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1 Abstract 

Purpose – Antibodies of the human (hu) Immunoglobulin G (IgG) isotype are used as therapeutics for 

patients with cancer, rheumatoid arthritis, asthma, and other diseases. Often, these therapeutic huIgG 

antibodies mediate effects by binding to human Fc gamma receptors (FcγRs) expressed on various cells 

of the patient’s immune system. Three classes of huFcγRs comprising a total of six receptors are known 

in humans, namely FcγRIa (CD64), FcγRIIa/b/c (CD32a/b/c), and FcγRIIIa/b (CD16a/b). FcγR-mediated 

effector functions range from desired depletion of tumor cells via antibody-dependent cellular 

cytotoxicity (ADCC) or phagocytosis, to unwanted toxic effects by exaggerated cytokine release, 

thrombosis, and infusion reactions. These functions depend on the FcγR, the binding strength, and the 

involved immune cells. Prior to human use, the safety and efficacy of therapeutics have to be 

demonstrated in animal studies where human antibodies interact with the immune system of the 

selected species. The Göttingen minipig is highly suitable for such mandatory preclinical studies. 

However, the relevance of such studies for assessing the safety and efficacy of therapeutic antibodies 

is limited due to unknown characteristics of porcine (po)FcγRs. Therefore, this thesis aims to 

characterize the poFcγRs, focusing on the expression on immune cells of the minipig and the binding 

to huIgG. 

Methods – To study the set of poFcγRs in minipigs, we performed a detailed genome analysis of the 

locus coding for most FcγRs by polymerase chain reaction (PCR) and manual assembly of existing 

sequences. We used single cell ribonucleic acid (RNA) sequencing to determine the transcription, and 

flow cytometry to show the expression of different poFcγRs on various cells within blood, lymph node, 

and spleen. Cloning and expression of all poFcγRs as soluble proteins enabled the binding assessment 

of monomeric, as well as immune complexed huIgG1 therapeutic antibodies to poFcγRs by surface 

plasmon resonance (SPR; Biacore). Furthermore, we investigated the binding of monomeric antibodies 

and immune complexes to FcγR-expressing cell lines and immune cells of the minipig by flow cytometry. 

Results – We used genome analysis to identify the missing poFcγRIIa and to map the gene coding for 

the known poFcγRIIIa, which had not been annotated to date. The genomic organization of poFcγRs 

resembles that of most mammals except humans, who have two additional genes coding for huFcγRIIc 

and IIIb. In general, the distribution of FcγRs on immune cells and the binding properties to free- and 

immune-complexed huIgG1, both prerequisites for effector functions mediated by huIgG1, are similar 

in minipigs and humans. However, we observed several key differences which may affect the use of 

minipigs in preclinical studies with therapeutic huIgG1 antibodies. Firstly, the binding of huIgG1 to 

FcγRIIa, which is expressed on blood platelets, was stronger in minipigs (poFcγRIIa) compared to 

humans (huFcγRIIa). Despite this, the minipig could be a valuable model to study IgG-mediated platelet 

activation, aggregation, and thrombosis. Secondly, for the inhibitory poFcγRIIb, we observed stronger 
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binding versus huFcγRIIb. In humans, FcγRIIb regulates the immune response and is expressed on B 

cells, dendritic cells, and tissue monocytes. In contrast, we reported expression of poFcγRIIb on blood 

monocytes in minipigs. We suggest that anti-inflammatory effects with therapeutic huIgG1 antibodies 

could be stronger in minipigs than in humans due to the divergent expression and the stronger binding 

to the inhibitory poFcγRIIb. Lastly, we observed a lack of binding of huIgG1 to poFcγRIIIa. In humans, 

cytotoxic huIgG1 antibodies mediate ADCC via binding to huFcγRIIIa expressed on natural killer (NK) 

cells and on a subset of monocytes in the blood. The lacking binding of huIgG1 to poFcγRIIIa excludes 

NK-mediated ADCC and additionally restricts functions of monocytes, thus limiting studies with certain 

huIgG1 therapeutics. However, we reported binding of endogenous poIgG1 enabling effector functions 

in tumor vaccination or infection studies. 

Conclusion – The results compiled in this thesis generally recommend the use of minipigs for the 

assessment of therapeutic huIgG1 antibodies. However, the limitations of this animal model regarding 

differential binding of huIgG1 to poFcγRs and their expression pattern on immune cells in comparison 

to the human have to be considered. Therefore, functional studies are recommended to further assess 

the translatability of FcγR-mediated effector functions with various therapeutic antibodies from the 

minipig to the human. Nevertheless, this work delivers a foundation for species selection and allows 

the interpretation of results from preclinical safety and efficacy studies with Göttingen minipigs. 
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2 Abbreviations 

aa  amino acid 

ADCC  Antibody-Dependent Cellular Cytotoxicity  

ADCP  Antibody-Dependent Cellular Phagocytosis 

C1q  Complement component 1q 

CD  Cluster of Differentiation 

CDC  Complement Dependent Cytotoxicity 

CEA-TCB Carcinoembryonic Antigen- T Cell Bispecific 

CHO  Chinese Hamster Ovary cell line 

CpG-ODN CytosinePphosphate–Guanosine Oligodeoxynucleotides 

ConA  Concanavalin A 

Cyno  Cynomolgus monkey 

DC  Dendritic Cell 

DC-SIGN Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin 

DPBS  Dulbecco's Phosphate-Buffered Saline 

ELISA  Enzyme-Linked Immunosorbent Assay 

Fab  Fragment, antigen binding 

Fab-A-FH Format of HuCAL antibodies composed of Fab, alkaline phosphatase, FLAG and His-tag 

Fc  Fragment, crystallizable 

FCGR  Fc gamma Receptor (gene) 

FcR-γ chain Fc Receptor common gamma chain 

FcRL  Fc Receptor-Like 

FcRn  neonatal Fc Receptor 

FcαR  IgA Fc Receptor 

FcγR  Fc gamma Receptor (IgG Fc Receptor) 

FcεR  IgE Fc Receptor 

FcμR  IgM Fc Receptor 

FDA  US Food and Drug Administration 

GPI  glycosylphosphatidylinositol 

HEK293F Human Embryonic Kidney 293F 

HER2  Human Epidermal growth factor Receptor 2 

hu  Prefix for human 

HuCAL  Human Combinatorial Antibody Libraries 

IC  Immune Complex 

ICH  International Council for Harmonisation 

Ig  Immunoglobulin 

IgG  Immunoglobulin G 

IVIg  Intravenous Immunoglobulin 

IL  Interleukin 

IM  Interaction Map 

ITAM  Immunoreceptor Tyrosine-based Activation Motif 

ITAMi  inhibitory Immunoreceptor Tyrosine-based Activation Motif 

ITIM  Immunoreceptor Tyrosine-based Inhibition Motif 

KD  equilibrium dissociation constant 

NK cell  Natural Killer cell 
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LC-MS  Liquid Chromatography – Mass Spectrometry 

LPS  Lipopolysaccharide 

MALS  Multi-Angle Light Scattering 

MBL2  Mannose-Binding-Lectin 2 

MBP  Maltose-Binding Protein 

MFI  Median Fluorescence Intensity 

MMR  Macrophage Mannose Receptor 

mRNA  messenger Ribonucleic Acid 

NFAT  Nuclear Factor of Activated T cells 

NHP  Non-Human Primate 

NK cell  Natural Killer cell 

PBMC  Peripheral Blood Mononuclear Cells 

PCR  Polymerase Chain Reaction 

PD  Pharmacodynamics 

pIgR  polymeric Ig Receptor 

PK  Pharmacokinetics 

po  Prefix for porcine (of swine, pig, or pigs) 

PGLALA  Mutations in Fc silent  IgG (Pro329G, Leu234Ala, Leu235Ala) 

RNA  Ribonucleic Acid 

RT-PCR  Reverse Transcription-Polymerase Chain Reaction 

RU  Response Units 

SDS-PAGE Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SEC  Size Exclusion Chromatography 

SPR  Surface Plasmon Resonance 

SUMO  Small Ubiquitin-like Modifier 

TGF-β  Transforming Growth Factor beta 

TNF-α  tumor necrosis factor alpha 

VEGF  Vascular Endothelial Growth Factor 
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3 Preface 

This thesis addresses the suitability of the Göttingen minipig for preclinical safety and efficacy studies 

with human therapeutic antibodies focusing on Fc gamma receptor (FcγRs) functions.  

A background on therapeutic antibodies, FcγRs, and minipigs in biomedical research is given in the 

introduction part. The subsequent section is separated in two main chapters with two published 

manuscripts as a central part, as well as unpublished experiments in subsections. Manuscript 1 

describes the genomic organization and expression pattern of FcγRs in the minipig whereas 

Manuscript 2 addresses the interaction of human therapeutic antibodies to porcine FcγRs. The 

discussion, conclusion, and an outlook sections combine and interpret the information gained in both 

previous chapters. 

The data presented here were compiled at F. Hoffmann - La Roche Ltd and the release of this thesis 

has been approved.  
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4 Introduction 

4.1 Therapeutic antibodies and effector functions 

4.1.1 Antibodies have become important therapeutics 

Antibodies are glycoproteins secreted by B cells to specifically bind to a variety of molecules (Fig. 4.1). 

A regular antibody is composed of two Fab (Fragment, antigen binding) arms that bind to antigens and 

thus determine its specificity. On the other hand, the antibody Fc (Fragment, crystallizable) part is 

important for the binding to Fc receptors and for activation of the complement system (Fig. 4.1) [2]. 

As an important part of the immune system, antibodies have been selected during evolution for high 

specificity, affinity, and long half-life for long-lasting protection from various pathogens via Fc-

mediated functions. All these properties are also desired for therapeutics. 

 

Fig. 4.1 Structure of Immunoglobulin G (IgG) 
antibodies. IgG antibodies consist of two heavy 
and two light chains linked by disulphide bonds 
(blue lines). The heavy chain comprises one 
variable (VH) and three constant domains (CH1, 
CH2, CH3) whereas the light chain only contains 
one variable (VL) and one constant (CL) domain. 
Together, the variable domains are responsible 
for antigen binding. Therefore, the fragment 
composed of VH, CH1, VL, and CL is named Fab 
(Fragment, antigen binding). The Fc (Fragment, 
crystallizable) part, interacting with Fc receptors, 
combines the CH2 and CH3 domains and is 
usually N-glycosylated (green box). 

 

In 1986, the first therapeutic antibody was approved by the US (United States) Food and Drug 

Administration (FDA) [3]. However, significant drawbacks such as allergic reactions, anti-drug 

antibodies, and poor effector functions were observed with this monoclonal antibody based on mouse 

structures. Therefore, efforts have been made to produce fully human (hu) antibodies of the 

immunoglobulin G (IgG) isotype or derivatives thereof to overcome these limitations. As of the end of 

2014, more than 45 mostly chimeric or human antibodies are on the market as specific treatments for 

an enormous number of patients suffering from cancer, rheumatoid arthritis, asthma, and other 

diseases [4]. With over 50 therapeutic antibodies in late-stage clinical studies and 10 novel approvals 

in the United States and the European Union in 2017, their development is still gaining importance [5]. 

The global market size for monoclonal antibodies is predicted to increase by 12.5% to USD 218.97 

billion from 2017 to 2023 [6]. 
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The mode of action of current therapeutic antibodies is diverse including inhibition, activation, cross-

linking, target blocking, immune modulation, cargo delivery or depletion. Many of these effects rely 

on the involvement of the patient’s immune system by interactions via antibody Fc receptors.  

4.1.2 Fc receptors bind the Fc portion of antibodies 

Fc receptors are a group of cell surface glycoproteins that bind to the Fc part of immunoglobulins. Most 

mammals have receptors for IgE (FcεR), IgA (FcαR), and IgM (FcμR). In addition, there are structurally 

unrelated receptors for immunoglobulins such as the neonatal Fc receptor (FcRn), Fc Receptor-Like 

(FcRL) proteins, polymeric Ig receptors (pIgR), and many more [7].  

Fc gamma receptors (FcγR) are a family of receptors binding IgG, the most abundant Ig in the human 

body. The FcγR family consists of three functionally distinct classes based on their amino acid similarity: 

1) The activating high affinity receptor FcγRI, 2) the low affinity FcγRII comprising of the activating 

FcγRIIa and the inhibitory FcγRIIb, and 3) the low affinity FcγRIII. Furthermore, FcγRs can be classified 

according to their affinity and activation properties (Fig. 4.2). For the major human huFcγRs, 

orthologue receptors with the same evolutionary ancestry were identified in most mammalian species 

[8].  

In the human, huFcγRIa (cluster of differentiation 64 [CD64]) is the only high affinity activation receptor 

with three extracellular Ig-like domains (Fig. 4.2). In contrast to the other low affinity receptors it 

efficiently binds to monomeric IgG and is usually saturated under physiological conditions. However, 

huIgG readily dissociates from huFcγRIa with a half-life in the range of minutes that allows aggregation 

by binding to small immune complexes (IC) or sparsely opsonized large complexes [9]. In general, FcγRs 

require aggregation for the phosphorylation of downstream signaling molecules by associated 

immunoreceptor tyrosine-based activation (ITAM) or inhibition motifs (ITIM) domains and ultimately 

for signal transduction [10]. Humans constitutively express huFcγRIa on most myeloid cells including 

monocytes, and macrophages. Additionally, most dendritic cell (DC) subsets, except blood DCs, express 

huFcγRIa where it is regulated by the cytokine milieu (Fig. 4.3). The huFcγRIa expression on these cells 

is involved in antigen internalization, degradation and presentation to T cells. Furthermore, it initiates 

the production and release of pro-inflammatory cytokines [9, 11]. The protein structures and naming 

of FcγRIa is similar between different species (Fig. 2) whereby the human is the only species having 

additional pseudogenes for FCGR1B and FCGR1C [8]. 
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Fig. 4.2 Fc gamma Receptors (FcγR) in human (hu), mouse, and pig (po). The set of FcγRs is separated in three classes according 
to the amino acid similarity in humans (I, II, and III). Alternatively, it can be classified according to the high and low/medium 
affinity receptors due to IgG binding properties, or into activation (green) and inhibitory (red) receptors due to signaling via 
Immunoreceptor tyrosine-based activation (ITAM, green boxes) or inhibition (ITIM, red boxes), respectively. FcγRs are bind 
their ligands via Ig-like extracellular domains (filled ellipses). Often, signaling is transduced via association with the Fc receptor 
common gamma chain (FcR γ-chain). Human FcγRIIIb is anchored to the cell membrane (grey bar) via 
glycosylphosphatidylinositol (GPI)-linker. Orthologous receptors from the different species are displayed below each other. 
The orthologue of human FcγRIIa/c is named FcγRIII in the mouse and is so far unknown in the pig. Adapted from Nimmerjahn, 
Gordan [12]. 

 

The other two FcγR classes (II and III) have two extracellular Ig-like domains. Most IgG subclasses in 

human and mouse have a low affinity to these FcγRs (Fig. 4.2). IgG-antigen IC can efficiently bind to 

these low affinity receptors by avidity-based interactions. The low affinity FcγRs can be further 

separated by their activation or inhibition potential mediated by ITAM and ITIM, respectively (Fig. 4.2). 

HuFcγRIIa (CD32a) and huFcγRIIIa (CD16a) are both activation receptors expressed on various cell types, 

such as neutrophils, natural killer (NK) cells, monocytes, and dendritic cells in humans (Fig. 4.3). The 

orthologue of the ITAM bearing huFcγRIIa is named FcγRIII in the mouse and requires the association 

with the Fc receptor common gamma chain (FcR γ-chain). This transmembrane adaptor molecule then 

signals via an integrated ITAM and is required for cell surface expression of the receptor [13]. So far, 
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no orthologous receptor has been identified in pigs. However, the orthologue of huFcγRIIIa is also 

known as porcine (po)FcγRIIIa and named FcγRIV (CD16.2) in the mouse (Fig. 4.2). No orthologue to 

huFcγRIIc (CD32c) and the glycosylphosphatidylinositol (GPI)-anchored huFcγRIIIb (CD16b) was 

identified in the mouse, the pig, or any other mammal hitherto. HuFcγRIIb (CD32b) is a low affinity 

receptor that has an intracellular ITIM domain for inhibitory signaling. Its structure and name is highly 

conserved between different species and it plays an important role in antigen presentation and 

regulation of the immune response against pathogens. The effector functions mediated by activation 

receptors are balanced by the inhibitory receptor leading to tightly regulated immune reactions [8, 14]. 

 

Fig. 4.3 Expression of huFcγRs on immune cells of the human. Inhibitory (red) and activating (green) FcγRs are shown on cells 
involved in antibody-mediated effector functions. The CD14 expression separates human monocytes in classical (CD14high), 
intermediate, and non-classical (CD14low) monocytes. The hucγRIIc expression on 20% of the human population is not reflected 
in this figure. * Indicates absence of expression in the blood. ** Indicates the inducible expression of huFcγRIa on neutrophils. 
*** FcγR expression in human dendritic cells (DCs) refers to monocyte-derived DCs. Adapted from Nimmerjahn, Gordan [12]. 

 

4.1.3 Therapeutic antibodies mediate functions via Fc receptor interactions 

The ability to mobilize the innate immune system, the specificity, stability, and long serum half-life is 

what makes antibodies successful therapeutics. Besides the specificity, these properties are mediated 

by the Fc part of IgG antibodies in interaction with Fc receptors or complement component 1q (C1q). 

The latter mediates complement activation and thus enables complement-dependent cytotoxicity 

(CDC) as an important mode of action of cytotoxic antibodies [15]. The interactions of the Fc part with 

Fc receptors mediate a variety of functions depending on the antibody subclass, as well as on the 

binding strength to the particular Fc receptor and its cellular distribution. On one hand, the pH-

dependent binding of the IgG antibody to FcRn is important for recycling of absorbed IgG and thus 

strongly influences the serum half-life. On the other hand, FcγR binding regulates the interaction with 

the innate immune system and contributes to efficacy and influences the safety profile [16, 17]. 

Different affinities of huIgG subclasses towards different huFcγRs influence the immune cell activation 

and ultimately control their effector functions. The mediated reactions largely depend on the immune 

cell expressing the receptor. NK cells, monocytes, and macrophages are potent mediators of antibody-

dependent cellular cytotoxicity (ADCC) leading to destruction of target cells via release of cytotoxic 
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granules [18]. HuIgG-coated pathogens or particles are also eliminated by macrophages via huFcγR-

mediated antibody-dependent cellular phagocytosis (ADCP) [19]. Additionally, huFcγR activation can 

lead to cytokine production and release by macrophages and DCs [20], to antigen uptake by DCs for 

subsequent cross-presentation to CD8+ T cells [21] or to regulation of plasma cell persistence [22]. 

In particular, ADCC is a common mechanism of action of therapeutic cytotoxic antibodies, mediated 

mainly by huFcγRIIIa expressed on by NK cells, monocyte subsets, or macrophages. The engagement 

of these cells is an important mechanism for the elimination of human epidermal growth factor 

receptor 2 (HER2) positive tumor cells by the therapeutic antibody trastuzumab [23]. Two polymorphic 

variants of huFcγRIIIa with different affinities huIgG1 antibodies are known in human. The huFcγRIIIa 

polymorphism with the higher affinity was found to be associated with a better clinical outcome in 

anti-cancer treatment with the huIgG1 trastuzumab. However, this association is critically discussed 

and not found to be predictive for the outcome of the treatment [24]. 

Interestingly, the pharmacokinetic (PK) and pharmacodynamic (PD) properties of some antibodies 

depend not only on FcRn but also on FcγRs [25]. For an IgE-depleting therapeutic antibody it was shown 

that effector functions were important for the mode of action and thus the clearance of IgE-

therapeutic antibody complexes. Decreased FcγR binding led to increased systemic exposure of the 

complexes and their distribution to the liver [26]. 

4.1.4 Fc receptor interactions can mediate toxicity 

Effector cell activation via FcγRs upon treatment with therapeutic antibodies can lead to severe side-

effects. Infusion reactions are a common adverse effect of therapeutic antibodies usually observed 

upon first administration [27]. These reactions are caused by activation of neutrophils by huFcγRIIIb 

binding to IC composed of the therapeutic antibody and its target [28]. Large IC can also be formed by 

bevacizumab binding to vascular endothelial growth factor (VEGF) resulting in huFcγRIIa-mediated 

platelet activation [29] and thrombosis in huFcγRIIa transgenic mice [30]. Similarly, antibodies against 

CD40 ligand build IC which activate huFcγRIIa on platelets in vitro and resulted in serious events of 

thromboembolism followed by myocardial infarction in clinical studies. Importantly, these toxicities 

were not predicted in mouse models lacking FcγR expression on platelets [31, 32]. The examples 

mentioned above highlight the importance of IC for the activation of low affinity FcγRs and the 

consequences of these interactions. 

4.1.5 Antibody Fc engineering is used to alter Fc receptor binding 

Fc engineering modulates the binding to Fc receptors and C1q, thus affecting a variety of functions 

discussed above. Significant efforts have been made to fine tune the interactions of IgG Fc parts with 

FcγRs, allowing modulation of the efficacy, PK/PD properties and safety profile of therapeutic 
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antibodies. Modifications of the Fc part are often performed by amino acid substitutions to influence 

the binding to FcγRs, FcRn or complement [33, 34]. Diverse mutations were studied to enhance FcγR 

binding for stronger functions, such as huFcγRIIa for ADCP, huFcγRIIIa for ADCC, or huFcγRIIb for 

inhibition [35]. Conversely, effector functions are not desired for many applications where target cell 

death or cytokine secretion is unwanted or could potentially lead to toxicity [36]. Therefore, Fc 

engineering is also applied to reduce or abolish FcγR binding [37]. Another way to manipulate FcγR 

binding is glycoengineering. Usually, IgG antibodies are N-glycosylated on the two heavy chains of the 

Fc part during post-translational modification (Fig. 4.1). The glycan composition of IgG affects effector 

functions directly via FcγR binding [38]. Glycoengineering have been successfully applied to 

therapeutic antibodies, such as obinutuzumab where afucosylated glycans improve huFcγRIIIa binding. 

This leads to increased ADCC and therefore to enhanced depletion of malignant B cells [39, 40]. Taken 

together, affinities to FcγRs are intentionally modulated to impact effector functions in humans and 

ultimately influence safety and efficacy of therapeutic antibodies.  

4.2 Preclinical studies with therapeutic antibodies 

4.2.1 Species selection for antibody development 

All therapeutics have to be extensively tested to provide safe and efficacious medicine for human use. 

Prior to clinical studies involving the first dosing of a human being, a wide range of preclinical studies 

are required by regulatory agencies to demonstrate safety and efficacy of the drug. Apart from in vitro 

testing, pharmacologically relevant animal species are used as a proof-of-concept to translate 

pharmacology and efficacy data from the animal model into humans [41]. To assess the safety of 

biotechnological pharmaceuticals, including therapeutic antibodies, most regulatory agencies follow 

the S6(R1) guideline of the International Council for Harmonisation [42]. Therefore, preclinical safety 

testing also requires the use of a relevant animal species in which the therapeutic is pharmacologically 

active. When selecting a relevant species, drug exposure, half-live, bioavailability, activity and affinity, 

as well as cross-reactivity with the target have to be considered [43]. Most often a rodent and a non-

rodent species is used for safety assessment. Historically, rats, dogs and NHP have been used for 

toxicity testing while mice were used for efficacy studies. Today, also pigs and especially minipig breeds 

are considered [44]. 

Therapeutic antibodies are mostly based on human IgG frameworks and interact with the cellular 

machinery of the animal models. Because FcγRs and cells expressing them are of high importance for 

many safety and efficacy related aspects, the cross-reactivity of huIgG to these huFcγRs can cause 

misleading readouts. Therefore, it is crucial to have good knowledge about the animal model and its 

interactions with human therapeutic antibodies [45]. 
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4.2.2 Difficulties of animal testing with therapeutic antibodies 

There are several difficulties associated with testing of therapeutic antibodies in animal models. Due 

to their high specificity, therapeutic antibodies do not necessarily cross-react in other species. The 

result is a lack of pharmacological relevance. Surrogate antibodies, binding to orthologous targets in 

other species, can be used in such cases. Alternatively, genetically engineered animal models are used 

in preclinical development [46]. 

Therapeutic antibodies are intended for human use and are therefore mostly composed of human or 

humanized backbone structures. The more distant an animal model is from the human, the more 

distinct are usually its proteins. According to the self/nonself concept, human proteins are therefore 

nonself with low similarity to self-proteins in distant animal species [47, 48]. This is often a reason for 

immunogenicity, such as anti-drug antibody production, limiting study duration and PK and influencing 

toxicology readouts. Additionally, human antibodies, distinct from self-antibodies in the animal model, 

might not fully interact with the effector functions system of the animal species. It was found that 

humans are the only species expressing huFcγRIIc and huFcγRIIIb [8]. Infusion reactions in the clinics 

with human therapeutic antibodies mediated by huFcγRIIIb are therefore hard to predict using 

standard animal models [28]. 

Due to the differences of FcγRs between humans and animals, many studies have been performed to 

investigate affinities of human antibodies to FcγRs of different animal models. Additionally, species 

differences regarding FcγR expression on different effector cells and resulting effector functions have 

been addressed. It was shown that mouse orthologues to human FcγRs are 60-70% identical. 

Nevertheless, remarkably similar binding strengths of human antibodies were reported to the FcγRs of 

the mouse [49]. It was also shown that mouse FcγRs can mediate similar effector functions as in 

humans although there are distinct differences [11]. HuIgG1 is the most widely used subclass for 

therapeutic antibodies. It shows identical FcγR interaction properties in cyno (cynomolgus monkey, 

Macaca fascicularis) and in humans, thus leading to similar effector functions. However, fundamental 

differences in binding and effector functions were observed for the less frequently used huIgG2 and 

huIgG4 subclasses. The main differences were the stronger binding to cyno FcγRIIb and the differential 

expression of FcγRIIb and FcγRIIIb on granulocytes leading to altered effector functions [50]. In pig-

tailed macaques (Macaca nemestrina), however, FcγRIIb showed enhanced binding to huIgG1 whereas 

binding to FcγRIIa was markedly impaired [51]. These differences in affinity have implications for 

preclinical evaluation of human IgG1 antibodies in pig-tailed macaques, but not in cynomolgus monkey. 

Studies with rhesus macaques (Macaca mulatta) were performed to assess binding of human 

therapeutic antibodies to their FcγRs; many FcγR polymorphisms were identified, showing different 

affinities to different human IgG antibodies. Furthermore, in contrast to humans, no FcγRIIIa and 
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FcγRIIIb was found on neutrophils of rhesus macaques whereas FcγRIIa and FcγRIIb expression were 

barely studied. The differential expression is, together with the altered affinities, assumed to cause 

differential effector functions with human IgG in the rhesus macaque [52]. 

