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“An adult must make his own decision as to whether or not he 
should expose himself to a specific drug, be it available by 
prescription or proscribed by law, by measuring the potential 
good and bad with his own personal yardstick.” 

 
― Alexander Shulgin, Pihkal: A Chemical Love Story. 
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PREFACE 

This thesis is split into a pharmacology part and a toxicology part. The pharmacology part 

consists of investigations on the monoamine transporter and receptor interactions of 

traditional and newly emerged drugs, mainly stimulants and psychedelics; the toxicology part 

consists of investigations on mechanisms of hepatocellular toxicity of synthetic cathinones. 

All research described in this thesis has been published in peer-reviewed journals, and was 

performed between October 2014 and June 2018 in the Division of Clinical Pharmacology 

and Toxicology at the Department of Biomedicine of the University Hospital Basel and 

University of Basel, and partly at the pRED Roche Innovation Center Basel at F. Hoffmann-

La Roche.  
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SUMMARY 

Since the mid-2000s, an unprecedented amount of new psychoactive substances (NPSs) have 

emerged on the recreational drug market and have since then gained popularity as alternatives 

to traditional drugs of abuse. Besides clinical case reports, the pharmacological profiling and 

assessment of toxicity in vitro provide valuable information on the mechanism of action and 

possible risks associated with NPSs use. 

 Within the scope of the pharmacology part of this thesis, focus was laid on the 

potential of NPSs to inhibit norepinephrine (NE), dopamine (DA), and serotonin (5-HT) 

transporters (NET, DAT, and SERT, respectively) in transporter-transfected human 

embryonic kidney (HEK) 293 cells. In addition, monoamine transporter and receptor affinities 

were determined. 

 Analogs of the popular NPS 4-methylmethcathinone (mephedrone) potently inhibited 

NET and, with the exception of 3-methylmethcathinone (3-MMC), inhibited SERT more 

potently than DAT. Mephedrone and its analogs were substrate-type releasers of NE, DA, and 

5-HT. The indole NPS 5-(2-aminopropyl)indole (5-IT) potently inhibited NE, DA, and 5-HT 

uptake and mediated an efflux of DA and 5-HT. Like amphetamine, its 4-methylated analog 

4-methylamphetamine (4-MA) was a transporter substrate but in contrast to amphetamine, 4-

MA had a higher selectivity for SERT vs. DAT. The two indane NPSs N-methyl-2-

aminoindane (N-methyl-2-AI) and 5-methoxy-6-methyl-2-aminoindane (MMAI) were 

selective inhibitors of NE and 5-HT uptake, respectively, and selective releasers of the 

respective neurotransmitters. The predominant actions on SERT vs. DAT suggests that 

dimethylmethcathinones, 4-MA, and MMAI may mediate certain entactogenic effects similar 

to 3,4-methylenedioxymethamphetamine (MDMA), whereas 3-MMC, 5-IT, and N-methyl-2-

AI are stimulants similar to amphetamine. Analogs of the prescription drug methylphenidate 

(MPH) mainly inhibited NET and DAT and showed only weak inhibition of SERT. Like 

MPH and cocaine, MPH-based NPSs did not elicit transporter-mediated efflux of any 

monoamines. The predominant actions on DAT vs. SERT indicates that theses compounds are 

associated with an increased abuse liability. Diclofensine, a NPS that was originally 

developed as antidepressant, was a triple monoamine inhibitor without releasing properties. 

The dissociative NPS diphenidine was an inhibitor of NET and DAT with moderate potency, 

and its methoxylated derivative methoxphenidine was a selective but weak NET inhibitor. 

Diphenidine and methoxphenidine were both devoid of any monoamine releasing properties. 
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2,5-Dimethoxy-4-substituted phenethylamines (2C drugs) and their N-2-

methoxybenzyl (“NBOMe”) analogs potently interacted with serotonergic 5-HT2A, 5-HT2B, 

and 5-HT2C receptors. The N-2-methoxybenzyl substitution of 2C drugs increased the binding 

affinity at serotonergic 5-HT2A and 5-HT2C receptors and monoamine transporters but reduced 

binding to the 5-HT1A receptor. NBOMes and 2C drugs were mostly potent partial agonists at 

the 5-HT2A and 5-HT2B receptors. However, drugs with a bulky and lipophilic 4-substituent 

had a decreased or absent activation potential or efficacy at these receptors. 

A correlation analysis revealed that the assessed in vitro data can help to predict 

human effective doses of stimulants and psychedelics. For stimulants, DAT and NET 

inhibition potency positively, and SERT inhibition potency inversely correlated with human 

doses reported on the Internet. For psychedelics, serotonin 5-HT2A and 5-HT2C but not 5-HT1A 

receptor affinity significantly correlated with human effective doses. Serotonin receptor 

activation data did not correlate with human doses. However, it is a necessity to determine 

whether a drug activates the 5-HT2A receptor in order to predict its potential to induce 

psychedelic effects in humans. 

For the toxicological part of the thesis, focus was laid on hepatotoxic mechanisms of 

six synthetic cathinones in two hepatocellular cell lines. For bupropion, 3,4-

methylenedioxypyrovalerone (MDPV), mephedrone, and naphyrone the depletion of cellular 

ATP content preceded cytotoxicity, suggesting mitochondrial toxicity. In contrast, 

methedrone and methylone depleted the cellular ATP pool and induced cytotoxicity at similar 

concentrations. Bupropion, MDPV, and naphyrone additionally decreased the mitochondrial 

membrane potential, confirming mitochondrial toxicity. Bupropion was the only compounds 

that uncoupled oxidative phosphorylation. Bupropion, MDPV, mephedrone, and naphyrone 

inhibited complex I and II of the electron transport chain, naphyrone also complex III. The 

cathinones associated with mitochondrial toxicity were shown to increase mitochondrial 

reactive oxygen species (ROS) and lactate production, and naphyrone and MDPV 

additionally depleted the cellular total glutathione (GSH) pool. Liver injury associated with 

these drugs is rare and affected persons likely have susceptibility factors rendering them more 

sensitive for the hepatotoxicity of these drugs. 
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RATIONALE AND MOTIVATION 

In recent years, various so-called new psychoactive substances (NPSs; “legal highs”,“designer 

drugs”) have emerged on the recreational drug market. Such compounds are often structurally 

and pharmacologically related to traditional drugs of abuse but due to their novelty, they are 

usually not yet legally controlled when they first appear. Moreover, distributors often 

circumvent the law by misleading labeling such as “research chemicals”, “plant food”, “bath 

salts”, or “not for human consumption” (Liechti, 2015). More than 600 different NPSs were 

reported to the EU Early Warning System of the European Monitoring Centre for Drugs and 

Drug Addiction  (EMCDDA) between 2005 and 2016 (European Monitoring Centre for 

Drugs and Drug Addiction, 2017). A variety of chemical classes with distinct 

pharmacological profiles have been reported, such as synthetic cathinones, synthetic 

cannabinoids, phenethylamines, opioids, tryptamines, arylamines, benzodiazepines, 

piperazines, and others (European Monitoring Centre for Drugs and Drug Addiction, 2015). 

 In this thesis, focus will be laid on two aspects related to NPSs use. In the first part, 

the interactions of various chemically distinct NPSs with monoamine transporters and 

receptors will be discussed. This part includes different classes of stimulants (cathinones, 

stimulant phenethylamines, aminoindanes, and phenidates) and psychedelic phenethylamines. 

Furthermore, monoaminergic transporter and receptor interactions will be discussed as off-

target effects for the N-methyl-D-aspartate (NMDA) receptor antagonists diphenidine and 

methoxphenidine. Correlations between in vitro data and human effective doses are discussed 

at the end of the first part. In the second part, potential hepatotoxic mechanisms associated 

with synthetic cathinones will be described. At the beginning of each part, a separate 

introduction to the subject is included, which is followed by original research. 

A detailed review of the structure and pathways of monoaminergic systems and 

detailed review of the liver anatomy and function would be far beyond the scope of this 

thesis. Therefore, the introduction of the first part only focuses on the role that monoamine 

transporters and receptors play in association with the mechanism of action of stimulants and 

psychedelics. Transporters and receptor subtypes that were not investigated are not 

specifically discussed. The introduction of the second part addresses potential mechanisms of 

stimulant-induced hepatotoxicity, with a focus on mitochondria. A short overall discussion of 

the research presented in this thesis is given in the concluding remarks and outlook section at 

the end of the thesis. 
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1 TARGETS OF STIMULANTS AND PSYCHEDELICS 

1.1	
   Monoaminergic	
  systems	
  

Monoamine neurotransmitters are widespread in the nervous system and are derived from 

aromatic amino acids and thyroid hormones (Bjork and Svenningsson, 2011). Monoamines 

have a chemical template comprised of an aromatic nucleus that is connected to an amino 

group by a two carbon aliphatic chain. Monoamines include norepinephrine (NE), dopamine 

(DA), serotonin (5-hydroxytryptamine; 5-HT), epinephrine, histamine, and trace amines. 

Monoaminergic signaling is modulated by various traditional and newly emerged drugs, 

which can be roughly divided into stimulants and psychedelics (Liechti, 2015). Such 

substances may either interact with transporters or with receptors, or a combination thereof. 

1.2	
   Role	
  of	
  monoamine	
  transporters	
  in	
  drug	
  action	
  

The monoamine neurotransmitters NE, DA, and 5-HT mediate a variety of functions, such as 

locomotion, autonomic function, hormone secretion, affect, emotion, and reward (Torres et 

al., 2003). Transporter-mediated reuptake of NE, DA, and 5-HT into the presynapse by 

neurotransmitter:sodium symporters (NSS) for NE (NET/SLC6A2), DA (DAT/solute carrier 

protein SLC6A3), and 5-HT (SERT/SLC6A4) is the principal mechanism of terminating 

signal transduction in monoaminergic neurons (Kristensen et al., 2011). These NSS are 

mainly expressed in the neurons containing the respective monoamines. DAT is expressed in 

the substantia nigra and ventral tegmental area, NET is expressed in the locus coeruleus and 

other brainstem nuclei, and SERT is expressed in the median and dorsal raphe nuclei 

(Hoffman et al., 1998). Therapeutic compounds such as antidepressants, and recreationally 

used psychoactive drugs like cocaine or amphetamines target NSS. These compounds may 

either act as transporter inhibitors that bind to the transporter or as substrate-type monoamine 

releasers (Rothman and Baumann, 2003), both leading to increased monoamine 

concentrations in the synaptic cleft and subsequently to an increased response at the 

respective target receptors. Cocaine, methylphenidate (MPH), and various related compounds 

are non-selective, competitive inhibitors of NSS (Ritz et al., 1987). Examples of selective 

inhibitors are desipramine, nisoxetine, and reboxetine (selective NET inhibitors), the cocaine 

analogues GBR 12935 and WIN 35,428 (selective DAT inhibitors), or the selective serotonin 

reuptake inhibitors (SSRIs) fluoxetine, citalopram, paroxetine, and sertraline (Torres et al., 

2003). Compared to the transporter inhibitors, the mechanism of action of most 

amphetamines is different. Amphetamines act as exogenous substrates of the NSS inducing an 



TARGETS OF STIMULANTS AND PSYCHEDELICS 

 8 

inwardly directed electrophysiological current, a phenomenon not observed for inhibitors 

(Sandtner et al., 2016; Schicker et al., 2012). The binding mode of the drug at the transporter 

is decisive whether a drug is an inhibitor, a substrate, or both (Sandtner et al., 2016). 

Exposure to SERT substrates induces a conformational change of the transporter from an 

outward facing to an inward facing (releasing) state (Fenollar-Ferrer et al., 2014). This 

conformational change of SERT results in an increase in the intramolecular distance between 

the N and C terminus, which can be detected using fluorescence resonance energy transfer 

(FRET) measurement (Schicker et al., 2012). Inside the presynaptic terminal, transporter 

substrates cause a release of vesicular monoamines into the cytoplasm by acting as weak 

bases at the vesicles (Jones et al., 1994; Seiden et al., 1993; Sitte and Freissmuth, 2015; 

Sulzer et al., 1995; Sulzer et al., 1993; Torres et al., 2003). According to this “weak base 

hypothesis”, transporter substrates are transported into synaptic vesicles by the vesicular 

monoamine transporters (VMATs) 1 and 2, and subsequently decrease the proton gradient. 

This then prevents inward transport of monoamines (Sitte and Freissmuth, 2015; Sulzer et al., 

1995; Sulzer et al., 1993). The elevation of cytosolic monoamine neurotransmitters is 

furthermore increased by inhibition of monoamine oxidase (MAO) inhibition of the drugs 

(Sitte and Freissmuth, 2015). In contrast to physiological efflux of neurotransmitters by 

exocytosis, drug-mediated elevated concentrations of cytosolic monoamines result in an 

occupation of the internal substrate-binding site and outward transport by NSS (Scholze et al., 

2000; Sitte and Freissmuth, 2015). 

The monoamine reuptake inhibition profiles can be used to predict psychotropic 

effects of stimulants. Dopamine plays an essential role in the reinforcing effects of drugs 

(Koob, 1992; Ritz et al., 1987; Wise, 1978; Woolverton and Johnson, 1992), whereas 

serotonergic activity is inversely linked to abuse liability (Kuhar et al., 1991; Ritz et al., 1987; 

Wee et al., 2005; Wee and Woolverton, 2006). Therefore, the DAT/SERT inhibition ratio 

(1/DAT IC50 : 1/SERT IC50) is a marker of the reinforcing effects and abuse liability of a 

substance (Baumann et al., 2000). 

1.3	
   Role	
  of	
  monoamine	
  receptors	
  in	
  drug	
  action	
  

The action of monoamine neurotransmitters is almost exclusively mediated through G 

protein–coupled receptors (GPCRs), which make up the largest group of transmembrane 

proteins and have seven transmembrane domains (Kobilka, 2007). Several psychiatric and 

neurological diseases are caused by dysfunction of these systems (Bjork and Svenningsson, 
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2011) and GPCRs are targets for about a third of all Food and Drug Administration (FDA)-

approved drugs (Hauser et al., 2018). 

1.4	
   Alpha-­‐adrenergic	
  receptors	
  

Adrenergic receptors that are activated by NE and epinephrine modulate stimulant-induced 

behavior (Schmidt and Weinshenker, 2014). Adrenergic α1A receptors are located in most 

tissues and play an important role maintaining the function of the cardiovascular and urinary 

systems (Karabacak et al., 2013). Adrenergic α2A receptors are expressed in pyramidal cells in 

the prefrontal cortex, the locus coerulus, and other regions of the brain (Giovannitti et al., 

2015; MacDonald et al., 1997; Wang et al., 2007). The α1A and α2A receptors are thought to 

have opposing roles as antagonism of α1A receptors decreases the acute locomotor response to 

stimulants, while α2A receptor antagonism increases the acute locomotor response (Schmidt 

and Weinshenker, 2014). 

1.5	
   Serotonergic	
  receptors	
  

The serotonin receptor family is the largest family of G-protein coupled neurotransmitter 

receptors, and their structure and function is comprehensively reviewed in (Nichols and 

Nichols, 2008). Serotonin 5-HT1A receptors are expressed in limbic brain areas, cortical areas, 

and dorsal and median raphe nuclei (Valdizan et al., 2010). Azapirone-type drugs act as 5-

HT1A receptor agonists and partial agonists (Blier and de Montigny, 1987; Sprouse and 

Aghajanian, 1987), indicating that 5-HT1A receptors may play a role in anxiety. Furthermore, 

5-HT1A receptors have been of interest as targets of antidepressant drugs (Blier and Ward, 

2003). Other functions of 5-HT1A receptors are related to brain development (Rojas and 

Fiedler, 2016), stress response (Samad et al., 2006), immune system modulation (Idova and 

Davydova, 2010), schizophrenia (Meltzer and Sumiyoshi, 2008), depression (Yohn et al., 

2017), and drug addiction (Filip et al., 2010). The 5-HT2A receptors can be found at the 

highest density in the neocortex, and additionally in the hippocampus, thalamic nuclei, and 

hypothalamus (Barnes and Sharp, 1999; Lopez-Gimenez and Gonzalez-Maeso, 2018). 

Serotonin 5-HT2A receptor activation is associated with mind-altering effects of psychedelics 

(Glennon et al., 1984; Kraehenmann et al., 2017; Nichols, 2004, 2016; Titeler et al., 1988), 

which can be blocked by the receptor antagonist ketanserin (Preller et al., 2017). Serotonin 5-

HT2B receptors are expressed in the liver, kidneys, stomach, and gut, and to a lesser extent 

also in the lungs, cardiovascular tissue, and central nervous system (Bonhaus et al., 1995; 

Borman et al., 2002; Choi et al., 1994; Choi and Maroteaux, 1996; Duxon et al., 1997). 
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Besides coordination of proper formation of organs during development (Nebigil et al., 2000), 

5-HT2B receptors are thought to play a role in drug abuse (Lin et al., 2004) and function of the 

auditory system (Tadros et al., 2007). Serotonin 5-HT2C receptors are mainly localized in the 

central nervous system with highest expression in epithelial cells of the choroid plexus, and 

additionally in limbic areas, hippocampus, substantia nigra, amygdala, and hypothalamus 

(Abramowski et al., 1995; Clemett et al., 2000; Lopez-Gimenez et al., 2001). Agonism at 5-

HT2C receptors is associated with anxiety states (Berg et al., 2008) and selective antagonists 

thereof may therefore potentially act as anxiolytic drugs. All known psychedelics are both 5-

HT2A and 5-HT2C agonists; however, the role of 5-HT2C receptor activation in the mechanism 

of action of psychedelics remains unclear (Nichols, 2004, 2016). 

1.6	
   Dopaminergic	
  receptors	
  

Dopamine receptors mediate various physiological functions including voluntary movement, 

reward, sleep regulation, feeding, affect, attention, cognitive function, olfaction, vision, 

hormonal regulation, sympathetic regulation, and penile erection (Beaulieu et al., 2015). 

Pharmaceuticals targeting dopamine receptors are used for the management of several 

neuropsychiatric disorders including schizophrenia, bipolar disorder, depression, and 

Parkinson's disease (Beaulieu et al., 2015). Dopamine D2 receptors are mainly localized in 

subcortical regions like the striatum and the nucleus accumbens (Leuner and Muller, 2006), 

and are targets of antipsychotics (Seeman and Kapur, 2000). 

1.7	
   Trace	
  amine-­‐associated	
  receptors	
  

The trace amine-associated receptor 1 (TAAR1) is expressed in monoaminergic brain regions 

and the limbic system (Borowsky et al., 2001; Espinoza et al., 2015; Lindemann et al., 2008), 

and is involved in regulating the limbic network, reward circuits, cognitive processes, and 

mood states (Lindemann et al., 2008; Miller, 2011; Revel et al., 2013; Wolinsky et al., 2007). 

Agonists at TAAR1 revealed antipsychotic and antidepressant properties, and TAAR1 was 

proposed as potential target in the treatment of schizophrenia (Revel et al., 2013; Wolinsky et 

al., 2007) and dependence on stimulant drugs (Cotter et al., 2015; Di Cara et al., 2011; Jing 

and Li, 2015; Pei et al., 2014). 
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a b s t r a c t

Background: Mephedrone is a synthetic cathinone and one of the most popular recreationally used new
psychoactive substances. The aim of the present study was to characterize the in vitro pharmacology of
novel analogs of mephedrone and related newly emerged designer stimulants.
Methods: We determined norepinephrine, dopamine, and serotonin transporter inhibition potencies and
monoamine release in transporter-transfected human embryonic kidney 293 cells. We also assessed
monoamine receptor and transporter binding affinities.
Results: Mephedrone analogs potently inhibited the norepinephrine transporter and, with the exception
of 3-methylmethcathinone (3-MMC), inhibited the serotonin transporter more potently than the
dopamine transporter. Similar to classic amphetamines, mephedrone analogs were substrate-type
monoamine releasers. 5-(2-Aminopropyl)indole (5-IT) was a highly potent monoamine transporter in-
hibitor and a releaser of dopamine and serotonin. 4-Methylamphetamine (4-MA) mediated efflux of all
three monoamines and inhibited the serotonin transporter more potently than the dopamine trans-
porter, unlike amphetamine. N-methyl-2-aminoindane (N-methyl-2-AI) was a selective norepinephrine
transporter inhibitor and norepinephrine releaser, whereas 5-methoxy-6-methyl-2-aminoindane
(MMAI) was a selective serotonin transporter inhibitor and serotonin releaser. All of the drugs inter-
acted with monoamine receptors.
Conclusion: The predominant actions on serotonin vs. dopamine transporters suggest that dime-
thylmethcathinones, 4-MA, and MMAI cause entactogenic effects similar to 3,4-
methylenedioxymethamphetamine, whereas 3-MMC, 5-IT, and N-methyl-2-AI have more stimulant-
type properties like amphetamine. Because of pharmacological and structural similarity to mephe-
drone, similar health risks can be expected for these analogs.
This article is part of the Special Issue entitled ‘Designer Drugs and Legal Highs.’

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

4-Methylmethcathinone (4-MMC, mephedrone) is a substituted
synthetic cathinone (b-keto amphetamine) that has recently
become popular as a party drug (Dargan et al., 2010; Green et al.,
2014). Mephedrone was widely sold as a “legal high” and

continued to be available on the illicit drug market after being
classified as illegal (Green et al., 2014; Wood et al., 2012). Struc-
turally and pharmacologically similar new psychoactive substances
(NPS) have emerged on the drug market as legal alternatives to the
newly banned mephedrone (Brandt et al., 2010). Knowledge of the
effects and toxicity of NPS is often solely based on user reports and

Abbreviations: 2,3-DMMC, 2,3-dimethylmethcathinone; 2,4-DMMC, 2,4-dimethylmethcathinone; 3,4-DMMC, 3,4-dimethylmethcathinone; 3-MMC, 3-
methylmethcathinone; 4-MA, 4-methylamphetamine; 4-MMC, 4-methylmethcathinone (mephedrone); 5-IT, 5-(2-aminopropyl)indole; 5-HT, 5-hydroxytryptamine (sero-
tonin); DA, dopamine; DAT, dopamine transporter; FLIPR, fluorescence imaging plate reader; HPLC, high-performance liquid chromatography; MDMA, 3,4-
methylenedioxymethamphetamine; MMAI, 5-methoxy-6-methyl-2-aminoindane; NE, norepinephrine; NET, norepinephrine transporter; N-methyl-2-AI, N-methyl-2-
aminoindane; NPS, new psychoactive substances; SERT, serotonin transporter; TAAR, trace amine-associated receptor.
* Corresponding author. Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Hebelstrasse 2, Basel, CH-4031, Switzerland.
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clinical intoxication cases, and pharmacological and toxicological
data are mostly lacking. Therefore, the assessment of in vitro
pharmacological profiles of NPS is a first approach to better un-
derstand their clinical effects and toxicology. In the present study,
we assessed monoamine transporter and receptor interaction
profiles of a new series of mephedrone analogs and related
designer drugs (Fig. 1) and compared them to mephedrone. Several
of the tested substances were first described in the 20th century,
but the widespread availability and recreational use of these sub-
stances is a rather recent phenomenon (Baumeister et al., 2015;
Brandt et al., 2014; King, 2014; Liechti, 2015). The substituted
cathinones 2,3-dimethylmethcathinone (2,3-DMMC), 2,4-
dimethylmethcathinone (2,4-DMMC), and 3,4-
dimethylmethcathinone (3,4-DMMC) have received relatively lit-
tle attention to date. 3,4-DMMC has recently been sold and
confiscated in various countries (Locos and Reynolds, 2012;
Odoardi et al., 2016; Zancajo et al., 2014). 3-Methylmethcathinone
(3-MMC) has become one of the most popular NPS in various Eu-
ropean countries after the ban of mephedrone, and it has been
associated with clinical toxicity and several fatal cases (Adamowicz
et al., 2014, 2016; Backberg et al., 2015; European Monitoring
Centre for Drugs and Drug Addiction, 2015). 5-(2-Aminopropyl)
indole (5-IT) is an indole derivative and stimulant NPS that has
been associated with numerous fatal and non-fatal intoxications in
recent years (Backberg et al., 2014; Katselou et al., 2015; Kronstrand
et al., 2013; Seetohul and Pounder, 2013). 5-IT has been shown to be
a substrate at the transporter for norepinephrine (NET), dopamine
(DAT), and serotonin (SERT) in rat brain synaptosomes with greater
potency for release at NET and DAT over SERT (Marusich et al.,
2016). Moreover, 5-IT produced locomotor stimulation and stimu-
lant effects similar to 3,4-methylenedioxymethamphetamine
(MDMA) in mice (Marusich et al., 2016). 4-Methylamphetamine
(4-MA) is an NPS that has been detected in street amphetamine
(“speed”) samples across Europe and was linked to several fatalities
in combination with amphetamine (Blanckaert et al., 2013). In a
study comparing the monoamine releasing potencies of a series of
amphetamines analogs in vitro, 4-MA and D-amphetamine had
similar potencies as releasers of norepinephrine (NE) and dopa-
mine (DA), but 4-MA was a more potent releaser of serotonin (5-
HT) (Wee et al., 2005). 4-MA was self-administered at a lower

rate by rhesus monkeys compared to D-amphetamine (Wee et al.,
2005). N-methyl-2-aminoindane (N-methyl-2-AI) and 5-methoxy-
6-methyl-2-aminoindane (MMAI) are two psychoactive amino-
indanes that have been sold as designer drugs online. MMAI has
previously been shown to have effects on the SERT similar to
MDMA (Rudnick and Wall, 1993) and a high selectivity for 5-HT vs.
NE and DA uptake inhibition (Johnson et al., 1991).

2. Material and methods

2.1. Drugs

MDMA, mephedrone, and 4-MA were purchased from Lipomed
(Arlesheim, Switzerland) with high-performance liquid chroma-
tography (HPLC) purity > 98.5%. 2,3-DMMC, 2,4-DMMC, 3,4-
DMMC, 3-MMC, 5-IT, and MMAI were purchased from Cayman
Chemicals (Ann Arbor, MI, USA) with purity > 98%. N-methyl-2-AI
was provided by Dr. Christian Bissig (Forensic Institute, Zürich,
Switzerland) with purity > 98%. 5-IT was obtained as racemic base;
the remaining compounds were obtained as racemic hydrochlo-
rides. Radiolabelled norepinephrine and dopamine ([3H]-NE and
[3H]-DA, respectively) were obtained from Perkin-Elmer (Schwer-
zenbach, Switzerland). Radiolabeled serotonin ([3H]-5-HT) was
purchased from Anawa (Zürich, Switzerland).

2.2. Monoamine uptake transport inhibition

Inhibition of the human NE, DA, and 5-HT transporter (hNET,
hDAT, and hSERT, respectively) was assessed in human embryonic
kidney (HEK) 293 cells (Invitrogen, Zug, Switzerland) stably
transfected with the respective human transporter as previously
described (Hysek et al., 2012; Tatsumi et al., 1997). Briefly, cells
were cultured in Dulbecco's modified Eagle's medium (DMEM;
Gibco, Life Technologies, Zug, Switzerland) with 10% fetal bovine
serum (Gibco) and 250 mg/ml Geneticin (Gibco) to 70e90%
confluence, detached, and then resuspended (3 ! 106 cells/ml) in
Krebs-Ringer Bicarbonate Buffer (Sigma-Aldrich, Buchs,
Switzerland). For [3H]-DA uptake experiments, the uptake buffer
was supplemented with 0.2 mg/ml ascorbic acid. The cell suspen-
sion (100 ml) was incubated with 25 ml buffer containing the test

Fig. 1. Chemical structures of mephedrone analogs and related designer drugs.
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drugs, vehicle control, or monoamine-specific inhibitors (10 mM
nisoxetine for NET, 10 mM mazindol for DAT, and 10 mM fluoxetine
for SERT) for 10 min in a round bottom 96-well plate at room
temperature by shaking at 450 rotations per minute on a rotary
shaker. To initiate uptake transport, 50 ml of [3H]-NE, [3H]-DA, or
[3H]-5-HT dissolved in uptake buffer were added at a final con-
centration of 5 nM for additional 10 min. Thereafter, 100 ml of the
cell suspension was transferred to 500 ml microcentrifuge tubes
that contained 50 ml of 3 M KOH and 200 ml silicon oil (1:1 mixture
of silicon oil types AR 20 and AR 200; Sigma-Aldrich). The tubes
were centrifuged for 3 min at 16,550 g to transport the cells
through the silicone oil into the KOH. The tubes were frozen in
liquid nitrogen and the cell pellet was then cut into 6 ml scintilla-
tion vials (Perkin-Elmer) that contained 0.5 ml lysis buffer (0.05 M
TRIS-HCl, 50 mM NaCl, 5 mM EDTA, and 1% NP-40 in water). The
samples were shaken for 1 h before 5 ml scintillation fluid (Ulti-
magold, Perkin Elmer, Schwerzenbach, Switzerland) was added.
Monoamine uptake was then quantified by liquid scintillation
counting on a Packard Tri-Carb Liquid Scintillation Counter
1900 TR. Nonspecific uptake in the presence of selective inhibitors
was subtracted from the total counts.

2.3. Transporter-mediated monoamine release

Transporter-mediated monoamine efflux was assessed in HEK
293 cells stably expressing the respective transporter as previously
described (Simmler et al., 2013, 2014a). Briefly, 100,000 cells per
well were cultured overnight in a poly-D-lysine coated XF24 cell
culture microplate (Seahorse Biosciences, North Billerica, MA, USA).
Thereafter, the cells were preloaded with 10 nM [3H]-NE, [3H]-DA,
or [3H]-5-HT diluted in 85 ml Krebs-HEPES buffer (130 mM NaCl,
1.3 mM KCl, 2.2 mM CaCl2, 1.2 mM MgSO4, 1.2 mM KH2PO4, 10 mM
HEPES, 10 mM D-glucose, pH 7.5) containing 10 mM pargyline and
0.2 mg/ml ascorbic acid for 20 min at 37 !C, washed twice, and
treated with 1000 ml Krebs-HEPES buffer containing 100 mM of the
test drugs for 15 min (DAT and SERT) or 45 min (NET) at 37 !C by
shaking at 300 rotations per minute on a rotary shaker. The cells
were then washed again with cold buffer and lysed in 50 ml lysis
buffer during 1 h. Thereafter, 40 ml of the cell lysate was transferred
into 4 ml scintillation vials with 3.5 ml scintillation fluid and the
radioactivity inside the cells was quantified by liquid scintillation
counting as described for the monoamine uptake inhibition assay.
Monoamine transporter blockers (10 mM nisoxetine for NET, 10 mM
mazindol for DAT, and 10 mM citalopram for SERT) were included in
the experiment to determine “pseudo-efflux” caused by nonspe-
cific monoamine release and subsequent reuptake inhibition
(Scholze et al., 2000). The use of a single high concentration and the
release durations were based on kinetic evaluation of the release-
over-time curves for substrate-releasers in previous studies
(Hysek et al., 2012; Simmler et al., 2014a).

2.4. Radioligand receptor and transporter binding assays

The radioligand binding assays were performed as previously
described in detail for transporters (Hysek et al., 2012) and re-
ceptors (Revel et al., 2011). Briefly, HEK 293 cell membrane prep-
arations (Invitrogen, Zug, Switzerland) overexpressing the
respective transporters (Tatsumi et al., 1997) or receptors (human
genes except rat and mouse genes for trace amine-associated re-
ceptors [TAARs]) (Revel et al., 2011) were incubated with radio-
labeled selective ligands at concentrations equal to Kd and ligand
displacement by the compounds was measured. The difference
between the total binding and nonspecific binding that was

determined in the presence of the selected competitors in excess,
was defined as specific binding of the radioligand to the target. The
following radioligands and competitors, respectively, were used: N-
methyl-[3H]-nisoxetine and indatraline (NET), [3H]citalopram and
indatraline (SERT), [3H]WIN35,428 and indatraline (DAT), [3H]8-
hydroxy-2-(di-n-propylamine)tetralin and indatraline (5-HT1A re-
ceptor), [3H]ketanserin and spiperone (5-HT2A receptor), [3H]
mesulgerine and mianserin (5-HT2C receptor), [3H]prazosin and
risperidone (a1 adrenergic receptor), [3H]rauwolscine and phen-
tolamine (a2 adrenergic receptor), [3H]spiperone and spiperone (D2
receptor), and [3H]RO5166017 and RO5166017 (TAAR1).

2.5. Activity at the serotonin 5-HT2A receptor

Mouse embryonic fibroblasts (NIH-3T3 cells) expressing the
human 5-HT2A receptor were incubated in HEPES-Hank's Balanced
Salt Solution (HBSS) buffer (Gibco; 70,000 cells/100 ml) for 1 h at
37 !C in 96-well poly-D-lysine-coated plates. To each well, 100 ml
dye solution (fluorescence imaging plate reader [FLIPR] calcium 5
assay kit; Molecular Devices, Sunnyvale, CA, USA) was added and
the plates were incubated for 1 h at 37 !C. The plates were placed in
a FLIPR and 25 ml of the test drugs diluted in HEPES-HBSS buffer
containing 250 mM probenicid were added online. The increase in
fluorescence was then measured and EC50 values were derived
from the concentration-response curves using nonlinear regres-
sion. The maximal receptor activity (efficacy) is expressed relative
to 5-HT activity, which was set to 100%.

