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Abstract

Purpose—Metaplastic breast carcinoma (MBC) is a rare and aggressive histologic type of breast 

cancer predominantly of triple-negative phenotype, and characterized by the presence of malignant 

cells showing squamous and/or mesenchymal differentiation. We sought to define the repertoire of 

somatic genetic alterations and the mutational signatures of MBCs.

Experimental Design—Whole-exome sequencing was performed in 35 MBCs, with 16, ten and 

nine classified as harboring chondroid, spindle and squamous metaplasia as the predominant 

metaplastic component. The genomic landscape of MBCs was compared to that of triple-negative 

invasive ductal carcinomas of no special type (IDC-NSTs) from The Cancer Genome Atlas. Wnt 

and PI3K/AKT/mTOR pathway activity was assessed using a quantitative PCR assay.
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Results—MBCs harbored complex genomes with frequent TP53 (69%) mutations. In contrast to 

triple-negative IDC-NSTs, MBCs more frequently harbored mutations in PIK3CA (29%), PIK3R1 
(11%), ARID1A (11%), FAT1 (11%) and PTEN (11%). PIK3CA mutations were not found in 

MBCs with chondroid metaplasia. Compared to triple-negative IDC-NSTs, MBCs significantly 

more frequently harbored mutations in PI3K/AKT/mTOR pathway-related (57% vs 22%) and 

canonical Wnt pathway-related (51% vs 28%) genes. MBCs with somatic mutations in 

PI3K/AKT/mTOR or Wnt pathway-related genes displayed increased activity of the respective 

pathway.

Conclusion—MBCs are genetically complex and heterogeneous, and are driven by a repertoire 

of somatic mutations distinct from that of triple-negative IDC-NSTs. Our study highlights the 

genetic basis and the importance of PI3K/AKT/mTOR and Wnt pathway dysregulation in MBCs, 

and provides a rationale for the metaplastic phenotype and the reported responses to PI3K/AKT/

mTOR inhibitors in these tumors.
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INTRODUCTION

Metaplastic breast carcinoma (MBC) is a rare histologic type of breast cancer, representing 

approximately 0.2%–5% of invasive breast cancers (1, 2). Histologically, MBCs are 

characterized by the presence of malignant cells showing squamous and/or mesenchymal 

differentiation such as spindle, chondroid, osseous or rhabdoid cells (1, 2). MBCs are 

predominantly of triple-negative phenotype (i.e. lack expression of estrogen receptor (ER), 

progesterone receptor (PR) and HER2 overexpression/gene amplification) but seem to 

exhibit a prognosis worse than that of triple-negative invasive ductal carcinomas of no 

special type (IDC-NSTs) (3, 4). Furthermore, unlike other forms of triple-negative breast 

cancers, MBCs have been reported not to respond well to conventional chemotherapy 

regimens (3–5).

The genetic basis for the distinctive histologic and transcriptomic features of MBCs is 

currently unknown. Copy number profiling studies have revealed that MBCs harbor complex 

patterns of copy number alterations (CNAs), which are almost indistinguishable from those 

of histologic grade- and ER-matched IDC-NSTs, with frequent losses of 1p, 3p, 5q, 8p, 14 

and 17 and gains of 1q, 3q and 8q (6). The genetic analyses of MBCs performed to date have 

revealed recurrent TP53 mutations, CDKN2A deletions and epidermal growth factor 

receptor (EGFR) amplifications (5, 7, 8), all of which are again not uncommonly found in 

triple-negative IDC-NSTs (9). By contrast, studies have suggested that the PI3K/AKT/

mTOR pathway could be more frequently affected by genetic alterations in MBCs than in 

triple-negative IDC-NSTs (10, 11). Intriguingly, whilst a previous study reported on the 

presence of CTNNB1 activating mutations in 26% of MBCs (12), we and others found that 

MBCs frequently display β-catenin nuclear expression/Wnt pathway activation (13, 14), but 

did not detect CTNNB1 somatic mutations (10, 13, 14). At variance with colorectal cancers, 

in which Wnt pathway activation is frequently caused by somatic mutations in APC, 
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CTNNB1, TCF7L2 and FAM123B among others (15), mutations affecting these genes are 

exceedingly rare in breast cancers (9). Interestingly, a recent study showed that inactivating 

FAT1 mutations induce Wnt pathway activation in multiple cancers, providing a genetic 

basis for the aberrant signaling in cancer types other than colorectal (16). Whether the 

epithelial-mesenchymal transition (EMT) phenotype observed in a subset of MBCs is 

associated with Wnt pathway activation and if this activation is underpinned by somatic 

genetic alterations remain to be explored.

MBCs are, however, a heterogeneous group of lesions. In fact, we have recently shown that 

MBCs with chondroid, spindle and squamous metaplasia displayed distinct transcriptomic 

profiles (17). For instance, spindle cell MBCs are invariably classified as of the claudin-low 

molecular subtype, whereas MBCs with chondroid metaplasia are frequently of basal-like 

subtype (17). These observations are consistent with the notion that MBCs with distinct 

histologic features may be underpinned by distinct somatic genetic alterations. In agreement 

with this hypothesis, distinct gene CNAs have been reported in histologically distinct 

components of MBCs (7).

Given the distinctive histologic features and clinical behavior of MBCs, here we sought to 

define the genetic landscape of 35 MBCs based on whole-exome sequencing analysis. As a 

hypothesis-generating, exploratory aim, we compared the somatic genetic alterations that 

underpin MBCs of distinct histologic subtypes (chondroid, spindle cell and squamous). 

These analyses confirmed the genomic complexity of MBCs and the high frequency of TP53 
mutations, demonstrated that mutations affecting genes related to the PI3K/AKT/mTOR and 

Wnt pathways are recurrent in MBCs, and provided evidence that the Wnt and PI3K/AKT/

mTOR pathways are more frequently activated in MBCs than in triple-negative IDC-NSTs.

