → A. As the generic fiber lies Zariski
dense in A we find that ϕ is the zero section. But then B must be trivial and this is a
contradiction. �

For us, an abelian subscheme of A is the image of an endomorphism of A. We call
s ∈ S(C) extendable for A if any abelian subvariety Bs ∈ As extends to an abelian
subscheme B of A, i.e. there exists an abelian subscheme B of A such that B∩As = Bs.
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For readers who are familiar with Hodge theory, extendable points of S are closely
related to Hodge generic points. We shall not go into details and but state the following
corollary of a result of Deligne for our purpose.

Lemma 5.7. In the notation above suppose G0
s = Gs for some s ∈ S(C). There is an

at most countable infinite subset of S(C) whose complement consists only of extendable
points of A.

Proof. We refer to [64, Corollary 3.5 and the preceding comments] for this result. In
fact in the reference, it is pointed out that the extendable points are precisely the Hodge
generic points under this mild assumption (G0

s = Gs for some s ∈ S(C)).
More precisely [64, Corollary 3.5 and the preceding comments] says that any s ∈ S(C)

outside an at most countably infinite set Σ satisfies the following property: For any
αs ∈ End(As) there exists n ∈ N such that nαs is the restriction of an endomorphism
of A. Now for any s ∈ S(C) \ Σ, any abelian subvariety Bs of As is the image of
some αs ∈ End(As). There exists n ∈ N such that nαs is the restriction of an element
α ∈ End(A). And then we can take B to be the image of α. �

Let Y be an irreducible closed subvariety of A that dominates S. Then Y is flat over
S by [30, Proposition III.9.7]. We write Ys for the fiber of Y → S above s with the
reduced induced structure. By [30, Corollary III.9.6] we see that Ys is equidimensional
of dimension dimY − 1.

We say that Y is virtually monodromy invariant above s ∈ S(C) if there exists an
irreducible component Z of Ys and a subgroup G ⊆ π1(San, s) of finite index such that

ρ̃(γ)(Z(C)) = Z(C) for all γ ∈ G
for the representation ρ̃ defined in Proposition 5.4.

Lemma 5.8. In the notation above we suppose Y is an irreducible closed subvariety of
A that dominates S. We assume that there is an uncountable set M ⊆ S(C) satisfying
all of the following properties:

(i) for all irreducible S ′ that are finite and étale over S the generic fiber of A×SS ′ →
S ′ has trivial C(S ′)/C-trace,

(ii) all elements in M are extendable for A (see Lemma 5.7 and above for definition),
(iii) and the variety Y is virtually monodromy invariant above all elements in M .

Then there exists an abelian scheme C over S and a homomorphism A → C of abelian
schemes over S whose kernel contains Y and has dimension dimY .

Proof. Our proof is by induction on

dimA.
The small possible value is 2 as we require g ≥ 1. We call this the minimal case and we
treat it directly below.

Let s ∈ S(C) be arbitrary for the moment. If G0
s, defined near the beginning of this

subsection, is trivial then the image of π1(San, s) under (5.3) is finite. By the Riemann
Existence Theorem there is an irreducible curve S ′ that is finite and étale over S such
that the monodromy representation of the fundamental group of S ′ at some base point
s′ ∈ S ′(C) on H1((A×S S ′)an

s′ ,Z) is trivial. Recall that g ≥ 1. By Lemma 5.6 the
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generic fiber of A×S S ′ → S ′ has non-zero C(S ′)/C-trace, contradicting our hypothesis.
Therefore, dimG0

s ≥ 1.
Let s ∈M with M as in the hypothesis. A finite index subgroup of π1(San, s) acts on

Zs(C) via (5.4) where Zs is an irreducible component of Ys. We write Γ′s for the image
of this finite index subgroup under the monodromy representation (5.3). Then Γ′s has a
free subgroup on 2 generators by Lemma 5.5. We invoke Lemma 5.6 by using hypothesis
(i) and passing to a covering of S and find that no non-zero element of H1(Aan

s ,Z) is
invariant under the action of Γ′s.

We aim to apply Proposition 5.3. But first let us verify that Γ′s is of monodromy type
with respect to corresponding Betti map. Indeed, an abelian subvariety B of As extends
to an abelian subscheme B of A by hypothesis (ii). Then ρ̃A(γ)(Ban) = ρ̃A(γ)(ι(Ban)) =
ι(ρ̃B(γ)(Ban)) = Ban by Proposition 5.4(ii) for all γ ∈ π1(San, s) where ι : B → A is the
inclusion.

By Proposition 5.3. we are in one of two cases for any given s ∈ M . Let M1,2 be the
set of s ∈ M such that we are in case 1, 2, respectively. As M = M1 ∪M2 one among
M1,M2 is uncountable.

Case 1: The set M1 is uncountable.
For all s ∈ M1 the subvariety Zs is contained in the translate of a proper abelian

subvariety Bs of As by a point Ps of finite order Ns ∈ N. As M1 is uncountable and N
is countable, we may replace M1 by an uncountable subset and assume that there exists
N ∈ N such that [N ]Ps = 0 for all s ∈M1.

Let us treat the minimal case dimA = 2 now. Then Bs = {0} and thus Zs = {Ps}
for all s ∈ M1. But then Y contains an infinite, and hence Zariski dense, set of points
lying in ker([N ] : A → A). This completes the proof in the minimal case as we can take
C = A and [N ] : A → A.

We now treat the non-minimal case dimA ≥ 3. By condition (ii) there exists an
abelian subscheme B(s) of A such that B(s) ∩ As = Bs for any s ∈ M1. But M1 is
uncountable and A has only countably many abelian subschemes, we may replace M1

by an uncountable subset and assume that there exists an abelian subscheme B of A
with B(s) = B, i.e. B ∩ As = Bs, for all s ∈M1.

We have [N ]Zs ⊆ B ∩As for all s ∈M1. But
⋃
s∈M1

[N ]Zs is Zariski dense in [N ]Y by
dimension reasons, so [N ]Y ⊆ B by taking the Zariski closures on both sides.

Clearly B satisfies the analog trace condition (i) of the current lemma by basic prop-
erties of the trace. Any s ∈ M1 is extendable for B because it is extendable for A and
B is an abelian subscheme of A. Finally [N ]Y , as a subvariety of B, is virtually mon-
odromy invariant at each s ∈ M1. To see this it suffices to prove that [N ]Y is virtually
monodromy invariant as a subvariety of A by Proposition 5.4(ii). But then it suffices
to show that [N ]Zs is an irreducible component of [N ]Ys. This is true because [N ]Zs is
Zariski closed (as [N ] is proper) and dim[N ]Ys = dim[N ]Y − 1 = dimY − 1 = dimZs =
dim[N ]Zs.

We observe that dimB = dimBs+1 ≤ (dimAs−1)+1 = dimA−1. By induction there
is an abelian scheme C over S and a homomorphism ψ : B → C of abelian schemes over
S whose kernel contains [N ]Y and dim kerψ = dim[N ]Y = dimY . Then (kerψ)◦, the
identity component [8, §6.4] of kerψ, has dimension dimY and is an abelian subscheme
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of B and hence of A. There exists an integer m ∈ N such that [m] kerψ ⊆ (kerψ)◦. In
particular [mN ]Y ⊆ (kerψ)◦. Note that dim(kerψ)◦ = dim kerψ = dimY .

Now it suffices to take A → C to be the composition A [mN ]−−−→ A → A/(kerψ)◦.

Case 2: The set M2 is uncountable.
For all s ∈ M2 there exists an abelian subvariety Bs ⊆ As with dimBs ≥ 1 and

Zs +Bs = Zs. Note that dimY ≥ 2 since dimZs ≥ 1, so we are not in the minimal case.
By condition (ii) there exists an abelian subscheme B(s) of A such that B(s)∩As = Bs

for any s ∈ M2. Since M2 is uncountable and A has only countably many abelian
subschemes, we may replace M2 by an uncountable subset and assume that there exists
an abelian subscheme B of A with B(s) = B, i.e. B ∩ As = Bs, for all s ∈M2.

We shall work with the abelian scheme A/B over S. Let ϕ : A → A/B be the natural
quotient. Then any fiber of ϕ has dimension dimS B = dimB − 1. The condition
Zs + Bs = Zs implies that the fibers of ϕ|Zs have dimension dimBs = dimB − 1 for
all s ∈ M2. Since

⋃
s∈M2

Zs is Zariski dense in Y by dimension reasons, we see that a
general fiber of ϕ|Y has dimension dimB − 1. Thus by Fiber Dimension Theorem we
have

dimY = dimB − 1 + dimϕ(Y ).

Clearly A/B satisfies the analog trace condition (i) of the current lemma by basic
properties of the trace. Any s ∈M2 is extendable forA/B because any abelian subvariety
of (A/B)s is the quotient of an abelian subvariety ofAs and s is extendable forA. Finally
ϕ(Y ) is virtually monodromy invariant above all points in M2 by Proposition 5.4(ii).

Now since dim(A/B) = dimA − dimBs ≤ dimA − 1, there exists by induction an
abelian scheme C over S and a homomorphism ψ : A/B → C whose kernel has dimension
ϕ(Y ) and contains ϕ(Y ). Then Y ⊆ ker(ψ ◦ ϕ) since ϕ(Y ) ⊆ ker(ψ). But

dim ker(ψ ◦ ϕ) = dimS B + dim ker(ψ) = dimB − 1 + dimϕ(Y ) = dimY.

So ψ ◦ ϕ : A → C is what we desire. �

5.4. End of the Proof of Theorem 5.1. Now we are ready to prove Theorem 5.1.
Let Y be an irreducible closed subvariety that is degenerate. We want to prove that

Y is generically special.
Note that being generically special is a property on the geometric generic fiber. More-

over, it is enough to show that one irreducible component on the geometric generic fiber
of Y has the property stated in Definition 1.2. We will remove finitely points from S and
replace it by a finite and étale covering S ′ which we assume to be irreducible throughout
this proof. Observe that the base change Y ′ of Y may no longer be irreducible. But it is
étale over Y and thus reduced. In particular, Y ′ is flat over Y and thus over S. It follows
that Y ′ is equidimensional of dimension dimY by [30, Corollary III.9.6]. Note that if U
is an open subset of Y an consisting of degenerate points for Y , then its preimage will be
open in Y ′an and consist of degenerate points.

So to ease notation we will write S ′ = S below and take Y to be an irreducible
component of Y ′.

Let A be the generic fiber of A. After possibly removing finitely many points from

S and replacing by a finite étale covering we may assume that AC(S)/C = AC(S)/C. We
also assume that all abelian subvarieties of A ⊗C(S) C(S) are defined over C(S). By



29

passing to a further finite étale covering we may assume that A satisfies the hypothesis
of Lemma 5.7. Let Σ ⊆ S(C) be a countable subset such that any element in S(C) \ Σ
is extendable for A.

Let U be a non-empty, open subset of Y an ∩ A∆ consisting of degenerate points for
Y ; here is ∆ as above Theorem 5.1.

If s ∈ San, then π1(San, s) acts on Aan
s via (5.4). We have proven in Proposition 5.4

that ρ̃(γ)(P ) ∈ Y an for all P ∈ U and all γ ∈ π1(San, s). This property continues to
hold with U replaced by the union

⋃
γ ρ̃(γ)(U) over π1(San, s). Note that U is open and

invariant under the action of the fundamental group.
Let Z be an irreducible component of Ys with Zan∩U 6= ∅. The representation ρ̃ maps

Zan∩U into Y an
s . As everything is real analytic we see that for each γ ∈ π1(San, s) there

is an irreducible component Z ′ of Ys such that ρ̃(γ)(Zan ∩ U) ⊆ Z ′an ∩ U . Because all
irreducible components of Ys have dimension equal to dimY −1 and by the Invariance of
Domain Theorem we conclude that Z ′ is uniquely determined by ρ̃(γ)(Zan∩U) ⊆ Z ′an∩U
among all irreducible components of Ys. We conclude that π1(San, s) acts on the finite
set of irreducible components of Ys that meet U . Therefore, ρ̃(γ)(Zan ∩ U) ⊆ Zan ∩ U
for all γ in a finite index subgroup of π1(San, s).

The smooth locus of Zan is path-connected, lies dense in Zan, and contains a point of
Zan ∩ U . By fixing piece-wise real analytic paths we find that ρ̃(γ)(Zan) ⊆ Zan for all γ
in the finite index subgroup mentioned before.

The arguments above show that Y is virtually monodromy invariant above s. Clearly,
U \ Σ is an uncountable set as U is open in San and non-empty.

Let us suppose AC(S)/C = 0 for the moment. We can apply Lemma 5.8 to Y,A, and
M the set of s obtained from U\Σ and conclude that Y is an irreducible component
of a subgroup scheme of A that is generically special. This completes the proof of
Theorem 5.1 in the current case.

Let us turn to the general case. Recall that π : A → S is an abelian scheme with
generic fiber A whose C(S)/C-trace is AC(S)/C. We take A0 to be AC(S)/C⊗C C(S) ⊆ A.
So the C(S)/C-trace of A/A0 vanishes, cf. [14, Theorem 6.4 and the following comment].

Moreover, (A/A0)C(S)/C = 0 as AC(S)/C = AC(S)/C.
By [8, Proposition 3 §7.5], the Néron model B of A/A0 is an abelian scheme over S

and sits in the short exact sequence of abelian schemes over S

0→ AC(S)/C × S → A ϕ→ B → 0.

In A we fix an abelian subvariety C that meets A0 in a finite set and with A0 +C = A.
Let C be the Néron model of C. It is an abelian scheme over S and we may assume
C ⊆ A. The restriction ϕ|C : C → B is dominant and proper, hence surjective. It is
fiberwise an isogeny of abelian varieties. We conclude (AC(S)/C × S) + C = B.

As Y is degenerate there exists an open and non-empty U subset of Y an of degenerate
points. By shrinking U we may assume that ϕ|Y : Y → ϕ(Y ) is smooth at all points
of U . So ϕ(U) is open in ϕ(Y )an. This set consists of degenerate points for ϕ(Y ). By

the previous case (AC(S)/C = 0), the set of P ∈ U such that ϕ(P ) has finite order in the
corresponding fiber of B lies Zariski dense in Y .

We consider such a P and suppose ϕ(P ) has order N and write P = Q + R with
Q ∈ (AC(S)/C × S)(C) and R ∈ C(C), where Q,R lie in the same fiber above S as P .
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So 0 = [N ](ϕ(P )) = ϕ([N ](R)). As R ∈ C(C) it must have finite order N ′. Moreover,
R ∈ Y − σQ where σQ is the image of a constant section S → AC(S)/C× S with value Q.

The Betti map is constant on sufficiently small open subsets of σQ as AC(S)/C × S is
a constant abelian scheme. Therefore, R is a degenerate point of Y − σQ.

Recall that the order of a point is constant on a fiber of the Betti map. By the second
claim in Proposition 5.4(i) there exists an irreducible component C ⊆ C[N ′] containing
R with C ⊆ Y − σQ.

We conclude that P is a point of σQ + C, a generically special subvariety of A. As
this holds for a Zariski dense set of P in Y we conclude from Proposition 1.3 that Y is
generically special.

6. Construction of the Auxiliary Variety

In this section we work in the category of schemes over an algebraically closed subfield
F of C. We abbreviate PmF by Pm throughout this section. Suppose S is a smooth
irreducible algebraic curve. Let A be an abelian scheme of relative dimension g ≥ 1 over
S with structural morphism π : A → S. For a closed subvariety X ⊆ A and s ∈ S(F )
we write Xs = π−1(s).

