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Prologue 
 

Any biological, cellular system needs to integrate information from the outside environment to function 

within its cellular regime. This is true for single cell systems in the domains of bacteria, archaea and 

eukaryotes, as well as for any multicellular systems of the latter. Nature is probabilistic and so is the 

information that can be acquired about the environment, cellular systems faced with such challenges 

adopted by changing their responses after integrating over all available information. Multicellular systems 

are facing a double challenge: Not only do they need to integrate information, they also need to 

coordinate the changes across all cells. From the molecular level upwards, the process of changing can be 

called learning, which is a fundamental part of life. Some of these multicellular systems created a special 

class of cells, neurons, building up a nervous system that is specialized in dealing with this challenge. It is 

their task to integrate information about the external world and coordinate a multitude of other cellular 

regimes within the multicellular system to react appropriately to the environment. Neurons do this by 

transmitting electric signals across its interconnected web, thereby spreading the information throughout 

the system (Kandel, 2013). Interestingly, the spread of information, does not only impact non-nervous 

system cells, but also with time the nervous systems itself. This manifests in changes of how external 

signals are integrated by neurons (McCool and Britten, 2008) and goes even further by changing the 

expression of genes inside neurons (Curran and Morgan, 1995). Alterations of gene expression give a cell 

the possibility to change its molecular composition and show a plastic adoption to the environment. This 

process is the essence of learning and impacts not only the molecular composition of neurons, but also 

the response to incoming information (Okuno, 2011). Intriguingly, such a change in the response to 

information within the nervous system shapes the future processing of information and thus alters its 

quality, which we will see in a later chapter of this thesis. 

 

 

Feature detection versus predictive coding 
 

Information processing in the nervous system has classically been viewed as the detection of features of 

the external world. This idea originates from studies of Charles Scott Sherrington, who coined the term 

“receptive field”, by mapping body parts from which a scratching reflex of a dog could be elicited 

(Sherrington, 1906). Haldan Keffer Hartline made used of this term later in 1938 for the visual system to 
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describe responses in the frog retina (Hartline, 1938). Further studies by Horace Barlow in the 50’s lead 

to the conclusion that neurons in the brain code for specific features of the outside world (Barlow, 1953). 

David Hubel and Torsten Wiesel then went on to show that neuronal signals in the cat’s visual cortex can 

be explained by hierarchical processing of such features (Hubel and Wiesel, 1962).  

 

 

Figure 1: A hierarchical processing stream for feature detection in the visual system of our brain.  

Features of the environment are detected within the receptive fields of neurons in the retina, which send their information to 

individual neurons in the dorsal lateral nucleus of the thalamus (dLGN), from where these neurons project onto a single neuron 

in primary visual cortex. Since the information of neurons with overlapping receptive fields, aligned in one direction converge 

onto one single neurons, it response to a stimulus in the shape of a bar. Modified from: (Hubel and Wiesel, 1962) 

 

This brief history of visual neuroscience is not a complete list of all the contributions to this field of 

neuroscience, many more labs have shown in elegant work, how sensory brain areas decode information 

about the environment based on such a hierarchical processing stream. However, this model does not 

account for one visual experience we are all familiar with: visual illusions. How is it possible that we see 

something, although the necessary features are not present? A famous example for such an illusion is the 

Kanizsa triangle (Kanizsa, 1976).  
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Figure 2: Kanizsa triangle. 

Note the perception of a white triangle in the foreground, although lines like for the triangle in the background are not present. 

Image can be found on: https://en.wikipedia.org/wiki/Illusory_contours (CC BY-SA 3.0 license).  

 

This striking perception of something featureless illustrates the point that sensory brain areas likely code 

for more than pure features of the outside world. What else do our sensory system code for? In recent 

years scientist have look for answers to this puzzling questions and realized that the old, but historically 

rather unappreciated hypothesis of predictive coding might be a good candidate to put to the test. 

Predictive coding states that our sensory experience are influenced by our experience, hence our 

expectation of the immediate future. The theory of predictive coding originates from ideas and studies of 

Hermann von Helmholtz, who postulated that our sensory perception is influenced by an internal 

representation of the world (Von Helmholtz, 1867). When looking at patients that suffered from a 

paralysis of the lateral rectus muscle of the right eye, he noticed that when patients were asked to look 

to the right, they perceived objects moving to the right, although the eye was stationary and the image 

on the retina did not change (Von Helmholtz, 1867). He explained this perception by assuming that our 

brain makes unconscious inferences and therefore constructs reality. Erich von Holst and Horst 

Mittelstaedt were among the first ones to provide indirect evidence for such unconscious inferences. They 

rotated the head of a fly by 180 degrees and coupled it’s lateral movement to visual flow either to the 

right or left on a surrounding cylinder with a stripped pattern (von Holst and Mittelstaedt, 1950). 

Stationary flies react to visual flow of such a cylinder by moving to the same direction, thereby stabilizing 

their visual field. However under conditions of self-generated visual flow, whenever the movement of the 

fly itself would lead to a shift of the pattern on the cylinder, the fly would stabilize its visual field, by 

initiating a movement into the opposite direction. What happens during self-generated visual flow in the 

case of a fly with its head turned 180 degrees? Interestingly, flies fail to stabilize their visual field, as they 
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move in the same direction as the visual flow. Under normal condition movements to the right, cause 

images on the retina to move to the left, leading to a corrective movement of the fly to the left. With eyes 

rotated by 180 degrees, flies experience movement of images on their retina into the opposite direction. 

When now turning right, flies experience visual flow as if the turned left and initiate a movement to the 

right, causing more destabilizing visual flow. Such behavior can be easiest explained by the assumption 

that the fly’s brain knows about the visual flow generated by its movement and therefore the authors 

concluded that flies predict the direction of visual flow by internally processing their movement 

commands. Such internal movement commands were afterwards named efference copy. It has become 

clear over last decades that efference copies exist and a multitude of organisms use it to process 

information (Bell, 1982; Eliades and Wang, 2008; Keller et al., 2012; Keller and Hahnloser, 2009; Kim et 

al., 2017, 2015; Poulet and Hedwig, 2006; Saleem et al., 2013). Scientist gained deeper insight into the 

processing of efference copies from studies in visual cortex of mice. It has been shown that motor 

command–related brain areas project to visual cortex, sending information about visual flow predictions 

(Leinweber et al., 2017). Such predictions are used to form a comparison of predicted visual flow and 

actual visual input (Attinger et al., 2017), which signals a deviation of expectations from reality.  

 

 

Figure 3: A simplified schematic for predictive coding in the visual system 

Movement of an animal generates visual flow, which is sensed by its visual organs and sent to visual cortex. At the same time a 

copy of the motor command that initiated the movement is sent in addition to visual cortex for a comparison of predicted 

visual flow (efference copy) and actual sensory input. It has been speculated that such a comparison could be used to update 

future motor output. 
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Animals, including humans, are not born with prior knowledge about the stochastic quality of nature. 

Brains acquire knowledge with time and experiences shape their processing. It takes time until kids are 

able to walk and deal with immediate consequences of their movements. For this reason it wasn’t 

surprising to see that mismatch signals, computed by the above mentioned comparison, undergo a 

development and are subject to learning (Attinger et al., 2017). If brains are required to undergo a plastic 

change with experience in order to facilitate predictive coding, what are the molecular players that enable 

learning? Which genes might influence processing of information in visual cortex within a predictive 

coding framework? 

 

 

Neuronal activity and gene expression 
 

Many genes that play a role in learning and neuronal plasticity have been discovered more than 20 years 

ago and where named immediate early genes (IEGs) (Okuno, 2011). This name was initially borrowed from 

the field of cellular growth regulation as eloquently explained by Tom Curran and James Morgan: 

“The concept of the cellular immediate-early response arose from observations made in the field of growth 

regulation. It was noted that growing cells could be rendered quiescent by deprivation of growth factors. 

Entry into the cell cycle could be triggered by resupplying a cocktail of growth factors that conveyed cells 

through a series of defined steps culminating in mitosis. A critical early phase, termed “competence,” was 

defined in which cells treated with platelet-derived growth factor (PDGF) were competent to proceed 

through the cycle if they were supplied with additional factors (Stiles et al., 1979). The use of protein 

synthesis inhibitors, such as cycloheximide, revealed that, during acquisition of competence, there was a 

critical early period in which PDGF was required to stimulate expression of a set of genes, termed 

“competence genes” for progression through the cell cycle to occur (Cochran et al., 1983). Thus, this set of 

genes, later named immediate-early genes (see later), were induced rapidly by extracellular stimuli, even in 

the presence of protein synthesis inhibitors, and encoded proteins that were required, in combination with 

other signals, for the cellular growth response. This is the general concept that was borrowed from the field 

of growth regulation and applied to the study of signal transduction in neurons.” (Curran and Morgan, 1995) 

Until know immediate early genes have been characterized and categorized based on their molecular 

function. Descriptive categories range from transcription factors, postsynaptic proteins, intracellular 

signaling molecules, secretory factor to membrane proteins (Okuno, 2011). The immediate early gene c-

Fos was among the first ones to be discovered (Curran and Teich, 1982). After experiments showed that 
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its expression could be induced by external stimulation of neurons (Greenberg and Ziff, 1984), IEGs have 

classically been linked to neuronal activity (Bullitt, 1990; Garner et al., 2012; Knapska and Kaczmarek, 

2004; Liu et al., 2012; Minatohara et al., 2015; Ramirez et al., 2013). Two more well studied examples of 

IEGs are Arc/Arg3.1 (Link et al., 1995; Lyford et al., 1995) (which is referred to as Arc throughout the text) 

and EGR1 or Zif268/NGFI-A/Krox-24/TIS8/ZENK (Lau and Nathans, 1987; Milbrandt, 1987) (which is 

referred to as EGR1 throughout the text, see (Knapska and Kaczmarek, 2004) for disambiguation). Many 

studies have provided evidence that c-Fos, Arc and EGR1 are important for learning and plastic changes 

at the synapse associated with learning, such as long term potentiation and long term depression 

(Bramham et al., 2010; Curran and Morgan, 1995; Veyrac et al., 2014). 

 

 

Figure 4: Immediate early genes impact neuronal plasticity at the synapse.  

Both long term potentiation (LTP) and long term depression (LTD) are part of plastic changes at neuronal synapses that alter the 

response to incoming signals. Immediate early genes can be induced by incoming signals and play a critical role in regulating 

LTP and LTD. Modified from: (Vitureira and Goda, 2013) 

 

In visual cortex the expression of c-Fos, Arc and EGR1 can be induced by over-night dark adaption followed 

by visual stimulation (Gao et al., 2010; Zangenehpour and Chaudhuri, 2002), however the expression of 

EGR1 is less effected by dark rearing (Yamada et al., 1999) and can even be increased by prolonged dark 

rearing (Mower and Kaplan, 2002) in visual cortex. Evidence that Arc is crucial for plasticity induced by 

feed-forward visual input is provided by several studies (Gao et al., 2010; Jenks et al., 2017; McCurry et 

al., 2010; Wang et al., 2006), however such implications are less clear for EGR1 (Mataga et al., 2001). From 
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the perspective of predictive coding visual cortex needs two types of functional input, motor-related and 

visual input, to form a comparison between predicted visual flow and actual sensory input (Attinger et al., 

2017; Keller et al., 2012; Saleem et al., 2013). Given that such a comparison is learned and likely requires 

genes that impact learning, like immediate early genes, it’s an easy step to speculate, together with the 

differential expression of Arc and EGR1 upon the lack of visual input, about a role of these immediate 

early genes during plastic changes that help to specify functional input to neurons within a predictive 

coding framework. 

 

 

Aim of this thesis 
 

As outlined on the previous pages this thesis builds upon the hypothesis that our brains not only detect 

features of the outside world, but also acquire knowledge about the world with experience and use this 

information to predict the consequences of movement. As such expectations are learned and require 

plastic changes of how signals are processed in visual cortex, immediate early genes are potential 

candidates that might mediate such changes within neurons. As a consequence such changes might 

influence sensory processing of outside stimuli itself.  

Chapter 1 of this thesis aims to gain insight into the role of immediate early genes during visuomotor-

learning in visual cortex and provides evidence that some IEGs are correlated with the functional type of 

input a neuron receives.  

Chapter 2 of this thesis tries to gather more evidence that the expression of immediate early genes is 

correlated with plastic changes for specific functional input in another brain area, namely the hippocampal 

area CA1.  

Chapter 3 of this thesis looks at how learning about external stimuli of the environment changes the 

quality of signals about these outside stimuli within visual cortex and thus impact sensory processing over 

time. 
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Chapter 1: Functional correlates of immediate early gene expression in 
mouse visual cortex 
 

This chapter is based on a non-published manuscript, a revised version will be submitted to a peer-reviewed journal in the future. 

The text and figures of this chapter correspond largely to the manuscript, with minor adaptions to formatting and numbering to 

conform to the style of this thesis.  

David Mahringer1, 2, Pawel Zmarz1, 2, Hiroyuki Okuno4, Haruhiko Bito5 & Georg B. Keller1, 2 ,6 

1 Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland  
2 Faculty of Natural Sciences, University of Basel, Basel, Switzerland  
4 Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan 
5 Department of Neurochemistry, University of Tokyo Graduate School of Medicine, Tokyo, Japan 
6 Correspondence to: georg.keller@fmi.ch  
 

The expression of immediate-early genes (IEGs) in visual cortex is necessary for certain forms of 

neuronal plasticity and plays a critical role in visual development. How IEG expression correlates with 

neural activity and how it changes with visuomotor learning is still unclear. Using transgenic mice 

expressing GFP under control of different IEG promoters, we chronically recorded both neural activity 

using a red calcium indicator and IEG expression levels in primary visual cortex (V1) during visuomotor 

learning. We quantify correlations between neural activity and expression of three different IEGs c-Fos, 

EGR1 and Arc and find that expression of all three IEGs correlates positively with neural activity. 

However, we find that the different IEGs are regulated differentially during visuomotor learning, and 

that IEG expression profile correlates with functional response type of the neuron. Neurons that exhibit 

strong motor-related activity express higher levels of EGR1, while neurons that exhibit visually driven 

activity express higher levels of Arc. These findings suggest that different IEG expression levels might 

correlate with plastic changes in the functional type of input a neuron in V1 layer 2/3 receives. 

 

 

Introduction 
 

A specific subset of genes, whose expression can be induced by stimulation in neurons, referred to as 

immediate early genes (IEGs), are often used as a marker for neuronal activity in vivo (Okuno, 2011). 

Among the most widely used IEGs are c-Fos (Curran and Teich, 1982), EGR1 or Zif268/NGFI-A/Krox-

24/TIS8/ZENK (Lau and Nathans, 1987; Milbrandt, 1987) (which we will refer to as EGR1 throughout the 
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text, see (Knapska and Kaczmarek, 2004) for disambiguation) and Arc/Arg3.1 (Link et al., 1995; Lyford et 

al., 1995) (which we will refer to as Arc throughout the text). Since the discovery that c-Fos expression can 

be induced by external stimulation in neurons (Greenberg and Ziff, 1984), these IEGs have been linked to 

neuronal activity (Bullitt, 1990; Garner et al., 2012; Knapska and Kaczmarek, 2004; Liu et al., 2012; 

Minatohara et al., 2015; Ramirez et al., 2013). In addition it was shown that they play a critical role in 

synaptic and neuronal plasticity during learning (Alberini, 2009; Duclot and Kabbaj, 2017; Gandolfi et al., 

2017; Shepherd and Bear, 2011; Veyrac et al., 2014). However, it is less clear how these IEGs contribute 

to neuronal plasticity during visuomotor-learning. This form of learning requires two types of inputs, feed-

forward visual and top-down motor-related input. This allows for functional classification of neurons, 

based on their response type during visuomotor-learning (Attinger et al., 2017). Evidence that Arc is 

important for plasticity induced by feed-forward visual input in visual cortex comes from several studies 

(Gao et al., 2010; Jenks et al., 2017; McCurry et al., 2010; Wang et al., 2006), still such implications are 

unclear for EGR1 (Mataga et al., 2001). For that reason, we speculated that Arc and EGR1 might correlate 

with different functional input during visuomotor-learning in visual cortex. This leads to a couple of 

testable hypothesis. As Arc is linked to plasticity for visual input and has been described as an inverse 

synaptic tag, that downregulates excitatory synapse number (Flavell et al., 2006; Okuno et al., 2012), its 

expression should correlate with functional types of neurons that are not driven by motor-related input 

and prefer visual input. In contrast and with respect to the finding that EGR1 does not affect plasticity for 

visual input, its expression should correlate with neurons that are driven by motor-related input. 