MATERIAL AND METHODS

Cases and histopathologic review

Thirty-five cases diagnosed as MBCs were retrieved from the tissue banks and/or pathology 

files of the authors’ institutions. Diagnostic slides were reviewed by at least two pathologists 

with an interest in breast pathology (FCG, CAE, YHW, AV-S and/or JSR-F), subsequently 

centrally reviewed by two pathologists (FCG and JSR-F) and diagnosed according to the 

latest World Health Organization classification (1) into MBCs with squamous metaplasia, 

MBCs with mesenchymal elements, and spindle cell MBCs (Supplementary Methods). 

Representative sections of each MBC used for DNA extraction were reviewed, and the 

tumor cell content and composition of the metaplastic elements were estimated (i.e., 

chondroid metaplasia, spindle cell metaplasia and squamous metaplasia). In each sample, 

the metaplastic component most abundantly present was defined as previously described 

(17) (Table 1 and Supplementary Table S1), and this classification was used for subsequent 

analyses. Tumors were graded according to the Nottingham grading system (18). Samples 

were anonymized prior to analysis. This study was approved by the local institutional review 

boards of the authors’ institutions. Copy number profiling and/or microarray gene 

expression profiling results for nine samples (with prefix META) were reported elsewhere 

(17).
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Immunohistochemistry and fluorescence in situ hybridization (FISH)

Immunohistochemistry for ER, PR and HER2 and FISH for HER2 amplification were 

performed according to the American Society of Clinical Oncology (ASCO)/College of 

American Pathologists (CAP) guidelines (19–21) (Supplementary Methods).

Microdissection and DNA extraction

Eight-μm-thick representative sections of the snap-frozen (samples with prefixes META or 

MTC) or formalin-fixed paraffin-embedded (samples with prefix MP, Supplementary Table 

S1) blocks of MBCs were microdissected with a needle under a stereomicroscope (Olympus 

SZ61), to ensure >70% of tumor cell content as previously described (17) (Supplementary 

Methods). Matched germline DNA was microdissected from adjacent normal breast tissue 

for each case; to avoid the possibility of morphologically appearing non-neoplastic cells 

harboring somatic mutations, we prioritized the microdissection of stromal cells and avoided 

normal breast ducts and lobules.

Whole-exome massively parallel sequencing

DNA from MBC and matched germline of the 35 cases was subjected to whole-exome 

capture using the SureSelect Human All Exon v4 (Agilent) platform and to massively 

parallel sequencing on an Illumina GAIIx or HiSeq 2000 at the Institute of Cancer Research, 

UK (GAIIx) or Memorial Sloan Kettering Cancer Center (MSKCC) Integrated Genomics 

Operation (IGO, HiSeq 2000) following validated protocols (22). Paired-end 75/76/101-bp 

reads were generated (Supplementary Table S1). Sequencing data have been deposited in the 

NCBI Sequence Read Archive under the accession SRP073692.

Whole-exome sequencing analysis was performed as described (22) with modifications. 

CNAs were identified using FACETS (23) and the cancer cell fraction (CCF) of each 

mutation using ABSOLUTE (v1.0.6) (24). Mutations were classified as likely pathogenic, of 

indeterminate pathogenicity or likely passenger based on mutation function predictors (25–

28), cancer gene lists (29–31), hotspot residues (32) and loss of heterozygosity status 

(Supplementary Methods).

Sanger sequencing

Sanger sequencing was performed as previously described (22). All mutations subjected to 

Sanger sequencing were confirmed (Supplementary Methods and Supplementary Table S2).

Mutational significance, mutational signature and analysis of genomic scars

Significantly mutated genes were defined using MutSigCV (33) and the Youn and Simon 

algorithm (34). Mutational signature (35, 36) was defined using deconstructSigs (37) for 

samples with at least 30 somatic mutations. Microsatellite instability detection was 

performed using MSIsensosr (38). Large-scale state transitions (LSTs) were employed to 

define homologous recombination (HR) deficiency as described in (39) (Supplementary 

Methods).
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Comparative analysis with triple-negative IDC-NSTs and statistical analysis

Clinical and molecular data for triple-negative IDC-NSTs from The Cancer Genome Atlas 

(TCGA, n=69) (9) were obtained from the TCGA Data Portal (https://tcga-data.nci.nih.gov/

docs/publications/brca_2012/). Comparisons of continuous and categorical features were 

performed using Mann-Whitney U and Fisher’s exact tests as appropriate. p<0.05 were 

considered statistically significant. All tests were two-sided. Statistical analyses were 

performed with R v3.1.2 and SPSS v24 (IBM, Supplementary Methods).

Unsupervised hierarchical clustering

Hierarchical clustering of somatic mutations from MBCs and triple-negative IDC-NSTs 

from TCGA were performed using an asymmetric binary distance metric and complete-

linkage (Supplementary Methods).

Wnt and PI3K-AKT signaling pathway RT2 profiler PCR arrays

The levels of Wnt and PI3K/AKT/mTOR signaling pathway activation were assessed using 

the Human WNT Signaling Pathway Plus and Human PI3K-AKT Signaling RT2 Profiler™ 

PCR Array kits (catalog numbers: PAHS-043Y and PAHS-058Z; Qiagen; Supplementary 

Methods).

RESULTS

Pathologic features of MBCs

A central histopathologic review of the 35 MBCs included in this study revealed that, 

according to the predominant cellular type, 16 were MBCs with chondroid metaplasia, of 

which 13 were matrix-producing, nine were MBCs with squamous metaplasia and ten were 

spindle cell MBCs (Table 1 and Supplementary Table S1). Low-grade variants of MBCs 

were not included in this study. Assessment of histologic grade according to the Nottingham 

grading system (18) revealed that 14% (5/35) and 86% (30/35) were of grades 2 and 3, 

respectively. Immunohistochemical analysis revealed that 94% (33/35) were of triple-

negative phenotype. Of the two cases that did not display a triple-negative phenotype, 

MTC18 was ER-positive (1%), PR-positive (20%) and HER2-negative (Supplementary Fig. 