We assume that A comes equipped with an admissible immersion A → PM × Pm as
in §2.2, i.e., it satisfies conditions (A1), (A2), and (A3) in §2.2. In particular, each fiber
As of π with s ∈ S(F ) is an abelian variety in PM . On this projective space we let deg(·)
denote the degree of an algebraic set.

In this section X will denote an irreducible, closed subvariety of A that dominates
S and with X 6= A. Hence π|X : X → S is surjective as π|X is proper. We write
dimX = dimA− n = g + 1− n where n ≥ 1 is the codimension of X in A.

Let ∆ ⊆ San be a non-empty open subset with Betti map b : π−1(∆) = A∆ → T2g.
See Proposition 4.1, we recall that T denotes the circle group. It is convenient to write
X∆ = Xan ∩ A∆.

The following convention will be used in this section. If P is a point on a real (resp.
complex) analytic manifold Y , then TP (Y ) denotes the tangent space of Y at P . This
is an R- resp. C-vector space, depending on whether Y is a real or complex analytic
manifold. If Z is another real (resp. complex) analytic manifold and f : Y → Z is
a real (resp. complex) analytic mapping, then TP (f) denotes the differential TP (Y ) →
Tf(P )(Z). It is R- (resp. C-)linear. Let im(TP (f)) denote the image of TP (f) in Tf(P )(Z).

Recall that Xsm,an is the complex analytic space attached to the smooth locus Xsm of
X. If P ∈ A∆ ∩A(F ) then b|Xsm,an∩A∆

: Xsm,an ∩A∆ → T2g is a real analytic map. The
condition in the proposition below concerns the image of its differential.

Proposition 6.1. We keep the notation from above and assume that X is not generically
special. Suppose P ∈ A∆ ∩ A(F ) with π(P ) = s such that P is a smooth point of Xs

and of X with

(6.1) dim im(TP (b|Xsm,an∩A∆
)) = 2 dimX.

Then there exists a closed irreducible subvariety Z ⊆ A over F with the following prop-
erties.

(i) We have dimZ = n and Z dominates S.
(ii) We have that P is a smooth point of Zs and of Z.
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(iii) The fiber Zs does not contain any positive dimensional coset in As.
(iv) There exists D ≥ 1 such that degZt ≤ D for all t ∈ S(C).
(v) We have im(TP (b|Xsm,an∩A∆

)) ∩ im(TP (b|(Zs)sm,an)) = 0 in Tb(P )(T2g).

Moreover, the set

{t ∈ S(C) : Zt contains a positive dimensional coset in At}.
is finite.

Condition (v) implies that Zs and Xs intersect transversally in As. Condition (i)
implies that Zt is equidimensional of dimension n− 1 for all t ∈ S(F ) by [30, Corollary
III.9.6 and Proposition III.9.7].

We will prove this proposition in the next few subsections, see §6.1-6.2 for the con-
struction of Z and §6.4 for the “Moreover” part. But first, let us relate its hypothesis
(6.1) to our notion of generically special. A crucial point is to use Theorem 5.1.

Lemma 6.2. Suppose that X is not generically special. Then there exists P ∈ Xsm(F )
with π(P ) ∈ ∆ and P ∈ (Xπ(P ))

sm(F ) that satisfies (6.1).

Proof. Let us consider the restriction

b|Xsm,an∩A∆
: Xsm,an ∩ A∆ → T2g.

Observe that domain and target are smooth manifolds of dimension 2 dimX and 2g,
respectively.

Let r ∈ {0, . . . , 2g} denote the largest possible rank of TP (b|Xsm,an∩A∆
) as P ranges

over the domain. Then there exists an open and non-empty subset U of Xsm,an ∩A∆ on
which the rank is r. It follows from [56, Appendix II, Corollary 7F], that any fiber of
b|U : U→ b(U) is a smooth manifold of dimension 2 dimX − r.

By hypothesis and Theorem 5.1 the variety X is not degenerate. In particular, there
exists P ∈ U that is not degenerate for X. So the fiber of b|U through P contains P as
an isolated point. So we have r = 2 dimX.

By continuity we may assume that (6.1) holds for all P ∈ U, after possibly shrinking
U.

On the other hand the set U = {P ∈ Xsm(F ) : π|X : X → S is smooth at P} is Zariski
open and dense in X. So U(F ) ∩ U 6= ∅ because F is algebraically closed and dense in
C. Now any point P ∈ U(F ) ∩ U satisfies the desired properties as S is smooth. �

For the further construction of Z we assume that P is as in this lemma.

6.1. The First Four Properties. We show how to construct Z satisfying the first
four properties in the proposition. Indeed, our construction will show that a generic
choice, in a suitable sense, of Z will suffice (i)-(iv). Later on we will see how to obtain
in addition (v) and deduce the final statement.

Let P be as in the hypothesis of Proposition 6.1.
Recall that A comes with an admissible immersion A → PM ×Pm as in §2.2. Observe

that As ⊆ PM is Zariski closed, irreducible, and contains P as a smooth point as it is an
abelian variety. By property (A3) a generic homogeneous linear form f ∈ F [X0, . . . , XM ]
vanishing at P satisfies the following property. The intersection of the zero locus Z (f)
of f with As contains no positive dimensional cosets in As. Here generic means that we
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may allow the coefficients of f to come from a Zariski open dense subset of all possible
coefficient vectors.

According to Bertini’s Theorem there are linearly independent homogeneous linear
forms f1, . . . , fg+1−n ∈ F [X0, . . . , XM ] such that their set of common zeros Z (f1, . . . , fg+1−n)
in PM intersects As in a Zariski closed set Z ′ that is smooth at P and of dimension
dimAs − (g + 1 − n) = g − (g + 1 − n) = n − 1. If n ≥ 2 we may arrange that Z ′ is
irreducible by applying a suitable variant of Bertini’s Theorem. By the previous para-
graph, we can arrange that Z ′ contains no positive dimensional cosets in As. We will
see that this establishes (ii), (iii), and (iv) with our choice of Z below.

Note that a generic choice of (f1, . . . , fg+1−n) in F [X0, . . . , XM ]⊕(g+1−n), where each
entry has degree one, that vanishes at P will have the property described in the previous
paragraph. Here generic means that we may allow the coefficient vector attached to
(f1, . . . , fg+1−n) to come from a Zariski open dense subset of all possible coefficient
vectors that lead to linear forms with coefficients in F vanishing at P . We may arrange
f1 to be an f as in the last paragraph, so Z ′ contains no coset of positive dimension.

Each irreducible component of

(6.2) (Z (f1, . . . , fg+1−n)× Pm) ∩ A
has dimension at least n. Suppose Z is an irreducible component of (6.2) that contains
P . By the Fiber Dimension Theorem we find dimZs ≥ dimZ − dim π(Z) ≥ dimZ − 1.
As dimZ ′ = n− 1 and Zs ⊆ Z ′ we conclude dimZ ≤ n. Thus dimZ = n, dimπ(Z) = 1,
and dimZs = n− 1. This implies both claims in (i).

If n = 1, then dimZs = 0 and hence P is smooth in Zs. If n ≥ 2, then Zs = Z ′ and
hence P is smooth in Zs by construction. Now as P is smooth in Zs and s is smooth in
S, P is also smooth in Z. This establishes (ii).

If n = 1, then dimZs = 0 and (iii) clearly holds. If n ≥ 2, then by construction Zs sat-
isfies (iii). In both cases, Zt is a union of irreducible components of Z (f1, . . . , fg+1−n)∩At
for all but at most finitely many t ∈ S(C). For these t we conclude degZt ≤ degAt
from Bézout’s Theorem. But A → S is a flat family embedded in PM × S → S, so
degAt ≤ D for some D ≥ 1 depending only on A and the immersion. We can take
care of the remaining finitely many fibers by increasing D if necessary. Thus we have
established (iv).

6.2. The Fifth Property.

6.2.1. Linear Algebra. For a C-vector space T we write TR for T with its natural structure
as an R-vector space. For example, if T is finite dimensional, then dimTR = 2 dimT .
A vector subspace V0 of TR is naturally an R-vector space. We denote by CV0 the
smallest vector subspace of T containing V0. For example, if V0 = Rv1 + · · ·+Rvk, then
CV0 = Cv1 + · · ·+ Cvk. Let J denote the multiplication by

√
−1 map J : T → T . Then

(CV0)R = V0 + JV0. A vector subspace of TR is a vector subspace of T if and only if it
is J-invariant.

In this section g ≥ 1 is an integer. We show that an even dimensional real subspace
of Cg intersects some complex subspace of complementary real dimension transversally.

Lemma 6.3. Let T be a C-vector space of dimension g and suppose W is a vector
subspace of T with dimW = m. Let V0 be a vector subspace of TR of dimension 2m+ 2k



33

that contains W . Then there exists a vector subspace V of T of dimension g − (m+ k)
such that V ∩ V0 = 0.

Before proving this lemma, let us do the following preparation.

Lemma 6.4. Let C2k be the standard complex vector space of dimension 2k and let
R2k ⊆ C2k be the real part of C2k, i.e. C2k = R2k ⊕

√
−1R2k. Then there exists a vector

subspace V of C2k of dimension k such that V ∩ R2k = 0.

Proof. For any j = 1, . . . , 2k, we let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ C2k be the vector with
the j-th entry being 1 and the other entries being 0.

For any i = 1, . . . , k, we let vi = e2i−1 +
√
−1e2i ∈ C2k. We show that the complex

vector space V = Cv1 + · · ·+ Cvk satisfies the desired property.
Indeed, dimV = k as v1, . . . , vk are C-linearly independent. So it remains to show

V ∩R2k = 0. Any vector in V is of the form c1v1 + · · ·+ ckvk for some c1, . . . , ck ∈ C. If
c1v1 + · · ·+ ckvk ∈ R2g, then we have

ci ∈ R and
√
−1ci ∈ R for all i = 1, . . . , k.

Thus c1 = · · · = ck = 0. �
Lemma 6.5. Let U be a C-vector space of dimension 2k and let V0 be a vector subspace
of UR of dimension 2k such that CV0 = U . Then there exists a vector subspace V of U
of dimension k such that V ∩ V0 = 0.

Proof. We take a basis of V0, which is an R-vector space, and call it e1, . . . , e2k. Since
CV0 = U , we have U = Ce1 + · · ·+ Ce2k. But dimU = 2k, so e1, . . . , e2k form a basis of
U .

Now under the identification U = C2k via the basis e1, . . . , e2k, the vector subspace V0

of U becomes the real part of C2k. We can apply the previous lemma to conclude. �
Now we are ready to prove Lemma 6.3.

Proof of Lemma 6.3. We begin by showing that we can reduce to the case m = 0. If
the lemma is known when m = 0, then we apply it to the C-vector space T/W and the
image of the R-vector space V0 in this quotient to get a vector subspace V ′ of T/W of
dimension g − (m + k). Let W⊥ be a vector subspace of T with W + W⊥ = T and
W ∩ W⊥ = 0. Then the natural linear map W⊥ → T/W is an isomorphism. The
preimage of V ′ under this map is the vector subspace which we desire.

Now we treat the case m = 0, note that W = 0 in this case. As above we write J for
multiplication by

√
−1 on T . Then (CV0)R = V0 + JV0.

Case (i) The R-vector space V0 contains no non-zero vector subspace of T .

In this case V0 ∩ JV0, being a J-invariant vector subspace of V0, must be trivial. So
dim(CV0)R = dimV0 + dim JV0 = 2k + 2k = 4k and hence dimCV0 = 2k ≤ g. Thus we
can apply the previous lemma to U = CV0 and V0 to get a vector subspace V ′ of CV0 of
dimension k such that V ′ ∩ V0 = 0. Then it suffices to take V = V ′ + V ′′ for any vector
subspace V ′′ ⊆ T with CV0 + V ′′ = T and CV0 ∩ V ′′ = 0.

Case (ii) General case.

We write V J
0 for the largest J-invariant vector subspace of V0. As it is J-invariant

by definition, we consider it as a C-vector space. Then T ′ = T/V J
0 is a C-vector space
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of dimension g − dimV J
0 , and V ′0 = V0/V

J
0 is a vector subspace of T ′R of dimension

2(k − dimV J
0 ).

We claim that V ′0 contains no non-zero vector subspace of the C-vector space T ′.
If U ′ is a vector subspace of T ′ with U ′ ⊆ V ′0 , then its preimage under the quotient
T → T ′ = T/V J

0 is a vector subspace of T that is contained in V0 and that contains V J
0 .

The maximality of V J
0 yields U ′ = 0.

Now we can apply case (i) to T ′ and V ′0 ⊆ T ′R to get a vector subspace V ′ of T ′ of
dimension (g − dimV J

0 ) − (k − dimV J
0 ) = g − k such that V ′ ∩ V ′0 = 0. Let V ′′ be the

preimage of V ′ under the quotient T → T ′ = T/V J
0 . Then V ′′ is a vector subspace of

T with dimension g − k + dimV J
0 such that V ′′ ∩ V0 = V J

0 . Recall that V J
0 is a vector

subspace of the C-vector space T , and hence a vector subspace of V ′′. Now it suffices to
let V be any complement of V J

0 in V ′′. �
Let g and T be as in Lemma 6.3 and suppose k ≥ 0 is an integer. Let Gr(TR, 2k)

denote the set of all 2k-dimensional vector subspaces of TR. On identifying TR with R2g

we may use Plücker coordinates to identify Gr(TR, 2k) with a closed subset of PN(R)
where N =

(
2g
2k

)
− 1.

Note that PN(R) is equipped with the archimedean topology that makes it a com-
pact Hausdorff space. We will use this topology and its induced subspace topology on
Gr(TR, 2k).

Multiplication by
√
−1 induces an R-linear automorphism TR → TR and hence a

selfmap Gr(TR, 2k) → Gr(TR, 2k). By the Cauchy-Binet Formula this selfmap can be
described on Gr(TR, 2k) ⊆ PN(R) by linear forms. Its fixpoints are precisely the 2k-
dimensional vector subspaces of TR that are k-dimensional vector subspaces of T . We
write Gr(T, k) for the set of these fix points. It is a closed subset of Gr(TR, 2k). In this
notation we can use Lemma 6.3 to prove the following.

Lemma 6.6. Let T be a C-vector space of dimension g and suppose W is a vector
subspace of T with dimW = m ≤ g − 1. Let V be a vector subspace of TR of dimension
2(m+1) that contains W . There exists a non-empty open (in the archimedean topology)
subset U ⊆ Gr(T, g −m− 1) such that V ′ ∩ V = 0 for all V ′ ∈ U.

Proof. By the Cauchy-Binet Formula the set

{V ′ ∈ Gr(TR, 2(g −m− 1)) : V ′ ∩ V = 0}
is the complement in Gr(TR, 2(g −m− 1)) of the zero set of a homogeneous linear
polynomial defined on the projective coordinates of PN . So the set in question is
open in Gr(TR, 2(g −m− 1)). Its intersection U with Gr(T, g −m− 1) lies open in
Gr(T, g −m− 1). But U 6= ∅ by Lemma 6.3 applied to the case k = 1. �

6.2.2. Verification of (v) in Proposition 6.1. We retain the conventions made in §6 and
§6.1. So P is as in the hypothesis. We set up the various vector spaces needed in Lemma
6.6.

For T we take the tangent space TP (Aan
s ) which is a C-vector space of dimension g.

