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A B S T R A C T

To assess environmental exposures at the individual level, new assessment methods and tools are required. We
developed an exposure assessment system (ExpoApp) for smartphones. ExpoApp integrates: (i) geo-location and
accelerometry measurements from a waist attached smartphone, (ii) data from portable monitors, (iii) geo-
graphic information systems, and (iv) individual's information. ExpoApp calculates time spent in micro-
environments, physical activity level, inhalation rate, and environmental exposures and doses (e.g., green
spaces, inhaled ultrafine particles- UFP). We deployed ExpoApp in a panel study of 158 adults from five cities
(Amsterdam and Utrecht- the Netherlands, Basel- Switzerland, Norwich- UK, and Torino- Italy) with an UFP
monitor. To evaluate ExpoApp, participants also carried a reference accelerometer (ActiGraph) and completed a
travel-activity diary (TAD). System reliability and validity of measurements were evaluated by comparing the
monitoring failure rate and the agreement on time spent in microenvironments and physical activity with the
reference tools. There were only significant failure rate differences between ExpoApp and ActiGraph in Norwich.
Agreement on time in microenvironments and physical activity level between ExpoApp and reference tools was
86.6% (86.5–86.7) and 75.7% (71.5–79.4), respectively. ExpoApp estimated that participants inhaled
16.5×1010 particles/day of UFP and had almost no contact with green spaces (24% of participants spent
≥30min/day in green spaces). Participants with more contact with green spaces had higher inhaled dose of
UFP, except for the Netherlands, where the relationship was the inverse. ExpoApp is a reliable system and
provides accurate individual's measurements, which may help to understand the role of environmental exposures
on the origin and course of diseases.

1. Introduction

Humans are exposed to lifelong environmental stressors (Wild,
2005). To date, most of the technological investments have focused on

the genome and have given the environment a secondary role (Wild,
2011). As a result, it has not been until the last decade that technology
dedicated to personal environmental exposure has received more at-
tention. Since> 70% of the origin of chronic non-communicable
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diseases remains without explanation (Rappaport, 2016), the develop-
ment of affordable and accurate systems to assess personal environ-
mental exposures is an urgent need that will shape the future of in-
dividual and public health interventions (Khoury et al., 2016).

Personal environmental exposures depend on the time, location,
activity/behaviour, and surrounding environment of individuals
(Nieuwenhuijsen et al., 2014; Nieuwenhuijsen et al., 2015). However,
up to now, researchers have been experiencing serious difficulties in
obtaining, directly or indirectly, spatiotemporal-resolved measures due
to inconvenience and burden of current assessment methods. Conse-
quently, most environmental studies have relied on ambient estimates
(e.g., exposure based on participants' residential addresses) as pre-
dictors of individuals' exposures or have focused only on one exposure
(Vineis et al., 2017; Vineis, 2004). This might have severely compro-
mised the estimated risks associated with the exposures due to poor
correlation between ambient and personal exposures (Nieuwenhuijsen
et al., 2015), or the lack of control for concomitant exposures (Wild,
2005; Vineis, 2004). Therefore, as part of the EXPOsOMICS project
(Vineis et al., 2017), we developed ExpoApp, an integrated system able
to capture highly resolved information on time, location, activity, and
personal exposures by taking advantage of recent technological ad-
vances in mobile personal computers, miniaturization of sensors, and
geographic information systems (GIS) (Turner et al., 2017).

Here we (i) show the usefulness of ExpoApp for the integration,
post-processing and visualization of multiple personal external ex-
posures, (ii) compare its real-world measurements of time in micro-
environments and physical activity level against reference tools, and
(iii) describe ExpoApp estimates on time in-transit, physical activity,
inhalation rate, ultrafine particle (UFP) exposure, UFP inhaled dose,
and contact with green spaces in a European context.

2. Methods

The present study is part of the EXPOsOMICS project, which has
been described in detail elsewhere (Vineis et al., 2017). Briefly, EX-
POsOMICS aims to find the associations and disentangle the pathways
between the external exposome and biological markers as measured
through a range of omics technologies and relate these exposures and
markers to health effects.