Consequently such differential preferred functional type of input should bias EGR1 neurons towards 

mismatch responses, that signal a deviation of expected visual flow from actual visual input (Attinger et 

al., 2017; Keller et al., 2012). To estimate IEG expression levels in vivo, we used three different mouse 

lines that express a GFP under an IEG promotor either as a fusion protein with the IEG in the case of c-Fos 

(Barth et al., 2004) and Arc (Okuno et al., 2012), or as simply as a reporter in the case of EGR1 (Xie et al., 

2014).  
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Results 
 

We first set out to quantify the correlation between neural activity and IEG expression levels in visual 

cortex in adult mice in response to a change in visual input. To do this, we used three groups of mice (4 

Arc-GFP mice, 4 c-Fos-GFP mice, and 4 EGR1-GFP mice) and injected an AAV2/1-Ef1a-jRGECO1a viral 

vector into primary visual cortex to express the red calcium indicator jRGECO1a (Dana et al., 2016) in layer 

2/3 excitatory neurons. Using an AAV2/1 with an Ef1a promoter will result in expression mainly in 

excitatory neurons (Attinger et al., 2017). 12 - 41 days after the virus injection, we dark-adapted mice for 

24 hours and subsequently head-fixed them under a two-photon microscope on a spherical treadmill still 

in darkness. We then exposed them to visual input for 15 minutes after which the mice were returned to 

complete darkness again for the remainder of the experiment. We measured neural activity and IEG levels 

every 15 minutes starting immediately preceding the re-exposure to visual input until 6 hours after re-

exposure visual input (Fig. 1.1a). We alternated between imaging neural activity for 4 minutes and 

measuring IEG expression levels in intervals of 15 minutes (see Experimental Procedures). This allowed us 

to measure both IEG expression levels and neural activity in the same neurons in layer 2/3 of visual cortex 

(Fig. 1.1b, e, h). We then computed the correlation between mean neural activity and IEG expression 

levels as a function of time between neural activity measurement and IEG expression measurement (Fig. 

1.1c, f, i). Correlation peaked at a time lag of approximately +3 hours (3h 30min ± 30min, mean ± s.e.m) 

between neural activity measurement and IEG measurement for Arc and c-Fos and plateaued in a window 

from -2 hours to +3 hours almost flat for EGR1. To quantify peak correlation between neural activity and 

IEG expression we plotted IEG expression level measured at +3.5 hours against neural activity measured 

at time 0 for all neurons recorded (Arc: 1383 neurons, c-Fos: 1070 neurons, EGR1: 1319 neurons; Fig. 1d, 

g, j). Although correlations between IEG expression and neural activity were positive, IEG expression was 

a surprisingly poor predictor of mean neural activity. Correlation between neural activity and IEG 

expression was highest for c-Fos (corr. coeff. = 0.3904 ± 0.0658 (mean ± s.e.m), c-Fos vs. Arc: p = 2.6897 x 

10-4, c-Fos vs.EGR1: p = 5.8406 x 10-9, Student’s t-test), intermediate for Arc (corr. coeff. = 0.2621 ± 0.0547 

(mean ± s.e.m.), Arc vs. EGR1: p = 0.0188, Student’s t-test) and lowest for EGR1 (corr. coeff. = 0.2069 ± 

0.0320 (mean ± s.e.m) (Fig. 1c, f, i). 
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Figure 1.1: Simultaneous imaging of activity and immediate early gene expression in visual cortex. 

(a), Left: Schematic of the virtual reality setup used for imaging experiments. Right: Schematic of the experimental time line. 

jRGECO1a was injected 12 - 29 days prior to experiments. Mice were dark adapted for 24 hours. Neural activity and IEG expression 

levels were recorded immediately before and after visual exposure in intervals of 15 minutes. 

(b), Example images of jRGECO1a (red, top), Arc (green, bottom left) expression and the combined image (bottom right).  

(c), Correlation of average activity and IEG expression level across the entire experiment, relative to the activity measurements. 

Blue line indicates average correlation, blue shadings indicates standard error of the mean (s.e.m) (n = 4). 

(d), Scatter plot for Arc expression and average neuronal activity for each cell (n = 1382, 72 data-points not shown) 3.5 hours 

after stimulation.  
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 (e), Same as in (B), but for c-Fos  

(f - g), Same as in (C - D), but for c-Fos (n = 1070, 23 data-points not shown, n = 4). 

(h), Same as in (B), but for EGR1  

(i - j), Same as in (C - D), but for EGR1 (n = 1319, 17 data-points not shown, n = 4). 

  



19 
 

Differential expression of IEGs during sensorimotor learning 
 

Neural activity in mouse visual cortex is driven both by visual input and motor related signals (Keller et al., 

2012; Saleem et al., 2013), in such a way that individual excitatory neurons in layer 2/3 of visual cortex 

are differentially driven by these two types of inputs (Attinger et al., 2017). It is possible that the 

expression of a particular IEG is not equally driven by all neural activity, but that it depends on the source 

of the drive. Indeed, consistent with our results, c-Fos and Arc expression can be increased in mouse visual 

cortex by dark adapting the animal and exposing it to visual input (Gao et al., 2010; Zangenehpour and 

Chaudhuri, 2002), whereas EGR1 expression is less affected by dark rearing (Yamada et al., 1999) and can 

even be increased by prolonged exposure to darkness (Mower and Kaplan, 2002). To address the 

questions of whether expression of the IEG correlates with the functional response of individual neurons, 

we quantified IEG expression levels and neural activity during a mouse’s first exposure to visual input in 

life and subsequent visuomotor learning. We dark reared three groups of mice from birth in complete 

darkness until P42 (7 Arc-GFP mice, 5 c-Fos-GFP mice, and 4 EGR1-GFP mice). At P28 - 30 mice received a 

cranial window implantation and an injection of AAV2/1-Ef1a-jRGECO1a viral vector into primary visual 

cortex to express the red calcium indicator jRGECO1a (Dana et al., 2016). Starting at P40, we imaged 

neuronal activity and IEG expression levels every 12h for a total of 6 days, while mice were head-fixed and 

free to run on a spherical treadmill surrounded by a toroidal screen. For the first four imaging sessions, 

mice were kept on the setup in complete darkness (condition 1). At the beginning of the 5th imaging 

session mice were exposed to light for the first time in their life, and for imaging sessions 5 to 8 mice were 

exposed to different visumotor conditions and visual stimuli, but remained in complete darkness in the 

time between the imaging sessions (condition 2). Following imaging session 8, mice were housed in a 

normal 12h light / 12 h dark cycle and the imaging paradigm remained unchanged for imaging session 9 

through 12 (condition 3). In condition 1 imaging experiments consisted of 8 minute recordings of neural 

activity as mice were free to run on the spherical treadmill with an IEG expression level measurement 

before and after the activity recording session. In conditions 2 and 3, neural activity measurements 

consisted of 7 segments of 8 minutes each. We started with a dark segment, followed by a closed-loop 

segment. In the closed loop segment, the movement of the mouse in a linear virtual corridor was coupled 

to the locomotion of the mouse on the spherical treadmill, including short perturbations of the coupling 

between locomotion and visual flow we refer to as mismatch events (Attinger et al., 2017). The following 

two segments were open-loop and consisted of a playback of the visual flow the animal generated in the 

closed-loop session. Animals were free to run during these open-loop segments. Subsequently, mice were 
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exposed to a second dark segment, followed by a visual stimulation segment. During the visual stimulation 

segment mice experienced one of 8 drifting full field gratings of different orientations presented in 

random order (stationary 2s, drifting 3 s,). Finally, mice were exposed to a third dark session. Before and 

after every neural activity imaging segment we measured IEG expression levels (Fig. 1.2a). Experimental 

sessions lasted on average a total of 83 min ± 1min (mean ± s.e.m) (Supplementary Fig. S1.1).  

We first quantified average expression of Arc, c-Fos and EGR1 over the course of all three conditions (Fig. 

1.2b). Surprisingly, we found that the expression of all three IEGs was stable during the first 2 conditions 

but increased for Arc and decreased for EGR1 in condition 3 (change in normalized expression level from 

condition 2 to 3, Arc: 2.0775 ± 0.7784 (mean ± s.e.m.) - p = 0.0371, EGR1: -0.5758 ± 0.1669 (mean ± s.e.m.) 

– p = 0.0409, Student’s t-test). Average c-Fos expression did not change systematically over the course of 

all three conditions (change in normalized expression level from condition 2 to 3, c-Fos: 0.0054 ± 0.1343 

– p= 0.9698, Student’s t test). To quantify the stability of the expression pattern of the IEG across neurons 

we correlated the IEG expression for all neurons across the 12 different imaging sessions (Fig. 1.2c - e). 

Arc expression pattern changed upon first exposure to visual input and exposure to a 12/12h light/dark 

cycle (Fig. 1.2c). In addition, we observed an increase in correlation for the change in Arc expression in 

condition 2, when mice were exposed to light on the setup, but still housed in complete darkness outside 

of imaging times. (Fig. 1.2f). c-Fos expression pattern stayed stable across the duration of the experiment 

(Fig. 1.2d), the change in c-Fos expression was only correlated at low levels across days (Fig. 1.2g). EGR1 

expression pattern was stable during condition 1 and 2, but changed with the onset of condition 3 (Fig. 

1.2e). Similar to c-Fos, the change in EGR1 expression was only weakly correlated across days (Fig. 1.2h). 

Seeing these differential changes in expression pattern for Arc, c-Fos and EGR1 during visuomotor-

learning, we wanted to investigate if neuronal activity patterns undergo a change during visuomotor-

learning as well. 
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Figure 1.2: IEG expression dynamics during visuomotor learning.  

(a), Left: Imaging setup of the virtual reality setup used for imaging experiments. Right: Schematic of the experimental time line. 

jRGECO1a was injected 10 – 12 days prior to the experiments. Mice were born and reared in complete darkness and we imaged 

calcium activity and IEG expression levels every 12h over the course of 6 days both before and after first visual exposure. On the 

first two days (condition 1) activity in V1 was recorded in complete darkness while mice were head-fixed and free to run on a 

spherical treadmill. On the third day of imaging we exposed them to visual feedback (first light exposure) in a virtual reality tunnel 

in which visual flow was coupled to the locomotion of the mouse. Outside of the imaging sessions mice were still housed in 

complete darkness (condition 2). Starting on day 5 mice were then subjected to a 12/12h light/dark cycle (condition 3). 

(b), Expression level of Arc (blue, n = 1969 or 7 mice), c-Fos (orange, n = 1885 or 5 mice) and EGR1 (black, n = 1213 or 4 mice) 

during visuomotor-learning. Lines indicate average expression levels, shading s.e.m (change in normalized expression level from 

condition 2 to 3, Arc: 2.0775 ± 0.7784 (mean ± s.e.m.) - p = 0.0371, EGR1: -0.5758 ± 0.1669 (mean ± s.e.m.) – p = 0.0409, c-Fos: 

0.0054 ± 0.1343 – p= 0.9698, Student’s t test) 

(c), Correlation pattern for Arc expression level during visuomotor-learning (condition 1 - 3). 

(d), Correlation pattern for Arc expression change during visuomotor-learning (condition 1 - 3).  

(e - f), Same as in (C) and (D), but for c-Fos. 

(g - h), Same as in (C) and (D), but for EGR1.  



22 
 

Motor-related activity pattern changes upon visual exposure 
 

Neuronal activity in visual cortex is known to be present before first exposure to visual input (Shen and 

Colonnese, 2016) and increases upon the onset of running behavior before first light exposure 

(Supplementary Fig. S1.2). It is likely that this input is used during visuomotor-learning and thus 

undergoes a learning related change at the time when running-related and visual signals can first be 

integrated together. Consistent with this assumption, we observed a gradual change in the activity pattern 

for motor-related input to V1 upon visuomotor-learning. In addition, we observed a decrease in the 

similarity of average activity patterns within each imaging session from condition 1 to 2 and 3 (Fig. 1.3a, 

b). In line with this, we find that the similarity in average activity patterns within a ± 12h window is higher 

in condition 1 and 2 compared to condition 3, suggestion a higher dynamic of motor-related input with 

visuomotor-learning (Fig. 1.3c). Neuronal activity pattern during closed-loop, open-loop and moving 

grating sessions did not change dramatically after the onset of visuomotor-learning (Fig. 1.3d - f). Still the 

overall similarity for activity pattern during visuomotor-learning was lowest for motor-related input 

compared to all other segments (Fig. 1.3g). We were intrigued to see both changes in expression pattern 

of IEGs and neuronal activity pattern during visuomotor-learning and wondered if the expression of an 

IEG can be related to the functional type of input a neuron receives in visual cortex during visuomotor-

learning.  
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Figure 1.3: Motor-related and visual activity dynamics during visuomotor-learning 

(a), Correlation pattern for average activity of either first or second of half during darkness across all experimental conditions  

(n = 5067 or 16 mice). 

(b), Correlation of average activity in darkness in condition 1 with all other conditions. Crosses indicate individual mice (n = 16, 

Wilcoxon ranksum test, all significance values below 0.001). 

(c), Correlation of average activity in darkness with average activity in darkness ± 12 hours during condition 1, 2 and 3. Crosses 

indicate individual mice (n = 16, Wilcoxon ranksum test, condition 1 vs. 2: p = 0.1935, condition 1 vs. 3: p = 0.0302, condition 2 

vs. 3: p = 0.2503). 

(d), Correlation pattern for average activity during closed-loop across all experimental conditions (n = 5067 or 16 mice). 

(e), Correlation pattern for average activity during open-loop across all experimental conditions (n = 5067 or 16 mice). 
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(f), Correlation pattern for average activity during drifting gratings across all experimental conditions (n = 5067 or 16 mice). 

(g), Average correlation coefficients for darkness, open-loop, closed-loop and drifting gratings segments in condition 2 and 3. 

Crosses indicate individual mice (n = 16, Wilcoxon ranksum test, darkness vs. closed-loop: p = 0.0151, darkness vs. open-loop: p 

= 0.00097, darkness vs. drifting gratings: p = 0.0122, closed-loop vs. open-loop: p = 0.0935, closed-loop vs. drifting gratings: p = 

0.787, open-loop vs. drifting gratings: p = 1).   
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Functional cell type specific expression of immediate early genes 
 

As neurons in visual cortex both receive motor-related input and visual input (Keller et al., 2012; Saleem 

et al., 2013) and these inputs can be used to generate different functional types of responses (Attinger et 

al., 2017), we set out to characterize neurons based on these responses and their immediate early gene 

expression. We selected the 10 percent of the top most expression Arc, c-Fos and EGR1 cells at the 

beginning of condition 3, as we both observed strong changes in average expression and expression 

pattern at this point in time during visuomotor-learning. When quantifying motor-related and visual 

responses in condition 3 for these neurons and plotted against each other, we found striking differences 

in their scattering pattern. Neurons with high Arc expression showed higher than population average 

responses to visual input, whereas their response to motor-related input is lower (Fig. 1.4a). Neurons with 

high c-Fos expression did not show significantly different responses compared to population average (Fig. 

1.4b). In contrast, neurons with high EGR1 expression showed higher responses to motor-related input 

and similar population average responses to visual input (Fig. 1.4c). In line with the conclusion that such 

functional responses develop during visuomotor-learning (Attinger et al., 2017), we see a development 

for this specificity to functional input both for motor-related input (Fig. 1.4d) and visual input (Fig. 1.4e). 