2.6. Activity at the serotonin 5-HT2B receptor

HEK 293 cells expressing the human 5-HT2B receptor were
incubated in growthmedium (DMEMhigh glucose [Invitrogen, Zug,
Switzerland], 10 ml/l PenStrep [Gibco], 10% fetal calf serum [non-
dialysed, heat-inactivated], and 250 mg/l Geneticin) at a density
of 50,000 cells/well at 37 !C in poly-D-lysine-coated 96-well plates
overnight. The growth medium was then removed by snap inver-
sion, and 100 ml of the calcium indicator Fluo-4 solution (Molecular
Probes, Eugene, OR, USA) was added to each well. The plates were
incubated for 45 min at 31 !C before the Fluo-4 solution was
removed by snap inversion, and 100 ml of Fluo-4 solutionwas added
a second time for 45 min at 31 !C. The cells werewashed with HBSS
and 20 mM HEPES (assay buffer) immediately before testing using
an EMBLA cell washer, and 100 ml assay buffer was added. The
plates were placed in a FLIPR, and 25 ml of the test substances
diluted in assay buffer was added online. The increase in fluores-
cence was then measured and EC50 values were derived from the
concentration-response curves using nonlinear regression. The
maximal receptor activity (efficacy) is expressed relative to 5-HT
activity, which was set to 100%.

2.7. Cytotoxicity

Cytotoxicity in hSERT-, hDAT-, and hNET-transfected HEK
293 cells was assessed with the ToxiLight bioassay kit (Lonza, Basel,
Switzerland) according to the manufacturer's protocol. The cells
were treated for 1 h at room temperature with the drugs at the
highest assay concentrations. Adenylate kinase release as a result of
cell membrane integrity loss was then quantified and compared to
control.

2.8. Statistical analysis

Monoamine uptake data were fit by nonlinear regression to
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variable-slope sigmoidal dose-response curves and IC50 values
were assessed with Prism software (version 7.0a, GraphPad, San
Diego, CA, USA). The DAT/SERT ratio is expressed as 1/DAT IC50: 1/
SERT IC50. Analysis of variance followed by the Holm-Sidak test was
used to analyze drug-induced release of five independent experi-
ments. The drugs were considered monoamine releasers if they
caused significantly higher (*p < 0.05) efflux than the selective
inhibitors. IC50 values of radioligand binding were determined by
calculating nonlinear regression curves for a one-site model using
three independent 10-point concentration-response curves for
each substance. Ki (affinity) values, which correspond to the
dissociation constants, were calculated using the Cheng-Prusoff
equation. Nonlinear regression concentration-response curves
were used to determine EC50 values for 5-HT2A and 5-HT2B re-
ceptors activation. Efficacy (maximal activity) is expressed relative
to the activity of 5-HT, which was used as a control set to 100%.

3. Results

3.1. Monoamine uptake transporter inhibition

IC50 values for NET, DAT, and SERT inhibition are listed in Table 1,
and the corresponding uptake inhibition curves are presented in
Fig. 2. Mephedrone analogs potently inhibited the NET and, with
the exception of 3-MMC, were more potent SERT vs. DAT inhibitors.
5-IT was a highly potent inhibitor of the NET and a potent inhibitor
of the DAT and SERT. 4-MA and MMAI inhibited the SERT at sub-
micromolar concentrations but were only weak inhibitors of the
DAT. N-methyl-2-AI was a selective NET inhibitor with only very
weak inhibition of the SERT and DAT.

3.2. Monoamine release

Monoamine efflux at a 100 mM concentration of the test drugs is
shown in Fig. 3. All of the cathinones were releasers of all three
monoamines, with the exception of 3,4-DMMC, for which 5-HT
release was not significantly higher than the inhibitor control. 5-
IT caused DA and 5-HT efflux. 4-MA caused NE, DA, and 5-HT
efflux. N-methyl-2-AI was a selective NE releaser. MMAI was a se-
lective 5-HT releaser.

3.3. Monoamine receptor and transporter binding affinities

The monoamine receptor and transporter binding affinities and
receptor activation potentials of the mephedrone analogs and
related designer drugs are shown in Table 2. None of the drugs
interacted with the dopamine D2 receptor, but all of the drugs had

lowmicromolar or submicromolar affinity for a1A or a2A adrenergic
receptors. 4-MA and N-methyl-2-AI interacted with the a2A re-
ceptor but not the a1A receptor. All other compounds interacted
with the a1A and the a2A receptor. 3-MMC, N-methyl-2-AI, and
MMAI had low micromolar affinities for the serotonin 5-HT1A re-
ceptor, and the other drugs had only low or no affinity for this re-
ceptor. All of the drugs bound to the 5-HT2A receptor, but only 2,3-
DMMC, 5-IT, 4-MA, andmephedrone activated the receptor. Only 5-
IT and 4-MA activated the 5-HT2B receptor. N-methyl-2-AI did not
bind to the 5-HT2C receptor, whereas the other drugs bound with
affinities of 1.3e8.1 mM. All of the drugs interacted with rat and
mouse TAARs.

3.4. Cytotoxicity

None of the drugs were cytotoxic up to 1 h at the investigated
concentrations, thus confirming cell integrity during the functional
assays.

4. Discussion

4.1. Monoamine uptake transporter inhibition

Similar to mephedrone, the novel mephedrone analogs potently
inhibited the NET, which likely results in similar sympathomimetic
stimulation (Hysek et al., 2011). The crucial role of NE in the acute
effects of psychostimulants is supported by the finding that the
release of NE but not DA correlates with human doses of
amphetamine-type stimulants (Rothman et al., 2001). Additionally,
NET inhibition potency values strongly correlated with the psy-
chotropic effective doses of psychostimulants including cathinones
in humans (Simmler et al., 2013). Furthermore, NE has been shown
to contribute to the acute subjective stimulation and cardiovascular
effects of MDMA in humans (Hysek et al., 2011).

3-MMC more potently inhibited the DAT than the SERT. Meph-
edrone (4-MMC) had similar potency at the DAT and SERT as pre-
viously shown in some other studies (Baumann et al., 2012;
Hadlock et al., 2011; Simmler et al., 2013), while others found
5e10-fold higher potency at the DAT vs. SERT (Eshleman et al.,
2013; Mayer et al., 2016; Pifl et al., 2015). Moreover, the present
high NET vs. DAT selectivity of mephedrone was not or less
observed in some other studies (Eshleman et al., 2013; Mayer et al.,
2016; Pifl et al., 2015). While the selectivity of mephedrone for the
NET over the SERT in our study is similar to other in vitro studies
(Eshleman et al., 2013; Mayer et al., 2016; Pifl et al., 2015), the NET
over DAT selectivity appears to be higher compared with other labs.
This has been observed for mephedrone in previous studies of our

Table 1
Monoamine transport inhibition.

NET
IC50 [mM] (95% CI)

DAT
IC50 [mM] (95% CI)

SERT
IC50 [mM] (95% CI)

DAT/SERT
ratio (95% CI)

Cathinones
3-MMC 0.27 (0.21e0.36) 2.6 (2.0e3.3) 9.5 (6.9e13.2) 3.7 (2.1e6.6)
4-MMC 0.26 (0.19e0.35) 5.7 (4.5e7.2) 3.6 (2.8e4.6) 0.63 (0.39e1.02)
2,3-DMMC 0.53 (0.36e0.78) 7.4 (5.4e10.1) 1.2 (1.0e1.4) 0.16 (0.10e0.26)
3,4-DMMC 0.45 (0.33e0.60) 9.4 (7.6e11.7) 1.1 (0.9e1.4) 0.12 (0.08e0.18)
2,4-DMMC 1.5 (1.1e2.0) 83 (65e105) 1.5 (1.0e2.2) 0.02 (0.01e0.03)
Phenethylamines
5-IT 0.04 (0.03e0.06) 0.68 (0.55e0.85) 1.3 (0.9e1.7) 1.9 (1.1e3.1)
4-MA 0.31 (0.24e0.42) 5.6 (4.5e6.9) 0.82 (0.64e1.05) 0.15 (0.09e0.23)
Aminoindanes
N-methyl-2-AI 2.4 (1.9e3.1) 90 (71e113) 223 (175e284) 2.5 (1.5e4.0)
MMAI 3.6 (2.5e5.3) 193 (167e225) 0.68 (0.50e0.92) 0.004 (0.002e0.006)

Values are means and 95% confidence intervals (CI). DAT/SERT ratio ¼ 1/DAT IC50: 1/SERT IC50.
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lab (Rickli et al., 2015a; Simmler et al., 2013), suggesting that those
differences may be explained by differences in the experimental
design or the transfected cell line.

The dimethylmethcathinones inhibited the SERT more potently
than the DAT. These results suggest that 3-MMC has stronger
amphetamine-like stimulant properties compared with mephe-
drone and especially the other more serotonergic dime-
thylmethcathinones. Stimulant toxicity was reported to be the
main clinical feature in patients with recreational 3-MMC intoxi-
cation, although often combined with other drugs (Backberg et al.,
2015). Dimethylmethcathinones presumably have entactogenic
properties that are similar to MDMA because of greater activation
of the 5-HT system (Hysek et al., 2012; Simmler et al., 2013). High
selectivity for the SERT vs. DAT was also observed for the para-
substituted 4-MA, whereas previous studies found high inhibition
selectivity for the DAT vs. SERT for amphetamine (Rickli et al.,
2015a; Simmler et al., 2013). The strong serotonergic activity of 4-
MA has been hypothesized to decrease its reinforcing potency
compared with other amphetamine analogs (Baumann et al., 2011;
Wee et al., 2005). However, the strong serotonergic activity of 4-MA
may have led to several fatal cases when combined with the strong
dopaminergic activity of amphetamine in users of 4-MA contami-
nated “speed” (Blanckaert et al., 2013). Moreover, the extreme hy-
perthermia that is observed in such patients may be explained by
the strong serotonergic potency of 4-MA, which is not shared by

amphetamine (Blanckaert et al., 2013). 5-IT was a very potent in-
hibitor of the NET, with potent inhibition also of the DAT and SERT.
5-IT has been associated with sympathomimetic and serotonergic
toxicity and was involved in numerous deaths across Europe
(Backberg et al., 2014; Katselou et al., 2015; Kronstrand et al., 2013;
Seetohul and Pounder, 2013). N-methyl-2-AI selectively inhibited
the NET, with very weak inhibition potency for the DAT and SERT,
suggesting mild psychoactive effects that are similar to 2-
aminoindane (2-AI) (Simmler et al., 2014b). MMAI had NET inhi-
bition potencies that were similar to N-methyl-2-AI. Unlike N-
methyl-2-AI, however, MMAI potently inhibited the SERT at sub-
micromolar concentrations.

4.2. Monoamine release

Consistent with previous studies, mephedrone caused efflux of
all three monoamines (Baumann et al., 2012; Eshleman et al., 2013;
Mayer et al., 2016). The cathinone analogs of mephedronewere also
monoamine releasers, indicating that they are monoamine trans-
porter substrates like most amphetamines (Sitte and Freissmuth,
2015). One exception was 3,4-DMMC, which was a potent inhibi-
tor of the SERT but did not cause significant 5-HT efflux. The
monoamine transporter inhibition profile of 3,4-DMMC is similar to
MDMA (Simmler et al., 2013), but their differences in 5-HT release
may partially explain their different subjective effects and potency.

Fig. 2. Monoamine uptake inhibition in stably transfected HEK 293 cells that expressed the hNET, hDAT, or hSERT. Curves were fitted by non-linear regression, and corresponding
IC50 values are shown in Table 1. The data are presented as the mean ± SEM. Numbers in parentheses indicate the number of individual experiments performed in triplicate (hNET/
hDAT/hSERT): 2,3-DMMC (3/3/7), 2,4-DMMC (4/6/3), 3,4-DMMC (4/3/3), 3-MMC (3/3/3), 4-MMC (3/3/3), 5-IT (3/4/3), 4-MA (4/3/4), N-methyl-2-AI (3/6/5), MMAI (4/6/5).
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4-MA released all three monoamines as described for amphet-
amine (Rickli et al., 2015a). 5-IT was a very potent inhibitor of the
NET, but NE release was not observed. N-methyl-2-AI selectively
inhibited the NET and was also a selective NE releaser. MMAI was a
highly selective 5-HT releaser, consistent with previous reports
(Marona-Lewicka and Nichols, 1994, 1998). The high serotonergic
activation by MMAI suggests entactogenic effects. However, the

lack of any effect on the DA or NE system indicates that the psy-
chopharmacology of MMAI differs from typical entactogens like
MDMA (Marona-Lewicka and Nichols, 1994).

4.3. Receptor-binding profiles

All of the drugs potently bound to adrenergic receptors, which

Fig. 3. Monoamine release induced by 100 mM of the drugs after preloading hNET-, hDAT-, or hSERT-expressing HEK 293 cells with radiolabeled monoamines. “Pseudo-efflux” that
arose from monoamine diffusion and subsequent reuptake inhibition is marked with a dashed line. Substances that caused significantly higher monoamine efflux (*p < 0.05) than
pure uptake inhibitors (open bars) were determined to be monoamine releasers. The data are presented as the mean ± SEM of five independent experiments.
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are known to modulate stimulant-induced behavior (Schmidt and
Weinshenker, 2014). Furthermore, the drugs interacted with
several serotonin receptors. All of the compounds bound to the 5-
HT2A receptor as previously shown for mephedrone and MDMA
(Eshleman et al., 2013; Simmler et al., 2013) and typically for
serotonergic hallucinogens (Eshleman et al., 2014; Nichols, 2016;
Rickli et al., 2015c, 2016). Additionally, 2,3-DMMC, mephedrone,
and 5-IT were potent functional 5-HT2A agonists in our calcium
mobilization assay like MDMA (Rickli et al., 2015b) and classic
serotonergic hallucinogens (Rickli et al., 2016) known to produce
their psychotropic effects at least in part via 5-HT2A receptor
activation (Liechti et al., 2000; Preller et al., 2017; Vollenweider
et al., 1998). Another study documented 5-HT2A receptor antago-
nistic properties for mephedrone in another 5-HT-induced
inositol monophosphate formation assay (Eshleman et al., 2013).
However, MDMA had both agonist (Eshleman et al., 2014) and
antagonist effects (Eshleman et al., 2013) in this assay indicating
that the 5-HT2A ligands may act as agonist and antagonists
depending on assay set-up. Certain hallucinogenic properties have
been described formephedrone (Kasick et al., 2012; Schifano et al.,
2011) and our results suggest that 2,3-DMMC could have
hallucinogen-like properties as well. 5-IT is a positional isomer of
the psychedelic tryptamine a-methyltryptamine (aMT). 5-IT has
been previously suggested to also have hallucinogenic properties
(Marusich et al., 2016), and its potent 5-HT2A receptor activation
supports this possibility. All of the substances interacted with rat
and mouse TAARs. Many stimulant NPS interact with TAARs
(Simmler et al., 2016), which have a modulatory role on mono-
aminergic activity (Revel et al., 2011, 2012). In a recent screening of
a large set of NPS, cathinones were described as poor TAAR1 li-
gands (Simmler et al., 2016). Our results suggest that this does not
apply to all cathinones as submicromolar affinity for rat and
mouse TAARs was observed for 2,4-DMMC and 2,3-DMMC,
respectively.

The present study has limitations. First, we did not investigate
the effects of the drugs on intracellular targets such as the vesic-
ular monoamine transporter 2 (VMAT2). Lower potency VMAT2
interactions have been reported for methcathinones compared to
MDMA and methamphetamine (Eshleman et al., 2013;
Fleckenstein et al., 2009; Pifl et al., 2015). It was therefore
concluded that mephedrone is unlikely to cause neurotransmitter
release form synaptic vesicles (Eshleman et al., 2013). Second, the
static monoamine release assay used in the present study was
only useful to qualitatively determine whether a drug is a sub-
strate releaser or not, but the assay was not suitable to assess the
potency of the releasers. Superfusion assays would be more suit-
able to also determine the potency of the substances to release
monoamines (Eshleman et al., 2013). However, the potency of the
substances to release monoamine is reflected by their potency to
inhibit monoamine uptake in the uptake assay used in the present
study (Simmler et al., 2013). Finally, we included no in vivo data.
However, in vivomicrodialysis studies showed that the cathinones
mephedrone and methylone markedly released both 5-HT and DA
at similar potencies reflecting their in vitro pharmacological pro-
files (Baumann et al., 2012; Kehr et al., 2011). Additionally,
methcathinone was a more potent inhibitor of the DAT than SERT
in vitro, more potently released monoamines via the DAT than
SERT (Cozzi et al., 2013; Simmler et al., 2013), and consistently also
more potently increased extracellular DA than 5-HT in rat brain
nucleus accumbens dialysate (Cozzi et al., 2013). Vice versa, the
more potent in vitro SERT than DAT inhibitor and predominant 5-
HT releaser 4-trifluoromethylmethcathinone (4-TFMAP)
increased 5-HT but not DA in vivo (Cozzi et al., 2013). Thus, for
several cathinones the in vitro profiles accurately predicted the
in vivo neurochemical effects.Ta
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5. Conclusion

The present study characterized a series of novel mephedrone
analogs that potently interacted with monoamine transporters and
receptors, suggesting their potential abuse liability, which has been
previously observed for synthetic cathinones. 4-MA is a potent
inhibitor of the SERT, which may explain its higher toxicity when
combined with the potent DAT inhibitor amphetamine. 5-IT is a
highly potent monoamine transporter inhibitor that has been
associated with sympathomimetic toxicity and numerous fatalities
across Europe. N-methyl-2-AI is a selective NET inhibitor and NE
releaser, and MMAI is a selective SERT inhibitor and 5-HT releaser.
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a b s t r a c t

Background: Methylphenidate-based designer drugs are new psychoactive substances (NPS) that are
used outside medical settings and their pharmacology is largely unexplored. The aim of the present
study was to characterize the pharmacology of methylphenidate-based substances in vitro.
Methods: We determined the potencies of the methylphenidate-based NPS N-benzylethylphenidate, 3,4-
dichloroethylphenidate, 3,4-dichloromethylphenidate, ethylnaphthidate, ethylphenidate, 4-
fluoromethylphenidate, isopropylphenidate, 4-methylmethylphenidate, methylmorphenate, and pro-
pylphenidate and the potencies of the related compounds cocaine and modafinil with respect to
norepinephrine, dopamine, and serotonin transporter inhibition in transporter-transfected human em-
bryonic kidney 293 cells. We also investigated monoamine efflux and monoamine receptor and trans-
porter binding affinities. Furthermore, we assessed the cell integrity under assay conditions.
Results: All methylphenidate-based substances inhibited the norepinephrine and dopamine transporters
4 to >1000-fold more potently than the serotonin transporter. Similar to methylphenidate and cocaine,
methylphenidate-based NPS did not elicit transporter-mediated efflux of monoamines. Besides binding
to monoamine transporters, several test drugs had affinity for adrenergic, serotonergic, and rat trace
amine-associated receptors but not for dopaminergic or mouse trace amine-associated receptors. No
cytotoxicity was observed after drug treatment at assay concentrations.
Conclusion: Methylphenidate-based substances had pharmacological profiles similar to methylphenidate
and cocaine. The predominant actions on dopamine transporters vs. serotonin transporters may be
relevant when considering abuse liability.
This article is part of the Special Issue entitled ‘Designer Drugs and Legal Highs.’

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The psychostimulant methylphenidate (MPH; Ritalin®) is used
for the treatment of attention-deficit/hyperactivity disorder and
narcolepsy but it also has a history of being misused as a ‘smart
drug’ and ‘cognitive enhancer’ (Arria et al., 2008; Liakoni et al.,
2015; Maier et al., 2013). In recent years, an increasing number of
MPH-based new psychoactive substances (NPS; Fig. 1) (Brandt
et al., 2014) have become available as alternatives to MPH (Bailey
et al., 2015; European Monitoring Centre for Drugs and Drug

Addiction, 2015) and have been associated with several fatalities
(Krueger et al., 2014; Maskell et al., 2016; Parks et al., 2015).
Characteristic for the NPS phenomenon, many of the currently
circulating MPH analogs originated from drug development efforts
(Deutsch et al., 1996; Markowitz et al., 2013; Misra et al., 2010),
which subsequently appeared on the streets. The pharmacological
and subjective-effect profiles of MPH are very similar to cocaine
(Simmler et al., 2014; Vogel et al., 2016; Volkow et al., 1999).
Furthermore, some of these substances are either sold in their own
right or offered in the form of branded products (Bailey et al., 2015;

Abbreviations: 5-HT, 5-hydroxytryptamine (serotonin); DA, dopamine; DAT, dopamine transporter; FLIPR, fluorescence imaging plate reader; HPLC, high-performance
liquid chromatography; MDMA, 3,4-methylenedioxymethamphetamine; MPH, methylphenidate; NE, norepinephrine; NET, norepinephrine transporter; NPS, new psycho-
active substances; SERT, serotonin transporter; TAAR, trace amine-associated receptor.
* Corresponding author. Division of Clinical Pharmacology and Toxicology, University Hospital Basel, Hebelstrasse 2, Basel CH-4031, Switzerland.
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Parks et al., 2015). Methylphenidate predominantly inhibits the
norepinephrine (NE) and dopamine (DA) transporters (NET and
DAT, respectively), thus, possibly contributing to its abuse potential
(Simmler et al., 2014; Vogel et al., 2016). Correspondingly, questions
arise about the extent to which MPH analogs might share MPH-like
characteristics. Assessing the pharmacological profile of NPS in vitro
is an initial step to gain a better understanding of the
potential clinical effects and toxicology of these substances. For this
reason, the present study reports on the transporter interaction
profiles of the MPH-related NPS N-benzylethylphenidate, 3,4-
dichloroethylphenidate, 3,4-dichloromethylphenidate, and iso-
propylphenidate and the transporter and receptor interaction
profiles of ethylnaphthidate, ethylphenidate, 4-
fluoromethylphenidate, 4-methylmethylphenidate, methyl-
morphenate, and propylphenidate. Modafinil, a stimulant pre-
scribed for the treatment of narcolepsy, which is frequently offered
for sale as a ‘neuroenhancer’ (Ghahremani et al., 2011; Maier et al.,
2013; Mereu et al., 2013; Müller et al., 2013), has also been included
in this investigation. Stimulants may act as transporter inhibitors or
as transporter substrates that cause monoamine efflux into the
synaptic cleft (Rothman and Baumann, 2003; Sitte and Freissmuth,
2015). Therefore, additionally to the transporter inhibition po-
tencies of the substances, their mechanism of action (reuptake in-
hibitor or transporter substrate) was determined.

2. Material and methods

2.1. Drugs

Cocaine, 3,4-methylenedioxymethamphetamine (MDMA) and
MPHwere purchased from Lipomed (Arlesheim, Switzerland), with
high-performance liquid chromatography (HPLC) purity > 98.5%.
Modafinil was purchased from Cayman Chemicals (Ann Arbor,
MI, USA), with purity > 98%. Methylmorphenate and propylphe-
nidate were obtained from reChem Labs (Ontario, Canada) and
afterwards identified and tested for purity using nuclear magnetic
resonance (NMR) and HPLC, which revealed purity > 95%. N-Ben-
zylethylphenidate, 3,4-dichloroethylphenidate, 3,4-dichloro
methylphenidate, ethylnaphthidate, 4-fluoromethylphenidate,
isopropylphenidate, and 4-methylmethylphenidate were part of
confiscations by German authorities and test purchases (Klare et al.,
2017). The substances were fully characterized in a previous study
(Klare et al., 2017) and purity values were estimated at > 95% based
on spectroscopic and chromatographic methods of analysis. Eth-
ylphenidate was provided by Dr. Christian Bissig (Forensic Institute,
Zurich, Switzerland) after being confiscated by Swiss authorities
and being tested for purity of >98%. Modafinil was obtained as
racemic base. The other drugs were obtained as racemic hydro-
chloride salts. Radiolabeled [3H]-NE (13.1 Ci/mmol) and [3H]-DA
(30.0 Ci/mmol) were obtained from Perkin-Elmer (Schwerzenbach,
Switzerland). Radiolabeled [3H]-5-HT (80 Ci/mmol) was purchased
from Anawa (Zürich, Switzerland).

Fig. 1. Chemical structures of MPH-based NPS and related compounds.

D. Luethi et al. / Neuropharmacology 134 (2018) 133e140134



PHARMACOLOGY OF STIMULANTS 

 34 

  

2.2. Monoamine uptake transport inhibition

Monoamine uptake inhibition was assessed using human em-
bryonic kidney (HEK) 293 cells that stably expressed the human
SERT, DAT, or NET (Tatsumi et al., 1997) as previously described
(Hysek et al., 2012). Briefly, the cells were cultured to 70e90%
confluence, detached, and resuspended in Krebs-Ringer Bicarbon-
ate Buffer (Sigma-Aldrich, Buchs, Switzerland). For [3H]-DA uptake
experiments, the uptake buffer was supplemented with 1.14 mM
ascorbic acid. The cells were then treated with vehicle control and
drug in the range of 1 nMe900 mM for 10min at room temperature.
Additionally, monoamine-specific inhibitors were added (10 mM
fluoxetine for SERT, 10 mM mazindol for DAT, and 10 mM nisoxetine
for NET). To initiate uptake transport, [3H]-5-HT, [3H]-DA, or [3H]-
NE were added at a final concentration of 5 nM for an additional
10 min. The cells were then separated from the uptake buffer by
centrifugation through silicone oil, and the tubes were frozen in
liquid nitrogen. The cell pellet was cut into scintillation vials and
lysed. The samples were shaken for 1 h before scintillation fluid
(Ultimagold, Perkin Elmer, Schwerzenbach, Switzerland) was
added. Monoamine uptake was then quantified by liquid scintilla-
tion counting on a Packard Tri-Carb Liquid Scintillation Counter
1900 TR. Uptake in the presence of the selective inhibitors was
determined to be nonspecific and subtracted from the total counts.

2.3. Transporter-mediated monoamine efflux

The potential of the drugs to initiate transporter-mediated NE,
DA, or 5-HTeffluxwas assessed in HEK 293 cells that overexpressed
the respective transporter as previously described (Simmler et al.,
2013). Briefly, the cells were first preloaded with [3H]-NE, [3H]-
DA, or [3H]-5-HT dissolved in Krebs-HEPES buffer for 20 min at
37 !C. The cells were then washed and treated with 100 mM of the
drugs for 15 min (DAT and SERT) or 45 min (NET). The treatment
durations for [3H]-NE, [3H]-DA, and [3H]-5-HT efflux experiments
were based on kinetic evaluation of the efflux-over-time curves of
MDMA (Simmler et al., 2014). The cells were washed again, and the
remaining radioactivity inside the cells was quantified. The
monoamine transporter blockers citalopram (SERT), mazindol
(DAT), and nisoxetine (NET) were added as a negative control at a
concentration of 10 mM to determine “pseudo-efflux” that was
caused by nonspecific monoamine efflux and subsequent reuptake
inhibition (Scholze et al., 2000).

2.4. Radioligand receptor and transporter binding assays

The radioligand binding assays were performed as previously
described for transporters (Hysek et al., 2012) and receptors (Revel
et al., 2011). Briefly, membrane preparations of HEK 293 cells
(Invitrogen, Zug, Switzerland) that overexpressed the respective
transporters (Tatsumi et al., 1997) or receptors (human genes, with
the exception of rat and mouse genes for trace amine-associated
receptors [TAARs]) (Revel et al., 2011) were incubated with the
radiolabeled selective ligands at concentrations equal to Kd, and
ligand displacement by the compounds was measured. Specific
binding of the radioligand to the target receptor was defined as the
difference between the total binding and nonspecific binding that
was determined in the presence of the selected competitors. The
following radioligands and competitors, respectively, were used: N-
methyl-[3H]-nisoxetine and 10 mM indatraline (NET), [3H]cit-
alopram and 10 mM indatraline (SERT), [3H]WIN35,428 and 10 mM
indatraline (DAT), [3H]8-hydroxy-2-(di-n-propylamine)tetralin and
10 mM pindolol (5-HT1A receptor), [3H]ketanserin and 10 mM spi-
perone (5-HT2A receptor), [3H]mesulgerine and 10 mM mianserin
(5-HT2C receptor), [3H]prazosin and 10 mM chlorpromazine (a1A

adrenergic receptor), [3H]rauwolscine and 10 mM phentolamine
(a2A adrenergic receptor), [3H]spiperone and 10 mM spiperone (D2
receptor), and [3H]RO5166017 and 10 mM RO5166017 (TAAR1).

2.5. Activity at the serotonin 5-HT2B receptor

Activity at the 5-HT2B receptor was assessed as previously
described (Rickli et al., 2016). Briefly, human 5-HT2B receptor-
expressing HEK 293 cells were incubated in a cell culture plate
overnight. The next day, the growth mediumwas removed by snap
inversion, and calcium indicator Fluo-4 solution (Molecular Probes,
Eugene, OR, USA) was added to each well. The plates were then
incubated for 45 min at 31 !C. The Fluo-4 solution was removed by
snap inversion and then added a second time. The cells were then
incubated for another 45 min at 31 !C. Immediately before testing,
the cells were washed with HBSS and 20 mM HEPES (assay buffer;
Gibco) using an EMBLA cell washer, and assay buffer was added.
The plates were placed in a FLIPR. Test substances that were diluted
in assay buffer were added online, and the increase in fluorescence
was measured.

2.6. Cytotoxicity

Cytotoxicity was assessedwith the ToxiLight bioassay kit (Lonza,
Basel, Switzerland) according to the manufacturer's protocol. The
kit measures adenylate kinase release as a result of cell membrane
integrity loss. Human SERT-, DAT-, and NET-transfected HEK
293 cells were treated for 1 h at room temperature with the drugs
at the highest assay concentrations.

2.7. Statistical analysis

Calculations were performed using Prism 7.0a software
(GraphPad, San Diego, CA, USA). Monoamine transporter inhibition
data were fit by nonlinear regression to variable-slope sigmoidal
dose-response curves and IC50 values were assessed. The DAT/SERT
ratio is expressed as 1/DAT IC50:1/SERT IC50. Compound-induced
monoamine efflux of five independent experiments was
compared with negative controls using analysis of variance fol-
lowed by the Holm-Sidak test. P values lower than 0.05 were
considered significant and substances were considered transporter
substrates if they caused significantly higher efflux than the
negative controls. IC50 values of radioligand binding were deter-
mined by calculating nonlinear regression curves for a one-site
model using three independent 10-point concentration-response
curves for each compound. Ki (affinity) values, which correspond
to the dissociation constants, were determined using the Cheng-
Prusoff equation. Nonlinear regression concentration-response
curves were used to calculate the EC50 values for the 5-HT2B re-
ceptor activation.

3. Results

3.1. Monoamine uptake transporter inhibition

Monoamine uptake inhibition curves are shown in Fig. 2, and
the corresponding IC50 values and DAT/SERT inhibition ratios are
listed in Table 1. Methylphenidate was a potent inhibitor of the NET
and DAT at submicromolar concentrations and a weak inhibitor of
the SERT. 3,4-dichloromethylphenidate inhibited the NET more
than 10-fold more potently than MPH, whereas the inhibition po-
tency for the DATwasmore than 2-fold increased. The NETand DAT
inhibition potencies of 3,4-dichloroethylphenidate, ethyl-
naphthidate, 4-fluoromethylphenidate, and 4-
methylmethylphenidate were similar to MPH in the range of
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0.04e0.42 mM for the NET and 0.08e0.34 mM for the DAT. N-Ben-
zylethylphenidate, ethylphenidate, isopropylphenidate, methyl-
morphenate, and propylphenidate inhibited the NET with 6e800-
fold lower potency compared to MPH and the DAT with 4e500-
fold lower potency. The SERT inhibition potency for all MPH-
based NPS was lower than the NET and DAT inhibition potencies.
Ethylnaphthidate inhibited the SERT at 1.7 mM with a DAT/SERT
ratio of 5. The remaining compounds inhibited the SERT 40 to
>1000-fold weaker than the DATand 26 to>1000-fold weaker than
the NET. Modafinil was a weak inhibitor of monoamine trans-
porters with an IC50 value > 10 mM for the DAT and no relevant NET
or SERT inhibition (IC50 values > 100 mM). Unlike the MPH-based
substances and modafinil, cocaine inhibited all three transporters
with similar potency in the range of 0.5e1.5 mM.

3.2. Monoamine efflux

Similar to cocaine, MPH and the MPH-based NPS and related
compounds did not cause monoamine efflux (Fig. 3) and are
therefore not transporter substrates.

3.3. Monoamine receptor and transporter binding affinities

The interactions between MPH-based NPS and related
compounds with monoamine receptors and transporters are
shown in Table 2. All MPH-based NPS bound to the NET and DAT
but only N-benzylethylphenidate, 3,4-dichloroethylphenidate, 3,4-
dichloromethylphenidate, and ethylnaphthidate bound to the SERT
in the concentration range tested. 3,4-Dichloroethylphenidate, 3,4-
dichloromethylphenidate, 4-methylmethylphenidate, and ethyl-
naphthidate bound to the a1A receptor in the range of 1.7e6.5 mM
and additionally to the a2A receptor in the range of 7e10 mM. Eth-
ylphenidate and propylphenidate bound to the a2A receptor
with 14 mM and 8.7 mM, respectively, but did not bind to the a1A
receptor in the investigated concentration range. 3,4-
Dichloroethylphenidate, 3,4-dichloromethylphenidate, ethyl-
naphthidate, 4-methylmethylphenidate, and propylphenidate, had
affinities of 1e17 mM for the 5-HT1A receptor. Ethylnaphthidate was
the only drug to bind to the 5-HT2A receptor with an IC50 value of
4.9 mM and only 3,4-dichloromethylphenidate and ethyl-
naphthidate bound to the 5-HT2C receptor, both with an IC50 of
12 mM. None of the compounds activated the 5-HT2B receptor or
bound to the mouse TAAR1, and only 3,4-dichloroethylphenidate,
3,4-dichloromethylphenidate, and isopropylphenidate bound to
the rat TAAR1 with affinities in the range of 6e13 mM. None of the
MPH-based NPS had relevant affinity for D2 receptors. Modafinil
and cocaine bound to the monoamine transporters but did not
interact with monoamine or trace amine receptors.

3.4. Cytotoxicity

Cytotoxicity was not observed for any of the drugs in the func-
tional assays at the concentrations tested, thus confirming cell
integrity during the assays.

