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Abstract

The lack of interpretability remains a key barrier to the adoption of
deep models in many applications. In this work, we explicitly regularize
deep models so human users might step through the process behind their
predictions in little time. Specifically, we train deep time-series models so
their class-probability predictions have high accuracy while being closely
modeled by decision trees with few nodes. Using intuitive toy examples
as well as medical tasks for treating sepsis and HIV, we demonstrate that
this new tree regularization yields models that are easier for humans to
simulate than simpler L1 or L2 penalties without sacrificing predictive
power.

1 Introduction

Deep models have become the de-facto approach for prediction in a variety of
applications such as image classification (e.g. [20]) and machine translation (e.g.
[3, 37]). However, many practitioners are reluctant to adopt deep models because
their predictions are difficult to interpret. In this work, we seek a specific form
of interpretability known as human-simulability. A human-simulatable model is
one in which a human user can “take in input data together with the parameters
of the model and in reasonable time step through every calculation required
to produce a prediction” [24]. For example, small decision trees with only a
few nodes are easy for humans to simulate and thus understand and trust. In
contrast, even simple deep models like multi-layer perceptrons with a few dozen
units can have far too many parameters and connections for a human to easily
step through. Deep models for sequences are even more challenging. Of course,
decision trees with too many nodes are also hard to simulate. Our key research
question is: can we create deep models that are well-approximated by compact,
human-simulatable models?

The question of creating accurate yet human-simulatable models is an impor-
tant one, because in many domains simulatability is paramount. For example,
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despite advances in deep learning for clinical decision support (e.g. [26, 8, 5]),
the clinical community remains skeptical of machine learning systems [6]. Simu-
latability allows clinicians to audit predictions easily. They can manually inspect
changes to outputs under slightly-perturbed inputs, check substeps against their
expert knowledge, and identify when predictions are made due to systemic bias
in the data rather than real causes. Similar needs for simulatability exist in many
decision-critical domains such as disaster response or recidivism prediction.

To address this need for interpretability, a number of works have been
developed to assist in the interpretation of already-trained models. [9] train
decision trees that mimic the predictions of a fixed, pretrained neural network,
but do not train the network itself to be simpler. Other post-hoc interpretations
typically typically evaluate the sensitivity of predictions to local perturbations
of inputs or the input gradient [32, 34, 1, 25, 11]. In parallel, research efforts
have emphasized that simple lists of (perhaps locally) important features are not
sufficient: [35] provide explanations in the form of programs; [21] learn decision
sets and show benefits over other rule-based methods.

These techniques focus on understanding already learned models, rather than
finding models that are more interpretable. However, it is well-known that deep
models often have multiple optima of similar predictive accuracy [13], and thus
one might hope to find more interpretable models with equal predictive accuracy.
However, the field of optimizing deep models for interpretability remains nascent.
[33] penalize input sensitivity to features marked as less relevant. [23] train deep
models that make predictions from text and simultaneously highlight contiguous
subsets of words, called a “rationale,” to justify each prediction. While both
works optimize their deep models to expose relevant features, lists of features
are not sufficient to simulate the prediction.

Contributions. In this work, we take steps toward optimizing deep models
for human-simulatability via a new model complexity penalty function we call
tree regularization. Tree regularization favors models whose decision boundaries
can be well-approximated by small decision-trees, thus penalizing models that
would require many calculations to simulate predictions. We first demonstrate
how this technique can be used to train simple multi-layer perceptrons to have
tree-like decision boundaries. We then focus on time-series applications and show
that gated recurrent unit (GRU) models trained with strong tree-regularization
reach a high-accuracy-at-low-complexity sweet spot that is not possible with
any strength of L1 or L2 regularization. Prediction quality can be further
boosted by training new hybrid models – GRU-HMMs – which explain the
residuals of interpretable discrete HMMs via tree-regularized GRUs. We further
show that the approximate decision trees for our tree-regularized deep models
are useful for human simulation and interpretability. We demonstrate our
approach on a speech recognition task and two medical treatment prediction
tasks for patients with sepsis in the intensive care unit (ICU) and for patients
with human immunodeficiency virus (HIV). Throughout, we also show that
standalone decision trees as a baseline are noticeably less accurate than our
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tree-regularized deep models. We have released an open-source Python toolbox
to allow others to experiment with tree regularization 1.

Related work. While there is little work (as mentioned above) on optimizing
models for interpretability, there are some related threads. The first is model
compression, which trains smaller models that perform similarly to large, black-
box models (e.g. [15, 4, 14]). Other efforts specifically train very sparse networks
via L1 penalties [40] or even binary neural networks [38, 31] with the goal of
faster computation. Edge and node regularization is commonly used to improve
prediction accuracy [10, 27], and recently [17] improve prediction accuracy
by training neural networks so that predictions match a small list of known
domain-specific first-order logic rules. Sometimes, these regularizations—which
all smooth or simplify decision boundaries—can have the effect of also improving
interpretability. However, there is no guarantee that these regularizations will
improve interpretability; we emphasize that specifically training deep models to
have easily-simulatable decision boundaries is (to our knowledge) novel.

2 Background and Notation

We consider supervised learning tasks given datasets of N labeled examples,
where each example (indexed by n) has an input feature vectors xn and a target
output vector yn. We shall assume the targets yn are binary, though it is simple
to extend to other types. When modeling time series, each example sequence
n contains Tn timesteps indexed by t which each have a feature vector xnt and
an output ynt. Formally, we write: xn = [xn1 . . . xnTn

] and yn = [yn1 . . . ynTn
].

Each value ynt could be prediction about the next timestep (e.g. the character
at time t+ 1) or some other task-related annotation (e.g. if the patient became
septic at time t).

Simple neural networks. A multi-layer perceptron (MLP) makes predictions
ŷn of the target yn via a function ŷn(xn,W ), where the vector W represents all
parameters of the network. Given a data set {(xn, yn)}, our goal is to learn the
parameters W to minimize the objective

min
W

λΨ(W ) +

N∑
n=1

loss(yn, ŷn(xn,W )) (1)

For binary targets yn, the logistic loss (binary cross entropy) is an effective
choice. The regularization term Ψ(W ) can represent L1 or L2 penalties (e.g.
[10, 13, 27]) or our new regularization.

Recurrent Neural Networks with Gated Recurrent Units. A recur-
rent neural network (RNN) takes as input an arbitrary length sequence xn =

1https://github.com/dtak/tree-regularization-public
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[xn1 . . . xnTn ] and produces a “hidden state” sequence hn = [hn1 . . . hnTn ] of the
same length as the input. Each hidden state vector at timestep t represents a loca-
tion in a (possibly low-dimensional) “state space” with K dimensions: hnt ∈ RK .
RNNs perform sequential nonlinear embedding of the form hnt = f(xnt, hnt−1)
in hope that the state space location hnt is a useful summary statistic for making
predictions of the target ynt at timestep t.

Many different variants of the transition function architecture f have been
proposed to solve the challenge of capturing long-term dependencies. In this
paper, we use gated recurrent units (GRUs) [7], which are simpler than other
alternatives such as long short-term memory units (LSTMs) [16]. While GRUs
are convenient, any differentiable RNN architecture is compatible with our new
tree-regularization approach.

Below we describe the evolution of a single GRU sequence, dropping the
sequence index n for readability. The GRU transition function f produces the
state vector ht = [ht1 . . . htK ] from a previous state ht−1 and an input vector xt,
via the following feed-forward architecture:

output state : htk = (1− ztk)ht−1,k + zt,kh̃tk (2)

candidate state : h̃tk = tanh(V hk xt + Uhk (rt � ht−1))

update gate : ztk = σ(V zk xt + Uzkht−1)

reset gate : rtk = σ(V rk xt + Urkht−1)

The internal network nodes include candidate state gates h̃, update gates z
and reset gates r which have the same cardinality as the state vector h. Reset
gates allow the network to forget past state vectors when set near zero via the
logistic sigmoid nonlinearity σ(·). Update gates allow the network to either pass
along the previous state vector unchanged or use the new candidate state vector
instead. This architecture is diagrammed in Figure 2.1.

The predicted probability of the binary label yt for time t is a sigmoid
transformation of the state at time t:

ŷt = σ(wTht) (3)

Here, weight vector w ∈ RK represents the parameters of this output layer.
We denote the parameters for the entire GRU-RNN model as W = (w,U, V ),
concatenating all component parameters. We can train GRU-RNN time-series
models (hereafter often just called GRUs) via the following loss minimization
objective:

min
W

λΨ(W ) +

N∑
n=1

Tn∑
n=1

loss(ynt, ŷnt(xn,W )) (4)

where again Ψ(W ) defines a regularization cost.
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Figure 2.1: Diagram of gated recurrent unit (GRU) used for each timestep our
neural time-series model. The orange triangle indicates the predicted output ŷt
at time t.