To validate our findings we computed the correlation of both activity during darkness with running and 

activity during open-loop segments with visual flow. Similar to the scattering pattern observed in Fig. 4a 

- c we observe that neurons with high Arc expression cluster in the lower right quadrant, meaning they 

preferentially receive excitatory visual input and inhibitory motor-related input, whereas neurons with 

high EGR1 expression cluster along the positive y-axis, meaning they preferentially receive excitatory 

motor-related input (Fig. 1.4f). This preferential input characterized by correlation of activity with running 

or visual flow develops throughout visuomotor-learning, as visualized by the centroids of the scatters for 

high IEG cells (Fig. 1.4g). In condition 3 these preferential inputs are significantly different from each other 

for cells with high IEG expression (Fig. 1.4h). Such functional inputs to neurons in visual cortex can be used 

to compute signals that indicate deviations of expected input from actual sensory input (Attinger et al., 

2017; Keller et al., 2012; Saleem et al., 2013; Zmarz and Keller, 2016). Since closed-loop segments included 

brief halts of visual flow, we consequently were able to record mismatch signals and relate them to 

neurons with high IEG expression. Histograms for quantified mismatch responses show that the fraction 

of neurons with high Arc expression is increased in bins for negative mismatch responses (Fig. 1.4i, 

Supplementary Fig. 1.3). Neurons with high c-Fos expression showed little to no bias (Fig. 1.4j, 

Supplementary Fig. 1.3), whereas neurons with high EGR1 expression are biased towards bins with 
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positive mismatch signals (Fig. 1.4k, Supplementary Figure 1.3). This bias together with the selectivity for 

the preferred functional type of input suggests that neurons with high Arc expression become visual input 

responsive neurons and neurons with high EGR1 expression motor-related input responsive neurons 

during visuomotor-learning. 

  



27 
 

 

Figure 1.4: Functional cell type specific expression of IEGs in V1 

(a), Scatter plot of high Arc cells (yellow, n= 197) and the remaining population of cells (n = 1772) for the quantification of running 

in darkness and drifting grating onsets in condition 3. 

(b), Same as in (A), but for high c-Fos (cells yellow, n = 189) and the remaining population of cells (n = 1696). 
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(c), Same as in (A), but for high EGR1 cells (n = 121) and the remaining population of cells (n = 1092). 

(d), Quantification of running onset events during darkness for high IEG cells across all experimental conditions. Lines indicate 

mean, errorbars s.e.m (blue: Arc, orange: c-Fos, gray: EGR1, same cells as in (A - C), Student’s t-test, Arc vs. c-Fos - p < 0.001, Arc 

vs. EGR1 - p < 0.001, c-Fos vs. EGR1 - p = 0.0057). 

(e), Quantification of drifting grating onset events for high IEG cells across all experimental conditions. Lines indicate mean, 

errorbars s.e.m (blue: Arc, orange: c-Fos, gray: EGR1, same cells as in (A - C), Student’s t-test, Arc vs. c-Fos - p = 0.0112, Arc vs. 

EGR1 - p = 0.0348, c-Fos vs. EGR1 - p = 0.8987). 

(f), Scatter of correlation coefficients for correlation of activity traces with traces of either running during darkness or visual flow 

during open-loop segments for high IEG cells (same cells as in A - C) in condition 3. 

(g), Centroids of scatter in (F) for condition 2 and 3. Errorbars indicate s.e.m.  

(h), Quantification of centroids in (G) for all datapoints. Errorbars indicate s.e.m (Student’s t-test, left: Arc vs. c-Fos - p = 0.0015, 

Arc vs. EGR1 - p = 0.005, c-Fos vs. EGR1 - p = 0.8732; right: Arc vs. c-Fos - p < 0.001, Arc vs. EGR1 – p < 0.001, c-Fos vs. EGR1 - p = 

0.0411); 

(i), Histogram for the quantification of mismatch responses for high Arc cells (blue, n = 197) and the remaining population of cells 

(black, n = 1772). Figure inset: Quantification of mean response amplitude of the distributions. Errorbars indicate s.e.m (Student’s 

t-test, p = 0.0054). 

(j), Same as in (I), but for c-Fos. Errorbars indicate s.e.m (Student’s t-test, p = 0.0184). 

(k), Same as in (I), but for EGR1. Errorbars indicate s.e.m (Student’s t-test, p = 0.0149). 
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Discussion 
 

In this study, we found that the two immediate early genes Arc and EGR1 are expressed in neurons that 

receive functionally different inputs in primary visual cortex. The development of functional different 

responses in neurons with either high Arc or EGR1 expression, together with the bias towards positive or 

negative visuomotor-mismatch signals, suggests that these IEGs shape the integration of top-down and 

bottom-up inputs during visuomotor-learning. These findings are line with results which show that these 

immediate early genes are important for synaptic plasticity (Alberini, 2009; Bozon et al., 2003; Chowdhury 

et al., 2006; Messaoudi et al., 2007; Shepherd et al., 2006; Tzingounis and Nicoll, 2006; Waung et al., 

2008). Our results cannot be explained by an underestimation of the correlation between neuronal 

activity and immediate early gene expression, correlation coefficients are similar and not significantly 

different between +90min after stimulation and at peak time (Arc: p = 0.1009, c-Fos p = 0.6887, EGR1: p 

= 0.7229, Student’s t-test) (Fig. 1.1c, f, i). jRGECO1a is less sensitive to subthreshold activity compared to 

other red calcium indicators (Dana et al., 2016; Inoue et al., 2014), still we find many of the most active 

neurons to have low immediate early gene expression (Fig. 1.1d, g, j). In addition histological experiments 

proof that the expression of GFP overlaps with the expression of either Arc, c-Fos or EGR1 in the used 

mouse lines (Barth et al., 2004; Okuno et al., 2012; Xie et al., 2014; Yassin et al., 2010). Recent evidence 

from studies looking at the immediate early genes NARP (Tsui et al., 1996) and Npas4 (Spiegel et al., 2014), 

suggest that the expression a subset of IEGs correlates with functional types of neurons. NARP is 

exclusively expressed in parvalbumin positive, inhibitory neurons and impacts plasticity periods by 

regulating excitatory synapses onto these cells (Chang et al., 2010; Gu et al., 2013). Npas4 restricts the 

number of synapses of mossy-fiber input specifically onto CA3 pyramidal cells during learning (Weng et 

al., 2018). In this study, we identified Arc and EGR1 to be expressed in neurons that preferentially either 

receive visual or motor-related input during visuomotor-learning in visual cortex. These findings are 

consistent with the notion that IEGs play a key role in neuronal plasticity and learning. 
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Supplementary Figures 
 

 

 

 

Supplementary Figure S1.1: Durations of imaging session 

(a), Histogram for durations of imaging times of all experimental time-points. On average one session lasted for approximately 

83 min.  
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Supplementary Figure S1.2: Running – related activity before first visual exposure 

(a), Average change in fluorescence upon the onset of running behavior (time 0s) in condition 1 before mice have experienced 

visual exposure (mean ± s.e.m), shading indicates s.e.m (n = 5067 or 16 mice). 

 

 

 

 

Supplementary Figure S1.3: Differential mismatch responses in high IEG neurons 

(a), Ratio of mismatch responses of high IEG neurons and the remaining population (significance to mean of 1 - Arc: p = 0.0461, 

c-Fos: 0.2273, EGR1: 0.0234, Student’s t-test) 
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Experimental procedures 
 

Animals and surgery. All animal procedures were approved by and carried out in accordance with 

guidelines of the Veterinary Department of the Canton Basel-Stadt, Switzerland. We used imaging data 

from a total of 11 mEGFP-Arc mice (Okuno et al., 2012), 9 c-Fos-GFP- mice (Barth et al., 2004) and 8 EGr1-

GFP mice (Xie et al., 2014), aged 40 days at the start of the visuomotor-learning imaging series (Figure 2 -

4) or aged 100-104 (Arc), 279-291 (c-Fos) and 120-124 (EGR1) days (Figure 1). No statistical methods were 

used to predetermine sample sizes, but our sample sizes are similar to those generally employed in the 

field. Mice were group housed in a dark cabinet and in a vivarium (light/dark cycle: 12/12 h). Viral 

injections and window implantation were performed as previously described. Briefly, at P30 mice were 

anesthetized in darkness using a mix of fentanyl (0.05 mg/kg), medetomidine (0.5 mg/kg) and midazolam 

(5 mg/kg), additionally their eyes were covered with a thick, black fabric during all surgical procedures. A 

3-5 mm craniotomy was made above V1 (2.5mm lateral of lambda (Paxinos, 2013)) and AAV2/1-Ef1a-NES-

jRGECO1a-WPRE ((Dana et al., 2016); titer 7.2x1010 – 6.8 × 1012 TU/ml) was injected into region V1. The 

craniotomy was sealed with a 3-5 mm cover slip. A titanium head bar was attached to the skull and 

stabilized with dental cement. 

 

Imaging, virtual reality and experimental design. Imaging commenced 10 – 12 (visuomotor-learning 

experiments, Fig. 1.2 – 1.4) or 12 – 29 (Fig. 1.1) days following injection and was done using a custom-

built two-photon microscope. Illumination source was an Insight DS laser (Spectra Physics) tuned to a 

wavelength of either 950nm, 990nm or 1030nm. Imaging was performed using an 8-kHz resonance 

scanner (Cambridge Technology) resulting in frame rates of 40 Hz at a resolution of 400 × 750 pixels. In 

addition, we used a piezo-actuator (Physik Instrumente) to move the objective (Nikon 16×, 0.8 NA) in 

steps of 15 μm between frames to acquire images at four different depths, thus reducing the effective 

frame rate to 10 Hz. The behavioral imaging setup was as previously described (Leinweber et al., 2014). 

Briefly, for V1 experiments mice were head fixed in complete darkness after a brief Isoflurane anesthesia 

and the setup was light-shielded before every imaging session. Mice were free to run on an air-supported 

polystyrene ball, the motion of which was restricted to the forward and backward directions by a pin. The 

ball's rotation was coupled to linear displacement in the virtual environment that was projected onto a 

toroidal screen surrounding the mouse. The screen covered a visual field of approximately 240 degrees 
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horizontally and 100 degrees vertically. All displayed elements of the tunnel or sinusoidal gratings were 

calibrated to be isoluminant. 

Experimental design. For visuomotor-learning experiments (Fig. 1.2- 1.4) all mice were born and reared 

in complete darkness, housed in complete darkness until P44 and then transferred to a vivarium with a 

12/12h light/dark cycle. Experimental sessions started on P40 and were approximately 2 h long. They 

occurred twice per day, spaced 12 h apart. On experimental day 1 and 2 recordings were done in complete 

darkness, afterwards mice were exposed to the virtual environment and sinusoidal drifting grating stimuli. 

In early phases of the experiment mice were encouraged to run by applying occasional mild air puffs to 

the neck. For experiments shown in Fig. 1.1 all mice were dark adapted for 24h 17min ± 10 min (mean ± 

s.e.m) before head-fixation under the microscope in darkness. Activity and immediate early gene 

expression were recorded every 15 minutes for 6 hours. Except for the time of visual stimulation with 

sinusoidal gratings moving in 8 different directions, mice were kept in complete darkness under the 

microscope for the entire duration of the experiment. 

 

Statistics. Parametric (Student’s t-test) and non-parametric tests (Wilcoxon rank sum test) were 

performed for analyses.  

 

Data analysis. Imaging data were full-frame registered using a custom-written software (Leinweber et al., 

2014). Neurons were selected manually based on their mean fluorescence or maximum projection. This 

biased our selection towards active neurons. Fluorescence traces were calculated as the mean pixel value 

in each region of interest per frame, and were then median-normalized to calculate ΔF/F. ΔF/F traces were 

filtered as previously described (Mukamel et al., 2009). GFP intensities were calculated as the mean pixel 

value in each region of interest (ROI) for mean fluorescence projections. Normalization was performed 

with the following formula: ROIs(x) – ROIs(min) / ROIs(median) –ROIs(min), where “x” denotes the mean 

pixel values if an individual ROI, “min” the minimum ROI value, “median” the median ROI value, both 

computed across all experimental time-points. No blinding of experimental conditions was performed in 

any of the analyses.  

For all plots of stimulus-triggered fluorescence changes fluorescence traces were mean-subtracted in a 

window 5 to 1 frames (−500 ms to −100 ms) preceding the stimulus onset (Fig. 1.4a, b, c, d, e, i, j, k and 

Supplementary Fig. S1.2). Quantification of changes in fluorescence in Fig. 1.4 were calculated based on 
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a time window 5 to 30 frames (+0.5 seconds to +3 seconds) after the stimulus onset (Fig. 1.4a, b, c, d, e). 

A quantification window of +0.2 seconds to +2 seconds was used for the response in Fig. 1.4i, j, k due to 

different response dynamics. Top 10% high IEG neurons were selected based on a population vector for 

each dataset (Fig. 1.4a, b, c, d, e, f, g, h, i, j, k). 

 

Code availability. All imaging and image processing code can be found online at 

https://sourceforge.net/projects/iris-scanning/ (IRIS, imaging software package) and 

https://sourceforge.net/p/iris-scanning/calliope/HEAD/tree (Calliope, image processing software 

package). Code used for all data analysis is available from the corresponding author upon reasonable 

request. 

 

Data availability. The data that support the findings of this study are available from the corresponding 

author upon reasonable request. 
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Chapter 2: Immediate early gene expression of Arc and c-Fos marks 
hippocampal CA1 neurons that are plastic in a two-alternative forced 
choice paradigm 
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Immediate early genes (IEG) are markers of synaptic and learning related plasticity. IEGs are commonly 

used for identifying brain regions active during a particular behavior. So far IEG detection has been 

performed at single points in time and did not provide any information about dynamics of gene 

expression. Here we monitored the variations of IEG expression in real time in pyramidal cells from the 

CA1 hippocampal region in transgenic mice expressing either Arc-GFP or c-Fos-GFP fusion proteins. By 

measuring the activity of the same neurons with red shifted calcium indicators during the learning of a 

tone discrimination task, we found that neuronal activity was weakly, positively correlated with IEG 

expression. Surprisingly we observed that the fraction of neurons expressing highest levels of IEGs 

before learning were the ones that showed the highest degree of plasticity by becoming selectively 

responsive to task relevant tone cues. 

  



36 
 

Introduction 
 

Learning is associated with persistent changes in the central nervous system. These changes can manifest 

as a strengthening or weakening of synaptic weights (Hebb, 1949) as they occur during long-term 

potentiation (LTP) and long-term depression (LTD) (Bi and Poo, 1998; Bliss et al., 1973), or the appearance 

or elimination of synapses (Engert and Bonhoeffer, 1999; Maletic-Savatic et al., 1999). The molecular and 

gene expression changes underlying this neural plasticity are not fully understood but have been shown 

to involve increases in the expression of set of genes, referred to as immediate early genes (IEGs) (Okuno, 

2011). Plasticity is thought to be triggered by specific changes in Ca2+ that activate calcium-dependent 

kinase cascades, which then lead to the activation of transcription factors such as the Ca2+/cAMP-

response element binding protein (CREB) (Mermelstein et al., 2000) or c-Fos (Worley et al., 1993) and 

other IEGs like Arc (activity-regulated cytoskeletal associated protein, or Arg 3.1) (Vazdarjanova et al., 

2006). c-Fos and Arc are considered as markers of synaptic plasticity and memory-related plasticity, and 

have been used to identify brain regions which are activated by sensory stimuli (Kawashima et al., 2014). 