4. Discussion

We characterized the in vitro pharmacological profiles of MPH-
based NPS and compared them with MPH and cocaine. All com-
pounds inhibited the DAT substantially more potently than the
SERT, suggesting predominantly stimulant-type effects similar to
amphetamine and a high abuse liability (Liechti, 2015; Simmler
et al., 2013).

4.1. Monoamine uptake transporter inhibition and monoamine
efflux

Methylphenidate and MPH-based NPS, with the exception of N-
benzylethylphenidate, isopropylphenidate, and methyl-
morphenate, inhibited the NET at submicromolar concentrations,
suggesting cardiostimulant and psychostimulant properties,
similar to amphetamines (Hysek et al., 2011; Simmler et al., 2013).
Moreover, the NET and DAT inhibition potencies but not the SERT
inhibition potency correlate with the psychotropic effective doses
of psychostimulants in human (Simmler et al., 2013).

The MPH-based NPS were only monoamine transporter in-
hibitors and not monoamine transporter substrates, indicating a
mechanism of action similar to cocaine but not amphetamines
(Fleckenstein et al., 2007; Torres et al., 2003). Ethylnaphthidate
inhibited the SERT at low micromolar concentrations, but the
remaining MPH-based NPS displayed a clear preference for DAT
over SERT, resulting in high DAT/SERT ratios frequently reported for
locomotor stimulants (Simmler et al., 2013). Our results are
consistent with other studies that reported potent NET and DAT
inhibition for MPH (DAT/SERT ratio ¼ 2207) and triple uptake in-
hibition for cocaine (DAT/SERT ratio ¼ 3.2) (Han and Gu, 2006).
Modafinil was a moderate and relatively selective DAT inhibitor,
with an IC50 value of 11 mM. This finding is consistent with previous
in vitro studies that reported IC50 values of 4e13 mM (Karabacak
et al., 2015; Loland et al., 2012; Madras et al., 2006; Zolkowska
et al., 2009). The interaction between modafinil and DAT is also
thought to modulate the pharmacological effects of the drug
(Wisor, 2013). The psychopharmacological profiles and cognitive-
enhancing properties of MPH and modafinil may be different.
Modafinil has been shown to improve attention and wakefulness,
whereas MPH has been shown to improve memory (Repantis et al.,
2010).

4.2. Transporter and receptor binding profiles

Compared with ethylphenidate, replacement of the benzene
ring with naphthalene (ethylnaphthidate) increased the potency in
inhibiting the SERT and increased the affinity for 5-HT receptors.
Many stimulant NPS interact with TAARs (Simmler et al., 2016);
however, no potent TAAR interactions were found for MPH-based
NPS. 3,4-Dichloromethylphenidate and ethylnaphthidate inter-
acted with the a1A and 5-HT1A receptor in the low micromolar
range. The remaining MPH-based NPS did not potently interact
withmonoamine receptors, indicating that they exert their primary
effects by inhibiting uptake transporters, similar to MPH and
cocaine (Ritz et al., 1987, 1988; Volkow et al., 2002). Consistent with
the monoamine uptake data, 3,4-dichloroethylphenidate, 3,4-
dichloromethylphenidate, and ethylnaphthidate potently bound
to the NET and DAT and had affinity for the SERT as well. 4-
Fluoromethylphenidate, 4-methylmethylphenidate, and methyl-
phenidate bound potently to the NET and DAT but had no affinity to
the SERT in the tested concentration range. N-Benzylethylpheni-
date, ethylphenidate, isopropylphenidate, and propylphenidate
showed high affinity for the DAT but not for the NET or SERT.
Methylmorphenate did not potently bind to any transporter.
Cocaine potently bound to all transporters but not to receptors. No
interaction between modafinil and monoamine receptors was
observed. To date, no single site of action for modafinil has been
identified (Gerrard and Malcolm, 2007).

4.3. Comparison of transporter binding and transporter inhibition

No drug-mediated monoamine efflux was observed for any of
the MPH-based compounds, strengthening the argument that they
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Fig. 2. Monoamine uptake inhibition in stably transfected HEK 293 cells that expressed the human NET, DAT, or SERT. Curves were fitted by non-linear regression, and corre-
sponding IC50 values are shown in Table 1. The data are presented as the mean ± SEM and numbers in parentheses indicate the number of individual experiments performed in
triplicate (NET/DAT/SERT): N-benzylethylphenidate (4/4/4), 3,4-dichloroethylphenidate (3/3/5), 3,4-dichloromethylphenidate (3/3/4), ethylnaphthidate (3/3/3), ethylphenidate (3/3/
5), 4-fluoromethylphenidate (4/4/4), isopropylphenidate (3/3/4), 4-methylmethylphenidate (4/3/4), methylmorphenate (3/3/4), methylphenidate (3/3/6), propylphenidate (3/3/4),
cocaine (3/4/5), modafinil (6/7/6).

Table 1
Monoamine transport inhibition.

NET DAT SERT DAT/SERT

IC50 [mM] (95% CI) IC50 [mM] (95% CI) IC50 [mM] (95% CI) ratio (95% CI)

Methylphenidate-based
Methylphenidate 0.12 (0.09e0.16) 0.13 (0.10e0.18) 274 (204e366) 2108 (1133e3660)
4-Methylmethylphenidate 0.09 (0.07e0.11) 0.15 (0.12e0.18) 164 (132e204) 1093 (733e1700)
Ethylphenidate 0.81 (0.62e1.06) 0.61 (0.45e0.84) 257 (205e322) 421 (244e716)
4-Fluoromethylphenidate 0.04 (0.03e0.06) 0.15 (0.12e0.20) 40 (33e48) 267 (165e400)
3,4-Dichloromethylphenidate 0.01 (0.01e0.02) 0.05 (0.04e0.06 12 (9e15) 240 (150e375)
Isopropylphenidate 2.3 (1.8e2.9) 0.82 (0.68e1.00) 147 (112e193) 179 (112e284)
Methylmorphenate 9.3 (7.0e12.3) 13 (11e16) 1831 (932e3600) 141 (58e327)
3,4-Dichloroethylphenidate 0.13 (0.10e0.16) 0.08 (0.06e0.09) 8.0 (6.9e9.3) 100 (77e155)
Propylphenidate 0.94 (0.71e1.25) 1.2 (1.0e1.6) 84 (67e106) 70 (42e106)
N-Benzylethylphenidate 95 (59e154) 60 (41e86) 2515 (958e6605) 42 (11e161)
Ethylnaphthidate 0.42 (0.32e0.54) 0.34 (0.28e0.42) 1.7 (1.3e2.1) 5.0 (3.1e7.5)
Other
Modafinil 231 (177e300) 11 (9e14) 2616 (250e27300) 238 (28e1950)
Cocaine 0.48 (0.36e0.64) 0.90 (0.75e1.08) 1.5 (1.2e1.9) 1.7 (1.1e2.5)

Values are means and 95% confidence intervals (CI). DAT/SERT ratio ¼ 1/DAT IC50: 1/SERT IC50.
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are pure uptake blockers.For uptake blockers, a correlation be-
tween the monoamine uptake and radioligand binding affinities
has been previously described for the NET (Cheetham et al., 1996;
Lee et al., 1982), the DAT (Javitch et al., 1984; Schoemaker et al.,
1985), and the SERT (D'Amato et al., 1987; Langer et al., 1980).
However, discrepancies between monoamine uptake inhibition
and radioligand binding have been observed for cocaine-like drugs
and proposed for MPH-like drugs, when the conditions for the
binding and uptake inhibition assays varied (Reith et al., 2005;
Rothman et al., 1993).

Highest NET and DAT binding affinities were observed for the
most potent NET and DAT inhibitor 3,4-dichloromethylphenidate.
However, the increase in potency compared to MPH was much

more pronounced with a 76-fold and 12-fold increase for NET and
DAT binding, respectively. 3,4-Dichloroethylphenidate bound more
than 10-fold more potently to the NET and DAT whereas the NE and
DA uptake inhibition was similar to MPH. Ethylnaphthidate, 4-
fluoromethylphenidate, and 4-methylmethylphenidate inhibited
the NET and DAT with similar potency as MPH. These substances
bound to the NET with affinity in the range of 0.22e0.31 mM and to
the DAT with affinity in the range of 0.026e0.040 mM. MPH bound
to the NET and DAT with 0.50 mM and 0.070 mM, respectively. Thus,
unlike for the dichloro substituted compounds, the IC50 values and
the Ki values for ethylnaphthidate, 4-fluoromethylphenidate, and
4-methylmethylphenidate correlate well. N-Benzylethylphenidate,
ethylphenidate, isopropylphenidate, methylmorphenate, and pro-
pylphenidate inhibited the NET with 6e800-fold lower potency
compared to MPH and the DAT with 4e500-fold lower potency.
While the binding affinities for the NET were 8e48-fold decreased,
the DAT binding affinities were decreased only for N-benzylethyl-
phenidate, methylmorphenate, and propylphenidate (5e46-fold)
whereas the DAT binding affinites of ethylphenidate and iso-
propylphenidate were close to MPH. Remarkably, N-benzylethyl-
phenidate was by far the weakest transporter inhibitor, it did
however not have the lowest NET and DAT binding affinities. In the
investigated concentration range, only N-benzylethylphenidate,
3,4-dichloroethylphenidate, 3,4-dichloromethylphenidate, and
ethylnaphthidate bound to the SERT. 3,4-dichloroethylphenidate,
3,4-dichloromethylphenidate, and ethylnaphthidate, were the
most potent SERT inhibitors, N-benzylethylphenidate was however
the weakest SERT inhibitor. Thus, as observed for the NET and DAT,
the SERT binding affinity of N-benzylethylphenidate was much
higher than might be expected from the uptake inhibition data.

To conclude, the rank order of potency of the radioligand
binding and uptake inhibition was similar with the 3,4-substituted
and 4-substitued compounds being among the most potent MPH-
based NPS; the relative potencies of the uptake inhibition and
transporter binding varied however to a certain extent.

Besides cocaine, ethylnaphthidate was the only compound to
have considerable inhibition potencies and affinities for all trans-
porters. The inhibition and binding potencies generally decreased
with increasing size of the carbon side chain. Compared to MPH,
the steric ring-substitution of N-benzylethylphenidate substan-
tially decreased the inhibition potency for all transporters and the
binding to the NET and DAT. However, higher binding affinity for
the SERT was observed. Modafinil selectively inhibited and bound
to the SERT.

The present study has limitations. Possible potent contaminants
could theoretically have influenced the results for some drugs with
lower purity. Substance-induced efflux was only tested at a high
substance concentration. The absence of monoamine efflux could
be the result of bell-shaped concentration-efflux curves as it has
been demonstrated for amphetamine analogs with known mono-
amine releasing properties, including MDMA, in different in vitro
assays (Seidel et al., 2005). However, such bell-shaped efflux curves
were not observed in the assay used in the present study as pre-
viously documented (Hysek et al., 2012), strengthening the argu-
ment that the MPH-based NPS are in fact pure uptake inhibitors.
Moreover, in this study the focus was laid on the NET, DAT, and
SERT, as they are main targets of amphetamines and presumably
many stimulant NPS (Sitte and Freissmuth, 2015). Other possible
mechanisms that may contribute to the effects of NPS, such as
VMAT2 inhibition (Sulzer et al., 2005), calcium-triggered exocytosis
of monoamines (Mundorf et al., 1999; Sulzer et al., 2005), mRNA
regulation (Douglass et al., 1995), or ion channel blockage (Bauman
and DiDomenico, 2002; O'Leary and Hancox, 2010), were not
investigated in this study.

Fig. 3. Monoamine efflux induced by 100 mM of the compounds after preloading HEK
293 cells that expressed the human NET, DAT, or SERT with radiolabeled monoamine.
The efflux is expressed as percentage of [3H]-NE, [3H]-DA, or [3H]-5-HT decrease in
monoamine preloaded cells compared to vehicle control. The dashed line marks
nonspecific “pseudo-efflux” that arises from monoamine diffusion and subsequent
reuptake inhibition. Substances that caused significantly more monoamine efflux
(*p < 0.05) than pure uptake inhibitors (open bars) were determined to be monoamine
transporter substrates. The data are presented as the mean ± SEM of five independent
experiments.
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5. Conclusion

Similar to MPH and cocaine, MPH-based NPS are potent in-
hibitors of the NET and DAT. Furthermore, they are not monoamine
transporter substrates and have only minor interactions with
monoamine receptors. The high selectivity for the DAT vs. SERT
suggests that these emerging drugs may have abuse potential.
Modafinil is a weak but selective inhibitor at DAT but does not
present monoamine receptor interactions.
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4-Methylmethylphenidate 0.31 ± 0.10 0.033 ± 0.007 >22 >4.4 6.5 ± 0.3 10 ± 1 9.9 ± 0.7 >13 >10 >15 >5.0 >4.7
Ethylphenidate 4.9 ± 0.7 0.081 ± 0.007 >30 >25 >12 14 ± 1 >25 >12 >20 >15 >15a >15a
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Isopropylphenidate 4.2 ± 0.4 0.097 ± 0.014 >23 >4.4 >11 >15 >17 >13 >15 13 ± 2 >14
Methylmorphenate 24 ± 1 3.2 ± 0.3 >22 >4.4 >8.9 >15 >17 >13 >10 >15 >5.0 >4.7
3,4-Dichloroethylphenidate 0.028 ± 0.003 0.0065 ± 0.0002 1.5 ± 0.2 >4.4 4.3 ± 0.1 7.5 ± 0.3 4.5 ± 0.4 >13 12 ± 0.3 6.6 ± 1.3 >14
Propylphenidate 3.8 ± 1.3 0.33 ± 0.07 >22 >4.4 >8.9 8.7 ± 0.5 17 ± 1 >13 >10 >15 >5.0 >4.7
N-Benzylethylphenidate 5.5 ± 0.5 0.33 ± 0.01 8.4 ± 1.0 >4.4 >11 >15 >17 >13 >15 >15 >14
Ethylnaphthidate 0.27 ± 0.06 0.026 ± 0.003 0.58 ± 0.05 >4.4 1.8 ± 0.2 8.6 ± 0.5 1.3 ± 0.2 4.9 ± 0.5 >10 12 ± 3 >5.0 >4.7
Other
Modafinil >26 4.0 ± 0.7 >22 >4.4 >8.9 >15 >17 >13 >10 >15 >5.0 >4.7
Cocaine 1.6 ± 0.3 0.20 ± 0.02 0.87 ± 0.04 >4.4 >8.9 >15 >17 >13 >10 >15 >5.0 >4.7

Values are given as mM (mean ± SD).
a From Simmler et al., 2016.
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A B S T R A C T

Diclofensine, diphenidine, and methoxphenidine are new psychoactive substances (NPSs) that recently appeared
on the illicit drug market. Pharmacological profiling of such newly emerged drugs is crucial for a better un-
derstanding of their psychotropic effects and toxicity. We therefore investigated the potential of these NPSs to
inhibit the norepinephrine, dopamine, and serotonin transporters in human embryonic kidney cells stably
transfected with the respective transporters. In addition, we determined monoamine transporter and receptor
affinities for the substances. Diclofensine potently bound to the monoamine transporters in the submicromolar
range and had similar inhibition potential for all three transporters in the range of 2.5–4.8 μM. Moreover, di-
clofensine bound to adrenergic, dopamine, serotonin, and trace amine-associated receptors. Diphenidine was an
equipotent inhibitor of the norepinephrine and dopamine transporters in the low micromolar range and a very
weak inhibitor of the serotonin transporter. Besides binding to transporters, diphenidine bound to adrenergic
α1A and α2A receptors and serotonin 5-hydroxytryptamine 1A (5-HT1A) and 5-HT2A receptors in the range of
4–11 μM. Methoxphenidine bound to all transporters, but considerable inhibition (IC50< 10 μM) was observed
only for the norepinephrine transporter. Moreover, methoxphenidine bound to adrenergic α2A and serotonin 5-
HT2A and 5-HT2C receptors in the range of 2.5–8.2 μM. None of the test drugs mediated substrate-type efflux of
monoamines. These data demonstrate that the monoamine transporter inhibition and receptor interactions most
likely mediate the psychoactive effects of diclofensine and possibly play a contributory role for diphenidine and
methoxphenidine.

1. Introduction

The emergence of numerous potentially harmful new psychoactive
substances (NPSs) in recent years poses a challenge to drug regulatory
authorities and health personnel. Case reports are often the only source
of information on the toxicity of newly emerged drugs and in vitro
screenings are therefore a helpful tool to better understand the phar-
macology of such substances. In the current study, we present in vitro
pharmacological profiles of three NPSs (Fig. 1) that have recently
reached the illicit drug market. Diclofensine was originally developed
as an antidepressant and was shown to have potent monoamine
transporter inhibition potencies in rat brain synaptosomes (Andersen,
1989; Funke et al., 1986; Gasić et al., 1986; Hyttel and Larsen, 1985;
Keller et al., 1982) and to increase extracellular dopamine levels in rats
(Nakachi et al., 1995). Diphenidine and its methoxylated derivative 2-
methoxydiphenidine (methoxphenidine) are NPSs of the diarylethyla-
mine class, which have previously been associated with adverse events

including deaths (Elliott et al., 2015; Gerace et al., 2017; Helander
et al., 2015; Hofer et al., 2014; Kusano et al., 2017; Lam et al., 2016;
Valli et al., 2017). Diphenidine and methoxphenidine act as N-methyl-
D-aspartate receptor antagonists (Berger et al., 2009; Wallach et al.,
2015), and their effects have been described as being comparable to
other dissociative anesthetic drugs, such as ketamine (Helander et al.,
2015; Morris and Wallach, 2014).

2. Material and methods

2.1. Drugs

Diclofensine, diphenidine, and methoxphenidine were kindly pro-
vided by the Forensic Institute Zürich (Zürich, Switzerland) with>
98% purity. 3,4-Methylenedioxymethamphetamine (MDMA) was pur-
chased from Lipomed (Arlesheim, Switzerland) with high-performance
liquid chromatography purity of> 98.5%. Diclofensine was obtained
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as racemic base, the other drugs were obtained as racemic hydro-
chloride salts. Radiolabelled [3H]norepinephrine and [3H]dopamine
were purchased from Perkin-Elmer (Schwerzenbach, Switzerland).
Radiolabeled [3H]serotonin was obtained from Anawa (Zürich,
Switzerland).

2.2. Monoamine uptake transporter inhibition

Norepinephrine, dopamine, and serotonin uptake inhibition for the
test drugs in the range of 1 nM to 900 μM was assessed in human em-
bryonic kidney (HEK) 293 cells transfected with the human transporter
for norepinephrine (hNET), dopamine (hDAT), or serotonin (hSERT) as
previously described in detail (Hysek et al., 2012b; Tatsumi et al.,
1997), with slight modifications (Luethi et al., 2017b). Briefly, cells
were suspended in uptake buffer and incubated with the test drugs for
10 min before [3H]norepinephrine, [3H]dopamine, or [3H]serotonin
were added at a final concentration of 5 nM for additional 10 min to
initiate uptake transport. Thereafter, the cells were separated from the
uptake buffer by centrifugation through silicone oil. The centrifugation
tubes were then frozen in liquid nitrogen and the cell pellet was cut into
scintillation vials containing lysis buffer. Scintillation fluid was added
to the vials and uptake was quantified by liquid scintillation counting.
Transporter inhibitors (10 μM nisoxetine for NET, 10 μM mazindol for
DAT, and 10 μM fluoxetine for SERT) were added to assess for non-
specific monoamine uptake.

2.3. Drug-induced monoamine efflux

To assess whether the test drugs act as pure transporter inhibitors or
as transporter substrates, drug-induced monoamine efflux was assessed
at a drug concentration of 100 μM in hNET-, hDAT-, or hSERT-trans-
fected HEK 293 cells as previously described (Simmler et al., 2013) with
slight modifications. Briefly, cells were cultured in a poly-D-lysine
coated microplate and preloaded with 10 nM [3H]norepinephrine, [3H]
dopamine, or [3H]serotonin for 20 min at 37 °C. The cells were then
washed twice, and subsequently treated with the test drugs for 15 min
(DAT and SERT) or 45 min (NET) at 37 °C on a rotary shaker. There-
after, 300 μl of the assay buffer was transferred into scintillation vials,
scintillation fluid was added, and the amount of monoamine efflux was
then quantified by liquid scintillation counting. Transporter inhibitors
(10 μM nisoxetine for NET, 10 μM mazindol for DAT, and 10 μM cita-
lopram for SERT) were included to determine “pseudo-efflux” caused
by nonspecific monoamine efflux and subsequent reuptake inhibition
(Scholze et al., 2000). The assay set-up was based on previous kinetic
evaluation of the efflux-over-time curves for monoamine transporter
substrates (Hysek et al., 2012b; Simmler et al., 2014a). The transporter
substrate MDMA was used as positive control.

2.4. Monoamine receptor and transporter binding affinities

Radioligand binding affinities for transporters and receptors were
assessed as previously described in detail (Luethi et al., 2017c). Briefly,
membrane preparations that overexpressed the respective transporters
(Tatsumi et al., 1997) or receptors (human genes, with the exception of
rat and mouse genes for trace amine-associated receptors (Revel et al.,

2011)) were incubated with the radiolabeled selective ligands at con-
centrations equal to Kd, and ligand displacement by the compounds was
measured. Specific binding of the radioligand to the target receptor was
defined as the difference between the total binding and nonspecific
binding that was determined in the presence of the selected competitors
at a concentration of 10 μM. The following radioligands and competi-
tors, respectively, were used: N-methyl-[3H]nisoxetine and indatraline
(NET), [3H]WIN35,428 and indatraline (DAT), [3H]citalopram and in-
datraline (SERT), [3H]8-hydroxy-2-(di-n-propylamine)tetralin and pin-
dolol (serotonin 5-HT1A receptor), [3H]ketanserin and spiperone (ser-
otonin 5-HT2A receptor), [3H]mesulgerine and mianserin (serotonin 5-
HT2C receptor), [3H]prazosin and chlorpromazine (α1 adrenergic re-
ceptor), [3H]rauwolscine and phentolamine (α2 adrenergic receptor),
[3H]spiperone and spiperone (dopamine D2 receptors), and [3H]
RO5166017 and RO5166017 (trace amine-associated receptors 1).

2.5. Activity at the serotonin 5-HT2A receptor

Mouse embryonic fibroblasts (NIH-3T3 cells) expressing the human
serotonin 5-HT2A receptor were incubated in HEPES-Hank's Balanced
Salt Solution (HBSS) buffer (Gibco, Zug, Switzerland; 70,000 cells/
100 μl) for 1 h at 37 °C in 96-well poly-D-lysine-coated plates.
Thereafter, 100 μl of dye solution (fluorescence imaging plate reader
[FLIPR] calcium 5 assay kit; Molecular Devices, Sunnyvale, CA, USA)
was added to each well, and the plates were again incubated for 1 h at
37 °C. The plates were then placed in a FLIPR, and 25 μl of the test
drugs that were diluted in HEPES-HBSS buffer containing 250 mM
probenicid was added online. The increase in fluorescence was mea-
sured, and EC50 values were derived from the concentration-response
curves using nonlinear regression.

2.6. Activity at the serotonin 5-HT2B receptor

HEK 293 cells expressing the human serotonin 5-HT2B receptor were
incubated in growth medium at a density of 50,000 cells per well at
37 °C in poly-D-lysine-coated 96-well plates overnight. The growth
medium was then removed by snap inversion, and 100 μl of the calcium
indicator Fluo-4 solution (Molecular Probes, Eugene, OR, USA) was
added to each well. The plates were incubated for 45 min at 31 °C, the
Fluo-4 solution was then removed by snap inversion, and 100 μl of
Fluo-4 solution was added a second time for 45 min at 31 °C. The cells
were washed with HBSS and 20 mM HEPES (assay buffer) using an
EMBLA cell washer, and 100 μl assay buffer was added. The plates were
then placed in a FLIPR, and 25 μl of the test substances that were di-
luted in assay buffer was added online. The increase in fluorescence was
measured, and EC50 values were derived from the concentration-re-
sponse curves using nonlinear regression.

2.7. Cytotoxicity

Adenylate kinase release was measured with the ToxiLight BioAssay
Kit from Lonza (Basel, Switzerland) as marker for cytotoxicity to con-
firm cell integrity under assay conditions. Briefly, 25,000 hSERT-,
hDAT-, or hNET-transfected HEK 293 cells per well were seeded in a 96-
well plate. The following day, the cells were treated with 100 μl of the

Fig. 1. Structures of NPSs included in the study.
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test substances dissolved in medium at the highest concentration used
in the functional assays. After 1 h incubation at room temperature,
50 μl of the ToxiLight assay buffer was added to 20 μl of supernatant
and after 5 min the luminescence was measured with a Tecan M200 Pro
Infinity plate reader (Männedorf, Switzerland). The luminescence
signal was then compared to medium control. The detergent Triton X-
100 (0.5%) was used as a positive control.

2.8. Statistical analysis

Monoamine uptake data were fit by nonlinear regression to vari-
able-slope sigmoidal dose-response curves and IC50 values were as-
sessed with Prism software (version 7.0a, GraphPad, San Diego, CA,
USA). The DAT/SERT ratio is expressed as 1/DAT IC50: 1/SERT IC50.
Drug-induced monoamine efflux of five independent experiments was
analyzed using analysis of variance followed by the Holm-Sidak test.
The drugs were considered monoamine transporter substrates, if they
caused significantly higher (*P<0.05) efflux than the selective in-
hibitors. IC50 values of the radioligand binding assays were assessed by
calculating nonlinear regression curves for a one-site model using three
independent 10-point concentration-response curves for each sub-
stance. Affinity (Ki) values, which correspond to the dissociation con-
stants, were calculated using the Cheng-Prusoff equation. EC50 values
for serotonin 5-HT2A and 5-HT2B receptor activation were determined
using nonlinear regression concentration-response curves.

3. Results

3.1. Monoamine uptake transporter inhibition

Monoamine uptake inhibition curves are shown in Fig. 2 and the
corresponding IC50 values are listed in Table 1. Diclofensine inhibited
the NET, DAT, and SERT in the low micromolar range (2.5–4.8 μM).
Diphenidine was an equipotent inhibitor of the NET and DAT with IC50

values of 3.3 and 3.4 μM, respectively, but only a very weak inhibitor of
the SERT (IC50: 675 μM). Methoxphenidine inhibited the NET at 7.8 μM
but was a weak inhibitor of the DAT and SERT (IC50: 65 and 741 μM,
respectively).

3.2. Drug-induced monoamine efflux

Substances that interact with monoamine transporters may act as
transporter inhibitors or as transporter substrates that cause mono-
amine efflux into the synaptic cleft (Rothman and Baumann, 2003; Sitte
and Freissmuth, 2015). Drug-induced monoamine efflux is shown in
Fig. 3. Diclofensine, diphenidine, and methoxphenidine did not mediate
efflux of any monoamines. The positive control MDMA caused efflux of
all monoamines.

3.3. Monoamine receptor and transporter binding affinities

Diclofensine potently bound to monoamine transporters in the
range of 0.027–0.096 μM, and bound to the dopamine D2 receptor with
Ki of 2.2 μM and to adrenergic α1A and α2A receptors with Ki of 0.14
and 1.2 μM, respectively (Table 2). Moreover, diclofensine had affinity
to the serotonin 5-HT1A, 5-HT2A, and 5-HT2C receptors in the range of
0.079–1.2 μM, but it did not activate the serotonin 5-HT2A or 5-HT2B

receptors at the concentrations investigated (EC50> 20 μM). Diclo-
fensine also bound to the rat and mouse trace amine-associated re-
ceptors 1 with Ki of 1.3 and 6.9 μM, respectively. The dissociative drugs
diphenidine and methoxphenidine had highest transporter affinity for
the DAT, followed by the NET and SERT. Diphenidine bound to adre-
nergic α1A and α2A receptors with affinities of 11 and 4.4 μM, respec-
tively. Methoxphenidine bound to the adrenergic α2A receptor (2.6 μM)
but not to the adrenergic α1A receptor (Ki > 12 μM). Diphenidine
bound to serotonin 5-HT1A and 5-HT2A receptors with Ki of 11 μM but

Fig. 2. Monoamine uptake inhibition in stably transfected HEK 293 cells that expressed
the human NET, DAT, or SERT. Curves were fitted by non-linear regression, and corre-
sponding IC50 values are shown in Table 1. The data are presented as the mean±S.E.M.
and numbers in parentheses indicate the number of individual experiments performed in
triplicate (NET/DAT/SERT): diclofensine (3/3/3), diphenidine (3/3/4), methoxphenidine
(3/5/4).

Table 1
Monoamine transport inhibition.

NET DAT SERT DAT/SERT
IC50 [μM]
(95% CI)

IC50 [μM]
(95% CI)

IC50 [μM]
(95% CI)

ratio (95% CI)

Diclofensine 2.5 (1.8–3.3) 4.5
(3.8–5.4)

4.8 (4.0–5.6) 1.1 (0.7–1.5)

Diphenidine 3.3 (2.6–4.3) 3.4
(2.6–4.5)

675
(527–864)

199 (117–332)

Methoxphenidine 7.8
(5.9–10.1)

65 (52–79) 741
(586–938)

11 (7–18)

Values are means and 95% confidence intervals (CI). DAT/SERT ratio = 1/DAT IC50:1/
SERT IC50.
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did not bind to the serotonin 5-HT2C receptor (Ki > 15 μM). Methox-
phenidine bound to serotonin 5-HT2A and 5-HT2C receptors (Ki of
8.2 μM and 2.5 μM, respectively) but it did not bind to the serotonin 5-
HT1A receptor (Ki > 25 μM). Neither diphenidine nor methoxphenidine
activated the serotonin 5-HT2A or 5-HT2B receptor (EC50> 20 μM).
Furthermore, diphenidine and methoxphenidine did not bind to the
dopamine D2 receptor (Ki>25 μM) or to rat or mouse trace amine-
associated receptors 1 (Ki > 15 μM).

3.4. Cytotoxicity

No cytotoxicity was observed for any of the drugs in the functional
assays at the concentrations tested, thus confirming cell integrity during
the assays.

Fig. 3. Monoamine efflux induced by 100 μM of the test drugs after preloading HEK 293
cells that expressed the human NET, DAT, or SERT with radiolabeled monoamine. The
dashed line marks nonspecific “pseudo-efflux” that arises from monoamine diffusion and
subsequent reuptake inhibition. Substances that caused significantly more monoamine
efflux (*P<0.05) than pure uptake inhibitors (open bars) were determined to be
monoamine transporter substrates. The data are presented as the mean± S.E.M. of five
independent experiments.
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4. Discussion

4.1. Monoamine uptake transporter inhibition and drug-induced
monoamine efflux

Consistent with previous research (Keller et al., 1982), diclofensine
was a potent triple monoamine transporter inhibitor and was devoid of
monoamine releasing properties. The pharmacological profile of di-
clofensine is therefore similar to cocaine (Luethi et al., 2017a). This
finding underscores the prior concern about the abuse liability of di-
clofensine (Lamb and Griffiths, 1990).

The dissociative drug diphenidine was an equipotent inhibitor of the
NET and DAT, with IC50 values in the low micromolar range.
Methoxphenidine was slightly less potent in inhibiting the NET and
significantly less potent in inhibiting reuptake via DAT. Both drugs are
thought to exert their dissociative mind-altering effects mainly via N-
methyl-D-aspartate receptor antagonism (Morris and Wallach, 2014).
Diphenidine and methoxphenidine did not mediate efflux of any
monoamines, as observed for cocaine and methylphenidate-based NPSs
(Luethi et al., 2017a).

In a recent study, IC50 values in the low micromolar range were
reported for diphenidine but not for methoxphenidine, using a fluor-
escence-based neurotransmitter uptake kit (Wallach et al., 2016).
Compared to the IC50 values measured with the fluorescence-based kit
(Wallach et al., 2016), DAT inhibition by diphenidine and methox-
phenidine in the present study was 1.7-fold and 2.2-fold, respectively,
decreased; NET inhibition potency for diphenidine and methoxpheni-
dine in the present study was however 2.8-fold and 4.5-fold, respec-
tively, increased.

4.2. Monoamine receptor and transporter binding affinities

Diclofensine had high affinity for all monoamine transporters and
additionally bound to the dopamine D2 receptor, as observed for other
tetrahydroisoquinoline derivatives (Mach et al., 2004; Silvano et al.,
2010). Furthermore, diclofensine had affinity for adrenergic α1A and
α2A receptors at 0.14 and 1.2 μM, respectively. These receptors mod-
ulate norepinephrine efflux and sympathomimetic activity (Hysek
et al., 2012a, 2013). However, a clinical trial found that diclofensine
did not significantly influence heart rate or blood pressure after an oral
dose of 50 mg (Culig et al., 1983). The observed affinity values of di-
clofensine for serotonin 5-HT1A and 5-HT2A receptors were 1.2 and
0.079 μM, respectively. Both receptors are involved in body tempera-
ture regulation (Blessing et al., 2003; Liechti et al., 2000), and serotonin
5-HT2A receptors are also targets of psychedelic drugs (Nelson et al.,
1999; Nichols, 2016; Vollenweider et al., 1998). However, with an EC50

value>20 μM, diclofensine is not a serotonin 5-HT2A receptor agonist
and no psychedelic effects are to be expected from activation of this
receptor. The submicromolar affinity for the serotonin 5-HT2C receptor
may contribute to the antidepressant properties of diclofensine (Kim
et al., 2010; Opal et al., 2014). With rat and mouse trace amine-asso-
ciated receptor 1 affinities of 1.3 and 6.9 μM, respectively, the trace
amine-associated receptor 1 binding potencies of diclofensine were
weaker than for most amphetamines but stronger than for most cath-
inones (Simmler et al., 2016).