Note that P and π are defined over F , so this complex space T also descends to F .
For W we take the image of TP ((Xs)

sm,an) under the linear map TP ((Xs)
sm,an) →

TP (Aan
s ) induced by the inclusion (Xs)

sm → As (recall that P is a smooth point of Xs).
Its dimension equals dimXs = dimX − 1 = g − n ≤ g − 1 which we define as m.
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Finally, we take V = im(TP (b|Xsm,an∩A∆
)) which is a vector subspace of the R-vector

space Tb(P )(T2g). As b|Aan
s

: Aan
s → T2g is an isomorphism of real analytic spaces, we can

identify TP (Aan
s ) = T with Tb(P )(T2g) as R-vector spaces. Therefore, V ⊆ TR as in the

setup of Lemma 6.6. Note that V does not carry a complex structure as we treat T2g as
a real analytic space.

Our hypothesis (6.1) implies dimV = 2 dimX = 2(m + 1). So the hypothesis of
Lemma 6.6 is satisfied.

So there exists U open in Gr(T, g −m− 1), the latter is a compact Hausdorff space.
Its points correspond to (g−m− 1)-dimensional vector subspaces of the C-vector space
T .

In §6.1 we saw that a generic choice of f1, . . . , fg+1−n that vanish at P yield properties
(i)-(iv) in the proposition. To obtain (v) we must make sure that V ∩im(TP (b|(Zs)sm,an)) =
0. According to Lemma 6.6 this holds if im(TP (b|(Zs)sm,an)), a vector subspace of the C-
vector space TP (Aan

s ), under the identification of Tb(P )(T2g) with TP (Aan
s ) made above,

lies in U. Ranging over all possible choices of f1, . . . , fg+1−n as in §6.1 yields points
in U(F ) for some Zariski open dense subset U ⊆ Gr(T, g −m− 1). As U is open
in the archimedean topology and since U(F ) lies dense in Gr(T, g −m− 1) we have
U ∩ U(F ) 6= ∅. Any element in U ∩ U(F ) is sufficient and this completes the proof. �

6.3. A Detour to Bézout’s Theorem. In this subsection we prove the following
degree bound on long intersections. It will be used to prove the “Moreover” part of
Proposition 6.1 in the next subsection. In this subsection we temporarily allow F to be
any algebraically closed field of characteristic 0.

Proposition 6.7. Suppose V1, . . . , Vm are irreducible closed subvarieties of PnF = Pn such
that deg(Vi) ≤ δ for all i ∈ {1, . . . ,m}. Let C1, . . . , Cr be all the irreducible components
of V1 ∩ · · · ∩ Vm of top dimension which we denote by k, then

(6.3)
r∑

i=1

deg(Ci) ≤ δn−k.

The crucial aspect of (6.3) is that the right-hand side is independent of m.

Lemma 6.8. Let V be an irreducible closed subvariety of Pn of degree δ. Then there
exist finitely many irreducible hypersurfaces of Pn of degree at most δ such that V is
their intersection.

Proof. This is Faltings’s [18, Proposition 2.1]. �

Proof of Proposition 6.7. By Lemma 6.8, we may assume that every Vi is an irreducible
hypersurface for all i ∈ {1, . . . ,m}. Then Vi = Z (fi) is the zero locus of an irreducible
homogeneous polynomial fi ∈ F [X0, . . . , Xn] of degree at most δ.

We shall prove inductively on s ∈ {1, . . . , n − k} that there exist hypersurfaces
H1, . . . , Hn−k (possibly reducible) of degree at most δ such that for all s ∈ {1, . . . , n−k},

(i) each irreducible component of
⋂s
j=1Hj has dimension at most n− s

(ii) and Ci ⊆
⋂s
j=1 Hj for each i ∈ {1, . . . , r}.
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Assume this for s = n − k. Then each Ci, being of dimension k, is an irreducible
component of

⋂n−k
j=1 Hj, and thus

r∑

i=1

degCi ≤
n−k∏

j=1

degHj ≤ δn−k

by Bézout’s Theorem, cf. [19, Example 8.4.6] which holds here even though the hyper-
surfaces Hj may be reducible.

Let us take H1 = V1. Then degH1 ≤ δ.
Now suppose we have constructed H1, . . . , Hs−1 for some 2 ≤ s ≤ n− k.
Let W1, . . . ,Wt be the irreducible components of H1 ∩ · · · ∩Hs−1. Let l ∈ {1, . . . , t}.

Since s ≤ n − k, we have dimWl > k. By assumption each irreducible component of⋂m
i=1 Z (fi) =

⋂m
i=1 Vi has dimension at most k, so there exists some i0 ∈ {1, . . . ,m}

such that f̃l = fi0 does not vanish on Wl. Then f̃l ∈ F [X0, . . . , Xn] has degree at most δ

and vanishes on C1∪· · ·∪Cr. We may assume that deg f̃l = δ after possibly multiplying

f̃l with a homogeneous polynomial of a suitable degree in general position.
Let F [X0, . . . , Xn]δ be the union of 0 and the homogeneous polynomials in F [X0, . . . , Xn]

of degree δ. We can identify F [X0, . . . , Xn]δ with A(n+δ
n )(F ) = F (n+δ

n ). Then

{f ∈ A(n+δ
n )(F ) : f vanishes on C1 ∪ · · · ∪ Cr}

is the set of F -points of a linear subvariety L ⊆ A(n+δ
n ), and {f ∈ L(F ) : f |Wl

6= 0}
defines a Zariski open Ul in L that is non-empty as f̃l ∈ Ul(F ). Now L is irreducible
and so Ul is Zariski open and dense in L. In particular, the intersection

Θ =
t⋂

l=1

Ul(F )

is non-empty.
Now fix any fs ∈ Θ and let Hs = Z (fs). Then Hs has degree at most δ and no

irreducible component ofH1∩· · ·∩Hs−1∩Hs is an irreducible component ofH1∩· · ·∩Hs−1.
So the irreducible components of H1 ∩ · · · ∩Hs have dimension at most n− s using (i)
in the case s− 1. Property (ii) clearly holds by the construction of the Ul. �

6.4. Control of Bad Fibers. In this subsection we prove the “Moreover” part of
Proposition 6.1.

Recall our setting: π : A → S is an abelian scheme of relative dimension g ≥ 1 over
a smooth irreducible curve, defined over F ⊆ C. For simplicity we assume F = C. We
have constructed an auxiliary subvariety Z of A in Proposition 6.1. It remains to show
that

{t ∈ S(C) : Zt contains a positive dimensional coset in At}.
is finite. It fact, we show that it follows from condition (iii) of Proposition 6.1. More
precisely we shall prove the following result.

Proposition 6.9. Let Z be an irreducible closed subvariety of A dominating S. Suppose
s ∈ S(C) such that Zs contains no positive dimensional cosets in As. Then

{t ∈ S(C) : Zt contains a positive dimensional coset in At}
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is finite.

Proof. Let ` be a prime that we will choose in terms of A, Z, and s later on.
We begin by introducing full level ` structure. We will take care to ensure that various

quantaties are uniform in `.
Let S ′ be an irreducible, quasi-projective curve over C that is also finite and étale over

S such the base change A′ = A×S S ′ admits all `2g torsion sections

S ′ → A′[`].
We write Z ′ = Z ×S S ′ which comes with a closed immersion Z ′ → A′. Observe that

Z may now longer be irreducible. But Z ′ → S ′ is flat as Z → S is, cf. [30, Proposition
III.9.7]. So all irreducible components of Z ′ dominate S ′. The morphism Z ′ → Z is
finite and flat since S ′ → S is. Therefore Z ′ is equidimensional of dimension dimZ
by [30, Corollary III.9.6]. Finally, Z ′ is reduced since Z ′ → Z is étale and Z is reduced.
For any t′ ∈ S ′(C) above t ∈ S(C), we may identify the fiber Zt with Z ′t′ and the fiber
At with At′ . Let Z ′1, . . . , Z

′
r be the irreducible components of Z ′. Both (Z ′i)t′ and Zt are

equidimensional of dimension dimZ ′ − 1 = dimZ − 1 as Z ′ → S ′ and Z → S are flat,
cf. [30, Corollary III.9.6]. Since (Z ′i)t′ ⊆ Zt an irreducible component of (Z ′i)t′ is also an
irreducible component of Zt. Moreover, Zt contains a positive dimensional coset in At
if and only if one among (Z ′1)t′ , . . . , (Z

′
r)t′ contains a positive dimensional coset in A′t′ .

To prove the proposition we may thus suppose that S = S ′, A = A′, and Z is some
Z ′i. In particular, `2g distinct torsion sections S → A[`] exist.

For any non-zero torsion section σ : S → A[`] we define

Z(σ) = Z ∩ (Z − σ) ∩ (Z − [2] ◦ σ) ∩ · · · ∩ (Z − [`− 1] ◦ σ)

by identifying a section S → A with its image in A. Then Z(σ) is Zariski closed in A.
Now suppose t ∈ S(C) such that Zt contains P +B where P ∈ At(C) and B ⊆ At is

an abelian subvariety of positive dimension. Therefore, B[`] is a non-trivial group and
there exists a section σ : S → A[`] such that σ(t) ∈ B[`]\{0}. Hence σ(t) +B = B and
we find

P +B = P +B − [k](σ(t)) ⊆ Zt − [k](σ(t)) for all k ∈ Z.
This implies P +B ⊆ Z(σ)t. In particular, t ∈ π(Z(σ)).

Now π is a proper morphism and so π(Z(σ)) is Zariski closed in S for all of the
finitely many σ as above. In order to prove the proposition it suffices to show that s
from Proposition 6.1 does not lie in any π(Z(σ)) if σ 6= 0, for then all π(Z(σ)) are finite.
We will prove that Z(σ)s = ∅ for all non-zero sections σ : S → A[`].

Recall that the admissible immersion from the beginning of this section induces a
polarization on As and, as usual, we use deg(·) to denote the degree. This polarization
and As do not depend on the base changed defined using `. Let us assume Z(σ)s 6= ∅.
This will lead to a contradiction for ` large in terms of Zs,As, and the polarization.

Note that

(6.4) Z(σ)s = Zs ∩ (Zs − σ(s)) ∩ · · · ∩ (Zs − [`− 1] ◦ σ(s))

is Zariski closed in As and stable under translation by the subgroup of As(C) of order
` that is generated by σ(s). Observe that if W ′ is an irreducible component of Z(σ)s
of maximal dimension, then σ(s) + W ′ is also an irreducible component of Z(σ)s. We
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define W to be the union of the top dimensional irreducible components of Z(σ)s. The
group generated by σ(s) acts on the set of irreducible components of W .

Recall that Zs and thus each Zs−[k](σ(s)) with k ∈ Z is equidimensional of dimension
dimZ − 1. All irreducible components that appear have degree bounded by a constant
independent of the auxiliary prime `. By (6.4) and Proposition 6.7 the degree deg(W )
is bounded from above by a constant c ≥ 1 that is independent of `.

The number N of irreducible components of W is at most deg(W ) ≤ c. If we assume
` > N , then the symmetric group on N symbols contains no elements of order `. So if
we assume ` > c, as we may, then σ(s) +W ′ = W ′ for all irreducible components W ′ of
W .

Now let us fix such an irreducible component W ′. Then the subgroup generated by
σ(s) lies in the stabilizer Stab(W ′) of W ′. By [15, Lemme 2.1(ii)], the degree of the
stabilizer Stab(W ′) is bounded from above solely in terms deg(W ′) and dimW ′ ≤ g.
Note also that deg(W ′) ≤ deg(W ) ≤ c. Thus if ` is large in terms of c and g, then we
can arrange ` > deg Stab(W ′). But Stab(W ′) contains σ(s) which has order `. Therefore
B, the connected component of Stab(W ′) containing the neutral element, has positive
dimension. Fix any P ∈ W ′(C). Then

P +B ⊆ W ′ ⊆ W ⊆ Zs

contradicts the hypothesis that Zs does not contain a positive dimensional coset. �

7. Lattice Points

For our abelian scheme A → S and subvariety X ⊆ A, we want to count the number
of points in [N ]X ∩ Z for each N � 1 where Z ⊆ A is of complimentary dimension of
X (as constructed in Proposition 6.1). It is equivalent to count the intersection points
of [N ]X − Z and the zero section of A → S. Via the Betti map and a local lift with
respect to R2g → T2g, we obtain a subset ŨN ⊆ R2g from [N ]X − Z and we are led
to counting lattice point in ŨN . The goal of this section is to settle the lattice point
counting problem.

Suppose m,m′ ∈ N and let ψ be a function defined on a non-empty open subset U of
Rm′ with values in Rm. We suppoes that the coordinate functions of ψ lie in C1(U), the
R-vector space of real valued functions on U that are continuously differentiable. We
write Dz(ψ) ∈ Matmm′(R) for the jacobian matrix of ψ evaluated at z ∈ U . We also set

|ψ|C1 = max

{
sup
x∈U
|ψ(x)|, sup

x∈U

∣∣∣∣
∂ψ

∂x1

(x)

∣∣∣∣ , . . . , sup
x∈U

∣∣∣∣
∂ψ

∂xm′
(x)

∣∣∣∣
}
∈ R ∪ {∞}

here | · | is the maximum norm on Rm. We write vol(·) for the Lebesgue measure on Rm.
Recall that all open subsets of Rm are measurable.

For i ∈ {0, 1, 2} let mi ∈ N and suppose Ui is a non-empty open subset of Rmi . Let
π1 : Rm0+m1+m2 → Rm0+m1 be defined by π1(w, x, y) = (w, x) and π2 : Rm0+m1+m2 →
Rm0+m2 by π2(w, x, y) = (w, y).

We now suppose m0 = 2 and m = 2 + m1 + m2. Let φ1 : U0 × U1 → Rm and
φ2 : U0 × U2 → Rm have continuously differentiable coordinate functions and satisfy
|φ1|C1 <∞ and |φ2|C1 <∞. Define

(7.1) ψN(w, x, y) = Nφ1(w, x)− φ2(w, y)
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where w ∈ U0, x ∈ U1, and y ∈ U2. Thus ψN has target Rm and coordinate functions in
C1(U) where U = U0 × U1 × U2.

We write φ1j and φ2j for the coordinate functions of φ1 and φ2, respectively. By
abuse of notation we sometimes write φ1j(z) for φ1j(w, x) and φ2j(z) for φ2j(w, x) if
z = (w, x, y) with w ∈ U0, x ∈ U1, y ∈ U2.

The jacobian matrix D(w,x,y)(ψN) ∈ Matm(R) equals
(
N ∂φ1

∂w1
− ∂φ2

∂w1
N ∂φ1

∂w2
− ∂φ2

∂w2
N ∂φ1

∂x1
· · · N ∂φ1

∂xm1
−∂φ2

∂y1
· · · − ∂φ2

∂ym2

)
.

evaluated at (w, x, y) ∈ U . For fixed (w, x, y), the determinant detD(w,x,y)(ψN) is a
polynomial in N of degree at most 2 +m1. More precisely, we have

detD(w,x,y)(ψN) = δ0(w, x, y)N2+m1 + δ1(w, x, y)N1+m1 + δ2(w, x, y)Nm1

where the crucial term is

(7.2) δ0(w, x, y) = det
(

∂φ1

∂w1

∂φ1

∂w2

∂φ1

∂x1
· · · ∂φ1

∂xm1
−∂φ2

∂y1
· · · − ∂φ2

∂ym2

) ∣∣∣
(w,x,y)

.

If x is in any power of R and r > 0 we let Br(x) denote the open ball of radius r
around x with respect to | · |.
Lemma 7.1. In the notation above let z0 ∈ U with δ0(z0) 6= 0. There exist two bounded
open neighborhoods U ′′ ⊆ U ′ of z0 in U and a constant c ∈ (0, 1] with the following
properties:

(i) the map φ1 is injective when restricted to π1(U ′) ⊆ R2+m1,

and for all real numbers N ≥ c−1

(ii) the map ψN |U ′ : U ′ → Rm is injective and open,
(iii) we have vol(ψN(U ′′)) ≥ cN2+m1, and
(iv) we have Bc(ψN(U ′′)) ⊆ ψN(U ′).