2.1. Introduction to ExpoApp

ExpoApp system in its current version combines: (i) geo-location
and accelerometry measurements from a smartphone attached to the
waist, (ii) air pollution measurements (e.g., UFP and black carbon) from
portable monitors, (iii) green spaces from OpenStreetMap, and (iv)
participants' information (detailed in Section 2.2). The system was de-
veloped by Ateknea Solutions, a technology center specialized in en-
gineering and innovation (http://www.ateknea.com; e-mail: info@
ateknea.com), following the specifications of the EXPOsOMICS part-
ners.

The system is composed of a cloud server (Server) and a smartphone
application (App). The Server is designed for: (i) predefining and setting
up the measurements to include in the exposure assessment through a
Web portal (Fig. 1), (ii) backing up, integrating, and post-processing the
measures (detailed in Section 2.2), and (iii) visualizing and down-
loading the personal exposure assessments (Fig. 2). The App is designed
to get information from the smartphone built-in sensors (i.e. clock,
satellite and network navigation systems, accelerometer, barometer,
and screen status), as well as from wearable and portable sensors via
Bluetooth 4.0 (Fig. 1). The App design minimizes the battery use by
working as a background service, guarantees the confidentiality of the
information collected using asymmetric encryption (128 bits), and
prevents data loss through backing up locally and remotely.

2.2. ExpoApp data integration and post-processing

ExpoApp data integration includes: i) personal information of par-
ticipants, ii) data from the built-in sensors of the smartphone and ex-
ternal sensors with Bluetooth 4.0, and iii) external data such as data
from portable sensors without Bluetooth 4.0 and diaries. The required
personal information of participants includes age, gender, weight, and
home and work addresses, which is manually added through the web
portal by researchers. The data from the built-in sensors of the smart-
phone and external sensors with Bluetooth 4.0 are transferred through
the smartphone to Server automatically using a secure encrypted
communication protocol every time that the smartphone is plugged and
has access to Wi-Fi. The data from portable sensors without Bluetooth
4.0 can be uploaded to ExpoApp manually by researchers. Currently,
ExpoApp is able to integrate data from the UFP monitor DiSCmini
(Matter-Aerosol; Wohlen, Switzerland), the black carbon monitor
MicroAeth (model AE51, AethLabs; San Francisco, USA), and time-re-
solved travel-activity diaries (TAD). However, the system can be easily
adapted to include other monitors such as noise monitors. Once data
are in ExpoApp system, they are backed-up into a study-specific folder,
being only accessible to the study staff.

Currently, data post-processing is applied to the measures of geo-
location, accelerometry, UFP, and black carbon. The measures of geo-
location are post-processed to determine time spent in microenviron-
ments (home, work, in-transit, and others) and green spaces. To obtain
time spent in microenvironments, ExpoApp uses participants' home and
work addresses and a validated map-matching algorithm for travel-
activity location (Donaire-Gonzalez et al., 2016). To obtain time spent
in green spaces, ExpoApp overlays each smartphone geo-location over
the OpenStreetMap (https://www.openstreetmap.org), following the
methodology of Triguero et al study (see Supporting information)
(Triguero-Mas et al., 2017).

The accelerometry measures are post-processed to determine smart-
phone/belt wearing intervals (i.e. time wearing the smartphone attached
to the waist with ExpoApp turned on), intensity of physical activity
(METs- Metabolic Equivalent Task), and inhalation rate (L). The current
post-processing algorithms of accelerometry measurements require that
the smartphone has to be worn on a belt attached to the waist. ExpoApp
accelerometry measures are converted to ActiGraph counts by applying
the acceleration-to-count equation [Vertical Acceleration≥0.27
count=−48.08+211.81 ∗Vertical Acceleration0.95; Vertical
Acceleration < 0.27 count=0]. This equation is specific for the accel-
erometer in the Samsung Galaxy S3 used in this study (LSM330DLC 3-
axis) and has been developed following the methodology described in
detail elsewhere (Donaire-Gonzalez et al., 2013). The smartphone/belt
wearing intervals and intensity of physical activity are estimated ap-
plying two current available algorithms for ActiGraph (Choi et al., 2012;
Crouter et al., 2010). The inhalation rate per minute is estimated using
the participant's age, sex and weight, measured intensity of physical
activity, and existing equations from the US Environmental Protection
Agency (EPA) (see Supporting information) (U.S. EPA, 2009).