S1a–c) and MTC23 was ER-negative, PR-negative and HER2-positive (confirmed by FISH 

and whole-exome sequencing, Supplementary Fig. S1d–g). The frequency of ER, PR and 

HER2 positivity in this cohort of MBCs is not different from that of previously reported 

studies (40, 41).

Landscape of somatic mutations in MBCs

To define the repertoire of somatic genetic alterations in MBCs, we subjected the 35 MBCs 

to whole-exome sequencing to median depths of 246× (range 48×–843×) and 95× (range 

51×–160×) for the tumors and matched germline samples, respectively (Supplementary 

Table S1). Our analysis revealed a median of 27 (range 4–95) and 76 (range 11–249) 

somatic synonymous and non-synonymous somatic mutations per case, respectively. The 

mutation rate in our cohort of MBCs (median 103, range 15–344) was not statistically 
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different from that of triple-negative IDC-NSTs from TCGA (median 76, range 14–233, 

p>0.05, Mann-Whitney U-test, Fig. 1).

Analysis of the recurrently mutated genes identified 285 genes with non-synonymous 

mutations and 33 genes with likely pathogenic mutations in at least 2/35 MBCs (Fig. 1, 

Supplementary Fig. S2a and Supplementary Tables S2 and S3). The genes that frequently 

harbored non-synonymous somatic mutations were TP53 (69%, all likely pathogenic) and 

PIK3CA (29%, all likely pathogenic; Fig. 1). Although TTN (31%) and FAT3 (20%) were 

recurrently mutated in MBCs (Supplementary Fig. S2a, Supplementary Tables S2 and S3), 

somatic genetic alterations in these genes are known to constitute passenger alterations; 

consistent with this notion, none of the mutations affecting these genes were predicted to be 

‘likely pathogenic’. TP53 was significantly mutated based on MutSigCV (33) and TP53, 

PIK3CA, PTEN (11%, all likely pathogenic) and PIK3R1 (11%, all likely pathogenic) were 

significantly mutated based on Youn and Simon (34) (Supplementary Table S4). In all cases 

that harbored TP53 mutation, both alleles were affected, either by a somatic mutation 

coupled with loss of heterozygosity (LOH, n=22) or two distinct somatic TP53 mutations 

(n=2), and in all TP53-mutant cases, at least one TP53 mutation was found to be clonal as 

defined by ABSOLUTE (24) (i.e. present in virtually 100% of the neoplastic cells, Fig. 1 

and Supplementary Table S2). All PIK3CA mutations identified were clonal activating 

missense mutations and/or affected hotspots (C420R, E542K, H1047R and H1047L). 

Several other cancer genes were also recurrently mutated, including ARID1A, KMT2C, 

FAT1 (all 11%), BCLAF1 (9%) and AXIN1, BRCA2, KMT2D, NCOR1, RUNX1 and 

SPEN (all 6%, Fig. 1). Similar to the TP53 mutations, all PTEN mutations detected were 

clonal and were either associated with LOH of the wild-type allele (n=3) or a second PTEN 
somatic mutation (n=1). Of the 27 TP53, PIK3CA and PTEN mutations tested, all were 

confirmed using Sanger sequencing (Supplementary Table S2 and Supplementary Fig. S1h).

Compared to triple-negative IDC-NSTs in TCGA, 31 genes were found to be mutated more 

frequently in MBCs, including PCLO (14% vs 0%, p=0.0035, Fisher’s exact test), PIK3CA 
(29% vs 7%, p=0.0064, Fisher’s exact test), CHERP and PIK3R1 (both 11% vs 0%, 

p=0.0114, Fisher’s exact test), BCLAF1, FANCM and USP5 (all 9% vs 0%, p=0.0360, 

Fisher’s exact tests), and ARID1A, KMT2C, FAT1, LRP1B and PTEN (all 11% vs 1%, 

p=0.0428, Fisher’s exact tests, Fig. 1, Supplementary Fig. S2a and Supplementary Table 

S3). On the other hand, TP53, the gene most frequently mutated in both MBCs and triple-

negative IDC-NSTs, was mutated at comparable frequencies (69% vs 81%, p=0.2174, 

Fisher’s exact test, Fig. 1 and Supplementary Table S3). Since some of the genes found to be 

differentially mutated harbored primarily likely passenger mutations and mutations of 

indeterminate pathogenicity, we further restricted the comparison to likely pathogenic 

mutations. This analysis revealed seven genes in which MBCs more frequently harbored 

likely pathogenic mutations than triple-negative IDC-NSTs, with the differences in PIK3CA 
(29% vs 7%, p=0.0064, Fisher’s exact test), PIK3R1 (11% vs 0%, p=0.0114, Fisher’s exact 

tests), BCLAF1 (9% vs 0%, p=0.0360, Fisher’s exact test) and ARID1A, KMT2C, FAT1 
and PTEN (all 11% vs 1%, p=0.0429, Fisher’s exact tests) remaining statistically significant 

(Fig. 1 and Supplementary Table S3).
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As previously reported (6), the overall landscape of CNAs of MBCs was similar to that of 

triple-negative IDC-NSTs, with frequent copy number gains of 1q, 3q and 8q, copy number 

losses of 1p, 3p, 5q, 8p and 17p, as well as high-level copy number gains/amplifications of 

8q (Supplementary Fig. S3a–d).

Given that two of the MBCs did not display a triple-negative phenotype, we repeated the 

analyses using the 33 triple-negative MBCs and came to similar conclusions in relation to 

the differences in the mutational repertoires and CNAs (Supplementary Table S3). In fact, 

when clustered with triple-negative MBCs and triple-negative IDC-NSTs from the TCGA 

study based on the repertoire of somatic mutations and CNAs, non-triple-negative MBCs 

were indistinguishable from either triple-negative MBCs or triple-negative IDC-NSTs on the 

genomic level (Supplementary Fig. S3e–g).