4.2.3 The minipig is a suitable animal model for preclinical studies 

Due to the high anatomical and functional similarities to humans, pigs have been extensively used for 

biomedical research in the fields of dermatology, organ transplantation and cardiovascular diseases 

[53-55]. Many breeds of miniature pigs exist worldwide, but in particular the Göttingen minipig (Fig. 

4.4) has become an important model for preclinical pharmacology and drug safety studies. The utility 

of the minipig for toxicology testing with human therapeutics has been thoroughly assessed in 

comparative studies with humans and other preclinical species [56]. Between pigs and minipigs, no 

major differences regarding the immune system have been 

reported so far but detailed studies are lacking [57]. In general, 

minipigs mainly differ from domestic pigs in their growth range 

and size at sexual maturity but not in anatomical structures [58]. 

Therefore, it can be assumed that pigs and minipigs share the 

sequences and functions of immune-related genes. Advantages 

of the Göttingen minipigs are the controlled health status, the 

ease of handling and low consumption of food, space, and 

pharmacological products in comparison to domestic pigs [59]. 

Additionally, their high similarity to humans in terms of genetics, 

physiology, and anatomy make the minipig a desired alternative 

to other non-rodent species [60]. 

In comparison to NHPs, breeding, handling, and housekeeping of minipigs is much easier, leading to 

reduced costs. Furthermore, genetic manipulation of minipigs is better feasible and accepted in 

comparison to manipulation of NHPs. For example, transgenic minipigs expressing the human Pro23His 

rhodopsin mutation as a model of retinitis pigmentosa were successfully generated by somatic cell 

nuclear transfer [61]. Analogous, the humanization for therapeutic antibody targets could make the 

minipig pharmacologically active and thus more useful for preclinical studies [62]. Additionally, the 

pressure of the public to stop animal experimentation on primates and their limited availability is 

forcing pharmaceutical companies to seek for alternatives. Even though minipigs are ethically of the 

same value as NHP, their use is less problematic as seen by the broad public due to the use of pigs as 

farm animals. In general, decisions about species selection for preclinical studies have to be 

scientifically sound and ethically justified [63]. 

Fig. 4.4 The Göttingen minipig provided by 
Ellegaard is used for biomedical research. 
Taken from [1] 
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4.2.4 Studies with therapeutic antibodies in the minipig 

Today, Göttingen minipigs are regularly used for preclinical general toxicology studies with various 

routes of administration, and have gained a wide acceptance for safety pharmacology [64]. The 

Göttingen minipig has been used in immunogenicity studies with adalimumab and infliximab, whereby 

it was found that adalimumab, but not infliximab, triggered anti-drug antibody responses leading to 

decreased plasma levels of the drug. The authors concluded that, for the prediction of immunogenicity 

in humans, minipig and NHP seem to be comparable [65]. Zheng, Tesar [66] assessed the PK 

translatability to humans upon administration of therapeutic antibodies. It was found that the 

clearance was predictive for humans, but distinct differences in absorption and bioavailability were 

observed. Binding of therapeutic antibodies to FcRn was comparable between humans, NHPs, and 

minipigs resulting in similar clearance. Only few other studies have been performed with therapeutic 

antibodies due to lack of knowledge about minipig pharmacology [56, 67]. From another perspective, 

the advances in veterinary medicine led to the broad use of various types of antibodies for 

immunoprophylaxis or therapeutic purposes in the pig [68]. Occasionally, antibodies based on human 

sequences are used for therapy of pigs allowing learnings about their interactions with the porcine 

immune system [69, 70].  

4.2.5 Porcine FcγRs are poorly studied 

Because antibody pharmacology and toxicology is often mediated by FcγRs, it is important to 

understand this component in the animal model. Knowledge about porcine FcγRs is still sparse 

although the porcine immune system is the best characterized after the murine and primate immune 

systems [44]. 

The presence of FcγRI (CD64) is conserved in most mammalian species, including pigs [8, 71]. 

Nevertheless, the huFcγRI gene family comprises a total of three FcγRI variants named FCGR1A, 

FCGR1B, and FCGR1C, but only FCGR1A is expressed as a full length cell surface receptor [72]. Most 

other species, including pigs, only express FcγRIa. PoFcγRIa was recently cloned and its function has 

been demonstrated by binding to chicken erythrocytes sensitized with porcine total poIgG [73]. No 

antibodies specific for poFcγRIa have been described so far, complicating expression studies. However, 

poFcγRIa messenger ribonucleic acid (mRNA) was identified mainly in the CD163high DC subset and in 

alveolar macrophages [74]. No further cellular distribution studies of poFcγRIa have been performed 

in pigs or minipigs.  

The low affinity FcγRII (CD32) family is composed of an inhibitory and at least one activation receptor. 

The structure and function of the inhibitory FcγRIIb (CD32b) is highly conserved in humans, pigs, mice 

and other mammalian species [8]. PoFcγRIIb was cloned and found to bind chicken erythrocytes with 

porcine total IgG [75]. Another sub-isoform named poFcγRIIb1 was isolated from porcine peripheral 
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blood leucocytes ribonucleic acid (RNA) and identified to be generated by alternative splicing. It shows 

significant homology to huFcγRIIb1 whereas the previously described poFcγRIIb is thought to be 

orthologous to the huFcγRIIb2 sub-isoform [76, 77]. The cellular distribution of poFcγRIIb has not yet 

been thoroughly analyzed, also due to a lack of commercially available specific antibodies. A 

transcriptomic analysis, however, found high level expression of poFcγRIIb on the conventional DC 

subset 2 in the blood [78]. Despite the importance of the human orthologue, the activation poFcγRIIa 

(CD32a) and its gene FCGR2A have not been identified yet in pigs (Fig. 4.2). 

FcγRIIIa (CD16) is an activating low affinity FcγR that requires association with the FcR γ-chain for 

signaling [13]. In the pig, poFcγRIIIa was first cloned and characterized by Halloran, Sweeney [79]. In 

addition to poFcγRIIIa expressed on the cell surface, a soluble poFcγRIIIa isoform generated by 

alternative splicing was identified, possibly regulating FcγR-mediated immune responses [80]. A 

unique association of poFcγRIIIa with a 15 kDa molecule was detected that shows significant homology 

to porcine cathelin. This complex was hypothesized to further link the innate and acquired immune 

responses and therefore indicate further functions of this receptor [81]. The availability of monoclonal 

antibodies directed against poFcγRIIIa (CD16) facilitated the research on its cellular distribution and 

function. PoFcγRIIIa shows the highest expression of all FcγRs in the pig, and is known to be expressed 

on all blood monocytes, NK cells, and neutrophils, as well as on most DC subsets including monocyte-

derived DCs and blood DCs [82, 83]. Even though all porcine monocytes express poFcγRIIIa, individual 

pig breeds differ regarding the expression level of poFcγRIIIa on CD14high and CD14low monocytes. In 

contrast, human CD14high classical monocytes completely lack huFcγRIIIa [84]. Although poFcγRIIIa is 

the earliest and most widely analyzed Fc receptor in pigs, its gene structure and genetic localization 

have not yet been determined [8]. 

As mentioned before, studies in pigs with human antibodies were used to draw conclusions about Fc-

mediated effector functions based on interactions with poFcγRs. Treatment of pigs with a mouse IgG2b 

antibody led to platelet activation, cytokine release, and subsequent toxicity. These effects were 

mediated by poFcγR and complement interactions. Replacing the constant region of the antibody with 

a human IgG2/IgG4 framework abolished poFcγR and complement binding and related toxicities [70]. 

Another study investigated the therapeutic effect of a hemagglutinin-specific antibody that is 

anticipated to be mediated by FcγR-interaction [85]. However, this antibody of the huIgG1 subclass 

lacked the expected efficacy in the pig and no poFcγR interaction and ADCC induction was observed. 

Therefore, the authors concluded that huIgG1 antibodies do not interact with poFcγRs [69]. To 

conclude, the expression of FcγRs in minipigs is not thoroughly analyzed and studies with human 

antibodies have questioned the binding of huIgG1 to poFcγRs without looking at individual receptors. 

This limits a justified species selection for preclinical studies with human therapeutic antibodies and 

hinders the subsequent interpretation and translation of responses from minipigs to humans.  
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5 Aims of the thesis 

The main goal of this thesis is to assess the utility of the Göttingen minipig for preclinical safety and 

efficacy studies with human therapeutic antibodies in order to enable a justified species selection. This 

includes studies of the genomic organization and expression pattern of the poFcγRs in the minipig to 

allow an estimation of possible effector functions with antibodies. Furthermore, this thesis aims to 

measure the binding properties of human therapeutic antibodies to all poFcγRs in minipigs in order to 

highlight similarities and differences to huFcγRs in humans. Therefore, we defined the following 

milestones: 

• Exploration of the porcine FcγR family by screening of the low affinity FCGR locus in a novel

genome draft of the Göttingen minipig

• Characterization of the FcγR expression in immune cells of the Göttingen minipig

• Cloning and expression of all porcine FcγRs

• Interaction studies of human therapeutic antibodies with porcine FcγRs

Additional aims and hypotheses arose during the term of the thesis. Upon the identification of a gap 

within the low affinity FCGR locus, we planned to identify the missing sequences by bioinformatics 

tools and sequencing. After the subsequent identification of a hitherto unknown porcine FcγR, its 

characterization became an additional aim. Upon initial binding studies with free IgG, we intended to 

further test binding of IC to poFcγRs that was hypothesized to be stronger due to higher avidity. 
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6 Genomic organization and expression pattern of porcine FcγRs 

6.1 Purpose 

Most mammalian species express three classes of FcγRs: 1) The activating high affinity receptor FcγRI, 

2) the low affinity FcγRII comprising of the activating FcγRIIa and the inhibitory FcγRIIb, and 3) the low

affinity FcγRIII. In humans, duplications of these four different receptors have led to an extended 

repertoire. Minipigs represent an animal model of high interest for preclinical studies with human 

therapeutic antibodies, which are potential ligands of poFcγRs. In pigs, however, no low affinity 

activating poFcγRIIa was described so far and the situation of possible duplications was unclear. 

Furthermore, poFcγRIIIa was not genetically characterized and the cellular expression of poFcγRIa and 

poFcγRIIb was unclear. We aimed to address the abovementioned gaps to identify potential effector 

cells and estimate the effector functions of human therapeutic antibodies. 

6.2 Main results 

We assembled the complete low affinity FCGR locus of the minipig, localized the gene coding for 

poFcγRIIIa, and identified the missing poFcγRIIa. The expression of all poFcγRs in the minipig was 

described on transcription and protein level and found to be comparable to the human expression 

pattern. 
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6.3 Manuscript 1 

The genomic organization and expression pattern of the low affinity Fc 

gamma Receptors (FcγR) in the Göttingen minipig 

Jerome Egli, Roland Schmucki, Benjamin Loos, Stephan Reichl, Nils Grabole, Andreas Roller, 

Martin Ebeling, Alex Odermatt, Antonio Iglesias 

Immunogenetics 2019 Feb;71(2):123-136. doi: 10.1007/s00251-018-01099-1 

Contribution – I assembled the minipig low affinity FCGR locus, amplified the missing parts by PCR, 

identified and cloned the novel poFcγR from RNA, and compared it to orthologous receptors. However, 

phylogenetic analysis, single cell RNA sequencing, and related data processing were performed by co-

authors. Nevertheless, I was responsible for data analysis and the generation of the figures. Using fresh 

blood cells provided by colleagues, I performed flow cytometry and processed the data. Finally, I 

drafted and wrote the manuscript. 
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Abstract
Safety and efficacy of therapeutic antibodies are often dependent on their interaction with Fc receptors for IgG (FcγRs). The
Göttingen minipig represents a valuable species for biomedical research but its use in preclinical studies with therapeutic
antibodies is hampered by the lack of knowledge about the porcine FcγRs. Genome analysis and sequencing now enabled the
localization of the previously described FcγRIIIa in the orthologous location to human FCGR3A. In addition, we identified
nearby the gene coding for the hitherto undescribed putative porcine FcγRIIa. The 1′241 bp long FCGR2A cDNA translates to a
274aa transmembrane protein containing an extracellular region with high similarity to human and cattle FcγRIIa. Like in cattle,
the intracellular part does not contain an immunoreceptor tyrosine-based activation motif (ITAM) as in human FcγRIIa. Flow
cytometry of the whole blood and single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) of Göttingen
minipigs revealed the expression profile of all porcine FcγRs which is compared to human and mouse. The new FcγRIIa is
mainly expressed on platelets making the minipig a good model to study IgG-mediated platelet activation and aggregation. In
contrast to humans, minipig blood monocytes were found to express inhibitory FcγRIIb that could lead to the underestimation of
FcγR-mediated effects of monocytes observed in minipig studies with therapeutic antibodies.

Keywords CD32 . FcγRIIa . FCGR locus . Flow cytometry . Single-cell RNA sequencing . Sus scrofa

Introduction

Therapeutic antibodies of the IgG (immunoglobulin G)
isotype represent an important group of new medical entities
and interactions of Fc gamma receptors (FcγRs) with the Fc
part of IgG antibodies are crucial in the antibody-based im-
munotherapy. Most mammals were shown to have three func-
tionally distinct classes of FcγRs with different affinities and
properties. FcγRIa (CD64) is capable of binding to free IgG
antibodies and is hence considered as a high-affinity receptor.

Its expression and function are conserved in most mammalian
species, including pigs (Akula et al. 2014; van der Poel et al.
2011). Low-affinity receptors efficiently bind immune com-
plexes and are divided into inhibitory and activating FcγRs.
The structure and function of FcγRIIb (CD32b), the inhibitory
low-affinity receptor, is also highly conserved in humans,
pigs, mice, and other mammalian species (Akula et al.
2014). FcγRIIIa (CD16a) is an activating low-affinity FcγR
that requires the association with FcR γ-chain (Fc receptor
common gamma chain) for signaling (Kim et al. 2003).
Different affinities to IgG were observed for the human
FcγRIIIa V158F polymorphism within the extracellular do-
main (ECD). It was shown to be associated with differential
response to therapeutic antibodies and disease progression
(Mellor et al. 2013). Although FcγRIIIa is the most widely
analyzed Fc receptor in pigs (Halloran et al. 1994), its gene
structure and genetic localization has not yet been determined.
In mouse, the orthologous receptor of FcγRIIIa is known as
FcγRIV (Nimmerjahn and Ravetch 2006). FcγRIIa (CD32a)
is another activating low-affinity receptor present in humans,
non-human primates (NHPs), cattle, and rat and named as
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FcγRIII in mouse (Lux and Nimmerjahn 2013). In humans,
FcγRIIa is expressed on the cell surface of monocytes, neu-
trophils, macrophages, eosinophils, basophils, dendritic cells,
and platelets. It is involved in the process of phagocytosis,
antibody-dependent cellular cytotoxicity (ADCC), and cyto-
kine release (Powell and Hogarth 2008). The FcγRIIa R131H
polymorphism is associated with severity and progression of
idiopathic pulmonary fibrosis and with response to rituximab
therapy (Bournazos et al. 2010; Ziakas et al. 2016). Immune
complexes binding to FcγRIIa on human platelets can lead to
thrombus formation (Zhi et al. 2015) and ultimately to
heparin-induced thrombocytopenia (Greinacher 2009).
Despite its importance, the minipig FcγRIIa and its gene
FCGR2A could not be identified yet.

The Göttingen minipig is increasingly used as a valu-
able animal model for preclinical pharmacology and drug
safety studies. The high similarity to humans in terms of
genetics, genomics, physiology, and anatomy makes the
minipig a desired alternative to NHPs (Ganderup et al.
2012). Additionally, Göttingen minipigs have a controlled
health status, are easy to handle, and need less food,
space, and pharmacological products compared to domes-
tic pigs and other non-rodent species (McAnulty et al.
2011). Minipigs mainly differ from domestic pigs in their
growth range and size at sexual maturity but not in ana-
tomical structures (Swindle et al. 2012). Regarding the
immune system, no major differences between pigs and
minipig have been reported so far but detailed studies are
lacking (Descotes et al. 2018). The use of the minipig as
an adequate species for toxicity and efficacy evaluation of
therapeutic antibodies requires a detailed knowledge of
the FcγR composition and their interaction with human
IgGs. However, to date, the knowledge on the binding
properties of porcine FcγR to human antibodies is still
scarce. In addition, the number of low-affinity FcγRs
existing in the minipig and the allocation of the FCGR
genes in the corresponding locus of the Göttingen minipig
genome was not conclusively determined. The latest ver-
sion of the Göttingen minipig genome was generated by
Heckel et al. by mapping of the whole genome-
sequencing data on the Duroc pig genome Sus scrofa
10.2 (Heckel et al. 2015). There, FCGR2B was the only
gene annotated in the low-affinity FCGR locus. Recently,
the new assembly Sus scrofa 11.1 was released containing
a more accurate view of the pig genome including this
particular locus (Li et al. 2017).

In this paper, we describe the complete assembly of the
genetic FCGR locus of the Göttingen minipig including
the exact mapping of FCGR3. Additionally, we demon-
strate the identification, sequence characterization, and
genomic location of FCGR2A, and the expression of
low- and high-affinity FcγRs in the Göttingen minipig
across blood cell types.

Materials and methods

FCGR locus assembly and FCGR mapping

The Göttingen minipig genome draft generated by Heckel
et al. (2015) based on Sus scrofa 10.2 was used as a reference
genome. Known sequences of FCGR2B and FCGR3A were
blasted (Altschul et al. 1990) against whole genome shotgun-
sequencing data of the Göttingen minipig (accession:
AOCR01000000) and the Wuzishan minipig (accession:
AJKK01000000) to identify overlapping contigs (contiguous
sequences). A minimum of 95% identity over 200 base pairs
was considered as sequence identity. The ends of each newly
identified contig and exon sequences from known porcine
FCGR genes were again blasted against the data from both
minipig breeds to form longer contiguous sequences (Fig. 1).
All sequences were continuously screened for potential FCGR
genes by pairwise alignment (EMBOSS Water) to published
porcine, human, and mouse FCGR exons.

Genomic DNA was isolated from the frozen spleen of a
Göttingen minipig using the DNeasy Blood and Tissue Kit
(Qiagen). PCR on genomic DNA with primers JE24/JE26
(see Fig. 1 for primer positions and Online Resource 1 for
primer sequences) allowed sequencing of the gap within an
intron of FCGR3A (Fig. 1) (GenBank ID: MH574548). The
two remaining gaps in the putative FCGR2A introns were
amplified by nested PCR using primers JE62/JE64 followed
by JE47/JE49 and JE58/JE61 followed by JE41/JE42, respec-
tively (Fig. 1, Online Resource 1). The obtained products were
cloned using the TOPO TA cloning kit and sequenced
(GenBank ID: MH574549, and MH574550). All sequencing
reactions were performed by Microsynth.

Identification and sequencing of putative porcine
FCGR2A

Total RNA was isolated from blood cells of Göttingen
minipigs and RNA integrity was determined on the Agilent
2100 Bioanalyzer System (Agilent Technologies). Then, pu-
tative FCGR2A cDNA ends were amplified in a nested PCR
approach using SMARTer RACE 5′/3′ kit (Clontech). Rapid
amplification of cDNA ends (RACE) PCR was performed by
generation of 5′- and 3′-RACE-ready cDNA and subsequent
PCR reactions using SMARTer RACE 5′/3′ kit (Clontech).
More precisely, 5′- and 3′-RACE-ready cDNAwas generated
from total RNA serving as a template. In the first round of
PCR, the supplied universal primer mix (UPM) was used to-
gether with primer JE5 or JE28, designed on predicted puta-
tive FCGR2A sequences. In a second round, nested UPM-
short was used with primers JE4 or JE2 to generate 5′ or 3′
cDNA ends, respectively (Fig. 1, Online Resource 1). The
products were analyzed on a 0.8% agarose gel and purified
using the QIAquick gel extraction kit. Sanger sequencing was

124 Immunogenetics (2019) 71:123–136

20



performed using several primers designed on predicted puta-
tive FCGR2A exons to identify the cDNA ends.

A final nested RT-PCR was performed on total RNA from
minipig blood using first strand cDNA synthesis (New
England Biolabs), the outer primers JE35/JE5, and the inner
primers JE36/JE4 (Fig. 1, Online Resource 1). The product
was cloned using the TOPO TA cloning kit and 30 colonies
were sequenced from both sides using M13 and M13r primer.
RACE PCR and RT-PCR sequences were assembled to gen-
erate the full-length transcript of the putative porcine
FCGR2A.

Sequence analysis and comparison

Signal sequences were predicted by similarity to porcine
FCGR2B (Qiao et al. 2006) by signalP 4.1 Server
(Nielsen 2017), SMART (Letunic and Bork 2018), and
Sigcleave (von Heijne 1986). SMART also predicted the
extracellular structures. Transmembrane (TM) helices
were predicted from similarity to human FcγRIIa (Moi
et al. 2010) and by the average result from the following
prediction tools: TMpred (Hofmann and Stoffel 1993),
DAS (Cserzo et al. 1997), SOSUI (Hirokawa et al.
1998), PredictProtein (Yachdav et al. 2014), Phobius
(Kall et al. 2004), SMART, and ALOM (a program im-
plemented at Roche according to Klein et al. (1985)).

For the phylogenetic tree, protein sequences were first
aligned with MUSCLE (Edgar 2004) then poorly aligned
positions and divergent regions were filtered with
GBLOCKS (Castresana 2000) so that only the conserved
ECD region remained. PHYLIP software package was
used to calculate a protein sequence distance matrix
fol lowed by bootstrapping with 1000 replicates
(Felsenstein 2005). Data was graphically displayed with
the TreeExplorer software V2.12 (Jie 2017).

Single-cell RNA sequencing

PBMCs were isolated using Ficoll-Paque Plus (GE
Healthcare) and Leucosep tubes (Greiner bio-one, 12 mL)
from K2 EDTA–treated whole blood of three different healthy
human donors, Göttingen minipigs, or mice. Lysis buffer (BD
Pharm Lyse) was used for subsequent removal of erythro-
cytes. Cell count and viability were determined using the
Countess Automated Cell Counter (Invitrogen).

Single-cell capture was performed using the microfluidic
chromium instrument (10x Genomics) capturing single cells
in microdroplets. Cell suspensions containing approximately
4000 cells per sample from three different individuals were
loaded together with the provided enzymemix, beads, and oil.
According to the manufacturer’s protocol, cDNAwas gener-
ated, purified, and quality was checked on the Agilent 2100
Bioanalyzer System (Agilent Technologies). In a second step,
a sequencing library was prepared by attaching Illumina
Indices to fragmented cDNA strands. After size selection for
approximately 500 bp fragments, library concentration was
measured by a Qubit fluorometer (ThermoFisher). Every sam-
ple was adjusted to a final concentration of 2.5 nM, by dilution
with buffer EB (Qiagen). All samples were pooled in same
amounts. A PhiX solution was added, resulting in a spike-in
amount of 1% in the final pool. Pooled fragments were dena-
tured and mixed with a master mix consisting of EPX reagents
1–3 (Illumina), resulting in a final volume of 50 μL and a final
concentration of 225 pM. After cluster generation, the flow
cell was inserted into a HighSeq4000 instrument (Illumina).
The sequencer cycle program consisted of 27 cycles for read
one, 8 cycles for the index read and 99 cycles for read two.

Sequencing data were further processed using cell ranger
version 2.0.0. First, fastq files were generated using the mkfastq
function. Second, count files were generated using the count
function. Human sequences were mapped against the genome

Fig. 1 Genomic organization of the minipig FCGR locus. The black line
represents the genomic sequence scaled as indicated in the lower left
corner. FCGR genes are shown as colored lines with boxes representing
the exon structure. Genes above and below the black line are encoded at
the forward strand and the reverse strand, respectively. The sequence
from the initial minipig genome draft containing FCGR2B (Heckel
et al. 2015) is represented by a gray line. Yellow and blue lines represent
whole genome shotgun contigs of the Göttingen minipig and the

Wuzishan minipig, respectively. Vertical lines between the contigs of
the two minipig breeds highlight regions with mismatches. The grayscale
in the upper left corner indicates the number of mismatches found in
intervals of 300 bp, from white (0 mismatches) to black (10 or more
mismatches). Callouts enlarge the gaps now closed by sequencing using
the primers indicated by the arrows. Refer to Online Resource 1 for
primer sequences
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assembly hg19, mouse sequences against the mm10, and
minipig sequences against the RefSeq (reference sequence)
(Pruitt et al. 2012) genome assembly Sus scrofa 11.1 containing
all FCGR gene entries. Raw counts were further processed
using an R (version 3.3.2) based in an in-house pipeline.
First, data were imported using scater::read10XResults (ver-
sion 1.6.3) function and QC parameters were calculated. The
human raw cells were filtered using a minimum of 1.000 and a
maximum of 50.000 umi (unique molecular identifier) counts
in total. Second, cells having less than 300 genes expressed or
more than 5% mitochondrial gene counts were filtered out.
Mouse raw counts were filtered using a minimum of 700
and a maximum of 20.000 umi counts in total and at least
200 genes expressed. Finally, minipig raw counts were filtered
using a minimum of 800 and a maximum of 20.000 umi
counts in total and at least 200 genes expressed. Next, data
were processed using the scater::normaliseExprs function
using the 99th percentile for normalization. Confounding fac-
tors were determined based on their correlation to the first ten
principle components of the normalized data. For human, we
identified pct_counts_top_100_endogenous_features,
log10_total_features, and donor; for mouse, we identified
pct_counts_top_500_features and total_counts; and forminipig,
we identified pct_counts_top_50_features, log10_total_counts,
and donor as independent confounding factors. We applied a
linear regression model to remove the effects of the identified
confounders on the normalized data. Finally, we used the
Seurat:: FindClusters function (version 1.4.0.16) and
Seurat::RunTSNE function to run the t-SNE (t-distributed
stochastic neighbor embedding) dimensionality reduction on
selected features. Clusters were summarized according to the
differential expression of various genes (Online Resource 2).

Flow cytometry

Antibodies directed against porcine FcγRIIa (AbD29332.1) and
FcγRIIa/b (AbD32591.1) were generated by Bio-Rad using the
HuCAL technology. Generation and specificity of the HuCAL
antibodies used here will be published elsewhere. Whole blood
from three different Göttingen minipigs was collected in K2
EDTA–coated vacutainer tubes (BD). Erythrocytes were re-
moved with the lysing buffer (BD Pharm Lyse) prior to staining
of dead cells with amine-reactive dye Zombie Aqua
(BioLegend). Leukocytes were then incubated in separate
stainings with antibodies against porcine FcγRIIa
(AbD29332.1), FcγRIIa/b (AbD32591.1), FcγRIIIa (CD16-
PE, clone G7, Bio-Rad), and HuCAL Fab-A-FH-negative con-
trol antibody (AbD05930). Unlabeled HuCAL antibodies were
then stained with a secondary PE-conjugated goat F(ab’)2 frag-
ment anti-human IgG, F(ab’)2 fragment specific polyclonal an-
tibody from Jackson ImmunoResearch. Cell events were ac-
quired on BD LSRFortessa with BD FACSDiva and analyzed
using FlowJo software.