UFP number concentration and lung-deposited surface area mea-
surements of DiSCmini are post-processed using an algorithm devel-
oped within the EXPOsOMICS project. The algorithm removes the data
recorded with malfunction (e.g., flow out of range), negative or zero
values, and values with a difference of 10-fold increase or decrease in
successive observations, following the procedures of Klompmaker et al.
(2015) and van Nunen et al. (2017). The inhaled dose of UFP is com-
puted combining the inhalation rate (L/min) with the personal ex-
posures concentration (particles ×103/cm3).

2.3. ExpoApp real-world measurements

To test ExpoApp, we recruited 158 adults from five European cities
(Amsterdam and Utrecht- the Netherlands, Basel- Switzerland,
Norwich- UK, and Torino- Italy). Participants' location, physical
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Fig. 1. Screenshot of the deployment, post-processing, and integration settings of the ExpoApp system.
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activity, and exposure to UFP were monitored three times for 24 h in
three different seasons over one year (2014–2015). The ethics com-
mittees of all the participating research centers approved the study, and
written informed consent was obtained from all participants.

During each monitoring session, participants wore a belt (SPIbelt®)
adapted to carry a smartphone running ExpoApp and a backpack
adapted to carry the DiSCmini. ExpoApp was installed on a Galaxy S3
(GT-I9300, Samsung; Seoul, South Korea) smartphone (7.6×13.6 cm),
which was supplied to each participant. ExpoApp was configured to
estimate time in microenvironment (home, work, in-transit, or others)
every 10 s, wearing compliance (yes/no), intensity of physical activity
(METs), inhalation (L), inhaled UFP (N), and contact with green spaces
(yes/no). The air inlet of the DiSCmini was equipped with an impactor
and attached to one strap of the backpack in the breathing zone. The
DiSCmini provides information on date, time, UFP number concentra-
tion, and lung-deposited surface area every 1 s.

2.4. Validation measurements

In addition, for the purpose of validation, participants also carried a
GPS-Tracker and an accelerometer, attached to the same belt of the
smartphone, and completed a TAD. We used the commercial GPS-
tracker SCI-TK5100 (Spy Chest Inc.; Florida, USA) to assess accuracy of
the geo-location measures provided by ExpoApp. The SCI-TK5100
tracker was selected because of its long battery life (60 h), reduced
volume (7.6× 4.9× 3.6 cm), and high accuracy (2.5m). The tracker
was configured to provide information on date, time, and geographical
coordinates every 10 s. The accelerometers used were the wGT3X+ (in
Norwich, Torino, and Basel) and the wActiSleep+ (in Amsterdam/
Utrecht) (ActiGraph; Florida, USA). These accelerometers are portable,
lightweight, and small (4.6× 3.3× 1.5 cm) devices that record com-
parable acceleration measurements in the three axes. From them, we

obtained participants' wearing intervals (yes/no) and intensity of phy-
sical activity (METs) every 10 s (Choi et al., 2012; Crouter et al., 2010).
The TAD was used as a reference tool to evaluate the time spent in each
microenvironment. The TAD also recorded the participants' travel
modes and potential operational problems with the devices.

2.5. Statistical analysis

Participants' characteristics are presented as n (%) for categorical
variables and mean (standard deviation, SD) or median (interquartile
range, IQR) for continuous variables with normal and non-normal
distributions, respectively.

2.5.1. System reliability
To assess reliability of the system (i.e., application stability and

smartphone battery life autonomy), we compared ActiGraph vs
ExpoApp. As both ActiGraph and ExpoApp were attached to the same
belt, differences on wearing compliance were understood as ExpoApp
system failure. ActiGraph comparison was chosen over GPS-tracker
because of the well-known system reliability of ActiGraph for personal
monitoring and because the smartphone technology has been pre-
viously found to provide a more complete geo-location tracking of
people than commercial GPS-trackers (Donaire-Gonzalez et al., 2016).
We defined invalid wearing compliance as having monitored an in-
dividual's exposure for< 10 h each of the 24-hour monitoring periods
following the recommendations for ambulatory assessments (Heil et al.,
2012). Failure rate comparison between ExpoApp and ActiGraph was
evaluated using chi-squared test.