To gain additional insights into the mutational processes that underpin the somatic 

mutational landscape (35, 36) of MBCs and to define whether a subset of MBCs would 

display genomic scars indicative of homologous recombination (HR) DNA repair deficiency, 

we employed the algorithm deconstructSigs (37) and the assessment of LSTs (39), 

respectively. Of the 31 MBCs with at least 30 somatic mutations, eight (26%) and 11 (35%) 

displayed mutational signatures associated with aging (Signature 1) and with BRCA1/2 
mutations (Signature 3). These results are consistent with our previous observation that 31% 

of MBCs displayed the BRCA-like genomic signature (17), and that MBCs were not 

different from the 16/60 (26%) and 25/60 (42%) triple-negative IDC-NSTs displaying 

Signatures 1 and 3, respectively (p>0.05, Fisher’s exact tests, Fig. 1). Indeed, the MBCs that 

showed a dominant Signature 3 were all LSThigh and were associated with the presence of 

large (>3bp) indels and/or microhomology at breakpoint junctions (35), suggesting these 

cases were likely HR-deficient (39). Of the cases displaying Signature 3, only MP1 harbored 

a pathogenic somatic BRCA2 mutation (heterozygous Q222fs) coupled with LOH of the 

wild-type allele (Supplementary Table S2). The two cases with the overall highest mutation 

rate, however, displayed mutational signatures consistent with microsatellite instability 

(MSI, Signature 6, META31) and APOBEC cytidine deaminase activity (Signatures 2 and 

13, MTC03, Fig. 1 and Supplementary Fig. S4a). In META31, an analysis of microsatellite 

instability detection using MSIsensor (38) revealed a score of 9.5, well above the previously 

published threshold of 3.5, indicating MSI. Consistent with these observations, 14.8% of the 

somatic mutations found in META31 were insertions and deletions (indels) and META31 

was found to harbor a frameshift K383fs mutation in MSH3, although it was not associated 

with LOH of the wild-type allele (Supplementary Table S2). In MTC03, low-level copy 

number gains were identified in APOBEC1 and APOBEC4, but no somatic mutations or 

amplifications/homozygous deletions were identified in AID (encoded by AICDA) or in the 

genes in the APOBEC family. Of the mutational signatures less frequently observed in 

breast cancer, we identified one case each harboring Signatures 5 and 30 (Fig. 1).

Taken together, our results demonstrated that, akin to triple-negative IDC-NSTs (9), MBCs 

constitute a genomically heterogeneous group of lesions that often display aging or 

BRCA1/2 signatures and frequently harbor TP53 mutations coupled with LOH of the wild-

type allele. Importantly, however, MBCs were found to harbor PIK3CA activating mutations 
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and mutations in several other known cancer genes, including PIK3R1, ARID1A, FAT1 and 

PTEN, more frequently than triple-negative IDC-NSTs.

Mutational landscape of MBCs associated with distinct histologic features

Given the distinct transcriptomic profiles associated with different histologic components of 

MBCs (17), as an exploratory, hypothesis-generating analysis, we sought to define whether 

MBCs of different histologic subtypes would differ in their repertoires of somatic genetic 

alterations. Based on the predominant metaplastic component present in each sample, 16, ten 

and nine were classified as chondroid, spindle cell and squamous, respectively 

(Supplementary Table S1). This analysis revealed that MBCs with chondroid metaplasia had 

numerically, though not statistically significant, higher number of somatic mutations 

(median 117, range 16–344) than MBCs with spindle cell metaplasia (median 70, range 15–

315, p=0.0730, Mann-Whitney U-test), whereas the number of somatic mutations in MBCs 

with squamous metaplasia (median 73, range 31–287) did not differ from that of MBCs with 

chondroid or spindle cell metaplasia (p>0.05, Mann-Whitney U-tests).

TP53 was found to be significantly mutated in all three histologic subtypes of MBCs using 

the method by Youn and Simon (34) and in MBCs with chondroid or squamous metaplasia 

by MutSigCV (33) (chondroid 75%, spindle 50% and squamous 78%, Fig. 2, Supplementary 

Table S4). Additionally, PIK3CA was significantly mutated in spindle cell and squamous 

MBCs (60% and 44%, respectively), PTEN and USP5 in squamous MBCs (both 33%), as 

well as CHERP and CD84 in chondroid MBCs (25% and 19%, respectively, Fig. 2, 

Supplementary Fig. S2b, Supplementary Tables S4 and S5). Interestingly, PIK3CA 
mutations were not found in MBCs with chondroid metaplasia (0% vs 53% in non-

chondroid MBCs, p<0.00001, Fisher’s exact test) and were significantly more frequent in 

MBCs with spindle cell metaplasia than MBCs of other histologic subtypes (60% vs 16%, 

p=0.0161, Fisher’s exact test, Fig. 2, Supplementary Fig. S2b and Supplementary Table S5). 

Mutations affecting distinct PI3K/AKT/mTOR pathway-related genes (e.g., PTEN and 

PIK3R1) were, however, identified in chondroid MBCs. On the other hand, mutations in 

CHERP, a gene involved in calcium homeostasis, were found exclusively in MBCs with 

chondroid metaplasia (25% vs 0% in non-chondroid MBCs, p=0.0348, Fisher’s exact test, 

Fig. 2 and Supplementary Table S5) and all of which were associated with the matrix-

producing phenotype. Of the four mutations identified in CHERP, one was a likely 

pathogenic truncating Q320* mutation associated with LOH, with the other three of 

indeterminate significance (S166N and W472C missense mutations and an in-frame deletion 

Q797_S800del not associated with LOH, Fig. 2 and Supplementary Table S2). Mutations in 

USP5, all of which were clonal but were of indeterminate pathogenicity, were found only in 

MBCs with squamous metaplasia (33% vs 0% in non-squamous MBCs, p=0.0128, Fisher’s 

exact test, Supplementary Fig. S2b and Supplementary Table S5).