Results

Localization of porcine FCGR3A and identification
of putative FCGR2A

The low-affinityFCGR locus on chromosome 4 in the minipig
genome draft based on Sus scrofa 10.2 was successfully sup-
plemented with contigs from the Göttingen and the Wuzishan
minipig and completed by PCR, cloning, and sequencing
(Fig. 1, Online Resource 3). Sequences from the two minipig
breeds differ in 0.31% mismatches and 1.25% indels spread
over the total alignment comprising 115,000 nucleotides. The
new assembly enabled the identification of exon sequences of
FCGR3A in a forward orientation. Additionally, exon se-
quences were detected with high similarity to the porcine
FCGR2B extracellular domain (ECD) and to porcine
FCGR3A transmembrane/cytoplasmic (TM/C) region. These
sequences belong to the putative porcine FCGR2A gene that is
located in reverse orientation where the orthologue to human
FCGR2Awas expected (Fig. 1 and Fig. 4). Thus, the obtained
sequence of the minipig low-affinity FCGR locus is complet-
ed and entirely contiguous. The newly characterized locus is
highly similar to the most recent reference sequence (RefSeq)
genome assembly of Sus scrofa 11.1 (Li et al. 2017).

Exon sequences of the putative porcine FCGR2A gene
were disclosed from the low-affinity FCGR locus of the
minipig by alignment of the sequences to porcine, human,
and mouse FCGR exons. This enabled the design of gene-
specific primers used for RACE PCR to identify cDNA ends.
In combination with RT-PCR, we determined the complete
sequence of the putative porcine FCGR2A transcript. The ex-
pected transcript, two potential polymorphisms, and three
splice variants were identified in the total RNA preparation
of one Göttingen minipig (Fig. 2) by Sanger sequencing of 30
clones.

The putative porcine FCGR2A cDNA is 1′241 bp long,
contains an 822 bp open reading frame (ORF) translating
to a 274 amino acids (aa) long protein (RefSeq No.
XM_021089520.1). Bioinformatic analysis revealed a
45aa long signal peptide followed by an ECD region con-
taining two immunoglobulin-like parts (Ig1, 74aa; Ig2,
78aa). Like porcine FcγRIIb, the ECD contains four po-
tential N-glycosylation sites (Asn79, Asn89, Asn187, and
Asn211) identified by the common motif (N-X-S/T)
(Aebi 2013). The receptor sequence predicts a 23aa hy-
drophobic TM part with a negatively charged aspartic acid
residue allowing interaction with the FcR γ-chain (Kim
et al. 2003). In the 27aa long intracellular part, no
immunoreceptor tyrosine-based activation motif (ITAM;
Y-X-X-L/I) or immunoreceptor tyrosine-based inhibition
motif (ITIM; S/I/V/L-X-Y-X-X-I/V/L) was found in con-
trast to human FcγRIIa or FcγRIIb, respectively (Isakov
1997; Ravetch and Lanier 2000) (Fig. 2).
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The putative porcine FcγRIIa.1 variant revealed a 24aa
de l e t i on w i t h i n t h e I g2 - l i k e pa r t o f t h e ECD
(Gly192_Gln215del) (Fig. 2). Further variants include
FcγRIIa.2 lacking the whole Ig2-like part of the ECD
(Asp131_Gln215del) and FcγRIIa.3 lacking the whole Ig1-
like part of the ECD (Ala45_Ser130del) and bearing the 24aa
deletion of FcγRIIa.1. Furthermore, four single nucleotide
polymorphisms were detected, two of them affecting the

coding sequence and thus representing potential polymor-
phisms. The A11S polymorphism is located in the signal se-
quence and the H205Y polymorphism in the Ig2-like part of
the ECD.

After translation of the ORF, we compared the newly iden-
tified putative porcine FcγRIIa to orthologous FcγRs from
different species by multiple sequence alignment (Fig. 3).
All human FcγRIIa orthologs share high sequence similarity

acatggggagaatttgtctgtcctctggggtggaatctgtcgagccttgagagaagcctg  60 
tcttgcgctggcgctgccagaggcaacctgcgtactccaggaggtgatggggatcccctc  120 
                                              M  G  I  P  S   5 

gttcctagccctccccgctgccaggagtgactgggctgattgcatgccctgccatccttt  180 
 F  L  A  L  P  A  A  R  S  D  W  A  D  C  M  P  C  H  P  L   25 

gggccacatgctcctgtggacagctctgctattcctggctcctgttcctgggacacgtgc  240 
 G  H  M  L  L  W  T  A  L  L  F  L  A  P  V  P  G  T  R  A   45 

agttctcccaaaggctgaggtgaagcttcagcctgcatggatcaatgtgctccaggagga  300 
 V  L  P  K  A  E  V  K  L  Q  P  A  W  I  N  V  L  Q  E  D   65 

ttctgtgacactgacgtgccagggcgaccatgaccctgggaacaccaccacccagtggtt  360 
 S  V  T  L  T  C  Q  G  D  H  D  P  G  N  T  T  T  Q  W  F   85 

ccataatgggaacttcacctggaccgagaaccagcccagcttcagctttaaggccaggag  420 
 H  N  G  N  F  T  W  T  E  N  Q  P  S  F  S  F  K  A  R  R   105 

agctagcagcggatactacaggtgccagactgcctactccagtctcagcgaccctgtgca  480 
 A  S  S  G  Y  Y  R  C  Q  T  A  Y  S  S  L  S  D  P  V  H   125 

tctggatgtgatttctgactggctgctgctccagacccctagcctggtgttccaggaagg  540 
 L  D  V  I  S  D  W  L  L  L  Q  T  P  S  L  V  F  Q  E  G   145 

ggagcccattgtgctgaggtgccatagctggagaaacaagcctctgcataaggtcgtatt  600 
 E  P  I  V  L  R  C  H  S  W  R  N  K  P  L  H  K  V  V  F   165 

tttccagaatggaaaatctaagaaattttcctacgtggagtccagcctctccatcccaca  660 
 F  Q  N  G  K  S  K  K  F  S  Y  V  E  S  S  L  S  I  P  H   185 

tgcaaaccacagtcatagtggtgagtaccactgcacaggatcaattgggaagacgtcaca  720 
 A  N  H  S  H  S  G  E  Y  H  C  T  G  S  I  G  K  T  S  H 205 

ctcatcacagcctgtgaacatcactgtccaaggtccggcaattctattcatctttccacc  780 
 S  S  Q  P  V  N  I  T  V  Q  G  P  A  I  L  F  I  F  P  P   225 

ttggtatcaaataactttctacctggcgatggggctcctttttgcagtggatacagggct  840 
 W  Y  Q  I  T  F  Y  L  A  M  G  L  L  F  A  V  D- T  G  L   245 

gtatttttctgtccagagagaccttcaatgctcaaagggagagtggaagaacagcaaagt  900 
 Y  F  S  V  Q  R  D  L  Q  C  S  K  G  E  W  K  N  S  K  V   265 

cagatggagccaaggccctcaggacaaatgatcgctcattccatggtgtaacagctgtgg  960 
 R  W  S  Q  G  P  Q  D  K  *                                 274 

tagcagcatctcttcagtccgtaactcttcccccagccccgacttaacagcaacttgggc  1020
caaggaccctccaaggaaggaaagggcctgtgatcttcagagctaaatcctaacaggtct  1080
tacctttactgatttcctgaaggccaaggtacagtcacaacccacccagctcttcaaaga  1140
ctcacagcaaatgtgttttcatagatgtttgacagaggctcctcaaatatatgaaacctc  1200
agtaaaccctgctctacttccaaaataaatccaacaatctg   poly(a) 

Fig. 2 The sequence of putative
porcine FcγRIIa mRNA is
written in lower case letters with
colors indicating alternating
exons. In the 3′ untranslated
region, the poly adenylation
signal (aataaa) is underlined and
bold. The amino acid sequence
deduced from the ORF is written
in capital letters below the
nucleotide sequence. The
predicted signal sequence is
marked with a broken underline
and the transmembrane (TM)
spanning part is underlined.
Letters in gray and italic mark the
missing 24 amino acids observed
in variant FcγRIIa1 and
FcγRIIa3. All four potential
N-glycosylation sites (N-X-S/T)
are circled and the negatively
charged aspartic acid residue in
the TM domain, required for FcR
γ-chain interaction, is indicated as
"D-" in a box
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FcγR2A_PIG MGIPSFLALPAARSDWA.DCMPCHPLGHMLLWTALLFLAPVPGTR     FcγR3A_PIG MWQLLSPTALLLLVSAGTHA 
FcγR2B_PIG MGIPSFLALPATRSDWA.DCMPCHPLGHMLLWTALLFLAPVPGTH     FcγR3A_COW MWQLLPPAALPVLVSADTQT 
FcγR2A_COW MGIPSFLAFPAARRNRA.HCTPWHPWGHMLLWTALPFLAPVPGKC     FcγR4_MUS  MWQLLLPTALVLTAFSGIQA 
FcγR2B_COW MGIPSFLAFPAARRNRA.HCTPWHPWGHMLLWTALLFLAPVSGKP     FcγR3A_RAT MWYLLLPTALLLTVSSGVGA 
FcγR2B_CYN MGILSFLPVLATESDWA.DCKSSQPWGHMLLWTAVLFLAPVAGTP     FcγR3A_CYN MWQLLLPTALLLLVSAGMRA 
FcγR2B_HUM MGILSFLPVLATESDWA.DCKSPQPWGHMLLWTAVLFLAPVAGTP     FcγR3A_HUM MWQLLLPTALLLLVSAGMRT 
FcγR2C_HUM MGILSFLPVLATESDWA.DCKSPQPWGHMLLWTAVLFLAPVAGTP     FcγR3B_HUM MWQLLLPTALLLLVSAGMRT 
FcγR2B_MUS MGILPFLLIP.MESNWT.VHVFSRTLCHMLLWTAVLNLAA..GTH    
FcγR2B_RAT MGTLLFLPLP.MDSNRTVVHVLSRTLYHMLLWTAVLNLVA..ESH    

 
                 * 
FcγR2A_HUM MTMETQMSQNVCPRNLWLLQPLTVLLLLASADSQA 
FcγR2A_CYN MTMETQMSQNVCPSNLWLLQPLTVLLLLASADSQT 
FcγR3_RAT  MTLETQMFQNAHSGSQWLLPPLTMLLLFAFADRQT 
FcγR3_MUS  MTLDTQMFQNAHSGSQWLLPPLTILLLFAFADRQS 
 
 
 
FcγR2A_PIG  AVLPKAEVKLQPAWINVLQEDSVTLTCQGDHDPGNTTTQWFHNGNFTWTENQPSFSFKAR
FcγR2A_COW  ADLPKAVVSIQPAWINVLREDHVTLMCQGTSFSAGNLTTWFHNGSSIHTQKQPSYSFRAG
FcγR3_MUS   AALPKAVVKLDPPWIQVLKEDMVTLMCEGTHNPGNSSTQWFHNGRSIRSQVQASYTFKAT
FcγR2A_CYN  AAPPKAVLKLEPPWINVLREDSVTLTCGGAHSPDSDSTQWFHNGNLIPTHTQPSYRFKAN
FcγR2A_HUM  AAPPKAVLKLEPPWINVLQEDSVTLTCQGARSPESDSIQWFHNGNLIPTHTQPSYRFKAN
 
 
FcγR2A_PIG  RASSGYYRCQTAYSSLSDPVHLDVISDWLLLQTPSLVFQEGEPIVLRCHSWRNKPLHKVV
FcγR2A_COW  SNDGGSYRCQREQTSLSDPVHLDVISDWLLLQTPSLVFQEGEPIMLRCHSWRNQPLNKIT
FcγR3_MUS   VNDSGEYRCQMEQTRLSDPVDLGVISDWLLLQTPQRVFLEGETITLRCHSWRNKLLNRIS
FcγR2A_CYN  NNDSGEYRCQTGRTSLSDPVHLTVLSEWLALQTPHLEFREGETIMLRCHSWKDKPLIKVA
FcγR2A_HUM  NNDSGEYTCQTGQTSLSDPVHLTVLSEWLVLQTPHLEFQEGETIMLRCHSWKDKPLVKVT
 
                       ▼                            ♦ 
FcγR2A_PIG  FFQNGKSKKFSYVESSLSIPHANHSHSGEYHCTGSIGKTSHSSQPVNITVQ 
FcγR2A_COW  FYQDGKSKTFSYQRTNFSIPRANLSHRGQYHCTAFIGKMLHSSQPVNITVQ 
FcγR3_MUS   FFHNEKSVRYHHYKSNFSIPKANHSHSGDYYCKGSLGSTQHQSKPVTITVQ 
FcγR2A_CYN  FFQNGISKKFSPMNPNFSIPQANHSHSGDYHCTGNIGYTPYSSKPVTITVQ 
FcγR2A_HUM  FFQNGKSQKFSHLDPTFSIPQANHSHSGDYHCTGNIGYTLFSSKPVTITVQ 
 
 
 
FcγR2A_PIG  ....GPAILFIFPPWYQITFYLAMGLLFAVDTGLYFSVQRDLQCSKGEWKNS.KVRWSQGPQDK   
FcγR3A_PIG  GSKSPSPILSFFLPWHQIIFCLVMGFLFAVDTGLYFSVRKVLRSSKEDWRNG.KVTWSRDPQDK   
FcγR2A_COW  DGNEGPAVPLIFSPWYQITFCLVMGLLLAVDTGLYFSVQRDLQSSMGDGKNN.KVRWSQDPQDK   
FcγR3A_COW  APETLQTVSSFFPPWHQITFCLVMGVLFAVDTGLYFSVRRHLQSS.EEWRDG.KVTWSKGP...   
FcγR3_MUS   ...DPATTSSISLVWYHTAFSLVMCLLFAVDTGLYFYVRRNLQTPREYWRKSLSIRKHQAPQDK   
FcγR4_MUS   ....DPGSPSMFPPWHQITFCLLIGLLFAIDTVLYFSVRRGLQSPVADYEEP.KIQWSKEPQDK   
FcγR3_RAT   ...GSATASTSSLVWFHAAFCLVMCLLFAVDTGLYFCVRRNLQTSGEDWRKSLSVGKYKAPQDK   
FcγR3A_RAT  ....DPTSPSSFLPWHQITFCLLIGLLFAIDTVLYFSVQRSLQSSVAVYEEP.KLHWSKEPQDK   
FcγR3A_CYN  QDLAVSSISSFFPPGYQVSFCLVMVLLFAVDTGLYFSMKKSIPSSTRDWEDH.KFKWSKDPQDK   
FcγR3A_HUM  QGLAVSTISSFFPPGYQVSFCLVMVLLFAVDTGLYFSVKTNIRSSTRDWKDH.KFKWRKDPQDK   

 
FcγR2A_CYN  VPSVGSSSPMGIIVAVVTGIAVAAVVAAVVALIYCRKKRISANSTDPVKAARNEPLGRQT  
FcγR2C_HUM  APS...SSPMGIIVAVVTGIAVAAIVAAVVALIYCRKKRISANSTDPVKAAQFEPPGRQM  
FcγR2A_HUM  VPSMGSSSPMGIIVAVVIATAVAAIVAAVVALIYCRKKRISANSTDPVKAAQFEPPGRQM  
 
FcγR2A_CYN  IALRKRQLEETNNDYETADGGYMTLNPRAPTDDDRNIYMTLSPNDYDNSNN  
FcγR2C_HUM  IAIRKRQPEETNNDYETADGGYMTLNPRAPTDDDKNIYLTLPPNDHVNSNN  
FcγR2A_HUM  IAIRKRQLEETNNDYETADGGYMTLNPRAPTDDDKNIYLTLPPNDHVNSNN  

 
FcγR2B_PIG  .GSSLNNLLVTIVVAVVAWIVAMAIAAAIAAWFRLRRKRISANHTDAE.EAAKIEAEDTITYSLLLHPEAAEGEAEASDYQNHI 
FcγR2B_COW  .ESSSSGPSSMTAVAIGTCFAAVAIVAAIITWFRLRRKPISAGLTDAENDAARTEAENTVTYSLLSHPDVAEEDSE.SDYQKRL 
FcγR2B_MUS  GPKSSRSLPVLTIVAAVTGIAVAAIVIILVSLVYLKKKQVPDNPPDLE.EAAKTEAENTITYSLLKHPEALDEETE.HDYQNHI 
FcγR2B_RAT  EPKSSSSLPVLTIVAAVAGIAVAAIVIILVSLVYLKKKQVPDTPSGLE.EAEKNEVENTITYSLLKHPEAPDEESD.HDYQNHI 
FcγR2B_CYN  VPSMGSSSPIGIIVAVVTGIAVAAIVAAVVALIYCRKKRISANPTNPD.EADKVGAENTITYSLLMHPDALEEPDD....QNRV 
FcγR2B_HUM  APSSS...PMGIIVAVVTGIAVAAIVAAVVALIYCRKKRISANPTNPD.EADKVGAENTITYSLLMHPDALEEPDD....QNRI 

Fig. 3 Comparison of FcγR protein sequences. A schematic representation
of the putative porcine (PIG) FcγRIIa transcript is shown at the top. The
boxes within the transcript represent signal regions (blue boxes), extracellular
domains (ECD, black box), and transmembrane/cytoplasmic regions (TM/C,
red boxes) of cattle (COW), mouse (MUS), rat (RAT), cyno (CYN), and
human (HUM). Human FcγRIIa amino acid residues in the ECD involved
in IgG-FcγR contact are marked in red and deduced areas of contact are bold
and double underlined. Human polymorphism R131H in FcγRIIa and the
minipig polymorphism H205Y in FcγRIIa are indicated as arrowhead and

diamond, respectively. Above and below the ECD alignment are shorter
alignments of the three different versions of the signal region and the TM/C
regions, respectively. These alignments are enhanced with sequences from
other related FcγRs to demonstrate the homology within each cluster. Note
that, in the signal region, some protein sequences are annotated as starting
with the methionine indicated by an asterisk. The conserved aspartic acid
residue (D) for FcR γ-chain interaction, the ITAM (Y-X-X-L/I) and ITIM
(S/I/V/L-X-Y-X-X-I/V/L) motifs are bold and underlined
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having a conserved extracellular structure including four cys-
teine residues required for disulfide bonds to form Ig-like
domains (black box in Fig. 3). Human FcγRIIa amino acid
residues involved in IgG-FcγR contact (Caaveiro et al. 2015)
are marked in red and the deduced areas of IgG contact in-
cluding residues predicted by other publications are indicated
in bold and double underlined (Hulett et al. 1995; Radaev
et al. 2001) in Fig. 3. In general, ECD regions involved in
the IgG-FcγR interactions showed strong conservation among
species, including conserved tryptophan residues, thus indi-
cating that the identified putative porcine FcγRIIa is capable
of IgG binding (Fig. 3, black box). Extracellularly, the
putative porcine FcγRIIa (aa 46–215) shares 75% similarity
to mouse FcγRIII (Uniprot, P08508; aa 31–196), 79% to cat-
tle FcγRIIa (Uniprot, A8DC37; aa 46–215), 80% to cyno
(cynomolgus monkey, Macaca fascicularis) FcγRIIa
(Uniprot, Q8SPW4; aa 30–199), and 79% to human
FcγRIIa (Uniprot, P12318; aa 37–206). However, striking
differences between the species are observed in the signal
region and the TM/C region of the Fc receptors. A closer
inspection and comparison to other FcγRs revealed three dif-
ferent non-related signal regions and three different non-
related TM/C regions (shown in Fig. 3 as blue and red boxes,
respectively). These regions are well conserved between spe-
cies and combined in different ways with the ECD region of
FcγRs (Fig. 3). This suggests a gene Bmosaicism^ that is very
likely the result of duplication and rearrangement of events in
the complex FCGR locus.We note that this mosaicism implies
that the concept of Borthology^ should only be applied to the
ECD region of the receptors. The intracellular ITAM of hu-
man and NHP FcγRIIa is required for direct activation signal-
ing (Isakov 1997) (Fig. 3, red middle box). Mouse FcγRIII,
cattle FcγRIIa, and putative porcine FcγRIIa, on the other
hand, are lacking such an intracellular ITAM. Like human
FcγRIIIa, these receptors signal through associated adaptor
proteins including FcR γ-chain (Lux and Nimmerjahn
2013). Charged residues in TM domains are thought to be
important for protein-protein interactions in the cell mem-
brane (Cosson et al. 1991). Especially, aspartic acid residues
in TM helices are thought to be required for stable surface
expression and interaction with the FcR γ-chain (Kim et al.
2003). These residues are also present in the predicted trans-
membrane domain of the newly identified gene, suggesting
that also the putative porcine FcγRIIa signals through the FcR
γ-chain (Fig. 3 red upper box).

A complete picture of the genomic organization
of the porcine FCGR locus

The new RefSeq assembly contains genes and curated tran-
scripts of FCGR1A (gene ID, 613130; transcript ID,
NM_001033011.1.1), FCGR2B (gene ID, 613131; transcript
ID, NM_001033013.2.1), and recently also FCGR3A (gene

ID, 397684; transcript ID, NM_214391.1.1). The predicted
transcript (transcript ID: XM_021089520.1) from the RefSeq
gene LOC110260307 (gene ID, 110260307) codes for the
11A 205H polymorphism of putative porcine FcγRIIa. In con-
trast, the transcript identified from sequences of the Göttingen
and the Wuzishan minipig (Fig. 1, Online Resources 3) codes
for the 11S 205Y polymorphism of putative porcine FcγRIIa.
However, both polymorphic variants were detected by se-
quencing of one Göttingen minipig.

The gene family of FcγRs displays a similar genomic or-
ganization as in most mammals (Fig. 4). Low-affinity FcγRs
are organized in one locus flanked by FCRLB and FCRLA on
one side, andCFAP126 and SDHC on the other side. The gene
coding for the inhibitory FcγRIIb is highly conserved in
mammalian species. FCGR3A in humans and pigs is also
known as FCGR3 in macaque and sheep and as FCGR4 in
the mouse (Nimmerjahn and Ravetch 2006). Similarly,
FCGR2A in humans, NHP, and cattle is referred to as Fcgr3
in the mouse (Fig. 4). The human genome was found to have
species-specific duplications of the low-affinity FCGR2A and
FCGR3A and the high-affinity FCGR1A resulting in
FCGR2C and FCGR3B as well as pseudogenes FCGR1B
and FCGR1C , respectively (Machado et al. 2012;
Warmerdam et al. 1993). Human and NHP have the gene-
encoding high-affinity FcγRIa located distant to the low-
affinity FCGR locus on chromosome 1. The same organiza-
tion was found in pig and cattle on chromosomes 4 and 3,
respectively. Dogs, mice, and rats, on the other hand, have lost
the chromosomal cohesion of FcγRIa and the low-affinity
FCGR locus. We assume that the ECD region of the newly
identified porcine FCGR gene is orthologous to human
FCGR2A andmouse FCGR3 due to their sequence similarities
(Fig. 3) and the orientation within the FCGR locus (Fig. 4).

The phylogenetic tree shows a high intraspecies similarity
between ECD region of activating FcγRIIa and inhibitory
FcγRIIb including the orthologues in mouse and rat (Fig. 5).
FcγRIIIa proteins, including mouse FcγRIV, form a separate
group with high interspecies similarity. Full-length porcine
FcγRIIa, for example, shows an amino acid sequence similar-
ity of 88% to porcine FcγRIIb (Uniprot, Q461P7), and only
61% to porcine FcγRIIIa (Uniprot, Q28942) whereas the
ECD region of porcine FcγRIIa and FcγRIIb are highly sim-
ilar to each other (95.3%).

Cellular distribution of FcγRs

Understanding the functional impact of FcγRs requires a thor-
ough characterization of their expression pattern in different
cell types. Hereto, the expression of the different FcγRs in
minipig PBMCs was addressed by single-cell RNA sequenc-
ing in comparison to human and mouse (Fig. 6). This technol-
ogy was previously used to identify novel immune cell sub-
types and monitor responses after immune activation (Jaitin
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et al. 2014; Villani et al. 2017); however, the cross-species
comparison was not performed yet. First, cells of every spe-
cies were clustered according to their expression profile and
displayed by dimensionality reduction on the t-SNE plots
(Fig. 6). Then, we identified clusters composed of NK cells,
cytotoxic T lymphocytes, T cells, and B cells in all species by
their characteristic expression profiles (Online Resource 2).

Such an approach enables to enumerate the expression levels
of any gene of interest in all cell types in an antibody-
independent manner. It was striking to see that minipigs have
a considerably larger part of PBMCs assigned to the mono-
cytic lineage. At the same time, the number of B cells identi-
fied in minipig PBMCs is smaller than in humans and signif-
icantly smaller than in mouse PBMCs. Subsequently, the

Fig. 4 Genomic organization of the FCGR locus in human, cyno, cattle,
mouse, and pig according to the Ensembl database. The black lines
represent a stretch of genomic DNA interrupted by lines indicating a
gap of diverse length. All species shown here, except the mouse, carry
the gene coding for the low-affinity receptors on the same chromosome.

Boxes above and below the black line indicate genes oriented in forward
and reverse orientation, respectively. Open boxes represent conserved
genes flanking the FCGR locus, whereas colored boxes represent various
FCGR genes found in the species indicated on the left

Fig. 5 Phylogenetic tree of FcγR
proteins in different species.
Inhibitory human FcγRIIb and its
orthologues are colored in green,
whereas low-affinity human
FcγRIIa and its orthologues are
shown in dark blue. All human
FcγRIIIa orthologues are colored
in light blue. Porcine FcγRs are
displayed in bold and underlined
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mRNA expression of the different FcγRs was then analyzed
in every species (Fig. 6).

The activating low-affinity FcγRIIIa is most strongly
expressed among the FcγRs in all the species studied here.
Minipig PBMCs revealed a strong and relatively homoge-
neous FcγRIIIa expression on all monocytes, DCs, NK cells,
and cytotoxic T lymphocytes. Interestingly, T cells and B cells
showed heterogeneous expression suggesting either different
cell subsets or activation states. Human monocytes are often
separated in classical, intermediate, and non-classical mono-
cytes according to the CD14 and CD16 (FcγRIIIa) expression
(Ziegler-Heitbrock 2015). As expected, the larger CD14high

classical monocyte subset did not express FcγRIIIa, whereas
the minor non-classical CD14low subset was strongly positive
for FcγRIIIa. Also, in mice, it is the cluster containing the
monocytes that shows expression for FcγRIIIa, while the oth-
er immune cell types, in contrast to the other species, show no
expression. The inhibitory low-affinity FcγRIIb was found to
be expressed mainly on monocytes, B cells, and DCs of the
minipig. Human monocytes were not found to express
FcγRIIb, while mouse FcγRII was weaker expressed in the
monocyte and DC cluster as compared to the minipig.