2.5.2. Measurements validity
To assess the geo-location accuracy of the Galaxy S3, we estimated

the distance between geo-locations taken at the same time with

Fig. 2. Screenshot of the interactive visualization of the spatial and temporal distribution of the ultrafine particles exposure over 24 h for one participant.
Colour scale ranges from low (yellow) to high (red) UFP concentration (particles/cm3). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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ExpoApp and GPS-tracker. To assess if smartphone geo-location has a
street-level accuracy (i.e. to identify in which street the participant is
located), a cut-off point of 25m was established, taking into account the
properties of concomitant distance analysis (Donaire-Gonzalez et al.,
2016). To assess the accuracy of time spent in each microenvironment
(home, work, in-transit, and others) from ExpoApp, a misclassification
matrix between the ExpoApp and TAD was generated and its corre-
sponding classification statistics were computed. The agreement be-
tween ExpoApp and TAD was assessed using the Gwet agreement
coefficient (AC1), which circumvents the known weakness of kappa
(Wongpakaran et al., 2013). To assess the accuracy of ExpoApp and
physical activity measurements, the agreement between the ExpoApp
and ActiGraph on the average intensity from concomitant observations
was assessed using the Lin's concordance correlation coefficient (CCC)
(Lin, 1989). The CCC can be conceptualized as the ratio of between-
subject variance to total variance. In other words, it provides a measure
of the percentage of differences attributable to the participants, and its
complement (1-CCC) gives the percentage of differences attributable to
the method. We classified the AC1 and CCC as poor (< 40%), fair
(40–59%), good (60–74%), and excellent (≥75%), following a stan-
dardized ordinal scale (Cicchetti & Guidelines, 1994). As a post-hoc
analysis, we applied a city-specific acceleration-to-count equation to
assess the differences between cities in terms of the fixation of the
smartphone to the belt.

2.5.3. Participants exposure levels
Participants' exposure levels are presented as n (%) for categorical

variables and mean (standard deviation, SD) or median (interquartile
range, IQR) for continuous variables with normal and non-normal
distributions, respectively. Finally, we used Kruskal-Wallis test to
evaluate the differences in the exposure to UFP according to partici-
pants' contact with green spaces in each city. All analyses were con-
ducted using R 3.2.2 (2015 The R Foundation for Statistical
Computing).

3. Results

3.1. Participants' characteristics

Participants were on average 61 years old; 58% were male; 67%
were highly educated; and mean body mass index was 25 kg/m2

(Table 1).

3.2. System reliability

From 457 person-days measurements out of 474 possible (6 parti-
cipants were monitored only ones and 5 participants were monitored
only twice), 399 and 373 measurements met the minimum of 10 h of
wearing time from the ActiGraph and ExpoApp, respectively. The
failure rate comparison across study areas was non-significant in
Amsterdam/Utrecht (p-value=1), Torino (p-value= 0.5), and Basel
(p-value= 0.4) but statistically significant in Norwich (p-value=0.02)
(Table 2).

3.3. Measurements validity

The geo-location agreement between the GPS-tracker and the
ExpoApp showed that 74% of all ExpoApp measurements achieved
accuracy at the street level (< 25m) (Fig. 3). However, the difference
between ExpoApp and GPS in Torino (median (IQR)=21 (Hagler et al.,
2011) meters) was statistically significantly higher than the one in Basel
(median (IQR)= 14 (Choi et al., 2012) meters), Norwich (median
(IQR)= 15 (Choi et al., 2012) meters) and Amsterdam/Utrecht
(median (IQR)= 16 (Choi et al., 2012) meters).

The agreement on the time spent in each microenvironment be-
tween the TAD and the ExpoApp was found to be excellent (AC1
(95%CI)= 86.6% (86.5–86.7)) (Fig. 4). The agreement on time in each
microenvironment was 88.4% (88.2–88.6) in Basel, 82.5% (82.1–82.9)
in the Norwich, 88.0% (87.8–88.2) in Torino, and 85.3% (85.0–85.5) in
Amsterdam/Utrecht.