A comparison of the mutational signatures found in the different subtypes revealed that all 

three MBC subtypes were heterogeneous in terms of the mutational signatures, with three, 

five and four distinct signatures being found in chondroid, spindle cell and squamous MBCs, 

respectively (Fig. 2). A numerically higher frequency of signature 3, associated with 

BRCA1/2 mutations, was observed in chondroid MBCs compared to other subtypes of 
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MBCs (p=0.07, Fisher’s exact test). In terms of LSTs, 12 (75%), five (50%) and eight (89%) 

of chondroid, spindle cell and squamous MBCs, respectively, were LSThigh and there was no 

difference between its prevalence between the different histologic components assessed 

(p>0.05, Fisher’s exact test, Fig. 2). Our results demonstrate that the different morphologic 

subtypes of MBCs are similar in terms of LSTs, mutational signatures and TP53 mutation 

rates, but differ in the mutational frequency in other genes, including PIK3CA and PTEN.

Somatic mutations affecting genes in the Wnt and PI3K/AKT/mTOR signaling pathways are 
enriched in MBCs and result in pathway activation

To determine whether the somatic mutations identified in MBCs may represent functional 

recurrence, we mapped the mutated genes to KEGG pathways and Gene Ontology 

(Supplementary Table S6). Specifically, given that previous studies have identified 

PI3K/AKT/mTOR and Wnt pathway dysregulation in MBCs (10, 11, 13, 14), and that we 

observed more frequent FAT1 mutations in MBCs than in triple-negative IDC-NSTs (11% vs 

1%, P=0.0428, Fisher’s exact test, Fig. 1 and Supplementary Table S3), we hypothesized 

that somatic mutations in these pathways would be more frequent in MBCs than in triple-

negative IDC-NSTs. We observed that 57% (20/35) of MBCs harbored at least one somatic 

non-synonymous mutation in the KEGG PI3K/AKT/mTOR pathway, including PIK3CA 
(n=10), PIK3R1 and PTEN (each n=4), ERBB4, IGF1R, KIT, RICTOR, RPS6KB1 and 

RPTOR (each n=1), with 17/20 cases harboring at least one likely pathogenic mutation in 

the PI3K/AKT/mTOR pathway (Fig. 3a). The KEGG PI3K/AKT/mTOR pathway was 

significantly more frequently affected by non-synonymous and likely pathogenic mutations 

in MBCs than in triple-negative IDC-NSTs (57% vs 22% and 49% vs 20%, P=0.0004 and 

P=0.0058, respectively, Fisher’s exact tests, Supplementary Table S6). Similar results were 

obtained when these analyses were repeated using the PI3K signaling gene set from Gene 

Ontology (Supplementary Table S6). In addition, 51% (18/35) of MBCs harbored at least 

one non-synonymous mutation in FAT1 (33) or genes associated with the Gene Ontology 

canonical Wnt signaling pathway, including AXIN1, BCL9L, KDM6A, LRRK2, RYR2 and 

WNT5A (each n=2), as well as APC, FZD2, FZD7, LRP5, PORCN, SMO (each n=1), with 

13/18 cases harboring at least one likely pathogenic mutation (Fig. 3a and Supplementary 

Table S6). Compared to triple-negative IDC-NSTs, MBCs significantly more frequently 

harbored somatic or likely pathogenic mutations in the Gene Ontology canonical Wnt 

pathway (including FAT1, 51% vs 28% and 37% vs 9%, P=0.0190 and P=0.0008, 

respectively, Fisher’s exact tests, Fig. 3a and Supplementary Table S6), with similar results 

obtained when the analyses were repeated using the KEGG canonical Wnt signaling gene set 

(including FAT1, Supplementary Table S6). As an additional exploratory and hypothesis-

generating analysis, we examined whether MBCs of different histologic subtypes would 

differ in the repertoire of mutations affecting the PI3K/AKT/mTOR and Wnt signaling 

pathways. No difference was identified between the subtypes in regards to the KEGG 

PI3K/AKT/mTOR and KEGG/Gene Ontology Wnt pathways (P>0.05, Fisher’s exact test, 

Supplementary Table S6). Non-chondroid MBCs were enriched for mutations affecting the 

Gene Ontology PI3K/AKT/mTOR pathway (P=0.0065, Fisher’s exact test, Supplementary 

Table S6).
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An exploratory, hypothesis-generating comparison of the clinicopathologic features of 

MBCs and triple-negative IDC-NSTs that harbored mutations in genes of the PI3K/AKT/

mTOR or the Wnt signaling pathways did not reveal any difference other than MBCs with 

likely pathogenic mutations in the Wnt pathway having better overall survival than the 

equivalent group of triple-negative IDC-NSTs (p=0.037, log-rank test, Fig. 3b and 

Supplementary Table S6). Caution should be exercised in the interpretation of these findings, 

given the limited number of mutation-positive triple-negative IDC-NSTs (n=6).

A further exploratory, hypothesis-generating comparison between MBCs with and without 

Wnt pathway-related mutations revealed that MBCs with likely pathogenic mutations had 

greater extent of stromal tumor infiltrating lymphocytes (p=0.0175, Mann-Whitney U-test) 

and MBCs with non-synonymous mutations in the same pathway had lower rates of distant 

metastasis (p=0.0076, Fisher’s exact test, Supplementary Table S6) and better overall 

survival (p=0.003, log-rank test, Fig. 3b). Mutation status in the Wnt pathway, however, was 

not an independent prognostic indicator in a multivariate analysis incorporating lymphocytic 

infiltration (data not shown). For the PI3K/AKT/mTOR pathway, mutation-positive MBCs 

had greater extent of chondroid metaplastic elements and were older than mutation-negative 

MBCs (p=0.0380 and p=0.0048, Mann-Whitney U-tests, Supplementary Table S6). No other 

differences in the clinicopathologic features between MBCs with and without mutations in 

either pathway were observed (Supplementary Table S6).