3 Tree Regularization for Deep Models

We now propose a novel tree regularization function Ω(W ) for the parameters
of a differentiable model which attempts to penalize models whose predictions
are not easily simulatable. Of course, it is difficult to measure “simulatability”
directly for an arbitrary network, so we take inspiration from decision trees. Our
chosen method has two stages: first, find a single binary decision tree which
accurately reproduces the network’s thresholded binary predictions ŷn given
input xn. Second, measure the complexity of this decision tree as the output of
Ω(W ). We measure complexity as the average decision path length—the average
number of decision nodes that must be touched to make a prediction for an input
example xn. We compute the average with respect to some designated reference
dataset of example inputs D = {xn} from the training set. While many ways
to measure complexity exist, we find average path length is most relevant to
our notion of simulatability. Remember that for us, human simulation requires
stepping through every calculation required to make a prediction. Average path
length exactly counts the number of true-or-false boolean calculations needed
to make an average prediction, assuming the model is a decision tree. Total
number of nodes could be used as a metric, but might penalize more accurate
trees that have short paths for most examples but need more involved logic for
few outliers.

Our true-average-path-length cost function Ω(W ) is detailed in Alg. 1. It
requires two subroutines, TrainTree and PathLength. TrainTree trains
a binary decision tree to accurately reproduce the provided labeled examples
{xn, ŷn}. We use the DecisionTree module distributed in Python’s scikit-learn
[29] with post-pruning to simplify the tree. These trees can give probabilistic
predictions at each leaf. (Complete decision-tree training details are in the
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supplement.) Next, PathLength counts how many nodes are needed to make a
specific input to an output node in the provided decision tree. In our evaluations,
we will apply our average-decision-tree-path-length regularization, or simply
“tree regularization,” to several neural models.

Algorithm 1 Average-Path-Length Cost Function

Require:
ŷ(·,W ) : binary prediction function, with parameters W
D = {xn}Nn=1 : reference dataset with N examples

1: function Ω(W )
2: tree← TrainTree({xn, ŷ(xn,W )})
3: return 1

N

∑
nPathLength(tree, xn)

Alg. 1 defines our average-path-length cost function Ω(W ), which can be plugged
into the abstract regularization term Ψ(W ) in the objectives in equations 1
and 4.

Making the Decision-Tree Loss Differentiable Training decision trees
is not differentiable, and thus Ω(W ) as defined in Alg. 1 is not differentiable
with respect to the network parameters W (unlike standard regularizers such
as the L1 or L2 norm). While one could resort to derivative-free optimization
techniques [2], gradient descent has been an extremely fast and robust way of
training networks [13].

A key technical contribution of our work is introducing and training a
surrogate regularization function Ω̂(W ) : supp(W )→ R+ to map each candidate
neural model parameter vector W to an estimate of the average-path-length. Our
approximate function Ω̂ is implemented as a standalone multi-layer perceptron
network and is thus differentiable. Let vector ξ of size k denote the parameters
of this chosen MLP approximator. We can train Ω̂ to be a good estimator by
minimizing a squared error loss function:

min
ξ

∑J
j=1(Ω(Wj)− Ω̂(Wj , ξ))

2 + ε||ξ||22 (5)

where Wj are the entire set of parameters for our model, ε > 0 is a regularization
strength, and we assume we have a dataset of J known parameter vectors
and their associated true path-lengths: {Wj ,Ω(Wj)}Jj=1. This dataset can be
assembled using the candidate W vectors obtained while training our target
neural model ŷ(·,W ), as well as by evaluating Ω(W ) for randomly generated W .
Importantly, one can train the surrogate function Ω̂ in parallel with our network.
In the supplement, we show evidence that our surrogate predictor Ω̂(·) tracks
the true average path length as we train the target predictor ŷ(·,W ).

Training the Surrogate Loss Even moderately-sized GRUs can have param-
eter vectors W with thousands of dimensions. Our labeled dataset for surrogate
training – {Wj ,Ω(Wj)}Jj=1—will only have one Wj example from each target
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network training iteration. Thus, in early iterations, we will have only few
examples from which to learn a good surrogate function Ω̂(W ). We resolve
this challenge via augmenting our training set with additional examples: We
randomly sample weight vectors W and calculate the true average path length
Ω(W ), and we also perform several random restarts on the unregularized GRU
and use those weights in our training set.

A second challenge occurs later in training: as the model parameters W shift
away from their initial values, those early parameters may not be as relevant
in characterizing the current decision function of the GRU. To address this,
for each epoch, we use examples only from the past E epochs (in addition to
augmentation), where in practice, E is empirically chosen. Using examples
from a fixed window of epochs also speeds up training. The supplement shows
a comparison of the importance of these heuristics for efficient and accurate
training—empirically, data augmentation for stabilizing surrogate training allows
us to scale to GRUs with 100s of nodes. GRUs of this size are sufficient for many
real problems, such as those we encounter in healthcare domains.

Typically, we use J = 50 labeled pairs for surrogate training for toy datasets
and J = 100 for real world datasets. Optimization of our surrogate objective is
done via gradient descent. We use Autograd to compute gradients of the loss in
Eq. (5) with respect to ξ, then use Adam to compute descent directions with
step sizes set to 0.01 for toy datasets and 0.001 for real world datasets.

4 Tree-Regularized MLPs: A Demonstration

While time-series models are the main focus of this work, we first demonstrate
tree regularization on a simple binary classification task to build intuition.
We call this task the 2D Parabola problem, because as Fig. 4.1(a) shows, the
training data consists of 2D input points whose two-class decision boundary
is roughly shaped like a parabola. The true decision function is defined by
y = 5 ∗ (x− 0.5)2 + 0.4. We sampled 500 input points xn uniformly within the
unit square [0, 1]× [0, 1] and labeled those above the decision function as positive.
To make it easy for models to overfit, we flipped 10% of the points in a region
near the boundary. A random 30% were held out for testing.

For the classifier ŷ, we train a 3-layer MLP with 100 first layer nodes, 100
second layer nodes, and 10 third layer nodes. This MLP is intentionally overly
expressive to encourage overfitting and expose the impact of different forms
of regularization: our proposed tree regularization Ψ(W ) = Ω̂(W ) and two
baselines: an L2 penalty on the weights Ψ(W ) = ||W ||2, and an L1 penalty on
the weights Ψ(W ) = ||W ||1. For each regularization function, we train models
at many different regularization strengths λ chosen to explore the full range of
decision boundary complexities possible under each technique.

For our tree regularization, we model our surrogate Ω̂(W ) with a 1-hidden
layer MLP with 25 units. We find this simple architecture works well, but
certainly more complex MLPs could could be used on more complex problems.
The objective in equation 1 was optimized via Adam gradient descent [19]
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using a batch size of 100 and a learning rate of 1e-3 for 250 epochs, and
hyperparameters were set via cross validation using grid search (see supplement
for full experimental details).

Fig. 4.1 (b) shows the each trained model as a single point in a 2D fitness
space: the x-axis measures model complexity via our average-path-length metric,
and the y-axis measures AUC prediction performance. These results show that
simple L1 or L2 regularization does not produce models with both small node
count and good predictions at any value of the regularization strength λ. As
expected, large λ values for L1 and L2 only produce far-too-simple linear decision
boundaries with poor accuracies. In contrast, our proposed tree regularization
directly optimizes the MLP to have simple tree-like boundaries at high λ values
which can still yield good predictions.

The lower panes of Fig. 4.1 shows these boundaries. Our tree regularization
is uniquely able to create axis-aligned functions, because decision trees prefer
functions that are axis-aligned splits. These axis-aligned functions require very
few nodes but are more effective than L1 and L2 counterparts. The L1 boundary
is more sharp, whereas the L2 is more round.

5 Tree-Regularized Time-Series Models

We now evaluate our tree-regularization approach on time-series models. We
focus on GRU-RNN models, with some later experiments on new hybrid GRU-
HMM models. As with the MLP, each regularization technique (tree, L2, L1) can
be applied to the output node of the GRU across a range of strength parameters
λ. Importantly, Algorithm 1 can compute the average-decision-tree-path-length
for any fixed deep model given its parameters, and can hence be used to measure
decision boundary complexity under any regularization, including L1 or L2.
This means that when training any model, we can track both the predictive
performance (as measured by area-under-the-ROC-curve (AUC); higher values
mean better predictions), as well as the complexity of the decision tree required
to explain each model (as measured by our average path length metric; lower
values mean more interpretable models). We also show results for a baseline
standalone decision tree classifier without any associated deep model, sweeping
a range of parameters controlling leaf size to explore how this baseline trades off
path length and prediction quality. Further details of our experimental protocol
are in the supplement, as well as more extensive results with additional baselines.