Proof. As the first order partial derivatives of all φij are continuous we can find an open
neighborhood U ′ of z0 = (w, x, y) in U such that the determinant of
(7.3)


∂φ11

∂w1
(z̃1) ∂φ11

∂w2
(z̃1) ∂φ11

∂x1
(z̃1) · · · ∂φ11

∂xm1
(z̃1) −∂φ21

∂y1
(z̃1) · · · − ∂φ21

∂ym2
(z̃1)

...
...

...
...

...
...

∂φ1m

∂w1
(z̃m) ∂φ1m

∂w2
(z̃m) ∂φ1m

∂x1
(z̃m) · · · ∂φ1m

∂xm1
(z̃m) −∂φ2m

∂y1
(z̃m) · · · −∂φ2m

∂ym2
(z̃m)




has absolute value at least ε = |δ(z0)|/2 > 0 for all z̃1, . . . , z̃m ∈ U ′.
Observe that Dπ1(z0)(φ1) is an m × (2 + m1)-matrix consisting of the first 2 + m1

columns as in the determinant (7.2). Our hypothesis δ0(z0) 6= 0 implies that Dπ1(z0)(φ1)
has maximal rank 2 + m1. By the Inverse Function Theorem we may, after shrinking
U ′, assume that φ1 restricted to π1(U ′) is injective. This implies (i).

We may shrink U ′ further and assume that

(7.4) U ′′ = Bδ(z0) ⊆ U ′ = B2δ(z0) ⊆ U,

for some δ > 0, a property we will need later on. Our constant c will depend on δ but
not on N .

To show injectivity in (ii), let z, z′ ∈ U ′ and N ∈ R be such that ψN(z) = ψN(z′).
Let j ∈ {1, . . . ,m}, then Nφ1j(z) − φ2j(z) = Nφ1j(z

′) − φ2j(z
′). By the Mean Value
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Theorem there exists z̃j ∈ U ′ on the line segment connecting z and z′ such that the
column vector z − z′ lies in the kernel of

(
N
∂φ1j

∂w1

− ∂φ2j

∂w1

, N
∂φ1j

∂w2

− ∂φ2j

∂w2

, N
∂φ1j

∂x1

, . . . , N
∂φ1j

∂xm1

,−∂φ2j

∂y1

, . . . ,− ∂φ2j

∂ym2

) ∣∣∣
z̃j

Thus z − z′ lies in the kernel of M(z̃1, . . . , z̃m) ∈ Matm(R) whose rows are these expres-
sions as j ∈ {1, . . . ,m}.

The determinant of this matrix can be expressed as

δ̃0(z̃1, . . . , z̃m)N2+m1 + δ̃1(z̃1, . . . , z̃m)N1+m1 + δ̃2(z̃1, . . . , z̃m)Nm1

where δ̃0(z̃1, . . . , z̃m) is the determinant of (7.3). In particular, |δ̃0(z̃1, . . . , z̃m)| ≥ ε.

We recall that |φ1,2|C1 < ∞. So for i = 1, 2 we find |δ̃i(z̃1, . . . , z̃m)| ≤ C where C
depends only on φ1 and φ2. For all sufficiently large N ≥ 1 we have

|δ̃0(z̃1, . . . , z̃m)N2+m1 + · · ·+ δ̃2(z̃1, . . . , z̃m)Nm1| ≥ εN2+m1 − 2CN1+m1

≥ ε

2
N2+m1 .

(7.5)

And so in particular, detM(z̃1, . . . , z̃m) 6= 0. As z − z′ lies in the kernel of the relevant
matrix, we conclude z = z′. Therefore, ψN |U ′ is injective for all large N . We conclude
injectivity (ii)

IfN is sufficiently large, then (7.5) implies |detM(z, . . . , z)| ≥ εN2+m1/2 for all z ∈ U ′.
In particular, Dz(ψN) = M(z, . . . , z) is invertible for all z ∈ U ′. Hence ψN is locally
invertible on U ′ and ψN |U ′ is an open map. This completes the proof of (ii).

As ψN |U ′′ is injective and for N large, Integration by Substitution implies

vol(ψN(U ′′)) =

∫

ψN (U ′′)
du =

∫

U ′′
|detDz(ψN)|dz ≥ ε

2
N2+m1vol(U ′′).

This yields our claim in (iii) for small enough c.
To prove (iv) it suffices to verify that if z ∈ U ′′, then the distance ∆(z) of ψN(z) to

Rm \ ψN(U ′) 6= ∅ is at least c, for c > 0 sufficiently small and independent of N .
As the set Rm \ψN(U ′) is closed in Rm it contains v, which depends on z and N , such

that ∆(z) = |ψN(z)−v|. As v realizes the minimal distance, the ball B1/n(v) must meet
ψN(U ′) for all n ∈ N. Let us fix zn ∈ U ′ with |ψN(zn)− v| < 1/n. Now U ′ is bounded,
so after passing to a convergent subsequence we may assume that zn converges towards
z′ ∈ U ′ = B2δ(z0).

We claim that z′ 6∈ U ′. Indeed, otherwise ψN(zn) would converge towards ψN(z′) ∈
ψN(U ′). But then ψN(z′) = v ∈ Rm \ ψN(U ′) is a contradiction. We conclude

(7.6) |z′ − z0| = 2δ.

By the Mean Value Theorem we find

(7.7) ψN(z)− ψN(zn) = M(z̃1, . . . , z̃m)(z − zn)

where M(·) is the matrix above and z̃1, . . . , z̃n lie on the line segment between z and zn
and thus in U ′. As above, the absolute determinant of this matrix is at least εN2+m1/2
for N large enough. The entries of the adjoint matrix have absolute value bounded by a
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fixed multiple of N2+m1 . We find |M(z̃1, . . . , z̃m)−1| ≤ c1 for the maximum norm where
c1 > 0 is independent of N and z̃1, . . . , z̃m. We find that (7.7) implies

|z − zn| = |M(z̃1, . . . , z̃m)−1(ψN(z)− ψN(zn))| ≤ c2|ψN(z)− ψN(zn)|
where c2 > 0 is independent of N . Hence

|z − zn| ≤ c2(|ψN(z)− v|+ |v − ψN(zn)|) = c2(∆(z) + |ψN(zn)− v|)
by our choice of v. Recall that |ψN(zn) − v| < 1/n and z ∈ U ′′ which was defined in
(7.4), so

|zn − z0| − δ ≤ |zn − z0| − |z0 − z| ≤ |z − zn| ≤ c2(∆(z) + 1/n).

By taking the limit as n → ∞ we can replace zn by z′ on the left. We recall (7.6) and
conclude ∆(z) ≥ δ/c2. Part (iv) follows as we may assume δ/c2 ≥ c. �

Our aim is to find many integral points in ψN(U). If ψN(U) has volume v, one could
hope that ψN(U) contains at least v points in Zm. Of course, simple examples show that
this does not need to be true in general. Blichfeldt’s Theorem guarantees that we can
find at least this number of lattice points after possibly translating by a point in Rm. In
our situation we will be able to translate by a rational point of controlled denominator.
For the reader’s convenience we repeat the hypothesis in the next proposition.

Proposition 7.2. Let U0 ⊆ R2, U1 ⊆ Rm1 , and U2 ⊆ Rm2 be non-empty open subsets
and suppose φ1 : U0 × U1 → Rm and φ2 : U0 × U2 → Rm have coordinate functions in
C1(U0 × U1) and C1(U0 × U2), respectively, where m = 2 + m1 + m2. We suppose that
|φ1,2|C1 <∞. Let z0 ∈ U = U0×U1×U2 with δ0(z0) 6= 0. For N ∈ R we define ψN as in
(7.1). There exists a bounded open neighborhood U ′ of z0 in U and a constant c ∈ (0, 1]
with the following property. For all integers N0 ≥ c−1 and all real numbers N ≥ c−1 we
have

#
(
ψN(U ′) ∩N−1

0 Zm
)
≥ cN2+m1 .

Moreover, φ1|π1(U ′) is injective, and ψN |U ′ is injective for all N ≥ c−1.

Proof. Let U ′′ ⊆ U ′ and c1 > 0 be as in Lemma 7.1 and suppose N ≥ c−1
1 . Below we

will use vol(ψN(U ′′)) ≥ c1N
2+m1 and Bc1(ψN(U ′′)) ⊆ ψN(U ′).

By Blichfeldt’s Theorem [12, Chapter III.2, Theorem I], there exists x ∈ Rm, which
may depend on N , such that #(−x + ψN(U ′′)) ∩ Zm ≥ vol(ψN(U ′′)) ≥ c1N

2+m1 . So
there exist an integer M ≥ c1N

2+m1 , a1, . . . , aM ∈ Zm, and z1, . . . , zM ∈ U ′′ such that

−x+ ψN(zi) = ai ∈ Zm for all i ∈ {1, . . . ,M}
and the ai are pairwise distinct.

There exists c2 > 0 such that if N0 is any integer with N0 ≥ c−1
2 then Bc1(x′) ∩

N−1
0 Zm 6= ∅ for all x′ ∈ Rm.
Let us fix q ∈ Bc1(x) ∩N−1

0 Zm where x comes from Blichfeldt’s Theorem. Then

q + ai = (q − x) + x+ ai = (q − x) + ψN(zi) ∈ Bc1(ψN(zi)) ⊆ ψN(U ′).

Observe q + ai ∈ N−1
0 Zm for all i ∈ {1, . . . ,M}.

We have proved #(ψN(U ′) ∩ N−1
0 Zm) ≥ M ≥ c1N

2+m1 for all N ≥ c−1
1 and all

N0 ≥ c2
−1. The proposition follows by taking c = min{c1, c2} and by the injectivity

statements in (i) and (ii) of Lemma 7.1. �
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8. Intersection Numbers

Let F be an algebraically closed subfield of C. Let S be a smooth irreducible curve
over F and let π : A → S be an abelian scheme over F of relative dimension g ≥ 1. In
this section we abbreviate PmF by Pm for integers m ≥ 1.

We will use the basic setup introduced in §2.2. In particular A ⊆ PM × Pm is an
admissible immersion.

Proposition 8.1. Suppose X is an irreducible, closed subvariety of A defined over F
that dominates S and is not generically special. Then there exist

• a constant c > 0,
• a finite and étale covering S ′ → S where S ′ is an irreducible curve over F ,
• and finitely many closed (not necessarily irreducible) subvarieties Y1, . . . , YR of
A′ = A×S S ′, we write X ′ = X ×S S ′

such that for all integers N ≥ c−1 the following holds. There exists Y ∈ {Y1, . . . , YR} such
that X ′ ∩ [N ]−1(Y ) contains at least r ≥ cN2 dimX irreducible components of dimension
0.

Note that X ′ from the proposition is a closed subvariety of the abelian A′ scheme. It
may not be irreducible, but it is equidimensional of dimension dimX since S ′ → S is
finite and étale. Note also that each irreducible component of X ′ ∩ [N ]−1(Y ) consists of
one F -rational point as X ′ and [N ]−1(Y ) are defined over F .

We will prove Proposition 8.1 in the next few subsections.

8.1. Constructing a Covering S ′ → S. Further down we will need to pass to a finite
and étale covering S ′ of S. In this subsection we make some preparations and mention
some facts.

We recall our convention F ⊆ C and fix P ∈ X(F ) as in Lemma 6.2.
By assumption on X and P , we have an irreducible closed subvariety Z ⊆ A defined

over F satisfying the conclusion of Proposition 6.1. In particular, dimZ = codimAX =
n.

We fix a prime number ` satisfying

(8.1) ` > D2g+1(g+1)

where D comes from (iv) of Proposition 6.1. Later on, we will impose a second lower
bound on `.

There is a finite étale covering S ′ → S such that A′/S ′ admits all the `2g torsion
sections S ′ → A′[`] where A′ is the abelian scheme A ×S S ′ over S ′. We may assume
that S ′ is irreducible. The prescribed closed immersion A → PMS induces a closed
immersion A′ → PMS′ .

Observe that the induced morphism ρ : A′ → A is finite and étale. So the pre-image
of any irreducible subvariety Y of A′ is equidimensional of dimension dimY .

Let Z ′ = Z ×S S ′, this is a closed subvariety of A′ which may not be irreducible. It is
equidimensional of dimension dimZ. A further and crucial observation for our argument
is that the fibers Zt and Z ′t′ are equal if t′ ∈ S ′(F ) maps to t ∈ S(F ). So by Proposition
6.1(iv)

(8.2) the degree of any Z ′t′ ⊆ PM is bounded by D for all t′ ∈ S ′(F )



43

and by the “Moreover” part of Proposition 6.1

(8.3)
at most finitely many fibers of Z ′ → S ′ over S ′(C) contain a coset

of positive dimension in the respective fiber of A′ → S ′.

8.2. Local Parametrization and Lattice Points. We keep the notation introduced
above and prove the following intermediate counting result.

Lemma 8.2. Let X be as in Proposition 8.1. Then there exist

• a constant c > 0,
• a prime number ` satisfying (8.1),
• and a finite étale covering S ′ → S, with S ′ irreducible, admitting all the `2g

torsion sections S ′ → A′[`], with π′ : A′ → S ′ the canonical morphism, X ′ =
X ×S S ′, and Z ′ = Z ×S S ′

such that for all integers N ≥ c−1 the following holds. There exist r ≥ cN2 dimX pairs
(P ′1, Q

′
1), . . . , (P ′r, Q

′
r) ∈ X ′(C)×Z ′(C) such that the P ′1, . . . , P

′
r are pairwise distinct with

the following properties for all i ∈ {1, . . . , r}:
(i) We have π′(P ′i ) = π′(Q′i) and [`N ](P ′i ) = [`](Q′i).

(ii) The Zariski closed subset Z ′π′(P ′i )
of A′π′(P ′i ) does not contain any coset of positive

dimension.
(iii) If Y ′ is an irreducible closed subvariety of A′ such that Q′i ∈ Y ′(C) and P ′i is not

isolated in X ′ ∩ [`N ]−1([`](Y ′)), then there exists an `-torsion section σ : S ′ →
A′[`] with σ 6= 0 and Q′i ∈ Y ′(C) ∩ (Y ′ − imσ)(C).

Proof. We make use of the lattice point counting technique from §7.
By Lemma 6.2 we have that P is a smooth point of Xan and Xan

π(P ). We have dimX =
g + 1 − n, so we can trivialize the family Xan → San in a neighborhood of P in Xan

using a smooth map φ̃1 defined on U0 × U1 where U0 ⊆ R2 and U1 ⊆ R2(g−n) are both
open and non-empty. We may assume that φ̃1(0) = P . After possibly shrinking U0

and U1 we compose φ̃1 with b̃, the Betti map b : A∆ → T2g composed by a local inverse
of R2g → T2g. This yields a smooth map φ1 : U0 × U1 → R2g that produces the Betti
coordinates relative to the local parametrization of Xan.

Now P is also a smooth point of Zan. Recall that dimZ = n. The same construction
yields a non-empty and open subset U2 ⊆ R2(n−1) and a smooth map φ̃2 : U0×U2 → Zan

with φ̃2(0) = P . We restrict if necessary and write φ2 = b̃ ◦ φ̃2 : U0 × U2 → R2g. The
subsets U0, U1 and U2 can be chosen to be bounded.