Diphenidine and methoxphenidine had low micromolar affinity for
the adrenergic α2A receptor (4.4 and 2.6 μM, respectively) and meth-
oxphenidine also had appreciable affinity for the serotonin 5-HT2C re-
ceptor (2.5 μM). In the receptor binding affinity screening by Wallach
and colleagues (Wallach et al., 2016), similar binding affinity to the
adrenergic α2A receptor was reported for methoxphenidine (2 μM) but
not for diphenidine (Ki > 10 μM). Furthermore, no potent interactions
with serotonin receptors were found for either diphenidine or meth-
oxphenidine in that study. For these two substances the highest affinity
values were reported for the N-methyl-D-aspartate receptor (Wallach
et al., 2016).

The strength of the present study is that the determined transporter
inhibition potencies and receptor affinities for diclofensine, dipheni-
dine, and methoxphenidine can be directly compared to a large set of
data for NPSs, such as psychedelics (Luethi et al., 2017c; Rickli et al.,
2015c, 2016) synthetic cathinones (Luethi et al., 2017b; Simmler et al.,
2013, 2014a), amphetamines (Rickli et al., 2015a), and other designer
stimulants (Luethi et al., 2017a; Rickli et al., 2015b; Simmler et al.,
2014b), all measured with the same methods.

5. Conclusion

Diclofensine inhibited the NET, DAT, and SERT with similar po-
tencies, similar to cocaine. Unlike cocaine, however, it had high affinity
for several monoamine receptors. The pharmacological profile indicates
stimulant properties and a potential for abuse for diclofensine.
Diphenidine was an inhibitor of the NET and DAT, whereas its meth-
oxylated derivative methoxphenidine was mainly an inhibitor of the
NET. These drugs mediate their dissociative psychoactive effects via
potent N-methyl-D-aspartate receptor antagonism (Wallach et al.,
2016), monoamine transporter inhibition could however contribute to
their psychoactive properties.
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a b s t r a c t

Background: N-2-methoxybenzyl-phenethylamines (NBOMe drugs) are newly used psychoactive sub-
stances with poorly defined pharmacological properties. The aim of the present study was to characterize
the receptor binding profiles of a series of NBOMe drugs compared with their 2,5-dimethoxy-phene-
thylamine analogs (2C drugs) and lysergic acid diethylamide (LSD) in vitro.
Methods: We investigated the binding affinities of 2C drugs (2C-B, 2C-C, 2C-D, 2C-E, 2C-H, 2C-I, 2C-N, 2C-
P, 2C-T-2, 2C-T-4, 2C-T-7, and mescaline), their NBOMe analogs, and LSD at monoamine receptors and
determined functional 5-hydroxytryptamine-2A (5-HT2A) and 5-HT2B receptor activation. Binding at and
the inhibition of monoamine uptake transporters were also determined. Human cells that were trans-
fected with the respective human receptors or transporters were used (with the exception of trace
amine-associated receptor-1 [TAAR1], in which rat/mouse receptors were used).
Results: All of the compounds potently interacted with serotonergic 5-HT2A, 5-HT2B, 5-HT2C receptors
and rat TAAR1 (most Ki and EC50: <1 mM). The N-2-methoxybenzyl substitution of 2C drugs increased the
binding affinity at serotonergic 5-HT2A, 5-HT2C, adrenergic a1, dopaminergic D1-3, and histaminergic H1
receptors and monoamine transporters but reduced binding to 5-HT1A receptors and TAAR1. As a result,
NBOMe drugs were very potent 5-HT2A receptor agonists (EC50: 0.04e0.5 mM) with high 5-HT2A/5-HT1A
selectivity and affinity for adrenergic a1 receptors (Ki: 0.3e0.9 mM) and TAAR1 (Ki: 0.06e2.2 mM), similar
to LSD, but not dopaminergic D1e3 receptors (most Ki:> 1 mM), unlike LSD.
Conclusion: The binding profile of NBOMe drugs predicts strong hallucinogenic effects, similar to LSD,
but possibly more stimulant properties because of a1 receptor interactions.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

New psychoactive substances are constantly emerging on the
illicit drug market and typically sold via the Internet. Of particular
interest are N-2-methoxybenzyl-phenethylamines (NBOMe drugs),
which are novel and reportedly very potent hallucinogens that have
been increasingly used recreationally (Forrester, 2014; Hill et al.,
2013; Ninnemann and Stuart, 2013; Rose et al., 2013;
Walterscheid et al., 2014; Wood et al., 2015; Zuba, 2012), with
additional potential use as radiotracers (Ettrup et al., 2011, 2010).
Recreationally used NBOMe drugs include 25I-NBOMe, 25C-
NBOMe, 25B-NBOMe, and 25D-NBOMe (Armenian and Gerona,
2014; Poklis et al., 2014; Rose et al., 2013), which are derivatives
of 2,5-dimethoxy-4-substituted phenethylamines (2C drugs; Dean
et al., 2013; Hill and Thomas, 2011; Shulgin and Shulgin, 1991)
(see Fig. 1). N-2-methoxybenzyl substitution enhances the potency
of 2C drugs at serotonergic 5-hydroxytryptamine-2A (5-HT2A) re-
ceptors, resulting in exceptionally potent 5-HT2A receptor agonists
(Braden et al., 2006; Heim, 2004; Nichols et al., 2015) with strong
hallucinogenic properties in animals and humans (Halberstadt and
Geyer, 2014; Srisuma et al., 2015). Pharmacological interactions
between NBOMe drugs and 5-HT2 receptors have been well char-
acterized for some compounds of this novel drug family (Blaazer
et al., 2008; Braden et al., 2006; Ettrup et al., 2011, 2010; Hansen
et al., 2014; Nichols et al., 2008). However, systematic character-
izations of the effects of a larger series of NBOMe drugs at a wider
range of relevant human receptors and comparisons with their 2C
parent drugs are lacking. Importantly, NBOMe drugs have been
reported to produce psycho- and cardiovascular stimulant effects,
in addition to hallucinations. Specifically, sympathomimetic
toxicity, including tachycardia, hypertension, mydriasis, agitation,
and hyperthermia, is commonly reported in cases of acute NBOMe
drug intoxication (Hill et al., 2013; Rose et al., 2013; Srisuma et al.,
2015; Stellpflug et al., 2014; Wood et al., 2015). Pharmacologically,
compounds of the 2C series, including 2C-C, 2C-E, and 2C-I, inhibit
the norepinephrine (NE) and serotonin transporters (NET and SERT,
respectively), similar to amphetamines, although with only very
low potency (Eshleman et al., 2014; Nagai et al., 2007). These
findings raise the question of whether NBOMe drugs may have
similar but more potent stimulant-type pharmacological proper-
ties, including inhibition of the NET, dopamine (DA) transporter
(DAT), and SERT, or interactions with adrenergic a1 receptors that
lead to vasoconstriction.

We assessed the in vitro pharmacology of a series of NBOMe
drugs compared with their 2C parent drugs. We characterized the
binding affinity profiles at monoamine receptors and DAT, NET, and
SERT inhibition potencies. We also determined the functional 5-
HT2A receptor activation potencies because 5-HT2A receptors
mediate hallucinogenic effects (Nichols, 2004). The prototypical
serotonergic hallucinogen lysergic acid diethylamide (LSD) was
included as a comparator drug (Nichols, 2004; Passie et al., 2008).

2. Methods

2.1. Drugs

2C-B, 2C-C, 2C-D, 2C-E, 2C-H, 2C-I, 2C-N, 2C-P, 2C-T-2, 2C-T-4,
2C-T-7, mescaline, 25B-NBOMe, 25C-NBOMe, 25D-NBOMe, 25E-
NBOMe, 25H-NBOMe, 25I-NBOMe, 25N-NBOMe, 25P-NBOMe,
25T2-NBOMe, 25T4-NBOMe, 25T7-NBOMe, and mescaline-NBOMe
were synthesized by Lipomed (Arlesheim, Switzerland) for this
study at no cost. All of the compounds were used as hydrochloride
salts. Purity was >98% for all of the substances. [3H]NE and [3H]DA
were obtained from PerkineElmer (Schwerzenbach, Switzerland),
and [3H]5-HT was obtained from Anawa (Zürich, Switzerland).

2.2. Radioligand receptor and transporter binding assays

The radioligand binding assays were performed as described
previously (Hysek et al., 2012; Simmler et al., 2013). Briefly, mem-
brane preparations of human embryonic kidney (HEK) 293 cells
(Invitrogen, Zug, Switzerland) that overexpress the respective
transporters (Tatsumi et al., 1997) or receptors (human genes, with
the exception of rat and mouse genes for trace amine-association
receptor 1 [TAAR1]; (Revel et al., 2011)) were incubated with the
radiolabeled selective ligands at concentrations equal to Kd, and
ligand displacement by the compounds was measured. Specific
binding of the radioligand to the target receptor was defined as the
difference between the total binding and nonspecific binding that
was determined in the presence of selected competitors in excess.
The following radioligands and competitors, respectively, were
used: N-methyl-[3H]-nisoxetine and indatraline (NET), [3H]cit-
alopram and indatraline (SERT), [3H]WIN35,428 and indatraline
(DAT), [3H]8-hydroxy-2-(di-n-propylamine)tetralin and indatraline
(5-HT1A receptor), [3H]ketanserin and spiperone (5-HT2A receptor),
[3H]mesulgerine and mianserin (5-HT2C receptor), [3H]prazosin
and risperidone (adrenergic a1 receptor), [3H]rauwolscine and
phentolamine (adrenergic a2 receptor), [3H]SCH 23390 and buta-
clamol (D1 receptor), [3H]spiperone and spiperone (D2 and D3 re-
ceptors), [3H]pyrilamine and clozapine, (histaminergic H1
receptor), and [3H]RO5166017 and RO5166017 (TAAR1). IC50 values
were determined by calculating non-linear regression curves for a
one-site model using three to five independent 10-point concen-
trationeresponse curves for each compound. Ki (affinity) values,
which correspond to the dissociation constants, were determined
using the Cheng-Prusoff equation.

2.3. Activity at serotonin 5-HT2A receptor

Human 5-HT2A receptor-expressing NIH-3T3 cells were incu-
bated in HEPES- Hank's Balanced Salt Solution (HBSS) buffer
(700000 cells/100 ml) for 1 h at 37 !C in 96-well poly-D-lysine-coated
plates. To each well 100 ml of Dye solution (FLIPR calcium 5 assay
kit; Molecular Devices, Sunnyvale, CA, USA) was added and plates
were incubated for 1 h at 37 !C. The plates were then placed in a
fluorescence imaging plate reader (FLIPR), and 25 ml of the test
substances diluted in HEPES-HBSS buffer containing 250 mM pro-
benicid were added online. The increase in fluorescence was then
measured. EC50 values were derived from the concen-
trationeresponse curves using nonlinear regression. Efficacy
(maximal activity) is expressed relative to the activity of 5-HT,
which was used as a control set to 100%.

2.4. Activity at serotonin 5-HT2B receptor

Human 5-HT2B receptor-expressing HEK293 cells were incu-
bated in growth medium (DMEM high glucose [Invitrogen, Zug,
Switzerland], 10 ml/l PenStrep [Gibco, Life Technologies, Zug,
Switzerland]), 10% FCS non dialyzed heat inactivated and 250 mg/l
geneticin) at a density of 500000 cells/well at 37 !C in 96-well poly-
D-lysine-coated plates over-night. On the next day the growth
medium was removed by snap inversion, and 100 ml of Fluo-4 so-
lution (calcium indicator; Molecular Probes, Eugene, OR, USA) was
added to each well. The plates were incubated for 45 min at 31 !C.
The Fluo-4 solution was removed by snap inversion, and 100 ml of
Fluo-4 solution was added a second time. The cells were then
incubated for another 45 min at 31 !C. Immediately before testing,
the cells were washed with HBSS (Gibco) and 20 mM HEPES (assay
buffer; Gibco) using an EMBLA cell washer, and 100 ml assay buffer
was added. The plate was placed in a fluorescence imaging plate
reader (FLIPR), and 25 ml of the test substances diluted in assay
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buffer was added online. The increase in fluorescence was then
measured. EC50 values were derived from the concen-
trationeresponse curves using nonlinear regression. Efficacy
(maximal activity) is expressed relative to the activity of 5-HT,
which was used as a control set to 100%.

2.5. Monoamine uptake transporter inhibition

Inhibition of the human NET, DAT, and SERTwas assessed in HEK
293 cells that were stably transfected with transporters as specified
previously (Hysek et al., 2012). Briefly, the cells were suspended in
uptake buffer and incubated for 10 min with different concentra-
tions of the test substances. The corresponding radiolabeled [3H]
monoamine (5 nM final concentration) was then added at room
temperature. After 10 min, uptake was stopped by separating the
cells from the buffer using centrifugation through silicone oil
(Hysek et al., 2012). The centrifugation tubes were frozen in liquid
nitrogen and cut to separate the cell pellet from the silicone oil and
assay buffer layers. The cell pellet was then lysed. Scintillation fluid
was added, and radioactivity was counted on a b-counter.
Nonspecific uptake was determined for each experiment in the
presence of 10 mM fluoxetine for SERT cells, 10 mM nisoxetine for
NETcells, and 10 mMmazindol for DATcells and subtracted from the
total counts to yield specific uptake (100%). The data were fitted by
non-linear regression to variable slope sigmoidal doseeresponse
curves (bottom ¼ 0%), and IC50 values were calculated using Prism
software (GraphPad, San Diego, CA, USA).

2.6. Cytotoxicity

To confirm cell integrity during the pharmacological assays,
cytotoxicity was assessed using the ToxiLight bioassay (Lonza,
Basel, Switzerland) according to the manufacturer's instructions.
The assay quantitatively measures the release of adenylate kinase
from damaged cells, providing a highly sensitive method of
measuring cytolysis (Crouch et al., 1993). Cells that were grown in
96-well plates were exposed to the compounds at a high

concentration of 100 mM. All of the test conditions contained 0.1%
(v:v) dimethylsulfoxide, which is non-toxic at this concentration
and was also used as a negative control. Triton X-100 (0.1%, Sig-
maeAldrich, Buchs, Switzerland) lyses cells and was used as a
positive control. After 4 h incubation at 37 "C, 10 ml of the super-
natant per well was removed and combined with 50 ml of ToxiLight
reagent, and luminescence was recorded using a Tecan Infinite 200
Pro plate reader (Tecan, M€annedorf, Switzerland).

3. Results

3.1. Interactions with serotonin receptors

Table 1 shows binding to serotonin 5-HT1A, 5-HT2A, and 5-HT2C
receptors, activation potency and efficacy at 5-HT2A and 5-HT2B
receptors, and 5-HT receptor binding ratios. All of the compounds
exhibited high binding affinity for 5-HT2A and 5-HT2C receptors
(Ki < 1 mM, with the exception of 2C-H and mescaline). N-2-
methoxybenzyl substitution further increased the average bind-
ing affinity for both 5-HT2A and 5-HT2C receptors 26- and 14-fold
(range: 6e100 and 8e32, respectively), leading to compounds
with up to 8.4-fold higher affinity for these receptors compared
with LSD. Moderate 5-HT2A over 5-HT2C receptor binding prefer-
ence was observed, with 5-HT2A/5-HT2C receptor binding ratios of
3e16 for the 2C drugs and slightly more selective ratios of 5e26 for
the NBOMe drugs. All of the compounds also potently activated 5-
HT2A receptors and typically more potently than LSD (EC50 < 1 mM,
with the exception of 2C-H, mescaline, and mescaline-NBOMe).
However, in contrast to the robust effect on binding to 5-HT2A re-
ceptors, N-2-methoxybenzyl substitution did not consistently
change the activation potency at 5-HT2A receptors and even
reduced the activation efficacy, with the exception of 2C-H. All of
the compounds potently activated the 5-HT2B receptor
(EC50 < 1 mM, with the exception of 2C-H, mescaline, mescaline-
NBOMe, and LSD). N-2-methoxybenzyl substitution increased 5-
HT2B receptor activation 5-fold (range: 0.8e18) but reduced acti-
vation efficacy. All of the 2C drugs potently bound to 5-HT1A

Fig. 1. Chemical structures of 2,5-dimethoxyphenethylamines (2C drugs) and their N-2-methoxybenzyl-substituted analogs (NBOMe drugs).
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receptors (Ki < 0.52 mM, with the exception of 2C-N andmescaline),
although none exhibited the very high affinity of LSD. N-2-
methoxybenzyl substitution decreased binding to 5-HT1A on
average 17-fold (range: 2e86). The 2C drugs preferentially bound to
5-HT2A over 5-HT1A receptors with binding ratios of 14e94, with
the exception of 2C-H and mescaline (Table 1). Receptor selectivity
was markedly increased for 5-HT2A over 5-HT1A receptors for all of
the compounds with N-2-methoxybenzyl substitution, with 5-
HT2A/5-HT1A ratios >100 for 25H-NBOMe and mescaline-NBOMe
and >1000 for all of the other NBOMe drugs.

3.2. Binding to monoamine receptors and transporters

Table 2 shows the binding affinities for monoamine receptors
and transporters. Compared with the 2C drugs, the NBOMe analogs
exhibited higher binding affinities for all receptors and trans-
porters, with the exception of TAAR1. Specifically, all of the NBOMe
drugs and LSD showed high-affinity binding to adrenergic a1A re-
ceptors (Ki < 1 mM, with the exception of mescaline-NBOMe) and
19-fold (range: 11e38) higher binding affinity compared with the
2C drugs (not including mescaline). Most of the compounds also
potently bound to a2A receptors (Ki < 1 mM, with the exception of
2C-H, 2C-N, and mescaline). N-2-methoxybenzyl substitution did
not appreciably alter a2A receptor binding. LSD was the only sub-
stance that exhibited high-affinity binding to dopamine D1-D3 re-
ceptors. Most of the 2C and NBOMe drugs showed low-affinity
binding to D2 receptors, and NBOMe drugs also showed low-affinity
binding to D2 and D3 receptors. N-2-methoxybenzyl substitution
also increased histamine H1 receptor binding 65-fold (range:
2e267) compared with the 2C analogs, resulting in high-affinity
binding for several NBOMe drugs (Table 2). All of the 2C and
NBOMe drugs showed high-affinity binding to TAAR1rat (Ki < 1 mM,

with the exception of mescaline, 25-H-NBOMe, 25-N-NBOMe, and
mescaline-NBOMe). N-2-methoxybenzyl substitution decreased
binding to TAAR1rat 4-fold (range: 2e9). Binding affinity to mono-
amine transporters was low for 2C drugs (Ki > 10 mM). N-2-
methoxybenzyl substitution increased binding to all monoamine
transporters, resulting in low-affinity interactions for most of the
NBOMe drugs (Ki < 1e10 mM, with the exception of mescaline-
NBOMe). LSD did not interact with any of the monoamine
transporters.

3.3. Monoamine uptake transporter inhibition

IC50 values for monoamine uptake inhibition are listed in
Table 3. The 2C drugs did not inhibit or only very weakly inhibited
(IC50 > 10 mM) monoamine uptake. N-2-methoxybenzyl substitu-
tion consistently enhanced monoamine uptake inhibition potency
approximately two-to 15-fold for the NET, two-to five-fold for the
DAT, and two-to 26-fold for the SERT. As a result, 25B-NBOMe, 25C-
NBOMe, 25D-NBOMe, 25E-NBOMe, 25H-NBOMe, and 25I-NBOMe
blocked the NET and/or SERT at 5e10 mM concentrations. LSD did
not inhibit any of the monoamine transporters.

3.4. Cytotoxicity

None of the compounds produced cytotoxicity after 4 h incu-
bation at 37 !C, with the exception of 25T7-NBOMe. 25T7-NBOMe
became toxic after 4 h incubation at 100 mM (but not 10 mM).
Because the assays lasted less than 4 h, this toxicity did not affect
the data.

Table 1
Serotonin receptor interactions.

5-HT1A 5-HT2A 5-HT2B 5-HT2C Selectivity
(binding ratios)

Receptor
binding
Ki ± SD [mM]

Receptor
binding
Ki ± SD [mM]

Activation
potency
EC50 ± SD [mM]

Activation
efficacy %
maximum ± SD

Activation
potency
EC50 ± SD [mM]

Activation
efficacy %
maximum ± SD

Receptor
binding
Ki ± SD [mM]

5-HT2A/
5-HT1A

5-HT2A/
5-HT2C

2Cs
2C-B 0.24 ± 0.04 0.0086 ± 0.003 0.08 ± 0.02 45 ± 7 0.13 ± 0.06 89 ± 13 0.047 ± 0.009 28 4.7
2C-C 0.19 ± 0.01 0.0130 ± 0.005 0.20 ± 0.06 49 ± 10 0.28 ± 0.11 81 ± 14 0.090 ± 0.026 15 6.9
2C-D 0.44 ± 0.01 0.0324 ± 0.005 0.35 ± 0.18 41 ± 3 0.23 ± 0.07 77 ± 17 0.15 ± 0.03 14 4.6
2C-E 0.36 ± 0.04 0.0105 ± 0.001 0.11 ± 0.03 40 ± 2 0.19 ± 0.04 66 ± 7 0.10 ± 0.02 34 10
2C-H 0.07 ± 0.02 1.6 ± 0.3 9.4 ± 0.5 28 ± 5 6.2 ± 2.8 46 ± 18 4.1 ± 0.9 0.04 2.6
2C-I 0.18 ± 0.01 0.0035 ± 0.001 0.06 ± 0.03 45 ± 8 0.15 ± 0.10 70 ± 18 0.040 ± 0.009 51 11
2C-N 2.2 ± 0.1 0.0235 ± 0.011 0.17 ± 0.04 48 ± 10 0.73 ± 0.09 74 ± 20 0.37 ± 0.02 94 16
2C-P 0.11 ± 0.04 0.0081 ± 0.001 0.09 ± 0.06 63 ± 5 0.13 ± 0.01 72 ± 18 0.040 ± 0.005 14 4.9
2C-T-2 0.37 ± 0.04 0.0090 ± 0.002 0.08 ± 0.03 67 ± 16 0.13 ± 0.09 75 ± 14 0.069 ± 0.018 41 7.7
2C-T-4 0.47 ± 0.13 0.0279 ± 0.012 0.22 ± 0.13 87 ± 7 0.16 ± 0.06 68 ± 10 0.18 ± 0.07 17 6.5
2C-T-7 0.52 ± 0.05 0.0065 ± 0.002 0.13 ± 0.05 76 ± 10 0.35 ± 0.25 45 ± 10 0.039 ± 0.013 80 6.0
Mescaline 4.6 ± 0.4 6.3 ± 1.8 10 ± 1.8 56 ± 15 >20 NA 17 ± 2.0 0.73 2.7
N-benzylphenylethylamines (NBOMes)
25B-NBOMe 3.6 ± 0.3 0.0005 ± 0.0000 0.04 ± 0.01 28 ± 7 0.01 ± 0.01 19 ± 5 0.0062 ± 0.0022 7200 12
25C-NBOMe 5.0 ± 0.1 0.0007 ± 0.0002 0.15 ± 0.06 32 ± 2 0.10 ± 0.13 16 ± 5 0.0052 ± 0.0026 7143 7.4
25D-NBOMe 7.1 ± 0.5 0.0010 ± 0.0004 0.09 ± 0.03 27 ± 7 0.10 ± 0.07 22 ± 6 0.013 ± 0.004 7100 13
25E-NBOMe 3.5 ± 0.2 0.0006 ± 0.0001 0.16 ± 0.11 28 ± 15 0.06 ± 0.03 26 ± 10 0.0072 ± 0.0029 5833 12
25H-NBOMe 6.0 ± 0.7 0.0164 ± 0.0014 0.49 ± 0.07 38 ± 10 0.34 ± 0.14 11 ± 5 0.13 ± 0.02 366 7.9
25I-NBOMe 1.8 ± 0.3 0.0006 ± 0.0002 0.24 ± 0.12 27 ± 7 0.13 ± 0.08 32 ± 12 0.0046 ± 0.0020 3000 7.7
25N-NBOMe 4.2 ± 0.6 0.0008 ± 0.0002 0.07 ± 0.03 34 ± 3 0.07 ± 0.03 26 ± 14 0.021 ± 0.003 5250 26
25P-NBOMe 1.8 ± 0.1 0.0011 ± 0.0002 0.22 ± 0.11 42 ± 7 0.17 ± 0.13 23 ± 8 0.0060 ± 0.0015 1636 5.5
25T2-NBOMe 2.2 ± 0.2 0.0006 ± 0.0002 0.10 ± 0.03 38 ± 6 0.04 ± 0.04 31 ± 12 0.0065 ± 0.0006 3667 11
25T4-NBOMe 2.5 ± 0.3 0.0016 ± 0.0004 0.13 ± 0.05 46 ± 8 0.20 ± 0.10 27 ± 11 0.016 ± 0.005 1563 10
25T7-NBOMe 1.8 ± 0.2 0.0011 ± 0.0002 0.26 ± 0.16 41 ± 6 0.31 ± 0.23 14 ± 5 0.0064 ± 0.0013 1636 5.8
Mescaline-NBOMe 21 ± 5.7 0.14 ± 0.03 3.0 ± 0.6 33 ± 11 >20 NA 0.64 ± 0.04 147 4.5
LSD 0.0030 ± 0.0005 0.0042 ± 0.0013 0.26 ± 0.15 28 ± 10 12 ± 0.35 71 ± 31 0.015 ± 0.003 0.71 3.6

Values are Ki given as mM (mean ± SD); NA, not assessed.
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Table 2
Monoamine transporter and receptor-binding affinities.

a1A a2A D1 D2 D3 H1 TAAR1rat TAAR1mouse NETa DATb SERTc

2C-series
2C-B 8.2 ± 2.2 0.32 ± 0.01 12 ± 1.2 2.2 ± 0.3 10 ± 2.0 14 ± 0.5 0.09 ± 0.01 3.0 ± 0.3 31 ± 6.6 >30 9.7 ± 0.3
2C-C 13 ± 1.9 0.53 ± 0.06 13 ± 1.0 2.1 ± 0.4 17 ± 0.3 24 ± 0.9 0.11 ± 0.02 4.1 ± 0.3 >30 >30 24 ± 4.1
2C-D 12 ± 3.2 0.29 ± 0.03 24 ± 5.2 7.1 ± 1.7 >17 >25 0.15 ± 0.03 3.5 ± 0.1 >30 >30 31 ± 2.2
2C-E 7.4 ± 2.8 0.10 ± 0.02 15 ± 0.6 3.2 ± 1.0 19 ± 4.4 >25 0.07 ± 0.01 1.2 ± 0.1 33 ± 2.7 >30 29 ± 4.4
2C-H 7.9 ± 1.8 1.0 ± 0.05 >14 9.0 ± 1.5 >17 >25 0.90 ± 0.16 11 ± 2.2 >30 >30 >30
2C-I 5.1 ± 1.1 0.07 ± 0.01 13 ± 4.1 2.7 ± 0.58 5.0 ± 0.1 6.1 ± 0.5 0.12 ± 0.02 3.3 ± 0.1 15 ± 3.5 >30 4.9 ± 0.3
2C-N >15 1.3 ± 0.2 19 ± 5.2 6.1 ± 2.7 20 ± 3.1 >25 0.34 ± 0.02 >20 >30 >30 32 ± 3.1
2C-P 3.5 ± 0.5 0.09 ± 0.01 8.4 ± 0.9 2.3 ± 0.7 5.2 ± 0.5 21 ± 3.2 0.02 ± 0.01 0.28 ± 0.03 18 ± 2.4 40 ± 4.0 19 ± 0.2
2C-T-2 17 ± 6.4 0.23 ± 0.01 15 ± 1.7 5.1 ± 1.0 11 ± 0.6 >25 0.04 ± 0.01 2.2 ± 0.6 >30 >30 13 ± 0.6
2C-T-4 11 ± 4.4 0.13 ± 0.04 20 ± 6.3 16 ± 2.1 19 ± 1.4 >25 0.05 ± 0.01 4.5 ± 0.9 17 ± 1.1 >30 >30
2C-T-7 13 ± 5.0 0.18 ± 0.001 15 ± 3.1 5.0 ± 0.8 7.5 ± 0.3 >25 0.03 ± 0.01 0.56 ± 0.1 2 27 ± 9.8 34 ± 6.2 12 ± 0.7
Mescaline >15 1.4 ± 0.2 >14 >10 >17 >25 3.3 ± 0.5 11 ± 3.6 >30 >30 >30
N-benzylphenylethylamines (NBOMes)
25B-NBOMe 0.43 ± 0.10 0.43 ± 0.03 9.3 ± 2.0 0.84 ± 0.27 2.7 ± 0.3 0.08 ± 0.02 0.28 ± 0.002 4.5 ± 1.7 1.1 ± 0.3 7.2 ± 0.5 0.84 ± 0.06
25C-NBOMe 0.81 ± 0.26 0.56 ± 0.08 12 ± 1.6 1.6 ± 0.4 3.5 ± 0.3 0.09 ± 0.01 0.52 ± 0.10 15 ± 1.9 1.6 ± 0.6 14 ± 3 1.5 ± 0.1
25D-NBOMe 0.70 ± 0.26 0.37 ± 0.05 8.7 ± 1.4 2.6 ± 0.4 6.4 ± 0.9 0.63 ± 0.06 0.81 ± 0.10 13 ± 4.4 2.2 ± 0.3 14 ± 2.4 1.4 ± 0.2
25E-NBOMe 0.53 ± 0.20 0.26 ± 0.07 4.9 ± 0.9 1.5 ± 0.2 3.2 ± 0.2 1.4 ± 0.2 0.26 ± 0.03 1.1 ± 0.3 3.0 ± 0.2 8.1 ± 0.6 1.7 ± 0.1
25H-NBOMe 0.55 ± 0.05 0.53 ± 0.04 14 ± 2.4 7.7 ± 1.7 20 ± 4.5 4.1 ± 0.4 1.4 ± 0.2 >20 5.5 ± 0.9 35 ± 1.7 2.3 ± 0.1
25I-NBOMe 0.37 ± 0.02 0.32 ± 0.01 6.7 ± 1.1 0.90 ± 0.13 2.1 ± 0.2 0.09 ± 0.01 0.44 ± 0.07 4.0 ± 0.8 1.3 ± 0.5 5.4 ± 0.5 1.0 ± 0.2
25N-NBOMe 0.85 ± 0.11 0.59 ± 0.07 18 ± 6.7 2.4 ± 0.1 4.5 ± 0.8 0.21 ± 0.04 2.2 ± 0.1 >20 7.2 ± 0.5 13 ± 1.2 5.1 ± 0.3
25P-NBOMe 0.31 ± 0.08 0.41 ± 0.07 3.1 ± 0.1 0.87 ± 0.08 2.3 ± 0.3 1.7 ± 0.2 0.06 ± 0.01 0.24 ± 0.03 2.8 ± 0.3 4.7 ± 0.4 5.2 ± 0.4
25T2-NBOMe 0.55 ± 0.17 0.45 ± 0.04 7.7 ± 0.4 1.6 ± 0.3 3.0 ± 0.4 0.49 ± 0.04 0.35 ± 0.02 4.2 ± 0.6 5.9 ± 0.4 8.6 ± 1.8 5.0 ± 0.2
25T4-NBOMe 0.58 ± 0.25 0.26 ± 0.03 4.9 ± 0.5 1.7 ± 0.5 1.9 ± 0.3 5.4 ± 0.3 0.12 ± 0.02 1.6 ± 0.4 4.3 ± 0.8 6.2 ± 1.5 8.1 ± 0.3
25T7-NBOMe 0.34 ± 0.06 0.36 ± 0.02 4.1 ± 0.2 1.0 ± 0.2 1.4 ± 0.2 1.2 ± 0.1 0.09 ± 0.03 1.0 ± 0.2 3.7 ± 1.1 4.8 ± 1.4 3.2 ± 0.2
Mescaline-NBOMe 3.0 ± 1.2 0.81 ± 0.05 >14 9.6 ± 2.6 >17 14 ± 1.2 13 ± 5.6 >20 46 ± 7.5 >30 24 ± 1.3
LSD 0.67 ± 0.18 0.012 ± 0.002 0.31 ± 0.1 0.025 ± 0.0004 0.096 ± 0.005 1.1 ± 0.2 0.45 ± 0.05 10 ± 2.9 >30 >30 >30

a Values are Ki given as mM (mean ± SD). Comparative Ki values for known monoamine transporter inhibitors were: 0.015 ± 0.01 mM for reboxetine at the NET.
b 0.06 ± 0.01 mM for methylphenidate at the DAT.
c 0.005 ± 0.001 mM for citalopram at the SERT.

Table 3
Monoamine transporter inhibition.