Expression of FcγRIIb in human and mouse PBMCs was
mainly found in B cells. FcγRIIa, the activating low-affinity
receptor we identified with our mapping strategy, is expressed
at lowest levels in minipigs and humans. In the minipig,
FcγRIIa mRNA was only detected in very few cells of the
monocyte cluster. More monocytes were positive in the hu-
man and expression levels are slightly higher. Mouse FcγRIII,
the orthologue of FcγRIIa, is expressed on most cells of the
monocyte/DC cluster at highest levels compared to the other
species. Similar expression levels and patterns were observed
for FcγRIa. In the minipig, the expression is at low levels and
restricted to monocytes. In humans, CD14high CD16- classical
monocytes express FcγRIa, in contrast to CD14low CD16+
non-classical monocytes. Mice show a similar FcγRI expres-
sion pattern on a subset of the monocyte/DC cluster.

As gene expression studies only measure the mRNA,
which may not fully reflect surface protein expression, we
performed flow cytometry to assess the FcγR expression
in the blood of three Göttingen minipigs. Cell types were
identified according to the forward and side scatter prop-
erties, and their identity was confirmed using specific an-
tibodies (Online Resource 4). Figure 7 shows a strong

Fig. 6 Single-cell RNA sequencing analysis of FCGR expression in
minipig, human, and mouse PBMCs. For every species, the cells were
clustered individually according to their gene expression pattern and
displayed as dot plots by dimensionality reduction using t-SNE. The
clustering for every species is shown on the left with outlines for better
separation. Individual clusters are labeled with BMo^ for monocytes,

BDC^ for dendritic cells, BNK^ for NK cells, BCTL^ for cytotoxic T
lymphocytes, BT^ for T cells, BB^ for B cells, and B?^ for mixture cell
types. In mouse PBMCs, monocytes and dendritic cells are summarized
in the BMo/DC^ cluster. The visualization shows the expression of the
FCGR indicated above where positive cells are labeled in blue and
negative cells in gray
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staining with the FcγRIIa-specific HuCAL antibody on
platelets (P1) and a weak staining on a subpopulation of
eosinophils (P5). The FcγRIIa/b cross-reactive HuCAL
antibody stains platelets, most monocytes (P3), and some
eosinophils as well. FcγRIIIa staining was observed with
varying intensities on monocytes, neutrophils, and eosin-
ophils. Only a few cells were positive in lymphocyte pop-
ulation (P2).

Discussion

The three different classes of FcγRs form a finely tuned sys-
tem required for efficient immune reactions in mammals.
Minipigs represent a valuable alternative to NHP in preclinical
studies. Thus, it is of particular importance to know all FcγR
components in a preclinical animal model intended for testing
of therapeutic antibodies. The characterization of the low-

affinity FcγR proteins and genes in minipigs should provide
a basis for preclinical studies with therapeutic antibodies.

While the inhibitory receptor is widely described as
FcγRIIb (in the mouse known as FcγRII), the nomenclature
of the low-affinity-activating FcγRs has evolved in a far more
divergent manner. The low-affinity FcγRIIa is well-known in
humans and has been described in the NHP, cattle, and other
mammals, such as rabbits and sheep (Akula et al. 2014). The
orthologue in the mouse, however, was named FcγRIII at its
discovery (Nimmerjahn and Ravetch 2006). This receptor was
initially not known in pigs due to an incomplete genome char-
acterization and therefore was not described by Akula et al.
(2014). In the present study, we were able to identify the
putative porcine FcγRIIa located on chromosome 4 of the
Göttingen minipig. The orthologue to human FcγRIIIa is
known in NHPs, cattle, and other mammals, including the
mouse, where it was designated as FcγRIV (Nimmerjahn
et al. 2005). The orthologous FcγRIIIa cDNA and protein
were also described in the pig but the corresponding gene

Fig. 7 Flow cytometry analysis of FcγR distribution on minipig blood
leukocytes. Gating strategy is shown in Online Resource 4. Histograms
normalized to mode show stainings observed using an FcγRIIa-specific
HuCAL antibody, an FcγRIIa/b cross-reactive HuCAL antibody, and an

anti-CD16 (FcγRIIIa) antibody in blue. Stainings with a HuCAL control
antibody are shown as an overlay with a black line representing the
background. A representative analysis of one out of three experiments
with different Göttingnen minipigs is shown
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and its genomic localization was unknown (Akula et al. 2014;
Halloran et al. 1994). Here, we describe the localization of the
gene FCGR3A encoding the minipig FcγRIIIa between
FCGR2B and the putative FCGR2A on chromosome 4 of
the Göttingen minipig on the forward strand. The identifica-
tion of the putative FCGR2A and the localization of FCGR3A
in pigs allow the comparison of the low-affinity FCGR locus
to other species. We found that this locus of the minipig is
organized similarly as in NHP, cattle, rat, and mouse with the
position of the putative porcine FCGR2A gene coinciding
with the other species. Nevertheless, significant differences
to the human FCGR locus were observed. Thus, the complete
characterization of the low-affinityFCGR locus of the minipig
presented here confirms the absence of genes coding for ho-
mologs of the human FcγRIIIb and FcγRIIc, as is the case for
all other animal species studied so far.

Sequence similarity displayed in the phylogenetic tree in
Fig. 5 shows that FcγRIIa and FcγRIIb of the same species
usually cluster together, probably originating from
a duplication event early in speciation (Akula et al. 2014).
The high similarity of the ECD region of porcine FcγRIIb to
the newly identified porcine FcγRIIa fits in the pattern ob-
served with the corresponding receptors from other species.
Therefore, we suggest naming the transcript FcγRIIa.
However, as detailed in Fig. 3, exons coding for the signal
region and the TM/C region of the FcγRs appear to be shuf-
fled during gene duplications and rearrangements leading to a
mosaic structure that is characteristic for primates, rodents,
and artiodactyls, respectively. Predictions suggest intracellular
signaling by porcine FcγRIIa via interaction with the FcR γ-
chain as it is described for cattle FcγRIIa and mouse FcγRIII
(Lux and Nimmerjahn 2013). This similarity strengthens the
hypothesis of the orthology among these receptors. On the
other hand, FcγRIIa in primates is known to signal via inte-
grated intracellular ITAM. It should be considered that differ-
ences in ITAMs potentially lead to functional differences be-
tween Fc receptors (Herik et al. 1995).

Two potential polymorphisms, A11S and H205Y, were iden-
tified in the main FcγRIIa transcript. The first located in the
signal region and the latter was identified in the Ig2-like part
of the ECD involved in the interaction with IgG antibodies
(Fig. 3). Due to its location, the H205Y polymorphism could
potentially influence binding affinities to certain IgG subclasses.
Apart from that, we found three potential isoforms of porcine
FcγRIIa with unknown functions and significance, probably
generated by alternative splicing. Similar splice variants were
already described for porcine FcγRIIb (Xia et al. 2012; Xia et al.
2011) and FcγRIIIa (Jie et al. 2009). In particular, humans were
shown to have splice variants and polymorphisms with signifi-
cant functional consequences. Altered binding affinities are as-
sociated with the outcome of therapeutic antibody treatments
and with disease progression (Bournazos et al. 2010; Ziakas
et al. 2016). Studies with more minipigs are required in order

to assess the potential incidence of polymorphisms, splice var-
iants, and sub-isoforms. Additionally, their biological relevance
remains to be assessed.

Biological responses triggered by FcγRs do not only depend
on the affinity of IgG interaction but also on their cellular distri-
bution (Albanesi and Daeron 2012). Knowing the expression of
FcγRs on immune cells facilitates the estimation of effects trig-
gered by IgG interaction. We performed single-cell RNA se-
quencing on minipig, human, and mouse PBMCs to study the
FcγR expression profile on various cell types.

In the Göttingen minipig, FcγRIa transcripts were only
identified in monocytes at similar levels as observed in human
and mouse. Like in humans, no FcγRIa expression was de-
tected in minipig blood DCs although FcγRIa expression was
often reported in human DCs (Nimmerjahn et al. 2015;
Tamoutounour et al. 2012). FcγRIa expression, however,
was usually analyzed in tissue resident or induced DCs and
not found in blood DCs (Langlet et al. 2012). Devriendt et al.
(2013) showed that the FcγRIa expression profile on
porcine DCs depends on the activation stimulus, and similar
findings were observed for human DCs. Therefore, FcγRIa
expression can neither be excluded from minipig blood DCs
nor from tissue-resident subsets. Varying expression levels of
FcγRIa between minipig and human DCs could, however,
result in varying capacity for antigen presentation by immune
complexes and cytokine production (Cohen-Solal et al. 2004;
van der Poel et al. 2011).

Only a few monocytes of the minipig showed weak
staining for FcγRIIa. Generally, the FcγRIIa expression
in PBMCs seems to be lower in the minipig as compared
to humans and mice. This low expression was also ob-
served in porcine gene expression data from NCBI (Li
et al. 2017). Low expression of FcγRIIa in monocytes
could theoretically be upregulated upon inflammatory
s t imul i s imi lar to other act ivat ing Fc receptors
(Nimmerjahn et al. 2005; Pricop et al. 2001). Like humans,
minipigs express FcγRIIa on platelets as detected by flow
cytometry (Rosenfeld et al. 1985). Platelets are mediators
of immune responses upon binding of IgG immune com-
plexes via FcγRIIa. This interaction can lead to platelet
activation, phagocytosis, and ultimately to thrombus for-
mation with pathological consequences (Worth et al. 2006;
Zhi et al. 2015). The minipig might thus be a good model
to study platelet-mediated functions and side effects of
therapeutic antibodies, such as bevacizumab-induced reti-
nal vein thrombosis, in contrast to mice that do not express
FcγRIIa on platelets (Meyer et al. 2009). Gene expression
data from NCBI Gene show that FcγRIIa is mainly
expressed in the liver and the lung of pigs. Generally, the
porcine FcγR expression is mainly detected in the liver,
lung, and spleen tissue. This expression profile suggests
that FcγRIIa mediates important immune functions in
tissue-resident cells other than platelets in the blood.
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Single-cell RNA sequencing of minipig PBMCs shows
FcγRIIb expression on B cells, DCs, and monocytes.
FcγRIIb expression on monocytes correlated with flow cy-
tometry data using FcγRIIa specific and FcγRIIa/b cross-
reactive HuCAL antibodies. Presently, the exact cellular dis-
tribution of FcγRIIb cannot be evaluated due to the lack of
specific antibodies. A previous study postulates cross-
reactivity of anti-human CD32 antibody (AT10) without
showing data (Balmelli et al. 2005), a finding that could not
be confirmed in our hands (not shown). The expression of
FcγRIIb on minipig B cells and DCs reflects the situation in
humans. On the other hand, minipig and mouse blood mono-
cytes were found to express FcγRIIb as well, whereas human
blood monocytes do not (Nimmerjahn et al. 2015). Low levels
of FcγRIIa together with high levels of FcγRIIb on minipig
monocytes could result in enhanced inhibitory signaling com-
pared to humans. Hence, this could lead to an underestimation
of effects or toxicity observed in minipig studies with thera-
peutic antibodies with FcγR-mediated effector functions.

Porcine FcγRIIIa was so far the best studied Fc receptor
due to its high expression and the availability of specific anti-
bodies. Its expression pattern was closely reflected in our
single-cell RNA sequencing and flow cytometry analysis
(Piriou-Guzylack and Salmon 2008). Minipig and human
FcγRIIIa was found to be the highest expressed FcγR in
PBMCs. In both species, T cells and B cells were found to
express FcγRIIIa mRNA. Whereas FcγRIIIa expression on
human T cells is controversially discussed in the literature
(Nimmerjahn and Ravetch 2008), it can be excluded on B
cells. Therefore, the FcγRIIIa expression in Tcells and B cells
of both species is considered as unspecific or represents dif-
ferent subsets or activation states. The difference between
minipig and human is that FcγRIIIa is only expressed on
monocyte subpopulations in humans, whereas it is expressed
in all monocytes in the pig (Rubic-Schneider et al. 2016). The
ubiquitous expression of activating FcγRIIIa on minipig
monocytes could possibly counteract the inhibitory effects of
FcγRIIb and the low levels of FcγRIIa. In therapeutic anti-
body research, a careful evaluation of the interaction to the
various FcγRs would be needed to estimate the activation or
inhibition potential of the antibody on minipig monocytes.
Altogether, the human expression pattern of these FcγRs is
more concordant with porcine than with murine monocytes
(Fairbairn et al. 2013). The expression pattern of FcγRs is
known to vary not only between species but also between
individuals. As mentioned before, it can also be influenced
by different stimuli, the immune status, or upon treatment.
Therefore, further studies with more minipigs under different
conditions are required to make a precise statement about the
FcγR distribution in health and disease.

Our work allowed the localization of FcγRIIIa and the
identification of the hitherto undescribed FcγRIIa on chromo-
some 4 of the Göttingen minipig. The newly identified

FcγRIIa described here is considered as an orthologue to hu-
man, NHP, and cattle FcγRIIa as well as to mouse FcγRIII
due to the highly conserved extracellular structures. The iden-
tification of FcγRIIa completes the picture of FcγRs in the pig
and provides the genetic foundation for further studies. Our
expression studies are the first to describe the expression of
FcγRIa in monocytes and FcγRIIa on platelets of the
Göttingen minipig. Additionally, FcγRIIb was found in
monocytes, DCs, and B cells. The higher expression of
FcγRIIIa and FcγRIIb and the lacking expression of
FcγRIIa on monocytes are different to humans. Therefore,
effects on monocytes should be carefully evaluated before
using the minipig in preclinical studies with therapeutic anti-
bodies. Nevertheless, FcγRIIa expression on platelets makes
the minipig a valuable model to study platelet-mediated ef-
fects of therapeutic antibodies which are hard to evaluate in
mice.
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Online Resource 1 List of primers used for amplification of FCGR sequences and the identification of the putative porcine FCGR2A 

transcript. Refer to Fig. 1 for an overview of the primer location. 

Primer Region Orientation Sequence 

JE2 FCGR2A Ig2 forward CCAGCCTCTCCATCCCACATGCAAACC 
JE4 FCGR2A TM/Cyt reverse GCAAAAAGGAGCCCCATCGCCAGGTAG 
JE5 FCGR2A 3’UTR reverse GGCCCAAGTTGCTGTTAAGTCGGGGCTG 
JE24 FCGR3 Ig2 forward CTTCGGAGGCTGTGAAAGTC 
JE26 FCGR3 TM reverse TGATGGGATAGGTGATGGAC 
JE28 FCGR2A Ig2 forward ACCCCTAGCCTGGTGTTCC 
JE35 FCGR2A 5’UTR forward TGCGTACTCCAGGAGGTGATGG 
JE36 FCGR2A 5’UTR forward TGCTATTCCTGGCTCCTGTTCC 
JE41 FCGR2A intron forward GGTCAGTCTCTTGGGTCAGC 
JE42 FCGR2A intron reverse CCACCTAAGATGTGGTCCCAG 
JE47 FCGR2A intron forward GGGCTCAATGACTGTTTGCTG 
JE49 FCGR2A intron reverse CTGATCCTCCAGGGCAGTATCC 
JE58 FCGR2A intron forward TCCAGGGGCCTTCTTATACTC 
JE61 FCGR2A intron reverse AGCCCTCGGATGTATGAAAAG 
JE62 FCGR2A intron forward TTGCTGGCCTGTTAGTACCTG 
JE64 FCGR2A intron reverse GAGGAGCCTACGTTTGGAATC 
UPM 5’ or 3’ RACE  CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT 
UPM-short nested primer  CTAATACGACTCACTATAGGGC 

 

 

Online Resource 2 List of differentially expressed genes used to summarize clusters to the indicated cell types. In the mouse, it was 

not possible to separate monocytes and dendritic cells. 

 Minipig Human Mouse 

M
o

n
o

cy
te

s 

SIRPA CD14 Cd14 
CD14 CD16 Cd68 

CD163 CX3CR1 Adgre1 
SLA-DRB1 ITGAM Lgals3 
SLA-DRA CD163 Apoe 

FCN1 CD68 Mafb 
LGMN CD86 Fcgr3 
TREM1 CSF1R Ly6e 
CLEC4E CCR2 H2-Aa 
CLEC7A SELL H2-Eb1 

CCR2   
CYP1B1   

 

 Minipig Human Mouse 

D
C

 

SIRPA ITGAX Itgax 
CD14 PLAC8 Thbd 
FLT3 FCER1A Cd38 

ITGAX IL3RA Cd209a 
PLAC8 CD1C Cd74 

FCER1A CD33 Flt3 
CD74 CD1E H2-Aa 

SLA-DRB1 HLA-DRB1 H2-Eb1 
SLA-DRA CLEC4C Ifi30 

CD33 NRP1 Napsa 
IFI30 LY75 Itgb7 

ITGB7 ANPEP Syngr2 
SYNGR2  Clec10a 

  Ahr 
  Tlr13 
  CD24a 
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 Minipig Human Mouse 
B

 c
el

ls
 

CD79A MS4A1 Cd79a 
CD19 CD19 Cd19 

MS4A1 CD79A Cr2 
SLA-DRB1 CD40 Fcer2a 
SLA-DRA CD86 CD22 

CD86 HLA-DRB1 Ms4a1 
CD40  CD86 

  H2-Ab1 
  Cd24a 
  Cd38 
  CD40 

 

 Minipig Human Mouse 

T
 c

el
ls

 

CD3 CD3E Cd3e 
CD4 CD4 Cd3d 
CD8 CD5 CD40 

ITGB1 IL2RA CD8a 
CD5 CCR7 CD8b1 

FOXP3 MAL CD5 
IL2RA  Ms4a4b 
CCR7  Cd28 
Cd28  Il7r 
Il7r  Lef1 
Lef1  Dapl1 

Dapl1   
 

 Minipig Human Mouse 

C
y

to
to

x
ic

 T
 c

el
ls

 

CD3E CD3D Cd3e 
CD8A CD8A Cd8a 
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Online Resource 3 Nucleotide sequence of the low affinity FCGR locus of the minipig including FCGR3A in forward orientation and 

FCGR2B and FCGR2A in reverse orientation. Exon sequences from FCGR2B, FCGR3A, and FCG2A are highlighted in green, light blue, 

and dark blue, respectively. Adjacent 5’ and 3’ untranslated regions are marked in grey. Splice acceptor (AG or CT) and donor (GT or 

AC) sites are bold and underlined. Start and stop codons are marked with an open box. 

Available online in the published version or on request 
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Online Resource 4 Gating strategy for flow cytometry analysis of minipig blood. Whole blood from Göttingen minipigs was stained 

with the indicated fluorochrome-labeled antibodies. From single and live cells, gates P1-P5 were selected using forward (FSC) and 

side scatter (SSC) and cell types were identified using the following antibody clones: CD45 (K252.1E4), CD61 (JM2E5), CD3e (BB23-

8E6-8C8), CD21 (BB6-11C9.6), CD335 (VIV-KM1), CD8a (76-2-11), CD172a (74-22-15A), CD14 (MIL2), and CD52 (11/305/44). 

Numbers indicate the percentage of cells within the respective population (P1-P5). 
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6.4 Supplementary experiments 

This section describes and discusses further results collected during the characterization of poFcγRs, 

beyond the results shown in Manuscript 1. 

To recap, Fig. 6.1 summarizes the expression of poFcγRs on cells of the immune system to provide a 

general overview. This summary reflects compiled data from Manuscript 1 and previously published 

studies on FcγRs in pigs [84, 86, 87]. 

Fig. 6.1 Expression of poFcγRs on immune cells of the minipig. Inhibitory (red) and activating (green) FcγRs are shown on cells 
involved in antibody-mediated effector functions analogous to Fig. 4.3. The CD14 expression separates human and porcine 
monocytes in classical (CD14high), intermediate, and non-classical (CD14low) monocytes with varying poFcγRIIIa levels [84]. The 
inducible expression of poFcγR is so far not studied and therefore not reflected in this figure. * Indicates the absence of 
poFcγRIa on DCs in the blood. 

6.4.1 Characterization of the genomic FCGR locus and its genes in the minipig 

Manuscript 1 describes the complete assembly of the low affinity FCGR locus from next generation 

sequencing data of minipigs. We found that this locus was not correctly assembled in the chromosome 

draft of the Göttingen minipig and the pig genome Sus scrofa 10.2 probably due to repetitive 

sequences within FCGR genes. Furthermore, we identified problems with the integrity of the whole 

genome shotgun contig AJKK01167168 of the Wuzishan minipig (Manuscript 1 Fig. 1 blue line on the 

far right). This contig included the beginning of FCGR2A next to other sequences of FCGR2B suggesting 

a wrong assembly and questioning the integrity of the other whole genome shotgun contigs. However, 

the product length of PCR screenings confirmed their integrity and the correct transitions between 

neighboring contigs. 

We also tried to sequence the locus around the newly described FCGR2A at the contract research 

organization Cergentis. For this investigation a technology called Targeted Locus Amplification with 

FCGR2A specific primers was utilized. This technology amplifies and sequences nucleotides in close 

physical proximity to the primers [88]. From this approach, we obtained many sequencing reads 

mapping to different regions within the FCGR2A gene. Nevertheless, it was not possible to use these 

reads for any assembly due to their process-related fragmentation.  
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6.4.2 Distribution of FcγRs on immune cell subsets and in organs of the minipig 

The distribution of poFcγRs on the cell surface of various immune cells in the blood was studied in 

Manuscript 1. Expression patterns of huFcγRs, however, have been characterized more thoroughly for 

example in minor immune cell subsets in blood and immune organs. For example, NK cells that are 

important mediators of ADCC via huFcγRIIIa only represent a small fraction of lymphocytes [89]. Their 

detection by flow cytometry requires a combination of different cell surface markers to be 

distinguished from other blood lymphocytes. Moreover, huFcγRIIb is largely absent on monocytes and 

neutrophils in the blood, but present in spleen and lymph nodes [12]. Therefore, it is important to 

further analyze immune cell subsets in various tissues of the minipig for the expression of different 

poFcγRs. 

To get a more detailed view on the poFcγR distribution on specific cell subsets in different organs of 

minipigs, we performed multicolor flow cytometry stainings including diverse cell type-specific surface 

markers. Blood, lymph nodes, and spleen of two minipigs were collected by pathologists. The organs 

were passed through a 70 μm cell strainer to generate single cell suspensions. Then, cells were stained 

with different cocktails of cell surface markers together with one FcγR antibody at the time. PoFcγRIIa 

and poFcγRIIa/b were stained using unlabeled HuCAL antibodies (clones AbD29332.1 and AbD32591.1, 

respectively) and poFcγRIIIa was detected using the commercially available PE labeled anti-pig CD16 

(clone G7) antibody. The lymphoid staining includes CD3e (BUV395, BB23-8E6-8C8), CD8a (BV786, 76-

2-11), CD4a (PE-Cy7, 74-12-4), CD335 (APC, VIV-KM1), and CD21 (DyLight488, BB6-11C9.6) enabling 

the identification of B cells, T helper and T effector cells, and NK cells. Platelets were identified in 

another staining with CD61 (FITC, JM2E5) and CD45 (AF647, K252.1E4). A myeloid staining was also 

included using CD14 (AF700, MIL2), CD172a (PerCP-Cy5.5, 74-22-15A), CD4 (PE-Cy7, 74-12-4), and 

CD52 (FITC, 11/305/44) for the identification of monocytes, DCs, neutrophils, eosinophils, and 

basophils. In this experiment, we used the secondary PE labeled goat F(ab’)2 anti-human IgG antibody 

(Jackson) to detect the unlabeled HuCAL antibodies. The use of other secondary antibodies or direct 

labeling with different antibody labeling kits did not improve the results. 

Fig. 6.2A shows the gating of the lymphoid cell subsets in the different organs obtained with the 

lymphoid staining after gating on single and live cells. The poFcγRIIa and poFcγRIIa/b expression on B 

cells, T cell subsets, and NK cells in blood, lymph node, and spleen is shown in Fig. 6.2B. The detailed 

analysis of minipig whole blood revealed poFcγRIIIa staining of NK cells and neutrophils, but not of B 

cells and T cell subsets, as previously described (not shown [87]). However, flow cytometry analysis of 

lymphoid cells within the blood, lymph node, and spleen did not reveal further expression of poFcγRIIa 

and poFcγRIIb (Fig. 6.2B). As described in Manuscript 1, we found poFcγRIIa on blood platelets and 

poFcγRIIb on blood monocytes of the minipig (not shown). The results from single cell RNA sequencing 
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of minipig peripheral blood mononuclear cells (PBMCs) indicate the expression of poFcγRIIb in B cells 

(Manuscript 1 Fig. 6). Interestingly, we did not detect expression of poFcγRIIb in CD3- CD21+ B cells by 

flow cytometry (Fig. 6.2B). In general, a high background was observed with the HuCAL control 

antibody in combination with the secondary anti-human IgG antibody masking a possible specific 

staining for poFcγRIIb (Fig. 6.2B). Importantly, the flow cytometry analysis excluded the expression of 

poFcγRIIa and poFcγRIIb on NK cells and T cell subsets in blood, lymph nodes and spleen. 

 

 

Fig. 6.2 Detailed flow cytometry analysis of the poFcγR distribution on blood, lymph nodes and spleen of a Göttingen minipig. 
(A) Gating strategy for identification of specific lymphocyte subsets. T cells were separated from B cells (G1) by staining with 
CD3e (BUV395) and CD21 (DyLight488). CD3e positive T cells (G2-G4) were further characterized by CD4a (PE-Cy7) and CD8a 
(BV786). CD3e negative cells were further divided in two NK cell subsets (G5 and G6) using CD335/NKp46 (APC) and CD8a 
(BV786). (B) Histograms show stainings for poFcγRIIa (blue), poFcγRIIa/b (red), and HuCAL control antibodies (grey). Data 
from one out of two minipigs is shown. 
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The myeloid staining for monocytes, DCs, and granulocyte subsets was also tested in all organs but has 

not worked together with the HuCAL antibodies due to high background signals. Further analyses 

revealed that the anti-human IgG antibody yielding best results for HuCAL antibody detection cross-

reacted with many antibodies required for the myeloid staining (not shown). We only applied the 

platelet staining in the blood compartment, because CD45- CD61+ platelets were not expected in the 

other organs. This staining allowed the identification of poFcγRIIa on all platelets using HuCAL 

antibodies (not shown). 