In this setting φ1 parametrizes b̃(U) where U ⊆ Xan is a neighborhood of P in X and

b̃ is a local lift of the Betti map to R2g. Similarly φ2 parametrizes b̃(V ) where V is a
neighborhood of P in Zan.

We may assume, after shrinking U0, U1, and U2 if necessary, that |φ1|C1 < ∞ and
|φ2|C1 < ∞. By Proposition 6.1(iii) the fiber Zπ(P ) contains no positive dimensional
cosets in Aπ(P ). By (8.3) and up to shrinking U0 we may assume that

(8.4) Zt contains no positive dimensional cosets in At for all t ∈ π(φ̃1(U0 × U1)).

For any N ∈ N and (w, x, y) ∈ U0 × U1 × U2 we define a map

ψN(w, x, y) = Nφ1(w, x)− φ2(w, y) ∈ R2g.
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Let πi : U0 × U1 × U2 → U0 × Ui be the natural projection for i = 1, 2 and δ0(w, x, y) as
above Lemma 7.1.

Condition (v) of Proposition 6.1 implies that δ0(0) 6= 0. So we can apply Proposi-
tion 7.2. There exists a bounded open neighborhood U ′ of 0 in U0 × U1 × U2 and a
constant c ∈ (0, 1] with the following property. For all integers N0 ≥ c−1 and N ≥ c−1

we have that φ1|π1(U ′) and ψN |U ′ are injective and

(8.5) #
(
ψN(U ′) ∩N−1

0 Z2g
)
≥ cN2+2(g−n) = cN2 dimX .

Proposition 7.2 allows us to increase N0. From now on we fix N0 to be a prime number
` that satisfies (8.1) and ` ≥ c−1. As in §8.1 we fix a finite étale covering S ′ → S with S ′

irreducible such that A′ := A×S S ′ → S ′ admits all the `2g torsion sections S ′ → A′[`].
Recall that |φ2|C1 <∞, so is φ2(U0 × U2) is bounded and

(8.6) # (φ2(U0 × U2)− φ2(U0 × U2)) ∩ `−1Z2g ≤ C for some C independent of N .

Suppose (w, x, y) ∈ U ′ satisfies ψN(w, x, y) ∈ `−1Z2g. Then `Nφ1(w, x)− `φ2(w, y) ∈
Z2g. For the Betti coordinates we find on A that

[`N ](φ̃1(w, x)) = [`](φ̃2(w, y)) ∈ [`](Z)(C).

Thus we get a mapping

(8.7) ψN(U ′) ∩ `−1Z2g 3 ψN(w, x, y) 7→ (φ̃1(w, x), φ̃2(w, y)) ∈ X(C)× Z(C).

The image points are of the form (Pi, Qi) and lie in the same fiber above S and with
[`N ](Pi) = [`](Qi). By (8.5) these points arise from at least cN2 dimX elements of
ψN(U ′)∩ `−1Z2g for all large N . We claim that up to adjusting c the number of different
Pi is also at least cN2 dimX .

So let (w, x, y) ∈ U ′ with ψN(w, x, y) ∈ `−1Z2g whose image under (8.7) is (Pi, Qi).
Let (Pj, Qj) be a further pair with Pi = Pj that comes from ψN(w′, x′, y′) ∈ `−1Z2g

where (w′, x′, y′) ∈ U ′. Hence (w′, x′) = (w, x) as φ1|π1(U ′) is injective. Thus φ2(w′, y′)−
φ2(w, y) = ψN(w, x, y)−ψN(w′, x′, y′) ∈ `−1Z2g. By (8.6) there are at most C possibilities
for ψN(w′, x′, y′), when (x, y, z) is fixed. So there are at most C possibilities for (w′, x′, y′)
as ψN is injective on U ′; recall that C may depend on ` but not on N .

After omitting pairs with duplicate Pi and replacing c by c/C we have found (Pi, Qi)
with pairwise different Pi for 1 ≤ i ≤ r and r ≥ cN2 dimX .

Let ρ : A′ → A denote the canonical morphism. We fix lifts P ′i , Q
′
i ∈ A′(C) of Pi, Qi

respectively in the same fiber of A′ → S ′. So

(8.8) [`N ](P ′i ) = [`](Q′i) for all i ∈ {1, . . . , r}.
This yields claim (i) of the lemma.

As our points Pi lie above points in π(φ̃1(U0 × U1)) we deduce (ii) from (8.4).
It remains to prove part (iii). Let Y ′ be as in (iii), namely Q′i ∈ Y ′(C) and P ′i is not

isolated in X ′ ∩ [`N ]−1([`](Y ′)) for some i ∈ {1, . . . , r}. To simplify notation we write
P ′ = P ′i and Q′ = Q′i.

Then there is a sequence (Pα)α∈N of pairwise distinct points of X ′(C) that converges
in X ′an to P ′ with [`N ](Pα) ∈ [`](Y ′)(C) for all α ∈ N. We fix Qα ∈ Y ′(C) with
[`N ](Pα) = [`](Qα) for all α ∈ N. Thus π′(Pα) = π′(Qα) and by continuity the sequence
[`](Qα) converges. Since [`] induces a proper map (A′)an → (A′)an we may assume,
after passing to a subsequence, that the Qα converge in (Y ′)an to some Q′′ ∈ Y ′(C).
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Taking the limit we see by continuity and (8.8) that [`](Q′′) = [`N ](P ′) = [`](Q′) and in
particular π′(Q′′) = π′(Q′). Hence

Q′′ = Q′ + T ∈ Y ′(C)

for some T that is either trivial or of finite prime order ` in A′π′(Q′)(C).

All `2g torsion sections S ′ → A′[`] exist, so there is one σ with σ(π′(Q′)) = T . Hence
Q′ ∈ Y ′(C) ∩ (Y ′ − imσ)(C).

To complete the proof it remains to verify σ 6= 0, i.e. T 6= 0. For this we assume the
converse and derive a contradiction. For α large enough, the sequence member ρ(Pα)

will be close enough to ρ(P ′) = Pi as to lie in φ̃1(U ′). As Q′′ = Q′ the analog statement

holds for the sequence of ρ(Qα), i.e. ρ(Qα) ∈ φ̃2(U ′) for all sufficiently large α. For

α sufficiently large we may write ρ(Pα) = φ̃1(wα, xα) and ρ(Qα) = φ̃2(wα, yα) with
(wα, xα, yα) ∈ U ′. The condition [`N ](Pα) = [`](Qα) implies [`N ](ρ(Pα)) = [`](ρ(Qα))
and hence

ψN(wα, xα, wα) = Nφ1(wα, xα)− φ2(wα, yα) ∈ `−1Z2g.

By continuity, the sequence ψN(wα, xα, wα) is eventually constant. But ψN is injective
on U ′ by Proposition 7.2 and hence (wα, xα, wα) is eventually constant. So ρ(Pα) is
eventually constant and, as ρ is finite, Pα attains only finitely many values. But this
contradicts the fact that the Pα are pairwise distinct and concludes the proof of (iii). �

8.3. Induction and Isolated Intersection Points. Let X, `,A′ → S ′, X ′, and Z ′

be as in Lemma 8.2. The conclusion of Lemma 8.2 is already close to what we are
aiming at in Proposition 8.1. However, we must first deal with the possibility that most
P ′i from the lemma are not isolated in X ′ ∩ [`N ]−1([`](Z ′)); otherwise we could just
take Y1 = [`]−1([`](Z ′)). We will handle this in the current subsection by introducing
additional auxiliary subvarieties derived from Z ′.

Recall that D was introduced in §8.1 and ultimately comes from Proposition 6.1(iv).
For brevity we write A′[`](S ′) for the group of torsion sections S ′ → A′[`] of order
dividing `. Recall also that X ′ is equidimensional of dimension dimX = g + 1− n.

We now describe a procedure to construct a finite set Σ of auxiliary subvarieties. To be
more precise we will construct for each k ∈ {0, . . . , n} a finite set Σk with the following
properties:

(i) If Y ′ ∈ Σk, then Y ′ is an irreducible closed subvariety of Z ′ with dimY ′ ≤ n− k.

(ii) If Y ′ ∈ Σk and t ∈ S ′(C) such that Y ′t 6= ∅, then deg Y ′t ≤ D2k .
(iii) If k ≤ n− 1, then for all Y ′ ∈ Σk and all σ ∈ A′[`](S ′) such that Y ′ 6⊆ Y ′− imσ,

all irreducible components of Y ′ ∩ (Y ′ − imσ) are elements of Σk+1.

We define Σ0 to be the set of irreducible components of Z ′. Clearly, (i) is satisfied as
Z ′ is equidimensional of dimension dimZ = n. Moreover, (ii) is satified due to (8.2).

We construct the remaining Σ1, . . . ,Σn and verify the properties inductively. Suppose
k ∈ {0, . . . , n− 1} and that Σk has already been constructed.

Consider the set of all Y ′ ∈ Σk and σ ∈ A′[`](S ′) with Y ′ 6⊆ Y ′ − imσ. There are
only finitely many such pairs (Y ′, σ) and we take as Σk+1 all irreducible components
of all Y ′ ∩ (Y ′ − imσ) that arise this way. This choice makes (iii) automatically hold
true for all k ∈ {0, . . . , n − 1}. If Y ′′ ∈ Σk+1 is such an irreducible component, then
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Y ′′ ( Y ′ ⊆ Z ′ and dimY ′′ ≤ dimY ′ − 1 ≤ n− (k + 1) by (i) applied to k. This implies
(i) for k + 1.

We now verify (ii). If Y ′′ does not dominate S ′, then the image of Y ′′ in S ′ is a point
t, hence Y ′′ = Y ′′t . In this case Y ′′t is an irreducible component of Y ′t ∩ (Y ′t − σ(t)). By
Bézout’s Theorem and since deg Y ′t = deg(Y ′t − σ(t)) we find deg Y ′′t ≤ (deg Y ′t )

2. By

(ii) applied to Y ′t this implies deg Y ′′t ≤ (D2k)2 = D2k+1
. So (ii) holds for all Y ′′ that do

not dominate S ′. If Y ′′ dominates S ′, then for all but at most finitely many t ∈ S ′(C)
all irreducible components of Y ′′t are also irreducible components of Y ′t ∩ (Y ′t − σ(t)).

For such a t we have, again by Bézout’s Theorem, deg Y ′′t ≤ (deg Y ′t )
2 ≤ D2k+1

which
implies (ii). For any remaining t ∈ S ′(C), observe that Y ′′ is flat over S ′ by [30,
Proposition III.9.7] since dimS ′ = 1 and Y ′′ is irreducible. As cycles of PM the fibers

of Y ′′ are pairwise algebraically equivalent. So deg Y ′′t ≤ D2k+1
for all t ∈ S(C), see

Fulton [19, Chapters 10.1 and 10.2] on the conservation of numbers. More precisely
let H1, . . . , HdimY ′′−1 be generic hyperplane sections of PM × S → S such that Y ′′ ∩⋂dimY ′′−1
i=1 Hi is flat of relatively dimension 0 over S, and then apply [19, Corollary 10.2.2]

to, using the notation of loc.cit., Y = PM , T = S, α1 = [Y ′′] and αi = [Hi−1] for
i = 2, . . . , dimY ′′. So we conclude (ii) for all fibers of Y ′′ regardless whether it dominates
S ′ or not.

We define
Σ = Σ0 ∪ · · · ∪ Σn.

It is crucial for us that the following bound involving Y ′ ∈ Σ is independent of `:

(8.9) deg Y ′t ≤ D2n ≤ D2g+1

for all t ∈ S ′(C) with Y ′t 6= ∅.
We are now ready to prove the main result of this section.

Proof of Proposition 8.1. Let X, c, `,A′ → S ′, X ′, and Z ′ be as in Lemma 8.2. We will
prove that {[`]−1([`](Y ′)) : Y ′ ∈ Σ} is the desired set of closed subvarieties of A′.

For N ≥ c−1, Lemma 8.2 produces r ≥ cN2 dimX pairs (P ′1, Q
′
1), . . . , (P ′r, Q

′
r) ∈ X ′(C)×

Z ′(C) with the stated properties.
Note that each Q′i is a point of some element of Σ. Indeed, it is a point of Z ′ whose

irreducible components are in Σ0. To each i ∈ {1, . . . , r} we assign an auxiliary variety
in Σk containing Q′i and with maximal k.

By the Pigeonhole Principle there exist k and an auxiliary variety Y ′ ∈ Σk that is hit
at least r/#Σ times. As #Σ is independent of N we may assume, after adjusting c, that
r ≥ cN2 dimX and Q′i ∈ Y ′(C) for all i ∈ {1, . . . , r}.

Let Y = [`]−1([`](Y ′)). We prove that Y is what we want, i.e. X ′∩ [N ]−1(Y ) contains
at least r ≥ cN2 dimX isolated points.

Observe that P ′1, . . . , P
′
r are points of X ′ ∩ [N ]−1(Y ). If they are all isolated in this

intersection then the proposition follows as they are pairwise distinct.
We assume that some P ′i is not isolated in X ′∩[N ]−1(Y ) and will arrive at a contradic-

tion. By Lemma 8.2(iii) there exists a non-trivial σ ∈ A′[`](S ′) such that Y ′∩(Y ′− imσ)
contains Q′i. In particular, Y ′ cannot be a point.

Let us assume Y ′ 6⊆ Y ′− imσ for now. Thus properties (i) and (iii) of Σk listed above
imply 1 ≤ dimY ′ ≤ n− k and that Q′i lies in an element of Σk+1. This contradicts the
maximality of k. Hence Y ′ ⊆ Y ′ − imσ and in particular Y ′t ⊆ Y ′t − σ(t) where t is the
image of Q′i under A′ → S ′.
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If Y ′ dominates S ′, then Y ′t is equidimensional of dimension dimY ′ − 1. If Y ′ does
not dominate S ′, then Y ′ = Y ′t is irreducible and in particular equidimensional. In both
cases we find Y ′t = Y ′t −σ(t) and the group generated by σ(t) acts on the set of irreducible
components of Y ′t .

The number of irreducible components of Y ′t is at most deg Y ′t ≤ D2g+1
by (8.9).

Furthermore, σ(t) has precise order ` since σ 6= 0 and ` is prime. By (8.1) we have

` > D2g+1
. As ` is a prime there is no non-trivial group homomorphism from Z/`Z

to the symmetric group on deg Y ′t symbols. We conclude that σ(t) + W = W for all
irreducible components W of Y ′t .

The stabilizer Stab(W ) in A′t of any irreducible component of Y ′t of W , satisfies
deg Stab(W ) ≤ deg(W )dimW+1 ≤ deg(W )g+1 by [15, Lemme 2.1(ii)]. We obtain degW ≤
deg Y ′t ≤ D2g+1

again from (8.9). Putting these bounds together gives deg Stab(W ) ≤
D2g+1(g+1). But Stab(W ) contains σ(t), a point of order ` > deg Stab(W ) by (8.1). In
particular, Stab(W ) has positive dimension. But this implies that Y ′t contains a posi-
tive dimensional coset. By property (i) in the construction of Σ we have Y ′t ⊆ Z ′t and
therefore Z ′t contains a coset of positive dimension. This contradicts Lemma 8.2(ii). �

9. Height Inequality in the Total Space

In this section, and if not stated otherwise, we work with the category of schemes over
Q and abbreviate PmQ by Pm for integers m ≥ 1. Let S be a smooth irreducible curve

defined over Q. Let π : A → S be an abelian scheme over Q of relative dimension g ≥ 1.
We will use the basic setup introduced in §2.2. In particular A ⊆ PM × Pm is an

admissible immersion.
Our principal result is the following proposition. It makes use of the naive height

given by (2.2).