NET DAT SERT

IC50 [mM] (95% CI) IC50 [mM] (95% CI) IC50 [mM] (95% CI)

2C-series
2C-B 44 (33e58) 231 (196e271) 18 (12e27)
2C-C 93 (64e137) 305 (243e383) 74 (58e95)
2C-D 45 (28e72) 626 (536e730) 77 (60e98)
2C-E 26 (18e37) 275 (221e343) 62 (52e74)
2C-H 125 (97e161) 857 (752e976) 311 (238e408)
2C-I 22 (16e31) 126 (103e155) 13 (10e16)
2C-N 287 (223e369) >900 154 (112e213)
2C-P 94 (73e120) 198 (136e287) 30 (22e41)
2C-T-2 153 (152e154) 332 (332e332) 62 (62e62)
2C-T-4 134 (92e195) 294 (242e357) 113 (92e138)
2C-T-7 135 (115e163) 261 (210e324) 44 (36e52)
Mescaline >900 841 (590e1200) 367 (291e462)
N-benzylphenylethylamines (NBOMes)
25B-NBOMe 6.7 (5.6e8.1) 117 (89e154) 7.1 (5.7e8.8)
25C-NBOMe 5.9 (4.4e7.8) 70 (56e87) 7.3 (5.6e9.6)
25D-NBOMe 4.0 (3.0e5.3) 106 (81e140) 3.9 (2.6e5.7)
25E-NBOMe 11 (8.3e14) 100 (88e112) 8.3 (6.2e11)
25H-NBOMe 10 (7.8e13) 120 (101e144) 12 (9.7e14)
25I-NBOMe 10 (7.4e14) 65 (46e89) 6.8 (4.8e9.5)
25N-NBOMe 33 (25e44) 245 (194e310) 20 (15e26)
25P-NBOMe 14 (11e16) 82 (61e110) 12 (9.3e16)
25T2-NBOMe 25 (15e42) 67 (54e84) 20 (14e29)
25T4-NBOMe 28 (22e35) 58 (43e80) 14 (11e18)
25T7-NBOMe 34 (29e40) 55 (45e68) 17 (13e23)
Mescaline-NBOMe 89 (61e130) 449 (303e665) 85 (63e116)
LSD >900 >900 >900
Monoamine transporter inhibitors
Reboxetine 0.036 (0.030e0.044) ns ns
Methylphenidate ns 0.12 (0.09e0.16) ns
Citalopram ns ns 0.045 (0.037e0.057)

Values are means of three to four independent experiments and 95% confidence intervals (CI). ns, not shown.
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4. Discussion

We pharmacologically characterized the in vitro receptor inter-
action profiles of novel recreationally abused hallucinogenic N-2-
methoxybenzyl-substituted phenethylamines compared with
their 2C phenethylamine analogs. Both the NBOMe and 2C drugs
potently interacted with serotonin 5-HT2A, 5-HT2B, 5-HT2C re-
ceptors and TAAR1rat. We also found several consistent and
potentially important structure-affinity relationships for the
NBOMe drugs, their 2C analogs, and several targets. Specifically, N-
2-methoxybenzyl substitution increased the binding affinity for
and/or activation potency at serotonergic 5-HT2A, 5-HT2B, 5-HT2C
receptors, adrenergic a1 receptors, dopaminergic D1-3 receptors,
histaminergic H1 receptors, and monoamine transporters but
reduced binding to 5-HT1A receptors and TAAR1.

The 5-HT2A receptor mediates hallucinogenic drug properties
(Halberstadt and Geyer, 2011; Nelson et al., 1999; Nichols, 2004;
Vollenweider et al., 1998) and is therefore considered the key
target of hallucinogenic phenethylamines, including 2C and
NBOMe drugs (Braden et al., 2006; Halberstadt, 2015; Halberstadt
and Geyer, 2014). N-2-methoxybenzyl substitution consistently
increased the already high in vitro affinity of 2C drugs for 5-HT2A
receptors, in agreement with data on 25H-NBOMe and 25I-NBOMe
vs. 2C-H and 2C-I, respectively (Braden et al., 2006; Heim, 2004). All
of the NBOMe drugs exhibited low nanomolar or even sub-
nanomolar affinity for 5-HT2A receptors, confirming studies on
25B-NBOMe, 25C-NBOMe, 25H-NBOMe, 25I-NBOMe, and 25B-
NBOMe that used rat receptors (Braden et al., 2006; Ettrup et al.,
2011, 2010; Nichols et al., 2015) or human receptors (Braden
et al., 2006; Hansen et al., 2014; Nichols et al., 2015). Generally,
5-HT2A receptor affinity correlates with hallucinogenic drug po-
tency in humans (Halberstadt, 2015; Titeler et al., 1988), and
NBOMe drugs can be expected to be extremely potent hallucino-
gens in vivo. Indeed, higher incidences of hallucinations and de-
lusions have been reported in patients with NBOMe compared with
2C drug intoxication (Forrester, 2013, 2014; Srisuma et al., 2015).

Surprisingly, the consistent six-to 100-fold increase in 5-HT2A
receptor affinity that was produced by N-2-methoxybenzyl substi-
tution did not translate into a similar increase in 5-HT2A receptor
activation potency, and the activation efficacy was even reduced
compared with the 2C drugs in our functional assay. In contrast,
others found that N-2-methoxybenzyl substitution in 2C-H or 2C-I
increased the potency for rat or human 5-HT2A receptor activation in
the inositol phosphate hydrolysis assay in vitro (Braden et al., 2006).
However, high-affinity agonist binding does not correlate well with
inositol phosphate turnover (Acuna-Castillo et al., 2002; Roth et al.,
1997), suggesting that additional ligandereceptor interactions
contribute to receptor activation (Halberstadt, 2015; Nichols, 2004).
Additionally, marked discrepancies between inositol phosphate
hydrolysis activation and other in vitro assays and the in vivo effects
of hallucinogens in laboratory animals or humans are well recog-
nized (Nichols, 2004; Saez et al., 1994; Villalobos et al., 2004). Thus,
although most of the effects of hallucinogens are clearly mediated
by 5-HT2A receptor activation (Halberstadt, 2015; Nichols, 2004),
the signaling pathways that mediate these effects have not yet been
conclusively identified (Halberstadt, 2015).

Currently unknown pharmacokinetic characteristics of NBOMe
drugs may also influence drug potency in vivo. For example, dif-
ferences in the in vivo brain binding properties of N-2-
methoxybenzyl-substituted positron emission tomography tracers
were reported for substances with similar in vitro 5-HT2A receptor
binding properties (Ettrup et al., 2011). Most importantly, NBOMe
drugs are used recreationally at higher doses than LSD (Bersani
et al., 2014; Halberstadt and Geyer, 2014), despite their higher 5-
HT2A receptor binding affinities. The lower in vivo potency of

orally administered NBOMe drugs could be explained by their
lower hepatic stability that reduced oral bioavailability compared
with 2C drugs (Leth-Petersen et al., 2014). Thus, high 5-HT2A re-
ceptor binding or activation in vitro is only one factor that poten-
tially predicts hallucinogen potency in vivo. In the first in vivo
studies that evaluated NBOMe drugs in mice, 25I-NBOMe was 14-
times more potent than its analog 2C-I in inducing 5-HT2A
receptor-mediated head-twitch responses (Halberstadt and Geyer,
2014), consistent with the higher 5-HT2A receptor binding in the
present study. In contrast, 25I-NBOMe was slightly less potent in
inducing head twitches than expected, based on its high 5-HT2
binding potency (Nichols et al., 2015) and compared with LSD
(Halberstadt and Geyer, 2013, 2014), consistent with the similar 5-
HT2A receptor activation potency of the two compounds in the
present study but not reflecting the higher receptor binding po-
tency of 25I-NBOMe compared with LSD. Additionally, 2-([2-(4-
cyano-2,5-dimethoxyphenyl)ethylamino]-methyl)phenol (25CN-
NBOH), which is structurally similar to the NBOMe drugs that were
tested in the present study, was a more potent 5-HT2A receptor
agonist than 2,5-dimethoxy-4-iodoamphetamine (DOI) in vitro
(Hansen et al., 2014) but less effective in inducing head-twitch
responses in mice (Fantegrossi et al., 2015). Thus, more in vivo
studies are needed to determine the in vivo potency of novel
NBOMe drugs.

Within the 2C or NBOMe drug series, para-phenyl substitutions
compared with 2C-H or 25H-NBOMe, respectively, enhanced 5-HT2
receptor binding and activation potency, which was expected based
on previous studies (Blaazer et al., 2008; Eshleman et al., 2014;
Hansen et al., 2014; Shulgin and Shulgin, 1991). Interestingly, 5-
HT2A receptor activation potency increased with the size of the 4-
substituent (2C-D < 2C-E < 2C-P) within the 2C series (Blaazer
et al., 2008; Eshleman et al., 2014), whereas it decreased
within the NBOMe series (25D-NBOMe > 25-E-NBOMe >
25P-NBOMe). Similarly, activation potency increased with halogen
size for the 4-halogen-substituted 2C drugs (2C-C < 2C-B < 2C-I)
but not consistently for the NBOMe analogs. Thus, N-2-
methoxybenzyl substitution interacted with 4-phenyl substitu-
tion to affect 5-HT2A receptor activation potency.

In the present study, all of the compounds were partial agonists
at 5-HT2A receptors, but receptor activation efficacy was consis-
tently decreased for the N-2-methoxybenzyl-substituted com-
pounds in the assay used in the present study. The high 5-HT2A
receptor affinity and reduction of partial activation efficacy of the
NBOMe drugs suggest 5-HT2A antagonistic properties of these
compounds, as similarly described for LSD (Nichols, 2004). In fact,
2C drugs have been shown to act as 5-HT2A receptor antagonists
that inhibit 5-HT-induced currents in Xenopus laevis oocytes
(Villalobos et al., 2004). Therefore, 5-HT2A receptor antagonism has
been suggested to also play a role in the mechanism of action of
hallucinogens (Villalobos et al., 2004). Alternatively, other re-
ceptors, such as 5-HT2C and 5-HT1 receptors, may contribute to the
mechanism of action of hallucinogens, or signaling pathways other
than inositol phosphate hydrolysis may be involved (Nichols,
2004). Consistently, N-2-methoxybenzyl substitution increased
binding affinity for 5-HT2C receptors. All of the NBOMe drugs very
potently bound to 5-HT2C receptors, with only low (five-to 26-fold)
selectivity for 5-HT2A receptors over 5-HT2C receptors in the bind-
ing assay, as previously shown for some NBOMe drugs (Ettrup et al.,
2010; Hansen et al., 2014) and generally observed with hallucino-
genic phenethylamines (Eshleman et al., 2014; Glennon et al.,
1992). N-2-methoxybenzyl substitution only slightly increased 5-
HT2A over 5-HT2C receptor binding selectivity. In contrast, N-2-
methoxybenzyl substitution consistently decreased 5-HT1A recep-
tor binding, thus markedly altering 5-HT1A over 5-HT2A receptor
binding ratios for the NBOMe drugs compared with the 2C drugs.
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Thus, NBOMe drugs are unlike LSD, which is a potent 5-HT1A re-
ceptor ligand and full agonist at 5-HT1A receptors (Nichols, 2004).
Importantly, 5-HT1A receptors have been shown to contribute to
the discriminative stimulus effects of some hallucinogens
(Halberstadt, 2015; Nichols, 2004). Additionally, 5-HT1A antago-
nism markedly enhanced the hallucinogenic effects of DMT in
humans (Strassman, 1996). Accordingly, 5-HT1A receptor stimula-
tion has been hypothesized to counteract hallucinogenic activity
(Halberstadt and Geyer, 2011; Nichols, 2004), and lower 5-HT1A
receptor stimulation for the NBOMe drugs may further enhance
their hallucinogenic drug properties. N-2-methoxybenzyl substi-
tution increased 5-HT2B activation, but this is likely not relevant for
the psychotropic properties of the NBOMe drugs (Blaazer et al.,
2008). However, 5-HT2B receptors have been implicated in
substance-induced heart valve fibrosis (Bhattacharyya et al., 2009;
Setola et al., 2003), and the 2C and NBOMe drugs may therefore
have cardiac toxicity if used chronically.

Because NBOMe drugs produce marked sympathomimetic car-
diovascular effects in humans (Wood et al., 2015), we tested
whether these drugs interact with monoamine transporters simi-
larly to cocaine or amphetamines (Simmler et al., 2013, 2014a) and
other novel psychoactive substances (Rickli et al., 2015a, 2015b;
Simmler et al., 2014a; Simmler et al., 2014b). N-2-methoxybenzyl
substitution enhanced monoamine transporter inhibition
compared with the 2C drugs. However, the potency of even the
most potent NBOMe drugs at the NETand SERT was low and only in
the 5e10 mM range, indicating that amphetamine-type monoamine
transporter interactions contribute only little to the cardio-
stimulant effects of NBOMe drugs.

In addition to their very high 5-HT2A binding affinity, we found
that the NBOMe drugs and LSD had high binding affinity for
adrenergic a1A receptors. 2C drugs have been shown to contract
blood vessels (Saez et al., 1994) through direct interactions with
serotonergic 5-HT2 and adrenergic a1 receptors (Lobos et al., 1992).
The vasoconstrictive potency of 2C drugs does not appear to
correlate well with hallucinogenic potency in humans (Saez et al.,
1994) or 5-HT2A receptor activation. For example, 2C-D had
higher affinity for 5-HT2A receptors compared with 2C-H in the
present study but lower potency in contracting the rat aorta (Saez
et al., 1994). Additionally, 2C-N, which exhibited high affinity for 5-
HT2A receptors but not a1 receptors in the present study, did not
present vasoconstrictive activity (Saez et al., 1994). These findings
and the relatively high affinity of the NBOMe drugs for adrenergic
a1 receptors indicate that these receptors might contribute to the
stimulant-type cardiovascular effects that are typically seen in
cases of NBOMe drug intoxication (Srisuma et al., 2015;Wood et al.,
2015). Additionally, the behavioral effects of 25I-NBOMe in mice
showed a rapid peak (withinminutes), whereas the response to 2C-
I was relatively flat (Halberstadt and Geyer, 2014). Thus, such
substance characteristics as the higher lipophilicity of NBOMe
drugsmay further accentuate the clinical drug response. As a result,
there is likely a high risk of overdose with NBOMe drugs, and
several fatalities have been reported (Hill et al., 2013; Srisuma et al.,
2015; Walterscheid et al., 2014; Wood et al., 2015).

Both the 2C and NBOMe drugs bound to TAAR1, with few ex-
ceptions. N-2-methoxybenzyl substitution slightly decreased TAAR1
binding affinity as previously shown for other N-substitutions in
phenethylamines (Lewin et al., 2008). TAAR1 modulates psychotro-
pic drug actions. Importantly, methylenedioxymethamphetamine
inhibits its own stimulant effects via TAAR1 activation (Di Cara et al.,
2011). Whether similar TAAR1-mediated “auto-inhibition” exists for
hallucinogens remains to be determined. One hypothesis is that the
lower TAAR1 activity that is associated with N-2-methoxybenzyl
substitution may also enhance psychostimulant drug properties
in vivo.

LSD exhibited high affinity for D1, D2 and D3 receptors, as pre-
viously shown (Watts et al., 1995) and in contrast to phenethyl-
amines. D2 receptors have been shown to contribute to the
interoceptive effects of LSD in rats (Halberstadt and Geyer, 2013,
2014). Although N-2-methoxybenzyl substitution increased D1-3
receptor binding affinity compared with 2C drugs, NBOMe drugs
were less potent at D1-3 receptors compared with LSD, indicating
that LSD has a unique mixed dopaminergic-serotonergic binding
profile.

In summary, NBOMe drugs are highly potent 5-HT2A receptor
ligands and partial 5-HT2A receptor agonists, similar to the classic
hallucinogen LSD, but with 5-HT2 over 5-HT1 receptor selectivity,
unlike LSD. NBOMe drugs bind to adrenergic a1 receptors and
TAAR1, similar to LSD, but do not bind to dopaminergic D1-3 re-
ceptors, unlike LSD. The in vitro binding profiles of NBOMe drugs
suggest that they have higher hallucinogenic effects and potency
compared with their parent 2C drugs and are similar to the very
potent hallucinogen LSD because of their similar or even higher
potency at 5-HT2A receptors. At higher doses, NBOMe drugs may
also exhibit additional stimulant properties through a1 receptor
interactions.
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a b s t r a c t

Background: 4-Thio-substituted phenethylamines (2C-T drugs) are potent psychedelics with poorly
defined pharmacological properties. Because of their psychedelic effects, 2C-T drugs are sometimes sold
as new psychoactive substances (NPSs). The aim of the present study was to characterize the monoamine
receptor and transporter interaction profiles of a series of 2C-T drugs.
Methods: We determined the binding affinities of 2C-T drugs at monoamine receptors and transporters in
human cells that were transfected with the respective receptors or transporters. We also investigated the
functional activation of serotonergic 5-hydroxytryptamine 2A (5-HT2A) and 5-HT2B receptors, activation of
human trace amine-associated receptor 1 (TAAR1), and inhibition of monoamine uptake transporters.
Results: 2C-T drugs had high affinity for 5-HT2A and 5-HT2C receptors (1e54 nM and 40e350 nM,
respectively). With activation potencies of 1e53 nM and 44e370 nM, the drugs were potent 5-HT2A
receptor and 5-HT2B receptor, respectively, partial agonists. An exception to this were the benzylth-
iophenethylamines, which did not potently activate the 5-HT2B receptor (EC50 > 3000 nM). Furthermore,
the compounds bound to serotonergic 5-HT1A and adrenergic receptors. The compounds had high af-
finity for the rat TAAR1 (5e68 nM) and interacted with the mouse but not human TAAR1. The 2C-T drugs
did not potently interact with monoamine transporters (Ki > 4000 nM).
Conclusion: The receptor binding profile of 2C-T drugs predicts psychedelic effects that are mediated by
potent 5-HT2 receptor interactions.
This article is part of the Special Issue entitled ‘Designer Drugs and Legal Highs.’

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Substituted phenethylamines are a class of drugs that includes
several potent psychedelics that exert their effects through in-
teractions with the serotonergic 5-hydroxytryptamine 2 (5-HT2)
receptor site (Glennon et al., 1982,1984; Nelson et al., 1999; Nichols,
2004; Titeler et al., 1988). Many psychedelic phenethylamines were
first synthesized by Alexander Shulgin during the 1970s and 1980s
and were described in the book PiHKAL: A Chemical Love Story
(Shulgin and Shulgin, 1995). 2C drugs are a subfamily of substituted
phenethylamines, consisting of 2,5-dimethoxy-4-substituted phe-
nethylamines. The term 2C refers to the two carbon atoms between
the benzene ring and amino group (Shulgin and Shulgin, 1995).
Originally proposed as psychotropic agents for psychotherapy
(Shulgin and Shulgin, 1995; Shulgin and Carter, 1975), 2C drugs are
now popular among recreational drug users because of their psy-
chedelic and entactogenic properties (de Boer and Bosman, 2004;

Abbreviations: 4-bromo-2,5-dimethoxyphenethylamine, 2C-B; 2,5-dimethoxy-
4-methylthiophenethylamine, 2C-T-1; 2,5-dimethoxy-4-(b-methallyl)thio-
phenethylamine, 2C-T-3; 2,5-dimethoxy-4-isopropylthiophenethylamine, 2C-T-4;
2,5-dimethoxy-4-propylthiophenethylamine, 2C-T-7; 2,5-dimethoxy-4-
allylthiophenethylamine, 2C-T-16; 2,5-dimethoxy-4-n-butylthiophenethylamine,
2C-T-19; 2,5-dimethoxy-4-(2,2-difluoroethylthio)phenethylamine, 2C-T-21.5; 2,5-
dimethoxy-4-(2,2,2-trifluoroethylthio)phenethylamine, 2C-T-22; 2,5-dimethoxy-4-
isobutylthiophenethylamine, 2C-T-25; 2,5-dimethoxy-4-
benzylthiophenethylamine, 2C-T-27; 2,5-dimethoxy-4-(3-fluoropropylthio)phene-
thylamine, 2C-T-28; 2,5-dimethoxy-4-(4-fluorobutylthio)phenethylamine, 2C-T-30;
2,5-dimethoxy-4-(4-trifluoromethylbenzylthio)phenethylamine, 2C-T-31; 2,5-
dimethoxy-4-(3-methoxybenzylthio)phenethylamine, 2C-T-33; 5-
hydroxytryptamine (serotonin), 5-HT; dopamine, DA; dopamine transporter, DAT;
fluorescence imaging plate reader, FLIPR; high-performance liquid chromatography,
HPLC; lysergic acid diethylamide, LSD; norepinephrine, NE; norepinephrine trans-
porter, NET; new psychoactive substance, NPS; serotonin transporter, SERT; trace
amine-associated receptor 1, TAAR1.
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Gonzalez et al., 2015). Today, the Internet appears to be the main
source for both acquiring information on and purchasing 2C drugs
and other NPSs (Brandt et al., 2014; Orsolini et al., 2017; Schifano
et al., 2005). Although classic 2C drugs are considered physiologi-
cally safe, several incidences, including sympathomimetic toxicity,
psychosis, and death, have been documented (Bosak et al., 2013;
Curtis et al., 2003; Huang and Bai, 2011; Miyajima et al., 2008;
Stoller et al., 2017). Additionally, several 2C fatalities have been
reported in themedia (Dean et al., 2013). Moreover, newly emerged
highly potent phenethylamine hallucinogens, including N-(2-
methoxybenzyl)-2,5-dimethoxy-4-substituted (“NBOMe”) phene-
thylamines, were found to be unexpectedly toxic and recently
associated with several fatalities (Nichols, 2016; Nikolaou et al.,
2015; Poklis et al., 2014; Rose et al., 2013; Suzuki et al., 2015). We
previously reported the receptor and transporter interaction pro-
files of 2C drugs compared with their NBOMe analogs (Rickli et al.,
2015). The sulfur-containing 2C drugs (2C-T-2, 2C-T-4, and 2C-T-7)
that were included in the study proved to be potent agonists at 5-
HT2 receptors (Rickli et al., 2015). Several other compounds of the
2C-T series have been described (Shulgin and Shulgin, 1995;
Trachsel, 2003), but little information is available regarding their
interactions with monoamine receptors and transporters. On
Internet drug discussion websites such as bluelight.org, the most
commonly discussed 2C-T drugs are 2C-T-2, 2C-T-4, 2C-T-7, and 2C-
T-21. Other compounds of the series are only sporadically
mentioned and their use does currently not seem to bewidespread.
However, NPSs constantly emerge and it is possible that several
other 2C-Tcompoundswill appear on the drugmarket in the future.

In the present study, we determined and compared the mono-
amine receptor and transporter affinities of 14 compounds of the
2C-T series (Fig. 1). The numbering of the compounds of the 2C-T
series describes the sequence of construction and has no structural
relationship (Shulgin and Shulgin, 1995). 2C-T-3 was first named
2C-T-20; however, because its amphetamine analog 2,5-
dimethoxy-4-(beta-methallylthio)amphetamine was originally
named Aleph-3, 2C-T-20 was later renamed 2C-T-3 to maintain
consistency between the 2C-T and Aleph series (Shulgin and
Shulgin, 1995). The unusual number of 2C-T-21.5 is based on the
fact that with its difluoroethylthio substitution, 2C-T-21.5 lies be-
tween the mono-fluorinated 2C-T-21 and tri-fluorinated 2C-T-22
(Shulgin and Shulgin, 1995).

2. Material and methods

2.1. Drugs

The 2C-T drugs were synthesized as hydrochlorides as described
previously (Shulgin and Shulgin, 1995; Trachsel, 2003) and pro-
vided by ReseaChem GmbH. High-performance liquid chromatog-
raphy (HPLC) purity was >98.5%. 4-Bromo-2,5-
dimethoxyphenethylamine (2C-B) hydrochloride, D-methamphet-
amine hydrochloride, and lysergic acid diethylamide (LSD) were
purchased from Lipomed (Arlesheim, Switzerland), with high-
performance liquid chromatography (HPLC) purity > 98.5%.

2.2. 5-HT1A and 5-HT2A receptor radioligand binding assays

For membrane preparations, HEK 293 cells that were transiently
transfected with the 5-HT1A or 5-HT2A receptor were released from
the culture flasks using trypsin/ethylenediaminetetraacetic acid
(EDTA), harvested, washed twice with ice-cold phosphate-buffered
saline (PBS; without Ca2þ and Mg2þ), pelleted at 1000 rotations per
minute (rpm) for 5 min at 4 "C, frozen, and stored at#80 "C. Frozen
pellets were suspended in 20ml HEPES-NaOH (20 mM, pH 7.4) that
contained 10 mM EDTA and homogenized with a Polytron (PT

6000, Kinematica, Luzern, Switzerland) at 14,000 rpm for 20 s. The
homogenates were centrifuged at 48,000 $ g for 30 min at 4 "C.
Subsequently, the supernatants were removed and discarded, and
the pellets were resuspended in 20 ml HEPES-NaOH (20 mM, pH
7.4) that contained 0.1 mM EDTA using the Polytron (20 s at
14,000 rpm). This procedure was repeated, and the final pellets
were resuspended in HEPES-NaOH that contained 0.1 mM EDTA
and homogenized using the Polytron. Typically, aliquots of 2 ml
membrane portions were stored at #80 "C. With each new mem-
brane batch, the dissociation constant (Kd) was determined by a
saturation curve.

For the competitive binding assays, [3H]-8-OH-DPAT and [3H]-
ketanserin were used as 5-HT1A and 5-HT2A receptor radioligands,
respectively, at concentrations equal or close to the Kd values.
Specific binding of the radioligands to the target receptors was
defined as the difference between total binding (binding buffer
alone) and nonspecific binding that was determined in the pres-
ence of 10 mM pindolol (for the 5-HT1A receptor radioligand) or
10 mM spiperone (for the 5-HT2A receptor radioligand). The com-
pounds were tested at a broad range of concentrations (30
pMe30 mM) in duplicate. The test compounds were diluted in
binding assay buffer at pH 7.4 (50 mM Tris/HCl, 10 mM MgCl2, and
1 mM EGTA), and dilution curves were constructed in assay
microplates (Greiner, 96-well, U-bottom, PS). Radioligand (50 ml)
and the membrane suspension (100 ml) were added to the assay
plates to a final volume of 200 ml in each well and incubated and
shaken for 30 min at room temperature. Incubations were termi-
nated by rapid filtration through Unifilter-96 plates (Packard In-
strument Company, PerkinElmer, Schwerzenbach, Switzerland)
and GF/C glass filters (PerkinElmer) that were presoaked for a
minimum of 1 h in 0.3% polyethylenimine and washed three times
with ice-cold washing buffer (50 mM Tris/HCl, pH 7.4). After the
addition of Microscint 40 (45 ml/well, PerkinElmer), the Unifilter-96
plates were sealed. After 1 h, radioactivity was counted using a
TopCount Microplate Scintillation Counter (Packard Instrument
Company). IC50 values were determined by calculating nonlinear
regression curves for a one-site model using at least three inde-
pendent 10-point concentration-response curves, run in duplicate,
for each compound. Ki (affinity) values, which correspond to the
dissociation constants, were determined using the Cheng-Prusoff
equation: Ki ¼ IC50 / (1 þ radioligand concentration / Kd). Ki
values are presented as means ± SD (in mM).

2.3. 5-HT2C receptor radioligand binding assay

For membrane preparations, HEK 293 cells that were transiently
transfected with the 5-HT2C receptor were released from the cul-
ture flasks using trypsin/EDTA, harvested, washed twice with ice-
cold PBS (without Ca2þ and Mg2þ), pelleted at 1000 rpm for
5 min at 4 "C, frozen, and stored at #80 "C. Frozen pellets were
suspended in 20 ml HEPES/NaOH (20 mM, pH 7.4) that contained
10 mM EDTA and homogenized with a Polytron (PT 6000, Kine-
matica) at 14,000 rpm for 20 s. The homogenates were centrifuged
at 48,000 $ g for 30 min at 4 "C. Subsequently, the supernatants
were removed and discarded, and the pellets were resuspended in
20 ml HEPES-NaOH (20 mM, pH 7.4) that contained 0.1 mM EDTA
using the Polytron (20 s at 14,000 rpm). This procedure was
repeated, and the final pellets were resuspended in HEPES/NaOH
that contained 0.1 mM EDTA and homogenized using the Polytron.
Typically, 2 ml aliquots of membrane portions were stored
at #80 "C. With each new membrane batch, the dissociation con-
stant (Kd) was determined by a saturation curve.

For the competitive binding assay, [3H]-mesulerginewas used as
the 5-HT2C receptor radioligand at a concentration equal or close to
the Kd value. Specific binding of the radioligand to the target
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receptor was defined as the difference between total binding
(binding buffer alone) and nonspecific binding that was deter-
mined in the presence of 10 mM mianserin. The compounds were
tested at a broad range of concentrations (30 pMe30 mM) in
duplicate. The test compounds were diluted in binding assay buffer
at pH 7.4 (50 mM Tris/HCl, 10 mM MgCl2, 1 mM EGTA, and 10 mM
pargyline), and dilution curves were constructed in 96-well white
polystyrene assay plates (Sigma-Aldrich, Buchs, Switzerland).
Membrane stocks were thawed and resuspended to a concentra-
tion of approximately 0.04 mg protein/ml binding assay buffer
using a Polytron tissue homogenizer. The membrane homogenate
(40 mg/ml) was then lightly mixed for 5e30 min with YSi-poly-L-
lysine (PerkinElmer) at 0.5 mg beads/well. The membrane/bead
mixture (50 ml) was added to each well of the assay plate that
contained the radioligand (50 ml) and the test compounds (final
volume in each well, 200 ml) to start the assay. The assay plates
were sealed, incubated for 2 h at room temperature with agitation,
and then counted in the PVT SPA counting mode of a TopCount
Microplate Scintillation Counter (Packard Instrument Company).
IC50 values were determined by calculating nonlinear regression
curves for a one-site model using at least three independent 10-
point concentration-response curves, run in duplicate, for each
compound. Ki (affinity) values, which correspond to the dissocia-
tion constants, were determined using the Cheng-Prusoff equation:
Ki ¼ IC50 / (1 þ radioligand concentration / Kd). Ki values are pre-
sented as means ± SD (in mM).

2.4. Rat and mouse TAAR1 receptor radioligand binding assays

HEK 293 cells that stably expressed rat or mouse TAAR1 were
used as described previously (Revel et al., 2011). All of the cell lines
were maintained at 37 #C and 5% CO2 in high-glucose Dulbecco's
modified Eagle's medium (DMEM) that contained 10% fetal calf
serum (heat-inactivated for 30 min at 56 #C), 1% penicillin/strep-
tomycin, and 375 mg/ml Geneticin (Gibco, Zug, Switzerland). For
membrane preparation, the cells were released from the culture
flasks using trypsin/EDTA, harvested, washed twice with ice-cold
PBS (without Ca2þ and Mg2þ), pelleted at 1000 $ g for 5 min at
4 #C, frozen, and stored at%80 #C. Frozen pellets were suspended in
buffer A (20 ml HEPES-NaOH [20 mM, pH 7.4] that contained
10 mM EDTA) and homogenized with a Polytron (PT 6000;

Kinematica) at 14,000 rpm for 20 s. The homogenate was centri-
fuged for 30 min at 48,000 $ g at 4 #C. The supernatant was
removed and discarded, and the pellet was resuspended in buffer A
using the Polytron (20 s at 14,000 rpm). The centrifugation and
removal of the supernatant was repeated, and the final pellet was
resuspended in buffer A and homogenized using the Polytron.
Typically, 2-ml aliquots of membrane portions were stored
at %80 #C. With each new membrane batch, the dissociation con-
stant (Kd) was determined by a saturation curve.

For the competitive binding assays, the TAAR1 agonist [3H]-
RO5166017 was used as a TAAR1 radioligand at a concentration
equal or close to the Kd values, which were usually around 0.7 nM
(mouse TAAR1) and 2.3 nM (rat TAAR1). Nonspecific binding was
defined as the amount of radioligand that bound in the presence of
10 mM RO5166017. Compounds were tested at a broad range of
concentrations (30 pMe30 mM) in duplicate. Compounds (20 ml/
well) were transferred to a 96-deep-well plate (TreffLab, Deger-
sheim, Switzerland), and 180 ml of binding buffer (20 mM HEPES-
NaOH, 10 mM MgCl2, and 2 mM CaCl2, pH 7.4), 300 ml of radio-
ligand, and 500 ml of membranes (resuspended at 60 mg protein/ml)
were added. The plates were incubated at 4 #C for 90 min. In-
cubations were terminated by rapid filtration through Unifilter-96
plates (Packard Instrument Company) and GF/C glass filters (Per-
kinElmer) that were presoaked for 1 h in 0.3% polyethylenimine
and washed three times with 1 ml of cold binding buffer. After the
addition of Microscint 40 (45 ml/well, PerkinElmer), the Unifilter-96
plate was sealed. After 1 h, radioactivity was counted using a
TopCount Microplate Scintillation Counter (Packard Instrument
Company). IC50 values were determined by calculating nonlinear
regression curves for a one-site model using at least three inde-
pendent 10-point concentration-response curves, run in duplicate,
for each compound. Ki (affinity) values, which correspond to the
dissociation constants, were determined using the Cheng-Prusoff
equation. Ki values are presented as means ± SD (in mM).

2.5. Adrenergic a1A and a2A receptor radioligand binding assays

CHO cells were stably transfected with the adrenergic a1A re-
ceptor and maintained at 37 #C and 5% CO2 in HAM's F12 medium
(Invitrogen) that contained 10% fetal calf serum (heat inactivated
for 30 min at 56 #C), 150 mg/ml Geneticin (Gibco, Zug, Switzerland),

Fig. 1. Structures of 4-thio-substituted phenethylamines (2C-T drugs).
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and 1% penicillin/streptomycin. CHL cells that stably expressed the
adrenergic a2A receptor were maintained at 37 !C and 5% CO2 in
high-glucose DMEM that contained 5% fetal calf serum (heat
inactivated for 30 min at 56 !C) and 250 mg/ml Geneticin (Gibco,
Zug, Switzerland).

For membrane preparations, the cells were released from the
culture flasks using trypsin/EDTA, harvested, washed twice with
ice-cold PBS (without Ca2þ and Mg2þ), pelleted at 1000 rpm for
5 min at 4 !C, frozen, and stored at #80 !C. Frozen pellets were
suspended in 20 ml HEPES-NaOH (20 mM, pH 7.4) that contained
10 mM EDTA and homogenized with a Polytron (PT 6000, Kine-
matica) at 14,000 rpm for 20 s. The homogenates were centrifuged
at 48,000 $ g for 30 min at 4 !C. Subsequently, the supernatants
were removed and discarded, and the pellets were resuspended in
20ml of HEPES-NaOH (20mM, pH 7.4) that contained 0.1mM EDTA
using the Polytron (20 s at 14,000 rpm). This procedure was
repeated, and the final pellets were resuspended in HEPES-NaOH
that contained 0.1 mM EDTA and homogenized using the Poly-
tron. Typically, 2 ml aliquots of membrane portions were stored
at #80 !C. With each new membrane batch, the dissociation con-
stant (Kd) was determined by a saturation curve.