Given that the genomic analysis of MBCs revealed an enrichment of mutations affecting 

genes in the Wnt and PI3K/AKT/mTOR pathways, to define whether these mutations would 

result in activation of the respective signaling pathways, we subjected 30 and 24 MBCs for 

which sufficient RNA was available to the Wnt and PI3K-AKT signaling pathway RT2 

profiler PCR arrays, respectively (Qiagen, Supplementary Table S1). This analysis revealed 

that MBCs with somatic non-synonymous mutations or likely pathogenic mutations in genes 

associated with the canonical Wnt pathway had significantly higher pathway activation 

scores than wild-type MBCs (p=0.0136 and p=0.0133, respectively, Mann-Whitney U-tests, 

Fig. 4a–b). Similarly, the RT2 profiler PCR assay revealed higher levels of PI3K/AKT and 

mTOR signaling pathway activation in MBCs with somatic non-synonymous mutations or 

likely pathogenic mutations in genes in the PI3K/AKT/mTOR pathway (p=0.0173 and 

p=0.0323, respectively, for the PI3K/AKT pathway and p=0.0034 and p=0.0067, 

respectively, for the mTOR pathway, Mann-Whitney U-tests, Fig. 4c–f). Taken together, 

these results provide evidence that mutations affecting genes related to the canonical Wnt 

and PI3K/AKT/mTOR signaling pathways result in the aberrant activation of the pathways 

in MBCs.

DISCUSSION

Here we demonstrate that, akin to triple-negative IDC-NSTs, MBCs comprise a group of 

complex, genetically heterogeneous tumors. In terms of mutation burden, mutational 

signatures, LSTs and TP53 mutational frequency, MBCs are heterogeneous and similar to 

triple-negative IDC-NSTs. Despite the heterogeneity and similarities with triple-negative 

IDC-NSTs, PIK3CA, PIK3R1 and PTEN were found to be significantly mutated in MBCs, 

and MBCs significantly more frequently harbored likely pathogenic mutations in these 
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genes than triple-negative IDC-NSTs, in agreement with previous studies reporting on 

recurrent alterations affecting PI3K pathway-related genes in MBCs (10, 11). In fact, 57% of 

MBCs harbored at least one non-synonymous somatic mutation affecting PI3K/AKT/mTOR 

pathway-related genes, compared to 22% of triple-negative IDC-NSTs. Given that most of 

these clonal mutations detected in MBCs are known to dysregulate the PI3K/AKT/mTOR 

pathway and pathway activation was observed in mutation-positive MBCs based on the RT2 

profiler analysis, our findings are consistent with the notion that this pathway is frequently 

dysregulated in MBCs (10, 11). These results also provide a genetic basis for the efficacy of 

the mTOR inhibitor temsirolimus in a recent study in which 6/19 (32%) metastatic MBC 

patients treated with temsirolimus and anthracycline-based regimen achieved complete/

partial response (11).

MBCs also more frequently harbored mutations affecting the Wnt pathway than triple-

negative IDC-NSTs. Consistent with studies by our group and others (10, 14), Wnt pathway 

activation in MBCs was not driven by CTNNB1 somatic mutations; rather, 51% of MBCs 

harbored somatic mutations in FAT1 and/or canonical Wnt pathway genes other than 

CTNNB1. Previous analyses demonstrated that truncating mutations in FAT1 and missense 

mutations in the cytoplasmic domain promote Wnt signaling and tumorigenesis (16). In our 

cohort, we identified four (11%) MBCs with FAT1 mutations, including a clonal 

heterozygous frameshift mutation in the cadherin repeats (V2168fs) and a clonal missense 

mutation in the cytoplasmic domain (E4283Q), in a pattern reminiscent of the previously 

reported mutations (16). Moreover, the mutations in diverse Wnt-related genes (e.g., APC, 

FZD2 and WNT5A) suggest that Wnt pathway activation constitutes a convergent phenotype 

in MBCs. This notion was further corroborated by the RT2 profiler analysis, which revealed 

increased signaling pathway activation in MBCs harboring Wnt pathway-related mutations 

than those without. It should be noted, however, that a subset of MBCs devoid of Wnt 

pathway genetic alterations detected by the approaches employed also displayed pathway 

activation, suggesting that alternative genetic or epigenetic activation mechanisms, such as 

methylation of CDH1, APC or of genes in the secreted frizzled-related protein (SFRP) and 

the Dickkopf (DKK) families (42, 43), may be operational in these MBCs. Our findings, 

however, provide a genetic basis for Wnt activation in a subset of MBCs and provide the 

rationale for the potential use of Wnt pathway small molecule inhibitors (44) in a substantial 

proportion of MBCs. Further studies to define optimal biomarkers and/or a functional Wnt 

pathway activation assays to identify the MBCs that would benefit from these targeted 

agents are warranted.

In this study, 74% (26/35) of MBCs and 71% (44/62) of triple-negative IDC-NSTs were 

LSThigh on the basis of a whole-exome based research version of LST assessment, and 17% 

(6/35) and 23% (14/62) of MBCs and triple-negative IDC-NSTs, respectively, harbored 

genetic alterations resulting in the bi-allelic inactivation of HR-related genes 

(Supplementary Fig. S4b). Importantly, all MBCs harboring bi-allelic inactivation of HR-

related genes displayed high LST scores. It is plausible that other genetic and/or epigenetic 

alterations not detected by the approach employed (e.g. loss-of-function somatic 

rearrangements, genetic alterations affecting non-coding regulatory elements and epigenetic 

mechanisms) may contribute to the LSThigh phenotype of MBCs. Based on the relatively 

frequent alterations affecting HR-related genes and the similarly high frequency of LSThigh 
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in MBCs and triple-negative IDC-NSTs, clinical studies testing the efficacy of platinum salts 

and PARP inhibitors, and predictive tests for these agents should also include patients with 

MBC together with those with triple-negative IDC-NST (45–47). Importantly, however, the 

clinical utility of LST and genomic surrogates that include LST to detect HR deficiency and 

predict sensitivity to platinum salts or PARP inhibitors remains to be fully established (45–

48), especially for breast cancers lacking BRCA1 or BRCA2 mutations.

