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TUTORIAL

A Comprehensive Framework for Physiologically-Based 
Pharmacokinetic Modeling in Matlab

Felix Stader1,2,3,*, Melissa A. Penny2,3, Marco Siccardi4 and Catia Marzolini1,3

Physiologically-based pharmacokinetic (PBPK) models are useful tools to predict clinical scenarios for special populations 
for whom there are high hurdles to conduct clinical trials such as children or the elderly. However, the coding of a PBPK model 
in a mathematical programming language can be challenging. This tutorial illustrates how to build a whole-body PBPK model 
in Matlab to answer specific pharmacological questions involving drug disposition and magnitudes of drug–drug interactions 
in different patient populations.

BACKGROUND

Physiologically-based pharmacokinetic (PBPK) models 
have been applied with significant impact during drug de-
velopment and postmarketing phases and have achieved 
regulatory acceptance1 as shown by the recent guidelines 
of the US Food and Drug Administration2 and the European 
Medicines Agency.3 PBPK models are useful for the predic-
tion of drug–drug interaction (DDI) magnitudes4 and drug 
disposition in special populations such as pediatrics,5 preg-
nant and breastfeeding women,6,7 and patients with liver cir-
rhosis8 or renal impairment,9 for all of whom there are high 
hurdles to design and conduct clinical trials. In addition, 
PBPK models have been successfully applied to simulate 
different routes of administration10 and for the design of 
novel formulations.

A PBPK model describes the absorption, distribution, 
metabolism, and elimination of a drug in a physiologically 
relevant compartmental structure, where each compartment 
represents an organ or tissue.11 The organs and tissues are 
connected via arteries and veins, which themselves merge 
in the lung. Dynamic drug movement through regional blood 
flows to the different organs and tissues is described by or-
dinary differential equations (ODEs). Tissue distribution can 
be predicted by a PBPK model that is of high relevance to 
most drugs because the drug targets are usually in specific 
populations of cells in an organ or tissue. The distribution 
into a compartment can either be limited by perfusion (well-
stirred models) or by the cell membrane (permeability-limited 
models).12

An important characteristic of the PBPK modeling ap-
proach is the separation of system data (where the term sys-
tem  refers to the population of interest) from drug metabolism 
and pharmacokinetic data and the trial design.12 System 
data contain all relevant information to build a population 
of virtual individuals such as demographics, organ weights, 
and regional blood flows. It is of tremendous importance 

that the system data used to parameterize the PBPK system 
components reflects the “true” (meaning observed) popu-
lation to produce reliable predictions.13 The incorporated 
physiological, biochemical, and genetic variability of system 
parameters allows the identification of certain subpopula-
tions with high risks for DDIs (e.g., poor metabolizers for the 
enzyme cytochrome P450 (CYP) 2D6), where clinical data 
are often lacking.14  However, variability is often underesti-
mated in PBPK models because of missing parameters or 
processes involved with physiological changes caused by 
diseases or specific patient characteristics, all of which add 
uncertainty and variability.15

Drug metabolism and pharmacokinetic data describe 
the information related to physicochemical properties (e.g., 
molecular weight), absorption (e.g., intestinal permeability), 
distribution (e.g., binding to plasma proteins), metabolism 
(e.g., kinetic parameters for an enzyme), and excretion (e.g., 
renal clearance).16 Usually drug characteristics, such as the 
intrinsic clearance of an enzyme, are quantified through 
laboratory-based experiments that are then scaled to the in 
vivo  clearance under the consideration of system parame-
ters such as the enzyme abundance in the liver per gram 
protein, the protein content per gram liver, the liver weight, 
and the hepatic blood flow.17 By considering variability in 
these system parameters, it is possible to obtain reliable 
population predictions of drug clearance.14 System and 
drug data can be combined in the trial design component, 
considering parameters such as dose, dosing regimen, 
route of administration, number of individuals, and duration 
of administration to simulate clinical scenarios of interest.

Several commercial PBPK software platforms, such as 
SimCYP,18 PK-Sim,19 and GastroPlus20 simplify the model 
management for unexperienced modelers and are based 
on structural PBPK models. However, they are limited in 
flexibility to simulate specific pharmacological questions. In 
this tutorial, a general framework on how to build a whole-
body PBPK model in Matlab (MathWorks, Natick, MA) is 
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described for scientists and users with interest in mathe-
matical modeling and its application in pharmacology. The 
general development can also be adapted in other program-
ming languages such as R or other Matlab packages such 
as Simbiology.

FIVE STEPS TO BUILD A PBPK MODEL IN MATLAB

Matlab offers a powerful mathematical programming lan-
guage with matrix-based operations (https://uk.mathworks.
com/products/matlab.html). The basic principles of Matlab 
are extensively described in the documentation by MathWorks 
(https://uk.mathworks.com/help/matlab/index.html). This tu-
torial illustrates the different steps necessary to build a PBPK 
model to simulate specific clinical scenarios with examples 
of pseudo code separated by lines from the main text. The 
entire code and tables listing the abbreviation and units for 
all used parameters can be found in the supplement (Tables 
S1 and S2). The Statistic and Machine Learning Toolbox is 
a required Add-On to the Matlab suite to execute the code.

A “building block” system is used for separating system, 
drug, and trial design data to inform the PBPK model.12 The 
advantages are that each block can be used for a different pur-
pose (e.g., the generated population could be used in a different 
model), and each block can be exchanged (e.g., aging white 
population vs. pediatric population21). Each building block 
described in this tutorial is a Matlab function. Matlab requires 
one script indicating the order in which the functions should be 
executed, which in this tutorial is called the main function. 

%Main function: Calls each function of a 
PBPK model 
 
Define the model structure and the model 
parameters 
Generation of the virtual population 
Load the drug files and perform the in vitro 
to in vivo extrapolation 
solve the ordinary differential equations  
 (ODEs) 
process the data from the ODE solution and 
output the results

The variables used in different functions in Matlab need 
either to be passed onto the next function or to be defined 
as globals using the “global” command. However, it is good 
practice to scope variables as local if they are only used 
within a specific script.

Step 1: Define the parameters of the model
The modeling process is started by defining the objective 
and the purpose of the model, identifying the pharmacologi-
cal scenario to be simulated. The model structure proposed 
can vary based on the overall purpose of the simulations, 
and a representative compartmental model is shown in 
Figure  1.22 As an example, it would be of scientific in-
terest to simulate clinical scenarios in aging HIV-infected 
patients because clinical data of antiretroviral drug disposi-
tion and DDI magnitudes between antiretroviral agents and 

comedications are currently lacking. When simulating anti-
HIV therapy, drug penetration into viral reservoirs, such as 
the testis and the brain,23 and into the lymphatic system 
being the target site for antiretroviral drugs can represent a 
relevant pharmacokinetic factor. The flexible computational 
structure supports the inclusion of the lymphatic system, 
dividing each compartment into the vascular, interstitial, 
and intracellular spaces (Figure  2) with lymph fluid flowing 
from the interstitial space of each organ to a central lymph-
node compartment and further to the venous blood pool. 
Organs not being simulated are lumped into a remaining 
organ compartment.13 In our example, the model is used to 
simulate the effect of the CYP3A4 inhibitor ritonavir, used as 
a pharmacokinetic enhancer to boost the concentrations of 
coadministered HIV protease inhibitors such as darunavir, 
on the disposition of the anticoagulant rivaroxaban being 
metabolized by CYP3A4 in aging white subjects.