For the competitive binding assays, [3H]-prazosin and [3H]-
rauwolscine were used as adrenergic a1A and adrenergic a2A re-
ceptor radioligands, respectively, at concentrations equal or close to
the Kd values. Specific binding of the radioligands to the target
receptors was defined as the difference between total binding
(binding buffer alone) and nonspecific binding that was deter-
mined in the presence of 10 mM chlorpromazine (for the a1A re-
ceptor radioligand) and 10 mM phentolamine (for the a2A receptor
radioligand). The compounds were tested at a broad range of
concentrations (30 pMe30 mM) in duplicate. The test compounds
were diluted in binding assay buffer (50 mM Tris/HCl, pH 7.4), and
dilution curves were constructed in assay microplates (Greiner, 96
well, U-bottom, PS). Radioligand 50 ml) and the membrane sus-
pension (100 ml) were added to the assay plates and incubated and
shaken for 1 h at room temperature. Incubations were terminated
by rapid filtration through Unifilter-96 plates (Packard Instrument
Company) and GF/C glass filters (PerkinElmer) that were presoaked
for 1 h in 0.3% polyethylenimine and washed three times with 1 ml
cold binding assay buffer. After the addition of Microscint 40 (45 ml/
well, PerkinElmer), the Unifilter-96 plates were sealed. After 1 h,
radioactivity was counted using a TopCountMicroplate Scintillation
Counter (Packard Instrument Company). IC50 values were deter-
mined by calculating nonlinear regression curves for a one-site
model using at least three independent 10-point concentration-
response curves, run in duplicate, for each compound. Ki (affinity)
values, which correspond to the dissociation constants, were
determined using the Cheng-Prusoff equation: Ki ¼ IC50 /
(1 þ radioligand concentration / Kd). Ki values are presented as
means ± SD (in mM).

2.6. D2 receptor radioligand binding assay

For membrane preparations, HEK 293 cells that were transiently
transfected with the dopamine D2 receptor were released from the
culture flasks using trypsin/EDTA, harvested, washed twice with
ice-cold PBS (without Ca2þ and Mg2þ), pelleted at 1000 rpm for
5 min at 4 !C, frozen, and stored at #80 !C. Frozen pellets were
suspended in 20ml of HEPES-NaOH (20mM, pH 7.4) that contained
10 mM EDTA and homogenized with a Polytron (PT 6000, Kine-
matica) at 14,000 rpm for 20 s. The homogenates were centrifuged
at 48,000 $ g for 30 min at 4 !C. Subsequently, the supernatants
were removed and discarded, and the pellets were resuspended in
20ml of HEPES-NaOH (20mM, pH 7.4) that contained 0.1mM EDTA
using the Polytron (20 s at 14,000 rpm). This procedure was

repeated, and the final pellets were resuspended in HEPES-NaOH
that contained 0.1 mM EDTA and homogenized using the Poly-
tron. Typically, 2 ml aliquots of membrane portions were stored
at #80 !C. With each new membrane batch, the dissociation con-
stant (Kd) was determined by a saturation curve.

For the competitive binding assays, [3H]-spiperone was used as
the dopamine D2 receptor radioligand at a concentration equal or
close to the Kd value. Specific binding of the radioligand to the
target receptor was defined as the difference between total binding
(binding buffer alone) and nonspecific binding that was deter-
mined in the presence of 10 mM spiperone. The compounds were
tested at a broad range of concentrations (30 pMe30 mM) in
duplicate. The test compounds were diluted in binding assay buffer
at pH 7.4 (50 mM Tris/HCl, 5 mM MgCl2, 1 mM EDTA, 5 mM KCl,
1.5 mM CaCl2, and 120 mM NaCl), and dilution curves were con-
structed in assay microplates (Greiner, 96 well, U-bottom, PS).
Radioligand (50 ml) and the membrane suspension (100 ml) were
added to the assay plates (final volume in each well, 200 ml) and
incubated and shaken for 1 h at room temperature. Incubations
were terminated by rapid filtration through Unifilter-96 plates
(Packard Instrument Company) and GF/C glass filters (PerkinElmer)
that were presoaked for aminimumof 1 h in 0.3% polyethylenimine
and washed three times with ice-cold washing buffer (50 mM Tris/
HCl, pH 7.4). After the addition of Microscint 40 (45 ml/well, Per-
kinElmer), the Unifilter-96 plates were sealed. After 1 h, radioac-
tivity was counted using a TopCount Microplate Scintillation
Counter (Packard Instrument Company). IC50 values were deter-
mined by calculating nonlinear regression curves for a one-site
model using at least three independent 10-point concentration-
response curves, run in duplicate, for each compound. Ki (affinity)
values, which correspond to the dissociation constants, were
determined using the Cheng-Prusoff equation: Ki ¼ IC50 /
(1 þ radioligand concentration / Kd). Ki values are presented as
means ± SD (in mM).

2.7. Monoamine transporter radioligand binding assays

HEK 293 cells that stably expressed the human norepinephrine
transporter (hNET), human serotonin transporter (hSERT), or hu-
man dopamine transporter (hDAT) were cultured, and cells were
collected and washed three times with ice-cold PBS, pelleted at
1000 rpm for 5 min at 4 !C, frozen, and stored at #80 !C. Frozen
pellets were then resuspended in 400 ml of HEPES-NaOH (20 mM,
pH 7.4) that contained EDTA (10 mM) at 4 !C. After homogenization
with a Polytron (PT 6000, Kinematics) at 10,000 rpm for 15 s, the
homogenates were centrifuged at 48,000 $ g for 30 min at 4 !C.
Aliquots of the membrane stocks were frozen at #80 !C.

For the competitive binding assays, N-methyl-[3H]-nisoxetine,
[3H]-citalopram, and [3H]-WIN35,428 were used as hNET, hSERT,
and hDAT radioligands, respectively, at concentrations equal or
close to the Kd values. Specific binding of the radioligand to the
target transporters was defined as the difference between total
binding (binding buffer alone) and nonspecific binding that was
determined in the presence of 10 mM indatraline. The compounds
were tested at a broad range of concentrations (30 pMe30 mM) in
duplicate. The test compounds were diluted in binding assay buffer
at pH 7.4 (126mMNaCl, 2.7 mMKCl, 10 mMNa2HPO4, and 1.76 mM
KH2PO4), and dilution curves were constructed in 96-well Opti-
Plates (PerkinElmer). Membrane stocks were thawed and resus-
pended to a concentration of approximately 60 mg protein/ml
binding assay buffer using a Polytron tissue homogenizer. The
membrane homogenates were then lightly mixed for 5e30 min
with polyvinyl toluene (PCT) wheatgerm agglutinin-coated scin-
tillation proximity assay beads (WGA-SPA, Amersham Biosciences)
at 11.5 mg beads/well. The membrane/bead mixture (50 ml) was

D. Luethi et al. / Neuropharmacology 134 (2018) 141e148144



PHARMACOLOGY OF PSYCHEDELICS 

 66 

  

added to each well of the assay plate that contained the radioligand
(50 ml) and the test compounds (final volume in each well, 200 ml)
to start the assay. The assay plates were sealed, incubated for 2 h at
room temperature with agitation, and counted in the PVT SPA
counting mode of a TopCount Microplate Scintillation Counter
(Packard Instrument Company). IC50 values were determined by
calculating nonlinear regression curves for a one-site model using
at least three independent 10-point concentration-response curves,
run in duplicate, for each compound. Ki (affinity) values, which
correspond to the dissociation constants, were determined using
the Cheng-Prusoff equation: Ki ¼ IC50 / (1 þ radioligand concen-
tration / Kd). Ki values are presented as means ± SD (in mM).

2.8. Functional activity at the serotonin 5-HT2A receptor

Mouse embryonic fibroblasts (NIH-3T3 cells) that expressed the
human 5-HT2A receptor were incubated in HEPES-Hank's Balanced
Salt Solution (HBSS) buffer (Gibco, Zug, Switzerland; 70,000 cells/
100 ml) for 1 h at 37 #C in 96-well poly-D-lysine-coated plates. To
each well, 100 ml of dye solution (fluorescence imaging plate reader
[FLIPR] calcium 5 assay kit; Molecular Devices, Sunnyvale, CA, USA)
was added, and the plates were incubated for 1 h at 37 #C. The
plates were placed in a FLIPR, and 25 ml of the test drugs that were
diluted in HEPES-HBSS buffer that contained 250 mM probenicid
was added online. The increase in fluorescence was thenmeasured,
and EC50 values were derived from the concentration-response
curves using nonlinear regression. The maximal receptor activity
(efficacy) is expressed relative to 5-HT activity, which was set to
100%.

2.9. Functional activity at the serotonin 5-HT2B receptor

HEK 293 cells that expressed the human 5-HT2B receptor were
incubated in growth medium (high-glucose DMEM; Invitrogen,
Zug, Switzerland), 10 ml/L penicillin/streptomycin (Gibco, Zug,
Switzerland), 10% fetal calf serum (non-dialyzed, heat-inactivated),
and 250 mg/L Geneticin at a density of 50,000 cells/well at 37 #C in
poly-D-lysine-coated 96-well plates overnight. The growthmedium
was then removed by snap inversion, and 100 ml of the calcium
indicator Fluo-4 solution (Molecular Probes, Eugene, OR, USA) was
added to each well. The plates were incubated for 45 min at 31 #C
before the Fluo-4 solution was removed by snap inversion, and
100 ml of Fluo-4 solution was added a second time for 45 min at
31 #C. The cells were washed with HBSS and 20 mM HEPES (assay
buffer) immediately before testing using an EMBLA cell washer, and
100 ml assay buffer was added. The plates were placed in a FLIPR,
and 25 ml of the test substances that were diluted in assay buffer
was added online. The increase in fluorescence was thenmeasured,
and EC50 values were derived from the concentration-response
curves using nonlinear regression. The maximal receptor activity
(efficacy) is expressed relative to 5-HT activity, which was set to
100%.

2.10. Functional activity at the human TAAR1 receptor

Recombinant HEK 293 cells that expressed human TAAR1 were
grown at 37 #C and 5% CO2/95% air in 250ml Falcon culture flasks in
30 ml of culture medium. The cell culture medium contained high-
glucose DMEM, 10% fetal calf serum (heat inactivated for 30 min at
56 #C), 500 mg/ml Geneticin (Gibco), and 500 mg/ml hygromycin B.
Cells were harvested when 80e90% confluence was reached. The
culture mediumwas removed from the culture flasks, and the cells
were washed once with 5 ml of PBS. After removing the wash so-
lution, 5 ml of trypsin/EDTA solution was added for 5 min at 37 #C.
Afterward, 45 ml of culture medium was added to the 5 ml

detached cell solution, and 50 ml was transferred to a Falcon tube.
The tube was centrifuged at 900 rpm for 3 min at room tempera-
ture, and the supernatant was removed. The cell pellet was resus-
pended in fresh culture medium and brought to 5 $ 105 cells per
ml. The cells were then plated into 96-well plates (BIOCOAT 6640,
Becton Dickinson, Allschwil, Switzerland) with a multipipette (100
ml/well, 80,000 cells/well) and incubated for 20 h at 37 #C. For the
cAMP assay, the cell culture mediumwas removed, and 50 ml of PBS
(without Ca2þ and Mg2þ) was added. Afterward, PBS was removed
by snap inversion followed by gently tapping of the plate on a tis-
sue. Krebs-Ringer bicarbonate buffer (90 ml; Sigma-Aldrich) that
contained 1 mM IBMX was added, and the plates were incubated
for 60 min at 37 #C and 5% CO2/95% air. All of the compounds were
tested at a broad range of concentrations (300 pMe30 mM) in
duplicate, and a standard curve (0.13 nMe10 mM cAMP) was con-
structed on each plate. A reference plate that included RO5256390,
b-phenylethylamine, and p-tyramine also accompanied each
experiment. Typically, 30 ml of a compound solution, 30 ml of b-
phenylethylamine (as maximal response), or a basal control in PBS
that contained 1 mM IBMX was then added, and the cells were
incubated for 40 min at 37 #C. Afterward, the cells were lysed with
50 ml of 3$ detection mix solution that contained Ru-cAMP
Alexa700 anti-cAMP antibody and lysis buffer for 120 min at
room temperature under strong shaking using black lids. Fluores-
cence was measured using a NanoScan (IOM reader; 456 nm
excitation wavelength; 630 and 700 nm emission wavelengths).
The FRET signal was calculated as the following: FRET (700 nM) e
P $ FRET (630 nM), where P ¼ Ru (700 nM) / Ru (630 nM).

2.11. Monoamine uptake transporter inhibition

The monoamine transporter inhibition potential of the 2C-T
drugs was assessed for a single high concentration of 10 mM to
exclude activity. Monoamine uptake was determined in HEK
293 cells that stably expressed the hNET, hDAT, and hSERT (Tatsumi
et al., 1997) as previously described in detail (Hysek et al., 2012).
Briefly, cells were cultured to 70e90% confluence in DMEM (10%
fetal calf serum and 250 mg/ml Geneticin, both from Gibco), de-
tached, and resuspended in Krebs-Ringer bicarbonate buffer
(Sigma-Aldrich) at a density of 3 $ 106 cells/ml. For [3H]-DA uptake
experiments, the uptake buffer was supplemented with 0.2 mg/ml
ascorbic acid. The cell suspension (100 ml) was incubated with 25 ml
of the test drugs, vehicle control, and transporter-specific inhibitors
(10 mM nisoxetine for NET, 10 mM mazindol for DAT, and 10 mM
fluoxetine for SERT) dissolved in buffer for 10 min in a round-
bottom 96-well plate at room temperature at 450 rpm on a ro-
tary shaker. Monoamine uptake transport was then initiated by
adding 50 ml of [3H]-NE (13.1 Ci/mmol; PerkinElmer), [3H]-DA
(30.0 Ci/mmol, PerkinElmer), or [3H]-5-HT (80.0 Ci/mmol; Anawa,
Zürich, Switzerland) dissolved in buffer at a final concentration of
5 nM for an additional 10min. The cell suspension (100 ml) was then
transferred to 500 ml microcentrifuge tubes that contained 50 ml of
3MKOH and 200 ml silicon oil (1:1mixture of silicon oil types AR 20
and AR 200; Sigma-Aldrich). To separate the cells from the uptake
buffer, they were centrifuged through silicone oil for 3 min at
16,550 $ g, and the tubes were frozen in liquid nitrogen immedi-
ately afterward. The cell pellet was then cut into 6 ml scintillation
vials (PerkinElmer) that contained 0.5 ml lysis buffer (0.05 M Tris-
HCl, 50 mM NaCl, 5 mM EDTA, and 1% NP-40 in water), and the
samples were shaken for 1 h before 5 ml of scintillation fluid
(Ultimagold, PerkinElmer) was added. Monoamine uptake was
then quantified by liquid scintillation counting on a Packard
1900 TR Tri-Carb Liquid Scintillation Counter (Packard Instrument
Company). Nonspecific uptake that was determined in the presence
of selective inhibitors was subtracted from the total counts, and
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monoamine uptake was compared with the vehicle control.

2.12. Statistical analysis

IC50 values of radioligand binding were determined by calcu-
lating nonlinear regression curves for a one-site model using at
least three independent 10-point concentration-response curves
for each substance. Ki (affinity) values, which correspond to the
dissociation constants, were calculated using the Cheng-Prusoff
equation. Nonlinear regression concentration-response curves
were used to determine EC50 values for 5-HT2A and 5-HT2B receptor
activation. Efficacy (maximal activity) is expressed relative to the
activity of 5-HT, which was used as a control set to 100%. Mono-
amine uptake of three independent experiments was compared
with vehicle controls using analysis of variance followed by Dun-
nett's multiple-comparison test.

3. Results

3.1. Interactions with serotonin receptors

The binding affinities and activation potency of 2C-T drugs to
serotonin receptors are listed in Table 1. All of the drugs bound to
the 5-HT1A receptor in the range of 660-2370 nM and bound to the
5-HT2A receptor in the range of 1e54 nM, with an activation po-
tency of 1e53 nM and activation efficacy of 3e75%. All of the drugs
except 2C-T-27 and 2C-T-33 activated the 5-HT2B receptor, with an
activation potency of 44-3310 nM and activation efficacy of
28e75%. All of the drugs bound to the 5-HT2C receptor with affin-
ities of 40e350 nM. 2C-B and LSD were included in Table 1 as
reference psychedelics for comparison.

3.2. Binding to monoamine receptors and transporters

Binding affinities of 2C-T drugs to monoamine transporters and
receptors are listed in Table 2. None of the drugs bound to the tested
binding region of the NET at the investigated concentration range.
Only 2C-T-27, 2C-T-31, and 2C-T-33 bound to the DAT, with affinities
of 4.8e7.7 mM. Only 2C-T-3 bound to the SERT, with a Ki of 7.2 mM.
No affinity for adrenergic a1A or dopamine D2 receptors was
detected in vitro, with the exception of 2C-T-28, 2C-T-30, 2C-T-31,
and 2C-T-33, which bound to the a1A receptor with a Ki of
2.3e3.6 mM. However, the drugs bound to the a2A receptor in the
range of 97e804 nM. Furthermore, the drugs bound to rat and
mouse TAAR1, with affinities of 5e68 nM and 55-2340 nM,
respectively, but did not activate the human TAAR1 at the investi-
gated concentration range. As reference, the TAAR1 interactions of
the partial agonist (Simmler et al., 2016) D-methamphetamine are
listed in Table 2.

3.3. Monoamine uptake transporter inhibition

No significant NE, DA, or 5-HT uptake inhibition was observed
for any of the 2C-T drugs at 10 mM (data not shown).

4. Discussion

The compounds had 17- to 830-fold higher affinity for the 5-
HT2A vs. 5-HT1A receptor and 4- to 44-fold higher affinity for the
5-HT2A vs. 5-HT2C receptor. Similarly, selectivity for the 5-HT2 re-
ceptor site has been shown for 2C drugs, NBOMe derivatives, and
phenylisopropylamine hallucinogens (substituted amphetamines)
but not for other psychedelics of the tryptamine class or LSD
(Fantegrossi et al., 2005; Halberstadt and Geyer, 2011; Pierce and
Peroutka, 1989; Rickli et al., 2015, 2016; Titeler et al., 1988). In

accordance with those findings, in our study 2C-B had selectivity
ratios in the range of the 2C-T drugs and LSDwas less selectivewith
5-HT2A vs. 5-HT1A and 5-HT2A vs. 5-HT2C ratios of 0.28 and 2.6,
respectively.

The three benzylthiophenethylamines (2C-T-27, 2C-T-31, and
2C-T-33) most potently bound to the 5-HT2A receptor, with affin-
ities of 1.6e3.8 nM. However, they had the lowest receptor acti-
vation potential for the 5-HT2A receptor (26e53 nM) and negligible
or no activation potential for the 5-HT2B receptor. These three
benzylthiophenethylamines also most potently bound to the 5-
HT2A receptor in a previous test series of 11 2C-T drugs using
[3H]-LSD as the radioligand (Trachsel et al., 2013). High affinity and
antagonistic properties could be expected because of the bulky and
lipophilic 4-substituent (Hansen et al., 2014; Nichols et al., 1977;
Seggel et al., 1990). The remaining compounds all activated the 5-
HT2A and 5-HT2B receptors in the range of 1e15 nM and
44e370 nM, respectively, with an activation efficacy of 36e75% and
28e75%, respectively. Drugs of the 2C-T series can therefore be
classified as partial agonists as previously shown for other 2C drugs
(Moya et al., 2007; Rickli et al., 2015) and similar psychedelic effects
may be expected. Several fluorine-containing compounds were
investigated. The 5-HT2A and 5-HT2C receptor affinity of 2C-T-7 was
higher (3.2- and 2.5-fold, respectively) compared with its mono-
fluorinated analog 2C-T-28. Compared with its monofluorinated
analog 2C-T-30, 5-HT2 binding affinity also increased for 2C-T-19
(1.4- and 1.6-fold increase in affinity for 5-HT2A and 5-HT2C re-
ceptors, respectively). A decrease in affinity by fluorine has previ-
ously been described for 2C-T-30 in radioligand binding assays
using [3H]-LSD-labeled cloned 5-HT2A receptors (Trachsel, 2012).
However, although 2C-T-7 had a higher activation potential for 5-
HT2A and 5-HT2B receptors compared with 2C-T-28, the activation
potential of 2C-T-19 for both receptors was lower compared with
2C-T-30. The difluoroethyl derivative 2C-T-21.5 and trifluoroethyl
derivative 2C-T-22 had comparable affinities for 5-HT2A and 5-HT2C
receptors. However, 2C-T-21.5 had a higher activation potential for
the 5-HT2A receptor, whereas 2C-T-22 had a higher activation po-
tential for the 5-HT2B receptor. In a previous study (Rickli et al.,
2015), 2C-T-2, the non-fluorinated analog of 2C-T-21.5 and 2C-T-
22, had slightly higher affinity for 5-HT2A and 5-HT2C receptors (9
and 67 mM, respectively) compared with 2C-T-21.5 and 2C-T-22. In
the present study, however, the 5-HT2A and 5-HT2B receptor acti-
vation potency of 2C-T-21.5 and 2C-T-22, respectively, was higher
than the previously determined receptor activation potency for 2C-
T-2 (Rickli et al., 2015). Therefore, although terminal fluorinating
appears to decrease 5-HT receptor affinity, it may increase activa-
tion potential in some cases.

In the radioligand binding assay, none of the substances bound
to the investigated NET binding site, and none of the compounds
significantly inhibited NE uptake at 10 mM. Only 2C-T-27, 2C-T-31,
and 2C-T-33 bound to the DAT, with affinities of 4.8e7.7 mM. Only
2C-T-3 bound to the SERT, with an affinity of 7.2 mM. However, no
DA or 5-HT uptake inhibition was observed for any of the com-
pounds at 10 mM. Transporter binding and inhibition may occur at
higher concentrations, which has been shown previously for 2C-T-
2, 2C-T-4, and 2C-T-7 (Rickli et al., 2015). However, given the potent
interactions with serotonergic receptors, the monoamine trans-
porter interactions of 2C-T drugs are likely not clinically relevant
and were not investigated at higher concentrations in the present
study. No interactions with dopaminergic D2 or adrenergic a1A re-
ceptors were observed in the radioligand binding assays, with the
exception of low-affinity binding of 2C-T-28, 2C-T-30, 2C-T-31, and
2C-T-33 to the a1A receptor. However, all of the drugs bound to the
a2A receptor, with an affinity of 97e804 nM. The selectivity for a2A
over a1A receptors has previously been reported for 2C drugs but
not NBOMe compounds, which bound to both receptors with
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submicromolar affinity (Rickli et al., 2015). All of the drugs potently
bound to the rat TAAR1 in the range of 5e68 nM and less potently to
the mouse TAAR1 in the range of 55-2340 nM. However, the com-
pounds were inactive at the human TAAR1 in the functional assays
(EC50 > 30 mM). Consistent with our results, a rank order affinity for
rat > mouse > human TAAR1 has previously been described for
substituted phenethylamines with bulky residues (Lewin et al.,
2008; Simmler et al., 2016; Wainscott et al., 2007).

The psychoactive dose of phenethylamines cannot be explained
solely by data from in vitro assays. For example, Shulgin proposed a
dose of 60e100 mg and duration of 3e5 h for 2C-T-1; for 2C-T-4, he
proposed a human dose of 8e20 mg and duration of 12e18 h
(Shulgin and Shulgin, 1995). However, receptor binding affinities in
the radioligand assays for these two compounds were comparable,
and the activation potential for the 5-HT2A receptor was even
higher for 2C-T-1 than for 2C-T-4. Therefore, other factors, such as
lipophilicity, functional selectivity, and monoamine oxidase (MAO)
and cytochrome P450 (CYP) metabolism, may influence the dose
and effect of the compounds. Shulgin mentioned an unusual sub-
jective variability for 2C-T drugs in the book PiHKAL (Shulgin and

Shulgin, 1995). MAO-A, MAO-B, and to a lesser extent CYP2D6
were identified as the main enzymes that are involved in the
deamination of 2C-T-2 and 2C-T-7 (Theobald and Maurer, 2007). A
study with methoxylated and alkylthio amphetamine derivatives,
however, did not find a correlation between the MAO inhibitory
potential of the drugs and hallucinogenic potency reported in
humans (Scorza et al., 1997). Other human doses were reported for
most of the 2C-T drugs, and dose estimates started at 8 mg for the
most potent compounds (Shulgin and Shulgin, 1995; Trachsel et al.,
2013). A higher human dose (80e130 mg) was described for 2C-T-
27 (Trachsel, 2012), consistent with the lower 5-HT2A receptor
activation potency that was found in the present study.

5. Conclusion

We characterized sparsely studied potent psychoactive drugs,
providing insights into the relationship between the structure and
5-HT2 receptor binding and activation of psychedelic phenethyl-
amines. 2C-T drugs potently bound to 5-HT2A and 5-HT2C receptors
and had affinity for 5-HT1A and a2A receptors. Furthermore, 2C-T

Table 1
Serotonin receptor binding affinities and activation potencies.

5-HT1A 5-HT2A 5-HT2B 5-HT2C Selectivity (binding ratios)

Receptor
binding

Receptor
binding

Activation
potency

Activation
efficacy

Activation
potency

Activation
efficacy

Receptor
binding

5-HT2A/5-
HT1A

5-HT2A/5-
HT2C

Ki ± SD [nM] Ki ± SD [nM] EC50 ± SD [nM] max ± SD [%] EC50 ± SD [nM] max ± SD [%] Ki ± SD [nM]

2C-T-1 1035 ± 125 49 ± 21 2.0 ± 0.1 75 ± 3 57 ± 38 58 ± 11 347 ± 129 21 7.1
2C-T-3 812 ± 161 11 ± 5 7.7 ± 1.6 44 ± 6 44 ± 8 28 ± 7 40 ± 6 74 3.6
2C-T-4 916 ± 86 54 ± 21 5.5 ± 0.7 56 ± 5 63 ± 11 75 ± 10 295 ± 28 17 5.5
2C-T-7 878 ± 97 5.3 ± 0.6 1.2 ± 0.4 49 ± 12 52 ± 10 46 ± 12 54 ± 25 166 10
2C-T-16 660 ± 74 9.2 ± 3.6 1.3 ± 0.6 57 ± 9 47 ± 32 36 ± 1 67 ± 15 72 7.3
2C-T-19 1019 ± 129 6.9 ± 3.3 12 ± 2 55 ± 6 369 ± 188 40 ± 3 101 ± 25 148 15
2C-T-

21.5
1321 ± 193 14 ± 3 4.6 ± 1.4 66 ± 7 182 ± 12 40 ± 4 159 ± 77 94 11

2C-T-22 1915 ± 53 16 ± 1 15 ± 5 36 ± 2 110 ± 55 35 ± 15 151 ± 45 120 9.4
2C-T-25 1036 ± 134 21 ± 7 12 ± 2 49 ± 7 108 ± 35 32 ± 11 80 ± 32 49 3.8
2C-T-27 1166 ± 147 1.6 ± 0.5 26 ± 2 27 ± 4 >10,000 52 ± 12 729 33
2C-T-28 1904 ± 42 17 ± 6 5.7 ± 0.3 45 ± 7 81 ± 23 34 ± 16 135 ± 38 112 7.9
2C-T-30 2368 ± 22 9.5 ± 2.0 5.7 ± 2.4 40 ± 1 51 ± 34 61 ± 10 158 ± 45 249 17
2C-T-31 1063 ± 51 3.8 ± 1.1 53 ± 12 2.8 ± 0.7 3309 ± 1084 44 ± 13 157 ± 8 280 41
2C-T-33 1411 ± 38 1.7 ± 1.3 26 ± 8 40 ± 1 >10,000 75 ± 6 830 44

2C-B 311 ± 46 6.9 ± 1.8 2.1 ± 0.8 92 ± 8 75 ± 14 52 ± 26 43 ± 4 45 6.2
LSD 1.5 ± 0.4 5.3 ± 3.4 44 ± 14 73 ± 2 >10,000 14 ± 3 0.28 2.6

Ki and EC50 values are given as nM (mean ± SD); activation efficacy (Emax) is given as percentage of maximum ± SD.

Table 2
Monoamine receptor and transporter binding affinities.

human TAAR1 rat TAAR1 mouse TAAR1 a1A a2A D2 NET DAT SERT

EC50 [nM] Ki [nM] Ki [nM] Ki [nM] Ki [nM] Ki [nM] Ki [nM] Ki [nM] Ki [nM]

2C-T-1 >30,000 52 ± 8 1877 ± 661 >6510 334 ± 43 >4400 >9710 >8710 >8580
2C-T-3 >30,000 8.0 ± 1.3 465 ± 236 >6510 97 ± 12 >4400 >9710 >8710 7221 ± 470
2C-T-4 >30,000 19 ± 5 2337 ± 911 >6510 217 ± 36 >4400 >9710 >8710 >8580
2C-T-7 >30,000 10 ± 0 311 ± 61 >6510 335 ± 49 >4400 >9710 >8710 >8580
2C-T-16 >30,000 17 ± 7 453 ± 133 >6510 229 ± 17 >4400 >9710 >8710 >8580
2C-T-19 >30,000 4.8 ± 1.5 96 ± 33 >6510 458 ± 45 >4400 >9710 >8710 >8580
2C-T-21.5 >30,000 68 ± 11 1674 ± 185 >6510 383 ± 26 >4400 >9720 >8710 >7510
2C-T-22 >30,000 38 ± 15 974 ± 17 >6510 592 ± 39 >4400 >9720 >8710 >7510
2C-T-25 >30,000 11 ± 1 359 ± 95 >6510 279 ± 6 >6270 >9720 >8710 >7510
2C-T-27 >30,000 10 ± 2 596 ± 197 >6510 351 ± 43 >6270 >9720 4760 ± 569 >7510
2C-T-28 >30,000 62 ± 19 426 ± 116 2730 ± 653 331 ± 31 >6270 >9720 >8710 >7510
2C-T-30 >30,000 29 ± 3 182 ± 52 2297 ± 134 408 ± 42 >6270 >9720 >8710 >7510
2C-T-31 >30,000 5.2 ± 0.6 55 ± 9 2534 ± 88 804 ± 126 >6270 >9720 5474 ± 54 >7510
2C-T-33 >30,000 38 ± 0 761 ± 117 3628 ± 308 343 ± 72 >6270 >9720 7706 ± 249 >7510

d-Methamphetamine 3707 ± 587 257 ± 15 889 ± 49

Ki and EC50 values are given as nM (mean ± SD).
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drugs were potent 5-HT2A and 5-HT2B partial agonists with the
exception of benzylthiophenethylamines, which had no or negli-
gible activation potential for the 5-HT2B receptor.
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Abstract
Background: Pharmacological profiles of new psychoactive substances can be established rapidly in vitro and provide 
information on potential psychoactive effects in humans. The present study investigated whether specific in vitro monoamine 
transporter and receptor interactions can predict effective psychoactive doses in humans.
Methods: We correlated previously assessed in vitro data of stimulants and psychedelics with human doses that are reported 
on the Internet and in books.
Results: For stimulants, dopamine and norepinephrine transporter inhibition potency was positively correlated with 
human doses, whereas serotonin transporter inhibition potency was inversely correlated with human doses. Serotonin 
5-hydroxytryptamine-2A (5-HT2A) and 5-HT2C receptor affinity was significantly correlated with psychedelic doses, but 5-HT1A 
receptor affinity and 5-HT2A and 5-HT2B receptor activation potency were not.
Conclusions: The rapid assessment of in vitro pharmacological profiles of new psychoactive substances can help to predict 
psychoactive doses and effects in humans and facilitate the appropriate scheduling of new psychoactive substances.

Keywords: new psychoactive substance, stimulants, psychedelics, receptor, transporter

Introduction
The unprecedented proliferation of new psychoactive sub-
stances (NPSs) over the last decade has introduced a variety 
of substance classes to recreational drug users worldwide. The 
Internet plays a major role in the distribution of such com-
pounds and in acquiring information about their effects and 
reported subjective effective doses in substance users. From 2011 
to 2017, we assessed the monoamine transporter and receptor 
interaction profiles of more than 100 NPSs and related classic 
amphetamine-type and psychedelic drugs of abuse using the 
same in vitro assays and procedures in our laboratory (Simmler 
et  al., 2013; Simmler et  al., 2014a, 2014b; Rickli et  al., 2015a, 
2015b, 2015c, 2016; Luethi et al., 2018a, 2018b, 2018c, 2018d).  

The compounds that we investigated can predominantly be 
classified as stimulants or psychedelics based on their pharma-
cological and reported psychoactive effect profiles. Stimulants 
exert their pharmacological effects mainly by interacting with 
transmembrane monoamine transporters (i.e., norepineph-
rine [NE], dopamine [DA], and serotonin [5-hydroxytryptamine 
(5-HT)] transporters [NET, DAT, and SERT, respectively]), either 
as inhibitors or as transporter substrates that mediate the 
non-exocytotic release of neurotransmitters (Rothman and 
Baumann, 2003). Psychedelics mediate their mind-altering 
effects by interacting with 5-HT receptors, mainly 5-HT2A recep-
tor agonism (Nichols, 2016; Liechti, 2017). The present study 
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investigated whether (1) in vitro monoamine transporter inhib-
ition potencies and (2) in vitro serotonin receptor binding and 
activation can be used to predict human doses of stimulants 
and psychedelics, respectively, that are reported on online drug 
information websites and in books.

Methods

Drugs

The present study included drugs for which we previously inves-
tigated and published in vitro pharmacological profiles using 
identical assays and procedures in our laboratory (Simmler 
et al., 2013; Simmler et al., 2014a, 2014b; Rickli et al., 2015a, 2015b, 
2015c, 2016; Luethi et al., 2018a, 2018b, 2018c, 2018d).  These drugs 
could be categorized as either psychostimulants or psychedelics 
based on their chemical structure and reported pharmacological 
effects. Substances that predominantly inhibited monoamine 
transporters were classified as stimulants. Substances that 
most potently bound to 5-HT2 receptors were pharmacologically 
classified as psychedelics. Five aminoindanes, 8 benzofurans, 28 
cathinones, 3 piperazines, 10 piperidines, and 6 other NPSs were 
categorized as psychostimulants. One benzodifuran, 1 ergo-
line, and 7 tryptamines were categorized as psychedelics. The 
class of phenethylamines was further divided into 15 stimulant 
phenethylamines (amphetamine-type substances) and 36 psy-
chedelic phenethylamines (ring-substituted phenethylamines, 
including 2C drugs and their methoxybenzyl [NBOMe] analogs). 
The stimulants are listed in supplementary Table 1. The psych-
edelics are listed in supplementary Table 2.