Indeed, both the induction of LTP and exposure of an animal to spatial tasks are followed by an increase 

in the level of mRNA of c-Fos (Cole et al., 1989; Dragunow and Faull, 1989; Guzowski et al., 2001; Ranieri 

et al., 2012; Vann et al., 2000) and Arc (Link et al., 1995; Lyford et al., 1995). Both c-Fos and Arc are 

involved in learning related plasticity. Knocking out c-Fos in all neurons results in impaired LTP magnitude 

in the hippocampus and in deficits in hippocampus-dependent spatial and associative learning tasks 

(Fleischmann et al., 2003). Moreover, the selective inhibition of CA1 neurons that express c-Fos upon fear 

conditioning suppresses the expression of the fear memory (Tanaka et al., 2014). Oppositely, the re-

activation of the neurons that expressed c-Fos in the dentate gyrus during the initial fear-context exposure 

leads to freezing-behavior in another context that was not associated with the aversive stimuli (Liu et al., 

2012). Inhibition of neurons that express Arc in the dentate gyrus or in CA3 during contextual fear 

conditioning also leads to an impairment of the fear memory (Denny et al., 2014) and knocking down or 

knocking out Arc impairs LTP (Guzowski et al., 2000; Plath et al., 2006). With the development of an Arc-

GFP mouse, used for this study, it was discovered that Arc targets silent synapses that previously received 

strong activation. Here, Arc mediates AMPA receptor endocytosis and thereby synaptic downscaling 

(Okuno et al., 2012). In the same way, the development of the c-Fos-GFP mouse, also used in this study, 

allowed for targeted electrophysiological characterization based on protein expression levels (Barth et al., 

2004). 
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Most measurements of IEG have been performed at a single time point after learning or exposure. Hence, 

it is still unclear how IEG levels are dynamically regulated by neural activity during learning. Here, we 

describe, the expression dynamics of c-Fos and Arc in CA1 pyramidal neurons during learning of a tone 

discrimination task. We show that neurons with the highest expression of IEGs are the ones that become 

selectively responsive to task relevant tone cues. 

 

 

Results 
 

To measure learning related changes of neural activity and IEG expression we trained mice in a two-

alternative, forced choice tone discrimination task. We used transgenic mice that expressed either a c-

Fos-GFP (Barth et al., 2004) or an Arc-GFP (Okuno et al., 2012) fusion protein. Mice were head-fixed in a 

cylinder with two lick spouts presented in front of them. Visual stimuli that indicated the start of a trial 

were presented on a toroidal screen in front of the animal. Next to the animal, a speaker would present 

one of two tones, which indicated which lick spout the animal should select for a water reward (Fig. 2.1a). 

Failure in selecting a lick spout or selecting the wrong lick spout would result in a mild air puff as well as 

an increased inter-trial interval delay. Mice were familiarized to the setup and the experimenter by two-

training days to associate licking with receiving rewards from both lick spouts (see Experimental 

Procedures). For the following seven days, each animal went through a one hour training session. Each 

trial in a training session consisted of an initial visual stimulus indicating the trial onset. After 2 seconds, 

one of two tones (6 kHz or 11 kHz) was presented for the next following 4 seconds. After a two second 

grace period (Connor et al., 2010) during which licking had no consequence, the first lick elicited either a 

reward or an mild air puff to the neck (Fig. 2.1b). To facilitate learning, mice received a reward on the 

corresponding lick spout independent of which spout they licked on a random 10% of the trials. Mice 

learned to perform this task over the course of the seven training sessions (Fig. 2.1c). For later analysis 

we used days 2 and 3 as early time points and days 6 and 7 as late time points during learning. 

Throughout the training sessions we chronically recorded neural activity in the same CA1 pyramidal 

neurons using the genetically encoded calcium indicator jRGECO1a (expressed using an AAV2/1-Ef1a-

jRGECO1a) (Dana et al., 2016), and IEG expression levels. To allow for two photon imaging of calcium 

activity and IEG expression levels in CA1, the cortex above the left or right hippocampus was aspirated 

and a chronic window was implanted after viral injection of the calcium indicator vector, as previously 
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described (Fiser et al., 2016) (Fig. 2.1d). Calcium activity was measured throughout training, while IEG 

levels were measured every 8 min during 30 second breaks in the training paradigm. This allowed us to 

simultaneously quantify calcium dynamics and IEG expression level changes in the same CA1 pyramidal 

cells throughout learning (Fig. 2.1e).  
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Figure 2.1. Imaging calcium activity and Arc or c-Fos expression during learning of a two alternatives 
forced choice paradigm.  

(a), Schematic of the experimental setup.  

(b), Schematic of the experimental timeline and the task description.  

(c), Learning curves for the two alternatives forced choice tone discrimination task), for individual animals (gray lines) and mean 

performance (black lines) with gray shading depicting SEM across animals (n = 9). 

(d), Top: Schematic of CA1 imaging strategy. Bottom: Structure of imaging strategy during training sessions. 

(e), Left: Example two-photon image of CA1 neurons co-expressing the genetically encoded calcium indicator jRGECO1a and the 

fusion protein Arc-GFP. Right: Example two-photon image of CA1 neurons co-expressing the genetically encoded calcium 

indicator jRGECO1a and the fusion protein c-Fos-GFP.  
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IEG Expression in CA1 during learning 
 
To investigate how dynamic IEG expression in CA1 is during tone discrimination learning we quantified 

average IEG levels throughout learning in 1271 neurons from Arc-GFP animals (n = 4) and 1819 neurons 

from c-Fos-GFP animals (n = 5). We observed CA1 responses to all parts of the task (Fig. 2.2a). For 

individual ROIs, raw fluorescence intensities were extracted from the averaged IEG recording. The 

expression level was then normalized by setting the minimum expression level to 0 and the median to 1, 

to facilitate a comparison across all datasets (see Experimental Procedures). On average, c-Fos expression 

levels were stable, while Arc expression levels decreased over the course of learning (Fig. 2.2b). IEG 

expression dynamics were not reflected in mean calcium activity, which was stable from the second day 

onwards (Fig. 2.2b). Expression levels did not follow a normal or log-normal distribution (one-sample 

Kolmogorov-Smirnov test, p > 0.05, n = 9 animals) over pyramidal neurons and shifted as a whole (Arc) or 

remained stable (c-Fos) with learning (Fig. 2.2c). Stability of IEG expression levels remained high 

throughout learning (Fig. 2.2d). Consistent with this, the stability of change of IEG expression within a 

training session was below chance (Wilcoxon signed-rank test, p > 0.05) (Fig. 2.2e). Over the course of 

each training session (54 ± 5 min, mean ± SD) (Fig. 2.2f), Arc and c-Fos expression remained relatively 

stable (Fig. 2.2g). This suggests that CA1 neurons maintained relative IEG expression levels, while it is 

dynamic which population of cells that gets up- or downregulated during acquisition of the task.  
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Figure 2.2. IEG Expression characterization in CA1 in vivo during learning.  

(a), Average trial activity across all animals on session 7. Mean trial activity (solid black line) across trials, with onsets for grating, 

tone and passive air-puff (dashed lines) and response period (dark gray area). Gray shading indicates SEM across cells (n = 3090). 

(b), Overall IEG expression is stable or decreases during learning. Normalized IEG expression of Arc (solid line) and c-Fos (dashed 

line) across days. Grey shading represents SEM across animals.  

(c), IEG expression distribution is skewed. Left: Distribution of Arc expression on day 1 and 7 showing low Arc cells below the 33rd 

percentile (dashed line) and high Arc cells above the 67th percentile (solid line) (n = 4 animals, 1271 cells).  Right: Distribution of 

c-Fos expression on day 1 and 7 showing low c-Fos cells below the 33rd percentile (dashed line) and high c-Fos cells above the 

67th percentile (solid line) (n = 5 animals, 1819 cells).  

(d), Correlation of IEG expression across days. Top: Parametric Pearson correlation of Arc expression across days (left) and in c-

Fos expression across days (right). Bottom: Non-parametric Kendall’s tau correlation of Arc expression across days (left) and in c-

Fos expression across days (right).  
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(e), No correlation in IEG expression change across days. Top: Parametric Pearson correlation of Arc expression across days (left) 

and of c-Fos expression across days (right). Bottom: Non-parametric Kendall’s tau correlation of Arc expression across days (left) 

and of c-Fos expression across days (right). 

(f), Histogram of training session duration across animals (n = 9).  

(g), Change in IEG expression over the course of 45 min within a training session of Arc (blue line, n = 4 animals) and c-Fos (red 

line, n = 5 animals).   
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Mean IEG expression level correlates only weakly with activity 
 

To quantify how IEG expression levels depend on calcium activity, we correlated IEG expression levels 

with mean and maximum activity during the training sessions. We found that mean activity was positively 

correlated with IEG expression levels (Fig. 2.3a), but was a very poor predictor of changes in IEG expression 

during the training session (Fig. 2.3b). The correlation of maximum activity and IEG expression levels was 

slightly higher than that with mean activity (Fig. 2.3c), however maximum activity did not correlate 

strongly with change in IEG expression levels (Fig. 2.3d). Our estimation of change in Arc and c-Fos protein 

levels might be affected by a post-transcriptional maturation phase for GFP before fluorescence peaks 

(Tsien, 1998). This might bias our estimation of IEG expression change by introducing a delay from 

translation peak to fluorescence peak. Another bias could come from changed degradation speeds 

induced by the IEG-protein fusion with GFP, although this does not seem to be the case at least for c-Fos-

GFP (Barth et al., 2004). Correlation of IEG and calcium activity remained stable even when correlating 

activity and IEG expression on different days (Fig. 2.3e, f). There was no change in correlation between 

maximal activity and Arc or c-Fos expression from early to late sessions (Wilcoxon rank-sum test, p > 0.05) 

(Fig. 2.3e, f).  
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Figure 2.3.  Characterization of correlation of IEG expression and activity.  

(a), Scatter plot of IEG expression level versus mean or maximum activity for Arc (left, all data points shown) and c-Fos (right, 6 

data points not shown) for all cells averaged across all days. Mean correlation coefficient of the correlation of IEG level with mean 

activity. Error bar: mean ± sem across animals and days (4 animals for Arc, 5 animals for c-Fos). Colors show individual animals. 

(b), Scatter plot of IEG expression change versus mean or maximum activity for Arc (left, all data points shown) and c-Fos (right, 

2 data points not shown) for all cells averaged across all days. Mean correlation coefficient of the correlation of IEG change with 

mean activity. Error bar: mean ± sem across animals and days (4 animals for Arc, 5 animals for c-Fos). Colors show individual 

animals. 

(c), Similar to A, but with maximal activity. 

(d), Similar to B, but with maximal activity. 

(e-f), Correlation of mean Arc (E) / c-Fos (F) level with mean (left) or maximum (right) activity for all days. 
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Increased tone representation and response during learning is predictive of performance and 
correlates with IEG expression. 
 

To probe how the task is represented in CA1, we investigated the neural responses to different stimuli 

during learning. A visual grating cue used to signal the start of each trial induced the activation of only a 

small fraction of cells (2.55% ± 0.29, mean ± sem, n = 9 animals). The number of responding cells did not 

change during the learning task (Fig. 2.4a; early vs. late, p > 0.05, Wilcoxon ranked-sum test, n = 9 animals).  

Rewards and air-puffs associated with correct and wrong behaviors were represented by higher fractions 

of CA1 neurons that responded with a high degree of specificity to their stimulus (Fig. 2.4a - b). During 

learning, the proportion of cells responding to these stimuli did not change (Fig. 2.4a; early vs. late, p > 

0.05, Wilcoxon ranked-sum test, n = 9 animals). By contrast, at the beginning of the learning task, tones, 

informative about the choice to be made, evoked an activity in a marginal fraction of cells (5.7% ± 1.08, 

mean ± sem, n = 9 animals) (Fig. 2.4a). With learning the proportion of tone responsive cells increased 

dramatically (Fig. 2.4a; Early vs. late, p < 0.001, Wilcoxon ranked-sum test, n = 9 animals). Moreover, the 

activity of the population in response to the tone increased with learning, in contrast to the reward and 

air puff which stayed similar over time. (Fig. 2.4b). 

Which neurons are responsive for this increase in activity to the tone stimulus? At the beginning of the 

learning procedure, tones evoked small responses in cells expressing high levels of c-Fos and Arc (top 10% 

IEG expressing cells, see Experimental Procedures) (Fig. 2.4c). However, at the end of the learning, high 

IEG expressing cells increased their response to tones specifically (Fig. 2.4c). In agreement, the tone 

response increased in correlation with the level of expression of Arc and c-Fos during learning (Fig. 2.4d). 

In support of the specificity of tone responsive cells, we found that the increase in tone response was 

negatively correlated with changes in puff and reward responses (Fig. 2.4e). Moreover, the cells that 

became highly tone responsive, were primarily the cells that responded to tones already before learning 

and to a smaller degree to puff or reward at the beginning of the procedure (Fig. 2.4f). This suggests that 

tone responsive cells develop from a separate population characterized by levels of Arc and c-Fos 

expression. 

Next we tested the meaningfulness of the tone response by testing if it was sufficient for predicting the 

animal performance. After splitting tone responses between correct (reward), incorrect (active puff), and 

not associated with behaviors (passive puff), we found that the response was stronger for correct trials 

(Fig. 2.4g; Correct vs. Incorrect trials on late sessions, p < 0.001, Wilcoxon ranked-sum test, n = 1349 cells). 
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In contrast the responses of the tone non-responsive cells were similar before the puff or the reward (Fig. 

2.4g). This suggests that the difference is specific for the tone cells. In addition, we observed a difference 

in lick behavior for correct vs. incorrect trials (Fig. 2.4h). Finally, we tried to predict the behavior of the 

mice, based on the activity of tone cells. After training a random forest classifier on an equal number of 

correct and incorrect trials, the population activity before the onset of the reward or air-puff became 

sufficient for predicting the outcome of the mouse response (Student’s t-test, p = 0.0146) (Fig. 2.4i). In 

comparison, the activity of the same cells recorded before the tone onset did not lead to classification 

accuracy above chance (Student’s t-test, p = 0.1713) (Fig. 2.4i).  
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Figure 2.4. Cells that express IEG increase their response to the tone concurrent with the animal 
learning the task.  

(a), Fraction of cells being significantly stimulus responsive at early and late training sessions. Boxplots of early (solid line) and 

late (dashed line) fraction of tone cells (green), puff cells (black), reward cells (gold) and (n = 9 animals) (Wilcoxon rank sum test, 

early vs late: tone - p = 0.000058, puff – p = 0.0713, reward – p = 0.9748). 

(b), Development of population responses at the onset of 3 different stimuli (tone - green, air-puff - black, reward - gold) Note 

the specific increase to the tone stimulus (n = 9 animals). 

(c), Left: Tone response at early (solid line) and late (dashed line) training sessions for high Arc cells (blue) and the remaining 

population (black). Right: Tone response at early (solid line) and late (dashed line) training sessions for c-Fos cells (orange), and 

the remaining population (black). Grey shading indicates SEM across cells (Arc: n = 4 animals, c-Fos: n = 5 animals) (left: high Arc 
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early vs late - p = 0.0032, remaining population - p = 0.2127; right: high c-Fos early vs late – p < 0.0005, remaining population – p 

< 0.0005). 

(d), Spearman correlation between change in tone response amplitude and IEG expression level. Correlation of ΔTone~Arc (blue) 

and ΔTone~c-Fos (orange) and the corresponding linear fits (dashed lines). Gray shading depicts SEM across animals (Arc: n =4 

animals, Arc linear model fit p = 0.000108, c-Fos: n = 5 animals, c-Fos linear model fit p = 0.0097). 

(e), Tone cells become more selective to the tone cue. Correlation of ΔTone~ΔPuff (Light gray), ΔTone~ΔReward (intermediate 

gray) and ΔPuff~ΔReward (Dark gray). Error bars: Mean ± SEM across animals (n = 9 animals, ΔTone~ΔPuff p = 0.00015, 

ΔTone~ΔReward p = 0.0542, ΔPuff~ΔReward p = 0.000096, Wilcoxon signed-rank test). 