First, the model structure and model variables, includ-
ing populations, compartments, drugs, and routes of 
administration are defined by a number because Matlab is 
a numerical software tool. The number assigned to each 
variable (e.g., drugs) refers to the column in each matrix 
containing specific data (e.g., if darunavir is defined by a 
one, the data of darunavir would be in the first column; 
Figure  3). Each variable is also defined by a string defining 
its name for the outputs.

After defining all necessary variables of the model, the 
target population and the drugs to be used in a specific sim-
ulation need to be entered. The virtual trial design can be 
described by first indicating the number of virtual individuals 
in the simulation. The appropriate number of individuals de-
pends on the variability of system data involved to describe 
the pharmacokinetics of the simulated drug (e.g., enzymatic 
vs.  total clearance) and the number of patients included in 
clinical trials to verify the model. To come to the “true” pop-
ulation mean for most anatomical, physiological, and bio-
logical parameters, a sample size of at least 100 individuals 
is recommended. Of note, for system parameters with high 
variability, such as enzyme and transporter abundance, a 
virtual population containing 500 individuals might be more 
appropriate.24 Therefore, if observed clinical data are avail-
able for six patients, it is recommended to run 20 trials times 
six patients, resulting in 120 virtual individuals. The split into 
different trials allows the comparison of the mean predicted 
concentration of each trial with the mean observed data. The 
mean observed is used because often observed concentra-
tion from individuals are not published or available. Observed 
data from six individuals may not be representative of the 
whole patient population taking the drug of interest; thus, it 
is important to recognize that the mean prediction obtained 
might be different and far from the mean of the six observed 
subjects, but it might be close to the “true” population of 
patients. Therefore, if the observed data from six subjects fit 
the prediction of one trial, even when its prediction should 
be on the upper or lower end of all simulations, this is still 
considered to be a “successful” outcome.

Next the proportion of men and women in the simulated 
population and the age range of the virtual individuals can 
be specified. In addition, the resolution of each simulated 
time unit needs to be given for the outputs.
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Once the individual characteristics are described, the 
dosing regimen for each drug can be defined, indicating the 
route of administration, the number of doses (1 for a single 
dose and n  for multiple doses), the dose, and the dosing in-
terval. After entering the trial design, a dose event matrix can 
be set up to allow the simultaneous simulations of darunavir, 

ritonavir, and rivaroxaban alone and in combination to in-
vestigate DDIs. The matrix contains five columns with the 
start and the end time of each dose, the dose, the route 
of administration, and the resolution for each dosing event. 
Only unique start and end times for each dosing event are 
needed, which need to be extracted.

Figure  1  Schematic illustration of the five steps to build a physiologically-based pharmacokinetic model. 

Figure  2  Structure of an organ in the model. J in, flux into the cell; J ine, flux from the interstitial to the vascular space; J out, flux out of 
the cell; J vas, flux from the vascular to the interstitial space; L org, regional lymph flow; Q org, regional blood flow. 
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The code to define the model parameters and choose the 
simulation settings is given by: 

function[] = DefineParameters()

%This function defines the population, 
model structure (PBPK compartments),
%the drugs, the virtual trial design and 
the simulation settings to be used

%=========================================
==============

Define the populations saved on the hard 
drive by a number and a string

Define the compartments of the model by a 
number and a string
Define enzymes for the dynamic abundance 
calculation in case of DDIs by a number and 
a string
Define the number of subcompartments

Define the drugs saved on the hard drive by 
a number and a string
Define plasma-binding proteins by a number 
and a string

Define the route of administration by a 
number and a string

%=========================================
==============

User sets the population to be simulated (if 
more than one is saved on the hard drive)

User sets the number of drugs to be simulated
Initialize drug name

Define a case for each simulated drug
       �define a drug name for each drug to 

be simulated
end

Define the number of trials
Define the number of virtual individuals 
per trial
Calculate the number of all virtual 
individuals to be simulated

Ask the user for the proportion of women in 
the virtual population
Ask the user for the minimal and maximal age 
of the virtual population to be simulated

Ask the user for the resolution of each 
time step

Initialize the route of administration, 
the number of doses, the dose, the dose 
interval, the start timepoint for the 
dose, and the prolongation of the terminal 
elimination phase. 

Define a case for each drug to be simulated
       �Define the route of administration 

to be an iv bolus or oral
       �Define the number of doses and dose 

given in mg
       �Define the dose interval in h
       �Set a start time for the drug to be 

administered in h
       �Set the prolongation for the 

terminal elimination phase in h
end

%=========================================
==============

Define the name of the columns for the dose 
event matrix
Calculate the number of columns of the dose 
event matrix

Initialize a matrix containing the regimen 
for each drug
Define a case for each drug
       �Define a case for each dose being 

administered
          �Calculate the start time for the 

first dosing event
          �Calculate the end time for the 

first dosing event                        

          �Calculate the start time for all 
dosing events

Figure  3  Example of the organization of drug parameters with 
variability. Each row contains data for an individual, and each 
column contains data for a drug. Parameter clues are illustrative 
only. IndNo, number of virtual individuals. DrugNo, number of drugs.
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          �Calculate the end time for all 
dosing events

          �Consider the prolongation of the 
terminal elimination phase

       end
end

Define a case for each drug
       �sort the regimen matrix based on the 

start time of each drug
       delete zero values
end

Define a case for each drug
       �combine the dosing regimens for 

different drugs
       �use a function to find unique dosing 

events for each drug
           �set dose, route of 

administration, and resolution 
for the other drugs to be zero

           �sort the matrix according to the 
start time

           �find unique start times
           �output the dose event matrix for 

each drug based on the unique 
start times

       end
end

Calculate the number of events
Put together the dose event matrix

end

Step 2: Generation of the population
A repository summarizing the anatomical, physiological, 
and biological system parameters required to inform a 
PBPK model has been recently published.13 The described 
continuous, age-dependent equations and the variabil-
ity for each system parameter can be directly entered in 
Matlab:

function[] = Population()

%This function generates the virtual 
population based on the user settings
%Attention: the normrnd command needs the 
Statistics and Machine Learning Toolbox

Calculate age from a Weibull distribution 
for each virtual individual
    �while age of an individual is smaller 

or larger than the minimal or maximal 
user-defined age

        �Resample age from the Weibull 
distribution

   end
end

Calculate number of virtual female 
individuals
Assign randomly a zero (defined as “male”) 
or one (defined as “female”) to each virtual 
subject

Calculate system parameters as described in 
ref: [13]
Add random variability to the system 
parameters by using a normal described
     
end

Step 3: Calculation of the required drug parameters
In the next step, the user-defined drug file is loaded from 
the library containing all developed drug files. The string 
defining the drug (e.g., “darunavir”) is converted to the func-
tion in the drug library to load the drug-dependent data to 
inform the PBPK model (Figure  4):

function[] = Drug()

%This function loads the relevant drug files 
from the drug library and
%performs the in vitro-to-in vivo 
extrapolation

Define a case for each drug
       �load the Matlab file containing the 

drug parameter by converting the 
string defining the…

       �drug to the function in the drug 
library

end

end

Drug parameters incorporated in a drug file are shown in 
Table  1. The measured drug properties included in the drug 
file can be derived through experimental in vitro  methods and 
integrated into specific equations for drug absorption, distri-
bution, and elimination as described in the following sections.