The overall agreement between ActiGraph and ExpoApp on the
physical activity measurements was found to be very good (CCC
(95%CI)= 75.7% (71.5–79.4)) (Fig. 5). The agreement of physical
activity across cities was 48.2 (39.6–56.1) in Basel; 85.2 (75.9–91.1) in
Norwich; 90.1 (86.2–92.9) in Torino; and 91.6 (88.4–93.9) in Am-
sterdam/Utrecht. However, when applying the city-specific accel-
erometry-to-count conversion algorithms (Fig. S1), the overall agree-
ment on physical activity was 89.9% (87.9–91.5) and the agreement in
Basel improved from 48.2 (39.6–56.1) to 78.0 (70.7–83.7) (Fig. S2).

3.4. Participants' exposure levels

Based on ExpoApp, participants spent a median of 2 h in-transit per
day; 25% performed ≥30min of moderate-to-vigorous physical activity
(≥ 3 METs) per day; and 24% spent ≥30min in green spaces per day.
Participants were exposed to a median of UFP concentration of
6.1×103 particles/cm3 and inhaled a median of 16.5×1010 UFP/day
(Table 3).

When comparing exposure to UFP according to participants' contact
with green spaces per city (Fig. 6), there were no differences regarding
UFP concentration. In contrast, there were significant differences re-
garding UFP inhaled dose. In addition, in the Netherlands, the differ-
ences in the inhaled dose of UFP were in the inverse direction to the rest

Table 1
Description of participants' demographic characteristics across study areas.

Demographic characteristics All
(n=158)

Basel
(n=48)

Norwich
(n=25)

Torino
(n=43)

Amsterdam/Utrecht
(n=42)

Age (years), mean (SD) 60.5 (6.5) 60.3 (8.5) 60.7 (4.4) 59.7 (4.6) 61.4 (6.7)
Sex, male, n (%) 91 (57.6) 23 (47.9) 11 (44.0) 22 (51.2) 35 (83.3)
Educational levela, high, n (%) 105 (66.5) 44 (91.7) 13 (52) 13 (30.2) 35 (83.3)
BMI (kg/m2), mean (SD) 25.2 (4.1) 24.8 (4.1) 26.6 (3.6) 25.1 (4.5) 25.1 (3.8)

BMI: Body Mass Index.
a The educational level was recorded at the time of inclusion in the study and classified as high or low (high: university education or higher; low: high school or

lower).

Table 2
Comparison of failure rate between ExpoApp and ActiGraph across study areas.

Study areas Monitor Failure rate (%) p-Value

Basel
(N° person-days= 137)

ActiGraph 20.5 0.389
ExpoApp 25.6

Norwich
(N° person-days= 74)

ActiGraph 12.2 0.015
ExpoApp 29.7

Torino
(N° person-days= 126)

ActiGraph 14.3 0.495
ExpoApp 18.3

Amsterdam/Utrecht
(N° person-days= 120)

ActiGraph 2.5 1
ExpoApp 3.3

We defined failure as having monitored individuals for< 10 h of the 24-hour
monitoring period.
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Fig. 3. Distribution of participants' median geo-location difference between the ExpoApp and GPS-tracker measurements. Dotted vertical line is 25m.

Fig. 4. Agreement between the ExpoApp and travel-activity diary time spent in microenvironments (Gwet agreement coefficient AC1 (95% CI)= 86.6%
(86.5–86.7)).
Sens: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: negative predictive value; ACC: Accuracy; F score: the harmonic mean between sensitivity and positive
predictive value. The agreement AC1 (95%CI) in each study area was: Basel= 88.4 (88.2–88.7); Norwich= 82.5 (82.1–82.9); Torino= 88.0 (87.8–88.2); and Amsterdam/
Utrecht= 85.3 (85.0–85.5).
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of the study areas, being the inhaled dose lower in those participants
with greater contact with green spaces (p-value < 0.001).