(f), Pearson correlation between late tone response vs. early tone (green), puff (black) or reward response (gold). Error bars: 

Mean ± SEM across animals (n = 9 animals, early tone vs. late tone reponse p = 0.0195, early puff vs. late tone response p = 

0.2031, early reward vs. late tone response p = 0.0391, Wilcoxon signed-rank test).  

(g), Increased tone response on reward trials. Left: Onset responses for air puff (black) and reward (green) in response to licking 

at early (solid line) and late (dashed line) training sessions. Gray shading depicts SEM across all cells (n = 3090 cells). 

(h), Lick behavior on correct and incorrect trials. Lick responses at puff trials (black) and reward trials (green) at early (dashed 

line) and late (dashed line) training sessions. Gray shading depicts SEM across all animals (n = 9 animals). 

(i), Classification of reward or air-puff trial. Average of 20 training and classification repetitions. Left: Random forest classifier 

trained on the population onset activity during the last second before puff or reward (black line) or 1 second before tone onset 

(gray line) in order to predict upcoming correct (reward) or incorrect (air-puff) trials. Gray shading indicates SEM across animals 

(n = 9 animals).  
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Discussion 
 

There is a general agreement that expression of IEGs is reflected in neuronal activity (Guzowski et al., 

2005; Kawashima et al., 2014). In this study, we found that the CA1 neurons that get tuned to relevant 

cues are the ones that display highest levels of Arc and c-Fos expression during learning. Our results 

suggest that Arc and c-Fos label cells that are capable of undergoing plastic changes during learning, which 

receive specific sensory input. In addition, we found that neuronal activity is best correlated with IEG 

expression levels but not with IEG expression changes (Fig. 2.3a - d).  

Different reports have shown an increase in c-Fos and Arc expression in CA1 in response to massive non-

physiological stimulations such as global ischemia (Jorgensen et al., 1989), seizures (Le Gal La Salle, 1988) 

or kindling (Dragunow and Robertson, 1987). More natural behaviors such as odor discrimination, 

running, spatial exploration or spatial learning also induce increases in c-Fos or Arc transcription in CA1 

(Guzowski et al., 2001; Hess et al., 1995a, 1995b; Kelly and Deadwyler, 2002; Soya et al., 2007). However, 

in all of these in vivo studies, several parameters were involved and it was not possible to demonstrate a 

link of causality between neuronal activity and IEG level changes. Other studies reported that LTP induced 

in CA1 failed to induce any change in IEGs (Dragunow and Faull, 1989; French et al., 2001). Furthermore, 

in a study where evoked synaptic activity was monitored in single CA1 pyramidal cells, a non-consistent 

correlation pattern was found between synaptic activity and c-Fos expression (Mackler et al., 1992). 

Altogether these studies suggest that Arc and c-Fos in CA1 are regulated by more parameters than just 

average neuronal activity. In agreement, we found that average neuronal activity was only weakly 

positively correlated with c-Fos and Arc expression (Fig. 2.3c, d). One could argue that we underestimated 

the correlations between neuronal activity and changes in IEGs due a delayed maturation of the GFP 

(Tsien, 1998) or possible increase in degradation dynamics caused by the GFP fusion. However, the 

measurements we made of individual cells show that we could detect variations in GFP during individual 

sessions (Fig. 2.3b, d). This demonstrates that Arc and c-Fos expression was dynamically regulated within 

the duration of our measurements (54 ± 5 min., mean ± s.e.m). In support, it was found that Arc mRNA 

translocates to the cytoplasm within 30 minutes (Guzowski et al., 1999).  

During the learning task, plastic changes occurred for neurons that displayed high levels of c-Fos and Arc. 

These cells originally responded to tone, reward and puff and gradually became more selective for tones 

(Fig. 2.4). This suggests that synapses activated during tones were reinforced and that synapses related 

to puff or reward were suppressed. Are IEGs involved in this reorganization? It was shown that Arc can 
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reduce the strength of excitatory synapses. Indeed, Arc mRNAs are transported into dendrites and their 

translation reduces the amplitude of synaptic currents mediated by AMPA receptors (Rial Verde et al., 

2006; Shepherd et al., 2006). Arc could, at least in part, explain the enhancement of tone specificity in a 

similar way as it increases the specificity of visual responses in cortical neurons (Wang et al., 2006). The 

role of c-Fos in synaptic plasticity remains to be determined. 

The two alternatives forced choice task used in this study is based on tone discrimination. In accordance 

with our results, CA1 neurons have been shown to display auditory responses in tone discrimination tasks 

(Itskov et al., 2012; Sakurai, 2002, 1994), where they can encode tone identity (Itskov et al., 2012). The 

hippocampus is not only active in discrimination tasks, but it is directly involved in the performance. 

Lesions to the hippocampus impairs discrimination of both olfactory (Eichenbaum et al., 1989), visual 

(Woodruff and Isaacson, 1972) and mixed auditory and visual (Rudy and Sutherland, 1989) stimuli. 

Moreover, we can use the neural activity before reward or air-puff delivery to predict correct and 

incorrect trials. Our results therefore suggest that the cue response development of high IEG expressing 

neurons in CA1 is directly linked to the performance of the discrimination task.  
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Experimental procedures 
 

Animals and surgery. All animal procedures were approved by and carried out in accordance with 

guidelines of the Veterinary Department of the Canton Basel-Stadt, Switzerland. We used imaging data 

from a total of 4 mEGFP-Arc mice (Okuno et al., 2012) and 5 c-Fos-GFP- mice (Barth et al., 2004), aged 60 

to 80 days at the start of the imaging series. All animals were group-housed in a vivarium (light/dark cycle: 

12/12 h). No statistical methods were used to predetermine sample sizes, but our sample sizes are similar 

to those generally employed in the field. Mice were water-restricted for the duration of the experiment 

but received water rewards during experiments. Weight of all mice remained above 80% of starting 

weight. Viral injections and window implantation were performed as previously described. Briefly, mice 

were anesthetized using a mix of fentanyl (0.05 mg/kg), medetomidine (0.5 mg/kg) and midazolam (5 

mg/kg) for all surgical procedures. For hippocampus imaging experiments, a 3 mm craniotomy was made 

above either left or right dorsal hippocampus and posterior parts of cortex were aspirated, and AAV2/1-

Ef1a-NES-jRGECO1a-WPRE (ref. 35; titer 1.2 × 1011 TU/ml) was injected into region CA1. The craniotomy 

was sealed with a 3 mm cover slip. A titanium head bar was attached to the skull and stabilized with dental 

cement. Imaging commenced approx. 28 days following injection and was done using a custom-built two-

photon microscope. Illumination source was an Insight DS laser (Spectra Physics) tuned to a wavelength 

of either 990nm or 1030nm. Imaging was performed using an 8-kHz resonance scanner (Cambridge 

Technology) resulting in frame rates of 40 Hz at a resolution of 400 × 750 pixels. In addition, we used a 

piezo-actuator (Physik Instrumente) to move the objective (Nikon 16×, 0.8 NA) in steps of 15 μm between 

frames to acquire images at four different depths, thus reducing the effective frame rate to 10 Hz.  

 

Training and experimental design. Animals were handled with tubes similar to the ones used during 

experiments in their home-cages five days prior to experiment start by the experimenter. Two days prior 

the start of the experiment animals were head-fixed on the setup and randomly rewarded every 20 

seconds through one of the two lick spouts to ensure familiarization. Experimental sessions were 10 

minutes long, and each behavioral condition consisted of five such sessions, one per day, spaced on 

average 24 hours apart. During experimental sessions animals on average experience 20 trials or 100 trials 

per day, in which their performance and activity was recorded. Each trial lasted in total for either 20 or 25 

seconds with a varying inter-trial interval, depending on the animal’s performance (correct vs incorrect or 

passive). Each trial started with the presentation of an orientated grating, after 2 seconds one of the tones 
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in random order would appear and after another 2 seconds the licking behavior of the animal was scored. 

If correct, animals received a reward through the chosen lick spout, otherwise a mild air-puff. The trial 

ended after a total of 6 seconds, after which passive animals also received an air-puff. Animals were 

rewarded randomly on 10% of the trials regardless of their behavior to promote licking behavior. 

 

 Statistics. Nonparametric tests (Wilcoxon rank-sum test or Wilcoxon signed-rank test) or parametric tests 

(Student’s t-test) were performed for analyses.  

 

Data analysis. Imaging data were full-frame registered using a custom-written software (Leinweber et al., 

2014). Neurons were selected manually based on their mean fluorescence or maximum projection. This 

biased our selection towards active neurons. Fluorescence traces were calculated as the mean pixel value 

in each region of interest per frame, and were then median-normalized to calculate ΔF/F. ΔF/F traces were 

filtered as previously described (Mukamel et al., 2009). GFP intensities were calculated as the mean pixel 

value in each region of interest (ROI) for mean fluorescence projections. Normalization was performed 

with the following formula: ROIs(x) – ROIs(min) / ROIs(median) –ROIs(min), where “x” denotes the mean 

pixel values if an individual ROI, “min” the minimum ROI value, “median” the median ROI value, both 

computed across all experimental time-points. High IEG cells were selected based on a population vector. 

No blinding of experimental condition was performed in any of the analyses. 

For all plots of stimulus-triggered fluorescence changes fluorescence traces were mean-subtracted in a 

window 10 to 1 frames (−1000 ms to −100 ms) preceding the stimulus onset unless noted otherwise. 

Neurons were classified as stimulus-responsive if their mean ΔF/F in a 5-frame (500 ms, +400ms to 

+900ms) window after stimulus onset was significantly larger than the mean ΔF/F in a 5-frame (500 ms, -

700ms to -200ms) window before stimulus onset (one-sided paired t-test, with significance level < 0.01).  

Classification of correct vs. incorrect trials using neuronal activity was done using Matlab's TreeBagger 

algorithm. A separate classifier was trained on each training session for each animal. 50 classification trees 

were used for each classifier. The input to the classifier was the mean ΔF/F calcium response of each 

neuron for each puff or reward presentation within a 10-frame window before reward/air-puff or tone 

onset. The training was repeated 20 times to decrease variance from randomness in the TreeBagger 

algorithm. Performance of the classifier was evaluated as the mean accuracy of predicting both correct 

and incorrect trials. 
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Code availability. All imaging and image processing code can be found online at 

https://sourceforge.net/projects/iris-scanning/ (IRIS, imaging software package) and 

https://sourceforge.net/p/iris-scanning/calliope/HEAD/tree (Calliope, image processing software 

package). Code used for all data analysis is available from the corresponding author upon reasonable 

request. 

 

Data availability. The data that support the findings of this study are available from the corresponding 

author upon reasonable request. 
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Chapter 3: Experience-dependent spatial expectations in mouse visual 
cortex 
 

This chapter is based on a paper that has been published in Nature Neuroscience (Fiser et al., 2016). The text and figures of this 

chapter correspond largely to the submitted manuscript, with minor adaptions to formatting and numbering to conform to the 

style of this thesis.  

Aris Fiser1,2,4, David Mahringer1,2,4, Hassana K. Oyibo1,2,4, Anders V. Petersen3, Marcus Leinweber1 & Georg 

B. Keller1,2 

1Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland 
2Faculty of Natural Sciences, University of Basel, Basel, Switzerland 

3Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of 

Copenhagen, Denmark 
4These authors contributed equally. 

Correspondence to: georg.keller@fmi.ch  

 

In generative models of brain function, internal representations are used to generate predictions of 

sensory input, yet little is known about how internal models influence sensory processing. Here we 

show that, with experience in a virtual environment, the activity of neurons in layer 2/3 of mouse 

primary visual cortex (V1) becomes increasingly informative of spatial location. We found that a subset 

of V1 neurons exhibited responses that were predictive of the upcoming visual stimulus in a spatially 

dependent manner, and that the omission of an expected stimulus drove strong responses in V1. 

Stimulus predictive responses also emerged in V1-projecting anterior cingulate cortex (ACC) axons, 

suggesting that ACC serves as a source of predictions of visual input to V1. These findings are consistent 

with the hypothesis that visual cortex forms an internal representation of the visual scene based on 

spatial location, and compares this representation with feed-forward visual input. 
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Introduction 
 

Evidence for the existence of internal representations of the environment in the brain has come, most 

prominently, from the discovery of spatial maps in the hippocampus and entorhinal cortex (Hafting et al., 

2005; O’Keefe and Dostrovsky, 1971). Visual cues exert a strong influence on the structure and 

arrangement of such maps (Hafting et al., 2005; O’Keefe and Conway, 1978). Little is known, however, 

about how internal models of the environment influence sensory processing. Indirect evidence for an 

influence of internal representations on visual processing comes from the findings that hippocampal 

replay during sleep is accompanied by replay in visual cortex (Ji and Wilson, 2007), and from the 

appearance of theta oscillations in the LFP in visual cortices during locomotion in mice (Niell and Stryker, 

2010) and during short-term memory tasks in monkeys (Lee et al., 2005). We speculated that if a direct 

influence of spatial maps on visual processing develops with experience, it could manifest as a prediction 

of visual stimulus based on spatial location. The underlying conceptual model is that spatial 

representations of the environment activate the corresponding visual representations of stimuli 

encountered in specific locations. This would likely be mediated by top-down projections to V1 from areas 

involved in spatial memory, like the anterior cingulate cortex (ACC) (Frankland et al., 2004; Maviel et al., 

2004; Teixeira et al., 2006; Weible et al., 2012). This leads to a number of testable predictions. First, visual 

representations of the environment should change systematically with increasing experience in a given 

environment. Second, we should find non-sensory stimulus-predictive responses that are tied to a 

conjunction of spatial location and the visual stimulus previously encountered at this location. Third, if the 

stimulus encountered at a given location is different from the one previously encountered at the same 

location this should lead to detectable mismatch signals.  

 

 

Results 
 

To probe for the existence of experience-dependent spatial expectations in mouse primary visual cortex, 

we repeatedly let mice explore a virtual tunnel over the course of several days. Throughout exploration, 

we chronically recorded the activity of the same 1630 neurons in V1 layer 2/3 of 9 adult C57BL/6 mice, 

using two-photon imaging of the genetically encoded calcium indicator GCaMP6f (Chen et al., 2013) 

(AAV2/1-Ef1a-GCaMP6f-WPRE). For all imaging experiments, mice were head-fixed and free to run on a 
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spherical treadmill (Dombeck et al., 2007; Holscher et al., 2005). Rotation of the spherical treadmill was 

restricted to forward and backward directions and controlled movement in a virtual tunnel that was 

projected onto a toroidal screen surrounding the mouse (Fig. 3.1a). Upon reaching the end of the tunnel, 

mice received a water reward and their position was reset to the beginning of the tunnel. The walls of the 

virtual tunnel were lined with four different landmark stimuli and five uniform gray areas, marking 

locations at which one of two orthogonal sinusoidal gratings (henceforth referred to as A and B) were 

presented when the mouse reached the corresponding gray area (Fig. 3.1b, Supplementary Video 1). This 

was done to ensure precise control of when the mouse would first see the grating. During the first two 

sessions the sequence of the five grating stimuli was identical (A-B-A-B-A) on every traversal (condition 

1). In subsequent sessions the identity of the last grating stimulus changed to a B on randomly selected 

traversals (90% A and 10% B in condition 2; 100% B in condition 3; and 10% A and 90% B in condition 4). 

In the fifth condition we omitted the grating in position 5 altogether on 10% of randomly selected 

traversals. Each condition comprised two recording sessions that lasted between 1 and 2 hours and 

occurred daily (spaced by 24 ± 4 hours, with the exception of condition 5 which immediately followed 

condition 4). We imaged from the same neurons chronically throughout the duration of the experiment. 