Absorption. The compartmental absorption and transit model 
proposed by Yu and Amidon25 about 20 years ago is used 
as a basis. The assumptions of the original compartmental 
absorption and transit model are the following:

1.	 The drug is immediately dissolved
2.	 Absorption occurs primarily in the small intestine and 

not in the stomach or the colon
3.	 Transit time and radii are similar for each 

compartment
4.	 Intestinal metabolism is negligible
5.	 Only passive diffusion occurs through the gut wall
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It can be assumed that assumption 1 holds true for 
antiretroviral drugs because they are often given as an 
immediate-release tablet. Formulation and dissolution play 
a crucial role when simulating capsules or delayed-release 
tablets, and more complex absorption models can be built 
into the model as previously described.26,27 The compart-
mental absorption and transit model consists of five dif-
ferent compartments, namely, the stomach, duodenum, 
jejunum, ileum, and colon. The stomach serves as an entry 
compartment for the orally administered drug. It is assumed 
that the drug can only move further to the duodenum and 
no absorption or other processes occur in the stomach. 
Movement between different compartments representing 
the intestine can be described by first-order rate constants 
calculated from the gastric emptying and the intestinal tran-
sit time.25 

Permeability into enterocytes and further into the sys-
temic circulation can be mediated by passive or active 
processes. Drug transporters are present on the apical and 
basolateral site of the small intestine.28 An established ex-
perimental model such as human epithelial colorectal ad-
enocarcinoma cells seeded as a monolayer can be used 
to measure the apparent permeability (P app) in vitro  and 
depending on the experimental conditions, the measured 
flux into the cell can be the sum of passive and active. The 
measured P app can be converted to the effective permea-
bility in man (P eff,man) describing the flux of the drug from 
the lumen into the enterocytes in humans29 as follows:

where P app is in 10−6 cm/s and P eff,man is in 10−4 cm/s. P eff,man 
needs to be multiplied by the available enterocyte surface 
for drug absorption (permability surface area PSA) to arrive 
at the absorption clearance (CLab) (please note that the flux 
between two compartments can be written as a clearance), 
namely:

where CLab is in L/h. The PSA can be calculated by assum-
ing that the gut has a cylindric shape, namely:

where r  is the radius of each intestinal segment in centime-
ters, Le  is the length of each intestinal segment in centime-
ters, and F villi is a fold expansion factor for the villi surface 
area. The length and the expansion factors for the different 
gastrointestinal segments has been extensively described 
previously.30,31 Drugs penetrate through the intestinal wall 
mainly by the transcellular pathway because of the tight 
junctions between enterocytes. Paracellular transport is 
only possible for drugs with a molecular weight <300 Da 
being positively charged and with an octanol-water parti-
tion coefficient (logP ) > 0.32

(1)Peff,man=100.6795∗log(Papp)−0.3355,

(2)CLab=Peff,man ∗PSA∗0.001∗3,600

(3)PSA=2∗π∗ r ∗Le∗FVilli

Figure  4  Steps from the user-defined drug to be simulated to the drug parameter that are loaded to inform the physiologically-based 
pharmacokinetic model.
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To estimate the concentration in the enterocyte, the vol-
ume of the enterocytic cell layer needs to be determined. A 
jejunal biopsy was undertaken in 11 healthy controls (five 
women) aged younger than 30 years, and 3,040 enterocytes 
were found in the sample. The volume of one enterocyte is 
770 μm3, calculated as a cylinder from the measured height 
and radius.33 The surface of the small intestine can be cal-
culated by assuming a cylindric shape and the radius and 
length of 2.25 cm and 280/260 cm for an average male/fe-
male subject, respectively.31 The resulting surface area of 
the small intestine is 3,958/3,676 cm2. Scaling the number 
of enterocytes from the biopsy sample to the entire small 
intestine leads to 1.20 × 1011/1.12 × 1011 cells. The total 
volume of all enterocytes in the small intestine is therefore 
0.093/0.086 L.

The drug distributes further from the enterocytes to the 
interstitial space and could move further either via the sys-
temic or the lymphatic circulation. The potential strategies 
for antiretroviral drugs include manipulating the formula-
tion in such a way so that more drug gains access into the 
lymphatic system because (i) it is the relevant target site, 
(ii) there will be no first-pass metabolism, and (iii) the drug 
stays longer in the body because intestinal lymph flow is 
about 600-fold slower than intestinal blood flow.31,34 To 
move preferentially into the lymph circulation rather than 
into the systemic circulation, a drug needs to be highly 
lipophilic and positively charged and should have a high 
molecular weight.35 However, there are no quantitative 
relationships in the literature. A manual restriction factor 
can be implemented into the model defining a proportion 
of the drug going via the lymphatic system to test new 
formulations. The rest of the drug will distribute via 
systemic circulation. 

Distribution—passive and active pathways. The prediction of 
tissue distribution is important in a PBPK model. Intracellular 
concentrations cannot be easily obtained, particularly in 
humans, but most drug targets are in cells. In addition, 
metabolism occurs in hepatocytes and enterocytes, and 
therefore intracellular concentration is important to predict 
metabolism and DDI magnitudes adequately. Several 
models are described in the literature to predict distribution 
into tissue.36–41 Poulin and Theil36,37 assume homogenous 
distribution in a tissue, which does not hold true if the cell 
membrane is a tight barrier. Therefore, the approach of 
Rodgers et  al .38 and Rodgers and Rowland39,40 is used in 
this model. In contrast to Poulin and Theil, Rodgers et  al . 
consider binding to different constituents of the cell, such 
as lipids and proteins. 