Proposition 9.1. Suppose X is an irreducible closed subvariety of A that dominates S
and is not generically special, then there exists a constant c > 0 depending on X and the
data introduced above with the following property. For any integer N ≥ c−1 there exists
a non-empty Zariski open subset UN ⊆ X and a constant c′(N), both of which depend
on N , such that

h([2N ]Q) ≥ c4Nh(Q)− c′(N) for all Q ∈ UN(Q).

9.1. Polynomials Defining Multiplication-by-2 on A. Let X = [X0 : · · · : XM ]
denote the projective coordinates on PM and let Y = [Y0 : · · · : Ym] denote the projec-
tive coordinates on Pm. Recall condition (ii) of the admissible setting A ⊆ PM × Pm:
the morphism [2] is represented globally on A ⊆ PM × Pm by M + 1 bi-homogeneous
polynomials, homogeneous of degree 4 in X and homogeneous of a certain degree, say c0,
in Y . In other words, there exist G0, . . . , GM ∈ Q[X;Y ], each Gi being homogeneous of
degree 4 on the variables X and homogeneous of degree c0 on the variables Y , such that
[2](a) = ([G0(a1; a2) : · · · : GM(a1; a2)]; a2) for any a ∈ A(C). Here we write a = (a1; a2)
under A ⊆ PM × Pm. Note that c0 depends only on the immersion A ⊆ PM × Pm.

9.2. An Auxiliary Rational Map.

Lemma 9.2. Let X and Y be locally closed algebraic subsets of PM and suppose that X
is irreducible. There exists δ ∈ N that depends only on Y with the following property.
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Suppose r ≥ 1 and Q1, . . . , Qr ∈ X(Q) ∩ Y (Q) for all i ∈ {1, . . . , r}. There exist
homogeneous polynomials ϕ0, ϕ1, . . . , ϕdimX ∈ Q[X0, . . . , XM ] of degree δ, whose set of
common zeros is denoted by Z ⊆ PM , such that the rational map ϕ = [ϕ0 : · · · :
ϕdimX ] : PM 99K PdimX satisfies:

(i) We have ϕ(Y \Z) = [1 : 0 : · · · : 0] and Qi /∈ Z(Q) for all i ∈ {1, . . . , r}.
(ii) If C is an irreducible subvariety of X and i ∈ {1, . . . , r} with Qi ∈ C(Q) such

that ϕ|C\Z is constant, then C ⊆ Y , where Y is the Zariski closure of Y in PM .

Proof. The Zariski closure Y of Y in PM is the zero set of finitely many homogeneous
polynomials g1, . . . , gm ∈ Q[X0, . . . , XM ]. We may assume that g1, . . . , gm all have the
same degree δ. Note that δ depends only on Y .

We may fix further g0 ∈ Q[X0, . . . , XM ], also of degree δ, such that g0(Qi) 6= 0 for all
i ∈ {1, . . . , r}. For example, we can take g0 to be the δ-th power of a linear polynomial
whose zero set avoids the Qi’s. The set of common zeros ZG of all gi does not contain
any Qi and thus not all of Y .

We obtain a rational map G = [g0 : · · · : gm] : PM 99K Pm. Observe that G(Y \ZG) =
[1 : 0 : · · · : 0]. Observe also that G(X\ZG) is constructible in Pm and its Zariski closure
is of dimension at most dimX. This image also contains [1 : 0 : · · · : 0], so there exist
homogenous linear forms l1, . . . , ldimX ∈ Q[X0, . . . , Xm] such that

(9.1) [1 : 0 : · · · : 0] is isolated in Z (l1, . . . , ldimX) ∩G(X\ZG).

We set l0 = X0 and consider [l0 : · · · : ldimX ] as a rational map Pm 99K PdimX . It is
well-defined at [1 : 0 : · · · : 0] ∈ Pm(Q) and maps this point to [1 : 0 : · · · : 0] ∈ PdimX(Q).

We set ϕ0 = l0(g0, . . . , gm), . . . , ϕdimX = ldimX(g0, . . . , gm). Then ϕi is homogeneous of
degree δ for all i ∈ {0, 1, . . . , dimX}. Let Z be the set of common zeros of the ϕi. Then
Qi 6∈ Z(Q) for all i by construction. The rational map ϕ = [ϕ0 : · · · : ϕdimX ] : PM 99K
PdimX is defined on Qi and maps Y \Z to [1 : 0 : · · · : 0]. We conclude (i).

Let C be as in claim (ii). Then C\Z is non-empty and is mapped to [1 : 0 : · · · :
0] ∈ PdimX(Q) under ϕ. So l1, . . . , ldimX vanish on G(C\Z). As the image G(C\Z) ⊆
G(C\ZG) contains G(Qi) = [1 : 0 : · · · : 0] ∈ Pm(Q) we infer from (9.1) that the
g1, . . . , gm vanish on C\Z. Hence C\Z ⊆ Y and so C ⊆ Y since C\Z is Zariski dense
in the irreducible C. �

The map ϕ depends on the collection of Qi in the previous proposition, but the degree
δ does not. Also note that the Qi’s are not necessarily pairwise distinct.

9.3. Height Change under Scalar Multiplication. The following lemmas are proven
by the second-named author in [27]. Lemma 9.4 is our main tool to deduce the de-
sired height inequality (Proposition 9.1) from the “division intersection points” counting
(Proposition 8.1).

Lemma 9.3. Let X be an irreducible variety over C and let ϕ : X 99K PdimX
C be a

rational map. Then for any Q ∈ PdimX(C), the number of zero-dimensional irreducible
components of ϕ−1(Q) is at most degϕ. By convention we say that degϕ = 0 if ϕ is
not dominant.

Proof. This is [27, Lemma 4.2]. The crucial point is that PdimX
C is a normal variety. �
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Lemma 9.4. Let X ⊆ PM be an irreducible closed subvariety over Q of positive dimen-
sion. Let ϕ : X 99K PdimX be the rational map given by ϕ = [ϕ0 : · · · : ϕdimX ] where ϕi
are homogeneous polynomials with coefficients in Q that are not all identically zero on
X and have equal degree at most D ≥ 1. Then there exist a constant c = c(X,ϕ) and a
Zariski open dense subset U of X such that ϕ0, . . . , ϕdimX have no common zeros on U
and

h(ϕ(P )) ≥ 1

4dimX deg(X)

degϕ

DdimX−1
h(P )− c

for any P ∈ U(Q).

Proof. This is [27, Lemma 4.3]. �

Now we are ready to prove Proposition 9.1.
To X, recall that we associated in Proposition 8.1 a finite étale covering S ′ → S. Set

X ′ = X ×S S ′. Then X ′ is a closed subvariety of A′ = A×S S ′ and equidimensional of
dimension dimX. Let ρ : A′ → A denote the natural projection, it is finite and étale.
Let S be the Zariski closure of S in Pm . We fix a smooth projective curve S ′ that
contains S ′ as a Zariski open subset, then S ′ → S extends to a morphism S ′ → S. Some
positive power of the pull-back of O(1) under S ′ → S → Pm yields a closed immersion
S ′ → Pm′ for some m′ ∈ N. The pull-back of the closed immersion A → PM × S yields
a closed immersion A′ → PM × S ′ and thus an immersion A′ → PM × Pm′ .

We recall that [2] onA ⊆ PM×Pm is presented globally by bihomogeneous polynomials
G0, . . . , GM on A described in §9.1. The morphism S ′ → S → Pm is defined Zariski
locally on S ′ by an (m + 1)-tuple of homogeneous polynomials in m′ + 1 variables. In
other words there is a finite open cover {S ′α}n1

α=1 of S ′ such that S ′ → S is represented
on each S ′α by a tuple Fα of homogeneous polynomials of equal degree and no common
zero on S ′α. Above each S ′α the morphism [2] is defined by [2](a1, a2) = ([G0(a1, Fα(a2)) :
· · · : GM(a1, Fα(a2))], a2); here a = (a1, a2) ∈ A′(Q) ⊆ PM(Q) × Pm′(Q) lies above S ′α.
Iterating [2] we find that for all integers N ≥ 1 and above each S ′α the morphism [2N ] is
defined by bihomogeneous polynomials with degree in a1 equal to 4N and degree in a2

at most c1(4N − 1)/3; here c1 = c0 degFα and c0 is as in §9.1. As for several constants
below, c1 may depend on A′ and X ′, but not on N .

Let us embed A′ in P(M+1)(m′+1)−1 by composing the immersion A′ → PM × Pm′

with the Segre morphism PM × Pm′ → P(M+1)(m′+1)−1. After locally inverting the Segre
morphism and increasing n1 we obtain to an open cover {Vα}n1

α=1 of A′, a refinement
of {A′|S′α}α, such that [2N ]|Vα : Vα → A′ is represented by a tuple of homogeneous
polynomials of degree at most c24N on each Vα. Here n1 and c2 are independent of N .

For any irreducible component X ′0 of X ′ the restriction ρ|X′0 : X ′0 → X is dominant and
dimX ′0 = dimX. So Silverman’s height inequality [46] applies; here we could have also
used the Height Machine and Lemma 9.4. To prove the proposition, it suffices to find
a constant c > 0 that is independent of N with the following property. For any integer
N ≥ c−1 there exist an irreducible component X ′0 of X ′, a non-empty Zariski open subset
U ′N ⊆ X ′0, and a constant c′(N,X ′0) such that h([2N ]Q) ≥ c4Nh(Q) − c′(N,X ′0) for all
Q ∈ U ′N(Q). Then we can take UN to be a non-empty Zariski open subset of X with
UN ⊆ ρ(U ′N) and c′(N) = c′(N,X ′0).
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Let c3 > 0 be the c in Proposition 8.1 and let Y1, . . . , YR be the subvarieties of A′
therein. The constant c3 and the varieties Y1, . . . , YR will depend on on X and A, but
not on N . We work with 2N instead of N in Proposition 8.1. So for any sufficienty large
(but fixed) N we let P1, . . . , Pr ∈ X ′(Q) with r ≥ c34N dimX be pairwise distinct points
as in Proposition 8.1 and Y ∈ {Y1, . . . , YR} such that [2N ](Pi) ∈ Y (Q) and Pi is isolated
in X ′ ∩ [2N ]−1(Y ) for all i.

Suppose X ′ has n2 irreducible components, then n2 is independent on N . We apply
the Pigeonhole Principle to find α ∈ {1, . . . , n1} and some irreducible component of X ′

such that at least c34N dimX/(n1n2) points Pi lie on Vα and this component. Replace X ′

by the said component and replace c3 by c3/(n1n2). Now we may assume that there is
a tuple of homogeneous polynomials of equal degree at most c24N that define [2N ] on a
Zarski open subset of X ′ ⊆ A′ ⊆ P(M+1)(m′+1)−1 that contains all the Pi’s.

We apply Lemma 9.2 to [2N ](X ′) ⊆ A′ ⊆ P(M+1)(m′+1)−1, Y , and the points [2N ](P1), . . . , [2N ](Pr).
Thus we obtain a rational map ϕ : P(M+1)(m′+1)−1 99K PdimX′ defined at all [2N ](Pi) that
arises from homogenous polynomials of equal degree δY . Observe that δY depends only
on Y ∈ {Y1, . . . , YR}. Let δ = maxY ∈{Y1,...,YR} δY . Now that {Y1, . . . , YR} is fixed as N
varies, this does not endanger our application. There exists a constant c4(ϕ) ≥ 0 such
that

(9.2) h(ϕ(Q)) ≤ δh(Q) + c4(ϕ)

for any Q outside the set of common zeros of the polynomials involved in ϕ, see [32,
Theorem B.2.5.(a)]. To emphasize that ϕ may depend on N we write c4(N) for c4(ϕ).

For N as before we define ϕ(N) = ϕ ◦ [2N ] : X ′ 99K PdimX′ . Then by Lemma 9.2(i),
each Pi is mapped via ϕ(N) to [1 : 0 : · · · : 0].

We would like to invoke Lemma 9.3 to bound degϕ(N) from below by r. To do this
we must verify that each Pi is isolated in the fiber of ϕ(N) above [1 : 0 : · · · : 0]. Let
us suppose C ⊆ X ′ is irreducible, contains Pi, and is inside a fiber of ϕ(N). Apart from
finitely many points, [2N ](C) is in a fiber of ϕ. Now we apply Lemma 9.2(ii) to conclude
that [2N ](C) is contained in the Zariski closure of Y inside P(M+1)(m′+1)−1. But Y ⊆ A′,
so C ⊆ [2N ]−1(Y ). Now Proposition 8.1 implies C = {Pi}.

This settles our claim that Pi is isolated in the fiber of ϕ(N) and we conclude degϕ(N) ≥
r ≥ c34N dimX .

Recall that there is a tuple of homogeneous polynomials of equal degree at most c24N

that define [2N ] on a Zarski open subset of X ′ ⊆ A′ ⊆ P(M+1)(m′+1)−1 that contains all Pi.
So we can describe ϕ(N) on this subset of X ′ using polynomials of degree at most c2δ4

N .
We apply Lemma 9.4 to ϕ(N) and the Zariski closure of X ′ in P(M+1)(m′+1)−1 to conclude
that there exists a constant c5 > 0, independent of N , and a constant c6(N) ≥ 0, which
may depend on N , such that

(9.3) h(ϕ(N)(P )) ≥ c54Nh(P )− c6(N)

for all P ∈ U ′N(Q) where U ′N is non-empty Zariski open in X ′ and may depend on N .
Now by letting Q = [2N ]P and dividing by δ in (9.2), we get by (9.3) that

h([2N ]P ) ≥ c5

δ
4Nh(P )− c7(N)
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for all P ∈ U ′N(Q) after possibly shrinking U ′N . The proof is complete as c5/δ is inde-
pendent of N . �

10. Néron–Tate Height and Height on the Base

The goal of this section is to prove Theorem 1.4 and the slightly stronger Theorem 1.4′.
We will use the basic setup introduced in §2.2. Thus S is a smooth, irreducible curve

over Q, π : A → S is an abelian scheme of relative dimension ≥ 1, and A ⊆ PMQ × PmQ is

an admissible immersion. All varieties in this sections are defined over Q.

10.1. Auxiliary Proposition. We prove the following proposition; recall that both
heights below are defined as in §2.2.

Proposition 10.1. Assume X is an irreducible closed subvariety of A that is not gener-
ically special. Then there exist a non-empty Zariski open subset U ⊆ X defined over Q
and a constant c > 0 depending only on A/S, X, and the admissible immersion such
that

(10.1) h(P ) ≤ c
(

1 + ĥA(P )
)

for all P ∈ U(Q).

Proof. By the Theorem of Silverman-Tate [45, Theorem A], there exist a constant c1 ≥ 0
such that

(10.2) |ĥA(P )− h(P )| ≤ c1

(
1 + h(π(P ))

)

for all P ∈ A(Q); observe that this proof also holds without the smoothness assumption
when working with line bundles instead of Weil divisors.

To prove the proposition we may thus assume that π is non-constant on X. Therefore,
X dominates S.

Since X is not generically special, we can apply Proposition 9.1 to X. There exists
a constant c2 > 0, depending on X,A, and its admissible immersion, such that the
following holds. For any integer N ≥ c−1

2 , there exists a Zariski open dense subset
UN ⊆ X and a constant c3(N) ≥ 0 such that

(10.3) h([2N ]P ) ≥ c24Nh(P )− c3(N)

for all P ∈ UN(Q); we stress that UN and c3(N) ≥ 0 may depend on N in addition to
X,A, and the immersion.