5.1 Tasks

Synthetic Task: Signal-and-noise HMM We generated a toy dataset of
N = 100 sequences, each with T = 50 timesteps. Each timestep has a data
vector xnt of 14 binary features and a single binary output label ynt. The data
comes from two separate HMM processes. First, a “signal” HMM generates the
first 7 data dimensions from 5 well-separated states. Second, an independent
“noise” HMM generates the remaining 7 data dimensions from a different set of
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Figure 4.1: 2D Parabola task : (a) Each training data point in 2D space, overlaid
with true parabolic class boundary. (b): Each method’s prediction quality (AUC)
and complexity (path length) metrics, across range of regularization strength λ.
In the small path length regime between 0 and 5, tree regularization produces
models with higher AUC than L1 or L2. (c-e): Decision boundaries (black
lines) have qualitatively different shapes for different regularization schemes, as
regularization strength λ increases. We color predictions as true positive (red),
true negative (yellow), false negative (green), and false positive (blue).
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Figure 5.1: Toy Signal-and-Noise HMM Task: (a)-(c) Decision trees trained to
mimic predictions of GRU models with 25 hidden states at different regularization
strengths λ; as expected, increasing λ decreases the size of the learned trees
(see supplement for more trees). Decision tree (c) suggests the model learns to
predict positive output (blue) if and only if “x[0] == 1 and x[3] == 1 and x[4]
== 0”, which is consistent with the true rule we used to generate labels: assign
positive label only if first dimension is on (x[0] == 1) and first state is active
(emission probabilities for this state: [.5 .5 .5 .5 0 . . .]). (d) Tree-regularized
GRU models reach a sweet spot of small path lengths yet high AUC predictions
that alternatives cannot reach at any tested value of λ.

5 states. Each timestep’s output label ynt is produced by a rule involving both
the signal data and the signal hidden state: the target is 1 at timestep t only if
both the first signal state is active and the first observation is turned on. We
deliberately designed the generation process so that neither logistic regression
with x as features nor an RNN model that makes predictions from hidden states
alone can perfectly separate this data.

Real-World Tasks: We tested our approach on several real tasks: predicting
medical outcomes of hospitalized septic patients, predicting HIV therapy out-
comes, and identifying stop phonemes in English speech recordings. To normalize
scales, we independently standardized features x via z-scoring.

• Sepsis Critical Care: We study time-series data for 11 786 septic ICU
patients from the public MIMIC III dataset [18]. We observe at each hour
t a data vector xnt of 35 vital signs and lab results as well as a label vector
ynt of 5 binary outcomes. Hourly data xnt measures continuous features
such as respiration rate (RR), blood oxygen levels (paO2), fluid levels, and
more. Hourly binary labels ynt include whether the patient died in hospital
and if mechanical ventilation was applied. Models are trained to predict
all 5 output dimensions concurrently from one shared embedding. The
average sequence length is 15 hours. 7 070 patients are used in training,
1 769 for validation, and 294 for test.

• HIV Therapy Outcome (HIV): We use the EuResist Integrated Database
[39] for 53 236 patients diagnosed with HIV. We consider 4-6 month intervals
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(d) Mechanical
Ventilation

Figure 5.2: Sepsis task: Study of different regularizations for GRU model with
100 states, trained to jointly predict 5 binary outcomes for ICU patients. Panels
(a) and (c) show AUC vs. path length for 2 of the 5 outcomes (remainder in
the supplement); in both cases, tree-regularization provides higher AUC in the
target regime of low-complexity decision trees. Panels (b) and (d) show proxy
trees for the tree-regularized GRU (λ = 2 000); these were found interpretable
by an ICU clinician (see main text).

(corresponding to hospital visits) as time steps. Each data vector xnt has 40
features, including blood counts, viral load measurements and lab results.
Each output vector ynt has 15 binary labels, including whether a therapy
was successful in reducing viral load to below detection limits, if therapy
caused CD4 blood cell counts to drop to dangerous levels (indicating AIDS),
or if the patient suffered adherence issues to medication. The average
sequence length is 14 steps. 37 618 patients are used for training; 7 986 for
testing, and 7 632 for validation.

• Phonetic Speech (TIMIT): We have recordings of 630 speakers of eight
major dialects of American English reading ten phonetically rich sentences
[12]. Each sentence contains time-aligned transcriptions of 60 phonemes.
We focus on distinguishing stop phonemes (those that stop the flow of
air, such as “b” or “g”) from non-stops. Each timestep has one binary
label ynt indicating if a stop phoneme occurs or not. Each input xnt
has 26 continuous features: the acoustic signal’s Mel-frequency cepstral
coefficients and derivatives. There are 6 303 sequences, split into 3 697 for
training, 925 for validation, and 1 681 for testing. The average length is
614.

5.2 Results

The major conclusions of our experiments comparing GRUs with various regu-
larizations are outlined below.

Tree-regularized models have fewer nodes than other forms of regu-
larization. Across tasks, we see that in the target regime of small decision
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(c) HIV Therapy
Adherence

Baseline VL <= 45.68
value = [33957, 39928]

class = Poor Adherence: OFF
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(d) HIV Therapy
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Figure 5.3: TIMIT and HIV tasks: Study of different regularization techniques
for GRU model with 75 states. Panels (a)-(c) are tradeoff curves showing
how AUC predictive power and decision-tree complexity evolve with increasing
regularization strength under L1, L2 or tree regularization on both TIMIT and
HIV tasks. The GRU is trained to jointly predict 15 binary outcomes for HIV,
of which 2 are shown here in Panels (b) - (c). The GRU’s decision tree proxy for
HIV Adherence is shown in (d).

trees (low average-path lengths), our proposed tree-regularization achieves higher
prediction quality (higher AUCs). In the signal-and-noise HMM task, tree regu-
larization (green line in Fig. 5.1(d)) achieves AUC values near 0.9 when its trees
have an average path length of 10. Similar models with L1 or L2 regularization
reach this AUC only with trees that are nearly double in complexity (path length
over 25). On the Sepsis task (Fig. 5.2) we see AUC gains of 0.05-0.1 at path
lengths of 2-10. On the TIMIT task (Fig. 5.3a), we see AUC gains of 0.05-0.1 at
path lengths of 20-30. Finally, on the HIV CD4 blood cell count task in Fig. 5.3b,
we see AUC differences of between 0.03 and 0.15 for path lengths of 10-15. The
HIV adherence task in Fig. 5.3d has AUC gains of between 0.03 and 0.05 in the
path length range of 19 to 25 while at smaller paths all methods are quite poor,
indicating the problem’s difficulty. Overall, these AUC gains are particularly
useful in determining how to administer subsequent HIV therapies.

We emphasize that our tree-regularization usually achieves a sweet spot of high
AUCs at short path lengths not possible with standalone decision trees (orange
lines), L1-regularized deep models (red lines) or L2-regularized deep models (blue
lines). In unshown experiments, we also tested elastic net regularization [41],
a linear combination of L1 and L2 penalities. We found elastic nets to follow
the same trend lines as L1 and L2, with no visible differences. In domains
where human-simulatability is required, increases in prediction accuracy in the
small-complexity regime can mean the difference between models that provide
value on a task and models that are unusable, either because performance is too
poor or predictions are uninterpretable.

Our learned decision tree proxies are interpretable. Across all tasks,
the decision trees which mimic the predictions of tree-regularized deep models
are small enough to simulate by hand (path length ≤ 25) and help users grasp
the model’s nonlinear prediction logic. Intuitively, the trees for our synthetic
task in Fig. 5.1(a)-(c) decrease in size as the strength λ increases. The logic of
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these trees also matches the true labeling process: even the simplest tree (c)
checks a relevant subset of input dimensions necessary to verify that both the
first state and the first output dimension are active.

In Fig. 5.2, we show decision tree proxies for our deep models on two sepsis
prediction tasks: mortality and need for ventilation. We consulted a clinical
expert on sepsis treatment, who noted that the trees helped him understand
what the models might be doing and thus determine if he would trust the deep
model. For example, he said that using FiO2, RR, CO2 and paO2 to predict need
for mechanical ventilation (Fig. 5.2d) was sensible, as these all measure breathing
quality. In contrast, the in-hospital mortality tree (Fig. 5.2b) predicts that some
young patients with no organ failure have high mortality rates while other young
patients with organ failure have low mortality. These counter-intuitive results
led to hypotheses about how uncaptured variables impact the training process.
Such reasoning would not be possible from simple sensitivity analyses of the
deep model.