Dose Estimates

Dose estimates for human psychoactive doses were based on 
information that is found on the websites erowid.org, psycho-
nautwiki.org, and tripsit.me (accessed December 17, 2017) and 
in published books and other publications (Shulgin and Shulgin, 
1995, 1997; Simmler et al., 2013; Trachsel et al., 2013). The aver-
age midrange of the common dose range that is reported on the 
websites or in the books was taken as the dose estimate. Unless 
stated otherwise, oral doses of the racemic mixtures were used 
for this study.

Monoamine Transporter Inhibition

Norepinephrine, DA, and 5-HT uptake inhibition was assessed 
in human embryonic kidney 293 cells that were transfected 
with the human NET, DAT, or SERT as previously described in 
detail (Luethi et al., 2018c). Briefly, the cells were suspended in 
buffer and incubated with the drugs for 10 minutes before [3H]-
NE, [3H]-DA, or [3H]-5-HT at a final concentration of 5 nM was 
added for an additional 10 minutes to initiate uptake transport. 
The cells were then separated from the uptake buffer by cen-
trifugation through silicone oil. The centrifugation tubes were 
frozen in liquid nitrogen, and the cell pellet was cut into scin-
tillation vials that contained lysis buffer. Scintillation fluid was 
added, and uptake was quantified by liquid scintillation count-
ing. Transporter inhibitors (10 μM nisoxetine for the NET, 10 μM 
mazindol for the DAT, and 10 μM fluoxetine for the SERT) were 
added to assess nonspecific monoamine uptake. Monoamine 
uptake data were fit by nonlinear regression to variable-slope 
sigmoidal dose-response curves, and IC50 values were deter-
mined using Prism 7.0a software (GraphPad).

5-HT Receptor Binding Affinities

Radioligand binding affinities for 5-HT receptors were assessed 
as previously described in detail (Luethi et al., 2018d). Briefly, 
membrane preparations overexpressing the respective human 
receptors were incubated for 30 minutes (5-HT1A and 5-HT2A 
receptors) or 2 hours (5-HT2C receptor) with radiolabeled select-
ive ligands at concentrations equal to Kd, and ligand displace-
ment by the compounds was measured. Specific binding of 
the radioligand to the target receptor was defined as the dif-
ference between total binding and nonspecific binding that 
was determined in the presence of competitors. The following 
radioligands and competitors, respectively, were used: 1.39 nM 
[3H]8-hydroxy-2-(di-n-propylamine)tetralin and 10  μM pindolol 
(5-HT1A receptor), 0.45 nM [3H]ketanserin and 10 μM spiperone 
(5-HT2A receptor), and 1.6 nM [3H]mesulgerine and 10 μM mian-
serin (5-HT2C receptor).

Activity at the 5-HT2A Receptor

Activity at the 5-HT2A receptor was assessed as previously 
described in detail (Luethi et al., 2018a). Briefly, NIH-3T3 cells 
expressing the human 5-HT2A receptor were incubated in buffer 
for 1 hour at 37°C before 100  μL of dye solution (fluorescence 
imaging plate reader [FLIPR] calcium 5 assay kit; Molecular 
Devices) was added to each well, and the plates were again incu-
bated for 1 hour at 37°C. The plates were then placed in a FLIPR, 
and 25 μL of the test drugs that were diluted in buffer was added 
online. The increase in fluorescence was measured for 51 s. EC50 
values were derived from the concentration-response curves 
using nonlinear regression.

Activity at the 5-HT2B Receptor

Activity at the 5-HT2B receptor was assessed as previously 
described in detail (Luethi et al., 2018a). Briefly, human embry-
onic kidney 293 cells that expressed the human 5-HT2B recep-
tor were incubated in growth medium overnight. The growth 
medium was then removed by snap inversion, and 100  μL of 
the calcium indicator Fluo-4 solution (Molecular Probes) was 
added to each well. The plates were incubated for 45 minutes 
at 31°C. The Fluo-4 solution was then removed by snap inver-
sion, and 100  μL of Fluo-4 solution was added a second time 
for 45 minutes at 31°C. The cells were washed using an EMBLA 
cell washer, and 100 μL of assay buffer was added. The plates 
were then placed in a FLIPR, and 25 μL of the test substances 
that were diluted in buffer was added online. The increase in 
fluorescence was measured for 51 seconds. EC50 values were 
derived from the concentration-response curves using nonlin-
ear regression.

Statistical Correlation

Mean estimated dose values were correlated with previously 
published mean IC50 values for the monoamine transporter 
inhibition of stimulants and the mean serotonin receptor 
affinity (Ki) and receptor activation (EC50) values of psych-
edelics. The Spearman rank-order correlation coefficient (rs) 
was computed using Prism 7.0a software (GraphPad). Values 
of P < .05 (2-tailed) were considered statistically significant. 
Multiple regression analysis was conducted to assess the rela-
tive contribution of different predictors to the dose estimate 
using Statistica 12 software (StatSoft) after logarithmic trans-
formation of the data.
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Results
Based on the reported information, dose estimates could be 
made for 54 of 75 stimulants and 35 of 45 psychedelics. The 
doses apply to the oral route of administration if not indicated 
otherwise (supplementary Tables  1 and 2). References for the 
information sources of the pharmacological data and for the 
dose estimates for each substance are listed in supplementary 
Tables 1 (stimulants) and 2 (psychedelics).

Stimulants

Correlations between transporter inhibition potencies (mean 
IC50 values) of stimulants and their mean dose estimates are 
shown in Figure 1. Inhibition potency values of the NET and DAT 
were significantly correlated with the human dose estimates 
(rs = 0.48, P < .001, n = 54, and rs = 0.60, P < .001, n = 54, respectively). 
Furthermore, the NET and DAT inhibition potencies were sig-
nificantly intercorrelated (rs = 0.61, P < .001, n = 74). In contrast, the 
inhibition potency values of the SERT were inversely correlated 
with the dose estimates (rs = -0.41, P < .01, n = 54) and inversely 
intercorrelated with DAT inhibition (rs = 0.26, P < .05, n = 73) but 
not NET inhibition. When DAT and NET inhibition was used as 
the predictor within a multiple regression analysis to predict the 
dose, DAT inhibition and NET inhibition alone were significant 
predictors (R = 0.55, P < .001, and R = 0.51, P < .001, respectively) 
when entered alone, but adding NET to DAT inhibition only 
minimally and nonsignificantly increased the overall predic-
tion (multiple R = 0.59, P < .001). However, SERT inhibition was 
inversely correlated with dose when analyzed alone (R = 0.36, 
P < .01) and relevantly and significantly increased the overall pre-
diction when it was added to NET and DAT inhibition (multiple 
R = 0.63, P < .001, n = 54).

Psychedelics

Correlations between 5-HT receptor affinities (mean Ki values) 
and their dose estimates are shown in Figure 2. Reported human 
doses for psychedelics were significantly correlated with 5-HT2A 
and 5-HT2C receptor binding (rs = 0.62, P < .001, n = 35, and rs = 0.69, 
P < .001, n = 35, respectively) but not with 5-HT1A receptor binding 
(rs = -0.18, P = .3, n = 35). The 5-HT2A and 5-HT2C affinity values were 
significantly intercorrelated (rs = 0.90, P < .001, n = 45), and the 
5-HT1A and 5-HT2A affinity values were inversely intercorrelated 
(-0.32, P < .05, n = 45). No correlation was found between 5-HT1A 
receptor binding and 5-HT2c receptor binding.

5-HT2A receptor activation potencies (mean EC50 values) did 
not correlate with reported human doses (rs = -0.08, P = .6, n = 35). 
Four substances did not activate the 5-HT2B receptor in the inves-
tigated concentration range, and these substances thus could 
not be included in the statistical analysis. The 5-HT2B receptor 
activation of the remaining psychedelics did not correlate with 
the dose estimates (rs = 0.25, P = .2, n = 31).

Discussion

Stimulants

In the present study, we found that both NET and DAT inhib-
ition potencies were correlated highly significantly with human 
doses that are reportedly used across a larger set of psycho-
active, mostly amphetamine-type stimulants. In contrast, SERT 
inhibition potency was inversely correlated with human doses, 
a finding that is consistent with the notion that serotonergic 

activity is inversely linked to the drug abuse liability of amphet-
amine-type substances (Ritz et al., 1987; Kuhar et al., 1991; Wee 
et al., 2005; Wee and Woolverton, 2006). We also found a signifi-
cant intercorrelation between NET and DAT inhibition potencies 

Figure  1. Correlations between dose estimates of stimulants and their trans-
porter inhibition potencies (mean IC50 values).



CORRELATION BETWEEN IN VITRO DATA AND HUMAN DOSES 

 77 

  

Luethi and Liechti | 929

across substances, which is unsurprising given their similar-
ity (i.e., high amino acid sequence similarity [Andersen et  al., 
2015]) and the ability of both transporters to transport NE and 
DA across the cell membrane (Gu et al., 1994). The present data 
are consistent with a small previous study that reported that 

oral doses of 5 classic amphetamine-type stimulants used in 
clinical studies correlated with their NE-releasing potencies, 
although no significant correlation was shown for DA release 
(Rothman et al., 2001). In another study, Iversen and colleagues 
found no correlation between uptake inhibition potency and 
doses of stimulant drugs producing subjective effects (Iversen 
et al., 2013). The lack of correlation may relate to the small num-
ber of compounds tested.

We previously showed that DAT and NET inhibition potency 
but not SERT inhibition potency (IC50 values) were correlated 
with psychotropic effective doses within a subset of substances 
that were also included in the present analysis (Simmler et al., 
2013). Altogether, the present study showed that DAT and NET 
inhibition potency values that are defined in vitro can be used to 
estimate whether a novel substance is psychoactive in humans, 
and the dose can be predicted when other known substances are 
co-analyzed as references. This finding has important implica-
tions because it indicates that relatively fast and simple in vitro 
measures are useful for legally scheduling novel substances as 
psychoactive and thus as illegal NPSs. Both the DAT and NET 
may serve as predictors of the human dose, whereas SERT inhi-
bition potency can be used as an additional indicator, predicting 
lower clinical potency of the substance. Furthermore, the DAT/
SERT inhibition ratio, which is defined as 1/DAT IC50: 1/SERT IC50 
(Baumann et al., 2012), is a marker of the reinforcing effects and 
abuse liability of a substance (Baumann et al., 2000). Compounds 
with higher SERT vs DAT inhibition potency are typically associ-
ated with 3,4-methylenedioxymethamphetamine-like entacto-
genic effects, whereas drugs with high DAT vs SERT inhibition 
potency exert amphetamine-type psychostimulant effects and 
pose a higher risk for addiction (Simmler et  al., 2013, 2014a; 
Liechti, 2014; Suyama et al., 2016).

Psychedelics

We showed that the doses of psychedelics were correlated with 
5-HT2A receptor affinity (Ki values) but not with receptor activa-
tion potency in the calcium release assay used to determine 
EC50 values. 5-HT2A receptor activation is assumed to mediate 
the mind-altering effects of psychedelics (Glennon et al., 1984; 
Titeler et  al., 1988) and such effects can be blocked by 5-HT2A 
receptor antagonists, such as ketanserin (Preller et  al., 2017). 
All of the psychedelics that were included in our study were 
receptor agonists, and the correlation with receptor binding but 
not activation might be explained by higher sensitivity of the 
ligand-binding assays compared with the receptor activation 
assay. There are different 5-HT2A receptor activation assays, and 
the potencies for inducing calcium release in the assay that was 
used in the present study may not reflect the same pathway or 
mechanism that mediates the subjective effects of hallucinogens 
in humans. In fact, others have also reported that high-affinity 
agonist binding did not correlate well with the receptor activa-
tion of 5-HT2 receptors (Roth et al., 1997; Acuña-Castillo et al., 
2002). Despite the lack of utility for predicting doses, the deter-
mination of 5-HT2A receptor activity remains crucial for deter-
mining whether a NPS has receptor agonist properties and may 
thus be classified as a psychedelic or whether it is an antagonist 
that only binds to the receptor. The present study showed that 
5-HT2A receptor binding allows an estimate of the dose at which 
the substance is psychoactive in humans. Besides the correla-
tion of the dose estimates for psychedelics with 5-HT2A receptor 
affinities, we also found a correlation with 5-HT2C receptor affini-
ties. Today, it is widely accepted that 5-HT2A receptor activation 
is crucial for the action of psychedelics (Preller et al., 2017); the 

Figure 2. Correlations between dose estimates of psychedelics and their seroto-
nin 5-HT receptor affinities (mean Ki values).
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role of 5-HT2C receptor activation, however, remains enigmatic. 
As all known psychedelics are both 5-HT2A and 5-HT2C agonists, 
a contribution of 5-HT2C activation to psychedelic effects cannot 
be excluded (reviewed in Nichols, 2004, 2016).

Limitations

The outcomes of the present analysis highly depended on the 
types of substances that were included and may be different 
for other sets of psychoactive compounds. Although valid phar-
macological data were used, the dose estimates were mainly 
derived from user reports. No controlled studies are currently 
available for most NPSs, but doses for some of the substances 
included in the present analysis are available from clinical 
studies. These doses were comparable to the reported recrea-
tional doses. Doses derived from clinical studies are available 
for mephedrone (200  mg; Papaseit et  al., 2016), 3,4-methylen-
edioxymethamphetamine (100–125  mg; Tancer and Johanson, 
2003; Papaseit et al., 2016; Vizeli and Liechti, 2017); MDAI (3 mg/
kg; V.  Auwärter et  al., personal communication); cathinone 
(0.5 base mg/kg; Brenneisen et  al., 1990); 4-fluoroampheta-
mine (100  mg; K.  Kuypers et  al., personal communication); 
D-amphetamine (15–40 mg; Martin et al., 1971; Brauer and de 
Wit, 1996; Dolder et al., 2017b); methamphetamine (15–30 mg; 
Martin et  al., 1971; Gouzoulis-Mayfrank et  al., 1999); MDEA 
(2  mg/kg; Gouzoulis-Mayfrank et  al., 1999); BZP (100  mg; Lin 
et al., 2011); mCPP (0.5–0.75 mg/kg; Tancer and Johanson, 2003); 
methylphenidate (40–60 mg; Schmid et al., 2014); cocaine (48–
96  mg; Volkow et  al., 2000); diclofensine (50  mg; Funke et  al., 
1986); LSD (0.1 mg; Dolder et al., 2017a); 2C-B (20 mg; Gonzalez 
et al., 2015); mescaline sulfate (500 mg; Hermle et al., 1992); and 
psilocin/psilocybin (5–20  mg; Studerus et  al., 2012). Therefore, 
even though the dose estimates of the current study were not 
derived from clinical studies, they are in accordance with the 
available clinical data.

Not accounted for in the in vitro assays were in vivo factors 
(e.g., bioavailability, route of administration, distribution, and 
brain penetration), which may influence clinical potency.

Conclusion
The present study found that in vitro pharmacological profiles 
of substances that interact with monoaminergic systems allow 
the characterization of substances as stimulants or psyche-
delics and may be used to predict human psychoactive doses. 
For stimulants, potent DAT and NET inhibition was associated 
with lower pharmacological doses in humans. In contrast, 
higher SERT inhibition potency was an additional indicator of 
lower stimulant potency and higher human doses. The potency 
of psychedelics was best predicted by 5-HT2A and 5-HT2C bind-
ing affinity. In contrast, the calcium mobilization assay used to 
determine 5-HT2A receptor activation potency did not predict 
the clinical potency of psychedelics. However, it is a necessity 
to determine whether a drug is a 5-HT2A agonist and therefore 
likely a psychedelic in humans.
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5 STIMULANT-INDUCED HEPATOTOXICITY 

The potential of amphetamine to induce liver injury has been known since the beginning of its 

use as therapeutic drug and today there are many studies showing an association between 

acute and chronic amphetamine use and hepatotoxicity (Carvalho et al., 2012). Reports of 

liver injury for other amphetamine-type stimulants followed with their appearance on the 

recreational drug market and MDMA has so far been the most frequently associated drug 

(Andreu et al., 1998; De Carlis et al., 2001; Ellis et al., 1996; Fröhlich et al., 2011; Garbino et 

al., 2001; Jones et al., 1994; Kamijo et al., 2002). However, stimulant-induced liver damage is 

not yet completely understood and different mechanisms may contribute (Carvalho et al., 

2012). 

5.1	
   Hyperthermia	
  

Hyperthermia is a frequently observed complication with stimulant use and may lead to 

potentially fatal complications such as rhabdomyolysis, acute renal failure, acidosis, or 

multiple organ failure (Henry, 1992; Kalant, 2001; Kendrick et al., 1977). The cause of 

stimulant-induced hyperthermia is multifaceted as stimulants act on monoaminergic systems 

(discussed in Part I), which regulate body temperature in a variety of ways (Docherty and 

Green, 2010). Norepinephrine release generates heat through activation of uncoupling protein 

3 (UCP3) along with a loss in heat dissipation through vasoconstriction (Mills et al., 2004; 

Parrott, 2012). An increase in the metabolic rate has additionally been reported to cause 

elevated core body temperature after stimulant use (Freedman et al., 2005; Parrott, 2012). 

Furthermore, prolonged excessive dancing, dehydration, and high ambient temperatures 

contribute to hyperthermia. It is likely that a combination of mechanisms and susceptibility 

factors are the cause of stimulant-induced severe hyperthermia in most cases (Patel et al., 

2005). 

5.2	
   Respiratory	
  chain	
  dysfunction	
  

Oxidative phosphorylation is part of cellular respiration and therefore a process of ATP 

production in cells. Oxidative phosphorylation depends on different complexes that transfer 

electrons from donors to acceptors in a series of redox reactions while transferring protons 

across the membrane; thereby, a proton gradient across the inner mitochondrial membrane is 

maintained. This proton gradient drives ATP synthesis by the enzyme ATP synthase 

(Complex V). Of the remaining complexes, three act as proton pumps: complex I 

(NADH:ubiquinone oxidoreductase), complex III (ubiquinol:cytochrome c oxidoreductase), 
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and complex IV (cytochrome c oxidase) (Nicholls and Ferguson, 2013). The succinate 

dehydrogenase forms complex II (Nicholls and Ferguson, 2013). 

An impermeable inner mitochondrial membrane and integrity of the electron transport 

chain complexes are crucial for cellular respiration. Drugs may potentially disrupt cellular 

respiration by inhibition of the electron transport chain complexes, by uncoupling of oxidative 

phosphorylation from ATP synthesis, or both (Felser et al., 2013; Fromenty et al., 1990; 

Krähenbühl, 2001; Serviddio et al., 2011). Consequences of such events can be a decrease in 

ATP production, disruption of the mitochondrial membrane potential (ΔΨm), or apoptosis. 

5.3	
   Oxidative	
  stress	
  

Reactive oxygen species are byproducts of mitochondrial respiration, and complex I and III 

have been discussed as potential sites for ROS generation (Antico Arciuch et al., 2012; Drose 

and Brandt, 2012; Votyakova and Reynolds, 2001). Stimulants that disrupt these complexes 

could induce an increased production of ROS and therefore potentially mitochondrial 

dysfunction (Brown and Yamamoto, 2003). Furthermore, drugs that interfere with the natural 

antioxidant response, for example by depleting or decreasing the activity of GSH, Cu–Zn 

superoxide dismutase, catalase, peroxidase, glutathione reductase, glutathione S-transferase, 

or peroxiredoxins, may further increase toxicity caused by oxidative stress (Cadet and 

Krasnova, 2009; Carvalho et al., 1996; Carvalho et al., 2002; Carvalho et al., 2004). 

5.4	
   Metabolism	
  

Metabolism is thought to play an important role in the hepatotoxicity of stimulants but due to 

structural differences, different mechanisms may contribute to the toxicity for different drugs 

(Carvalho et al., 2012). Currently, most research regarding metabolism in stimulant-induced 

hepatotoxicity has focused on MDMA. Catechol metabolites formed via demethylenation 

mainly by CYP2D6 are assumed to be main contributors to MDMA-induced liver injury 

(Antolino-Lobo et al., 2011; Carmo et al., 2006). Such catechol metabolites are formed for 

other methylenedioxy-substituted stimulants as well (Meyer et al., 2010; Negreira et al., 2015; 

Pedersen et al., 2013) and it is therefore likely that these metabolites induce hepatic toxicity 

similarly as observed for MDMA. Enzyme polymorphism could therefore render some users 

more susceptible to hepatotoxicity, due to increased formation of toxic metabolites. 
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A B S T R A C T

Synthetic cathinones are a new class of psychostimulant substances. Rarely, they can cause liver injury but
associated mechanisms are not completely elucidated. In order to increase our knowledge about mechanisms of
hepatotoxicity, we investigated the effect of five frequently used cathinones on two human cell lines. Bupropion
was included as structurally related drug used therapeutically. In HepG2 cells, bupropion, MDPV, mephedrone
and naphyrone depleted the cellular ATP content at lower concentrations (0.2–1 mM) than cytotoxicity occurred
(0.5–2 mM), suggesting mitochondrial toxicity. In comparison, methedrone and methylone depleted the cellular
ATP pool and induced cytotoxicity at similar concentrations (≥2 mM). In HepaRG cells, cytotoxicity and ATP
depletion could also be demonstrated, but cytochrome P450 induction did not increase the toxicity of the
compounds investigated. The mitochondrial membrane potential was decreased in HepG2 cells by bupropion,
MDPV and naphyrone, confirming mitochondrial toxicity. Bupropion, but not the other compounds, uncoupled
oxidative phosphorylation. Bupropion, MDPV, mephedrone and naphyrone inhibited complex I and II of the
electron transport chain, naphyrone also complex III. All four mitochondrial toxicants were associated with
increased mitochondrial ROS and increased lactate production, which was accompanied by a decrease in the
cellular total GSH pool for naphyrone and MDPV. In conclusion, bupropion, MDPV, mephedrone and naphyrone
are mitochondrial toxicants impairing the function of the electron transport chain and depleting cellular ATP
stores. Since liver injury is rare in users of these drugs, affected persons must have susceptibility factors ren-
dering them more sensitive for these drugs.

1. Introduction

In recent years, various synthetic cathinones (“bath salts”, research
chemicals) with amphetamine-like properties have emerged on the il-
licit drug market and have become popular alternatives to classic sti-
mulants among drug users (Baumann et al., 2013; Prosser and Nelson,
2012). Cathinone designer drugs are derivatives of cathinone (Fig. 1), a
naturally occurring β-keto-amphetamine found in the leaves of the
Catha edulis plant, and are chemically and pharmacologically similar to
classic illicit stimulants (Baumann et al., 2012; Rickli et al., 2015;
Simmler et al., 2013, 2014). Therefore, the health risks posed by syn-
thetic cathinones may be similar to the classic stimulants (Liechti,
2015). A rare, but potentially severe adverse reaction of stimulant use is

hepatotoxicity (Andreu et al., 1998; De Carlis et al., 2001; Ellis et al.,
1996; Garbino et al., 2001; Jones et al., 1994; Kamijo et al., 2002). Most
research concerning stimulant hepatotoxicity has so far focused on 3,4-
methylenedioxymethamphetamine (MDMA; “ecstasy”). However, the
hepatotoxic mechanism of MDMA is currently not entirely understood
and multiple factors including polydrug abuse, hyperthermia, and
metabolism appear to be associated with liver injury in MDMA users
(Antolino-Lobo et al., 2011b; Carvalho et al., 2012; Dias da Silva et al.,
2013a,b). In comparison, data on hepatotoxicity of the newly used
synthetic cathinones is currently scarce. A case of acute liver failure
after synthetic cathinones use has been described (Fröhlich et al., 2011)
and in vitro studies showed that mitochondrial dysfunction and oxida-
tive stress contribute to hepatic injury associated with these compounds
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(Valente et al., 2016a,b).
In the current study, we aimed to investigate in more detail the

mechanisms of hepatocellular toxicity of several synthetic cathinones
(Fig. 1) with a focus on mitochondrial toxicity. We therefore in-
vestigated the toxicity of the cathinone designer drugs 3,4-methylene-
dioxypyrovalerone (MDPV), 4-methylmethcathinone (4-MMC; mephe-
drone), 4-methoxymethcathinone (4-MeOMC; methedrone), 3,4-
methylenedioxymethcathinone (βk-MDMA; methylone), and naphthyl-
pyrovalerone (naphyrone) in two human hepatocyte cell lines. In ad-
dition, we included bupropion, a synthetic cathinone used as an anti-
depressant and as a smoking cessation aid.

2. Methods

2.1. Test substances

Naphyrone was synthesized as previously described by Meltzer et al.
(2006). Methylone, mephedrone, methedrone, and MDPV were pur-
chased from Lipomed (Arlesheim, Switzerland) with HPLC purity
of> 98.5%. Bupropion was purchased from Cayman Chemicals (Ann
Arbor, MI, USA), with a purity of> 98%. All drugs were obtained as
racemic hydrochloride salts. Drug stocks were made in autoclaved
Milli-Q water and were freshly prepared for each assay.

2.2. Cell line and culture

The HepG2 cell line was obtained from the American Type Culture
Collection (ATCC, Manassas, USA) and cultured in Dulbecco’s Modified
Eagle Medium (DMEM, 1 g/l glucose) supplemented with 10% heat
inactivated fetal calf serum (FCS), 10 mM HEPES buffer, 2 mM
GlutaMAX™, 1% MEM non-essential amino acids, and penicillin-strep-
tomycin (10,000 U/ml corresponding to 10 mg/ml). Cell culture
medium and supplements were purchased from Invitrogen (Basel,
Switzerland).

The HepaRG cell line was obtained from Biopredic International
(Saint Grégoire, France) and cultured in William’s E medium (no glu-
tamine) supplemented with 10% FCS, 2 mM L-glutamine, 50 μM hy-
drocortisone hemisuccinate (Sigma Aldrich, Buchs, Switzerland),
0.05% human insulin (9.5–11.5 mg/ml insulin, Sigma Aldrich), and
penicillin-streptomycin (10,000 U/ml corresponding to 10 mg/ml). The
cells were cultured at 37 °C in a 5% CO2 humidified atmosphere and
passaged using trypLE™ Express reagent (Invitrogen) when they
reached 70–80% confluency.

2.3. Cytotoxicity of HepG2 cells

Cytotoxicity was assessed with the ToxiLight BioAssay Kit from
Lonza (Basel, Switzerland) and conducted according to the manu-
facturer’s manual. Briefly, 25,000 HepG2 cells per well were seeded in a
96-well plate. The following day, the cells were treated with 100 μl of
the test substances dissolved in medium (0.01 mM, 0.1 mM, 1 mM, and
2 mM for each drug and additionally 0.2 mM and 0.5 mM for bupropion
and naphyrone). Treatment with 0.5% Triton X-100 was used as a po-
sitive control. After 24 h, 50 μl of the ToxiLight assay buffer was added
to 20 μl of supernatant and luminescence was measured with a Tecan
M200 Pro Infinity plate reader (Männedorf, Switzerland) after 5 min
incubation. The luminescence signal was then compared to medium
control.

2.4. ATP content in HepG2 cells

The ATP content was assessed with the CellTiter-Glo Luminescent
Cell Viability Assay from Promega (Dübendorf, Switzerland) according
to the manufacturer’s manual. Briefly, 25,000 HepG2 cells per well
were seeded in a 96-well plate and cultured overnight. The cells were
then treated for 24 h with 100 μl of the test substances dissolved in
medium (concentrations as for cytotoxicity). Treatment with 0.5%
Triton X-100 was used as a positive control. Thereafter, 50 μl of the
supernatant was discarded and 50 μl of CellTiter-Glo reagent was added
to each well. The plate was then shaken for 15 min at room temperature
to induce cell lysis. Thereafter, the luminescent signal was measured
with a Tecan M200 Pro Infinity plate reader and compared with
medium control.

2.5. Cytotoxicity and ATP content in HepaRG cells

HepaRG cells were cultured and differentiated as follows. 10,000
cells per well were seeded in a 96-well plate and the growth medium
was replaced with fresh medium every 3–4 days for 2 weeks.
Thereafter, the medium was replaced with medium containing 2% of
DMSO in order to differentiate the cells into cholangiocyte- and hepa-
tocyte-like cells. The medium was again replaced with fresh medium
every 3–4 days for 2 weeks and finally replaced with medium con-
taining no DMSO and only 2% FCS. After three days, the medium of
some cell preparations was replaced with the same medium containing
20 μM rifampicin (Sigma Aldrich) every 24 h for cytochrome P450
(CYP) induction. The uninduced cell preparations were treated

Fig. 1. Structures of the synthetic cathinones used in the
study.
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identically with medium not containing rifampicin. After 72 h, the cells
were treated with the test drugs (0.01 mM, 0.1 mM 1 mM, and 2 mM),
medium control or 0.5% Triton X-100. The treatment and experimental
procedures were the same as described for HepG2 cells.

2.6. Mitochondrial membrane potential

The mitochondrial membrane potential (Δψm) can be regarded as a
global indicator of mitochondrial function (Felser et al., 2013). Tetra-
methylrhodamine methyl ester (TMRM; Thermo Scientific, Wohlen,
Switzerland) staining was used to measure Δψm. TMRM is a non-cyto-
toxic cationic red-orange fluorescent dye that permeates into the mi-
tochondria. 150,000 HepG2 cells were cultured in a 24-well plate
overnight and then treated for 24 h with 500 μl of medium containing
the test drugs (0.01 mM, 0.1 mM 0.2 mM, 0.5 mM, and 1 mM). The
uncoupling agent trifluoromethoxy carbonylcyanide phenylhydrazone
(FCCP, Sigma Aldrich) at a concentration of 9 μM served as a positive
control. After treatment, the cells were washed with phosphate-buf-
fered saline (PBS, Invitrogen) and detached with 0.05% trypsin-EDTA
(Invitrogen) at 37 °C. 500 μl medium were added to the wells and the
content was then transferred into polypropylene tubes. The cells were
centrifuged at 1500g for 2.5 min, washed with PBS and centrifuged
again. The supernatant was removed and the cells were re-suspended in
PBS containing 100 nM TMRM. After 20 min of incubation at 37 °C in
the dark, the cells were centrifuged at 300g for 5 min, re-suspended in
300 μl PBS, and transferred into polypropylene microtubes. Fluores-
cence (FL-2) of 10,000 live cells was measured with a FACSCalibur flow
cytometer (Becton Dickinson, Allschwil, Switzerland).

2.7. Cellular total glutathione content

Glutathione is an important antioxidant agent; the cellular total
glutathione (tGSH) pool consists of reduced (GSH) and oxidized (GSSG)
glutathione. Oxidation of GSH is a defense mechanism against cellular
stress and a decrease in the GSH content makes cells more vulnerable to
toxic agents. The tGSH content was determined with the enzymatic
recycling method described by Rahman et al. (2006). The assay is based
on the oxidation of GSH by 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB),
which is reduced to the yellow 5′-thio-2-nitrobenzoic acid. Briefly,
750,000 HepG2 cells per well were seeded in a 6-well plate and left to
attach overnight. The following day, the cells were treated with 1 ml of
test drugs dissolved in medium. After 24 h, the cells were washed twice
with 1 ml of cold PBS and then harvested with 0.05% trypsin-EDTA.
Culture medium was added, the cell suspension was transferred into
pre-chilled polypropylene tubes, and centrifuged at 1000g and 4 °C for
5 min. The supernatant was discarded and the cells re-suspended in
cold PBS. The cells were centrifuged again and re-suspended in 1 ml of
cold extraction buffer (0.1% Triton X-100 and 0.6% sulfosalicylic acid
in 0.1 M potassium phosphate buffer with 5 mM EDTA disodium salt,
pH 7.5 [KPE]). After two freeze-thaw cycles, the cells were centrifuged
at 3000g and 4 °C for 4 min and the supernatant was then immediately
transferred into a fresh polypropylene tube. At this point, the cell ex-
tracts could be frozen at −80 °C until further use for up to 10 days. To
measure tGSH, 20 μl of standards (0.103–26.4 μM GSH in KPE and
blank) and 20 μl of the cell extracts were added to a 96-well plate.
100 μl of a DTNB-glutathione reductase (GR) solution (2 mg DTNB and
10 μl of GR [9.5 mg protein/ml; 189 units/mg protein] in 6 ml KPE)
were added to each well. After 30 s, 50 μl of a β-nicotinamide adenine
dinucleotide 2′-phosphate (β-NADPH) solution (2 mg of β-NADPH tet-
rasodium salt hydrate in 3 ml of KPE) was added to each well. Im-
mediately thereafter, the absorbance at 412 nm was measured with a
Tecan M200 Pro Infinity plate reader every 0.5 min for 2 min. The
protein content was determined with the Pierce Protein Assay Kit
(Thermo Fisher) and the tGSH content was then adjusted to protein.