In another experiment, we stained minipig blood cells with different anti-human and anti-mouse FcγR 

antibodies to identify cross-reactive clones. Furthermore, lymph nodes and spleen cells were also 

analyzed with anti-human CD32 (FcγRIIa/b, clone AT-10) and CD64 (FcγRIa, clone 10.1) antibodies that 

were previously shown to be cross-reactive [90]. However, the results did not identify cross-reactive 

clones. The lacking cross-reactivity was also confirmed by enzyme-linked immunosorbent assay (ELISA) 

with recombinant porcine FcγRs (not shown). 

FcγR expression studies in minipigs using HuCAL or human FcγR antibodies remain difficult due to low 

expression levels of certain FcγRs, lack of cross-reactivity, and assay-dependent limitations. The set of 

experiments presented here was omitted from the Manuscript 1 because it did not give further insights 

in the expression pattern of FcγRs in minipigs. The Fab domains of the HuCAL antibodies used here are 

dimerized via alkaline phosphatase and contain a FLAG and His6 protein tag (Fab-A-FH). This special 

format possibly causes high background in flow cytometry experiments due to unspecific interactions. 

The conversion into a fully human antibody and subsequent labeling with fluorochromes would 

eliminate the alkaline phosphatase and the need of secondary antibodies, thus preventing related 

background signals. Furthermore, the readily available soluble poFcγRs technically also allow the 

generation further antibodies specific for poFcγRIa or poFcγRIIb. Such tools would enable further cell 

surface expression studies in minipigs. 

Apart from experiments with further HuCAL antibodies, we have observed poor poFcγRIIa expression 

in minipigs by single cell RNA sequencing compared to other species (Manuscript 1 Fig. 5). PoFcγRIIa 

could reflect the situation of huFcγRIIc that is expressed only in 7 to 15% of healthy individuals [91]. In 

this case, more minipigs and possibly also other breeds would have to be analyzed to cover a larger 

population. Alternatively, poFcγRIIa could be upregulated in inflammatory conditions. Upregulation of 

activating FcγR expression, such as huFcγRIa or mouse FcγRIV, was shown to be induced by 

lipopolysaccharide (LPS) or interferon gamma (IFN-γ). Similarly, other cytokines like interleukin (IL)-4, 

IL-10, or transforming growth factor beta (TGF-β) are known to upregulate the inhibitory FcγRIIb while 

downregulating activating FcγRs [14, 92]. In one experiment, we tried to stimulate different cell types 

by various stimulants and to detect poFcγRIIa upregulation on transcription and expression level. 
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Therefore, whole blood of one Göttingen minipig was stimulated for 48h with three concentrations of 

four different stimulants. We have chosen 1) LPS as a general inflammatory stimulus for monocytes 

and DCs via pattern recognition receptors [93]; 2) human tumor necrosis factor alpha (TNF-α) as an 

inflammatory mediator stimulating the differentiation of various cell types [94]; 3) Concanavalin A 

(ConA), a plant mitogen stimulating T cells in mice and humans [95]; and 4) cytosine–phosphate–

guanosine oligodeoxynucleotides (CpG-ODN) mediating immunostimulatory effects on B cells, NK cells 

and monocytic cells and known to enhance huFcγRIa-mediated cross-presentation of DCs [96, 97]. 

Following stimulation, the cells were analyzed for poFcγRIIa and poFcγRIIIa expression by flow 

cytometry and reverse transcription-polymerase chain reaction (RT-PCR). The results did not show 

upregulation of the analyzed activation poFcγRs in the tested culture conditions (not shown). Reasons 

for the negative result could be manifold including the choice of stimulants, their concentrations, 

incubation times, and culture conditions as well as the detection methods. Although human TNF-α can 

directly stimulate porcine endothelial cells leading to upregulation of inflammatory markers, its 

porcine orthologue was shown to be more effective [98]. Additionally, the assay was not optimized 

resulting in a low viability of granulocytes. Further assay optimization and a broader range of stimuli 

would be necessary to investigate the induction of poFcγRIIa. Due to the negative result and the 

required assay optimization, we did not further assess the stimulation-induced upregulation of 

poFcγRIIa. 
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7 Interaction of human IgG with porcine FcγRs 

7.1 Purpose 

FcγR binding is crucial for effector functions of many therapeutic antibodies and hence for their mode 

of action and safety profile. So far, it was unknown how human antibodies interact with the poFcγRs 

of the minipig which represents a preclinical animal model of high interest. Cross-reactivity of human 

therapeutics with the immune system of the animal model is a prerequisite for species selection for 

preclinical studies. Therefore, we aimed to assess the binding of huIgG to poFcγRs in the minipig, as it 

was assessed for FcγRs in the mouse and the NHP (Fig. 7.1). 

Fig. 7.1 Graphical abstract 
illustrating interaction studies 
assessing the binding of IgG 
antibodies to soluble and 
membrane-bound poFcγRs. 

 

 

 

 

7.2 Main results 

Surface plasmon resonance (SPR) analysis and cellular binding assays revealed that poFcγRIa, IIa, and 

IIb bind free- and immune-complexed therapeutic huIgG1 antibodies suggesting possible triggering of 

effector functions. PoFcγRIIIa in minipigs, however did not bind huIgG1 possibly leading to an 

underestimation of NK cell mediated efficacy or toxicity. 
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7.3 Manuscript 2 

The interaction of minipig FcγRs with human IgG – implications for 

preclinical assessment of therapeutic antibodies 

Jerome Egli, Til Schlothauer, Christian Spick, Stefan Seeber, Thomas Singer, Alex Odermatt, 

Antonio Iglesias 

Pharmaceutical Research 2019 36:47 doi: 10.1007/s11095-019-2574-y 

Contribution – First, I designed, cloned and expressed all soluble and full-length poFcγRs, as well as 

HER2 specific poIgGs in the laboratory of Stefan Seeber. Subsequently, I purified and analyzed the 

soluble proteins, including IC, and interpreted the SPR data generated by Christian Spick. Furthermore, 

I conducted all phenotyping and cell-based assays and finally, drafted and wrote the manuscript. 
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ABSTRACT
Purpose The Göttingen minipig is a relevant non-rodent spe-
cies for regulatory toxicological studies. Yet, its use with ther-
apeutic antibodies has been limited by the unknown binding
properties of human immunoglobulins (huIgG) to porcine Fc
gamma receptors (poFcγR) influencing safety and efficacy
readouts. Therefore, knowing IgG-FcγR interactions in the
animal model is a prerequisite for the use of minipigs in pre-
clinical safety and efficacy studies with therapeutic antibodies.
Methods Here, we describe the cloning and expression of
poFcγRs and their interactions with free and complexed hu-
man therapeutic IgG1 by surface plasmon resonance and flow
cytometry.
Results We show here that poFcγRIa, poFcγRIIa, and
poFcγRIIb bind huIgG1 antibodies with comparable affinities
as corresponding huFcγRs. Importantly, poFcγRs bind
huIgG immune complexes with high avidity, thus probably
allowing human-like effector functions. However,
poFcγRIIIa binds poIgG1a but not to huIgG1.
Conclusions The lack of binding of poFcγRIIIa to huIgG1
might cause underestimation of FcγRIIIa-mediated efficacy
or toxicity as mediated by porcine natural killer cells.
Therefore, the suitability of minipigs in preclinical studies with
human therapeutic antibodies has to be assessed case by case.

Our results facilitate the use of Göttingen minipigs for assess-
ment of human therapeutic antibodies in preclinical studies.

KEY WORDS antibody effector function . FcγR . Göttingen
minipig . IgG . interactionmap

ABBREVIATIONS
ADCC Antibody-dependent cellular cytotoxicity
ADCP Antibody-dependent cellular phagocytosis
FcγR Fc gamma receptor protein
FCGR Fc gamma receptor gene
FcR-γ
chain

Fc receptor common gamma chain

HuCAL Human combinatorial antibody library
IC Immune complex
ITAM Immunoreceptor tyrosine-based activation

motif
NHP Non-human primate
SPR Surface plasmon resonance

INTRODUCTION

Fc gamma Receptors (FcγRs) are a family of gylcoproteins
expressed on the surface of leukocytes. They interact with
the fragment crystallizable (Fc) part of immunoglobulin G
(IgG) antibodies and trigger a variety of effector functions
including antibody-dependent cellular cytotoxicity (ADCC),
antibody-dependent cellular phagocytosis (ADCP), antigen
internalization and presentation, or inflammatory cytokine
release (1). The set of FcγRs of most mammalian species con-
sists of the high affinity FcγRIa (CD64), low affinity FcγRIIa
(CD32a) and FcγRIIIa (CD16), and the inhibitory FcγRIIb
(CD32b) (2). Their cellular distribution and distinct affinities
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towards different IgG subclasses influence immune cell activa-
tion and control their effector functions upon IgG binding.
Many novel therapeutic antibodies are IgG Fc engineered to
alter the FcγR binding in order to achieve enhanced activity
via ADCC or ADCP or to reduce effector function-mediated
toxicity (3,4). Often, antibody effector functions are mediated
upon interactions of low affinity FcγRs with immune com-
plexes (IC). For example, IC formed by bevacizumab binding
to vascular endothelial growth factor (VEGF) can lead to
FcγRIIa-mediated platelet activation (5) and thrombosis in
FcγRIIa transgenic mice (6). Thus, it is very important to
characterize the binding of free- and immune-complexed
IgG to different FcγRs as this can dramatically influence safety
and efficacy.

The porcine species (Sus scrofa) is an increasingly used ani-
mal model for biomedical research. In particular the
Göttingen minipig has gained importance for preclinical safe-
ty and efficacy studies due to its high similarity to the human
(7,8). Also, the regulatory acceptance of the minipig as a rel-
evant animal model for toxicological studies with biothera-
peutics is growing (9). Furthermore, handling, housekeeping,
and breeding of minipigs are much easier and cheaper than of
non-human primates (NHP). So far, the Göttingen minipig
has already been used for immunogenicity studies with inflix-
imab and adalimumab (10). Presently, only few other minipig
studies are performed with therapeutic antibodies (11) due to
lacking knowledge about their pharmacology (12). Therefore,
the importance of an adequate immunological characteriza-
tion of the Göttingen minipig as a non-rodent species is widely
recognized and promoted (13). The evaluation of the interac-
tions of human therapeutic antibodies with porcine FcγRs
(poFcγRs) is a basic requirement for the use of the minipig
in preclinical studies. So far, only functional binding studies of
poFcγRIa and variants of poFcγRIIb to porcine total IgG
have been reported confirming the conserved function of
these receptors in pigs (14,15). We have recently annotated
the complete low affinity FCGR locus of the minipig including
the localization of all poFcγR genes and the description of the
hitherto unknown poFcγRIIa (16). Binding and function of
NHP or mouse FcγRs interacting with human IgG (huIgG)
were studied to assess cross-reactivity and to estimate the
translation potential of this preclinical species (17–19). To
our knowledge, no extensive studies investigating the interac-
tions of huIgG to poFcγRs were performed for any porcine
species. Thus, the lacking knowledge of the binding properties
of huIgG to poFcγRs is still limiting the use of the minipig as a
preclinical species with human therapeutic antibodies.

In the present work we hypothesized minipigs as a useful
alternative for preclinical studies with therapeutic antibodies.
Therefore, we qualitatively characterize the binding of human
therapeutic antibodies to all FcγRs in the minipig.
Furthermore, we assessed the binding of free- and immune-
complexed huIgG1 antibodies to poFcγRs in comparison to

huFcγRs. The data provide first insights into possible effector
functionalities of human immunoglobulins in preclinical stud-
ies in minipigs.

MATERIALS AND METHODS

Recombinant FcγRs and Antibodies

Cloning

Soluble FcγRs were designed as dimeric IgG Fc fusion pro-
teins. Extracellular domains of poFcγRIa (UniProtKB:
Q461Q0), poFcγRIIa (XM_021089520.1; 205Y),
poFcγRIIb (UniProtKB: Q461P7) , poFcγRIIb1
(UniProtKB: B9VVN4), poFcγRIIIa (UniProtKB: Q28942)
as well as huFcγRIa (UniProtKB: P12314), huFcγRIIa
(UniProtKB: P12318 R131), huFcγRIIb (UniProtKB:
P31994), huFcγRIIIa (UniProtKB: P08637 V158) were used.
The sequences were back translated, codon optimized, and
ordered as gene syntheses from GeneArt (Invitrogen).
Subsequently they were cloned into an expression vector con-
taining the signal peptide from mouse Ig heavy chain variable
region, an Avi biotinylation tag (GLNDIFEAQKIEWHE,
Avidity), a His6 tag, and an IgA protease cleavage site
(VVAPP’AP). The vector also contained inert huIgG1
(PGLALA) Fc parts allowing the dimerization of the FcγR
extracellular domains by the expression as Fc fusion proteins
(20). These constructs are referred to as soluble FcγRs
hereafter.

Full-length poFcγRIa (amino acids (aa) 16-346), poFcγRIIa
(205Y; aa 46-274), poFcγRIIb (aa 46-297), poFcγRIIb1 (aa
46-316), and poFcγRIIIa (aa 20-257) contained the human
CD33 signal peptide (MPLLLLLPLLWAGALA) and a
FLAG-tag (DYKDDDDK) at the N-terminus. Full-length
huFcγRs, the human Fc receptor common gamma chain
(FcR-γ chain), and the poFcR-γ chain (UniProtKB:
Q9XSZ6) were designed without the FLAG-tag.

PoIgG1a (GenBank: U03781.1) and poIgG3 (GenBank:
EU372658.1) heavy chain and Ig-kappa light chain (21) con-
stant regions were coupled to the variable regions of the anti-
human epidermal growth factor receptor 2 (HER2) antibody
trastuzumab heavy chain (DrugBank: DB00072; aa 1-120)
and Ig-kappa light chain (DrugBank: DB00072; aa 1-108), re-
spectively. The correct transitions between the variable and
the constant region of both antibodies were confirmed by
molecular modeling. The recombinant antibodies contained
the mouse Ig heavy chain V region 3 signal peptide
(MGWSCIILFLVATATGVHS) and a C-terminal Avi bioti-
nylation tag (GLNDIFEAQKIEWHE, Avidity). The resulting
HER2 specific poIgG constructs are named poIgG1a-HER2
and poIgG3-HER2 hereafter.
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The sequences of all constructs were verified prior to ex-
pression by DNA-sequencing (SequiServe and Microsynth).

Expression

Soluble FcγRs and poIgGs were expressed in human embry-
onic kidney 293F (HEK293F) suspension cells cultured in
shaker flasks (120 rpm, 37°C, 5% CO2, 85% humidity) using
F17 expression medium supplemented with Pluronic and
GlutaMAX (Gibco). Plasmids coding for FcγRs were trans-
fected alone and poIgG heavy chains were co-transfected in
equimolar ratio with plasmids coding for poIg-kappa light
chain. Transient transfection was performed using 293free
(Merck Millipore) premixed with OptiMEM (Gibco) and ex-
pression was enhanced by feeding and addition of valproic
acid. The fed-batch culture was harvested by centrifugation
7 days after transfection and the supernatant was cleared by
filtration.

Full length FcγRs were transiently expressed using the
Expi293 system (Thermofisher). Suspension cells were seeded
in 6 well-plates (120 rpm, 37°C, 5%CO2, 85% humidity) and
co-transfected with porcine or human FcγRs together with the
related FcR-γ chain in an equimolar ratio. The transfected
cells were used 48 h post transfection.

Purification and Analysis

Soluble FcγRs and poIgGs were purified by protein A
(MabSelect SuRe, GE Healthcare) or, in the case of soluble
FcγRIa, by nickel (HisTrap HP, GEHealthcare) affinity chro-
matography using the ÄKTAexplorer 100 Air system (GE
Healthcare). Soluble FcγRs were further purified by prepara-
tive size exclusion chromatography (SEC) using a HiLoad 26/
600 Superdex prep grade column (GE Healthcare) with
20 mM MOPS, 150 mM NaCl, pH 6.0 as a running buffer.

Purified proteins were quantified on a Nanodrop spectro-
photometer (Thermo Scientific) and analyzed under reducing
and non-reducing conditions by capillary gel electrophoresis
using Caliper LabChip (Perkin Elmer) or sodium dodecyl sul-
fate polyacrylamide gel electrophoresis (SDS-PAGE) with
NuPAGE 4–12% Bis-Tris gels in MES buffer followed by
Coomassie staining (SimplyBlue, ThermoFisher) .
Aggregation and molecular weight of the FcγR products were
determined by SEC coupled to Multi-Angle Light Scattering
(MALS) using a Superdex 200 increase 10/300 GL column
(GE Healthcare).

Biotinylation

Soluble poFcγRs were biotinylated via the Avi-tag using the
BirA Biotin-Protein Ligase standard reaction kit (Avidity).
The biotinylation eff icacy was assessed by liquid

chromatography –mass spectrometry (LC-MS) after deglyco-
sylation with PNGase F.

Generation of FcγRIIa and FcγRIIa/b Specific
Antibodies

Purified soluble poFcγRIIa, poFcγRIIb, and poFcγRIII were
sent to BioRad for the generation of bivalent Fab antibodies
dimerized via alkaline phosphatase containing FLAG and
His6 epitope tags (Fab-A-FH). Binders were selected via
phage display method (CysDisplay®) on BioRads Human
Combinatorial Antibody Libraries (HuCAL). PoFcγRIIa/
FcγRIIb cross-reactive HuCAL antibodies were generated
by using poFcγRIIa as an antigen and poFcγRIII as a closely
related antigen to prevent further cross reactivity. Similarly,
poFcγRIIa specific antibodies were generated by using
poFcγRIIb as a closely related antigen. All binders (HuCAL
clones) were tested for their specificity by enzyme-linked im-
munosorbent assay (ELISA) coated with porcine FcγRIIa,
FcγRIIb, and FcγRIII.

Immune Complex Generation

IC were generated by overnight incubation at room temper-
ature of the huIgG1 therapeutic antibody bevacizumab
(149 kDa; Roche) and its dimerized target VEGF165
(38 kDa, BioLegend), as described earlier (5). The antibody
to target ratio of 1:2.5 was generated using 4 μM bevacizu-
mab and 10 μM dimerized VEGF165, whereas the ratio of
1:0.5 was generated using 20 μM bevacizumab and 10 μM
VEGF165, and the ratio of 1:0.1 using 20 μM bevacizumab
and 2 μM VEGF165. IC formation was analyzed by SEC-
MALS using a HPLC system equipped with a Superdex 200
increase 10/300 GL column (GE Healthcare), a TREOS la-
ser light scattering detector, and a T-rEX differential refrac-
tometer (Wyatt Technology).

Flow Cytometry

Phenotyping of FcγR Expression

FcγR expression was assessed in whole blood of a Göttingen
minipig sampled in K2EDTAVacutainer tubes (BD) followed
by treatment with lysing buffer (BD PharmLyse) to remove
erythrocytes. Minipig blood cells were stained with PE-
conjugated antibodies against porcine CD16 (clone G7,
BioRad) or unconjugated HuCAL antibodies against
poFcγRIIa (clone AbD29332.1 BHuCAL32^), FcγRIIa/b
(clone AbD32591.1 BHuCAL91^), or the isotype control
Fab-A-FH (clone AbD05930). The FcγR expression of trans-
fected HEK293F cells was assessed by staining using the
abovementioned antibodies or the PE-conjugated antibodies
against human CD64 (clone 10.1, BioLegend), human CD32
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(clone 3D3, BD), humanCD16 (clone 3G8, BD), or FLAG tag
(clone L5, BioLegend). Unconjugated antibodies were
detected using the secondary PE conjugated goat F(ab’)2
anti-huIgG after washing with FACS buffer (Dulbecco’s
phosphate-buffered saline (DPBS, Gibco) containing 2% bo-
vine serum albumin (Sigma) and 0.1% sodium azide (Sigma)).
After washing with DPBS, dead cells were stained by the
amine reactive Zombie Aqua dye (BioLegend) and the prep-
arations were fixed using BD CellFIX. Events were acquired
on BD LSRFortessa with BD FACSDiva software and data
was further analyzed using FlowJo.

Immune Complex Binding

Binding of IC was assessed by flow cytometry analysis on
whole blood of three Göttingen minipigs. Fresh blood was
collected in Vacutainer tubes coated with K2EDTA (BD)
and subsequently treated with erythrocyte lysis buffer
(PharmLyse, BD) and washed with DPBS. The remaining
blood cells were incubated with the amine reactive dye
Zombie Aqua (BioLegend). After washing with FACS buffer,
the blood cells were incubated in 96 well plates for 1 h at 4°C
with different concentrations of bevacizumab, or
bevacizumab-VEGF165 IC diluted in FACS buffer.
Bevacizumab to VEGF165 ratios of 1:2.5, 1:0.5, and 1:0.1
were used. Unbound antibodies or complexes were removed
by intensive washing with FACS buffer. PE-conjugated sec-
ondary goat F(ab’)2 antibodies against huIg-kappa (Biorad)
were used to detect membrane-bound bevacizumab or IC.
After another two washes with FACS buffer, 100′000 events
were recorded on BD LSRFortessa with and the software BD
FACSDiva. Data was further analyzed using FlowJo.

SPR Experiments

IgG Capturing Setup

The interaction of porcine or human FcγR variants to porcine
or human IgG anti-HER2 was analyzed using surface plas-
mon resonance (SPR) on a Biacore T200 system (GE
Healthcare). First, the extracellular domain of HER2 was
immobilized at pH 4.5 to >3000 response units (RU) on a
CM5 chip using the amine coupling kit (GE Healthcare).
Then, the HER2 specific antibodies trastuzumab (huIgG1,
Roche), poIgG1a-HER2 and poIgG3-HER2 were injected
at a concentration of 100 nM in PBS-P+ buffer (GE
Healthcare) with a pulse of 30s at a flow rate of 10 μl/min
reaching capturing levels of 1000RU. Soluble porcine or hu-
man FcγRs were prepared in solutions of 600, 200 nM and
66.7 nM in PBS-P+ and applied at a flow rate of 30 μl/min
for 90s. The dissociation phase was monitored for 600 s fol-
lowed by regeneration of the surface by a 60s and 20s washing
step with a 10mMGlycine pH 2.1 at a flow rate of 10 μl/min.

All experiments were performed in PBS-P+ pH 7,4 running
buffer.

FcγR Capturing Setup

An alternative setup was used to compare binding of poFcγRs
to free- and immune-complexed huIgG1. Biotinylated soluble
poFcγRs were reversibly captured on a CAP chip using the
standard Biotin CAPture reagent kit (GE Healthcare) at
pH 7.4 PBS-P+. The capturing level of FcγR variants reached
940–2543 RU. Porcine or human biotinylated FcγR variants
were prepared as solution of 200 nM in PBS-P+ and captured
with a pulse of 180 s at a flow rate of 5 μl/min. Subsequently,
human free- or immune-complexed IgG1 were applied at a
concentration of 600, 200 and 66.7 nM in PBS-P+ at a flow
rate of 30 μl/min for 120 s. The dissociation phase was mon-
itored for 600 s. Then, the surface was regenerated by a 120 s
washing step with the regeneration solution for the CAP chip
(GE Healthcare) at a flow rate of 10 μl/min.

SPR Data Analysis

The Biacore T200 software (GEHealthcare) was used to eval-
uate data from SPR experiments and to display binding
curves. Interaction Map was used to separate heterogeneous
binding into its individual 1:1 interactions with different kinet-
ics. For this, data from SPR experiments were imported into
TraceDrawer software (Ridgeview Instruments AB) and fur-
ther processed with the Interaction Map program (Ridgeview
Instruments AB).

RESULTS

Interactions between IgG antibodies and their Fc receptors
are of high complexity. To obtain a thorough characteriza-
tion, we studied poFcγRs as recombinant soluble proteins and
expressed on the cell surface, as well as minipig blood cells that
natively express FcγRs. Interactions of poFcγRs were assessed
with different free- or immune-complexed IgG antibodies and
therapeutics.

Binding of huIgG to poFcγRs

The purpose of this experiment was to show qualitative bind-
ing of poFcγRs to huIgG1, the most commonly used thera-
peutic human antibody isotype, by SPR. A highly sensitive
assay is needed to detect weak interactions because low affinity
FcγRs (FcγRIIa, FcγRIIb, and FcγRIIIa) generally interact
only weakly with free IgG. Therefore, soluble porcine and
human FcγRs were designed and used here as dimers of
FcγR extracellular domains expressed as inert Fc fusion pro-
teins. The dimeric structure provides an avidity effect and
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increases the molecular mass leading to higher sensitivity and
therefore allowing a qualitative binding analysis (20).
Transient expression in HEK293F cells and subsequent puri-
fication yielded soluble FcγRs of >98% purity as determined
by capillary gel electrophoresis or SDS-PAGE (not shown).
PoFcγRIIb is exclusively composed of dimers, whereas
poFcγRIa, poFcγRIIa, and poFcγRIIIa preparations addi-
tionally contained 32%, 74%, and 77% aggregates, respec-
tively, even after SEC purification (not shown). N-linked gly-
cosylation of FcγRs and Fc fusion was effective in HEK293F
cells as observed by PNGase F digestion followed by SDS-
PAGE (Fig. S1).

For the SPR binding analysis, the recombinant HER2 an-
tigen was coated on a CM5 sensor chip and then allowed to
capture trastuzumab, a HER2 specific huIgG1 therapeutic
antibody, or HER2 specific poIgGs (Fig. 1a). To this purpose,
the two most abundant isotypes in porcine blood, IgG1a and
IgG3 (22), were recombinantly expressed with HER2 speci-
ficity, and named poIgG1a-HER2 and poIgG3-HER2, re-
spectively. The soluble poFcγRs were then allowed to bind
human and porcine HER2-specific IgG (Fig. 1a).

Figure 1b shows the maximum responses observed with
huIgG1 in interaction with 600 nM of porcine and human
FcγRs. From this analysis we conclude that trastuzumab binds
to most poFcγRs in a similar magnitude as to huFcγRs (Fig.
1b). A closer analysis of the sensorgrams generated using three
concentrations of the soluble FcγRs permits a ranking of the
binding strength among the different FcγRs (Fig. 1c). The
sensorgrams show the response (RU) during association of
the soluble FcγRs to antigen bound IgG until the steady state
in the first 100 s followed by their dissociation. Among
poFcγRs, we identified poFcγRIa as the strongest binder for
huIgG1 based on the quicker association and the slower dis-
sociation, followed by poFcγRIIa. PoFcγRIIb is the weakest
binder with the quickest dissociation whereas poFcγRIIIa did
not bind huIgG1. However, the functionality of poFcγRIIIa
was demonstrated through its binding to poIgG1 (Fig. 1c). A
similar binding pattern was observed for huFcγRs with
huFcγRIa as the strongest binder of huIgG1 followed by
huFcγRIIa, FcγRIIb, and huFcγRIIIa in a similar range.
Comparing the orthologous porcine and human FcγRs,
huIgG1 bound stronger to poFcγRIIa and poFcγRIIb but
weaker to poFcγRIa and poFcγRIIIa as compared to the hu-
man orthologue (Fig. 1c). For all poFcγRs, except
poFcγRIIIa, we observed a similar binding pattern of
huIgG1 and poIgG1a-HER2. In contrast, poIgG3-HER2
showed only weak interactions to poFcγRIa and poFcγRIIa
and no binding to poFcγRIIb and poFcγRIIIa. Vice versa,
huFcγRs did not notably bind to poIgGs (Fig. 1c). In sum,
we found that poIgG1 binds to poFcγRIa > poFcγRIIa >
poFcγRIIb and poFcγRIIIa in a similar range, whereas
huIgG1 binds to poFcγRIa > poFcγRIIa > poFcγRIIb > >
poFcγRIIIa.