4. Discussion

We have presented a new flexible exposure assessment system - the
ExpoApp. In a real-world panel study conducted in five European cities,
we have proved the reliability of the system, the accuracy of the mea-
surements, and the usefulness of its exposure assessment. In our study,
we specifically showed ExpoApp flexibility to integrate UFP dose
(particles/day), inhalation rate and contact with green spaces using a
smartphone, research-grade portable monitors, free available maps, and
validated equations. The reliability of the system was comparable to
ActiGraph, the most commonly used accelerometer in physical activity
research. The accuracy of ExpoApp measurements in time spent in
microenvironments and intensity of physical activity was excellent.
ExpoApp allowed us to observe that participants with more contact
with green spaces had higher inhaled dose of UFP, except for the
Netherlands study area where the relationship was the inverse. These
differences may be attributed to differences on participants' behaviour
(e.g., physical activity) and characteristics rather than their exposure
level.

Reliability of the system and accuracy of geo-location and accel-
erometry measurements differed across cities. We suspect that these
differences were mainly due to human factors. The highest failure rate
was in Norwich and this is likely due to issues related to limited per-
sonnel involved in the fieldwork. The distance between geo-locations
taken at the same time with the GPS-tracker and ExpoApp was above

25m in 26% of measurements, especially in Torino. This could be ex-
plained by some intrinsic temporal error alignment in concomitant geo-
location (Donaire-Gonzalez et al., 2016), participants' failure to carry
both monitors as instructed, and distinctive city characteristics (Duncan
et al., 2013) (i.e. Torino is characterized by a high prevalence of street
canyons). However, it is worth mentioning that the differences in geo-
location accuracy did not affect the estimates of time spent in micro-
environments across cities. In Basel, the use of the general accel-
erometry-to-count conversion algorithm lead to an overestimation of
the physical activity level of individuals (METs) and the lowest agree-
ment with ActiGraph. This was due to a too tight fixation of the
smartphone to the belt. As it is shown in Fig. S1, participants from Basel
had smaller acceleration for the same intensity of physical activity than
the rest of participants from other study areas.

4.1. Comparison with previous studies

To the best of our knowledge, this is the first study that has devel-
oped and validated an integrated tool to assess multiple personal ex-
ternal exposures on a large scale. Therefore, ExpoApp can only be
compared against other research (i.e. CalFit) and commercially-avail-
able (e.g. Moves-App, Gyroscope, and Arc) smartphone applications
and wrist-worn monitors (e.g. Fitbit Surge, Apple Watch, and Microsoft
Band).

The CalFit application developed by the University of California,
Berkeley, records the measurements of satellite and network navigation
systems and accelerometer built-in smartphone (Seto et al., 2011).
CalFit also provides valid estimates of the time spent in each micro-
environment and physical activity of individuals, similar to ExpoApp
(Donaire-Gonzalez et al., 2016; Donaire-Gonzalez et al., 2013). How-
ever, ExpoApp shows a higher application reliability and lower battery
consumption than CalFit, as measured by the comparison of the failure
rates of ExpoApp (84/457 (18%)) and CalFit (11/36 (31%)) (Donaire-
Gonzalez et al., 2013). Moreover, ExpoApp records the measurements
of more sensors built-in the smartphone, like the barometer and screen
status (turn on/off), which are useful for indoor/outdoor differentiation
and phone use, respectively, and facilitates the interconnectivity with
on-body and near-body sensors. Finally, the ExpoApp maximizes the
data safety of participants using asymmetric encryption (128 bits) for
the measurements and backing-up them into the ExpoApp Server using
a secure shell protocol.

The smartphone applications (Moves-App, Gyroscope, and Arc)
continuously monitor geo-location while individuals carry their phones
as usual (i.e. not attached in a belt). These applications identify the
microenvironments and the travel modes of individuals. From a re-
search point of view, they are very appealing tools because they are free
and, unlike ExpoApp, work on all smartphones operating systems (iOS
and Android). However, to date, the validity of their microenviron-
mental and travel mode estimates are still untested. These smartphone-
based applications also count the steps of individuals, but the accuracy
of the steps counts for Moves-app has been found to be low (Case et al.,

Fig. 5. Comparison of person-day physical activity intensity measures (ex-
pressed in Metabolic Equivalent Task, METs) between ExpoApp and ActiGraph.
The agreement CCC (95%CI) in each study area was: Basel= 48.2 (39.6–56.1);
Norwich= 85.2 (75.9–91.1); Torino= 90.1 (86.2–92.9); and Amsterdam/
Utrecht= 91.6 (88.4–93.9).