Finally, we have verified that the decision tree proxies of our tree-regularized
deep models of the HIV task in Fig. 5.3d are interpretable for understanding
why a patient has trouble adhering to a prescription; that is, taking drugs
regularly as directed. Our clinical collaborators confirm that the baseline viral
load and number of prior treatment lines, which are prominent attributes for the
decisions in Fig. 5.3d, are useful predictors of a patient with adherence issues.
Several medical studies [22, 36] suggest that patients with higher baseline viral
loads tend to have faster disease progression, and hence have to take several
drug cocktails to combat resistance. Juggling many drugs typically makes it
difficult for these patients to adhere as directed. We hope interpretable predictive
models for adherence could help assess a patient’s overall prognosis [28] and offer
opportunities for intervention (e.g. with alternative single-tablet regimens).

Decision trees trained to mimic deep models make faithful predictions.
Across datasets, we find that each tree-regularized deep time-series model has
predictions that agree with its corresponding decision tree proxy in about 85-90%
of test examples. Table 1 shows exact fidelty scores for each dataset. Thus, the
simulatable paths of the decision tree will be trustworthy in a majority of cases.

Practical runtimes for tree regularization are less than twice that
of simpler L2. While our tree-regularized GRU with 10 states takes 3977
seconds per epoch on TIMIT, a similar L2-regularized GRU takes 2116 seconds
per epoch. Thus, our new method has cost less than twice the baseline even when
the surrogate is serially computed. Because the surrogate Ω̂(W ) will in general
be a much smaller model than the predictor ŷ(x,W ), we expect one could get
faster per-epoch times by parallelizing the creation of (W,Ω(W )) training pairs
and the training of the surrogate Ω̂(W ). Additionally, 3977 seconds includes the
time needed to train the surrogate. In practice, we do this sparingly, only once
every 25 epochs, yielding an amortized per-epoch cost of 2191 seconds (more
runtime results are in the supplement).
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Decision trees are stable over multiple optimization runs. When tree
regularization is strong (high λ), the decision trees trained to match the pre-
dictions of deep models are stable. For both signal-and-noise and sepsis tasks,
multiple runs from different random restarts have nearly identical tree shape and
size, perhaps differing by a few nodes. This stability is crucial to building trust
in our method. On the signal-and-noise task (λ = 7000), 7 of 10 independent
runs with random initializations resulted in trees of exactly the same structure,
and the others closely resembled those sharing the same subtrees and features
(more details in supplement).

Dataset Fidelity
signal-and-noise HMM 0.88
SEPSIS (In-Hospital Mortality) 0.81
SEPSIS (90-Day Mortality) 0.88
SEPSIS (Mech. Vent.) 0.90
SEPSIS (Median Vaso.) 0.92
SEPSIS (Max Vaso.) 0.93
HIV (CD4+ below 200) 0.84
HIV (Therapy Success) 0.88
HIV (Mortality) 0.93
HIV (Poor Adherence) 0.90
HIV (AIDS Onset) 0.93
TIMIT 0.85

Table 5.1: Fidelity of predictions from our trained deep GRU-RNN and its
corresponding decision tree. Fidelity is defined as the percentage of test examples
on which the prediction made by a tree agrees with the deep model [9]. We used
20 hidden GRU states for signal-and-noise task, 50 states for all others.

The deep residual GRU-HMM achieves high AUC with less complex-
ity. So far, we have focused on regularizing standard deep models, such as
MLPs or GRUs. Another option is to use a deep model as a residual on an-
other model that is already interpretable: for example, discrete HMMs partition
timesteps into clusters, each of which can be inspected, but its predictions might
have limited accuracy. In Fig. 5.4, we show the performance of jointly training
a GRU-HMM, a new model which combines an HMM with a tree-regularized
GRU to improve its predictions (details and further results in the supplement).
Here, the ideal path length is zero, indicating only the HMM makes predictions.
For small average-path-lengths, the GRU-HMM improves the original HMM’s
predictions and has simulatability gains over earlier GRUs. On the mechanical
ventilation task, the GRU-HMM requires an average path length of only 28 to
reach AUC of 0.88, while the GRU alone with the same number of states requires
a path length of 60 to reach the same AUC. This suggests that jointly-trained
deep residual models may provide even better interpretability.
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Figure 5.4: Prediction quality (AUC) vs. complexity (path length) for the GRU-
HMM over a range of regularization strengths λ. Subtitles show the number of
HMM states and GRU states. See earlier figures to compare these GRU-HMM
numbers to simpler GRU and decision tree baselines.

6 Discussion and Conclusion

We have introduced a novel tree-regularization technique that encourages the
complex decision boundaries of any differentiable model to be well-approximated
by human-simulatable functions, allowing domain experts to quickly understand
and approximately compute what the more complex model is doing. Overall, our
training procedure is robust and efficient; future work could continue to explore
and increase the stability of the learned models as well as identify ways to apply
our approach to situations in which the inputs are not inherently interpretable
(e.g. pixels in an image).

Across three complex, real-world domains – HIV treatment, sepsis treatment,
and human speech processing – our tree-regularized models provide gains in
prediction accuracy in the regime of simpler, approximately human-simulatable
models. Future work could apply tree regularization to local, example-specific
approximations of a loss [32] or to representation learning tasks (encouraging
embeddings with simple boundaries). More broadly, our general training proce-
dure could apply tree-regularization or other procedure-regularization to a wide
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class of popular models, helping us move beyond sparsity toward models humans
can easily simulate and thus trust.
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A Details for Decision-Tree Training

Training decision trees with post-pruning. Our average path length func-
tion Ω(W ) for determining the complexity of a deep model with parameters W –
defined in the main paper in Alg. 1 – assumes that we have a robust, black-box
way to train binary decision-trees called TrainTree given a labeled dataset
{xn, ŷn}. For this we use the DecisionTree module distributed in Python’s
sci-kit learn, which optimizes information gain with Gini impurity. The specific
syntax we use (for reproducibility) is:

tree = DecisionTree(min_sample_count=5)

tree.fit(x_train, y_train)

tree = prune_tree(tree, x_valid, y_valid)

The provided keyword options force the tree to have at least 5 examples from
the training set in every leaf. We found that tuning hyperparameters of the
TrainTree subprocedure, such as the minimum size of a leaf node, to be
important for making useful trees.

Generally, the runtime cost of sklearn’s fitting procedure scales superlinearly
with the number of examples N and linearly with the number of features F – a
total complexity of O(FN log(N)). In practice, we found that with N = 1000
examples, F = 10 features, tree construction takes 15.3 microseconds.

The pruning procedure is a heuristic to create simpler trees, summarized in
algorithm 2. After TrainTree delivers a working decision tree, we iterative
propose removing each remaining leaf node, accepting the proposal if the squared
prediction error on a validation set improves. This pruning removes sub-trees
that don’t generalize to unseen data.

Sanity check: Surrogate path length closely follow true path length.
Fig. A.1 shows that our surrogate predictor Ω̂(·) tracks the true average path
length as we train the target predictor ŷ(·,W ) on several different datasets.
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Algorithm 2 Post-pruning for training decision trees.

Require:
T : initial decision tree
ErrOnVal(·) : squared error on validation data

ErrOnVal(T ) ,
∑N
n=1(T (xn)− yn)2

1: procedure PruneTree( T , err )
2: e← ErrOnVal(T ).
3: for node n ∈ SortLeafToRoot(T.nodes) do
4: T ′ ← RemoveNode(T, n)
5: enew ← ErrOnVal(T ′)
6: if enew < e then T ← T ′

7: Return T

(a) Path length estimates Ω̂ for 2D Parabola task

(b) Path length estimates Ω̂ for Signal-and-noise HMM task

Figure A.1: True average path lengths (yellow) and surrogate estimates Ω̂ (green)
across many iterations of network parameter training iterations.

Sensitivity to different choices for surrogate training. In Fig. A.2, we
show sample learning curves for variations of methods for approximating the
average path length (also called “node count”) in a decision tree. In blue is
the true value. Each of the other 3 lines use the same surrogate model: an
MLP with 25 hidden nodes. Increasing its capacity too much, i.e. 100 hidden
nodes, leads to overfitting where the surrogate is able to predict the average path
length extremely well for a small number of iterations, while the performance
quickly decays. With an MLP of the right capacity, four additional tricks: (1)
weight augmentation, (2) random restarts with an unregularized model, (3) fixed
window of data, and (4) surrogate retraining greatly improve the accuracy of
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the average path length predictions.
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Figure A.2: This figure shows the effects of weight augmentation and retraining.
The blue line is the true average path length of the decision tree at each epoch. All
other lines show predicted path lengths using the surrogate MLP. By randomly
sampling weights and intermittently retraining the surrogate, we significantly
improve the ability of the surrogate model to track the changes in the ground
truth.