The shape of the sensorgrams in Fig. 1c suggested complex
multiple interactions contributing to IgG-FcγR bindings.
Such heterogeneous interactions probably originate from dif-
ferent qualities of the individual FcγRs based on their integrity
and the presence of aggregates. To assess the contribution of
quality issues leading to heterogeneous interactions, we also
analyzed the huIgG1 binding data using the Interaction Map
method (Fig. 1d). It allows the decomposition of time-resolved
binding curves into separate interactions with unique combi-
nations of association rates ka [M

−1, s−1] and dissociation rates
kd [s

−1], contributing to the total binding (23). Therefore, the
Interaction Map analysis allows addressing the heterogeneity
of IgG-FcγR interactions. The resulting on-off plots display
single interactions by their dissociation (log(kd), x-axis) and
association (log(ka), y-axis) values colored according to their
contribution to the total binding (Fig. 1d). Because no inter-
action of trastuzumab was observed with poFcγRIIIa, this
data could not be analyzed by Interaction Map. For the other
FcγRs, this analysis disclosed multiple interactions involved in
the binding of huIgG1 to poFcγRIa, poFcγRIIa, and
huFcγRIIIa (Fig. 1d). Interestingly, the FcγRs with the most
obvious multivalent binding properties were the preparations
with the highest proportion of aggregates. Therefore, one spot
originates from the bivalent functional binding, whereas the
other spot reflects the binding to aggregates contained in the
preparation. Because aggregates reformed after SEC purifica-
tion, it was not possible to identify which interaction was re-
sponsible for the functional binding. The correct binding ki-
netics of these FcγRs must be a mixture of the observed inter-
actions. Therefore, we refrain from reporting affinities based
on one 1:1 kinetic. Additionally, it was shown by other authors
that IgG-FcγR interactions do not depend on only one 1:1
kinetic and are strongly influenced by the experimental setup
and other factors, such as FcγR glycosylation (24).

In addition to poFcγRIIb, another isoform named
poFcγRIIb1 has been reported having a 19 amino acid in-
frame insertion in the cytoplasmic domain. Apart from the
signal sequence, these variants also differ by one polymor-
phism in the extracellular domain 1 and two polymorphisms
in the extracellular domain 2 (the latter are marked in yellow
in Fig. S2) (25). We directly compared these two polymorphic
variants in SPR regarding binding to porcine or human IgG
and found no differences in IgG isotype selectivity and negli-
gible stronger binding of the poFcγRIIb1 variant (Fig. S3).

Binding of huIgG1 to poFcγRs on Cells

Next, we addressed binding of free huIgG1 to poFcγRs in a
more biological system with transfected HEK293F cells
expressing surface-anchored FcγRs. Due to the lack of avail-
able antibodies specific for poFcγRs, we also generated phage-
display based recombinant antibodies with specificity for
poFcγRs using the HuCAL technology. The specificity of
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these HuCAL antibodies was also assessed using cell surface-
anchored FcγRs.

Full length poFcγRs with extracellular FLAG tags encoded
at the N-terminus were transiently expressed on HEK293F
cells. However, full-length huFcγRs were expressed without
FLAG tags. The data shown in Fig. 2a demonstrate expres-
sion of all porcine and human FcγRs on the cell surface of
HEK293F cells. The expression of huFcγRs and of
poFcγRIIIa was characterized via commercial FcγR-specific
antibodies whereas a FLAG tag specific antibody was used to
characterize the expression of all poFcγRs. The expression of

poFcγRIIa was further demonstrated with the antibody clone
HuCAL32 that binds specifically to this FcγR in contrast to
the antibody clone HuCAL91 that is cross-reactive to the
closely similar FcγRIIb (Fig. 2a).

Binding to FcγRs expressed on HEK293F cells was then
assessed using different concentrations of bevacizumab, a
huIgG1 anti-VEGF therapeutic antibody displaying similar
SPR binding to poFcγR as trastuzumab (not shown). Cell
bound bevacizumab was detected via flow cytometry using
goat F(ab’)2 anti-huIg-kappa secondary antibody. The results
show a concentration-dependent binding of bevacizumab to
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Fig. 1 SPR binding analysis of soluble FcγRs to IgG. (a) Scheme depicting the assay setup. First, extracellular domains of HER2 were coated on a CM5 sensor
chip. Then, HER2 specific human (blue structures) and porcine (orange structures) antibodies were captured on different flow cells. Their interactions with soluble
porcine or human FcγRs were measured. The drawing shows low affinity FcγRs with two and the high affinity FcγRIa with three extracellular domains (oval
shapes). (b) The graph shows the maximum response of 600 nM porcine (black bars) and human (grey bars) FcγRs obtained with huIgG1. (c) Real-time
sensorgrams from SPR analysis. Interaction of IgG to poFcγRs is shown in the upper row and to huFcγRs in the lower row whereas the respective FcγRs are
named above. Binding of 600 nM soluble FcγRs to trastuzumab (huIgG1, blue line), poIgG1a-HER2 (orange line), and poIgG3-HER2 (yellow line) is shown. Only
the highest concentration of the titration with 600, 200, and 66.7 nM of soluble FcγRs is shown for clarity. (d) Interaction Map analysis resulting from trastuzumab
binding to all concentrations of porcine and human FcγRs is shown in the upper and lower row, respectively. The binding is separated in several parallel
interactions with unique kinetics, as displayed by spots on a graph with kd on the x-axis and ka on the y-axis. The heat map is a measure of the contribution from
red= high to blue= low of each interaction to the total binding. No interaction was detected with poFcγRIIIa; therefore, it could not be analyzed (N/A).
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porcine (except for poFcγRIIIa) and human FcγRs (Fig. 2b).
From these data we conclude that surface-anchored
poFcγRIa, IIa and IIb, but not poFcγRIIIa can bind by free
huIgG1.

Binding of huIgG1 Immune Complexes to poFcγRs

Human low affinity FcγRs mediate their functions rather via
interaction with IC in contrast to free IgG (26). The increase
in avidity compensates for the low affinity and allows stable
binding to the IC ultimately leading to activation of the FcγRs.
In order to assess binding of poFcγRs to huIgG1 IC we per-
formed SPR experiments with pre-formed IC of bevacizumab
and its dimeric target antigen VEGF.

To generate physiological IC, bevacizumab was co-
incubated with VEGF and the resulting complexes were stud-
ied by SEC-MALS. The stoichiometric ratio of one antibody
together with an excess of five VEGF dimers resulted in large
IC without remaining free IgG where the majority of com-
plexes is composed of three or more antibodies (Fig. 3a). For
the measurement of their binding profiles in comparison to
free IgG, all poFcγRs were biotinylated and coated on the
sensor chip (Fig. 3b). For every FcγR, two different capturing
densities were assayed. The densities of FcγRIa (940RU),
FcγRIIa (1020RU), and FcγRIIb (2543RU) were found to
give best results probably reflecting their different affinities
to huIgG1. We, however, did not achieve sufficient biotinyla-
tion of poFcγRIIIa to increase its capturing density above
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Fig. 2 Binding of bevacizumab (huIgG1) to FcγRs transiently expressed on HEK293F cells. (a) HEK293F cells expressing the indicated porcine (left panel) and
human (right panel) FcγRs were analyzed by flow cytometry using the antibodies indicated below each column. HEK293F cells transfected without plasmid served
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54RU, and was therefore excluded from the experiment.
Subsequently, 600, 200, and 66.7 nM of free huIgG1 or IC
formed with the same amount of huIgG1 were used to assess
the binding strength (Fig. 3b).

The sensorgrams in Fig. 3c show a strong increase in the
maximum response and a more stable interaction with IC
compared to free huIgG1 in all poFcγRs. We again analyzed
the SPR binding data with the Interaction Map method (Fig.
3d) first, because the observed maximum response largely
depends on the size of the bound complex and second, be-
cause we expect avidity based heterogeneous IC-FcγR

interactions. Using this setup, we observed two to three inter-
actions contributing to the binding of poFcγRs to free
huIgG1, probably resulting from partial activity of the soluble
FcγRs (Fig. 3d). The contribution of all interactions shifted
towards lower kd and higher ka values and ultimately towards
a stronger binding comparing free bevacizumab to IC.
Additionally, Fig. 3d shows a shift of the individual interac-
tions towards a higher affinity. For poFcγRIa, for example,
the higher affinity interaction shifts the center of the spot to a
5x longer half-life (shift towards lower kd) as seen in Fig. 3d
and evaluated by the interaction map software, a 10x quicker
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association (shift towards higher ka), and therefore a 100x
enhanced affinity (KD = kd/ka) comparing free huIgG1 to IC.

Additionally, its contribution increases from 31% to 65%.
On the other hand, the low affinity interaction decreases its
contribution from 50% to 16% (Fig. 3d, left plots). For
poFcγRIIa and poFcγRIIb the changes in affinity from free
huIgG1 to IC are comparable to those for poFcγRIa. This
data clearly demonstrates a stronger and more stable interac-
tion of huIgG1 IC with poFcγRs than with free huIgG1 based
on avidity effects. IC binding is a prerequisite for effector
functions triggered by huIgG in minipigs.

Binding of huIgG1 IC to Minipig Blood Cells

Next, we studied interactions of free huIgG1 (bevacizumab) to
blood cells of Göttingen minipigs that natively express
poFcγRs. Free huIgG1 and different preparations of IC were
titrated and co-incubated with minipig whole blood for 1 h at
4°C in FACS buffer containing sodium azide to prevent inter-
nalization. Bound antibodies or IC were stained using goat
F(ab’)2 anti-huIg-kappa secondary antibody and analyzed by
flow cytometry. The different blood cell subsets were gated
from forward and side scatter (FSC/SSC) of viable single cells
without including specific cell surface markers due to limited
availability of specific antibodies, fluorochromes, and cross-re-
activity. The gating strategy and identity of the different cell
types of the minipig blood is shown in Fig. S4. The FcγR
expression in the respective minipig blood cells was assessed
in separate stainings and shown in Fig. 4a. PoFcγRIIa (stained
by HuCAL32) was found to be expressed on platelets and a
sub-population of eosinophils. The poFcγRIIa/b cross-reactive
antibody (HuCAL91) additionally stained a large proportion of
monocytes that are thus thought to express poFcγRIIb.
Monocytes, neutrophils, and eosinophils all express
poFcγRIIIa. Furthermore, small lymphocyte subsets, such as
B cells and NK cells are known to express poFcγRIIb and
poFcγRIIIa, respectively and monocytes are known to express
poFcγRIa (16,27). The poFcγRIa expression beyond lympho-
cytes and monocytes is largely unknown and can thus not be
excluded on platelets, neutrophils, and eosinophils. Histograms
in Fig. 4b show the binding of 0.1 μg/ml free huIgG1 and the
same amount of huIgG1 complexed using different ratios of
VEGF165 to the different minipig blood cell subsets. The an-
tibody (bevacizumab, Bev) to target (VEGF) ratio of 1:2.5
yielded the largest IC without free huIgG1 whereas IC gener-
ated in the ratio of 1:0.5 and 1:0.1 were smaller and contained
more free huIgG1 (Fig. S5). Here, we observed that large IC
showed enhanced binding to all platelets and most monocytes
versus smaller IC and free huIgG1. Furthermore, large IC
resulted in the strongest shift of neutrophils and eosinophils,
even though the MFI was lower than in platelets and mono-
cytes. A small subpopulation of lymphocytes also bound large
IC better than small IC and free huIgG1 (Fig. 4b). As in the

histograms, it is apparent from the titration of all IC prepara-
tions in the blood of three Göttingen minipigs that free- and
immune-complexed huIgG1 exhibit the strongest binding to
platelets, followed by monocytes, eosinophils, neutrophils and
lastly lymphocytes (Fig. 4c). The titration shows that in partic-
ular the largest IC strongly bind to poFcγR-expressing cell
types at the lowest concentrations translating to the highest
affinity. Vice versa, preparations with limited VEGF165 or
without VEGF165 (huIgG1 alone) require higher concentra-
tions to bind to poFcγR-expressing cell types, translating to
lower affinities. VEGF165 did not bind to minipig blood cells
at the concentration used to generate the largest IC (ratio 1:2.5)
containing 10 μg/ml huIgG1. The strongest differences be-
tween free-and immune-complexed huIgG1 were observed in
platelets and monocytes. Neutrophils and eosinophils also
bound IC stronger than free huIgG1, however the maximum
percentage of positive cells in these cell types were lower and
the individual differences were more pronounced leading to a
higher standard deviation (Fig. 4c).

DISCUSSION

The use of the Göttingen minipig in preclinical studies with
therapeutic antibodies is limited by the lack of knowledge on
the expected pharmacology for the translatability of
corresponding findings to the human. The pharmacology of
antibodies with active Fc parts often depends on effector
mechanisms mediated by interaction with FcγRs. The aim
of this study was to assess the binding properties of huIgG1
therapeutic antibodies to poFcγRs which is a prerequisite for
the consideration of the minipig for preclinical safety and ef-
ficacy studies with therapeutic antibodies.

The present study demonstrates that poFcγRs bind human
therapeutic antibodies of the IgG1 isotype. The binding prop-
erties of the poFcγRIa, poFcγRIIa, and poFcγRIIb closely
resemble those of the human orthologues albeit some differ-
ences were identified. Importantly, poFcγRIIIa was shown not
to bind huIgG1 antibodies. Similar to huFcγRs, all poFcγRs
except poFcγRIIIa were shown to bind IC composed of
huIgG1 with a higher affinity than free huIgG1. Especially,
monocytes, eosinophils, platelets and a subset of lymphocytes
of minipig blood showed enhanced binding to human IC.

The poFcγRIa was cloned by Zhang, Qiao (15) and
shown to bind poIgG. Here we also demonstrate that
poFcγRIa, similar to its human orthologue, strongly binds
huIgG1 (28). The high affinity interaction of huFcγRIa is
supposed to be mediated by a hydrophobic pocket for
Leu235 within the Fc part of huIgG (29). The same pocket
was also identified in poFcγRIa supporting its high affinity
for huIgG1 (Fig. S2). Nevertheless, we found differences
between the two species in residues forming H bonds
(Lys128, Ala143 in Fig. S2). This could explain the weaker
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binding of huIgG1 to poFcγRIa compared to huFcγRIa.
The observed difference concerning the heterogeneity of
interactions probably results from avidity effects caused
by FcγR aggregation. PoFcγRIa is, like its human ortho-
logue, expressed on monocytes in peripheral blood of min-
ipigs (16). A fraction of minipig monocytes binds huIgG1
IC already at low concentrations, possibly mediated by
poFcγRIa, although poFcγRIIb and poFcγRIIIa cannot
be excluded since these FcγRs are also expressed on mono-
cytes. The enhanced binding of complexed versus free
huIgG1 to poFcγRIa was confirmed by SPR. Notably,
we did not observe a strong staining with free huIgG1 as
it could be expected for binding to poFcγRIa. A gradual
dissociation of free IgG1 from huFcγRIa is believed to
allow capturing small IC or sparsely opsonized large com-
plexes (30). Our results suggest a similar role of poFcγRIa
by the observation of the strong IC binding (Fig. 3c and d)
and weak staining of poFcγRIa expressing monocytes with
low concentrations of free huIgG (Fig. 4b).

FcγRIIa is known as a low affinity receptor signaling
through an integrated intracellular immunoreceptor
tyrosine-based activation motif (ITAM) in the human.
However, orthologues to FcγRIIa in the mouse, cattle and
pig, for example, are lacking this integrated ITAM and re-
quire FcR γ-chain interactions for signaling (16,31). In terms
of binding, we found that FcγRIIa of both species bind
huIgG1 (Fig. 1). Conserved tryptophan residues Trp104 and
Trp127 forming the BTrp sandwich^ of FcγRs that interacts
with Pro329 of IgG Fc parts could enable such cross-species
interactions (Fig. S2) (32). Interestingly, trastuzumab bound to
poFcγRIIa with an increased stability compared to huFcγRIIa
(Fig. 1). HEK293F cells expressing porcine and human
FcγRIIa showed similarities in binding properties to bevaci-
zumab as observed by the concentration-dependent increase
of binding (Fig. 2b). The differences in background and the
intensity of the positive population possibly originate from the
lower expression of poFcγRIIa compared to huFcγRIIa on
HEK293F cells (Fig. 2). A high avidity binding of IC to
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Fig. 4 Binding of free huIgG1 (bevacizumab) and IC tominipig whole blood in comparison to the FcγR expression. FcγR expression and huIgG bindingwas assessed
by flow cytometry in whole blood of Göttingen minipigs. The cell types were gated from single live cells by their FSC and SSC properties as described in detail in Fig.
S4. (a) Histograms show the expression of poFcγRIIa (HuCAL32, light green histogram), poFcγRIIa/b (cross reactive HuCAL91, green histogram) and poFcγRIIIa
(clone G7, dark green histogram) in platelets, lymphocytes, monocytes, neutrophils and eosinophils (from left to right). (b) Stacked histograms show the binding of
0.1 μg/ml free huIgG1 (blue) and the same amount of huIgG1 complexed using 0.1 parts of VEGF165 (purple), 0.5 parts of VEGF165 (magenta), or 2.5 parts of
VEGF165 to the different minipig blood cell subsets. The dotted line represents the gate separating PE-negative (left) from PE-positive (right) events. (c) Graphs show
the percentage of PE-positive cells with increasing concentrations of free- (blue circles) and immune-complexed bevacizumab with concentrations ranging from 100
to 0.001 μg/ml of huIgG1 and a control containing 0 μg/ml bevacizumab or IC. IC generated by the following antibody to target ratios are displayed: 1:0.1 (purple
squares), 1:0.5 (magenta triangles), 1:2.5 (red diamonds), and VEGF alone (half-filled green circle). Error bars represent the standard deviation within one
representative experiment using three minipigs. Multiple experiments with IC (ratio 1:2.5) using a total of seven minipigs led to similar results.
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poFcγRIIa was observed by SPR as described for human low
affinity receptors (Fig. 3c and d) (33). This was also reflected in
the strong binding of IC to minipig platelets expressing highest
levels of FcγRIIa (Fig. 4a). Yet, platelets were also the strongest
binders of free bevacizumab. This could be explained by the
increased affinity of poFcγRIIa in relation to huFcγRIIa. The
increased affinity could further lead to an enhanced sensitivity
of the minipig for FcγRIIa binding and ultimately to an over-
prediction of FcγRIIa-mediated toxicities in preclinical stud-
ies. Lau, Gunnarsen (34) observed platelet aggregation and
toxicities in domestic pigs treated with mouse IgG2b anti-
porcine CD14 (clone MIL2) possibly due to FcγR activation
and complement binding. A recombinant huIgG2/4 anti-
porcine CD14 antibody (rMIL2) however, did not induce ag-
gregation probably due to abolished FcγR or complement
binding in pigs.

The inhibitory low affinity FcγRIIb is mainly expressed on
human B cells, dendritic cells (DC), and tissue macrophages
and is an important regulator of immune responses (1). Here,
we report enhanced binding of poFcγRIIb to trastuzumab in
comparison with huFcγRIIb (Fig. 1). The Interaction Map
analysis shows a homogeneous interaction for the porcine
and human FcγRIIb. Therefore, we conclude that the three
times increased affinity is not assay dependent. This finding is
also in concordance with Macaca nemestrina FcγRIIb showing
enhanced huIgG1 binding (32). FcγRIIb of macaques and
cyno have residues His131 at the location of the huFcγRIIa
His131Arg polymorphism and Met132 nearby. These resi-
dues were shown to account for the increased binding while
huFcγRIIb has Arg131 and Ser132 in these positions. In
poFcγRIIb, however, we identified residues Tyr and Val at
the corresponding positions probably influencing the binding
in another way (Fig. S2). Triggering of the inhibitory
huFcγRIIb in macrophages and dendritic cells can counteract
the effects mediated by activating FcγRs (35). Enhanced bind-
ing of huIgG1 to poFcγRIIb could therefore enhance the
threshold for cell activation and result in a more tolerogenic
milieu in inflamed tissue, thus leading to an overestimated
efficiency of immunosuppressive therapeutic antibodies in
minipigs. Simultaneously, treatment with therapeutic
huIgG1 antibodies could lead to enhanced risk for pneumo-
coccal peritonitis while reducing pathological immune stimu-
lation due to reduced reactivity of macrophages (36,37).
Furthermore, FcγRIIb expressed on B cells plays an important
role in maintenance of peripheral tolerance (38). Thus, the
stronger binding of huIgG1 antibodies to poFcγRIIb on B
cells could lead to enhanced tolerance and hence to underes-
timation of immunogenicity concerns.

From all studied receptors, the most pronounced differen-
ces between minipig and human were observed for FcγRIIIa.
In humans, FcγRIIIa is a low affinity activating receptor bind-
ing huIgG1 IC with high avidity and mediating important
functions such as ADCC of monocytes and natural killer

(NK) cells. PoFcγRIIIa, in contrast, binds neither free- nor
immune-complexed huIgG1, and poIgG1a only with low af-
finity. This binding pattern was observed with recombinant
soluble poFcγRIIIa in SPR assays with trastuzumab and with
HEK293F cells and neutrophils expressing poFcγRIIIa in in-
teraction with bevacizumab (Figs. 1, 2 and 4). The nature of
the poor binding properties of poFcγRIIIa is unknown.
However, we cannot exclude binding to other porcine or hu-
man IgG subclasses. Similarly, it is known that huIgG isotypes
bind differently to mouse FcγRs than mouse IgG isotypes (39).
The strong surface expression of FcγRIIIa on porcine mono-
cytes, eosinophils, neutrophils and NK cells suggests impor-
tant roles for effector functions involving these cell types.
Possibly, poFcγRIIIa mediates such functions in with
poIgG1a IC or in association with other poIgG isotypes.
Indeed, 11 Ig heavy constant gamma (IGHG) genes coding
for six different IgG subclasses exist in pigs whose specific
functions are still unknown (40).

Interestingly, an influenza virus study in landrace cross
pigs by Morgan, Holzer (41) reported a lack of efficacy of a
hemagglutinin-specific huIgG1 antibody that was expected
to reduce the viral load via FcγR-interaction. The mech-
anistic investigation by flow cytometry revealed no signif-
icant binding of free- and immune-complexed huIgG1 to
porcine peripheral blood mononuclear cells including lym-
phocytes and monocytes, even though a slight elevation of
positive cells was observed with IC. However, the results
from the present study show that large IC, but not free
huIgG1 below 10 μg/ml bind to monocytes and weakly
to a lymphocyte subset (Fig. 4). These results are difficult
to compare to our study due to the unknown huIgG1
concentration, unreported gating, and uncharacterized
IC in the publication. Importantly, Morgan, Holzer (41)
have shown that the therapeutic huIgG1 antibody does
not elicit ADCC by porcine PBMCs and thus concluded
a lacking interaction between huIgG1 and all poFcγRs.
The present study confirms the lacking interaction be-
tween huIgG1 and poFcγRIIIa, that is an important me-
diator of ADCC in monocytes and NK cells. Nevertheless,
we found that huIgG1 antibodies bind to all other
poFcγRs. Even though no reduction of the viral load was
observed due to lacking ADCC, the said study reported
reduced gross pathology (decreased surface of lung lesion)
with the hemagglutinin antibody and the huIgG1 control.
As proposed before, this finding could be explained by the
strong binding huIgG1 to poFcγRIIb and the expression
of this receptor on porcine monocytes. The inhibitory
function of poFcγRIIb could thus lead to a monocyte-
mediated anti-inflammatory effect in interaction with
huIgG1 complexes and therefore to reduced tissue dam-
age. On the other hand, the inhibition could be another
reason for the unaffected viral load in addition to the lack
of NK cell-mediated ADCC.
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CONCLUSION

In this study, we identified similarities and differences be-
tween porcine and human FcγRs regarding binding to
huIgG. Taken together, we inferred proper FcγR-
mediated effector functions upon treatment of minipigs
with human therapeutic antibodies. Due to the similar
binding properties of FcγRIa, FcγRIIa, and FcγRIIb we
suggest the minipig as a valuable species for assessment of
IC-mediated toxicities such as bevacizumab induced
platelet activation. The limitations of the minipig relate
to the failure of poFcγRIIIa to bind huIgG1 antibodies to
mediate effects such as ADCC as demonstrated by the
influenza study in pigs with a huIgG1 antibody discussed
before (41). Because minipig NK cells express poFcγRIIIa
as the only FcγR, we conclude that this cell type cannot
mediate ADCC and other effector functions via huIgG1.
However, monocyte-mediated effector functions cannot
be excluded with huIgG1 because this cell type expresses
other FcγRs in addition to poFcγRIIIa. Nevertheless, a
reduced or lacking efficacy of huIgG1 antibodies is
expected in the minipig. Furthermore, as in most animal
species for preclinical studies, also FcγRIIIb-mediated
effects of neutrophils, such as acute infusion reactions,
cannot be predicted in the minipig due to the unique
expression of FcγRIIIb in the human (42). However, the
minipig is well suited for pharmacodynamic (PD) studies
with therapeutic antibodies as comparable binding
strengths of huIgGs were observed to the neonatal Fc
receptor (FcRn) between minipigs and humans (43).
Nevertheless, it has to be mentioned that the selection of
the Göttingen minipig for preclinical studies is dependent
on the pharmacological activity of the therapeutic anti-
body and thus cross-reactivity with the porcine target is
required. Furthermore, in vitro functional studies and ac-
tivity assays should be performed to assess the pharmacol-
ogy of a particular therapeutic antibody prior to the se-
lection of the minipig for preclinical studies.