2.8. Oxygen consumption

The oxygen consumption rate (OCR) was measured with a Seahorse
XF24 extracellular flux assay kit (Seahorse Biosciences, North Billerica,
MA, USA). 100,000 HepG2 cells per well were seeded in a Seahorse
XF24 cell culture microplate coated with poly-D-lysine. The following
day, the cells were treated with the test drugs. After 24 h, the medium
was removed and the cells were washed with unbuffered DMEM (4 mM
L-glutamate, 1 mM pyruvate, 1 g/l glucose, 63.3 mM sodium chloride,
pH 7.4), pre-warmed to 37 °C. Thereafter, unbuffered DMEM was added
to the cells and the plate was incubated for 40 min at 37 °C in a CO2 free
incubator. The ports of the XF24 assay cartridge were then loaded with
oligomycin, FCCP, or rotenone in order to reach a final concentration of
1 μM for each of these compounds. The XF24 Assay cartridge was
loaded into a Seahorse XF24 Analyzer (Seahorse Biosciences) and the
program was run according to the instructions. The oxidative leak was
determined after inhibition of the mitochondrial phosphorylation by
oligomycin and the maximal respiration was determined after stimu-
lation of the electron transport chain by FCCP. Extramitochondrial re-
spiration was determined after complex I inhibition by rotenone and
subtracted from basal, leak, and maximal respiration. The protein
content was determined using sulforhodamine B (SRB) staining. The
cells were fixed with 100 μl of 50% (w/v) trichloroacetic acid (TCA)
added directly to the assay medium of each well. After incubation for
1 h at 4 °C, the cells were washed with deionized water and then stained
with 0.4% (w/v, in 1% [v/v] acetic acid) SRB. After 20 min, the cells
were rapidly washed with 1% (v/v) acetic acid and the incorporated
dye was solubilized with 100 μl of 10 mM TRIS base. The absorbance
was then measured at 490 nm.

2.9. Activity of specific enzyme complexes of the mitochondrial electron
transport chain

The activity of specific enzyme complexes of the mitochondrial re-
spiratory chain was analyzed using an Oxygraph-2k high-resolution
respirometer equipped with DataLab software (Oroboros instruments,
Innsbruck, Austria). HepG2 cells were treated with test drugs for 24 h
and afterwards re-suspended in MiR05 (mitochondrial respiration
medium containing 0.5 mM EGTA, 3 mM magnesium chloride, 20 mM
taurine, 10 mM potassium dihydrogen phosphate, 20 mM HEPES,
110 mM sucrose, 1 g/l fatty-acid free bovine serum albumin, and
60 mM lactobionic acid, pH 7.1). The cells were then transferred into
the pre-calibrated Oxygraph chamber (Pesta and Gnaiger, 2012). Di-
gitonin (10 μg/1 million cells) was used to permeabilize the cells.
Complexes I and III were analyzed using L-glutamate and malate (10
and 2 mM, respectively) as substrates followed by the addition of
adenosine-diphosphate (ADP; 2.5 mM) and rotenone (0.5 μM) as an
inhibitor of complex I. Duroquinol (0.5 mM) was then added as a
substrate of complex III. Complexes II and IV were analyzed using
succinate (10 mM) as substrate and rotenone (0.5 μM) as a complex I
inhibitor, followed by the addition of ADP (2.5 mM). After the addition
of the complex III inhibitor antimycin A (2.5 μM), N,N,N′,N′-tetra-
methyl-1,4-phenylendiamine and ascorbate (0.5 and 2 mM, respec-
tively) were added to investigate complex IV activity. The absence of a
stimulatory effect of exogenous cytochrome c (10 μM) on respiration
confirmed integrity of the outer mitochondrial membrane. Protein
content was determined with the Pierce Protein Assay Kit. Respiration
was expressed as oxygen consumption per mg protein.

2.10. ROS production

ROS production was determined with the red mitochondrial su-
peroxide (O2

−) indicator MitoSOX (Invitrogen) according to the man-
ufacturer’s manual. MitoSOX red is a live-cell permeant fluorogenic dye
that targets the mitochondria and exhibits red fluorescence upon oxi-
dation by superoxide. The seeding and treatment conditions were the
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same as described for cytotoxicity and ATP assays with HepG2 cells;
however, 50 μM amidarone was used as a positive control. Briefly,
100 μl of MitoSOX reagent (2.5 μM) were added to each well of the 96-
well plate and incubated for 10 min at 37 °C in the dark. After that, the
fluorescence was measured at 510/580 nm with a Tecan M200 Pro
Infinity plate reader. The protein content was assessed with the Pierce
Protein Assay Kit.

2.11. Lactate determination

Lactate concentrations in the cell culture assay were determined
with an enzymatic assay after protein precipitation (Olsen, 1971).
Briefly, 50 μl of supernatant from the MitoSOX assay were diluted with
50 μl of 6% (v/v) perchloric acid (PCA), vortexed, and centrifuged at
3000g for 15 min. Reagent buffer consisting of 100 μl hydrazine buffer
(6.8 mM EDTA, 100 mM hydrazine sulphate 1 M hydrazine hydrate, pH
9), 0.2 mg NAD+ (free acid; Roche diagnostics, Rotkreuz, Switzerland)
and 1 μl LDH (5 mg/ml; Roche diagnostics) were added to 10 μl of
sample in a 96-well plate. After 30 min incubation at room tempera-
ture, the absorbance was measured and compared to a lactic acid
standard curve.

2.12. Statistics

Data are presented as mean ± SEM and statistical analyses were
performed using GraphPad Prism 6 (GraphPad Software, La Jolla, CA,
USA). The activity of the enzyme complexes of the mitochondrial
electron transport chain was compared to vehicle control with an un-
paired two-tailed Student's t-test. For the remaining assays, means were
compared to control and differences between control and test drugs
were calculated with ANOVA followed by Dunett’s test. P-values below
0.05 were considered statistically significant.

3. Results

3.1. Cytotoxicity and ATP content in HepG2 cells

AK release and cellular ATP content were determined as markers for
cytotoxicity and mitochondrial function, respectively. In HepG2 cells
after 24 h of exposure, all cathinones were cytotoxic and decreased the
cellular ATP content in a concentration-dependent manner (Figs. 2 a–d;
3 a, b; Table 1). Bupropion was cytotoxic starting at 2 mM while a
decrease in ATP was observed already at 0.5 mM (Fig. 2a). For MDPV,
we observed cytotoxicity starting at 2 mM and a decrease in ATP al-
ready at 1 mM (Fig. 2b). Mephedrone was cytotoxic starting at 2 mM
and decreased ATP at 1 mM (Fig. 2c). Naphyrone was cytotoxic at
0.5 mM and decreased ATP levels at 0.2 mM (Fig. 2d). For methedrone,

we observed cytotoxicity and a decrease in ATP content starting at
2 mM (Fig. 3a). Methylone was cytotoxic at 2 mM without significant
alteration in ATP content (Fig. 3b). In summary, a decrease in the
cellular ATP content at non-cytotoxic drug concentrations, which is
compatible with mitochondrial toxicity (Felser et al., 2013; Kamalian
et al., 2015), was observed for bupropion, MDPV, mephedrone, and
naphyrone.

3.2. Cytotoxicity and ATP content in HepaRG cells

HepaRG were less susceptible than HepG2 cells to the toxicants
investigated. After 24 h of drug exposure, we observed cytotoxicity only
for bupropion and naphyrone and a decrease in ATP content ad-
ditionally for MDPV (Fig. 2a, b, d; Table 1). Bupropion was cytotoxic
starting at 2 mM with a decrease in the ATP content at 1 mM (Fig. 2a).
MDPV decreased ATP at starting 2 mM without being cytotoxic
(Fig. 2b). For naphyrone, we observed cytotoxicity and a decrease in
ATP content starting at 1 mM (Fig. 2d). As in HepG2 cells, bupropion
and MDPV decreased ATP content at non-cytotoxic drug concentra-
tions, underlining possible mitochondrial toxicity for these toxicants
(Felser et al., 2013; Kamalian et al., 2015).

Induction of drug-metabolizing enzymes with 20 μM rifampicin
(Berger et al., 2016) prior to treatment with the toxicants did not cause
a difference in cytotoxicity or decrease in the ATP content compared to
non-induced cells (data not shown). Since CYP induction in HepaRG
cells did not seem to play a major role in toxicity and HepG2 cells were
more sensitive to the toxicants, we decided to continue our investiga-
tions in HepG2 cells only.

3.3. Effect on mitochondrial membrane potential

Next, we determined the effect of the synthetic cathinones on the
mitochondrial membrane potential (Δψm) to further investigate a pos-
sible role of mitochondria in cellular ATP reduction. HepG2 cells
treated for 24 h showed a decreased Δψm for bupropion, MDPV, and
naphyrone (Fig. 4a, b, f). Bupropion reduced the Δψm starting at
0.5 mM (Fig. 4a), MDPV at 1 mM (Fig. 4b), and naphyrone at 0.2 mM
(Fig. 4f). Mephedrone, methedrone, and methylone did not cause a
decrease of Δψm at concentrations up to 1 mM (Fig. 4c–e). The un-
coupler FCCP (9 μM) that we included as positive control reduced the
Δψm by 42% (data not shown).

3.4. Effect on cellular oxygen consumption

A decrease in cellular ATP and Δψm can be caused by impairment
and/or uncoupling of the mitochondrial respiratory chain (Felser et al.,
2013; Krähenbühl, 2001). We therefore assessed the effect of

Table 1
Summary of the toxicity associated with the cathinones investigated. The concentrations (mM) indicated in Table correspond to the lowest concentration where a significant toxic effect
was recorded. The data are obtained from Figs. 2–7. Where no concentration is listed, no significant toxicity was observed in the concentration range investigated.

Bupropion (mM) MDPV (mM) Mephedrone (mM) Methedrone (mM) Methylone (mM) Naphyrone (mM)

HepaRG cells
Cytotoxicity 2 1
ATP depletion 1 2 1

HepG2 cells
Cytotoxicity 2 2 2 2 2 0.5
ATP depletion 0.5 1 1 2 0.2
Decrease of Δψm 0.5 1 0.2
Superoxide production 0.5 2 1 0.2
Lactate production 0.5 1 1 0.2
GSH depletion 2 0.2
Complex I disruption 0.5 1 1 0.2
Complex II disruption 0.5 1 1 0.2
Complex III disruption 0.2
Complex IV disruption

D. Luethi et al.



HEPATOTOXICITY OF SYNTHETIC CATHINONES 

 96 

  

cathinones on the mitochondrial respiratory chain using a XF24 ana-
lyzer. Considering the observed decrease in the cellular ATP content at
non-cytotoxic concentrations and/or decreased Δψm, we tested bupro-
pion, MDPV, mephedrone, and naphyrone at various concentrations
(Fig. 5a–d). Bupropion caused an increase in leak respiration at 0.8 mM
(Fig. 5a), suggesting uncoupling of oxidative phosphorylation. Mephe-
drone decreased the basal respiration at 1 mM and the maximal re-
spiration at 0.5 and 1 mM (Fig. 5c). Naphyrone decreased the maximal
respiration at 0.05 mM, 0.1 mM, and 0.2 mM (Fig. 5d). MDPV de-
creased the maximal respiration as well, but without reaching statistical
significance (Fig. 5b).

As shown, methedrone and methylone neither decreased ATP at

non-cytotoxic concentrations (Fig. 3a, b) nor did they disrupt Δψm

(Fig. 4d, e). We therefore investigated the oxygen consumption of these
substances only at the highest non-cytotoxic concentration (1 mM) and
we did not find any difference compared to control incubations (data
not shown).

We then determined the activity of the complexes of the mi-
tochondrial electron transport chain for bupropion, MDPV, mephe-
drone, and naphyrone using a high-resolution respiratory system
(Fig. 6a–h). Bupropion (0.5 mM), MDPV (1 mM), and mephedrone
(1 mM) inhibited complex I and complex II activity (Fig. 6a–f). At
0.2 mM, naphyrone inhibited complex I, complex II, and complex III
activity (Fig. 6g, h).

Fig. 2. Compounds depleting the cellular
ATP pool at lower concentrations than in-
duction of cytotoxicity.
Intracellular ATP content and cytotoxicity
expressed as release of adenylate kinase
after drug exposure for 24 h in HepG2 and
non-induced HepaRG cells. Data are ex-
pressed as mean ± SEM of at least three
independent experiments. Differences be-
tween control and test drugs were calculated
with ANOVA followed by Dunett’s test.
Significance levels for HepG2 cells are given
as *p < 0.05, **p < 0.01, ***p < 0.001.
Significance levels for HepaRG cells are
given as ##p < 0.01, ###p < 0.001.
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Fig. 3. Compounds inducing cytotoxicity at
lower or at the same concentration than
cellular ATP depletion.
Intracellular ATP content and cytotoxicity
expressed as release of adenylate kinase
after drug exposure for 24 h in HepG2 and
non-induced HepaRG cells. Data are ex-
pressed as mean ± SEM of at least three
independent experiments. Differences be-
tween control and test drugs were calculated
with ANOVA followed by Dunett’s test.
Significance levels for HepG2 cells are given
as *p < 0.05, **p < 0.01, ***p < 0.001.

Fig. 4. Effect on mitochondrial membrane potential
of HepG2 cells.
Mitochondrial membrane potential after 24 h drug
exposure expressed as mean ± SEM of at least three
independent experiments compared to vehicle con-
trol. Differences between control and test drugs were
calculated with ANOVA followed by Dunett’s test.
Significance levels are given as **p < 0.01,
***p < 0.001.
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3.5. Effect on lactate and ROS production and cellular GSH

Depending on its extent, the inhibition of the electron transport
chain can have several metabolic consequences. Cells try to compensate
the loss of mitochondrial ATP production by increasing glycolysis, re-
sulting in increased lactate concentrations in the supernatant, the end
product of glycolysis (Felser et al., 2014). In addition, inhibition of
complex I and complex III of the electron transport chain can stimulate
intra-mitochondrial ROS production (Dröse and Brandt, 2012). Accu-
mulating superoxide anion is then metabolized by SOD2 to hydrogen
peroxide, which can be reduced by gluthione peroxidase, leading to a
decrease in reduced (GSH) and an increase in oxidized glutathione
(GSSG). The cellular content of GSH is therefore a measure of oxidative
stress (Rahman et al., 2006). Bupropion caused an accumulation of
superoxide and lactate at 0.5 mM but without affecting cellular GSH
(Fig. 7a). For MDPV, we detected increased lactate concentrations at
1 mM as well as increased superoxide levels which were accompanied
by a decrease in GSH at 2 mM (Fig. 7b). Mephedrone stimulated lactate
and superoxide production at 1 mM without a significant decrease in
GSH up to 2 mM (Fig. 7c). Naphyrone stimulated lactate and super-
oxide production already at 0.2 mM with a simultaneous decrease in
GSH (Fig. 7d). Buthionine sulfoximine (BSO), which we used as a po-
sitive control, decreased GSH to 14.1 nmol per mg protein, which
corresponds to an 83% decrease compared to control incubations (data
not shown).

4. Discussion

Our investigations demonstrate that in HepG2 cells all cathinones
investigated were cytotoxic and, except methylone, decreased the cel-
lular ATP content in a concentration-dependent fashion. Bupropion,
MDPV, mephedrone, and naphyrone decreased the cellular ATP content
at lower concentrations than cytotoxicity occurred, compatible with
mitochondrial toxicity. For these substances, impairment of the mi-
tochondrial respiratory chain could be demonstrated directly and/or
indirectly (mitochondrial ROS production and lactate production) at
similar concentrations as ATP depletion. In HepaRG cells, the com-
pounds investigated were less toxic than in HepG2 cells, but with a
similar pattern concerning cytotoxicity and ATP depletion. CYP in-
duction by rifampicin in HepaRG cells did not incease cytotoxcitiy or
depletion of the ATP pool. Thus, more active metabolite formation by

CYPs did not enhance toxicity.
Regarding CYP induction, it is however important to be aware that

CYP2D6 cannot be induced with rifampicin (Berger et al., 2016).
CYP2D6 has been shown to be an important enzyme regarding the
metabolism of synthetic cathinones (Helfer et al., 2015; Meyer et al.,
2010; Negreira et al., 2015; Pedersen et al., 2013a,b) and it is therefore
possible that the production of toxic metabolites may have been missed.
For instance, the catechol metabolite of MDMA which is formed by
CYP2D6, appears to be more hepatotoxic than the parent compound
(Antolino-Lobo et al., 2011a; Carmo et al., 2006).

In accordance with our results, a recently published study has also
shown that HepaRG cells are quite resistant to cytotoxicity elicited by
synthetic cathinones, with EC50 concentrations> 2 mM and>5 mM
for MDPV and methylone, respectively, determined through the MTT
reduction assay (Valente et al., 2016a). We therefore also used HepG2
cells for our investigations, as they represent a good in vitro model for
studying the effect of toxicants on mitochondrial function (Felser et al.,
2013; Kamalian et al., 2015). In the current study, cytotoxicity was
observed in HepG2 cells for all test drugs in a concentration-dependent
manner, which, with the exception of methylone, was accompanied by
ATP depletion. For bupropion, MDPV, mephedrone, and naphyrone,
ATP depletion was observed at lower concentrations than cytotoxicity,
suggesting mitochondrial dysfunction (Felser et al., 2013; Kamalian
et al., 2015). For bupropion, MDPV, and naphyrone, ATP depletion was
accompanied by a decrease in Δψm, further supporting the hypothesis
that these compounds cause mitochondrial dysfunction. Since a de-
crease in Δψm can be due to impaired activity of the mitochondrial
electron transport chain, we investigated the effects of the toxicants on
oxidative metabolism of HepG2 cells in more detail. For bupropion, the
cellular oxygen consumption in the presence of the complex I substrates
L-glutamate and pyruvate revealed an increase in leak respiration,
suggesting uncoupling of oxidative phosphorylation. For mephedrone,
we observed a decrease in basal and maximal respiration and for na-
phyrone a decrease in maximal respiration, compatible with inhibition
of the electron transport chain. For MDPV, there was a numeric de-
crease in maximal respiration, which did not achieve statistical sig-
nificance due to a high variation in the control samples. MDPV was
associated with an increase in mitochondrial ROS production and cel-
lular generation of lactate, both indirect markers of a decreased func-
tion of the mitochondrial electron transport chain and mitochondrial
ATP production (Felser et al., 2013, 2014). Using high-resolution

Fig. 5. Function of the respiratory chain in
HepG2 cells.
Oxygen consumption rate (OCR) in HepG2
cells after 24 h drug exposure. Data are ex-
pressed as mean ± SEM of at least four
independent experiments. Basal respiration,
leak respiration, and maximal respiration
were determined after drug treatment as
specified in Methods and were compared to
the respective vehicle control values.
Statistical significance was calculated with
ANOVA followed by Dunett’s test and sig-
nificance levels are given as *p < 0.05,
**p < 0.01, ***p < 0.001.

D. Luethi et al.



HEPATOTOXICITY OF SYNTHETIC CATHINONES 

 99 

  

respirometry, inhibition of complex I and II of the electron transport
chain by bupropion, MDPV, mephedrone, and naphyrone and inhibi-
tion of complex III by naphyrone could be shown directly. In compar-
ison, methedrone and methylone did not affect the enzyme complexes
of the respiratory chain. Methedrone and methylone did not cause ATP
depletion at non-cytotoxic concentrations either, nor did they alter Δψm

or the cellular oxygen consumption at 1 mM. For methedrone and
methylone, effects on mitochondria can therefore most likely not ex-
plain cytotoxicity.

The inhibition of complex I and III of the mitochondrial respiratory
chain can be associated with increased mitochondrial ROS production
(Dröse and Brandt, 2012), which can lead to a reduction of the mi-
tochondrial and cellular GSH stores and opening of the mitochondrial
membrane permeability transition pore (Green and Reed, 1998). In the
current study, increased ROS production was observed for all

mitochondrial toxicants (bupropion, MDPV, mephedrone, and na-
phyrone), but a significant decrease in the cellular GSH pool was only
detected for MDPV and naphyrone. In support of our results, MDPV has
previously been shown to stimulate ROS and RNS production and to
deplete the cellular GSH stores in primary rat hepatocytes (Valente
et al., 2016b).

A second consequence of the inhibition of the mitochondrial func-
tion is a shift in the ATP production from mitochondria to glycolysis
with a concomitant increase in lactate production (Felser et al., 2014).
As expected, the lactate concentration in the supernatant of the in-
cubations containing one of the four compounds affecting mitochon-
drial function increased significantly, paralleling the increase in ROS
production (Fig. 7).

Among the four compounds affecting mitochondrial function, bu-
propion has most often been associated with liver injury (Alonso

Fig. 6. Effect on the activity of the enzyme
complexes of the mitochondrial electron
transport chain measured using the
Oxygraph-2k-high-resolution respirometer
in HepG2 cells.
Respiratory capacities of HepG2 cells after
24 h treatment of bupropion (a, b), MDPV
(c, d), mephedrone (e, f), and naphyrone (g,
h). Data are expressed as mean ± SEM of at
least six independent experiments.
Treatment was compared to vehicle control
with an unpaired two-tailed Student's t-test.
Significance levels are given as *p < 0.05,
**p < 0.01, ***p < 0.001.
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Rodriguez et al., 2010; Alvaro et al., 2001; Carlos Titos-Arcos et al.,
2008; Hu et al., 2000; Humayun et al., 2007; Khoo et al., 2003). The
results of the current study suggest that this may more likely be due to
the broad use of this compound as a drug than due to a more pro-
nounced mitochondrial toxicity compared to the other cathinones in-
vestigated. Bupropion was the only compound, however, that not only
inhibited complex I and II of the electron transport chain, but also
uncoupled oxidative phosphorylation, which may increase its toxicity.

For all compounds investigated, hepatic toxicity is a rare, but po-
tentially life-threatening event. Certain factors may therefore increase
the probability to develop liver injury when ingesting these compounds.
One of these factors is the dose, as suggested by the concentration-de-
pendent toxicity observed in the current study. Other factors reported
in the literature suggested to increase the risk of liver toxicity include
polydrug abuse and hyperthermia (Armenian et al., 2013; Borek and
Holstege, 2012; Dias da Silva et al., 2013a,b; Green et al., 2004; Prosser
and Nelson, 2012). CYP2D6 activity could also play a role, since, as
discussed previously, the catechol metabolites of methylenedioxy
cathinones (MDPV and methylone in the current study) may be more
toxic than the respective parent compounds (Antolino-Lobo et al.,
2011a; Carmo et al., 2006). CYP2D6 ultrarapid metabolizers may
therefore be at risk for hepatotoxicity associated with these compounds.
If mitochondrial dysfunction is a main toxicological mechanism, as
suggested by the current study, also preexisting mitochondrial

dysfunction may render patients more suceptible. This has been shown
for severe hepatotoxicity induced by valproic acid, where preexisting
mitochondrial dysfunction is an established suceptibility factor
(Krahenbuhl et al., 2000; Stewart et al., 2010).

Blood concentrations determined in drug users or post mortem cases
were typically lower than the toxic concentrations in our cellular assays
(Cawrse et al., 2012; Cosbey et al., 2013; Torrance and Cooper, 2010;
Wikström et al., 2010). However, a case with post-mortem mephedrone
blood concentrations> 100 μM has been described (Torrance and
Cooper, 2010) and in a series of methylone associated fatalities, drug
concentrations in the liver were higher than in the blood, with an
average liver-to-blood ratio of 2.68 (Cawrse et al., 2012). Moreover,
HepG2 cells appear to be more robust to toxicants than human hepa-
tocytes (Gerets et al., 2012) and the presence of suceptibility factors
may shift the blood or liver concentration-toxicity curve to lower con-
centrations.

In conclusion, our investigations give a closer insight into the me-
chanism of cathinone-induced hepatotoxicity and demonstrate that
bupropion, MDPV, mephedrone and naphyrone are associated with
mitochondrial dysfunction due to interactions with enzyme complexes
of the electron transport chain. Since liver injury is rare in persons in-
gesting these compounds, users with liver injury have to have risk
factors rendering them more suceptible.

Fig. 7. Cellular stress and tGSH content in
HepG2 cells.
Superoxide production, lactate concentra-
tions and total GSH levels after 24 h drug
treatment. Data are expressed as
mean ± SEM of at least three independent
experiments compared to vehicle control.
Statistical significance was calculated with
ANOVA followed by Dunett’s test and sig-
nificance levels are given as *p < 0.05,
**p < 0.01, ***p < 0.001 for superoxide
production and GSH and ##p < 0.01,
###p < 0.001 for lactate production.
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7 CONCLUDING REMARKS AND OUTLOOK 

The pharmacological profiles of a variety of traditional and newly emerged drugs have 

been described within the scope of this thesis. The choice of substances to characterize was 

based on their popularity and frequency of use on the one hand, and the lack of available 

information on the other hand. The profiles of the investigated NPSs revealed how diverse the 

current drug market is. 

Mephedrone was and still is one of the most popular designer stimulants; when it was 

put on the list of controlled substances in most countries, structurally and pharmacologically 

slightly different analogs emerged on the drug market, which have been described in chapter 

2.1. The fatalities caused by 4-MA contaminated street amphetamine (Blanckaert et al., 2013) 

show the consequences that slight structural changes potentially can have. Amphetamine 

displays a distinct dopaminergic vs. serotonergic activity (Simmler et al., 2013), whereas the 

methylated analog 4-MA is a more potent 5-HT vs. DA reuptake inhibitor. As shown in 

chapter 4, DAT and SERT inhibition are inversely correlated. A combination of two drugs 

with distinct pharmacological profiles may therefore potentially dampen the reinforcing 

effects while increasing the adverse effects such as the hyperthermia observed in patients 

intoxicated with a combination of amphetamine and 4-MA (Blanckaert et al., 2013). 

The MPH-based NPSs characterized in chapter 2.2 represent a group of compounds 

derived from MPH, a frequently prescribed stimulant for the treatment of attention-

deficit/hyperactivity disorder (ADHD). As observed for MPH, designer drug analogs may 

potentially not only be used in a recreational setting (Bruggisser et al., 2011; Garland, 1998; 

Jaffe, 1991; Massello and Carpenter, 1999; Parran and Jasinski, 1991) but also as so-called 

“smart drugs” for cognitive enhancement (Arria et al., 2008; Beharry and Gibbons, 2016; 

Liakoni et al., 2015; Maier et al., 2013; Repantis et al., 2010). Unlike the prescription drug 

MPH, MPH-based NPSs reach the drug market often without being controlled substances, 

which makes the distribution and purchase via the Internet and other sources easier compared 

to MPH. The MPH-based designer drugs displayed pharmacological profiles similar to MPH 

and cocaine, but with a high range of transporter inhibition potencies. This shows one of the 

dangers in today's fast changing drug market: as new compounds constantly emerge, there is 

often only limited information on their effects and potency available, which puts users at risk 

of adverse effects or overdosing. 

Phenethylamines with a 2,5-dimethoxy substitution pattern paired with a substituent at 

the 4-position (2C drugs) make up a large group of psychedelics. The profiles of 2C drugs 
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discussed in chapter 3.1 and 3.2 suggest that highest affinity and activation potency for the 5-

HT2A receptors are observed for 2C drugs with small lipophilic substituents at the 4-position. 

Compounds with bulky and lipophilic 4-substituents are potentially potent 5-HT2A ligands as 

well but with decreased or no activation potency at this receptor, suggesting antagonistic 

behavior. The newly emerged NBOMe analogs discussed in chapter 3.1 turned out to be 

highly potent and compared to the relatively safe 2C drugs, NBOMes have been associated 

with increased clinical toxicity and numerous fatalities (Nichols, 2016; Nikolaou et al., 2015; 

Poklis et al., 2014; Rose et al., 2013; Suzuki et al., 2015). 

In comparison to traditional drugs, increased potency and related adverse effects 

associated with various newly emerged designer drugs may put users at an increased health 

risk. This exemplifies the dilemma associated with the current designer drug crisis: many 

popular “legal highs” are eventually scheduled to prohibit the uncontrolled legal trade and 

use; however, controlled drugs will often just be replaced by new drugs, which are potentially 

more hazardous and for which there is usually even less information about risks and harms 

available. In recent years, in various countries efforts have been made to schedule NPSs not 

on an individual basis but based on structure class. This approach can help to decrease the use 

of novel compounds, as without the advantage of being legal, newly emerged compounds are 

often inferior to traditional illicit drugs in many aspects. In fact, since 2016 the number of 

compounds reported for the first time in the European Union seems to decrease (European 

Monitoring Centre for Drugs and Drug Addiction, 2018). 

A limitation of the pharmacological investigations was the focus on monoaminergic 

transporters and receptors only, as possible interactions of the drugs with other targets could 

have been missed. Moreover, other factors such as bioavailability, route of administration, 

volume of distribution, or brain penetration can substantially influence the effects and clinical 

potency of a drug but these aspects were not accounted for in the in vitro assays described in 

this thesis. However, as shown in chapter 4, the in vitro monoamine transporter and receptor 

interaction data correlate well with reported human doses for stimulants and psychedelics and 

are therefore a valuable predictor for the clinical potency of the substances and may help in 

the scheduling process of authorities. 

The toxicological investigations were focused on the liver, as it has been shown to be 

a target of stimulant toxicity (Andreu et al., 1998; De Carlis et al., 2001; Ellis et al., 1996; 

Garbino et al., 2001; Jones et al., 1994; Kamijo et al., 2002). However, the liver is just one of 

many organs that can be affected by stimulants, and the investigation of neurotoxicity, 

myotoxicity, nephrotoxicity, cardiotoxicity, and other kinds of toxicity would be needed for a 
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better assessment of the risks associated with new drugs. But since detailed toxicological 

investigations are time-consuming, comprehensive toxicological investigations for all novel 

compounds are currently not feasible due to the high rate of emergence of NPSs on the drug 

market. In chapter 6, the potential of several cathinones to induce mitochondrial damage in 

human hepatic cell lines have been discussed. Four of the six investigated cathinones 

displayed signs of mitochondrial toxicity and it is likely that other cathinones may elicit 

mitochondrial damage and liver injury as well. High-throughput in vitro methods and in silico 

models could be approaches to profile organ toxicity of NPSs in the future. Until then, 

knowledge on the toxicity of newly emerged drugs will continue to be derived mainly from 

case reports of clinical toxicity.  
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A LIST OF DRUGS 

A.1	
   Stimulants	
  

Aminoindanes 
 MMAI; 5-methoxy-6-methyl-2-aminoindane 
 N-methyl-2-AI; N-methyl-2-aminoindane 

Cathinones 
 2,3-DMMC; 2,3-dimethylmethcathinone 
 2,4-DMMC; 2,4-dimethylmethcathinone 
 3-MMC; 3-methylmethcathinone 
 3,4-DMMC; 3,4-dimethylmethcathinone 
 Mephedrone; 4-MMC; 4-methylmethcathinone 

Phenethylamines 
 4-MA; 4-methylamphetamine 
 d-Methamphetamine 
 MDMA; 3,4-methylenedioxymethamphetamine 

Piperidines 
 3,4-Dichloroethylphenidate 
 3,4-Dichloromethylphenidate 
 4-Fluoromethylphenidate 
 4-Methylmethylphenidate 
 Ethylnaphthidate 
 Ethylphenidate 
 Isopropylphenidate 
 MPH; Methylphenidate 
 N-benzylethylphenidate 
 Propylphenidate 

Other 
 5-IT; 5-(2-aminopropyl)indole 
 Diclofensine 
 Methylmorphenate 
 Modafinil 
  

A.2	
   Dissociatives	
  

Diarylethylamines 
 Diphenidine 
 Methoxphenidine; 2-methoxydiphenidine 
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A.3	
   Psychedelics	
  

Ergoline 
 LSD; lysergic acid diethylamide 

Phenethylamines 
 25B-NBOMe; 2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
 25C-NBOMe; 2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
 25D-NBOMe; 2-(4-methyl-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
 25E-NBOMe; 2-(4-ethyl-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
 25H-NBOMe; 2-(2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
 25I-NBOMe; 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
 25N-NBOMe; 2-(4-nitro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
 25P-NBOMe; 2-(4-propyl-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
 25T2-NBOMe; 2-(2,5-dimethoxy-4-ethylthiophenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
 25T4-NBOMe; 2-(2,5-dimethoxy-4-isopropylthiophenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
 25T7-NBOMe; 2-(2,5-dimethoxy-4-n-propylthiophenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
 2C-B; 4-bromo-2,5-dimethoxyphenethylamine 
 2C-C; 4-chloro-2,5-dimethoxyphenethylamine 
 2C-D; 2,5-dimethoxy-4-methylphenethylamine 
 2C-E; 2,5-dimethoxy-4-ethylphenethylamine 
 2C-H; 2,5-dimethoxyphenethylamine 
 2C-I; 4-iodo-2,5-dimethoxyphenethylamine 
 2C-N; 2,5-dimethoxy-4-nitrophenethylamine  
 2C-P; 2,5-Dimethoxy-4-propylphenethylamine 
 2C-T-1; 2,5-dimethoxy-4-methylthiophenethylamine 
 2C-T-2; 2,5-Dimethoxy-4-(ethylthio)phenethylamine 
 2C-T-3; 2,5-dimethoxy-4-(β-methallyl)thiophenethylamine 
 2C-T-4; 2,5-dimethoxy-4-isopropylthiophenethylamine 
 2C-T-7; 2,5-dimethoxy-4-propylthiophenethylamine 
 2C-T-16; 2,5-dimethoxy-4-allylthiophenethylamine 
 2C-T-19; dimethoxy-4-n-butylthiophenethylamine 
 2C-T-21.5; 2,5-dimethoxy-4-(2,2-difluoroethylthio)phenethylamine 
 2C-T-22: 2,5-dimethoxy-4-(2,2,2-trifluoroethylthio)phenethylamine 
 2C-T-25; 2,5-dimethoxy-4-isobutylthiophenethylamine, 
 2C-T-27; 2,5-dimethoxy-4-benzylthiophenethylamine 
 2C-T-28; 2,5-dimethoxy-4-(3-fluoropropylthio)phenethylamine 
 2C-T-30; 2,5-dimethoxy-4-(4-fluorobutylthio)phenethylamine 
 2C-T-31; 2,5-dimethoxy-4-(4-trifluoromethylbenzylthio)phenethylamine 
 2C-T-33; 2,5-dimethoxy-4-(3-methoxybenzylthio)phenethylamine 
 Mescaline; 3,4,5-Trimethoxyphenethylamine 
 Mescaline-NBOMe; 2-(3,4,5-Trimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine 
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