Animals traversed the tunnel an average of 109 times per session (Supplementary Fig. 3.1a). Each 

traversal lasted between 10 and 120 seconds (Supplementary Fig. 3.1b). In addition, we measured 

responses of the same neurons during anesthesia to passive presentations of the tunnel presented at a 

constant visual flow speed both before the first condition (pre-experience anesthesia) and after the last 

condition (post-experience anesthesia). In total we recorded the activity of 1147 L2/3 neurons in V1 of 6 

animals exposed to conditions 1 through 5 (Fig. 3.1b), of which 899 neurons were responsive to at least 

one visual element of the tunnel (tunnel responsive; 78.4%, see Methods). We also recorded from 483 

neurons in conditions 1 and 2 in an additional 3 animals, of which 436 neurons were classified as tunnel 

responsive (90.2%; in total 1335 of 1630 or 81.9% of neurons were tunnel responsive).  

To compare dynamics of spatial signals in V1 to potential changes in the spatial map in hippocampus, we 

chronically recorded the activity of the same 1736 neurons in hippocampal region CA1 in 5 animals 

exposed to conditions 1 through 5 (Supplementary Fig. 3.2a; Supplementary Video 2; see Methods). 

Changes in spatial signals in V1 could be the result of changes in the spatial representation in 

hippocampus, or changes in the way V1 is activated by the spatial representation. In either case, these 

changes should be reflected in top-down inputs to V1. One of the candidate structures for such top-down 

inputs to V1 is the anterior cingulate cortex (ACC). ACC is known to project to V1 (Miller and Vogt, 1984; 

Vogt and Miller, 1983; Zhang et al., 2014), and has been shown to be involved in long-term memory 
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storage (Frankland et al., 2004; Maviel et al., 2004; Teixeira et al., 2006; Weible et al., 2012). To test if 

spatial information could be relayed to V1 via ACC, we recorded the activity of ACC axons in layer 1 of V1 

in condition 1 (3513 axons, 5 sites) and in condition 4 (8599 axons, 10 sites) in 5 animals (see Methods). 

Note that, unlike for the V1 and CA1 experiments, we were unable to chronically record from the same 

ACC axons on different days. The combination of the high density of ACC axons in layer 1 of V1 and the 

low baseline fluorescence made it impossible for us to ensure that we were recording from the same 

axons on different days. However, there likely was a large overlap between the axons recorded on 

different days as imaging regions (5 of 10) were realigned based on blood vessel patterns (Supplementary 

Fig. 3.2b, Supplementary Video 3). We imaged activity on the first and the sixth (2 sites, 1 animal) or 

seventh (8 sites, 4 animals) day in the tunnel. As the total experience in the tunnel between the two 

imaging time points was comparable to the difference between condition 1 and condition 4 in the V1 and 

CA1 data we will use the same nomenclature for the ACC data.  

 

V1 activity becomes descriptive of spatial location 
 

To probe for a spatial component in V1 activity, we investigated whether location in the environment 

modulates neuronal responses to identical visual stimuli. We found that peak calcium fluorescence 

amplitudes of grating-responsive neurons were different for the presentation of the same grating in 

different positions in the tunnel (Fig. 3.1c,d). In order to quantify the spatial heterogeneity of neuronal 

responses in the population, we trained a classifier (Matlab Treebagger, see Methods) to predict which 

grating location the mouse was traversing in each trial for each behavioral condition using the average 

population activity within a 667 ms (10 frames) window following each grating onset. Based on V1 activity, 

the classifier was able to predict not only the identity of the grating the mouse was seeing but also where 

in the tunnel the mouse was seeing the grating (Fig. 3.1e). Classification performance, measured as the 

mean of the diagonal of the confusion matrix for each condition (see Methods), significantly increased 

between conditions 1 and 4 (condition 1: 53.3 % ± 7.7 %; condition 4: 81.7 % ± 4.6 %, mean ± s.e.m.; p = 

0.029, Wilcoxon Rank Sum test). The classifier also performed considerably better in post-experience, 

compared to pre-experience anesthesia (Fig. 1e; Supplementary Fig. 3a; Ane. Pre: 31.3 ± 6.2%; Ane. Post: 

67.2 ± 7.2%; p = 0.031, Wilcoxon Rank Sum test). To ensure that the difference in responses to the same 

stimulus in different locations was not due to running speed tuning (Keller et al., 2012; Niell and Stryker, 

2010), we trained a classifier to predict the animal’s location based on running speed. The classifier did 
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not perform better than chance (Supplementary Fig. 3.3b). Training a classifier on slow traversals and 

testing it on fast traversals, and vice versa, yielded classification accuracy that remained well above chance 

in both cases (Supplementary Fig. 3.3c), suggesting that speed tuning is not a major contributor of 

predictive power in the classification. To test if calcium dynamics influence the change in classification 

performance, we deconvolved raw calcium traces using an exponential kernel with a time constant of 0.5 

s (Chen et al., 2013; Yaksi and Friedrich, 2006) (Supplementary Fig. 3.3d; see Methods) and trained the 

classifier on the deconvolved traces. Average accuracy was slightly decreased when the classifier was 

trained on deconvolved traces, but the increase between condition 1 and 4 was unchanged 

(Supplementary Fig. 3e).  

In addition to a spatial component in V1 activity, an increase in stimulus selectivity could also influence 

the discriminability of stimuli in the environment. We quantified the selectivity of all neurons to the two 

grating stimuli A and B using a selectivity index (SI) as (RA-RB)/(RA+RB), where RA is the average response 

to A in positions 1 and 3, and RB is the average response to B in positions 2 and 4; SI was set to 0 for 

neurons without a significant response to either A or B (Supplementary Fig. 4a; see Methods). We found 

that, with experience, neurons in V1 that are grating-selective become more selective with time 

(Supplementary Fig. 3.4b,c), an effect that cannot be explained by their mean activity (Supplementary 

Fig. 3.4e). Furthermore, the stability of these selective neurons increased with experience, an effect not 

explained by stability in motor behavior (Supplementary Fig. 3.4f).  

Activity in CA1 exhibited place-like responses that reflected the pattern of visual stimuli along the tunnel. 

Neurons either responded to landmark stimuli or gratings, and locations with similar visual stimuli elicited 

similar neural responses (Fig. 3.1f,g; Supplementary Fig. 3.5a), with no clear anatomical clustering of 

neurons that responded to gratings or landmarks in CA1 (Supplementary Fig. 3.5b,c). Consistent with 

previous reports (Ziv et al., 2013), we found that activity patterns were only partially stable over different 

conditions or days. For 14.8 % of neurons, the location of peak activity in the tunnel was stable over the 

five behavioral conditions (Supplementary Fig. 3.6a,c; within 5% of tunnel length; see Methods). By 

comparison, in V1, 32% of neurons exhibited a stable location of peak activity (Supplementary Fig. 3.6b,c). 

The instability of CA1 activity may have been augmented by the unilateral removal of cortical tissue 

necessary to image CA1 pyramidal neurons. Previous work, however, has argued that place field 

responses measured by imaging using similar methods are not different from those measured with 

electrophysiological techniques (Dombeck et al., 2010). Classification of grating identity based on grating 

onset responses using CA1 data was only slightly above chance (Fig. 1h). This was likely due to the absence 
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of clear grating onset responses (Fig. 3.1g); using mean activity instead of grating onset responses, 

classification performance in condition 1 was not different from that based on V1 data (Fig. 3.1h; condition 

1: 53.9 ± 4.4%; condition 4: 32.3 ± 4.8%, mean ± s.e.m.; p = 0.043, Wilcoxon Rank Sum test). Interestingly 

however, classification performance decreased with experience, indicating that CA1 activity becomes less 

informative of spatial location. Furthermore, neurons that were stimulus-selective on average showed 

decreasing selectivity with experience and maintained high trial-to-trial response variability 

(Supplementary Fig. 3.4d-f). This is opposite to the trend we observed in V1 activity where decoding 

performance increased with experience. The experience-dependent effects found in V1 therefore cannot 

be explained by a concurrent change of a spatial map in CA1. 
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Figure 3.1: Identical visual stimuli in different spatial locations can elicit different responses in V1 and 

similar responses in CA1.  

(a), Schematic of the experimental setup. 

(b), Schematic representation of the texture lining both walls of the tunnel. Gratings A and B in positions 1-5 were only shown 

once the animal reached the corresponding position in the tunnel (Supplementary Video 1). In between the grating positions 

were four permanent landmark stimuli. The probability of encountering an A or B in position 5 changed with conditions as shown. 

(c), Top: schematic of V1 imaging strategy. Bottom: example two-photon image of V1 L2/3 neurons. 

(d), Average responses of an example A-selective neuron (left) and an example B-selective neuron (right) to A1, B2, A3 and B4. 

Note that the responses to the preferred stimulus depend on where in the tunnel the stimulus in encountered (position 1 (2) 

versus position 3 (4)). Shading indicates s.e.m. across grating presentations (left: 178 presentations; right: 218 presentations). 

(e), Classification accuracy of grating location and identity based on neural activity increases with experience. Left: Confusion 

matrices of the distributions of classified grating location (x-axis) based on grating onset responses, as a function of actual grating 

location (y-axis). Right: Mean classification accuracy for all conditions, measured as the mean of the diagonal of the confusion 

matrix for each condition. Note, for these plots V1 data recorded in conditions 1-2 (from 9 animals) and data recorded in 

conditions 1-4 (from 6 animals) were combined. Mean ± s.e.m. across animals. Ane-pre: pre-experience anesthesia; Ane-post: 
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post-experience anesthesia. *: p = 0.029 (conditions 1 and 4); p = 0.031 (pre- and post-experience anesthesia), Wilcoxon Rank 

Sum test. 

(f), Top: Schematic of CA1 imaging strategy. Bottom: Example two-photon image of CA1 pyramidal neurons.  

(g), Heatmaps showing normalized fluorescence traces of CA1 neurons in condition 1, selective to A (left) and B (right), sorted by 

peak position. Traces on top are the mean activity of neurons shown below, highlighted by the blue, red and green vertical bars 

respectively.  

(h), Left: As in e, but based on mean response, not grating onset response. Right: as in e, for mean response (solid line) and for 

grating onset response (dashed line). Ane-pre: pre-experience anesthesia; Ane-post: post-experience anesthesia. Mean ± s.e.m. 

across animals (n = 5). *: p = 0.043, n.s.: p = 0.931 (conditions 1 and 4); n.s.: p = 0.524, p = 0.463 (pre- and post-experience 

anesthesia), Wilcoxon Rank Sum test. 

  



62 
 

V1 develops predictive responses to upcoming visual stimuli 
 

A potential role for the spatial modulation of V1 activity is to enhance the discriminability of similar stimuli 

in different contexts. In this scenario, a spatial input would trigger predictions of expected visual input at 

a given spatial position. Indeed, we found a group of neurons (5.6% or 50 of 899 tunnel-responsive 

neurons) that, with increasing experience in the tunnel, started firing prior to the appearance of the 

upcoming grating in an A- or B-selective manner (Fig. 3.2a,b). As responses both preceded the stimulus 

and signaled the identity of the upcoming stimulus, we will refer to these signals as stimulus-predictive. 

The response in predictive neurons developed with experience and was absent in the first condition (Fig. 

3.2b) and during anesthesia (Supplementary Fig. 3.7a). In contrast, responses in neurons classified as 

visual and selective to either A or B (4.9% or 44 of 899 tunnel-responsive neurons) were present already 

in the first condition and exhibited a much smaller increase with experience (Fig. 3.2c). Predictive and 

visual neurons were equally selective for A or B (Supplementary Fig. 3.7b; predictive neurons: mean SI = 

0.79 ± 0.04; visual neurons: 0.82 ± 0.03). Using a classifier trained on the activity of predictive neurons 

preceding the appearance of the stimulus we could predict the identity of the upcoming visual stimulus 

(Fig. 3.2d; accuracy = 81.4 ± 5.1%, mean ± s.e.m.). Once present, predictive responses are stable over 

conditions. The correlation of the mean responses of predictive neurons between conditions 3 and 4 was 

almost as high as for visual neurons (predictive neurons: r = 0.81, p = 1.1*10-27; visual neurons: r = 0.95, p 

= 5.4*10-47). Moreover, only one neuron classified as predictive in condition 3 was classified as visual in 

condition 4. 

In conditions 2 and 4 we presented a different grating on 10% of randomly selected traversals in the final 

location (Fig. 3.1b). On these traversals, with an unexpected grating in the final location, stimulus-

predictive neurons fired as if the predicted grating would appear, but visual neurons fired in response to 

the actual grating shown (Fig. 3.2e,f). Predictive responses to an unexpected A (A5) were also apparent 

when plotting the average response of the 20% (n = 229) neurons that responded strongest to an expected 

B (Supplementary Fig. 3.7c). Given that stimulus-predictive neurons were as selective for the upcoming 

stimulus (A or B) on average as visual neurons, it is unlikely that predictive responses are responses to the 

preceding stimulus. To confirm this, we aligned responses of stimulus-predictive neurons to either the 

preceding landmark stimulus or the upcoming grating for fast and slow traversals separately. Alignment 

of the responses for fast and slow traversals should be best for the stimulus (previous or upcoming) that 

actually drives the responses. We found that responses were best aligned with the upcoming stimulus 
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(Fig. 3.2g), and thus are best explained by distance, and not time, from the last stimulus. This implies that 

predictive activity relies on spatial location to signal the upcoming visual stimulus. 

Stimulus-predictive signals could reflect the frequency of having encountered a certain stimulus in a 

specific location. Thus predictive signals should be higher when the same stimulus is always encountered 

as opposed to when in a specific location different stimuli were encountered during experience. 

Therefore, the predictive response to B5 should be lower than the predictive response to mean B, as the 

stimulus presented in position 5 varied with session (Fig. 3.1b), whereas in position 2 and 4 the animal 

always encountered a B. This was indeed the case: in condition 4, B-selective predictive neurons were 

significantly less active prior to grating B5 (90% B) than on average to gratings B2 and B4 (100% B) (Fig. 

3.2h, mean B: ΔF/F = 9.1% ± 2%; B5: ΔF/F = 4.4% ± 1.3%; p = 0.00015, Wilcoxon Signed-Rank test). 

Conversely, one could argue that A-predictive neurons should be more active prior to B5 as the animal 

encounters an A in this location on 10% of the traversals. A rare encounter, however, did not lead to a 

measureable increase in predictive activity in V1 (Fig. 2h, mean B: ΔF/F = 2.3%; ± 2% B5: ΔF/F = 3.1% ± 

2.9%; p = 0.7, Wilcoxon Signed-Rank test). 

In predictive coding models, the primary visual cortex communicates the error between predicted and 

actual visual stimuli to downstream visual areas (Bastos et al., 2012; Rao and Ballard, 1999). If predictive 

activity scales with the frequency of having encountered a visual stimulus in a particular location, then 

the strength of the visual response to the stimulus may signal the surprise of seeing it. This would be 

reflected in lower visually-driven activity on trials when prediction of a grating was high. We observed 

that on traversals with high predictive activity preceding each grating, visually evoked activity to the 

grating was lower (ΔF/F = 8.0% ± 0.5%, mean ± s.e.m.) than on traversals with low predictive activity (ΔF/F 

= 11.2% ± 0.5%, mean ± s.e.m.; Fig. 3.2i; Supplementary Fig. 3.7d). In sum, this suggests that stronger 

visual responses report the discrepancy between predicted and actual visual input, and that activity in 

stimulus-predictive neurons may lead to a reduction of visual responses.  

If activity in stimulus-predictive neurons indeed signals the identity of the upcoming stimulus, one would 

expect a difference in the visual response when an unpredicted stimulus is encountered. We found that 

the responses of A-selective visual neurons to the unexpected A at position 5 were stronger when B-

predictive neurons fired strongly in anticipation to the grating presentation (Fig. 3.2j). Traversals were 

split into two groups by median amplitude of the response of predictive neurons (average visual responses 

on high traversals with high predictive activity: 21.4% ± 3.1% ΔF/F; and on traversals with low predictive 

activity 12.5% ± 2.2% ΔF/F; mean ± s.e.m.; p = 0.02, Wilcoxon Rank Sum test). Altogether, these findings 



64 
 

indicate that the strength of predictive responses preceding a stimulus strongly affect the visual responses 

to it, suggesting a dynamic interplay between stimulus prediction and stimulus response. 