Normally, if our differentiable model is a GRU, we compile examples using
the GRU weights at every batch and calculate the true average path length.
This dataset is used to train the surrogate model. If examples are very sparse,
surrogate predictions may be unstable. Augmentation addresses this by randomly
sampling weight vectors and computing the average path length to artificially
create a larger dataset. Early epochs are especially problematic when it comes to
lacking data. In addition to augmentation, we use random restarts to separately
train unregularized GRUs (each with different weight initializations) to grow a
dataset of weight vectors prior to training the regularized model.

As the GRU parameters take steps away from their initial values, our examples
from those early epochs no longer describe the current state of the model.
Retraining and a fixed window of data address this by re-learning the surrogate
function at a fixed frequency using examples only from the last J epochs. In
practice, both the augmentation size, the retraining frequency, and J are functions
of the learning rate and the dataset size. See table B.1 for exact numbers.
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B Experimental Protocol

See table B.1 for model hyperparameters for each dataset. For standard recurrent
models such as HMM or GRU, the decision trees were trained on the input
data and the predictions of the model’s output node. For our deep residual
GRU-HMM, the decision trees were trained on the predictions on the GRU’s
output node only. For both synthetic and real-world datasets, our surrogate to
the tree loss is a multilayer perceptron with 1 hidden layer of 25 nodes. For each
dataset, when we investigated several regularization strengths (λ), we initialize
the model weights using the same random seed. We use the Adam algorithm [19]
for all optimization.

Dataset Total Num. Sequences Avg. seq. length Learning Rate Batch size Minimum Leaf Sample Post-pruned Epochs (Model) Epochs (Surrogate) Retraining Freq. J
parabola n/a n/a 1e-2 32 0 N 250 500 100 n/a

signal-and-noise HMM 100 50 1e-2 10 25 Y 300 1000 50 50
HIV 53 236 14 1e-3 256 1 000 Y 300 5000 25 100

SEPSIS 11 786 15 1e-3 256 1 000 Y 300 5000 25 100
TIMIT 6 303 614 1e-3 256 5 000 Y 200 5000 25 100

Table B.1: Dataset summaries and training parameters used in our experiments.

B.1 2D Parabola

Dataset generation. The training data consists of 2D input points whose
two-class decision boundary is roughly shaped like a parabola. The true decision
function is defined by y = 5 ∗ (x − 0.5)2 + 0.4. We sampled all 200 input
points xn uniformly within the unit square [0, 1]× [0, 1] and labeled those above
the decision function as positive. To add randomness, we flipped 10% of the
points in the region near the boundary between y = 5 ∗ (x − 0.5)2 + 0.2 and
y = 5 ∗ (x− 0.5)2 + 0.6.

Regularization strengths. Tested values of regularization strength parame-
ter λ: 0.1, 0.5, 1, 5, 10, 25, 50, 75, 100, 250, 500, 750, 1 000, 2 500, 5 000, 7 500,
10 000, 25 000, 50 000, 75 000, 100 000

B.2 Signal-and-noise HMM

Dataset generation The transition and emission matrices describing the
generative process used to create the signal-and-noise HMM are shown in Fig. B.1.
The output yn at every timestep is created by concatenating a one-hot vector of
an emitted state and the 7-dimensional binary input vector. We emphasize that
to output 1, the HMM must be in state 1 and the first input feature must be 1.

Training Details. With synthetic datasets, we explore (1, 5, 6, 10, 15, 20)
GRU nodes, (5, 6, 20) HMM states, and GRU-HMMs with 5 HMM states and
(1, 5, 10, 15) GRU nodes.
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Figure B.1: Emission (5 states vs 7 features) and transition probabilities for the
signal HMM (a, b) and noise HMM (c, d).

B.3 Sepsis

Training Details. We explore (1, 5, 6, 10, 11, 15, 20, 25, 26, 30, 35, 50, 51,
55, 60, 75, 100) GRU nodes, (5, 6, 10, 11, 15, 20, 25, 26, 30, 35, 50, 51, 55, 60,
75, 100) HMM states, and GRU-HMMs with (5, 10, 25, 50) HMM states and (1,
5, 10, 25, 50) GRU nodes. The input features are z-scored prior to training.

B.4 HIV

Training Details. We explore (1, 5, 6, 10, 11, 15, 20, 25, 26, 30, 35, 50, 51,
55, 60, 75) GRU nodes, (5, 6, 10, 11, 15, 20, 25, 26, 30, 35, 50, 51, 55, 60, 75)
HMM states, and GRU-HMMs with (5, 10, 25) HMM states and (1, 5, 10, 25,
50) GRU nodes.

B.5 TIMIT

Training Details. We explore (1, 5, 6, 10, 11, 15, 20, 25, 26, 30, 35, 50, 51,
55, 60, 75) GRU nodes, (5, 6, 10, 11, 15, 20, 25, 26, 30, 35, 50, 51, 55, 60, 75)
HMM states, and GRU-HMMs with (5, 10, 25) HMM states and (1, 5, 10, 25,
50) GRU nodes. Like Sepsis, the input features are z-scored prior to training.

C Extended Results

For signal-to-noise HMM, Sepsis, and TIMIT, we first show expanded versions
of the fitness trace plots and the tree visualizations. For Sepsis and HIV, we
show the additional output dimensions not in the paper.

We also include tables of the test AUC performance for our synthetic and
real data sets over a vast array of parameter settings (GRU node counts, HMM
state counts, regularization strengths). Consistent with the common wisdom of
training deep models, we found that larger models, with regularization, tended
to perform the best.
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C.1 Signal-and-noise HMM: Plots

(a) GRU: Signal-and-noise HMM
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(b) GRUHMM: Signal-and-noise HMM
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Figure C.1: Performance and complexity trade-offs using L1, L2, and Tree
regularization on (a) GRU and (b) GRU-HMM performance on the Signal-and-
noise HMM dataset. Note the differences in scale.

21



C.2 Signal-and-noise HMM: Tree Visualization
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Figure C.2: Decision trees trained under varying tree regularization strengths
for GRU models on the signal-and-noise HMM dataset dataset. As the tree
regularization increases, the number of nodes collapses to a single one. If we
focus on (h), we see that the tree resembles the ground truth data-generating
function quite closely.
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C.3 Signal-and-noise HMM: AUCs

Model AUC (Test) Average Path Length Parameter Count

logreg 0.91832 17.302 6
decision tree 0.92050 29.4424 -

hmm (5) 0.93591 25.5736 71
hmm (20) 0.94177 27.2784 581

gru (1) 0.65049 1.8876 29
gru (5) 0.94812 26.304 205
gru (6) 0.94883 27.2118 264

gru (10) 0.94962 28.563 560
gru (15) 0.93982 30.7172 1 065
gru (20) 0.93368 37.0844 1 720

grutree (20/10.0) 0.94226 28.1850 1 720
grutree (20/200.0) 0.94806 26.8140 1 720

grutree (20/7 000.0) 0.94431 22.4646 1 720
grutree (20/9 000.0) 0.90555 9.1127 1 720

grutree (20/10 000.0) 0.82770 3.4400 1 720
gruhmm (5/1) 0.95146 18.2202 100
gruhmm (5/5) 0.95584 27.258 276

gruhmm (5/10) 0.95773 30.9624 631
gruhmm (5/15) 0.94857 36.7188 1 136

gruhmmtree (5/15/1.0) 0.95382 24.115 1 136
gruhmmtree (5/15/10.0) 0.95180 16.883 1 136
gruhmmtree (5/15/50.0) 0.95258 12.573 1 136

gruhmmtree (5/15/200.0) 0.95145 8.926 1 136
gruhmmtree (5/15/500.0) 0.95769 5.231 1 136
gruhmmtree (5/15/900.0) 0.95708 3.942 1 136

gruhmmtree (5/15/2 000.0) 0.95648 2.694 1 136
gruhmmtree (5/15/5 000.0) 0.95399 1.896 1 136
gruhmmtree (5/15/7 000.0) 0.93591 0.000 1 136

Table C.1: Performance metrics across models on the signal-and-noise HMM
dataset. The parameter count is included as a measure of the model capacity.
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C.4 Sepsis: Plots
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Figure C.3: Performance and complexity trade-offs using L1, L2, and Tree
regularization on GRU performance on the Sepsis dataset.