Calculation of partition coefficients. Mono protic- and 
diprotic basic drugs with an acid dissociation constant > 7 
interact preferentially with acidic phospholipids in the tissue 
through electrostatic interactions. Binding to extracellular 
proteins may not play an important role because basic 
drugs preferentially bind to alpha-acidic glycoprotein, 
which is mostly restricted to plasma. Therefore, an affinity 
constant for acidic phospholipids (KaAP) is calculated for 
red blood cells. The partition coefficient for the unbound 
drug into red blood cells can be calculated from the 
blood-to-plasma (BP) ratio, which itself can be measured 
in vitro . It is assumed that KaAP is similar for all tissues. 
Generally, the tissue partition coefficient of the unbound 
drug (Kpu) for muscle should be preferred as there is a 
good correlation between distribution into muscle and 
distribution into other tissues. The unbound drug partition 
coefficient for erythrocytes is given by ref. 38:

where C =  concentration, fu = fraction unbound in plasma, 
HCT = hematocrit, PL = plasma, and RBC = red blood cells. 
The affinity constant for acidic phospholipids is given by ref. 
38: 

(4)KpuRBC=
CRBC

CPL ∗ fuPL
=

BP∗HCT+ (1−HCT)

fuPL

Table  1  Parameters required for a drug file to inform the 
physiologically-based pharmacokinetic model

Parameter Typical units Explanation

Physicochemical properties

 MW g/mol Molecular weight

 logP  – Octanol-water partition 
coefficient

 Compound 
type

– Important property to predict 
tissue distribution 
according to Rodgers and 
Rowland

 pKa – Acid dissociation constant

 BP – Blood-to-plasma ratio

 fuPL – Fraction unbound in plasma

Absorption

 P app ×10−6 cm/s Apparent permeability

Distribution

 Kp scalar – Scalar to alter predicted 
partition coefficient

Elimination

 V max/K m or 
CLint

pmol/minute/pmol 
enzyme/μM or 
μmol/minute/mg 
protein

Kinetic parameters per 
enzyme and metabolic 
pathway

 CLr L/h Renal clearance

 CLad L/h Additional plasma clearance

Transporter

 CLpd μL/minute/Mio 
cells

Passive diffusion flux

 V max/K m or 
CLint

pmol/minute/pmol 
transporter/μM or 
μmol/minute/Mio 
cells

Kinetic parameters for 
transporters

Interactions

 K i μM Inhibition constant for 
competitive inhibition

 K app μM Apparent enzyme inhibition 
constant for mechanism-
based inhibition

 k inact 1/h Maximum inactivation rate 
constant

 IndMax – Maximum fold of induction

 IC50 μM Half maximum inhibitory 
concentration

 21638306, 2019, 7, D
ow

nloaded from
 https://ascpt.onlinelibrary.w

iley.com
/doi/10.1002/psp4.12399 by U

niversitaetsbibliothek B
asel, W

iley O
nline L

ibrary on [07/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



451

www.psp-journal.com

Framework for PBPK modelling in Matlab
Stader et al.

where K io = ionized form according to Henderson-
Hasselbalch,39 f IW = fraction of intracellular water, f EW = frac-
tion of extracellular water, f NL = fraction of neutral lipids, f NP 
= fraction of neutral phospholipids, and AP  = acidic phos-
pholipids. The subscript org represents organ. For the parti-
tioning into the adipose tissue, it is more accurate to use the 
vegetable oil:water partition coefficient (logD vo:w) rather than 
logP , namely36: 

Binding to extracellular albumin should be considered for 
drugs that are not moderate to strong bases thus requiring 
the determination of the affinity constant for binding proteins 
(KaPR). The calculation is done for plasma because albumin 
concentration in plasma is known, and the unbound fraction 
in plasma  can be determined in in vitro  experiments. It is 
assumed that KaPRPL holds true for all tissues,39 namely:

where PRPL is the binding protein concentration in plasma 
in g/L. The unbound drug partition coefficient is given by 
ref. 39:

where KpPRorg is the partition coefficient of plasma-binding 
proteins in different organs.

The apparent volume of distribution in steady state (V ss) 
can be calculated as follows40: 

where V  is the volume and Kp is the total tissue partition 
coefficient, which is defined as38: 

A Kp scalar can be introduced to the model, which multi-
plies the predicted Kp

and can be used to correct for insufficient tissue partition 
prediction. One such example is the extensive lysosomal 
trapping or binding to intracellular constituents such as DNA 
(e.g., doxorubicin).38

When splitting every compartment of the PBPK model 
into the subcompartment vascular, interstitial, and intracel-
lular spaces, the distribution through the endothelial cell 
layer and through the cell membrane are required to inform 
the PBPK model. The endothelial cell layer is not a tight bar-
rier for small molecule drugs, thus it can be assumed that 
the extracellular water is almost instantaneously in equi-
librium. Under physiological conditions, blood comes with 
high pressure into the capillaries, and its content is pushed 
against the endothelial cell layer and through the small and 
large pores into the interstitial space.42 There is a partial 
fluid loss, the lymph, which is recycled back to the venous 
blood pool via the lymph nodes. Erythrocytes cannot cross 
the endothelial cell layer, and hence the lymph is colorless.

The calculated Kp is used to estimate the flux through 
the cell membrane between the interstitial and the intracel-
lular spaces, when experimental data about cell membrane 
permeability are not available. It holds true that the concen-
tration in plasma equals the concentration in the vascular 
space, which is considered to belong to the blood, namely:

where the subscripts vas, ine, and cel represent vascular, 
interstitial and intracellular, respectively. Kp is determined 
in steady state and under steady-state conditions, the vas-
cular and interstitial space concentration differ by the drug 
concentration in erythrocytes, and the interstitial and intra-
cellular drug concentration differ by the fraction unbound 
and the flux through the membrane, namely:

Kp can only be described by the ratio of influx (J in) and efflux 
(J out) of the cell.

Fraction unbound in the interstitial and intracellular spaces. 
A critical parameter for the distribution of a drug is fu  in 
each compartment. Usually, fu is only measured in plasma 
samples, but the site of metabolism or efflux transporters 
is intracellular, making it necessary to know fucel. In a first 
step, the age dependency of fu is calculated for each 
virtual individual based on the measured fu in vitro  and the 
main binding protein. “Ref” refers to a 30-year-old adult 
who is arbitrarily used to represent a “young” subject. It is 
assumed that the binding affinity does not change with age, 
and therefore fu for plasma is given by ref. 9:

(5)

KaAPRBC=

[

KpuRBC−
((

Kio,RBC

Kio,PL

)

∗ fIW,RBC

)

−

(

logP∗fNL,RBC+(0.3∗logP+0.7)∗fNP,RBC
Kio,PL

)

]

∗

[

Kio,PL

[AP]RBC∗(Kio,RBC−1
)

]

(6)

Kpuorg =

(

Kio,IW∗fIW,org

Kio,PL

)

+ fEW,org+

(

KaAPRBC∗[AP]org∗(Kio,IW−1 )

Kio,PL

)

+

(

logP∗fNL,org+(0.3∗logP+0.7)∗fNP,org
Kio,PL

)

(7)logDvo:w = (1.115∗ logP−1.35)− log(Kio,PL)

(8)

KaPRPL=
[

1

fuPL

−1−

(

logP∗fNL,PL +(0.3∗logP+0.7)∗fNP,PL
Kio,PL

)]

∗
1

PRPL

(9)

Kpuorg=
(

Kio,IW∗fIW,org

Kio,PL

)

+ fEW,org+ (KaPRPL ∗KpPRorg ∗PRPL)

+

(

logP∗fNL,org+(0.3∗logP+0.7)∗fNP,org
Kio,PL

)

(10)Vss=
VPL

fuPL
+

∑

Vorg ∗Kporg

(11)Kp=
Corg

CPL

= fu∗Kpu.