The analysis of the repertoire of somatic genetic alterations in the distinct histologic 

subtypes of MBC profiled, namely chondroid, spindle cell or squamous, revealed that whilst 

44% of MBCs with chondroid metaplasia harbored somatic mutations in the PI3K/AKT/

mTOR pathway, none affected PIK3CA. This is in stark contrast to MBCs with spindle and 

squamous metaplasia, where PIK3CA mutations were detected in 60% and 44% of cases, 

respectively. Furthermore, we found that 25% of MBCs with chondroid metaplasia harbored 

CHERP mutations. CHERP encodes the calcium homeostasis endoplasmic reticulum 

protein. Perturbed calcium homeostasis has important implications in cell migration and 

proliferation (reviewed in (49)). Of note, however, three of the four CHERP mutations 

identified were subclonal and only one was predicted to be likely pathogenic. Additionally, 

three of nine MBCs with squamous metaplasia were found to harbor clonal mutations of 

indeterminate pathogenicity in USP5, the gene encoding ubiquitin carboxyl-terminal 

hydrolase 5, a ubiquitin-specific protease required for double-strand break repair (50), and 

two of these cases were classified as LSThigh. Notably, CHERP and USP5 mutations were 

not found in triple-negative IDC-NSTs from TCGA. Our exploratory analysis has generated 

the hypothesis that specific histologic subtypes of MBCs may be underpinned by distinct 

repertoire of somatic mutations, and warrants further investigation of our findings in the 

context of a large, multi-institutional collaborative effort.

Our study has several limitations. First, owing to the relative rarity of MBCs, our sample 

size is limited. It should be noted, however, that our study constitutes the largest series of 

MBCs subjected to whole-exome sequencing to date. Second, although we have not 

identified pathognomonic somatic mutations that define each subtype of MBCs, we cannot 

rule out that whole-genome sequencing and/or RNA-sequencing may result in the 

identification of either non-coding genetic alterations or fusion genes that define each 

subtype. Further studies are warranted to define the genetic and/or epigenetic basis of the 

different subtypes of the disease.

Despite these limitations, our study revealed that MBCs more frequently harbor somatic 

mutations affecting the PI3K/AKT/mTOR and canonical Wnt signaling pathways than 

triple-negative IDC-NSTs. Our results support the recent pre-clinical observations (44) and 

clinical trial results (11) that Wnt and PI3K pathway inhibition may be beneficial for a 

subset of patients with these aggressive and chemotherapy-resistant triple-negative breast 

cancers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TRANSLATIONAL RELEVANCE

Metaplastic breast carcinoma (MBC) is a rare histologic type of breast cancer that 

typically lacks the expression of estrogen receptor and progesterone receptor and HER2 

overexpression/gene amplification (i.e. triple-negative). MBCs do not respond well to 

conventional chemotherapy and have been reported to be associated with a worse 

prognosis than triple-negative invasive ductal carcinomas of no special type (IDC-NSTs). 

Although similar in the mutational frequency in TP53, our study reveals that MBCs are 

genetically distinct from triple-negative IDC-NSTs, with more frequent mutations in 

PIK3CA, PIK3R1, PTEN and Wnt pathway genes. In fact, 57% and 51% of MBCs 

harbored somatic mutations affecting PI3K/AKT/mTOR pathway and Wnt pathway 

related genes, respectively. Our study provides a molecular basis for the recent pre-

clinical and clinical observations that Wnt and PI3K/AKT/mTOR pathway inhibition 

may be beneficial for a subset of patients with these aggressive and chemotherapy-

resistant triple-negative breast cancers.
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Figure 1. Repertoire of non-synonymous somatic mutations of metaplastic breast cancers 
(MBCs) and triple-negative invasive carcinomas of no special type (IDC-NSTs)
Clinico-pathologic and immunohistochemical features, and non-synonymous somatic 

mutations identified in 35 MBCs subjected to whole-exome sequencing (left), and in 69 

triple-negative IDC-NSTs from TCGA breast cancer study (right) (9). The effects of the 

mutations are color-coded according to the legend, with hotspots (32) colored in red. Likely 

passenger mutations and mutations of indeterminate pathogenicity are marked using a 

hatched pattern. The presence of multiple non-synonymous mutations in the same gene is 

represented by an asterisk. For MBCs, the presence of loss of heterozygosity of the wild-

type allele of a mutated gene is represented by a diagonal bar, and mutations found to be 

clonal by ABSOLUTE (24) are indicated by a black box. Genes recurrently mutated in 