Table 3
Description of participants' exposure across study areas.

ExpoApp measures All
(n=151)

Basel
(n=45)

Norwich
(n=25)

Torino
(n=40)

Amsterdam/Utrecht
(n=41)

Time in transit (hours), median (IQR) 2.1 (2.0) 2.8 (2.5) 2.1 (1.8) 2.5 (3.2) 1.5 (1.3)
Physical activity (METs), median (IQR) 1.34 (0.16) 1.31 (0.19) 1.33 (0.11) 1.35 (0.15) 1.35 (0.16)
Moderate-to-vigorous physical activitya, ≥30min, n (%) 37 (25) 10 (22) 6 (24) 6 (15) 15 (37)
Inhalation rate (L/min), median (IQR) 8.65 (2.21) 8.50 (2.17) 9.44 (2.15) 8.62 (2.46) 8.69 (2.14)
Ultra-fine particle concentration (particles ×103/cm3), median (IQR) 6.1 (3.6) 5.6 (2.9) 5 (2.2) 9.5 (3.3) 5.6 (2.7)
Inhaled ultra-fine particles, (particles ×1010/day), median (IQR) 16.5 (11.5) 12.6 (10.2) 17.8 (15.2) 19.2 (12.6) 16.1 (9.8)
Time in green spaces, ≥30min, n (%) 36 (24) 5 (11) 1 (4) 7 (18) 23 (56)

IQR: interquartile range.
a Moderate-to-vigorous physical activity (≥3 METs).
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2015; Kooiman et al., 2015), possibly because of the lack of control on
the way the smartphone is worn. In addition, these applications lack the
interconnectivity with other sources of information (i.e. DiSCmini and
OpenStreetMap), which limits their use for environmental studies.

The wrist-worn monitors like those manufactured by Fitbit, Apple or
Microsoft are easy to wear, and provide valid real-time estimates of
individual's heart rate (Shcherbina et al., 2017). Some of these monitors
also incorporate GPS receptors or use smartphone to geo-localize these
measurements. However, in comparison with ExpoApp, these monitors
have several limitations. Their use is not as widespread as mobile
phones, which it is a challenge to get representative samples. The
battery life of these commercially-available monitors ranges from hours
to weeks depending on the use. According to the company data sheets,
the battery life of the Fitbit Surge 2, Apple Watch Series 4, and Mi-
crosoft Band 3 enabling GPS-tracking is 10, 6, and 4 h, respectively.
Meanwhile, the battery life of ExpoApp with the current configuration
is 18 h. Accessibility to the recorded data could be problematic because
in some cases it would require the development of a specific software to
have access to the time-resolved measurements (Shcherbina et al.,
2017). Finally, but not least important, the confidentiality of the per-
sonal measurements is compromised because of the weak existing
privacy laws (Board, 2014) and the ambiguous explanation provided in
the privacy policy of the enterprises about the use of personal data and
the impossibility to prevent this use. Despite the abovementioned lim-
itations of these manufactured monitors, if researchers wish to include
them in the exposure assessment, as long as the monitors allow the
access to its time-resolved measurements, ExpoApp can interact with
them through Bluetooth 4.0 protocols.

4.2. Data privacy

In ExpoApp system, the privacy of participants' data is ensured by
the encrypting of data in the phone, transferring them to the server
using a secure shell protocol, processing them at the server without
using any third party interfaces, like Google API, and therefore allowing
access to the data only to researchers (Ateknea Solutions has no access),

and removing them from the server whenever the study finishes.
Moreover, Ateknea privacy policy (see Supporting information) ensures
that data will be only accessible to Ateknea after a researcher's request
and only with the aim to solve any technical problems produced during
the backing-up, post-processing, integration, visualization or interac-
tion.

4.3. Strengths and limitations

ExpoApp measurement transparency is ensured by providing re-
searchers access to the raw and post-processed measurements, as well
as the post-processing algorithms. Results therefore can be replicated
and improved continuously by researchers, which may allow ExpoApp
eventually to include these improvements on the system. Moreover, the
currently available algorithms in ExpoApp have been developed using
as ‘gold standard’ the available research-grade monitors in order to
achieve the maximum accuracy on their estimates, which is not a
common approach for mHealth applications (Kumar et al., 2013). An-
other strength of the study is the relatively large sample of individuals
from five different cities monitored while engaged in their daily life
activities, which maximizes the external validity of the present results.