(12)Kpused=Kp∗Kp scalar

(13)Kp=
Corg

CPL

=
Cine+Ccel

Cvas

=
Cine

Cvas

+
Ccel

Cvas

(14)Kp=
1

BP
+

Jin ∗ fuine

Jout ∗ fucel
.

(15)
fuPL=

1

1+PRPL ∗

( 1

fuRef
−1

PRPL,Ref

)
.
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In a second step, fu in the interstitial space of each organ 
is estimated based on the known partition coefficient for the 
plasma-binding proteins in each tissue.38 It is assumed that 
the binding affinity is the same as in plasma. Thus, fuine is 
calculated as follows: 

fucel is calculated according to Rodgers and Rowland,39 
namely: 

Active drug transporters. Drug transporters can theoretically 
be implemented into any compartment of the model 
to represent active distribution into cells, but absolute 
transporter abundance values to inform the PBPK model 
are only available for the liver.43 There are some important 
points to consider before implementing a transporter into 
a PBPK model. Each transporter has a direction, and its 
impact will depend on whether the transporter is expressed 
on the apical or basolateral site. Passive permeability can 
occur besides active transport for given compounds, and 
therefore it is important to define the contribution of each 
of these transport processes. The overall contribution of 
uptake transporter is likely to be negligible for compounds 
characterized by a high passive permeability. Conversely, 
efflux transporters will have a pronounced impact for 
compounds characterized by a slow passive diffusion. 
Importantly, uptake and efflux transporters are exposed 
to different drug concentrations and thus the unbound 
drug concentration in the interstitial and intracellular 
spaces should be used for uptake and efflux transporters, 
respectively.44 Transporter functionality can be described by 
Michaelis–Menten kinetics; however, V max,T/K m,T = CLu,int,T,

45 
where V max,T is the maximum transport rate, K m,T is the 
Michaelis–Menten constant for a transporter, and CLu,int,T is 
the intrinsic transport clearance of the unbound drug, only 
holds true if the unbound concentration is much smaller 
than K m (fu x C  ≪ K m). This is the case under physiological 
conditions in the cell but might not hold true for uptake 
transporters being exposed to the interstitial concentration. 
In addition, Michaelis–Menten assume one binding site 
per transporter, which is questionable, for instance, for 
the organic anion-transporting polypeptide 1B1.46 Active 
hepatic drug transporters can be described by ref. 45: 

where HPGL is the hepatocellularity, and AB is the abun-
dance. The subscripts T, tot, hep, up, eff, u, and e  stand for 

transporter, total, hepatic, uptake, efflux, uptake, and efflux 
transporter isoform, respectively. 

Metabolism and elimination. The following four different 
options are described to represent drug clearance in the 
model:

1.	 Enzymatic intrinsic clearance
2.	 Intrinsic hepatic clearance not assigned to a specific 

enzyme
3.	 Renal clearance
4.	 Additional plasma clearance

Enzymatic intrinsic clearance can be either repre-
sented as CLint,E or through V max,E and K m,E, where CLint,E 
is the intrinsic clearance, V max,E is the maximum metab-
olism rate for each enzyme, and K m,E is the Michaelis–
Menten constant for each enzyme. Different pathways 
can be implemented considering active metabolic path-
ways,47 namely: 

where MPPGL is the microsomal protein per gram liver. The 
subscript E stands for enzyme, i stands for the metabolic 
pathway, and j represents the enzyme isoform. 

The intrinsic hepatic clearance not assigned to a spe-
cific enzyme has the units μmol/minute/mg and is scaled 
via MPPGL and liver weight but not CYP abundance (which 
is not a problem for geriatric but would be for Japanese, 
pediatrics, etc.), namely: 

The well-stirred liver model is used to calculate the he-
patic clearance from the intrinsic clearance48 and is given by: 

where CLhep is the total hepatic clearance in L/h, Q LI is 
the hepatic blood flow, and fuBL is the fraction unbound in 
blood.

The renal clearance is scaled via the glomerular filtration 
rate (GFR) and ignores tubular secretion and active transport 

processes, which would require a more mechanistic PBPK 
model49 and is given by50:

(16)
fuine,org=

1

KpPRorg

fEW,org

∗

(

1

fuPL

−1
)

+1

.

(17)

fucel,org=
1

1+

[(

logP∗fNL,org+(0.3∗logP+0.7)∗fNP,org
Kio,PL

)

+KpPRorg ∗PRPL

]

.

(18)CLint,T ,tot,hep=

�

m
∑

u=1

��

Vmax,up,hep,u

Km,up,hep,u+Cine∗fuine

+CLint,up,hep,u

�

∗ABup,hep,u

�

−

m
∑

e=1

��

Vmax,ef,hep,e

Km,ef,hep,e+Ccel∗fucel

+CLint,ef,hep,e

�

∗ABef,hep,e

��

∗HPGL∗ liver weight

(19)

CLint,E,tot,hep

=

J
∑

j=1

�

I
∑

i=1

��

VmaxE,hep,j,i

KmE,hep,j,i

�

+CLint
E,hep,j,i

�

∗AB
E,hep,j

�

∗MPPGL∗ liver weight

(20)

CLint,E,tot,gut=

[

J
∑

j=1

(

I
∑

i=1

((

VmaxE,gut,j,i

KmE,gut,j,i

)

+CLint,E,gut,j,i ∗ABE,gut,j

)

)]

(21)
CLint,tot,hep=CLint,E,tot,hep+CLint,hep ∗MPPGL∗ liver weight.

(22)CLhep=
QLI ∗ fuBL ∗CLint,tot,LI

QLI+ fuBL ∗CLint,tot,LI
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where CLR is the renal clearance in L/h.
The fourth clearance option in the PBPK model is the ad-

ditional plasma clearance (CLad). This parameter is always 
used as a fixed value, not scaled to any population, but it 
offers the possibility to enter an in vivo  clearance value if 
clearance mechanism pathways are completely unknown. 
In cases when there are no measured in vitro  values for 
enzymatic kinetic parameters or CLint,tot,hep but the in vivo  
clearance and the different contributions of metabolism and 
elimination pathways are known, a retrograde calculation 
can be performed to inform the PBPK model.51

The total clearance can be written as follows: 

DDI. The PBPK framework allows simulation of competitive 
inhibition (whereby the inhibitor binds to the active site of 
the enzymes and blocks its activity), mechanism-based 
inhibition (whereby the inhibitor represses the transcription 
or translation of the metabolizing enzyme leading to a loss 
of enzyme concentration), and induction. The enzymatic 
intrinsic clearance (Eq.  19 for the liver and Eq. 20 for the 
gut) needs to be modified accordingly:52

where [Sub] represents the substrate concentration,  [Inh] is 
the concentration of the c th competitive inhibitor, Ki stands 
for the inhibition constant, ABt  is the time-dependent en-
zyme abundance, and the subscript x represents either the 
liver or the gut. In the case of mechanism-based inhibition or 
induction, the enzyme concentration changes with time. The 
basal state can be described by ref. 52:

where k deg represents the degradation rate. It holds that 
ABt(0) = AB. In the case of mechanism-based inhibition, Eq.  
26 changes as follows52:

where k inact and K app are the inactivation rate of an enzyme 
and the apparent enzyme inhibition constant of the m th 
mechanism-based inhibitor. In the case of induction, the 
syntheses rate changes as follows52:

where IndMax and IC50 are the maximum fold of induction 
and the half maximal inducer concentration of the i th in-
ducer. All DDI mechanisms are accounted for in Eq.  25.