Here we have described for the first time the cloning and
expression of poFcγRIIa, as well as the binding pattern of
human therapeutic antibodies to all poFcγRs. The
Interaction Map analysis used in this study is a tool to under-
stand complex binding mechanisms in vitro and highlights the
complexity of FcγR-IgG interactions. Furthermore, it relativ-
izes statements about FcγR affinities in interaction with IgG.
Additionally, many novel special formats of therapeutic anti-
bodies are often Fc engineered for altered FcγR binding in-
fluencing their mode of action. The binding properties of
these novel antibody formats to minipig FcγRs can thus not
easily be predicted from our data and will have to be estab-
lished in a case by case evaluation. The experimental systems
described here provide a suitable basis of tools for such
evaluation.
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Fig. S1 Deglycosylation analysis of soluble poFcγRs. Purified soluble 
poFcγRs were treated with (+) or without (-) PNGase F and analyzed by 
SDS-PAGE. The molecular weight marker (M) is labeled with the 
corresponding sizes in kDa on the left of each band. Arrows highlight 
the reduction of the estimated size after deglycosylation. cytometry 

Fig. S2 Alignment of the Ig-like C2-type 2 domain (extracellular domain 2) of human, cyno, porcine, cattle and mouse FcγRs. Conserved Trp 
residues (Trp104 and Trp127 in huFcγRIa) found to be important for interaction with Pro293 of huIgG antibodies are indicated by  
arrowheads (▼). Residues marked with a diamond shape (◊) form hydrogen bonds between huFcγRIa and huIgG1 and the black circle (●) 
indicates the hydrophobic pocket huFcγRIa for Leu235 of IgG Fc (27). The asterisk (*) marks the position of the R131H polymorphism in 
huFcγRIIa influencing its affinity. The poFcγRIIb1 isoform differs from the displayed poFcγRIIb in the two amino acid residues highlighted 
in yellow (His153Asn and Asn168Asp). Sequences used for this MUSCLE alignment are: Human FcγRIa (Uniprot: P12314), FcγRIIa (Uniprot: 
P12318), FcγRIIb (Uniprot: P31994), FcγRIIIa (Uniprot: P08637); cyno FcγRI (Uniprot; Q8SPW5), FcγRIIa (Uniprot; Q8SPW4), FcγRIIb 
(Uniprot; Q8SPW3), FcγRIII (Uniprot; Q8SPW2); porcine FcγRIa (Uniprot; Q461Q0), FcγRIIa (Transcript XM_021089520), FcγRIIb (Uniprot; 
B9VVN4), FcγRIIIa (Uniprot; Q28942); cattle FcγRIa (Uniprot: Q9MZT0), FcγRIIa (Uniprot: A8DC37), FcγRIIb (Uniprot: Q28110), FcγRIII 
(Uniprot: P79107); mouse FcγRIa (Uniprot: P26151), FcγRIII (Uniprot: P08508), FcγRII (Uniprot: P08101), FcγRIV (Uniprot: Q3TC44). 

Fig. S3 SPR binding analysis comparing porcine 
FcγRIIb and its sub-isoform FcγRIIb1. This figure 
is analogous to Fig. 1b and c. The real-time 
sensorgrams from SPR analysis in the upper row 
show interaction of HER2-specific huIgG1 
(trastuzumab, red), poIgG1a-HER2 (green), and 
poIgG3-HER2 (blue) with the respective FcγR 
named above. A titration with 600 nM, 200 nM, 
and 66.7 nM of soluble FcγR is shown binding 
the antigen-bound IgG on the chip surface. 
Interaction Map analysis resulting from 
trastuzumab binding to all concentrations of 
porcine FcγRs is shown in the lower row. The 
binding is separated in its parallel interactions 
with unique kinetics, as displayed by spots on a 
graph with kd on the x-axis and ka on the y-axis. 
The heatmap is a measure of the contribution 
(red = high, blue = low) of each interaction to the 
total binding. 
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Fig. S4 Gating strategy for flow cytometry analysis of minipig blood. Whole blood from Göttingen minipigs was stained with the indicated 
fluorochrome-labeled antibodies. From singe and live cells, gates P1-P5 were selected using forward (FSC) and side scatter (SSC) and cell 
types were identified using the following antibody clones: CD45 (K252.1E4), CD61 (JM2E5), CD3e (BB23-8E6-8C8), CD21 (BB6-11C9.6), 
CD335 (VIV-KM1), CD8a (76-2-11), CD172a (74-22-15A), CD14 (MIL2), and CD52 (11/305/44). Numbers indicate the percentage of cells 
within the respective population (P1-P5). 
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7.4 Supplementary experiments 

This section provides supporting information such as further experiments, approaches, and discussions 

regarding the binding characterization of human therapeutic antibodies to poFcγRs. 

Table 7.1 shows a recap on the IgG-FcγR binding properties resulting from Manuscript 2. The binding 

strength was categorized according to the dissociation curves from SPR sensorgrams and affinity 

calculations from Interaction Map analysis (Manuscript 2 Fig. 1). Importantly, smaller differences in 

binding strength are not reflected in Table 7.1. Therefore, it should be noted that the huIgG1 

interaction is stronger to poFcγRIIb and weaker to poFcγRIa than to the human homologs.  

Table 7.1 Summary of interactions between IgG and FcγRs generated from Manuscript 1 Fig.1. 

Human IgG1 Porcine IgG1a Porcine IgG3 

P
o

rc
in

e FcγRIa +++ +++ +/- 

FcγRIIa ++ + +/- 

FcγRIIb + + - 

FcγRIIIa - + - 

H
u

m
an

 FcγRIa +++ - +/- 

FcγRIIa + +/- - 

FcγRIIb + - - 

FcγRIIIa + - - 
+++ 
++ 
+ 

+/- 
- 

stable interaction (slow dissociation, KD <10 nM) 
heterogeneous stability (one quick and one slow dissociation) 
low stability (quick dissociation, KD 100-800 nM) 
trace interaction (KD in the range of 1 μM) 
no interaction detected 

7.4.1 Recombinant expression of soluble porcine FcγRs 

SPR binding studies presented in Manuscript 2 are based on the recombinant expression of poFcγR as 

Fc fusion proteins, termed soluble poFcγRs. The generation of Fc fusions is a frequently employed 

method for better soluble expression and allowed the dimerization of the FcγR extracellular domains 

for higher assay sensitivity. Because regular Fc parts of IgG antibodies interact with FcγRs, they were 

modified by PGLALA (Pro329G, Leu234Ala, Leu235Ala) mutations to abolish huFcγR interactions [37]. 

After transient expression of soluble poFcγRs in human embryonic kidney 293F (HEK293F) cells, we 

observed strong aggregation of poFcγRIa, IIa, and IIIa but not of poFcγRIIb and IIb1. Not all aggregates 

could be excluded after size exclusion chromatography (SEC) purification and collection of the 

monomeric fraction. We systematically tested different buffer conditions to reduce the aggregate 

formation of soluble poFcγRs during purification. The results showed that acidic buffers (pH < 5.5) 

reduced the formation of aggregates whereas common stabilizers like arginine and potassium L-

glutamate had no effect. Moreover, high concentrations of sodium chloride (500 mM), were found to 

be useful during SEC for a better separation of aggregates from the monomeric fraction. The reason 
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for the high content of aggregates and the dynamic equilibrium is still unknown. The aggregation could 

possibly be process-related initiated by the low pH during protein A purification or by protein 

concentration. Fine-tuning of the expression system and the purification process are thought to allow 

a higher yield of aggregate-free preparations. Alternatively, aggregates could result from binding of 

the respective poFcγR extracellular domain to the IgG Fc fusion tag of neighboring proteins. The 

PGLALA mutations included in the Fc fusion tag is known to abolish the binding to all huFcγRs. However, 

no data about poFcγRs are available describing PGLALA binding and we did not specifically test for that. 

Hence, testing of alternative fusion proteins for dimerization is recommended.  

7.4.2 IC binding to FcγRs on HEK293F cells 

In Manuscript 2, full length FcγRs expressed on the cell surface of HEK293F cells were tested for binding 

to free huIgG1 (bevacizumab). The results from Manuscript 2 indicated a concentration dependent 

binding of huIgG1 to all huFcγRs and to poFcγRIa, IIa, and IIb. PoFcγRIIIa, however, did not interact with 

free huIgG1. HEK293F cells expressing surface huFcγRs were also found useful to investigate binding 

to huIgG1 and huIgG4 hexameric-Fc fusion proteins representing immune complexes [99]. To study 

possible interactions of poFcγRIIIa with complexed huIgG1, we also used this system for binding studies 

with IC composed of bevacizumab and its target VEGF. In parallel to free huIgG1, we therefore 

incubated FcγR expressing cells with huIgG1 IC as described for studies in minipig blood (Manuscript 

2). The cells were analyzed by flow cytometry after detection of surface bound IC with a PE-conjugated 

goat F(ab')2 antibodies against huIg-kappa. 

Similar to the experiment with free huIgG1, we observed concentration dependent binding of huIgG1 

IC (Fig. 7.2A). In contrast to the results with free huIgG1, complexed huIgG1 bound to poFcγRIIIa, albeit 

weaker than all tested human (not shown) and porcine FcγRs. The stronger binding of all porcine and 

human FcγRs to IC than to free huIgG1 is evident by elevated median fluorescence intensity (MFI) even 

though the fluorescence intensity is not normally distributed (Fig. 7.2B). Unexpectedly, non-

transfected (not shown) or HEK293F cells, as well as HEK293F cells transfected without plasmid, 

showed high background signal by binding complexed huIgG1 in a concentration dependent manner 

(Fig. 7.2A and B). Therefore, data generated with IC could not be properly interpreted and were not 

included in the manuscript. 

The reason for the strong IC binding and clean background with free IgG could be due to native 

expression of IgG receptors. However, the native expression of FcγRs was excluded on HEK293F cells 

by staining with anti-human CD64, CD32, and CD16 antibodies (see control in Fig. 2A of Manuscript 2). 

A diverse range of other, structurally unrelated, Fc binding proteins could be responsible for 

interactions with huIgG1 IC. Apart from Ig-specific proteins like the neonatal Fc receptor (FcRn), poly 

Ig receptors (pIgR), or Fc receptor-like (FcRL) proteins; other proteins such as mannose-binding lectins 

59



(e.g. MBL2), macrophage mannose receptor (MMR), dendritic cell-specific intercellular adhesion 

molecule-3-grabbing non-integrin (DC-SIGN), Dectin-1, or other C-type lectins could bind to 

glycostructures or repetitive patterns within IgG IC [7]. 

Fig. 7.2 Binding of free huIgG1 and IC to membrane-anchored porcine FcγRs expressed HEK293F cells. (A) IC composed of 
huIgG1 and VEGF (upper panel, indicated by the IC drawing) or free huIgG1 (lower panel, indicated with the free antibody 
drawing) were incubated with HEK293F cells expressing the above indicated FcγR. After intense washing, FcγR bound IgG was 
stained with PE-conjugated goat F(ab’)2 anti-huIg-kappa secondary antibody and analyzed by flow cytometry. Stacked 
histograms show binding of the following IgG concentrations in the according preparations: 100 μg/ml (dark green), 10 μg/ml 
(light green), 1 μg/ml (orange), 0.1 μg/ml (blue), and no IgG (red). (B) Graphs show the median fluorescence intensity (MFI, y-
axis) measured with increasing concentration (x-axis) of IC (red curve) or free huIgG1 (blue curve). Green open triangles 
represent 10 μg/ml VEGF used as a negative control. 

7.4.3 IgG binding to blood and lymph nodes with cell surface markers 

The binding of free huIgG1 and IC to the major blood cell subsets of the Göttingen minipig was studied 

in Manuscript 2. Thereby, we observed a minor lymphocyte subset binding to huIgG1 IC (Manuscript 2 

Fig. 4). The aim of the following experiments described here was to closer identify this cell population 

and to assess the IC binding capacity of cells derived from lymph nodes and blood. The lymph node 

was in a special focus due to its active function during immune reactions and the abundance of B and 

T lymphocytes. Therefore, we performed further flow cytometry binding studies with free- and 

immune-complexed huIgG1 in blood and lymph nodes, as well as with huIgG1, 2, 3, 4 and poIgG1a, 3 

subclasses in blood. 
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Therefore, we isolated the cells from blood and lymph nodes of two Göttingen minipig, as described 

earlier. Then, the isolated cells were co-incubated with free huIgG1 (bevacizumab) and huIgG1 IC 

(bevacizumab-VEGF) followed by staining with cell-type specific surface markers. Subsequently, cell-

bound free- and immune-complexed huIgG1 was stained with PE-conjugated goat F(ab')2 antibodies 

against huIg-kappa and assessed by flow cytometry (experimental conditions described in Manuscript 

1 and paragraph 6.4.2 above). Analogous, we co-incubated cells isolated from minipig blood with 10 

μg/ml of human IgG1-4 kappa from human myeloma plasma (Sigma Aldrich), as well as with 10 μg/ml 

recombinant poIgG1a-HER2 and poIgG3-HER2 (Manuscript 2). Cell-bound free human and porcine IgG 

subclasses were stained with PE-conjugated goat F(ab')2 antibodies against huIg-kappa and assessed 

by flow cytometry. 

The results in Fig. 7.3A show that lymphocyte subsets from minipig blood and lymph nodes only 

marginally bind free- and immune-complexed huIgG1, as previously observed without cell-type specific 

surface markers (Manuscript 1 Fig. 4). Nevertheless, the strongest binding of huIgG1 IC was identified 

on CD8+ NK cells (Fig. 7.3A; gating shown in Fig. 6.2A). Yet, the results varied in intensity among the 

two analyzed minipigs. CD335+ NK cells show reduced IC binding compared to the CD8+ subset, 

whereas both subsets did not bind free huIgG1. Here, NK cells from the blood are shown but similar 

results were observed in the lymph node where the abundance of NK cells is relatively low. The positive 

lymphocyte subset observed in Manuscript 2 Fig. 4 could be attributed to these NK cell subsets. NK 

cells express high levels of poFcγRIIIa as the only FcγR [82] (Fig. 6.1; Manuscript 1). Interestingly, highly 

sensitive SPR assays and cellular binding studies presented in Manuscript 2 indicate that huIgG1 does 

not interact with poFcγRIIIa while interactions with huFcγRIIIa were well detectable. Therefore, the 

binding of huIgG1 IC to porcine NK cells is unlikely to be mediated via poFcγRIIIa. Nevertheless, weakest 

interactions with poFcγRIIIa with an equilibrium dissociation constant (KD) of >10 μM cannot be 

excluded [37]. Thus, it could be speculated that a very weak, almost undetectable, interaction of 

huIgG1 with poFcγRIIIa remains, which allows avidity-based binding of high IC concentrations. As 

hypothesized for HEK293F cells, also NK cells express a broad range of receptors that could contribute 

to IC binding. In addition to the receptors mentioned before in the context of HEK293F cells, NK cells 

express e.g. killer cell lectin receptors (KCLR) containing C-type lectin structures, that could potentially 

bind structures of complexed IgG [100]. 

Interestingly, T cells mildly bound huIgG1 IC in concentrations above 10 μg/ml. Among them, CD8+ T 

effector cells showed the most pronounced shift of fluorescence intensity with high concentrations of 

IC. Interactions with CD4+ T helper cells and CD4/CD8 double positive T cells however were weaker 

(Fig. 7.3A). Older studies have already detected binding of IC, but not of free IgG to activated T 

lymphocytes in mice and postulated the presence of receptors for aggregated IgG in these cells [101, 

102]. A subset of IC binding T cells was found to express Fc receptors [103]. Our single cell RNA 
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sequencing results suggest the presence of FcγRIIIa mRNA in T cells of minipigs and humans 

(Manuscript 1 Fig. 6). Nevertheless, the huFcγR expression on human T cells is controversially discussed 

in the literature. As previously indicated, the expression of huFcγRs is not excluded due to the difficulty 

to examine all possible T cell subsets and activation states [104]. Apart from poFcγRs and other IgG-

binding receptors, the IC interactions with T cells, NK cells, and others could be influenced by charge-

mediated interactions. In general, antibodies are positively charged at a neutral pH of 7.4. 

Bevacizumab used for these experiments is no exception with an isoelectric point of 8.3 [105]. The 

resulting positive charge at lower pH allows antibodies to interact with negatively charged cells 

resulting in uptake via fluid phase pinocytosis [106]. This suggests possible charge-mediated 

interactions with cells of the minipig that are enhanced by avidity effects in the case of large IC. 

However, B cells of minipigs and humans are known to express FcγRIIb (Manuscript 1; [12]). Even 

though poFcγRIIb can bind huIgG1, we did not observe IC binding to B cells probably due to the high 

background with the detection antibody (Fig. 7.3A, Fig. 6.2). Fig. 7.3A shows B cells and T cells from 

the lymph nodes due to their high abundance, but similar results were observed in the blood. 

Apart from the huIgG1 therapeutic antibody bevacizumab, we also assessed the binding of further free 

porcine and human IgG subclasses to minipig blood (Fig. 7.3B). While both tested huIgG1 antibodies 

showed similar results (data not shown), also huIgG3 and huIgG4, but not huIgG2 interacted with 

platelets. Additionally, huIgG4 also showed the strongest binding to monocytes, neutrophils, and 

eosinophils. Similarly, huIgG1 and huIgG3, followed by huIgG4 are the strongest binders to most 

huFcγRs, [107]. HuIgG2 that does not bind to minipig blood cells also shows the weakest binding to 

huFcγRs. Analogous to huIgG1, also poIgG1a bound to minipig platelets. Additionally, poIgG1a also 

bound to minipig monocytes, neutrophils, and eosinophils in descending order of strength whereas 

huIgG1 did not bind these cell types. This difference is most likely mediated by poFcγRIIIa that binds 

poIgG1a but not huIgG1. Comparable to huIgG3, also poIgG3 did not bind any blood cell subsets in the 

minipig. However, these results do not suggest the orthology of the different IgG subclasses between 

the species. In contrast, poIgG3 was predicted by sequence analysis to show the strongest FcγR-binding 

among all porcine IgG subclasses [108]. 

Furthermore, we performed pilot studies with ICs composed of the different porcine and human IgG 

subclasses. The complexes were generated by cross-linking of the IgG subclasses via PE conjugated 

goat F(ab’)2 anti-human Ig-kappa antibody as previously published [107]. However, these experiments 

did not yield acceptable results for all IgG subclasses. Either because of the lacking signal amplification 

obtained when a secondary antibody is used or because of an incomplete IC formation. 
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Fig. 7.3 Human and porcine IgG and IC binding to minipig cells. (A) B cell and T cell subsets (G1-G4) from lymph nodes were 
investigated (LN) whereas NK cell subsets (G5 and G6) were analyzed in the blood (gating shown in Fig. 6.2A). IC (upper row) 
and free bevacizumab (lower row) indicated by the drawing on the right were titrated using preparations containing IgG 
concentrations of 100 μg/ml (dark green), 10 μg/ml (light green), 1 μg/ml (orange), 0.1 μg/ml (blue), and no IgG (red). After 
intense washing, cell bound IgG was stained with PE-conjugated goat F(ab’)2 anti-huIg-kappa secondary antibody and 
analyzed by flow cytometry. (B) Platelets, lymphocytes, monocytes, neutrophils, and eosinophils (from left to right) were gated 
from forward and sidescatter as described in both manuscripts. Histograms in the upper row (huIgG, blue antibody drawing) 
show the binding of 10 μg/ml of free huIgG4 (dark green), huIgG3 (light green), huIgG2 (orange), huIgG1 (blue), and no IgG 
(red), whereas the lower row (poIgG, orange antibody drawing) shows binding of 10 μg/ml of free poIgG3 (orange), poIgG1a 
(blue), and no IgG (red). 
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7.4.4 IgG binding after blocking of porcine FcγRIIIa with anti-pig CD16 antibody 

The flow cytometry studies on minipig whole blood shown before indicate a possible role of poFcγRIIIa 

expressed on NK cells as a potential binder of huIgG1 IC. Blocking of poFcγRIIIa was supposed to clarify 

its contribution to the binding of IC as observed in poFcγRIIIa expressing NK cells. 

Therefore, we blocked the poFcγRIIIa in the blood of two different minipigs using 0.1, 1, and 10 μg/ml 

unlabeled anti-pig CD16 antibody (clone G7) prior to the incubation with 10 μg/ml free- or immune-

complexed huIgG1 (bevacizumab). Apart from poFcγRIIIa blocking, all conditions were the same as in 

the previous experiment (Fig. 7.3A). 

The anti-pig CD16 antibody clone G7 was shown to almost completely block ADCC in peripheral blood 

leucocytes and reducing ADCC in polymorphonuclear leukocytes [109]. Additionally, this antibody 

inhibits the poFcγRIIIa-mediated antibody-dependent enhancement of PRRSV infection [110]. In our 

hands binding of free- and immune-complexed huIgG1 to NK cells, monocytes, neutrophils, and 

eosinophils could not be reduced after blocking with this CD16 antibody (not shown). As expected, also 

cell types lacking poFcγRIIIa, such as platelets and T cells were not affected (not shown). This result 

suggests that poFcγRIIIa is not involved in the IC binding of NK cells and confirms its inability to bind 

huIgG1. However, due to the lack of a positive control confirming poFcγRIIIa blocking, we cannot 

confirm complete blocking by anti-pig CD16 antibody clone G7. Therefore, we excluded this data from 

the manuscript. 
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8 Discussion 

The scarce knowledge about poFcγRs in the minipig limit the translatability of preclinical studies with 

human therapeutic antibodies in this animal model. Therefore, we investigated the poFcγRs on a gene, 

transcript, protein, and functional level in the scope of two comprehensive manuscripts and 

unpublished supplementary results. The results from Manuscript 1 about the FcγR expression pattern 

is graphically displayed in Fig. 6.1 whereas the results from Manuscript 2 about the interactions of IgG 

antibodies with porcine and human FcγRs is summarized in Table 7.1. All similarities and differences 

between porcine and human FcγRs found in this study are compiled in Table 8.1. The combination of 

data on poFcγR expression and their interactions with huIgG enable an estimation about the 

predictivity of the minipig in preclinical studies with human therapeutic antibodies. Apart from 

therapeutic antibody research, understanding of IgG-FcγR interactions is also important for 

therapeutic purposes and immunoprophylaxis in the pig [68], as well as for vaccine studies, PRRSV 

infection studies [110-112], and porcine inflammation models [70]. 

8.1 Similarities and differences of porcine and human FcγRs 

In general, our results show that porcine and human FcγRs share a rather conserved genomic 

organization and similar protein structures. However, distinct differences between minipig and human 

were found concerning FcγR expression and binding (summarized in Table 8.1). Different expression 

patterns, protein domains, or binding affinities can impact the function of the respective FcγR. 

8.1.1 Binding mechanisms of FcγRIa 

In human, free huIgG1, 3, and 4 bind huFcγRIa with high affinity [107]. This binding was shown to 

mediate the internalization and recycling of the IgG-FcγRIa complex [113] suggesting a role as 

scavenger receptor [71] which allows constant sampling of extracellular antigens. Interestingly, the 

strong binding of huIgG1 to huFcγRIa (nanomolar dissociation constant) suggests a constant 

occupation of the receptor with IgG present in high concentrations in serum and body fluids [9]. But 

like for all activating FcγRs, IC-mediated aggregation of the FcγR on the cell surface is a prerequisite for 

activation signaling leading to effector functions. However, free IgG readily dissociates from huFcγRIa 

with a half-life in the range of minutes causing a constant turnover which allows the binding of IC. This 

can lead to receptor aggregation and activation and thus promoting inflammation and anaphylaxis. In 

addition to the function of huFcγRIa in anti-tumor immunotherapy, an efficient role is suggested in 

binding of sparsely opsonized antigen or large complexes as they appear early in immune responses 

[9, 114]. Similar mechanisms could be assumed in the minipig due to the strong binding of free poIgG1a 

and huIgG1 as reported in SPR experiments (Manuscript 2, Fig. 1). Even though huIgG1 binds to 

poFcγRIa with high affinity, its interaction was less stable as compared to the human orthologue. The 
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resulting consequences for the minipig as a preclinical species with therapeutic antibodies are unclear. 

On one hand, the lower stability could lead to a quicker dissociation of free huIgG and thus to a better 

availability for IC binding. On the other hand, the weaker binding could lead to less potent activation 

by huIgG1 IC. Nevertheless, poFcγRIa is anticipated to be of the right stability to allow receptor 

occupancy by circulating free IgG and binding of IC, as it is suggested for huFcγRIa. Furthermore, our 

results with poFcγRIa showed a stronger binding stability with IC compared to free IgG thus supporting 

the suggested similarity to huFcγRIa (Manuscript 2). We found a similar FcγRIa cellular distribution in 

the blood of both species further suggesting analogous functions (Manuscript 1). 

8.1.2 FcγRIIa orthology and signaling 

Together with other low affinity activating FcγRs, FcγRIIa is involved in ADCC, ADCP, endocytosis, 

cytokine release, and antigen presentation upon aggregation via IC [115, 116]. Orthology between 

porcine and human low affinity FcγRs is assumed based on sequence similarities of the extracellular 

domains (displayed as percentage in Table 8.1) and the structure of the low affinity FCGR locus 

(Manuscript 1, Fig. 4). In Manuscript 1, we describe the identification of a hitherto unknown porcine 

receptor with high extracellular similarity to FcγRIIa of primates and therefore named it poFcγRIIa. 

Despite the high extracellular similarity, no intracellular ITAM for transmission of activation signals was 

detected in the newly identified poFcγRIIa as it is described for human and NHP FcγRIIa [117]. Due to 

the presence of a conserved charged aspartic acid residue in the transmembrane domain we expect 

the association of poFcγRIIa with adaptor proteins, such as the FcR γ-chain for activation signaling 

(Manuscript 1) [13, 104]. Transcripts similar to poFcγRIIa lacking intracellular ITAM and requiring 

adaptor protein association were also found in cattle (Uniprot accession: A8DC37), sheep (W5PK06), 

and rat (M0R4F7) and known as FcγRIII in the mouse [118]. Interestingly, swapping of ITAMs between 

huFcγRIIa and the endogenous FcR γ-chain revealed qualitatively different responses mediated by the 

individual ITAMs [119]. Therefore, different intracellular domains and interactions with adaptor 

proteins between porcine and human FcγRIIa indicate different signaling mechanisms. Such 

differences have to be further studied and considered when using therapeutic antibodies binding to 

FcγRIIa of minipigs, cattle, and (to FcγRIIIa of) mice. Due to these pronounced intracellular differences, 

mouse FcγRIII is occasionally not considered as an orthologue to huFcγRIIa [120]. In general, the 

previously described mosaicism (Manuscript 1 Fig. 3) suggests a more complex picture about the 

relation between the low affinity FcγRs in mammals. Recent studies describe gene copy number 

variations within the human low affinity FCGR locus in association with disease [121]. Similar 

mechanisms during evolution possibly led to this mosaicism and the unique appearance of FcγRIIc and 

FcγRIIIb in humans [122, 123]. Even though the term “orthology” usually applies to a whole gene with 

a common ancestor, we would therefore suggest to limit the concept of orthology in low affinity FcγRs 

only to the extracellular domains. 
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8.1.3 IgG binding and function of FcγRIIIa 

The huFcγRIIIa is known to mediate important effector functions such as ADCC upon interaction with 

huIgG1 opsonized cells. Human and porcine FcγRIIIa share similar protein structures for IgG binding, 

associate with the FcR γ-chain for activation signaling, and are expressed on NK cells and CD14low 

monocytes important for ADCC. Interestingly, the binding of huIgG1 to poFcγRIIIa is lacking, while 

endogenous poIgG1a binds to poFcγRIIIa with low affinity. Taken together with its strong expression 

in minipig blood these findings suggest important roles of this receptor that require further 

investigation. Six different IgG subclasses and five allotypes have been described in the pig that could 

differently interact with poFcγRIIIa to mediate effects similar to ADCC in the human [108]. The 

involvement of poFcγRIIIa in antibody-dependent enhancement of PRRSV infection suggests a role in 

endocytosis and cytokine production [110, 124]. Additionally, poFcγRIIIa associates with a protein 

similar to the antimicrobial cathelin, suggesting unique unknown functions in porcine immunity [81]. 