Now for any integer N ≥ c−1
2 and any P ∈ UN(Q), we have

ĥA([2N ](P )) ≥ h([2N ](P ))− c1

(
1 + h(π([2N ](P )))

)
by (10.2)

= h([2N ](P ))− c1 (1 + h(π(P )))

≥ c24Nh(P )− c3(N)− c1 (1 + h(P )) by (10.3) and h(π(P )) ≤ h(P ) (2.2).

But ĥA([2N ]P ) = 4N ĥA(P ) and dividing by 4N yields

ĥA(P ) ≥
(
c2 −

c1

4N

)
h(P )− c3(N) + c1

4N

for all N ≥ c−1
2 and all P ∈ UN(Q).
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Recall that c2 and c3 are independent of N . We fix N to be the least integer such
that 4N ≥ 2c1/c2 and N ≥ c−1

2 . Then

ĥA(P ) ≥ c2

2
h(P )− c3(N) + c1

4N

for all P ∈ UN(Q). Since N is fixed now, the Zariski open dense subset UN of X is
also fixed. For an appropriate c > 0, depending on N, c1, c2, and c3(N) we conclude
(10.1). �
10.2. Proof of Theorem 1.4. The first inequality in (1.1) follows from the definition
of hA,ι(·) and as the absolute logarithmic Weil height is non-negative. To prove the
second inequality we may assume, by properties of the height machine, that the two
height functions appearing in the conclusion arise from an admissible immersion. We
do an induction on dimX. When dimX = 0, this result is trivial. So let us assume
dimX ≥ 1.

If X is generically special then X∗ = ∅ and there is nothing to show. Otherwise we
may apply Proposition 10.1 and so the inequality (10.1) holds for any x ∈ (X \ Z)(Q)
for some proper closed subvariety Z of X defined over Q. Let Z = Z1 ∪ · · · ∪ Zr be
the decomposition into irreducible components. Since dimZi ≤ dimX − 1 we may do
induction on the dimension. By the induction hypothesis, the inequality (10.1) holds for
all points in Z∗1(Q)∪ · · · ∪Z∗r (Q). Therefore the inequality (10.1) holds for all points in
(X \ Z)(Q) ∪ Z∗1(Q) ∪ · · · ∪ Z∗r (Q).

To prove that the inequality (10.1) holds for all points in X∗(Q), it suffices to verify

X∗ ⊆ (X \ Z) ∪ Z∗1 ∪ · · · ∪ Z∗r .
But this is equivalent to the inclusion

(10.4) X \X∗ ⊇ Z ∩ (X \ Z∗1) ∩ · · · ∩ (X \ Z∗r ) = (Z \ Z∗1) ∩ · · · ∩ (Z \ Z∗r ).

Finally, a generically special subvariety of A contained in some Zi will be contained in
X, and therefore (10.4) holds true.

Now the inequalities in Theorem 1.4 and Theorem 1.4′ hold since, by (2.2), h(π(P )) ≤
h(P ) for any P ∈ A(Q). �

11. Application to the Geometric Bogomolov Conjecture

In this section we prove Theorem 1.1 over the base field Q and abbreviate PmQ by Pm.

More general base fields can be handled using the Moriwaki height version of Theo-
rem 1.4. More details are presented in Appendix A.

There exists a smooth, irreducible, quasi-projective curve S over Q whose function
field is K. We fix an algebraic closure K ⊇ K of K. As in §2.2 we can find, up to
removing finitely many points of S, an abelian scheme A → S whose generic fiber is A
from Theorem 1.1. We equip A with an admissible immersion A → PM × Pm, cf. §2.2.
In particular, we have an immersion ι : S → Pm. For s ∈ S(Q) we set

(11.1) hS(s) =
1

degS
h(ι(s))

where h on the right-hand side is the height on Pm(Q) and degS is the degree of the
Zariski closure of ι(S) in Pm. We use the same normalization as in Silverman’s work [45,
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§4], which will play an important role momentarily. In addition, we have the fiberwise

Néron–Tate height ĥA : A(Q) → [0,∞), cf. (2.3). On A we also have a Néron–Tate
height hK,A : A(K)→ [0,∞), cf. the end of §2.1.

Before we get to the nuts and bolts we state Silverman’s Height Limit Theorem.
Recall that we can represent a point x ∈ A(K) = (A ⊗K K)(K) using a section

S ′ → A×S S ′ where S ′ is a smooth, irreducible curve and ρ : S ′ → S is generically finite
morphism. We write σx for the composition S ′ → A×S S ′ → A. We may evaluate ĥA
at σx(t) ∈ Aρ(t) for all t ∈ S ′(Q).

Theorem 11.1 (Silverman). In the notation above we have

(11.2) lim
t∈S′(Q)

hS(ρ(t))→∞

ĥA(σx(t))

hS(ρ(t))
= ĥK,A(x).

Proof. This follows from [45, Theorem B] via a base change argument as follows. The
smoothness condition in this reference can be dropped when using line bundles instead of
Weil divisors. Observe that Silverman’s Theorem deals with the rational case x ∈ A(K)
which comes from a section S → A.

We have a morphism σx : S ′ → A which composed with A → S equals ρ : S ′ → S.
We write K ′ = Q(S ′) and AK′ = A ⊗K K ′. Then hS′ : S

′(Q) → [0,∞) is defined
analog to hS via an immersion of S ′ into some projective space and then normalizing
as in (11.1). Of course, hS′ depends on the choice of this immersion. But we have
hS(ρ(t))/hS′(t) → deg ρ = [K ′ : K] for t ∈ S ′(Q) as hS′(ρ(t)) → ∞ by quasi-equivalent
of heights on curves, cf. [7, Corollary 9.3.10] and our choice of normalization. Silverman’s

Theorem applied to x ∈ A(K ′) implies ĥA(σx(t))/hS′(t) → ĥK′,AK′ (x) as hS(t) → ∞
for t ∈ S ′(Q). Thus ĥA(σx(t))/hS(ρ(t)) → [K ′ : K]−1ĥK′,AK′ (x) for t ∈ S ′(Q) and
hS(ρ(t))→∞.

Now ĥK,A and ĥK′,A′ are related by ĥK′,AK′ = [K ′ : K]ĥK,A, this follows from the
related statement for naive heights, cf. [14, Remark 9.2], and passing to the limit. The
factor [K ′ : K] cancels out with the same factor coming from quasi-equivalence of heights
and this yields (11.2). �

Now we complete the proof of Theorem 1.1.
It is enough to prove the theorem for the symmetric line bundle L attached to the

closed immersion A→ PMK .
Let X be the Zariski closure of X inside A ⊇ A ⊇ X. Then X is irreducible and flat

over S and X is the generic fiber of X → S.
Therefore by the assumption on X the variety X is not generically special. We will

apply Proposition 10.1, so let U be the Zariski open and dense subset of X from this
proposition.

We define U = U ∩X, where the intersection is inside A. This is a Zariski open and
dense subset of X.

It suffices to prove that there exists ε > 0 such that x ∈ U(K) implies ĥK,A(x) ≥ ε.
Indeed, let x ∈ U(K ′) where K ′ is a finite field extension of K contained in K. As

above, there are an irreducible, quasi-projective curve S ′ over Q with function field K ′,
a generically finite morphism ρ : S ′ → S, and a section S ′ → A×S S ′ determined by x.
We write σx : S ′ → A for this section composed with A×S S ′ → A.
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The Zariski closure Y in A of the image of σx is an irreducible closed curve in A. We
have Y ⊆ X as x ∈ X(K ′). Moreover, Y ∩ U 6= ∅ since x ∈ U(K). So Y ∩ U is a curve
that differs from Y in only finitely many points.

We fix a sequence t1, t2, . . . ∈ S ′(Q) such that limn→∞ hS(ρ(tn)) = ∞. Silverman’s
Theorem implies

(11.3) lim
n→∞

ĥA(σx(tn))

hS(ρ(tn))
= ĥK,A(x).

For n large enough we have σx(tn) ∈ U(Q). By Proposition 10.1 there exists a constant
c > 0, independent of x, σx, and n, such that

(11.4) h(σx(tn)) ≤ c
(

1 + ĥA(σx(tn))
)

for all large integers n.

By (2.2) the naive height h(σx(tn)) is at least the height of ι(π(σx(tn))) = ι(ρ(tn)) ∈
Pm(Q). By our choice (11.1) we have h(ι(ρ(tn))) = deg(S)hS(ρ(tn)). We insert into
(11.4) and divide by hS(ρ(tn)) to obtain

degS ≤ c
1 + ĥA(σx(tn))

hS(ρ(tn))
.

Finally, we pass to the limit n→∞ and recall (11.3) to conclude ĥK,A(x) ≥ deg(S)/c.
The theorem follows as c and deg(S) are independent of x. �

Appendix A. Passing from Q to any Field of Characteristic 0

In this appendix, we sketch a proof of Theorem 1.1 for any k algebraically closed
of characteristic 0. We do this by proving a Moriwaki height version of Theorem 1.4,
allowing Q to be replaced by any algebraically closed field of finite transcendence degree
over Q. Then we repeat the proof of Theorem 1.1 for k = Q (§11) with this new height
function to get the result when trdegQk < ∞. Finally we use essential minimum to
reduce to this case.

A.1. Moriwaki height. In this subsection we review Moriwaki’s height theory [38].
Let k0 be a finitely generated field over Q with trdeg(k0/Q) = d. Moriwaki [38]

developped the following height theory, generalizing the classical height theory for Q.
Fix a polarization B = (B;H1, . . . , Hd; τ) of the field k0, i.e. a flat and quasi-

projective integral scheme over Z, a collection of nef smooth hermitian line bundles
H1, . . . , Hd on B and an isomorphism of fields τ : Q(B)→ k0. In most of the literature,
including Moriwaki’s paper, the isomorphism τ is omitted as it is fixed.

Let X be an irreducible projective variety over k0 and let L be a line bundle on X
which is defined over k0. Moriwaki [38] defines a height function

(A.1) hBk0,X,L
: X(k0)→ R

which is well-defined modulo the set of bounded functions on X(k0). We will not repeat
the exact definition of the Moriwaki height here, but will mention some properties. If
the field k0 is clear from the context, then we abbreviate hBk0,X,L

to hBX,L. If furthermore

X is clear, then we abbreviate it to hBL .
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Before going on, let us make the following remark. If k′0 is a field with an isomorphism

ι : k0 → k′0, then we have a polarization B
′

= (B;H1, . . . , Hd; ι ◦ τ) of k′0. For any

algebraic closure k0
′

of k′0, ι extends (non-uniquely) to an isomorphism k0 → k0
′

which

we still denote by ι by abuse of notation. Then hB
′

k′0
◦ ι = hBk0

.

As is pointed out by Moriwaki, if k0 is a number field, then we recover the classical
height functions. Just as the classical height, the Moriwaki height (A.1) satisfies the
several properties.

Proposition A.1 (Height Machine for the Moriwaki height). We keep the notation from
above.

(1) (Additivity) If M is another line bundle on X, then hBL⊗M = hBL + hBM .
(2) (Functoriality) Let q : X → Y be a quasi-finite morphism of projective varieties

over k0 and let M be a line bundle on Y . Then

hBq∗M = hBM ◦ q
(3) (Boundedness) The function hBL is bounded below away from the base locus of L.

In particular hBL is bounded on X(k0) if L = OX .
(4) (Northcott) If L is ample, and if B is big, i.e. the H i’s are nef and big. Then

for any real numbers B,D, the set

{P ∈ X(k0) : hBL (P ) ≤ B, [k0(P ) : k0] ≤ D}
is finite.

(5) (Algebraic Equivalence) If L and M are algebraically equivalent and L is ample,
then

lim
hBL (P )→∞

hBM(P )

hBL (P )
= 1.

Proof. Part (1), (3) and (4) are proven by Moriwaki [38, Proposition 3.3.7(2-4)]. See
[54, Proposition 2(iv)] for a proof of part (2), note that the smoothness assumption is
unnecessary and that q must be generically finite in [38, Proposition 1.3(2)]. Part (5)
can be proven by a verbalized copy of [34, Chapter 4, Proposition 3.3 and Corollary 3.4]
with the usual height function replaced by the Moriwaki height. �

Proposition A.1 enables us to transfer results involving only properties of the height
listed in the Height Machine to the Moriwaki height.

Next we turn to abelian varieties. Let A be an abelian variety over k0, and let L be
a symmetric ample line bundle on A which is defined over k0. The limit

(A.2) ĥBL (P ) = lim
n→∞

2−2nhBL ([2n]P ) for all P ∈ A(k0)

exists and is independent of the choice of a representative of the height function. Then ĥBL
is called the canonical or Néron–Tate height on A(k0) attached of L with respect to B. If

k0 = Q, then ĥBL coincides with the usual Néron–Tate height over Q. Moriwaki [38, §3.4]

proved that the Néron–Tate height ĥBL is quadratic, i.e.

ĥBL ([N ]P ) = N2ĥBL (P ) for all P ∈ A(k0).

The following proposition is proven by Moriwaki [38, Proposition 3.4.1].
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Proposition A.2. (i) We have ĥBL (P ) ≥ 0 for all P ∈ A(k0).

(ii) We have ĥBL (P ) = 0 for all P ∈ A(k0)tor.

(iii) Assume B is big, i.e. H i’s are nef and big. Then ĥBL (P ) = 0 if and only if P is
a torsion point.

A.2. Height Inequality. Let k0 be a finitely generated field extension of Q. Let B be
a polarization of k0. Let k0 be an algebraic closure of k0.

Let S be a smooth irreducible quasi-projective curve over k0, and let π : A → S be
an abelian scheme over k0 of relative dimension g ≥ 1. We fix a smooth, irreducible
projective curve S over k0 that contains S as a Zariski open subset. LetM be an ample
line bundle on S defined over k0. Let L be a symmetric relatively ample line bundle on
A/S defined over k0. Then we have the following analogue of Theorem 1.4.

Theorem A.3. Let X be a closed irreducible subvariety of A over k0 and let X∗ be
as above Proposition 1.3 with k = k0. Then there exists c > 0 depending only on
B,A/S,X,L, and M such that

hBS,M(P ) ≤ c
(

1 + ĥBA,L(P )
)

for all P ∈ X∗(k0)

where hBS,M is the Moriwaki height defined by (A.1), and ĥBA,L(x) is the Néron–Tate

height ĥBLπ(x)
(x) defined by (A.2) on the abelian variety Aπ(x).

If k0 is a subfield of C, then we can take k0 ⊆ C. In this case we can proceed as in the
proof of Theorem 1.4, with the usual height over Q replaced by the Moriwaki height over
k0. In fact we only used Q in the arguments involving heights, i.e. Proposition 9.1 (in fact
only Lemma 9.4 and below) and Proposition 10.1 (for this we need the Moriwaki height
version of Silverman-Tate, which is [54, Theorem 2]). Now Proposition A.1 provides us

with the Height Machine for hBL and hence all the arguments are still valid.
For general k0 finitely generated over Q, we have that k0 is isomorphic to a subfield

k′0 of C via some ι. Let k0
′

be the algebraic closure of k′0 in C, then ι extends to some

ι : k0 → k0
′
. As explained in the paragraph below (A.1), we can get a polarization B

′
of

k′0 such that hB
′

k′0
◦ ι = hBk0

. So we are reduced to the case where k0 is a subfield of C and

hence we are done.