Step 4: Bridge system and drug data—the ODE solver
After generating the population and drugs to inform the 
PBPK model, the ODEs are set up. ODEs are solved for each 
individual (ind) and each dose event (n ) by the build-in stiff 
ODE solver ode15s53 to ensure efficient running times of the 
code: 

function[] = Solve ODE()

%This function solves the ordinary 
differential equations

Convert variables from global to local

Calculate the number of ODE equations
Get the number of simulated timepoints
Get the number of simulated timepoints for 
each dosing event

Initialize a vector for the simulated 
timepoints
Initialize a matrix for the simulated 
concentration

Run the ODE system for each virtual 
individual separately
    �Set the initial concentration for the 

first / single dose

    �Run the ODE system for each dosing 
event separately

        �Set the initial concentration for 
multiple dosing events

        Solve the ODEs

        �Generate time steps for each 
dosing event with the user-defined 
resolution

        �Evaluate the solution from the ODE 
system for each given timepoint

        �Combine timepoints for each dosing 
event in the time vector

        �Combine concentrations for each 
dosing event

    end
end

end

The function defining the initial concentration C0 for single 
doses and M0 for multiple dosing events needs to consider 
the drug concentration in a compartment at the timepoint of 
the n th multiple dose and is given by: 

(23)
CLR=CLR,Ref ∗

GFR

GFRRef

∗
fu

fuRef
,

(24)CLtot=
QLI ∗ fuBL ∗CLint,tot,LI

QLI+ fuBL ∗CLint,tot,LI
+CLR+CLad.

(25)
J
�

j=1

⎛

⎜

⎜

⎜

⎝

I
�

i=1

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

VmaxE,x,j,i,
∗ [Sub]

KmE,x,j,i
∗

�

1+
∑C

c=1

[Inh]c
Kic

�

+ [Sub]

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

∗ABtE,x,j

⎞

⎟

⎟

⎟

⎠

(26)

dABtE

dt
=kdeg,E ∗ABE −kdeg,E ∗ABtE =kdeg,E ∗ (ABcyp−ABtcyp)

(27)

dABtE

dt
=kdeg,E ∗ABE

−

(

kdeg,E +

M
∑

m=1

kinact,E,m ∗ [Inh]m

Kapp,E,m+ [Inh]m

)

∗ABt
E

(28)

dABtE

dt
=kdeg,E ∗ABE

∗

(

1+

I
∑

i=1

IndMaxE,i ∗ [Inh]i

IC50,E,i+ [Inh]i

)

−kdeg,E ∗ABtE
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function C0 = Initialize _ C();
    �Set the initial concentration of each 

compartment to zero

    �Set the initial CYP abundance in the 
liver and intestine according to [54,55]

    �Define a case for each drug
        �switch the route of administration 

for each drug
            �in case the route of 

administration is an iv bolus
                �then venous blood 

concentration is the dose 
divided by the venous volume

            �in case the route of 
administration is oral

                �then stomach concentration 
is the dose divided by the 
stomach volume

         end
      end
end
function M0 = Initialize _ M(C0)
    if the first dose is administered
        then M0 has been defined by C0

    else
        �M0 is defined by the calculated 

concentration of the last dosing 
event

    Define a case for each drug
           �switch the route of administration 

for each drug
                �in case the route of 

administration is an iv 
bolus

                   �dose divided by the 
venous volume is added to 
the venous conc.

                �in case the route of 
administration is oral

                   �dose divided by the 
stomach volume is added 
to the stomach conc.

           end
      end
end

A relevant element is to define the right-hand site (rhs) 
of the differential equations to describe the drug movement 
from and to each compartment. The differential equations 
can be written as follows for the vascular, interstitial, and 
intracellular spaces of a generic compartment:

where Q  is the blood flow, L  is the lymph flow, J  is a flux, 
and the subscript ab represents the arterial blood pool. The 
Matlab function defining the rhs of the differential Eqs.  29–
31 is written in the following way: 

function dtdy = rhs(~, y)
         �initialize the output as a column 

vector containing only zeros
 
         �define subcompartments by a number
 
         �write the differential equations
end

Some organs require a more detailed differential equation 
than the generic equations described in Eqs.  29–31. Blood 
flows from the venous blood pool into the lungs and after 
being loaded with oxygen, the blood returns to the arterial 
blood pool. Therefore, the differential equation of the vascu-
lar space of the lungs is given by:

where CO is the cardiac output, and the subscripts LU 
and vb represent the lung and the venous blood pool, 
respectively.

In the kidney, the CLR should be considered. A mecha-
nistic kidney model including renal transporters is not de-
scribed in this tutorial.

where the subscript KI stands for the kidney.
In the liver, active drug transporters and hepatic metabo-

lism by enzymes are included and given by: 

(29)

dCvas,org

dt
=

1

Vvas,org

∗

[

Qorg ∗Cab− (Qorg−Lorg)

∗Cvas,org−Jvas,org ∗

(

Cvas,org

BP

)

+ Jine,org ∗Cine,org

]

,

(30)

dCine,org

dt
=

1

Vine,org

∗

[

Jvas,org ∗

(

Cvas,org

BP

)

−Jine,org ∗Cine,org−Lorg

∗Cine,org−Jin,org ∗Cine,org ∗ fuine,org+Jout,org

∗Ccel,org ∗ fucel,org

]

,

(31)

dCcel,org

dt
=

1

Vcel,org

∗

[

Jin,org ∗Cine,org ∗ fuine,org−Jout,org

∗Ccel,org ∗ fucel,org

]

(32)

dCvas,LU

dt
=

1

Vvas,LU

∗

[

CO∗Cvb− (CO−LLU)∗Cvas,LU−Jvas,LU

∗

(

Cvas,LU

BP

)

+Jine,LU ∗Cine,LU

]

(33)

dCvas,KI

dt
=

1

Vvas,KI

∗

[

QKI ∗Cab− (QKI−LKI)∗Cvas,KI−Jvas,KI

∗

(

Cvas,KI

BP

)

Jine,KI ∗Cine,KI−CLR ∗Cvas,KI ∗
fuPL

BP

]
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where HPGL is the hepatocellularity, and the subscripts LI, 
ha, PVBY, GU, SP, PA, up, and eff represent the liver, hepatic 
arterial, portal vein bypass, gut, spleen, pancreas, uptake, 
and efflux, respectively.

Lymph fluid flows through afferent lymph vessels from the 
interstitial space of organs to the central lymph-node com-
partment and further to the venous blood pool, given by: 

where L tot is the total lymph flow, and the subscript LN rep-
resents the central lymph-node compartment.