8.1.4 Inhibitory signaling via ITAM (ITAMi) 

An interesting function of huFcγRIIa and huFcγRIIIa is the ability to transmit inhibitory signals via ITAM 

(ITAMi) upon binding of free huIgG having anti-inflammatory effects [125]. The inhibitory signaling via 

FcR γ-chain of huFcγRIIIa is therefore a potential mechanism of the anti-inflammatory treatment with 

intravenous immunoglobulin (IVIg) [126]. ITAMi signaling remains to be demonstrated for the pig. 

However, the inhibitory potential of huIgG1 via ITAMi is expected to be negligible in monocytes due to 

the lacking expression of poFcγRIIa and the inability of poFcγRIIIa to bind huIgG1. However, ITAMi 

signaling could be a possible mechanism of platelet homeostasis due to the strong expression of 

poFcγRIIa on this cell type. 

8.1.1 Inhibitory signaling of FcγRIIb 

Porcine and human FcγRIIb both contain an intracellular ITIM for inhibitory signaling [75, 117]. As the 

only inhibitory Fc receptor, FcγRIIb balances the signals of the activating FcγRs and thus inhibits their 

functions upon co-aggregation [127]. Differences in the expression level and IgG binding strength 

between the activating and inhibitory FcγRs are therefore thought to influence effector functions. 

Contrasting the human expression, we found poFcγRIIb on blood monocytes. Analogous to macaques 

[45, 51], we also reported a stronger binding of huIgG1 to porcine than to human FcγRIIb (Table 7.1; 

Table 8.1; Manuscript 2). 
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Table 8.1 Similarities and differences between minipigs and humans as identified in this thesis. 

Similarities Differences 

All FcγRs ◦ Rather conserved genomic organization 
◦ FcγRs are glycosylated IgG binding

proteins expressed on the cell surface of
diverse immune cells [128]

◦ Conserved Trp residues interacting with
Pro residues of IgG [51, 129]

◦ Enhanced binding to IC compared to free
IgG [107]

◦ Orthology of individual receptors is not
necessarily given

FcγRIa ◦ Extracellular amino acid (aa) similarity of
87%

◦ Contain three extracellular Ig-like
domains and a hydrophobic pocket for
interaction with IgG [130]

◦ Expressed on blood monocytes but not on
blood DC [12]

◦ Regulated expression on human and
porcine DCs [86, 131]

◦ High affinity FcγR for huIgG1 [107]

◦ FCGR1B and FCGR1C pseudogenes are
known in humans but not in pigs [8]

◦ HuIgG1 binds more stable to human than
to porcine FcγRIa

FcγRIIa ◦ Extracellular aa similarity of 79%
◦ Polymorphisms identified in both species

[132]
◦ Expressed on blood platelets [120]

◦ Human but not porcine FcγRIIa contains
an intracellular ITAM [118]

◦ Porcine but not human FcγRIIa interacts
with FcR γ-chain via charged aspartic acid
[13]

◦ Human but not porcine FcγRIIa is
expressed on monocytes, neutrophils,
and eosinophils [133]

◦ HuIgG1 binds stronger to porcine than to
human FcγRIIa

FcγRIIb ◦ Extracellular aa similarity of 77%
◦ Expressed on B cells and DCs in the blood

and on monocytes from lymph nodes and
spleen [12]

◦ Low affinity FcγR for huIgG1 [107]

◦ Porcine but not human FcγRIIb is highly
expressed on blood monocytes [12]

◦ HuIgG1 binds stronger to porcine than to
human FcγRIIb

FcγRIIIa ◦ Extracellular aa similarity of 74%
◦ Expressed on NK cells [12]

◦ Porcine FcγRIIIa is expressed on all
monocytes, and human FcγRIIIa on
CD14low monocytes only [44]

◦ Porcine but not human FcγRIIIa is
expressed on granulocytes [133]

◦ HuIgG1 binds to human but not to porcine
FcγRIIIa [107]

FcγRIIc ◦ Not found in pigs

FcγRIIIb ◦ No GPI linked FcγR is found in pigs
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8.1.1 Absence of huFcγRIIc and huFcγRIIIb in the minipig 

So far, the human is the only species known to express the activating huFcγRIIc and the GPI-anchored 

huFcγRIIIb. Manuscript 1 shows the analysis of the complete low affinity FCGR locus in the minipig 

without the identification of potential presence of porcine FCGR2C and FCGR3B genes. If organized 

similar to humans, these genes should be located between FCGR2B and FCGR3A in the minipig, where 

we did not find any sequences associated with FcγRs. Therefore, we and others concluded that these 

duplications are exclusively found in humans [8]. 

8.2 Consequences for the evaluation of minipig in preclinical studies 

Similar to poFcγRs; NHP and mouse FcγRs share similar structures and functions with huFcγRs. 

However, characteristic differences have been observed in terms of their expression and interactions 

with human antibodies [45, 118]. In general, such differences are likely to impact antibody-mediated 

effector functions and therefore also effects of human therapeutic antibodies tested in animal models 

[118]. It is assumed that the low transition rate of therapeutic antibodies from preclinical trials to 

approval may be influenced by misleading readouts in the preclinical species due to diverging FcγR 

properties [45]. For example, the CD28 superagonist TGN1412 triggered severe side effects in healthy 

volunteers that were not predicted from NHP studies [134]. Besides a divergent expression of CD28 in 

cyno and human [135] it is hypothesized that the cytokine storm was not predicted due to differences 

in FcγR interactions with huIgG4 [27]. More recent data emphasize the involvement of FcγRs in the 

toxic activity of this therapeutic antibody [136, 137].  

8.2.1 FcγR-mediated platelet activation and toxicity 

FcγRIIa is mainly expressed on platelets in pigs, whereas humans additionally express this receptor on 

neutrophils, DCs, monocytes, and macrophages (Fig. 6.1; Manuscript 1) [12]. IC-mediated aggregation 

of huFcγRIIa on platelets leads to the release of pro-inflammatory modulators attracting neutrophils 

to the site of infection. Furthermore, it also results in platelet activation and aggregation that can have 

pathologic consequences, such as thrombosis formation followed by stroke or and myocardial 

infarction [120]. Indeed, clinical trials with antibodies against CD40 ligand resulted in severe 

thromboembolic complications, such as myocardial infarction [31], that were not predicted in mice. 

Mechanistic studies indicated that IC (therapeutic antibody and CD40 ligand) lead to platelet activation 

through huFcγRIIa [32]. Similarly, treatment with bevacizumab forms large IC with VEGF, its dimeric 

target [29], which activate platelets in the presence of heparin. In huFcγRIIa transgenic mice but not in 

wild type mice, platelet activation leads to adverse events resembling heparin-induced 

thrombocytopenia [30]. In contrast to mice, minipigs expresses high levels of endogenous poFcγRIIa 

that interacts with free huIgG1 and strongly binds IC formed by bevacizumab and VEGF (Manuscript 2 
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Fig. 4). Therefore, the minipig could be a relevant model to study FcγRIIa-mediated activation of 

platelets and the subsequent toxic or therapeutic effects. Because huIgG1 binds stronger to porcine 

than to human FcγRIIa, there is the possibility of stronger huIgG1 mediated effects on platelets in 

minipigs. This could potentially lead to adverse events related to platelet aggregation in minipigs upon 

treatment with huIgG1 that would not be observed in humans at similar doses. In minipigs, also 

endogenous poIgG1a strongly binds to poFcγRIIa leaving platelet homeostasis unaffected. Therefore, 

human therapeutic antibodies first have to compete with endogenous levels of around 20 μg/ml poIgG 

for poFcγRIIa binding [138]. Nevertheless, IC-mediated platelet activation can still be expected since IC 

binding to poFcγRIIa is substantially enhanced compared to free IgG. Indeed, FcγR-mediated platelet 

activation and subsequent toxicities were observed upon treatment of pigs with a mouse IgG2b 

antibody against porcine CD14. The recombinant version, where mouse IgG2b is replaced by the 

human IgG2/IgG4 hybrid constant region, however, lacked the undesired effects probably due to 

abolished FcγR and complement binding [70]. This suggests the possibility of poFcγRIIa to bind mouse 

IgG2b, but not huIgG2/4 to trigger platelet-mediated toxicities. 

8.2.2 ADCC in the minipig by NK cells and monocytes 

Target cell killing via ADCC is of high importance for several cytotoxic therapeutic antibodies. Main 

drivers for ADCC with cytotoxic huIgG1 therapeutic antibodies in the human are interactions with 

huFcγRIIIa expressed on NK cells [139, 140]. NK cells in the minipig fully reflect the human situation by 

expressing FcγRIIIa as the only FcγR. Therefore, NK-mediated ADCC in minipigs would be expected due 

to the expression of the orthologous receptor. However, poFcγRIIIa does not bind huIgG1 and is 

therefore excluded as a mediator of ADCC with most human therapeutic antibodies. This finding is of 

high importance because it limits the use of minipigs for preclinical studies with cytotoxic antibodies 

of the huIgG1 subclass. On the other hand, our results suggest that NK cells could potentially mediate 

ADCC upon vaccination of minipigs because endogenous poIgG1a, generated in a regular immune 

response, interacts with poFcγRIIIa. This could be beneficial for tumor vaccination or infection studies 

where active immunization is desired. 
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Importantly, huFcγRIIIa was also found to be crucial for ADCC elicited by monocytes [141]. FcγRIIIa is 

only expressed on a subset of monocytes in the human, whereas it is expressed on all monocytes in 

the minipig. Again, the inability of huIgG1 to bind poFcγRIIIa on minipig monocytes excludes this 

receptor as a mediator of ADCC with huIgG1. Nevertheless, also huFcγRIa and huFcγRIIa on monocytes 

were identified to contribute to ADCC [18, 142, 143]. Single cell RNA sequencing identified the 

expression of poFcγRIa, but we detected only negligible RNA levels of poFcγRIIa (Manuscript 1 Fig. 6). 

Therefore, alternative mechanisms in monocytes involving poFcγRIa could trigger ADCC in the minipig 

[142, 143]. However, in contrast to the human, minipig blood monocytes additionally express the 

inhibitory poFcγRIIb representing a further mechanism suppressing ADCC with huIgG1 in the minipig 

[144].  

Recently, an influenza virus study in landrace cross pigs by Morgan, Holzer [69] reported lack of efficacy 

of a huIgG1 antibody that was expected to reduce the viral load via FcγR-interaction. The mechanistic 

investigation by flow cytometry revealed no significant binding of free- and immune-complexed 

huIgG1 to porcine PBMCs and CD3- CD8a+ NK cells, even though a slight elevation of positive cells were 

observed with IC. The results from this thesis show that large IC, but not free huIgG1 below 10 μg/ml 

bind to monocytes and weakly to NK cells (Manuscript 2 Fig. 4; Fig. 7.3A). These results are difficult to 

compare to our study due to the unknown huIgG1 concentration, unreported gating, and 

uncharacterized IC in the publication. Furthermore, Morgan, Holzer [69] have shown that the 

therapeutic huIgG1 antibody does not elicit ADCC by porcine PBMCs and thus concluded a lacking 

interaction between huIgG1 and all poFcγRs. Interestingly, human monocytes and macrophages are 

less efficient and potent than NK cells in mediating ADCC in vitro [145] leading only to a cytotoxicity of 

5-30% after 24h [40]. The shorter incubation time of 4h chosen by Morgan, Holzer [69] may therefore

reflect ADCC elicited by NK cells but not by monocytes. This finding confirms the assumption of absent 

ADCC by NK cells due to absent poFcγRIIIa binding. However, the role of monocytes and macrophages 

in ADCC and also ADCP has to be further studied. 

8.2.3 FcγR-mediated functions of neutrophils 

Human neutrophils are important for the protection against pathogens and express high levels of 

huFcγRIIa and huFcγRIIIb, inducible expression of huFcγRIa but no huFcγRIIIa [133]. Among many 

functions of tissue-resident neutrophils, FcγRs were shown to be involved in the phagocytosis of 

antibody opsonized microbes, as well as release of reactive oxygen species and cytokines upon 

interactions with IC [133]. Neutrophils play a role in IgG1-mediated passive systemic anaphylaxis in the 

blood by interactions with huFcγRIIa, whereas huFcγRIa is involved in active systemic anaphylaxis [114, 

146]. In relation to preclinical studies, huFcγRIIIb on neutrophils was shown to mediate first infusion 

reactions upon injection with huIgG1 antibodies forming IC in the blood [28]. Even though murine 
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neutrophils express FcγRIII and FcγRIV, both binding huIgG1, they failed to mediate similar infusion 

reactions suggesting a specific role of huFcγRIIIb [28, 133]. So far, poFcγRIIIa is the only FcγR detected 

on blood neutrophils in the minipig and therefore the only potential FcγR mediating antibody effector 

functions on this cell type. The absence of an orthologue to huFcγRIIIb suggests the incapability of 

porcine neutrophils to trigger first infusion reactions. Furthermore, the inability of huIgG1 binding to 

poFcγRIIIa also excludes alternative FcγR-mediated mechanisms to trigger such reactions. However, a 

potential expression of poFcγRIa was not be excluded on blood and tissue resident neutrophils in our 

studies. As in the human, its expression could depend on the activation status of the cell and therefore 

remains to be determined [147, 148]. The potential poFcγRIa expression in neutrophils could 

theoretically enable phagocytosis and cytokine release in neutrophils [133]. 

8.2.4 FcγR-mediated immunoregulatory functions in dendritic cells and monocytes 

Different subsets of monocytes and DCs co-express activating and inhibitory FcγR influencing the 

uptake, processing, and presentation of antigens [149]. Mainly huFcγRIa on DCs enhances cross-

presentation of extracellular antigen via major histocompatibility complex (MHC) class I to activate 

naïve CD8+ T cells to become cytotoxic T lymphocytes (CTL) [97, 150]. Besides the defense against 

intracellular viruses and bacteria, CTL are important for responses against tumor antigens. FcγR-

mediated cross-presentation and priming of CTL is therefore wanted in cancer immunotherapy [151], 

with immunomodulatory antibodies [152], and DC-based immunotherapy [153]. We found that DCs in 

the blood of minipigs do not express poFcγRIa (Manuscript 1). However, the expression on porcine 

monocyte-derived DCs was shown to be regulated by inflammatory stimuli, fully reflecting the human 

situation. Furthermore, poFcγRIa was shown to be efficient in the uptake of IC into stimulated porcine 

DCs [86, 149]. Therefore, it can be anticipated that poFcγRIa exerts similar functions as its human 

counterpart, allowing the use of minipigs for immunotherapy involving IC uptake and cross-

presentation by DCs. Knowing the poFcγR expression profile on DCs is important for vaccine research 

and immunogenicity studies due to the role in antigen presentation. Interestingly, poFcγRIIIa-mediated 

internalization was identified as the primary mechanism of DC maturation in pig [86]. While this 

mechanism is expected to be functional with poIgG1a in immune pigs, it is probably not reflected with 

huIgG1 in antibody therapy. In general, due to the incomplete characterization of poFcγRs on DC 

subsets, we cannot conclude an identical FcγR distribution compared to the human. Different 

expression levels between the two species might potentially affect antigen presentation and cytokine 

production of the affected DC subsets [71]. 
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8.2.5 Consequences of inhibition by FcγRIIb 

The regulating roles of FcγRIIb were mainly studied upon infection of mice with Streptococcus 

pneumoniae. While the absence of FcγRIIb results in increased pathogen clearance, it also leads to an 

overshooting immune reaction upon secondary infection [154]. Vice versa, the strong binging of 

huIgG1 and expression of poFcγRIIb on porcine blood monocytes could therefore render minipigs 

susceptible to concomitant infections during preclinical trials while reducing pathological immune 

stimulation [155]. The study of Morgan, Holzer [69] discussed before (on page 70) assessed the 

therapeutic potential of the huIgG1 antibody directed against hemagglutinin, the target of influenza A 

virus [85]. Interestingly, reduced gross pathology (decreased surface of lung lesion) but no reduction 

of the viral load was observed with hemagglutinin antibody and the huIgG1 control. As proposed 

before, this finding could be explained by the strong binding huIgG1 to poFcγRIIb and the expression 

of this receptor on pig monocytes. The inhibitory function of poFcγRIIb could thus lead to a monocyte-

mediated anti-inflammatory effect in interaction with huIgG1 complexes and therefore to reduced 

tissue damage. On the other hand, the inhibition could be another reason for the unaffected viral load 

in addition to the lack of NK cell-mediated ADCC. 

As concluded for the macaque, the increased binding to FcγRIIb could mask effects of therapeutic 

antibodies that would have been observed in humans where binding to huFcγRIIb is weaker [51]. Such 

effects could include overlooked toxicities mediated by exaggerated pro-inflammatory cytokine 

release and reduced efficacy related to inhibited phagocytosis or cytotoxicity [156]. 

8.2.6 Fc engineering 

Antibody Fc engineering has become a widely used tool to modulate and fine-tune FcγR binding to 

enhance therapeutic effects and to reduce associated toxicities [35]. Enhanced huFcγRIIIa binding for 

increased ADCC can be achieved by several mutations of the IgG Fc part or by glycoengineering. [34]. 

Fc engineering for specific huFcγRIIa binding to increase phagocytosis [157] or for huFcγRIIb binding to 

suppress humoral immunity [158] is more challenging because the extracellular domains of these 

receptors differ by only 14 amino acids (94.5% similarity). This similarity requires highly specific 

adaptations of the antibody Fc part to discriminate the activation receptor from its inhibitory relative 

and to obtain the desired effects. The mechanisms for such adaptations are therefore highly specific 

for the human and not necessarily translatable to other species, such as the mouse, cyno, or the pig-

tailed macaque [50, 51, 159]. Analogous, a similar failure of human translatability is expected from 

preclinical studies with Fc engineered antibodies in minipigs. 

FcγR binding and complement activation are often not required for immunomodulatory therapeutic 

antibodies with a mode of action dependent on target binding via Fab arms. FcγR-mediated effector 

functions can be adverse as they may lead to toxicities by exaggerated cytokine release or to depletion 
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of target expressing cells [27, 37]. The carcinoembryonic antigen- (CEA) and T cell bispecific (TCB) 

therapeutic antibody CEA-TCB is currently in clinical trials. This antibody is based on an Fc silenced 

format that does not interact with FcγRs and complement component 1q (C1q) to avoid depletion of 

endogenous T cells. Simultaneously, binding to FcRn is not affected, significantly extending the half-

life of the drug due to FcRn-dependent antibody recycling [160, 161]. In this case, the PGLALA 

mutations within the backbone of the huIgG1 antibody affect FcγR- but not FcRn-binding by disturbing 

interactions of Pro residues on IgG with Trp residues on FcγRs [37]. Because this Trp structure is 

conserved in mammals, including pigs, it can be assumed that this mutation is also devoid of effector 

functions in minipigs. Therefore, the minipig should be considered as a relevant animal model for 

preclinical testing with Fc silenced antibodies. The lack of effector functions, however, remains to be 

demonstrated by in vitro functional assays with minipig cells. Furthermore, it must be considered that 

interactions with FcγRs are not the only driver of effector functions. Often also complement-

dependent cytotoxicity (CDC) is mediated by the Fc part of therapeutic antibodies in interaction with 

C1q [162]. Also these interactions have to be tested prior to the use of minipigs for toxicity studies 

with therapeutic antibodies. 
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8.3 Conclusion 

This thesis describes the characteristics of the FcγRs in the Göttingen minipigs and their interaction 

with human and porcine IgG. Screening of the low affinity FCGR locus of the minipig revealed the 

hitherto unknown gene coding for poFcγRIIa on platelets. In general, the distribution of FcγRs on 

immune cells and the binding properties to free- and immune-complexed huIgG1 are similar in 

minipigs and humans. However, we observed several key differences between both species, as 

summarized in Table 8.1. The expression of poFcγRs and the binding to huIgG were used to assess the 

Göttingen minipig as a species for preclinical safety and efficacy studies with human therapeutic 

antibodies. 

Previous studies identified the minipig as a valuable species for immunogenicity, tolerability, and PK 

studies with therapeutic antibodies [65, 66]. Due to the comparable expression pattern and similar 

binding properties of most FcγRs it can be generally concluded that the minipig is suitable as for the 

assessment of IC-mediated toxicity and efficacy. Translatable effector functions include FcγRIIa-

mediated platelet activation, FcγRIa-mediated cytokine release and antigen sampling, and FcγRIIb 

mediated inhibition of activation signals. However, differences between minipig and human 

concerning the FcγR expression on NK cells and monocytes have to be considered. The highly sensitive 

SPR data that shows a lack of huIgG1 binding to poFcγRIIIa is of major concern for studies with ADCC-

inducing antibodies of this particular IgG subclass. This lack of interaction is reflected in the publication 

by Morgan, Holzer [69] that investigates effects of a huIgG1 antibody in pig. Due to the unique mode 

of action and the individual characteristics of every engineered therapeutic antibody, we recommend 

case by case assessments of the suitability of the minipig. The tools presented in this work represent 

a possibility to investigate a therapeutic antibody in vitro for its translatability potential prior to the 

start of in vivo studies. Importantly, also functional studies are suggested to address the differences in 

effector functions to therapeutic antibodies between the species. FcγR humanization of minipigs, 

analogous to several mouse models, could circumvent the previously discussed caveats by 

replacement of the endogenous poFcγRs with the set of huFcγRs [118, 163, 164]. The description of 

the low affinity FCGR locus provides the basis for gene targeting. However, it has to be noted that 

effector functions of any preclinical species are restricted by the cross-reactivity of the therapeutic 

antibody with the antigen in the animal model. 
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The gained knowledge described in this thesis is of critical significance for the pharmaceutical 

development of therapeutic human antibodies because pharmacology, PK, PD, as well as possible 

toxicity issues are often dependent on FcγR-mediated effector functions. Taken together, this data 

enables the prediction of the relevance of Göttingen minipigs to assess certain effector functions of 

interest triggered with a therapeutic huIgG1 antibody. Therefore, this work delivers a basis for species 

selection and allows the interpretation of results from preclinical safety and efficacy studies with 

minipigs. 

8.4 Outlook 

This thesis presents a comprehensive set of data investigating the characteristics of poFcγRs and the 

interaction with huIgG1. However, further studies are suggested to gather more data about the 

suitability of the minipig for studies with therapeutic antibodies. The cellular FcγR expression studies 

presented in this thesis were studied by single cell RNA sequencing including all FcγRs in PBMCs or by 

flow cytometry including poFcγRIIa, poFcγRIIa/b, and poFcγRIIIa in the blood, lymph nodes and spleen. 

Generating antibodies specific for poFcγRIa and poFcγRIIb are required to further assess their 

expression in various tissues and on immune-related cell subsets. Such specific antibodies can again 

be generated using the HuCAL technology. The conversion of the current Fab-A-FH format to a regular 

huIgG isotype followed by direct fluorescent labeling is recommended to reduce background signals. 

Further binding studies remain to be performed with other huIgG subclasses, glycoforms, or Fc 

engineered forms of huIgG antibodies to assess their potential use in preclinical studies with minipigs. 

This requires the modification of the SPR setup or the recombinant generation of antibodies with the 

same specificity, such as HER2 or VEGF as presented here. Biotin coupling of FcγRs to the sensor chip 

is recommended since capturing via His tag, PGLALA Fc, and direct crosslinking were found to be 

inefficient (not shown). However, biotin coupling was impossible for poFcγRIIIa and the binding 

assessment of free IgG with the other FcγRs resulted in multiple interactions. These issues can be 

addressed by the expression of the extracellular domain without Fc fusion, as described in most other 

SPR studies [45, 50, 52, 107]. Alternatively, common fusion tags, such as small ubiquitin-like modifier 

(SUMO), glutathione S-transferase (GST), or maltose-binding protein (MBP) can be used to enhance 

solubility and reduce aggregation [165]. Further binding studies with FcγR expressing HEK293F cells 

are not recommended due to the unexpected binding of huIgG1 IC. Stable Chinese hamster ovary (CHO) 

cell lines expressing porcine and human FcγRs would be a considerable alternative. The co-transfection 

with nuclear factor of activated T cells (NFAT) response element (plasmids available by Promega) 

would additionally enable the detection of FcγR activation and signal transduction [166]. Nevertheless, 

binding studies with free- and immune-complexed IgG in minipig blood were found useful and would 

be best supplemented by the direct comparison to human blood. 
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Most importantly, functional assays have to be performed to assess the FcγR- and complement-

mediated effector functions of therapeutic antibodies in minipigs. A variety of different assays are 

described for the human that can be adapted to assess the ADCC potential of minipig PBMCs or cells 

isolated form the minipig [18]. For example the ADCC assay described by Morgan, Holzer [69] was 

found to be useful for porcine and human PBMCs with huIgG1 antibodies and serum from immune pig 

as a positive control, even though a longer incubation time is recommended to detect monocyte-

mediated ADCC. Different human IgG subclasses could be used as comparators because it is laborious 

to generate immune serum or porcine surrogates as positive controls. Additionally, bone-marrow 

derived macrophages or other effector cells can be co-incubated with target cells and therapeutic 

antibodies to study ADCP, as described by Shi, Fan [167]. The hypothesis, that the release of pro-

inflammatory cytokines and their inhibition via poFcγRIIb leads to reduced pathology can be studied 

by cytokine release assays in a whole blood setting, with cultured monocytes/macrophages, or with 

sorted cells with and without blocking of poFcγRIIb [168, 169]. Also the highly important C1q binding 

and subsequent complement-dependent mechanisms remain to be assessed in vitro by SPR or by 

functional complement assays as previously described in pigs [170]. Ultimately, minipig in vivo studies 

using approved human therapeutic antibodies with known effector mechanisms can be used as a 

validation of studies with minipigs.  
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