MBCs and displaying at least one likely pathogenic mutation are presented. Gene names 

highlighted in purple were significantly more frequently altered in MBCs as compared to 
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triple-negative IDC-NSTs. Percentages to the right of the mutation heatmaps indicate the 

percentage of cases affected by non-synonymous somatic mutations in a given gene. Bar 

charts (top) indicate the number of non-synonymous and synonymous somatic single 

nucleotide variants (SNVs) and the number of somatic insertions and deletions (indels) for 

each sample. The dominant mutational signatures (35, 36) were assigned using 

deconstructSigs (37). Large-scale transitions (LST)-high and LST-low status was determined 

in accordance with Popova et al. (39). TCGA, The Cancer Genome Atlas.
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Figure 2. Repertoire of somatic non-synonymous mutations of metaplastic breast cancers 
(MBCs) of different histologic subtypes
Non-synonymous somatic mutations identified in 16, ten and nine chondroid, spindle and 

squamous MBCs, respectively, by whole-exome sequencing are color-coded by their effect 

according to the legend, with hotspots (32) colored in red. Likely passenger mutations and 

mutations of indeterminate pathogenicity are marked using a hatched pattern. The presence 

of multiple non-synonymous mutations in the same gene is represented by an asterisk. The 

presence of loss of heterozygosity of the wild-type allele of a mutated gene is represented by 

a diagonal bar, and mutations found to be clonal by ABSOLUTE (24) are indicated by a 

black box. Genes recurrently mutated in MBCs and displaying at least one likely pathogenic 

mutation are presented. Genes highlighted in purple were significantly differentially altered 
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in the given subtype of MBC. Percentages to the right of the mutation heatmaps indicate the 

percentage of cases affected by non-synonymous somatic mutations in a given gene. Bar 

charts (top) indicate the number of non-synonymous and synonymous somatic single 

nucleotide variants (SNVs), and the number of somatic insertions and deletions (indels) for 

each sample. The dominant mutational signatures (35, 36) were assigned using 

deconstructSigs (37). Large-scale transitions (LST)-high and -low status was determined in 

accordance with Popova et al (39).
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Figure 3. Repertoire of non-synonymous somatic mutations affecting genes associated with the 
PI3K/AKT/mTOR and Wnt pathways in metaplastic breast cancers (MBCs) and triple-negative 
invasive carcinomas of no special type (IDC-NSTs)
(a) Non-synonymous somatic mutations identified in 35 MBCs subjected to whole-exome 

sequencing and 69 triple-negative IDC-NSTs from TCGA (9) are color-coded by their effect 

according to the legend, with hotspots (32) colored in red. Likely passenger mutations and 

mutations of indeterminate pathogenicity are marked using a hatched pattern. Genes 

associated with the KEGG PI3K/AKT/mTOR and Gene Ontology Wnt pathways (including 

FAT1, see Supplementary Table S6) and mutated in at least one MBC or triple-negative IDC-
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NST are included and ordered in decreasing order of mutational frequency in MBCs. The 

presence of multiple non-synonymous mutations in the same gene is represented by an 

asterisk. For MBCs, the presence of loss of heterozygosity of the wild-type allele of a 

mutated gene is represented by a diagonal bar, and mutations found to be clonal by 

ABSOLUTE (24) are indicated by a black box. Percentages to the right indicate the 

percentage of cases affected by non-synonymous somatic mutations in a given gene. Gene 

names highlighted in purple were significantly more frequently altered in MBCs. (b) Overall 

survival of patients with MBCs or triple-negative IDC-NSTs from TCGA that harbored and 

did not harbor somatic non-synonymous or likely pathogenic mutations in the KEGG 

PI3K/AKT/mTOR and Gene Ontology Wnt pathways (including FAT1, see Supplementary 

Table S6) using the Kaplan–Meier method. TCGA, The Cancer Genome Atlas.
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Figure 4. Activation of Wnt/β-catenin and PI3K/AKT/mTOR pathways in metaplastic breast 
cancers (MBCs)
Wnt signal transduction pathway activity scores (a) between MBCs with somatic mutations 

in genes related to the Wnt signaling pathway (Gene Ontology GO:0060070, including 

FAT1) and wild-type MBCs and (b) between MBCs with likely pathogenic mutations in 

genes related to the Wnt signaling pathway (Gene Ontology GO:0060070, including FAT1) 

and wild-type MBCs (Supplementary Table S6). PI3K/AKT pathway activation scores (c) 
between MBCs with somatic mutations in genes related to the PI3K/AKT/mTOR (KEGG 
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pathways hsa04150, hsa05151 and hsa04012) and wild-type MBCs and (d) between MBCs 

with likely pathogenic mutations in genes related to the PI3K/AKT/mTOR (KEGG 

pathways hsa04150, hsa05151 and hsa04012) and wild-type MBCs, and mTOR pathway 

activation scores (e) between MBCs with somatic mutations in genes related to the 

PI3K/AKT/mTOR (KEGG pathways hsa04150, hsa05151 and hsa04012) and wild-type 

MBCs and (f) between MBCs with likely pathogenic mutations in genes related to the 

PI3K/AKT/mTOR (KEGG pathways hsa04150, hsa05151 and hsa04012) and wild-type 

MBCs (Supplementary Table S6). Significance was assessed using Mann-Whitney U-test.
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Table 1

Clinico-pathologic features of the 35 metaplastic breast carcinomas included in this study.

Clinico-pathologic features MBC (n=35)
MBC with chondroid 

metaplasia*
(n=16)

MBC with spindle cell 
metaplasia*

(n=10)

MBC with squamous 
metaplasia*

(n=9)

Histologic grade**

1 0 (0%) 0 (0%) 0 (0%) 0 (0%)

2 5 (14%) 3 (19%) 1 (10%) 1 (11%)

3 30 (86%) 13 (81%) 9 (90%) 8 (89%)

ER status

Negative 34 (97%) 16 (100%) 10 (100%) 8 (89%)

Positive 1 (3%) 0 (0%) 0 (0%) 1 (11%)

PR status

Negative 34 (97%) 16 (100%) 10 (100%) 8 (89%)

Positive 1 (3%) 0 (0%) 0 (0%) 1 (11%)

HER2 status

Negative 34 (97%) 16 (100%) 10 (100%) 8 (89%)

Positive 1 (3%) 0 (0%) 0 (0%) 1 (11%)

Triple-negative phenotype*** 33 (94%) 16 (100%) 10 (100%) 7 (78%)

ER, estrogen receptor; MBC, metaplastic breast carcinoma; PR, progesterone receptor.

*
, according to the predominant cellular type, as previously described (17).

**
, according to the Nottingham grading system (18).

***
, lack of ER expression, PR expression and HER2 overexpression/amplification.
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