However, further work is needed, particularly to systematize the
way of carrying the smartphone, and thus achieve unattended, remote
and reliable assessments, which are essential for large epidemiological
studies. The system reliability and measurement accuracy depends on
deployment factors, as demonstrated by the high failure rate observed
in Norwich and physical activity results in Basel. Currently, ExpoApp
Mobile is only available for Android platforms, which prevents per-
forming systematic deployments among a representative sample of
participants. The accelerometry-to-count conversion algorithm depends
on the type of accelerometer built-in the smartphone, which implies
that there is still a need to develop specific conversion algorithms for
most smartphones. The smartphone needs to be worn on the waist at-
tached to a belt in order to ensure the validity of the accelerometry-to-
count conversion, which could be burdensome for long monitoring
assessments. Wearable physical activity monitors could be integrated

Fig. 6. Study area comparison of exposure to ultrafine particles (concentration and inhaled dose) according to participants' contact with green spaces (Kruskal-Wallis
Test).

D. Donaire-Gonzalez, et al. Environment International 126 (2019) 494–503

501



into the ExpoApp system to improve physical activity assessment. This
would allow participants to carry the smartphone anywhere, while
maintaining the benefits of the more complete geo-location tracking
provided by smartphones over commercial GPS-trackers (Donaire-
Gonzalez et al., 2016). The current physical activity algorithm does not
take advantage of some geographical information (e.g. the slope of the
terrain and/or microenvironments) to improve its estimates for some
behaviours like cycling (Maddison & Ni Mhurchu, 2009). The travel-
activity algorithm does not use the barometric and accelerometry in-
formation to improve the detection of the transition between indoor
and outdoor environments. ExpoApp does not have an algorithm to
automatically detect the travel mode used by participants and the in-
teraction with the free available environmental maps needs to be de-
veloped further, allowing researchers to obtain more environmental
attributes from the geo-location such as surrounding facilities (e.g.
proximity to restaurants, which could be a major source of UFP con-
centration).

4.4. Applicability

ExpoApp system, thanks to its flexibility to integrate other mea-
surements, its reliability (i.e. low failure rate), and the accuracy of its
measurements, together with the current widespread use of smartphone
technology worldwide, it is a feasible tool for population-based studies.
In addition, the ability of ExpoApp to contextualize individuals' phy-
sical activity, as well as to characterize day-to-day mobility patterns,
makes easier to disentangle the interrelationships between these ex-
posures and individuals' health and well-being. The system can also be
useful for behavioural interventional studies, such as, cardiovascular or
respiratory interventions, revealing whether participants are fulfilling
the intervention recommendations (e.g. volume of physical activity in
green spaces).

On the other hand, the ability of ExpoApp system to integrate geo-
location with other personal measurements (objective or self-reported)
makes it a useful system to study different sources of exposure, quantify
exposure levels and estimate the inhaled dose of air pollution.
Moreover, the rapid development of low-cost personal monitors will
help to scale up the sample size of these studies, making the inclusion/
use of these third-party measurements more appealing for researchers
(U.S. Environmental Protection Agency, n.d.; South Coast Air Quality
Management District, n.d.; Spinelle et al., 2017).

Finally, because of the available environmental maps and geo-
graphic data, such as high-resolution air pollution maps (Apte et al.,
2017; de Hoogh et al., 2016) and Normalized Difference Vegetation
Index (NDVI) maps (Weier & Herring, n.d.), researchers can change the
exposure modelling paradigm from static to dynamic, by taking into
account environment, location, and activity of individuals every minute
(Nieuwenhuijsen et al., 2014; de Nazelle et al., 2013; Lane et al., 2015).
This exposure modelling together with the ease of deployment of Ex-
poApp (downloadable remotely and automatic remote data storage)
makes this approach a feasible next step for environmental epidemio-
logical studies focusing on environmental exposure and risk assessment.
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