 

 

Figure 3.2: V1 neurons develop predictive responses to approaching visual stimuli with experience.  

(a), The activity of two B-selective neurons during a single traversal of the tunnel. Note that one neuron (black line) fires in 

anticipation of each B presentation, whereas the other fires causally with a delay after the presentation.  

(b, c), The average response of predictive (b, 50 neurons) and visual (c, 44 neurons) stimulus-selective neurons to their preferred 

grating orientation in conditions 1-4. In these and all following panels shading along curves indicates s.e.m.  

(d), Classification accuracy of a classifier trained on the activity of predictive neurons (n = 50) to decode grating identity (A3 vs 

B4) prior to the stimulus (-333ms to 0ms) in condition 4. Circles: individual sites (5 sites); Triangle: Mean; Error bars: s.e.m. Data 

in d-i are from condition 4.  

(e), Average responses of two example B-selective neurons to mean A1 & A3 (blue line), mean B2 & B4 (red line), unexpected A5 

(blue dashed), and the expected B5 (red dashed).  
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(f), Average responses of predictive (n = 50) and visual (n = 44) neurons to mean A1 & A3, mean B2 & B4, expected B5 and 

unexpected A5.  

(g), Upper panel: Responses of predictive neurons (n = 50) aligned to either previous landmark stimulus (dashed lines) or 

upcoming grating stimulus (solid lines) for fast (dark green) and slow traversals (light green). Note that responses for slow and 

fast traversals align best with upcoming grating onset. Lower panel: histogram of time between previous landmark stimulus and 

upcoming grating onset for fast (dark green) and slow (light green) traversals. Fast and slow traversals were classified by mean 

running speed in a window of 467 ms (7 frames) preceding onset of the grating stimulus.  

(h), Strength of predictive responses of B-predictive neurons (n = 39, left) and A-predictive neurons (n = 11, right) to B2 & B4 

(mean B) and B5 in condition 4 where the animal always encountered B in position 2 and 4, but only with 90% probability in 

position 5. Mean ± s.e.m. across neurons. (***: p = 0.00015, n.s.: p = 0.7, Wilcoxon Signed-Rank test).  

(i), Responses of visual neurons on traversals of high (orange) and low (yellow) activity in predictive neurons. Strong predictive 

activity before a grating (in the top 20%, 787 grating presentations) correlated with weak visually driven responses, and vice versa 

(in the bottom 20%, 787 grating presentations).  Mean responses are calculated in the window indicated with gray shading. 

 (j), Average responses of visually selective neurons in response to the unexpected A5 in traversals with weak (yellow; 51 A5 

presentations) and strong (orange; 52 A5 presentations) activity in predictive B-selective neurons. The higher the activity in 

predictive B-selective neurons, the higher the mean visual responses to the unexpected A (mean responses are calculated in the 

window indicated with gray shading).  
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ACC conveys stimulus predictive signals to V1  
 

As the source of predictive signals must be extra-retinal, one would expect that at least some of the top-

down inputs to primary visual cortex exhibit signals that are stimulus-predictive, and that this predictive 

input develops with experience. To test this, we imaged from ACC axons in V1 (Fig. 3.3a). When classifying 

grating position based on the activity of ACC axons we found an increase in classification accuracy with 

experience, similar to the increase in V1 (Fig. 3.3b; condition 1: 31.7 ± 18.3%; condition 4: 88.6 ± 2.4%, 

mean ± s.e.m.; p = 0.03, Wilcoxon Rank Sum test). We then compared the activity of ACC axons that exhibit 

selective responses for either A or B in early and late conditions. Using the same criteria as for responses 

in V1 (Fig. 3.2b,c) we were able to classify axons as either predictive or visual in both early and late 

conditions (Fig. 3.3c, d). We found that in early conditions there were visual responses but no predictive 

responses and that in late conditions stimulus-predictive responses emerged (Fig. 3.3d). Note, even axons 

classified as visual exhibited activity that preceded the presentation of the stimulus in condition 4. The 

contribution of these predictive responses to the total population response to gratings was larger in ACC 

than in V1 (Supplementary Fig. 3.7e). As in V1 (Fig. 3.2h), the strength of predictive responses depended 

on the reliability of having encountered a certain stimulus in a specific location. Predictive responses to 

B2 and B4 (100% B) were larger than the predictive responses to B5 (90% B – 10% A, in condition 4; Mean 

B: ΔF/F = 6.5 ± 0.6%; B5: ΔF/F = 4.2% ± 0.8%; mean ± s.e.m.; p = 0.00028, Wilcoxon Signed-Rank test), and 

different from activity in V1, A-predictive activity was higher prior to B5 as compared to B2 and B4 (Fig. 

3.3e; Mean B: ΔF/F = 2.2% ± 0.3%; B5: ΔF/F = 4.4% ± 0.5%; mean ± s.e.m.; p = 0.00015, Wilcoxon Signed-

Rank test). Predictive inputs from ACC could signal spatial location (in spatial coordinates) or signal the 

predicted visual stimulus (in visual coordinates). To test if axons classified as visual in condition 4 were 

actually visually driven, we compared responses of expected and unexpected presentations of A or B 

(condition 4). Responses of axons that were B-selective had visual responses to an expected B5 

comparable to the mean response to B. Responses to the unexpected A still showed predictive activity, 

but diverged from B responses following stimulus onset (Fig. 3.3f). Conversely, axons selective for A 

exhibited predictive responses to an expected A1 or A3 and only small responses to the expected B5, but 

showed clear visual responses to the unexpected A5 (Fig. 3.3g). Thus, predictive signals in V1 are likely 

conveyed by top-down signals carrying an expectation of the visual input based on spatial location. 
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Figure 3.3: ACC projections to V1 carry visual stimulus predictions.  

(a), Left: schematic of ACC axon imaging strategy. Right: Example two-photon image of ACC axons in V1.  

(b), Classification accuracy for a classifier trained to decode grating location based on grating onset responses (as in Fig. 1e, h). 

The accuracy of the classifier increases with time. Mean ± s.e.m. across sites (condition 1: 3 sites; condition 4: 10 sites). *: p = 

0.03, Wilcoxon Rank Sum test.  

(c), Activity of two A-selective axons during a single traversal of the tunnel. One axon (black line) fires in anticipation of each A, 

whereas the other (gray line) peaks after each stimulus.  

(d), As in V1, stimulus-predictive responses emerge with experience. Orange lines indicate mean activity of predictive (solid; n = 

654) and visual (dashed; n = 1377) axons in condition 1, whereas blue lines indicate activity of the corresponding axons in 

condition 4 (736 predictive and 2559 visual axons). Shading indicates s.e.m. across axons. 

(e), As in Fig. 2h, for V1-projecting ACC axons. Strength of predictive responses of B-predictive axons (left) and A-predictive axons 

(right) to B2 & B4 (mean B) and B5 in condition 4 where the animal always encountered B in position 2 and 4, but only with 90% 

probability in position 5. Mean ± s.e.m. across axons (312 A-predictive and 500 B-predictive axons). ***: p = 0.00015 (A-

predictive), p = 0.00028 (B-predictive), Wilcoxon Signed-Rank test.  

(f), Activity of visual B axons (n = 1175) to mean B (B2 & B4) (solid red), expected B5 (dashed red) and unexpected A5 (dashed 

blue).  

(g), As in f, but for visual A axons (n = 1384). Note the visually evoked response to the unexpected A5. Shading in f and g indicates 

s.e.m. 
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Omitting an expected stimulus drives strong responses in V1 
 

To probe if expectations can drive responses in V1 in the absence of a visual stimulus, we omitted the final 

stimulus altogether in 10% of randomly selected traversals (condition 5). In these omission traversals, no 

grating would appear as the mouse reached the gray area marking the location of the final grating 

presentation (Supplementary Video 1). The omission of the stimulus elicited a strong response in the V1 

population (Fig. 3.4a, Supplementary Fig. 3.8a, Supplementary Video 4). Moreover, a subset of neurons 

selectively responded to the omission (Fig. 3.4b; 2.3% or 21 of 899 tunnel-responsive neurons). If this 

omission response indeed signals a deviation between predicted and actual visual input, one would expect 

the strength of the predictive response to correlate with the omission response. To test this, we split all 

traversals into two categories depending on how strong the average response of predictive A- and B-

selective neurons was prior to the omission. The average omission response in trials with low predictive 

activity was significantly smaller than in trials with high predictive activity (Fig. 3.4c; omission-evoked 

activity on trials with high predictive activity: ΔF/F = 35.2% ± 8.5%; on trials with low predictive activity: 

ΔF/F = 16.6% ± 2.2%, mean ± s.e.m.; p = 0.00018, Wilcoxon Rank Sum test with bootstrapping, see 

Methods). The lack of local visual flow during the grating omissions raises the possibility that these 

responses are instances of sensorimotor mismatch (Keller et al., 2012). To test this, we compared the 

omission responses of the omission-selective neurons to their responses to the expected uniform gray 

stimulus that the animals encountered while running at the beginning and end of the tunnel. We found 

no response to the expected gray stimulus in omission selective neurons (Supplementary Fig. 3.8b). Thus, 

omission responses can best be explained by a deviation between expected and actual visual stimulus 

based on what the mouse had seen in this position on previous traversals. Furthermore, omission 

responses were absent in ACC axons (Supplementary Fig. 3.8c), suggesting that visual cortex compares 

visual stimulus predictions, relayed by top-down cortical input, to actual visual input. 
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Figure 3.4: The omission of an expected grating strongly drives activity in V1.  

(a), Average population response (1147 neurons) to the omission of grating B5 (black dashed line) in comparison to the average 

response to A (blue line), B (red line) and B5 (red dashed line). Shading indicates s.e.m. across neurons. 

(b), As in a, but for omission selective neurons (21 of 899 tunnel-responsive). Shading indicates s.e.m. across neurons. 

(c), Average omission responses in omission selective neurons on traversals of high activity in predictive neurons (orange line; 13 

traversals) and on traversals with low activity in predictive neurons (yellow line; 12 traversals). Gray shading indicates window 

over which mean activity was calculated. Shading indicates s.e.m. over traversals. 

 

 

Discussion 
 

In this study, we show that the activity of neurons in the primary visual cortex of the mouse is shaped by 

experience. The increase in selectivity and trial-to-trial stereotypy of stimulus-selective neurons suggests 

that the representation of an environment in visual cortex is dynamic and becomes increasingly stable 

with experience. The emergence of stimulus-predictive activity with experience and the presence of an 

error signal in response to an unexpected stimulus, the strength of which correlates with the strength of 

the predictive activity preceding it, indicate that processing in V1 in a familiar environment relies on 

predictions of visual stimuli. These findings build upon previous work on internal representations showing 

that motor-related signals are integrated with sensory signals in primary sensory cortices to generate 

sensorimotor-mismatch signals (Eliades and Wang, 2008; Keller et al., 2012; Keller and Hahnloser, 2009; 

Saleem et al., 2013).  

Our results cannot be explained by timing dependent recall of activity or reward anticipation. Cue-

triggered recall of activity, for example, has been shown to occur in visual cortex after repeated 

experience of rapid sequences of stimuli (Gavornik and Bear, 2014) and fast moving spots (Xu et al., 2012). 
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Sequence learning, however, is specific to the timing used for training; a change in timing of the stimuli of 

as little as 150 ms abolishes the effect (Gavornik and Bear, 2014). Predictive responses in our experiments 

persisted even though trial to trial differences in traversal times were on the order of tens of seconds (Fig. 

3.2g; Supplementary Fig. 3.1b). Moreover, the cue-triggered recall was only observed when the animal 

was anesthetized, or the animal was awake but cortex was in a synchronized state (characteristic of quiet 

wakefulness), and the effect was absent when cortex was in a desynchronized state (characteristic of 

motor behavior) (Xu et al., 2012). Another effect that has been shown to drive activity in visual cortex is 

reward anticipation (Shuler and Bear, 2006). Neurons that code for a rewarded stimulus are selectively 

activated in anticipation of reward-predicting stimuli (Poort et al., 2015). However, as in our data 

predictive activity is stimulus selective and omission responses are independent of the reward delivered 

at the end of the tunnel, reward anticipation cannot explain the spatial modulation we describe here. 

The decrease in spatial information in CA1 with experience we observe implies that the experience-

dependent effects found in V1 do not merely reflect a concomitant change in the hippocampal formation. 

Rather, place-like responses in CA1, which are tied to visual elements of the virtual tunnel, could serve as 

a scaffold for spatially modulated and stimulus-predictive activity in higher cortical areas that is then 

relayed to V1 via top-down input. It is interesting to note that decoding of spatial location based on CA1 

activity resulted in poorer accuracy than when decoding spatial location from V1 activity. This could be a 

direct consequence of the virtual environment and head fixation or due to the fact that to image CA1 we 

removed a part of visual cortex above CA1. Note, however, that one of the main factors contributing to 

poor decoding of spatial location from CA1 activity is the fact that CA1 neurons responded in multiple 

visually identical locations. It is unlikely that this is the result of damage to visual cortex. Lastly, although 

the head fixation and navigation in a virtual environment degrade the spatial representation in CA1 

(Aghajan et al., 2014), this does not affect our ability to decode spatial information from V1 and ACC 

activity after experience. 

Direct projections from cortical areas containing spatial representations of the environment, like the 

retrosplenial (Alexander and Nitz, 2015; Cho and Sharp, 2001) or the anterior cingulate cortex (Weible et 

al., 2009), exist in rodent V1 (Miller and Vogt, 1984; Vogt and Miller, 1983; Zhang et al., 2014). We have 

shown that one of these top-down projections carries a prediction of visual stimulus based on the mouse’s 

location in the environment. Top-down mediated predictions could be compared against feed-forward 

sensory input to compute deviations between actual and predicted sensory input, and such deviations 

could be used to update expectations and guide learning. Our results are consistent with a predictive 
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coding framework, in which sensory input is compared to an internal model of the environment to detect 

deviations from expectations.  
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Supplementary Figures 
 

 

 

Supplementary Figure 3.1: Number and timing of virtual-corridor traversals. 

(a), Number of traversals per condition for each animal. Note recording times were shorter for condition 3 and 5. 

(b), Histogram of traversal times for all conditions. 
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Supplementary Figure 3.2: Stability of imaging of CA1 pyramidal neurons and ACC axons in V1. 

(a), Example CA1 neurons recorded in the 5 different conditions. 

(b), Example imaging regions for the ACC axons in V1. Note that due to the high density of axons and the low baseline 

fluorescence, alignment of the imaging regions for the ACC experiments was performed on blood vessel patterns and not on the 

axons themselves. 
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Supplementary Figure 3.3: The increase in classification accuracy of grating position in V1 cannot be 

explained by running speed or GCaMP dynamics. 

(a), Confusion matrices as in Fig. 1e,h for pre- and post-anesthesia in V1 (left) and CA1 (right). In this and subsequent panels, Ane-

pre: pre-experience anesthesia; Ane-post: post-experience anesthesia. 

(b), Accuracy of the classifier predicting the animal’s location in the tunnel based on either neural activity (black line) or running 

speed (gray line) for conditions 1 through 4. Chance level of 20% (dashed line) is given by the 5 possible grating locations in the 

tunnel. Error bars: s.e.m. 

(c), Classifier accuracy when trained on neural activity during fast (slow) traversals and tested on slow (fast) traversals. Error bars: 

s.e.m. 

(d), Example of a raw activity trace in time (black), and the same trace deconvolved using an exponential deconvolution kernel 

with a time constant of 0.5 s (magenta).  
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(e), Classifier performance using raw and deconvolved traces. The similar performance suggests that down-sweeps in calcium 

signals are not the main predictors of spatial location in population activity.  Error bars: s.e.m. 
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Supplementary Figure 3.4: Orientation-selective neurons in V1 (CA1) become more (less) selective with 

experience. 