The differential equations for the venous and arterial blood 
compartments are given by: 

where the subscripts AD, BO, BR, GO, HE, MU, SK, TH, and 
RE represent adipose, bone, brain, gonads, heart, muscle, 
skin, thymus, and remaining organ, respectively.

The solution of the different equation needs to be evalu-
ated in Matlab using the implemented deval  function over a 
predefined number of timepoints (NumPoints ). The solution 
for the drug concentration of each compartment is saved in 
the matrix Conc , and the corresponding timepoint to the con-
centration is saved in the vector Time  as described previously.

Step 5: Work with the simulated data—the 
postprocessing step
The solution of the differential equation solver has been 
saved into one single matrix. The first step of postprocess-

ing is therefore to extract the concentration for each com-
partment of the model from the solution matrix of the ODE 
solver. Different statistics can now be calculated with the 
extracted concentrations, such as the mean and the 5 and 
95 percentiles with predefined Matlab commands, which 
require the Statistics and Machine Learning Toolbox as an 
add-on to the Matlab suite.

One important aspect of postprocessing is to ensure mass 
balance of the model. The concentration of each compart-
ment is multiplied by the compartmental volume, and the drug 
amount cleared by a specific pathway as well as the amount not 
being absorbed are integrated and added together. The product 
should be equivalent to the dose entered in the study design.

Pharmacokinetic parameters, such as the maximal con-
centration (Cmax), the timepoint of the maximal concentra-
tion (Tmax), the area under the curve (AUC), the apparent 
clearance (CL/F), and the apparent volume of distribution 
(VD/F) can be calculated for each compartment. The elim-
ination rate is used to extrapolate the AUC to infinity and to 
calculate the clearance and the volume of distribution. 

function[] = PostProcessing()

%This function processes the data from the 
ODE solution and outputs the results
%Attention: Some statistical calculations 
(geomean, prctile) require

(34)
dCvas,LI

dt
=

1

Vvas,LI

∗

[

Qha ∗Cab+QPVBY ∗Cab+ (QGU−LGU)

∗Cvas,GU+QSP ∗Cvas,SP+ (QPA−LPA)

∗Cvas,PA− (QLI−LLI)∗Cvas,LI−Jvas,LI

∗

(

Cvas,LI

BP

)

+Jine,LI ∗Cine,LI

]

,

(35)

dCine,LI

dt
=

1

Vine,LI

∗

�

Jvas,LI ∗

�

Cvas,LI

BP

�

−Jine,LI ∗Cine,LI−LLI

∗Cine,LI−Jin,LI ∗Cine,LI ∗ fuine,LI+Jout,LI

∗Ccel,LI ∗ fucel,LI−
m
∑

u=1

�

Vmax,up,hep,u∗Cine,LI∗fuine,LI

Km,up,hep,u+Cine,LI∗fuine,LI

+CLint,up,hep,u

∗Cine,LI ∗ fuine,LI

�

∗ABup,hep,u ∗HPGL∗WLI

+

m
∑

e=1

�

Vmax,eff,hep,e∗Ccel,LI∗fucel,LI

Km,eff,hep,e+Ccel,LI∗fucel,LI

+CLint,eff,hep,e ∗Cine,LI ∗ fuine,LI

�

∗ABeff,hep,e ∗HPGL∗WLI

�

,

(36)

dCcel,org

dt
=

1

Vcel,org

∗

�

Jin,LI ∗Cine,LI ∗ fuine,LI−Jout,LI ∗Ccel,LI ∗ fucel,LI

+

m
∑

u=1

�

Vmax,up,hep,u∗Cint,LI∗fuint,LI

Km,up,hep,u+Cint,LI∗fuint,LI

+CLint,up,hep,u ∗Cine,LI ∗ fuine,LI

�

∗ABup,hep,u ∗HPGL∗WLI−

m
∑

e=1

�

Vmax,eff,hep,e∗Ccel,LI∗fucel,LI

Km,eff,hep,e+Ccel,LI∗fucel,LI

+CLint,eff,hep,e ∗Cine,LI ∗ fuine,LI

�

∗ABeff,hep,e ∗HPGL∗WLI

−

�

J
∑

j=1

�

I
∑

i=1

�

Vmax,E,hep,j,i

Km,E,hep,i,j∗(1+Σ[Inh]∕Ki)+Ccel,LI∗fucel,LI

+CLint,E,hep,j,i

�

∗ABtE,hep,j

�

+CLint,hep

�

∗MPPGL∗WLI ∗Ccel,LI

�

(37)
dCvas,LN

dt
=

1

Vvas,LN

∗ [QLN ∗ (Cab−Cvas,LN)+Ltot

∗ (Cine,LN−Cvas,LN)],

(38)

dCine,LN

dt
=

1

V ine,LN
∗

� O
∑

org=1

(Lorg ∗Cine,org)−Ltot ∗Cine,LN−Jin,LN

∗Cine,LN ∗ fuine,LN+Jout,LN ∗Ccel,LN ∗ fucel,LN

�

,

(39)

dCvb

dt
=

1

Vvb

∗

[

Cvas,AD ∗ (QAD−LAD)+Cvas,BO ∗QBO+Cvas,BR

∗ (QBR−LBR)+Cvas,GO ∗ (QGO−LGO)+Cvas,HE

∗ (QHE−LHE)+Cvas,KI ∗ (QKI−LKI)+Cvas,MU

∗ (QMU−LMU)+Cvas,SK ∗ (QSK−LSK)+Cvas,TH

∗ (QTH−LTH)+Cvas,LI ∗ (QLI−LLI)+Cvas,LN

∗ (QLN+Ltot)+Cvas,RE ∗ (QRE−LRE)−CO∗Cvb

]

,

(40)

dCab

dt
=

1

Vab

∗

�

(CO−LLU)∗Cvas,LU

−

O
∑

o=1

(Qorg,o ∗Cab)−CLad ∗Cab ∗
fuPL

BP

�
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%the Statistical and Machine Learning 
Toolbox
 
Initialize Cmax
Initialize Tmax
Initialize AUCt
 
Calculate PK parameters for each simulated 
drug
    �Calculate PK parameters for each virtual 

individual
        �if the venous concentration at 

timepoint t is bigger than Cmax
           �than the venous concentration at 

timepoint t is the new Cmax
           �than the timepoint t is the new 

Tmax
        end
 
        �Calculate the AUC according to the 

linear trapezoidal rule
    end
end
 
take the logarithm of the concentration for 
extrapolation 

Initialize the slope and beta 

Calculate the slope and beta for each 
simulated drug
    �Calculate the slope and beta for each 

virtual individual
       �linear regression of the last four 

timepoints
           �beta is the slope of the 

regression
    end
end
LogVenousConc = log10(VenousConc);
 
half-life is the natural logarithm of two 
divided by beta
AUC extrapolated to infinity is the AUCt 
plus the venous concentration at the last 
simulated timepoint divided by beta
Clearance is the dose divided by the AUC 
extrapolated to infinity
Volume of distribution is the clearance 
divided by beta
 
end

As shown above for the concentration, the mean and per-
centiles or other statistics can be calculated for pharmaco-
kinetic parameters.