C.5 Sepsis: Tree Visualization
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Figure C.4: Decision trees trained using λ = 800.0 for a GRU model using Sepsis.
The 5 output dimensions are jointly trained.
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C.6 Sepsis: AUCs

Model
In-Hospital
Mortality

90-Day
Mortality

Mechanical
Ventilation

Median
Vasopressor

Max
Vasopressor

Total Average
Path Length

Parameter
Count

logreg 0.6980 0.6986 0.8242 0.7392 0.7392 32.489 180
decision tree 0.7017 0.7016 0.8509 0.7439 0.7427 76.242 -

hmm (5) 0.7128 0.7095 0.6979 0.7295 0.7290 35.125 405
hmm (10) 0.7227 0.7297 0.8237 0.7409 0.7405 57.629 860
hmm (15) 0.7216 0.7282 0.8188 0.7346 0.7341 61.832 1 365
hmm (20) 0.7233 0.7350 0.8218 0.7371 0.7364 62.353 1 920
hmm (25) 0.7147 0.7321 0.8089 0.7313 0.7310 63.415 2 525
hmm (30) 0.7164 0.7297 0.8099 0.7316 0.7311 65.164 3 180
hmm (35) 0.7177 0.7237 0.8095 0.7201 0.7195 65.474 3 885
hmm (50) 0.7267 0.7357 0.8373 0.7335 0.7328 66.317 6 300
hmm (75) 0.7254 0.7361 0.8059 0.7434 0.7430 72.553 11 325

hmm (100) 0.7294 0.7354 0.8129 0.7408 0.7403 80.415 17 600
gru (1) 0.3897 0.6400 0.4761 0.7414 0.7411 31.816 117
gru (5) 0.7357 0.7296 0.8795 0.7866 0.7862 45.395 645

gru (10) 0.7488 0.7445 0.8892 0.7983 0.7979 58.102 1 440
gru (15) 0.7529 0.7450 0.8912 0.8020 0.8021 61.025 2 385
gru (20) 0.7535 0.7497 0.8887 0.8018 0.8017 61.214 3 480
gru (25) 0.7578 0.7486 0.8902 0.8113 0.8114 62.029 4 725
gru (30) 0.7602 0.7508 0.8927 0.8063 0.8061 72.854 6 120
gru (35) 0.7522 0.7483 0.8900 0.8095 0.8091 74.091 7 665
gru (50) 0.7431 0.7390 0.8895 0.8054 0.8051 76.543 13 200
gru (75) 0.7408 0.7239 0.8837 0.8006 0.8000 87.422 25 425

gru (100) 0.7325 0.7273 0.8781 0.7977 0.7975 94.161 41 400
grutree (100/0.01) 0.7276 0.7314 0.8776 0.7873 0.7867 91.797 41 400
grutree (100/1.0) 0.7147 0.7040 0.8741 0.7812 0.7810 82.019 41 400
grutree (100/8.0) 0.7232 0.7203 0.8763 0.7845 0.7840 73.767 41 400

grutree (100/20.0) 0.7123 0.7085 0.8733 0.7813 0.7813 65.035 41 400
grutree (100/70.0) 0.7360 0.7376 0.8813 0.7988 0.7986 61.012 41 400

grutree (100/300.0) 0.7210 0.7197 0.8681 0.7676 0.7678 54.177 41 400
grutree (100/2 000.0) 0.7230 0.7167 0.8335 0.7616 0.7619 48.206 41 400
grutree (100/5 000.0) 0.6546 0.6552 0.6752 0.6668 0.6530 26.085 41 400
grutree (100/7 000.0) 0.6063 0.6554 0.6565 0.6230 0.6138 20.214 41 400
grutree (100/8 000.0) 0.5298 0.5242 0.5025 0.5026 0.5057 13.383 41 400

gruhmm (1/5) 0.4222 0.6472 0.4678 0.7478 0.7477 41.583 722
gruhmm (1/10) 0.4007 0.6295 0.4730 0.7418 0.7419 61.041 1 517
gruhmm (1/25) 0.4019 0.6207 0.4773 0.7353 0.7352 65.955 4 802
gruhmm (1/50) 0.3999 0.6162 0.4772 0.7120 0.7121 70.534 13 277
gruhmm (5/5) 0.7430 0.7372 0.8798 0.8009 0.8006 47.639 1 050

gruhmm (5/10) 0.7408 0.7320 0.8819 0.7991 0.7988 63.627 1 845
gruhmm (5/25) 0.7365 0.7279 0.8776 0.7955 0.7952 68.215 5 130
gruhmm (5/50) 0.7222 0.7107 0.8660 0.7814 0.7811 71.572 13 605
gruhmm (10/5) 0.7468 0.7467 0.8949 0.8098 0.8097 50.902 1 505

gruhmm (10/10) 0.7490 0.7478 0.8958 0.8098 0.8096 63.522 2 300
gruhmm (10/25) 0.7422 0.7407 0.8916 0.8055 0.8054 70.919 5 585
gruhmm (10/50) 0.7254 0.7221 0.8824 0.7903 0.7903 71.297 14 060
gruhmm (25/5) 0.7580 0.7568 0.8941 0.8236 0.8235 51.794 3 170

gruhmm (25/10) 0.7592 0.7563 0.8945 0.8225 0.8225 64.223 3 965
gruhmm (25/25) 0.7525 0.7508 0.8912 0.8186 0.8184 72.480 7 250
gruhmm (25/50) 0.7604 0.7583 0.8954 0.8106 0.8103 79.127 11 025
gruhmm (50/5) 0.7655 0.7592 0.9006 0.8228 0.8226 64.229 6 945

gruhmm (50/10) 0.7648 0.7568 0.9003 0.8220 0.8219 69.281 7 740
gruhmm (50/25) 0.7600 0.7555 0.8981 0.8205 0.8203 85.503 11 025
gruhmm (50/50) 0.7412 0.7373 0.8910 0.8056 0.8055 101.637 19 500

gruhmmtree (50/50/0.5) 0.7432 0.7492 0.879 0.7854 0.7849 84.188 19 500
gruhmmtree (50/50/20.0) 0.7435 0.747 0.8826 0.7914 0.7906 77.815 19 500
gruhmmtree (50/50/50.0) 0.7384 0.7548 0.8914 0.7922 0.7918 71.719 19 500
gruhmmtree (50/50/200.0 0.747 0.7502 0.8767 0.7832 0.7824 69.715 19 500

gruhmmtree (50/50/300.0) 0.7539 0.7623 0.8942 0.8092 0.8091 66.9 19 500
gruhmmtree (50/50/600.0 0.7435 0.7453 0.8821 0.7909 0.7905 63.703 19 500

gruhmmtree (50/50/1 000.0) 0.7575 0.7502 0.8739 0.7882 0.7873 60.949 19 500
gruhmmtree (50/50/3 000.0) 0.7396 0.7484 0.8926 0.8013 0.8011 54.751 19 500
gruhmmtree (50/50/4 000.0) 0.7432 0.7511 0.8915 0.802 0.8024 44.868 19 500
gruhmmtree (50/50/7 000.0) 0.7308 0.7477 0.8813 0.7881 0.7882 27.836 19 500
gruhmmtree (50/50/9 000.0) 0.7132 0.7319 0.8261 0.7301 0.7299 0.0 19 500

Table C.2: Performance metrics for multi-dimensional classification on a held-out
portion of the Sepsis dataset. Total Average Path Length refers to the summed
average path lengths across the 5 output dimensions. Refer to Fig. C.3 for
average-path-lengths split across dimensions.
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C.7 HIV:Plots
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Figure C.5: Performance and complexity trade-offs using L1, L2, and Tree
regularization on GRU for the HIV dataset. The 5 outputs shown here were
trained jointly.
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C.8 HIV: AUCs

Model
Poor

Adherence Mortality
CD4+

Count ≤ 200
Therapy
Success

Total Average
Path Length

Parameter
Count

logreg 0.6884 0.7031 0.5741 0.6092 38.942 1155
decision tree 0.7100 0.7601 0.5937 0.6286 62.150 -

hmm (5) 0.7106 0.7611 0.6012 0.6265 41.864 865
hmm (10) 0.7287 0.7627 0.6237 0.6409 46.309 1780
hmm (25) 0.7243 0.7627 0.6327 0.6384 56.159 4825
hmm (50) 0.7181 0.7639 0.6412 0.6370 69.014 10900
hmm (75) 0.7244 0.7661 0.6294 0.6518 70.476 18225

hmm (100) 0.7261 0.7657 0.6287 0.6524 71.159 26800
gru (5) 0.6457 0.6814 0.6695 0.6834 58.347 1310

gru (25) 0.7516 0.7986 0.7073 0.6991 60.072 8050
gru (50) 0.7011 0.8290 0.6995 0.7054 67.513 19850
gru (75) 0.7623 0.8514 0.7117 0.7490 64.870 35400

gru (100) 0.7340 0.8216 0.6981 0.7235 67.183 54700
grutree (100/0.01) 0.7176 0.7948 0.7046 0.6803 91.020 54700
grutree (100/1.0) 0.7134 0.7997 0.7138 0.6892 86.774 54700

grutree (100/20.0) 0.7157 0.8066 0.7216 0.7114 76.025 54700
grutree (100/70.0) 0.7485 0.8210 0.7413 0.7060 68.952 54700