A.3. Geometric Bogomolov Conjecture. Suppose that we are in the situation of
Theorem 1.1. There exists a smooth, irreducible, quasi-projective curve S over k whose
function field is K. We can find, up to removing finitely many points of S, an abelian
scheme A → S whose generic fiber is A. We write X for the Zariski closure of X under
A ⊆ A. Then X is a closed irreducible subvariety of A. We fix an algebraic closure
K ⊇ K of K and a smooth, irreducible, projective curve S that contains S as a Zariski
open subset.

The symmetric ample line bundle L extends, up to removing finitely many points of
S, to a symmetric relatively ample line bundle L on A/S. There exists a field k0 finitely
generated over Q such that S, A/S, L and X are defined over k0. We treat these objects
as being over k0.

Let us take an ample line bundle on S defined over k0.
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By [22, EGA IV2, Proposition 2.8.5] X is flat over S and i−1(X ) = X, so X is the
generic fiber of X → S. Therefore X is not generically special by the assumption on X.
Hence X ∗ is Zariski open dense in X by Proposition 1.3.

Take algebraic closures k0 in k and k0(S) in K. From now on we see X,A, and L as
defined over k0(S). We claim that there exists a constant ε > 0 such that

(A.3) {P ∈ X(k0(S)) : ĥk0(S),A,L(P ) ≤ ε}
is not Zariski dense in X.

We indicate how to modify the proof in §11 to prove this claim. The only changes are

• The Zariksi open subset U of X is replaced by X ∗.
• Instead of Proposition 10.1, we use the generalized version of Theorem 1.4. More

precisely let B be a big polarization of k0, i.e. the H i’s are nef and big. Apply
Theorem A.3 to the subvariety X ⊆ A and (k0,B) to obtain a constant c > 0.
• The polarization B is big, so there exists a sequence of points t1, t2, . . . ∈ S(k0)

such that limn→∞ hBS,M(tn) =∞. Also the Moriwaki height version of Silverman’s
Theorem (11.2) still holds, see [54, Theorem 3]. In fact Proposition A.1 provides

us with the Height Machine for hBL and hence Silverman’s original proof still
works with the usual height function replaced by the Moriwaki height.

We are not done yet because we want to replace k0(S) by K in (A.3). Indeed, K =
k0(S)⊗k0k contains k which is an arbitrary field of characteristic 0 and therefore possibly
not finitely generated over Q. To proceed we prove the following statement on the
essential minimum

µess(X) = inf
{
ε > 0 : {P ∈ X(k0(S)) : ĥk0(S),A,L(P ) ≤ ε} is Zariski dense in X

}
.

The analog µess(XK) where XK = X ⊗k0(S) K is defined similarly but involves K.

Claim: If µess(XK) = 0, then µess(X) = 0.

S. Zhang proved two inequalities relating the essential minima and the height of a
subvariety of an abelian variety in the number field case [65]. To prove our claim we
require Gubler’s [25, Corollary 4.4] version of Zhang’s inequalities for function fields.
See §3 of [25] for the definition of the height of a subvariety of A.

More precisely, µess(X) = 0 if and only if ĥk0(S),A,L(X) = 0. Moreover, µess(XK) =

0 if and only if ĥK,AK ,L(XK) = 0. Finally, we sketch how to prove the equality

ĥk0(S),A,L(X) = ĥK,AK ,LK (XK) which settles our claim. The base change involves only

an extension of the field of constants k/k0 under which the naive height on projective
height remains unchanged. The height of a subvariety of some projective space can be
defined as the height of a Chow form and is thus invariant under base change as well.
Finally, the canonical height of a subvariety of A is a limit as in Tate’s argument and is
thus invariant under base change.

Appendix B. Proposition 1.3 for Higher Dimensional Base

In this appendix, we explain how to generalize Proposition 3.1 to higher dimensional
base. We work under the frame of §3 except that we do not make any assumption on
dimS. In other words, out setting is as follows.
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Let k be an algebraically closed field of characteristic 0. Let S be a smooth irreducible
quasi-projective variety over k and fix an algebraic closure K of K = k(S). Let A be an
abelian variety over K.

We start with the following proposition.

Proposition B.1. Assume AK/k = 0. The order of any point in

(B.1) {P ∈ A(K)tor : [K(P ) : K] ≤ D}
is bounded in terms of A and D only.

Proof. Fix an irreducible projective variety S over k whose function field is K. We may
take S as a Zariski open dense subset of S such that A extends to an abelian scheme
A → S, namely the generic fiber of A → S is A. We may furthermore shrink S such
that S is smooth and that S \ S is purely of codimension 1. We denote by i : A → A
the natural morphism.

Any P ∈ A(K)tor defines a morphism σP : SpecK → A. Suppose the order of P is N .
Then the Zariski closure of Im(i ◦ σP ), which we denote by T , is irreducible, dominates
S and satisfies [N ]T = 0. So T is an irreducible component of the kernel of [N ] : A → A
by comparing dimensions. In particular T ↪→ ker[N ] is an open and closed immersion.
But ker[N ]→ S is finite étale, so is T → S. Thus T → S is an étale covering of degree
[K(P ) : K].

In other words, any torsion point P ∈ A(K)tor yields an étale covering of S of degree
[K(P ) : K].

By Lemma B.2 below, the compositum F in K of all such extensions K(P ) of K of
degree at most D is a finite field extension of K. For S curve we cited [53, Corollary
7.11]. In particular, P ∈ A(F ) for all P in (B.1).

Now AK/k = 0. So the Lang–Néron Theorem, cf. [35, Theorem 1] or [14, Theorem 7.1],
implies that A(F ) is a finitely generated group. Thus [M ](P ) = 0 for some M ∈ N that
is independent of P . Our claim follows. �
Lemma B.2. Let k be an algebraically closed field of characteristic 0 and let S be a
smooth irreducible quasi-projective variety over k. Then for any integer D > 0 there are
at most finitely many étale coverings of S of degree ≤ D.

Proof. It suffices to prove that the étale fundamental group π1(S) is topologically finitely
generated.

Let k0 be an algebraically closed subfield of k which is of finite transcendence degree
over Q such that S is defined over k0. Then we can fix an embedding k0 ↪→ C. We write
S0 for the descent of S to k0, namely S = S0⊗k0 k. We also write SC = S0⊗k0 C for the
base change of S0 to C.

Let s0 : Speck0 → S0 be a geometric point. Denote by s : Speck → S, resp. sC : SpecC→
SC, the corresponding geometric points.

It is a classical result that the topological fundamental group π1(San
C , sC) is finitely

generated. Hence by Riemann’s Existence Theorem [24, Exposé XII, Théorème 5.1]
the étale fundamental group π1(SC, sC) is topologically finitely generated. But then
π1(SC, sC) ∼= π1(S0, s0) by [10, Corollary 6.5 and Remark 6.8]. So π1(S0, s0) is topolog-
ically finitely generated. Then again by [10, Corollary 6.5 and Remark 6.8], we have
π1(S, s) ∼= π1(S0, s0). So π1(S, s) is topologically finitely generated. �
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Now we are ready to prove:

Proposition B.3. let V0 be an irreducible variety defined over k and V = V0⊗k K. By
abuse of notation we consider V0(k) as a subset of V (K). Define Σ = V0(k) × Ator ⊆
V (K)× A(K).

Let Y be an irreducible closed subvariety of V × A such that Y (K) ∩ Σ lies Zariski

dense in Y . If AK/k = 0 then Y = (W0⊗kK)× (t+B) where W0 ⊆ V0 is an irreducible
closed subvariety, t ∈ A(K)tor and B is an abelian subvariety of A.

The only difference of this proposition with Proposition 3.1 is that we do not make
any assumption on dimS.

As we have pointed out, in the proof of Proposition 3.1 the only place where we
used the assumption dimS = 1 is to prove the statement involving (3.2). But for S of
arbitrary dimension this follows from Proposition B.1.

Appendix C. Hyperbolic Hypersurfaces of Abelian Varieties

Suppose F is an algebraically closed field of characteristic zero. For each integer
d ≥ 0 we let F [X0, . . . , XM ]d be the vector space of homogeneous polynomials of degree
d in F [X0, . . . , XM ] together with 0. In this section we identify F [X0, . . . , XM ]d with

A(M+d
M )(F ), where we abbreviate AM = AM

F and PM = PMF .
Brotbek’s deep result [9] implies that a generic sufficiently ample hypersurface in a

smooth projective variety over C is hyperbolic. In the very particular case of an abelian
variety we give an independent proof that involves an explicit bound on the degree.
Recall that an irreducible subvariety of an abelian variety is hyperbolic if and only if it
does not contain a coset of positive dimension by the Bloch–Ochiai Theorem. The main
results of this paper do not depend on the Bloch–Ochiai Theorem.

Proposition C.1. Let A be an abelian variety over F of dimension g ≥ 1 with A ⊆ PM

and suppose d ≥ g−1. There exists a Zariski open and dense subset U ⊆ A(M+d
M ), whose

complement in A(M+d
M ) has codimension at least d + 2 − g, such that if f ∈ U(F ), then

A ∩Z (f) does not contain any positive dimensional coset.

A direct corollary of this proposition is the following statement. Let L be a very
ample line bundle on A giving rise to a projectively normal, closed immersion A ↪→ PM
and say P ∈ A(F ). Then the hypersurface defined by a generic choice of a section in
H0(Pn,O(d)) vanishing at P is hyperbolic for d ≥ g.

Suppose V is an irreducible, closed subvariety of PM with ideal I ⊆ F [X0, . . . , XM ].
We write Id = I ∩ F [X0, . . . , XM ]d. Then F [X0, . . . , XM ]d/Id is a finite dimensional
F -vector space and the Hilbert function of V is defined as

HV (d) = dim(F [X0, . . . , XM ]d/Id)

for all d ≥ 0.
Lower bounds for HV (d) were obtained by Nesterenko, Chardin, Sombra, and others.

We only require a very basic inequality.
Let r = dimV ≥ 0. After permuting coordinates, which does not affect the problem,

we suppose that X0 6∈ I and that X1/X0, . . . , Xr/X0 are algebraically independent
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elements when taken as in the function field of V . It follows that the composition

F [X0, . . . , Xr]d
inclusion−−−−−→ F [X0, . . . , XM ]d → F [X0, . . . , XM ]d/Id

is injective. Therefore,

HV (d) ≥ dimF [X0, . . . , Xr]d =

(
r + d

r

)

for all d ≥ 0.
We assume r ≥ 1 is an integer. By basic properties of the binomial coefficients we

have
(
r+d
r

)
≥
(

1+d
1

)
= d+ 1. So

(C.1) HV (d) ≥
(

dimV + d

dimV

)
≥ d+ 1

if dimV ≥ 1.
We begin with a preliminary lemma that involves cosets in A with fixed stabilizer.

Lemma C.2. Let M,A, and g be as in the proposition above with g ≥ 2. Let B be an
abelian subvariety of A of positive dimension such that d ≥ max{1, g − dimB}. There

exists a Zariski open and dense subset U ⊆ A(M+d
M ), whose complement in A(M+d

M ) has
codimension at least d+ 1 + dimB − g, such that if f ∈ U(F ), then A ∩Z (f) does not
contain any translate of B.

Proof. Say N =
(
M+d
M

)
≥M + d ≥ g ≥ 2. For the proof we abuse notation and consider

elements in PN−1(F ) as classes of homogeneous polynomials in F [X0, . . . , XM ] \ {0}
of degree d up-to scalar multiplication. So f(P ) = 0 is a well-defined statement for
f ∈ PN−1(F ) and P ∈ PM(F ) and the incidence set

{(f, P ) ∈ PN−1(F )× A(F ) : f(P ) = 0}
determines a Zariski closed subset Z ⊆ PN−1 × A.

We consider the two projections π : PN−1 × A→ PN−1 and ρ : PN−1 × A→ A.
Then ρ|Z : Z → A is surjective and each fiber of ρ|Z is linear variety of dimension

N − 2.
Say B is an abelian subvariety of A with dimB ≥ 1. Let ϕ : A → A/B denote the

quotient map. We write ϕ = (idPN−1 , ϕ) : PN−1 × A → PN−1 × (A/B); this morphism
sends (f, P ) to (f, ϕ(P )). The fibers of ϕ have dimension dimB and so

{(f, P ) ∈ Z(F ) : dim(f,P ) ϕ|Z−1(ϕ(f, P )) ≥ dimB}
= {(f, P ) ∈ Z(F ) : P +B ⊆ Z (f)}(C.2)

defines a Zariski closed subset Zϕ of Z. If Zϕ is empty then the lemma follows with
U = AN\{0}. Otherwise, let W1, . . . ,Wr be the irreducible components of Zϕ.

If P ∈ A(F ), then the fiber of ρ|Zϕ above P is empty or has dimension

dim I(P +B)d − 1 = dimF [X0, . . . , XM ]d − 1−HP+B(d) ≤ N − 1− (d+ 1).

where we used (C.1). So any non-empty fiber of ρ|Wi
has dimension at mostN−1−(d+1).

and by the Fiber Dimension Theorem we conclude

(C.3) dimWi ≤ N − 1− (d+ 1) + dim ρ(Wi) ≤ N − d+ g − 2

for all i ∈ {1, . . . , r} as dim ρ(Wi) ≤ dimA ≤ g.
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If (f, P ) ∈ Wi(F ), then {f} × (P +B) ⊆ Zϕ. So if (f, P ) is not contained in any Wj

with i 6= j, then {f}× (P +B) ⊆ Wi by the irreducibility of P +B. We conclude that a
general fiber of π|Wi

has dimension at least dimB. By the Fiber Dimension Theorem we
find that dimWi ≥ dimB + dim π(Wi) for all i ∈ {1, . . . , r}; note that π(Wi) is Zariski
closed in PN−1.

Together with (C.3) we conclude dim π(Zϕ) = max1≤i≤r dim π(Wi) ≤ N − d+ g− 2−
dimB and thus

codimPN−1π(Zϕ) ≥ d+ 1− g + dimB.

As π(Zϕ) is Zariski closed in PN−1 we conclude that U ′ = PN−1 \π(Zϕ) is Zariski open
and dense in PN−1 if d ≥ g − dimB. If f ∈ U ′(F ), then there is no P ∈ A(F ) with
P +B ⊆ Z (f). Otherwise, we have in particular f(P ) = 0 and so (f, P ) ∈ Z(F ) which
entails the contradiction (f, P ) ∈ Zϕ(F ) by (C.2). The lemma follows if we take U to
be the preimage of U ′ under the cone map AN \ {0} → PN−1. �

Proof of Proposition C.1. If g = 1, then A ∩ Z (f) is finite for a generic f that is ho-
mogenous and of degree d. The proposition is clearly true in this case.

Now say g ≥ 2. If f ∈ F [X0, . . . , XM ]d, then a coset contained in Z (f)∩A is already
contained in some irreducible component X of Z (f)∩A. By Bézout’s Theorem, degX is
bounded solely in terms of d and A; here deg(·) denotes the usual degree as a subvariety
of PM .

By a theorem of Bogomolov, [6, Theorem 1], the maximal cosets contained in X are
translates of abelian subvarieties whose degree are bounded in terms of degX,A, and
the chosen polarization only. Observe that the proof of Bogomolov’s Theorem works for
algebraically closed fields in characteristic zero. As A contains only finitely many abelian
subvarieties of given degree, Bogomolov produces a finite set of abelian subvarieties that
depends only on degX and A ⊆ PM , thus only on d and A ⊆ PM .

For any abelian subvariety B ⊆ A of positive dimension that arises in this set we
write UB for the Zariski open and dense set produced by Lemma C.2. To rule out that
X contains a coset of positive dimension it suffices to take f ∈ U(F ) where U =

⋂
B UB

is the intersection over the finite set from Bogomolov’s Theorem. �
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