Figure  5  Physiologically-based pharmacokinetic simulations for a single dose of 10 mg rivaroxaban administered with 600 mg ritonavir 
twice daily in steady state (a) and 800/100 mg darunavir/ritonavir once daily in steady state (b). Green represents the prediction of 
rivaroxaban alone, and blue shows the prediction of rivaroxaban administered with the perpetrators. The dashed line and the shaded 
area are the mean and the 95% confidence interval for the prediction of all virtual individuals, respectively. The solid lines show the 
mean of each virtual trial (10 trials with 12 virtual subjects per trial have been simulated). The red and the dark red circles show the 
observed clinical data of 10 mg rivaroxaban alone and coadministered with 600 mg ritonavir twice daily.57 Conc., concentration; h, 
hour.
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The results can be either output graphically using the 
built-in plot  function or can be exported to Excel (Microsoft, 
Redmond, WA) using the xlswrite  command. 

SIMULATION OF THE DDI MAGNITUDE BETWEEN 
RIVAROXABAN AND DARUNAVIR/RITONAVIR

To illustrate the steps of PBPK model development, the DDI 
magnitude between a single dose of rivaroxaban and daruna-
vir boosted with ritonavir under steady-state conditions will 

be simulated. The rivaroxaban PBPK model was developed 
combining published in vitro  data (bottom-up approach) 
with clinical clearance data (top-down approach). Validated 
PBPK models for darunavir and ritonavir were used.56 
Ritonavir has an impact on the CLR of rivaroxaban,57 which 
was considered in the model. The parameters of the drug 
models can be found in the model code (Supplementary 
Material S1). A clinical DDI investigating the effect of 600 
mg ritonavir twice daily on a single 10 mg dose of oral rivar-
oxaban in 12 healthy men aged 18–44 years was used to 

Table  2  Observed vs. predicted pharmacokinetic parameters

Pharmacokinetic 
parameter

Cmax (ng/mL) Tmax (h) AUC (ng × h/mL) t1/2 (h)

Observed Predicted Observed Predicted Observed Predicted Observed Predicted

Rivaroxaban 10 mg 153.7 ± 23.7 162.7 ± 26.9 3.0 ± 0.5 1.5 ± 0.1 1,000 ± 161 1,208 ± 268 5.7 ± 1.8 12.5 ± 3.3

Rivaroxaban 10 mg + 
Ritonavir 600 mg twice 

daily

238.0 ± 55.7 197.4 ± 32.6 4.0 ± 2.2 1.6 ± 0.2 2,529 ± 425 2,761 ± 875 6.9 ± 2.2 20.2 ± 4.7

Ratio 1.55 ± 0.43 1.21 ± 0.28 1.33 ± 0.77 1.09 ± 0.14 2.53 ± 0.59 2.29 ± 0.88 1.21 ± 0.53 1.62 ± 0.57

Rivaroxaban 10 mg + 
Darunavir/r 800/100 mg 

once daily

NA 190.0 ± 31.2 NA 1.7 ± 0.2 NA 2,510 ± 685 NA 19.9 ± 5.2

Ratio NA 1.17 ± 0.27 NA 1.16 ± 0.15 NA 2.08 ± 0.73 NA 1.60 ± 0.60

Darunavir/r 800/100 mg 
once daily

6,803 ± 1,618 5,432 ± 1,929 3.6 ± 1.6 3.1 ± 0.5 75,780 ± 22,102 75,002 ± 56,887 14.4 ± 5.2 10.9 ± 5.7

Ritonavir 100 mg once daily 606 ± 281 531 ± 280 3.1 ± 2.0 1.8 ± 0.5 5,296 ± 4,664 5,470 ± 3,132 6.3 ± 1.5 5.4 ± 1.4

Data are presented as mean +/- standard deviation. Observed data are published in ref. 57 for rivaroxaban, refs. 58–60 for darunavir, and refs.59,61 for 
ritonavir.
Cmax, maximal concentration; Tmax, timepoint of the maximal concentration; AUC, area under the curve; t1/2 = elimination half-life; NA = not applicable.

Figure  6  Physiologically-based pharmacokinetic simulations for 800 mg darunavir once daily boosted with 100 mg ritonavir once 
daily (a) and 100 mg ritonavir once daily (b). The dashed line and the shaded area are the mean and the 95% confidence interval for 
the prediction of all virtual individuals, respectively. The solid lines how the mean of each virtual trial (10 trials with 12 virtual subjects 
per trial have been simulated). The red markers show observed clinical data (a: refs. 58–60; b: refs. 59,61,62). Conc., concentration; 
h, hour.
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verify the rivaroxaban model.57 A total of 10 virtual trials with 
12 men (proportion of women is set to zero) aged 20–44 
years were simulated. Afterward, the effect of 800/100 mg 
darunavir/ritonavir once daily (qd) on a single oral dose of 10 
mg rivaroxaban was simulated because the boosted prote-
ase inhibitor is given in clinical practice.

The simulation of 10 mg rivaroxaban with and with-
out 600 mg of oral ritonavir were in good agreement 
with the observed clinical data (Figure  5a). Tmax of ri-
varoxaban was underpredicted by twofold because Tmax 
was achieved 1.5 hours later in the clinical study com-
pared with the simulation. However, the predicted Tmax 
ratio of rivaroxaban administered with 600 mg ritonavir 
twice daily and rivaroxaban given without a perpetrator 
was within 1.25-fold of the observed data. The elimina-
tion half-life of rivaroxaban was overpredicted by two-
fold, but Cmax and AUC were predicted within 1.25-fold 
(bioequivalence criterion; Table  2). The effect of 100 mg 
ritonavir qd used to boost darunavir in clinical practice is 
predicted to be similar to 600 mg of ritonavir twice daily 
(Figure  5b) because full inhibition of CYP CYP3A4 and 
CYP2J2 is already achieved. 

The predicted concentrations of the two perpetrators 
darunavir (800 mg qd) and ritonavir (100 mg qd) are in ac-
cordance with observed clinical data from various studies 
(Figure  6). The Tmax of ritonavir was underpredicted by 
twofold, but all pharmacokinetic parameters of boosted 
darunavir and ritonavir were within the 1.25-fold interval of 
the observed clinical data (Table  2).

CONCLUSION

We have described a comprehensive strategy to develop 
and code a PBPK model in Matlab with potential applica-
tions in other pharmacological scenarios. Of interest, PBPK 
models are increasingly accepted for the prediction of DDIs 
and drug disposition in special populations such as pedi-
atrics and the elderly. Furthermore, this type of computa-
tional framework can be integrated with pharmacodynamic 
models, which can be easily added to custom build PBPK 
models in Matlab.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Table S1. Parameters and their abbreviation and units used to build a 
physiologically-based pharmacokinetic model.
Table S2. Subscripts and their abbreviation used to build the 
physiologically-based pharmacokinetic model.
Supplementary Material S1. Model code. 
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