grutree (100/300.0) 0.7251 0.8178 0.7264 0.6746 54.058 54700
grutree (100/2 000.0) 0.7030 0.8169 0.6342 0.6627 49.839 54700
grutree (100/5 000.0) 0.6549 0.7582 0.6142 0.6352 23.895 54700
grutree (100/7 000.0) 0.6167 0.7524 0.5740 0.5634 15.283 54700
grutree (100/8 000.0) 0.5874 0.7412 0.5003 0.5027 7.391 54700

gruhmm (5/5) 0.6430 0.6647 0.5418 0.6479 67.619 2175
gruhmm (5/10) 0.6708 0.6720 0.5879 0.6517 72.137 3090
gruhmm (5/25) 0.6951 0.6981 0.6476 0.6955 68.200 6135
gruhmm (5/50) 0.6810 0.7002 0.6760 0.7114 71.518 12210
gruhmm (10/5) 0.7018 0.7147 0.7049 0.7208 64.852 3635

gruhmm (10/10) 0.7190 0.7378 0.7136 0.7578 73.252 4550
gruhmm (10/25) 0.7264 0.7457 0.7217 0.7951 70.884 7595
gruhmm (10/50) 0.7570 0.7522 0.7224 0.8234 69.726 13670
gruhmm (25/10) 0.7462 0.7861 0.7152 0.8217 68.241 9830
gruhmm (25/25) 0.7435 0.8102 0.7425 0.8186 79.261 12875
gruhmm (25/50) 0.7484 0.7714 0.7501 0.8006 76.174 18950
gruhmm (50/10) 0.7437 0.7668 0.7813 0.8260 70.081 21630
gruhmm (50/25) 0.7380 0.7557 0.7824 0.8215 88.617 24675
gruhmm (50/50) 0.7317 0.7684 0.7920 0.8007 97.864 30750

gruhmmtree (50/50/0.5) 0.7432 0.7692 0.8790 0.7804 73.168 30750
gruhmmtree (50/50/50.0) 0.7426 0.8152 0.8914 0.7979 67.729 30750
gruhmmtree (50/50/200.0 0.7461 0.8308 0.8767 0.8032 59.025 30750
gruhmmtree (50/50/600.0 0.7467 0.8820 0.8821 0.8293 52.128 30750

gruhmmtree (50/50/1 000.0) 0.7375 0.8951 0.8739 0.7882 48.247 30750
gruhmmtree (50/50/4 000.0) 0.7242 0.8461 0.8515 0.8030 14.868 30750
gruhmmtree (50/50/7 000.0) 0.7280 0.8462 0.8313 0.7484 1.836 30750

Table C.3: Performance metrics for multi-dimensional classification on a held-out
portion of the HIV dataset. Total Average Path Length refers to the summed
average path lengths across the output dimensions.

27



C.9 TIMIT:Plots/Tree Visualization
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Figure C.6: (a) Performance and complexity trade-offs using L1, L2, and Tree
regularization for GRU models on TIMIT. (b) Decision tree trained using
λ = 500.0 tree regularization on GRU.
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C.10 TIMIT:AUCs

Model AUC Average Path Length Parameter Count

logreg 0.7747 23.460 27
decision tree 0.8668 59.2061 -

hmm (5) 0.8900 51.911 295
hmm (10) 0.8981 56.273 640
hmm (25) 0.9129 57.602 1 975
hmm (50) 0.9189 63.752 5 200
hmm (75) 0.9251 71.473 9 675

gru (1) 0.9169 42.602 86
gru (5) 0.9451 49.275 490

gru (10) 0.9509 60.079 1 130
gru (25) 0.9547 62.051 3 950
gru (50) 0.9578 64.957 11 650
gru (75) 0.9620 68.998 23 100

gruhmm (1/5) 0.9419 54.9723 381
gruhmm (1/10) 0.9535 53.5642 726
gruhmm (1/25) 0.9636 57.3290 2601
gruhmm (5/5) 0.9569 55.9531 785

gruhmm (5/10) 0.9575 57.6199 1 130
gruhmm (5/25) 0.9603 59.9925 2 465
gruhmm (10/5) 0.9626 57.0652 1 425

gruhmm (10/10) 0.9641 60.7877 1 770
gruhmm (10/25) 0.9651 61.0018 3 105
gruhmm (25/5) 0.9635 57.5288 4 245

gruhmm (25/10) 0.9657 60.5212 4 590
gruhmm (25/25) 0.9663 65.0161 5 925
gruhmm (50/5) 0.9676 62.2378 11 945

gruhmm (50/10) 0.9679 65.1191 12 290
gruhmm (50/25) 0.9685 67.4301 13 625
grutree (75/0.01) 0.9517 66.2801 23 100
grutree (75/0.1) 0.9466 62.4316 23 100
grutree (75/0.5) 0.9367 60.8764 23 100
grutree (75/2.0) 0.9311 58.3659 23 100
grutree (75/5.0) 0.9302 55.7588 23 100

grutree (75/10.0) 0.9288 46.6616 23 100
grutree (75/100.0) 0.8911 40.1123 23 100
grutree (75/500.0) 0.8998 28.4240 23 100
grutree (75/700.0) 0.8628 25.136 23 100
grutree (75/800.0) 0.7471 22.6671 23 100

grutree (75/1 000.0) 0.7082 17.1523 23 100
grutree (75/6 000.0) 0.5441 11.1108 23 100
grutree (75/7 000.0) 0.5088 8.9910 23 100

gruhmmtree (50/25/0.1) 0.9507 69.1110 13 625
gruhmmtree (50/25/1.0) 0.9465 67.5773 13 625
gruhmmtree (50/25/6.0) 0.9515 65.1494 13 625

gruhmmtree (50/25/20.0) 0.9449 64.0072 13 625
gruhmmtree (50/25/30.0) 0.9482 62.5406 13 625
gruhmmtree (50/25/70.0) 0.9460 58.0111 13 625

gruhmmtree (50/25/100.0) 0.9470 51.2417 13 625
gruhmmtree (50/25/500.0) 0.9401 42.1882 13 625
gruhmmtree (50/25/700.0) 0.9352 40.1281 13 625

gruhmmtree (50/25/1 000.0) 0.9390 38.0072 13 625
gruhmmtree (50/25/3 000.0) 0.9280 25.9120 13 625
gruhmmtree (50/25/4 000.0) 0.9311 21.7170 13 625
gruhmmtree (50/25/7 000.0) 0.9290 10.1122 13 625
gruhmmtree (50/25/9 000.0) 0.9134 1.0563 13 625

gruhmmtree (50/25/10 000.0) 0.9125 0.0000 13 625

Table C.4: Performance metrics across models on a held-out portion of the
TIMIT dataset.
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D GRU-HMM: Deep Residual Timeseries Model

Hidden Markov Model For our purposes, Hidden Markov Models (HMMs)
can be viewed as stochastic RNNs which can be interpreted as probabilistic
generative models. In this work, we consider an HMM to generate a latent
variable sequence z = [z1, . . . zT ] via a Markov chain, where each latent indicates
one of K possible discrete states: zt ∈ {1, ...,K}. This state sequence is then
used to jointly produce the “data” xt and “outcomes” yt observed at each
timestep. The joint distribution over z,x,y factorizes as:

p(z,y) = π0(z0)

T∏
t=1

p(zt|zt−1, A) · p(xt|zt, φ)Bern(yt|σ(
∑
k

wkδk(zt))), (6)

where A is a transition matrix such that Ai,j = Pr(zt = i|zt−1 = j), π0 = p(z0) is

the initial state distribution, {φk}Kk=1 are the emission parameters that generate
data. We can then apply the same objective as above for training.

GRU-HMM: Modeling the residuals of an HMM. We now consider an
additional model, the GRU-HMM, designed for interpretability. The idea is to
use a GRU to to model the residual errors when predicting the binary target
via the HMM belief states. We can further penalize the complexity of the GRU
predictions via our tree regularization, so that higher-quality predictions do not
come at the price of a much less interpretable model.

1-

sigm sigm tanh

sigmht-1

ht yt

rt zt
h~t

x t-1

λ

st

xtxt-1 xt 1+ ……

… st-1 st 1+ …

Figure D.1: Deep residual model: GRU-HMM. The orange triangle indicates
the output used in surrogate training for tree regularization.

We train the deep residual model on the same suite of synthetic and real
world datasets. See Tables C.1, C.2, C.4 for a comparison of GRU-HMM with
vanilla GRU and HMM models under different regularization and expressiveness
parameters. We can see that across the datasets, deep residual models perform
around 1% better than their vanilla equivalents with roughly the same number
of model parameters.

By nature of being a residual model, decision trees were trained only on
the GRU output node, leaving the HMM unconstrained. See Figure D.1 for
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a pictoral representation. Similar to what we did for GRU models, figures
C.1b, D.2 compare model performance as the λ parameter for L1, L2, and Tree
regularization increase. We can see a similar albeit less pronounced effect where
Tree regularization dominates other methods in low node count regions. It is
important to notice the range of the AUC axis in these figures, where the worst
the residual model can performance is the HMM-only AUC. Figure D.3 show
the regularized trees produced by the GRU-HMM. Although they share some
structure with Figure C.4, there are important distinctions that encourage us to
conclude that the GRU in a residual models performs a different role than when
trained alone.
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D.1 GRU-HMM: Sepsis Plots
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Figure D.2: Performance and complexity trade-offs using L1, L2, and Tree
regularization on GRU-HMM performance on the Sepsis dataset.

D.2 GRU-HMM: Sepsis Tree Visualization
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Figure D.3: Decision trees trained using Tree regularization (λ = 2000.0) from
GRU-HMM predictions on the Sepsis dataset.
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D.3 GRU-HMM: HIV Plots/Tree Visualization
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Figure D.4: HIV task: Study of different regularization techniques for GRU-
HMM model with 75 GRU nodes and 25 HMM states, trained to predict whether
CD4+ ≤ 200 cells/ml. (a) Example decision tree for λ = 1000.0. (b) Example
decision tree for λ = 3000.0. The tree in (b) is slightly smaller than the tree in
(a) as a result of the regularisation.

D.4 GRU-HMM: TIMIT Plots/Tree Visualization
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Figure D.5: TIMIT task: Study of different regularization techniques for GRU-
HMM model with 75 GRU nodes and 25 HMM states, trained to predict STOP
phonemes. (a) Tradeoff curves showing how AUC predictive power and decision-
tree complexity evolve with increasing regularization strength under L1, L2, or
Tree regularization. (b) Example decision tree for λ = 3000.0. (c) Example
decision tree for λ = 7000.0. When comparing with figure C.6b, this tree is
significantly smaller, suggesting that the GRU performs a different role in the
residual model.
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E Runtime comparisons

Training Time for Tree-Regularized Models. Table E.1 shows the wall
time for training one epoch of each of the models presented in this paper using
each of the datasets. Please note that the wall times for GRU-TREE and GRU-
HMM-TREE include the cost of surrogate training. If the retraining frequency
is small, then the amortized cost should be small.

Dataset Model Epoch Time (Sec.)

Signal-and-noise HMM HMM 16.66± 2.53
Signal-and-noise HMM GRU 30.48± 1.92
Signal-and-noise HMM GRU-HMM 50.40± 5.56
Signal-and-noise HMM GRU-TREE 43.83± 3.84
Signal-and-noise HMM GRU-HMM-TREE 73.24± 7.86
SEPSIS HMM 589.80± 24.11
SEPSIS GRU 822.27± 11.17
SEPSIS GRU-HMM 1 666.98± 147.00
SEPSIS GRU-TREE 2 015.15± 388.12
SEPSIS GRU-HMM-TREE 2 443.66± 351.22
TIMIT HMM 1 668.96± 126.96
TIMIT GRU 2 116.83± 438.83
TIMIT GRU-HMM 3207.16± 651.85
TIMIT GRU-TREE 3 977.01± 812.11
TIMIT GRU-HMM-TREE 4 601.44± 805.88

Table E.1: Training time for recurrent models measured against all datasets
used in this paper. Epoch time denotes the number of seconds it took for a
single pass through all the training data. The epoch times for GRU-TREE and
GRU-HMM-TREE include surrogate training expenses. If we retrain sparsely,
then the cost of surrogate training is amortized and the epoch time for GRU
and GRU-TREE, GRU-HMM and GRU-HMM-TREE are approximately the
same. To measure epoch time, we used 10 HMM states, 10 GRU states, and 5
of each for GRU-HMM models. We trained the surrogate model for 5000 epochs.
These tests were run on a single Intel Core i5 CPU.
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F Extended Stability Tests

In the paper, we noted that decision trees are stable over multiple run. Here, we
show that using the signal-and-noise HMM dataset, 10 independent runs with
random initializations and λ = 1000.0 produce either the same or comparable
trees. Additionally, we show that with weak regularization (λ = 0.01), the
variability of the learned decision trees is high. Figures F.1, F.2 include examples
of such trees on the signal-and-noise dataset. Similar results are found for
real-world datasets.
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Figure F.1: Decision trees from 10 independent runs on the signal-and-noise
HMM dataset with λ = 1000.0. Seven of the ten runs resulted in a tree of
the same structure. The other three trees are similar, often having additional
subtrees but sharing the same splits and features.
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X[10] <= 0.5
value = [337, 177]

class = off

value = [337, 0]
class = off

value = [0, 177]
class = on

value = [517, 0]
class = off

X[11] <= 0.5
value = [117, 105]

class = off

X[0] <= 0.5
value = [25, 105]

class = on
value = [92, 0]

class = off

value = [0, 70]
class = on

X[2] <= 0.5
value = [25, 35]

class = on

value = [10, 23]
class = on

value = [15, 12]
class = off

(d)

Figure F.2: Decision trees from 10 independent runs on the signal-and-noise
HMM dataset with λ = 0.01. With low regularization, the variance in tree size
and shape is high.
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[7] Kyunghyun Cho, Bart van Merriënboer Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using RNN encoder–decoder for statistical machine
translation. In EMLNP, 2014.

[8] Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart,
and Jimeng Sun. Doctor AI: Predicting clinical events via recurrent neural
networks. In Machine Learning for Healthcare Conference, 2016.

[9] Mark Craven and Jude W Shavlik. Extracting tree-structured representa-
tions of trained networks. In NIPS, 1996.

[10] Harris Drucker and Yann Le Cun. Improving generalization performance
using double backpropagation. IEEE Transactions on Neural Networks,
3(6):991–997, 1992.

[11] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent.
Visualizing higher-layer features of a deep network. Technical Report 1341,
Department of Computer Science and Operations Research, University of
Montreal, 2009.

[12] John S Garofolo et al. TIMIT acoustic-phonetic continuous speech corpus.
Linguistic Data Consortium, 10(5), 1993.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

[14] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights
and connections for efficient neural network. In NIPS, 2015.

[15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531, 2015.

36



[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[17] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing.
Harnessing deep neural networks with logic rules. In ACL, 2016.

[18] Alistair EW Johnson, Tom J Pollard, Lu Shen, L H Lehman, Mengling Feng,
Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi,
and Roger G Mark. MIMIC-III, a freely accessible critical care database.
Scientific Data, 3, 2016.

[19] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classifi-
cation with deep convolutional neural networks. In NIPS, 2012.

[21] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. Interpretable
decision sets: A joint framework for description and prediction. In KDD,
2016.

[22] Simone E. Langford, Jintanat Ananworanich, and David A. Cooper. Predic-
tors of disease progression in hiv infection: a review. AIDS Research and
Therapy, 4(1):11, May 2007.

[23] Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural
predictions. arXiv preprint arXiv:1606.04155, 2016.

[24] Zachary C. Lipton. The mythos of model interpretability. In ICML Workshop
on Human Interpretability in Machine Learning, 2016.

[25] Scott Lundberg and Su-In Lee. An unexpected unity among methods for
interpreting model predictions. arXiv preprint arXiv:1611.07478, 2016.

[26] Riccardo Miotto, Li Li, Brian A Kidd, and Joel T Dudley. Deep patient:
An unsupervised representation to predict the future of patients from the
electronic health records. Scientific Reports, 6(26094), 2016.

[27] Tsubasa Ochiai, Shigeki Matsuda, Hideyuki Watanabe, and Shigeru Kata-
giri. Automatic node selection for deep neural networks using group lasso
regularization. In ICASSP, 2017.

[28] David L Paterson, Susan Swindells, et al. Adherence to protease inhibitor
therapy and outcomes in patients with HIV infection. Annals of Internal
Medicine, 133(1):21–30, 2000.

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, et al. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

37



[30] Aniruddh Raghu, Matthieu Komorowski, Leo Anthony Celi, Peter Szolovits,
and Marzyeh Ghassemi. Continuous state-space models for optimal sepsis
treatment-a deep reinforcement learning approach. In Machine Learning
for Healthcare Conference, 2017.

[31] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
XNOR-Net: ImageNet classification using binary convolutional neural net-
works. In ECCV, 2016.

[32] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should I
trust you?: Explaining the predictions of any classifier. In KDD, 2016.

[33] Andrew Ross, Michael C Hughes, and Finale Doshi-Velez. Right for the right
reasons: Training differentiable models by constraining their explanations.
In IJCAI, 2017.

[34] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual explana-
tions from deep networks via gradient-based localization. arXiv preprint
arXiv:1610.02391v3, 2017.

[35] Sameer Singh, Marco Tulio Ribeiro, and Carlos Guestrin. Programs as
black-box explanations. arXiv preprint arXiv:1611.07579, 2016.
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