(a), Histogram of the selectivity index (SI) of all neurons averaged across conditions. Black bars: neurons with a SI ≥ 0.5 (≤ -0.5) 

were considered to be selective for A (B).  

(b), Average responses of an example neuron to A (blue lines) and B (red lines) across presentations. Note the increase in 

selectivity between conditions 1 and 4, as well as between pre- and post-experience anesthesia. Gray shading indicates time 

window used to calculate SI. Blue and red shading indicate s.e.m.  

(c), Average SI per condition for V1 as in a, showing the selectivity indices for each cell included (gray circles). Mean ± s.e.m.  

across animals. **: p = 0.0047, n.s.: p = 0.125, Wilcoxon Rank Sum test.  
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(d), As in c, but for CA1. *: p = 0.009; n.s.: p = 1, Wilcoxon Rank Sum test. 

(e), Average activity of the same neurons (V1: black; CA1: green) shown in c per condition does not increase with time. Mean ± 

s.e.m. Conditions 1-4: V1: p = 0.093, CA1: p = 0.12 (conditions 1-4). Pre- and post-anesthesia: V1:  p = 1.5e-5; CA1: p = 1, Wilcoxon 

Rank Sum test. 

(f), Average trial-to-trial stereotypy of activity increased with experience. Shown is the mean correlation coefficient r of activity 

traces of neurons shown in c and d in different traversals with the same and across different conditions. Mean ± s.e.m.  (Note, 

for this analysis traversals were subsampled to match stereotypy of running speed across conditions). Conditions 1-4: V1: p = 

0.00085; CA1: p = 0.44. Pre- and post-anesthesia: V1: p = 2.5e-8; CA1: p = 1, Wilcoxon Rank Sum test. 
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Supplementary Figure 3.5: Landmark responses in CA1 neurons. 

(a), As in Fig. 1g, but for landmark responsive CA1 neurons. Note that neurons that respond to one landmark also exhibited 

responses to all other landmarks. Traces in the top panel are colored to indicate the neurons chosen from the matrix in the 

bottom panel.  

(b), Schematic representation of the four-layer imaging in CA1. Field of view was approximately 250 µm by 250 µm and the 

spacing between the layers approximately 15 µm.  
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(c), Schematic representation of the position neurons in CA1 that responded to landmarks (blue), gratings (red), or were 

unresponsive (gray) for all five animals and conditions separately. Note, that there is no clear arrangement of neurons that 

respond to landmarks or gratings.  
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Supplementary Figure 3.6: Stability of grating responses between conditions is higher in V1 than in CA1. 

(a), Normalized activity of grating selective CA1 neurons (SI ≥ 0.1) sorted by position of peak response in the tunnel. Selection of 

grating responsive neurons and sorting was done on condition 1 for the first row of plots. Data are shown for the same neurons 

using the same sorting for condition 2 through 5 in the remaining plots of the first row. Similarly for the remaining rows of plots.  
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(b), As in a, but for V1 data.  

(c), Quantification of stability of responses in V1 and CA1. Shown is the fraction of neurons plotted in a and b that peak within 5% 

of tunnel length (or one texture length) between the conditions indicated. 
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Supplementary Figure 3.7: Dynamics of predictive and visual responses in V1, CA1 and ACC. 

(a), Mean grating response of predictive neurons shown in Fig. 2b during pre- and post-experience anesthesia conditions.  

(b), Histogram of selectivity of predictive (blue) and visual (red) neurons in V1 (left) and ACC axons in V1 (right). Mean selectivity 

index (SI) was similar for all four populations (V1 predictive: SI = 0.79 ± 0.04, V1 visual 0.82 ± 0.03, ACC predictive: 0.84 ± 0.008, 

ACC visual: 0.79 ± 0.004). Colored circles indicate mean SI, horizontal bars indicate s.e.m.  

(c), Mean grating-triggered responses of the 20% of neurons (n = 229) with the highest response to grating B4. Gray shading 

marks time window used to quantify responses. Colors and shading as in Fig. 3e.  

(d), Mean activity of predictive neurons plotted against mean activity of visual neurons for each presentation of gratings A3 and 

B4 in condition 4.  

(e), Grating responses in condition 1 (orange) and condition 4 (blue) for grating-selective neurons (SI>0.1) for CA1 neurons, ACC 

axons, and V1 neurons. Note, grating related responses in CA1 decrease with experience, and anticipatory responses emerge in 

ACC and V1 data. 
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Supplementary Figure 3.8: Responses to grating omission are present in most animals and do not reflect 

sensorimotor mismatch. 

(a), Population mean response to grating omission for each animal (dashed black lines, n=6). Shading indicates s.e.m.  

(b), Responses of omission selective neurons to omission events and onsets of gray areas in the tunnel locations that are always 

encountered as gray. Shading indicates s.e.m.  

(c), Average ACC axon population response (8599 axons) to the grating omission. Shading indicates s.e.m. 

 

  



84 
 

 

Supplementary Figure 3.9: Body weight trajectories. 

Body weight in percent of starting weight for all animals used in V1 and CA1 experiments as a function of time since start of water 

restriction. Dashed line indicates the 80% threshold under which water restriction is halted. 
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Experimental procedures 
 

Animals and imaging. All experiments were carried out in accordance with protocols approved by the 

Veterinary Office of the Canton of Basel, Switzerland. For the V1 experiments, we used imaging data from 

a total of 9 female C57BL/6 mice, aged 75 to 90 days at the start of the imaging series. For CA1 

experiments, we used imaging data from a total of 6 female C57BL/6 mice, aged 60 to 80 days at the start 

of the imaging series, and for ACC experiments, a total of 5 female C57BL/6 mice, aged 71 days at the start 

of the imaging series. All animals were group-housed in a vivarium (light/dark cycle: 12/12 hours). The 

data of two V1 animals with visible z-axis motion were discarded. No statistical methods were used to 

pre-determine sample sizes, but our sample sizes are similar to those generally employed in the field. 

Mice were water restricted for the duration of the experiment, but allowed to drink water ad libitum for 

one hour per day in addition to receiving water rewards during experiments. Weight of all mice remained 

above 80% of starting weight (Supplementary Fig. 3.9). Viral injections and window implantation were 

performed as previously described (Leinweber et al., 2014). Briefly, mice were anesthetized using a mix 

of fentanyl (0.05 mg/kg), medetomidine (0.5 mg/kg) and midazolam (5 mg/kg) for all surgical procedures. 

For primary visual cortex imaging experiments, a craniotomy was made over visual cortex and AAV2/1-

Ef1a-GCaMP6f-WPRE (titer 7.0 x 1010 or 5.0 x 1011 TU/ml) was injected, and the craniotomy was sealed 

with a 4 mm or 5 mm glass coverslip. For hippocampus imaging experiments, a 3 mm craniotomy was 

made above either left or right dorsal hippocampus and posterior parts of cortex were aspirated, and 

AAV2/1-Ef1a-NES-jRGECO1a-WPRE (Dana et al., 2016) (titer 1.2 x 1011 TU/ml) was injected into region 

CA1. The craniotomy was sealed with a 3 mm cover slip. For ACC axon imaging experiments, a craniotomy 

was made over visual cortex and sealed with a 4 mm glass coverslip. Additionally, a small craniotomy over 

ACC (0.3 mm lateral of bregma) was made and AAV2/1-Ef1a-GCaMP6f-WPRE (titer 1.0 x 1011 TU/ml) was 

injected before the region was sealed with cyanoacrylate. All viral vectors were injected at a volume of 

~150 nl per site. A titanium head bar was attached to the skull and stabilized with dental cement. Imaging 

commenced 10 to 14 days (primary visual cortex), 23 days (hippocampus) or 30 days (ACC) following 

injection, and was done using a custom built two-photon microscope (Leinweber et al., 2014). Illumination 

source was an Insight DS laser (Spectra Physics) tuned to a wavelength of 910 nm. We used a 12 kHz 

resonance scanner (Cambridge Technology) for line scanning, which enabled frame rates of 60 Hz at 400 

x 750 pixels resolution. Imaging of ACC axons was performed using an 8 kHz resonance scanner 

(Cambridge Technology) resulting in frame rates of 40 Hz at 400 x 750 pixels resolution. In addition, we 

used a piezo actuator (Physik Instrumente) to move the objective (Nikon 16x, 0.8 NA) in steps of 15 µm 
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between frames to acquire images at 4 different depths, thus reducing the effective frame rate to 15 Hz 

for the V1 and CA1 experiments, and 10 Hz for ACC experiments. Note, the use of different setups for 

axonal and cell body imaging were the result of lab logistics. 

 

Virtual reality and behavior. The behavioral imaging setup was as previously described (Leinweber et al., 

2014). Briefly, head-fixed mice were free to run on an air-supported polystyrene ball, the motion of which 

was restricted to the forward and backward directions by a pin (Fig. 3.1a). The ball’s rotation was coupled 

to linear displacement in the virtual environment that was projected onto a toroidal screen surrounding 

the mouse. The screen covered a visual field of approximately 240 degrees horizontally and 100 degrees 

vertically. All elements of the tunnel including the gratings were calibrated to be isoluminant. Gratings 

were presented on a uniform gray area once the mouse entered the gray area. A reward zone was located 

at the end of the tunnel. Reaching the reward zone triggered a 5 s timeout during which the mouse could 

lick for a water reward provided by a spout located in front of the mouse. After the timeout, the mouse 

was teleported to the beginning of the tunnel to start the next trial. In early traversals animals were 

encouraged to run by applying occasional mild air puffs to the neck.  

 

Experimental design. Experimental sessions were one to two hours long, and each behavioral condition 

consisted of two such sessions, one per day, spaced on average 24 hours apart. Behavioral conditions 

occurred on subsequent days, with the exception of condition 5 (grating omission), which took place 

immediately following condition 4. For anesthetized recordings, mice were lightly anesthetized using a 

mix of fentanyl (0.025 mg/kg), medetomidine (0.25 mg/kg) and midazolam (2.5 mg/kg) at half surgical 

dose, and head fixed on the setup and passively viewed the tunnel which was presented at a constant 

visual flow speed. The pre-experience anesthesia condition took place one day before condition 1, and 

post-experience anesthesia took place either immediately after condition 5 or the following day.  

 

Statistics. Non-parametric tests were performed for all analyses (Wilcoxon Rank-Sum test, Wilcoxon 

Signed-Rank test). Paired tests were used where appropriate. No assumptions were made about data 

distributions in any of the analyses. Further details can be found in the Supplementary Methods Checklist, 

available online. 
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Data analysis. Imaging data were full-frame registered using a custom-written software (Leinweber et al., 

2014). Neurons were selected manually based on their mean fluorescence or maximum projection. This 

biased our selection towards active neurons. Regions of interest in the axonal data were automatically 

selected by a combination of independent component analysis and image segmentation as previously 

described (Mukamel et al., 2009). Fluorescence traces were calculated as the mean pixel value in each 

region of interest per frame, and were then median-normalized to calculate ΔF/F. ΔF/F traces were 

filtered as previously described (Dombeck et al., 2007). No blinding of experimental condition was 

performed in any of the analyses.  

 

Figure 3.1. For all plots of stimulus triggered fluorescence changes (Figs. 3.1d, 3.2b-j, 3.3d-g, 3.4a-c, 

Supplementary Figs. 3.4b,3.7a,c,e and 3.8a-c) fluorescence traces were mean-subtracted in a window 10 

to 5 frames (-667 ms to -333 ms for V1 and CA1; -700ms to -300ms for ACC) preceding the stimulus onset 

unless noted otherwise. Neurons were classified as tunnel-responsive if their mean ΔF/F in a 10-frame 

(667 ms) window post-stimulus onset was at least 1.5% on average for any condition, for any grating or 

landmark stimulus in the tunnel.  

Classification of grating position using neuronal activity was done using Matlab’s TreeBagger algorithm. A 

separate classifier was trained on each condition for each animal. 500 classification trees were used for 

each classifier. The input to the classifier was the mean ΔF/F of each neuron for each grating presentation 

in each traversal within a 10-frame window post-grating onset. Traversals were randomly interleaved, and 

then activity was averaged over three of the randomly chosen traversals at a time. This was done to 

diminish the influence of trial-to-trial variability on classification. Traversals including an unexpected 

grating in position 5 in conditions 2 and 4 were omitted from the classification. Classification of spatial 

position was done as above except that activity was binned into each fifth of the virtual tunnel. For both 

paradigms, the training set consisted of one half of the randomly interleaved traversals in the condition. 

The classifier was tested on the other half of traversals. Performance of the classifier was evaluated as the 

mean accuracy, i.e. the mean of the diagonal of the confusion matrix for each condition per animal. When 

determining the effect of traversal speed on classification, we classified traversals with a mean speed of 

15 cm/s or below as slow, and 19 cm/s and above as fast. For trace deconvolution, traces were first 

smoothed (mean in a sliding window of 5 frames (333 ms)). The smoothed traces were then deconvolved 

using an exponential decay kernel with a time constant τ = 0.5 s.  
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We considered neurons as having stable activity peaks if the peak of each neuron’s average activity in 

each condition was within 5% of tunnel length (5 bins), i.e. one texture length, between conditions.  

Selectivity indices for each neuron were calculated using the mean ΔF/F in the same window post-grating 

onset. Neurons were assigned a selectivity index for a condition if at least one of the responses to a grating 

(mean A1 + A3 or mean B2 + B4) throughout the condition was at or above 1.5% ΔF/F. Otherwise, 

selectivity for the condition was set to 0. In Supplementary Fig. 3.4, neurons were considered selective if 

their absolute selectivity index (SI) was greater than 0.5 on average across the animals’ experience. In 

order to measure stability of selective neurons we correlated fluorescence traces for each neuron, 

mapped to spatial coordinates, between traversals. We only included activity in the first 85% of the tunnel, 

to avoid differences due to the variable grating in position 5.  

Figure 3.2. Predictive and visual neurons were sorted based on the position of the peak of their average 

ΔF/F post grating-onset over each condition. Predictive neurons were selected as exhibiting a peak within 

333ms (5 frames) of grating onset, and visual neurons were selected as having a peak after 533 ms (8 

frames). The window for calculating selectivity index was 133 ms pre- to 333 ms post grating onset (-2 to 

5 frames) for predictive neurons, and 533 ms to 1000 ms (8 to 15 frames) post grating onset for visual 

neurons. In Fig. 3.2b and c, the baseline subtraction window for both plots was -1.33 s to -1 s (-15 to -10 

frames). To compute the mean of predictive or visual neurons per traversal, the mean of each predictive 

neuron was taken in a 7-frame window post-grating onset (0 ms to 467 ms), and the mean of each visual 

neuron within a 8-frame to 15-frame (533 ms to 1s) window post-grating onset. These windows were 

always used to compute the mean responses for the respective class of neurons in other figures. To 

compare visually evoked stimulus responses in trials with high predictive activity versus those with high 

visual activity, we chose presentations with a predictive activity in the top 20th percentile in the 10-frame 

window following grating onset, and compared them to presentations with predictive activity in the 

bottom 20th percentile. We removed outlying traversals (with average activity values above 3σ from the 

mean, for predictive and visual neuron activity) before making this comparison. In Figure 2j, traversals 

with average predictive activity below median were classified as low-predictive traversals, and those 

above as high-predictive traversals.  

Figure 3.3. In the ACC experiments animals experienced the same tunnel for conditions 1 through 3. 

Imaging was only done in condition 1 and 4. To simplify comparison of Fig. 3.2h and Fig. 3.3e we use B to 

denote the stimulus the animal saw in position 5 in condition 4.  To select for stimulus-predictive ACC 

axons in Fig. 3.3d, we selected predictive axons as in V1 but on the second half of traversals in each 
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condition, and then plotted the responses of the selected axons in the first half of traversals. For this 

analysis we excluded 2 (of 5) sites with a low number of traversals in the respective conditions. In all other 

aspects axon selection was identical to neuron selection in the V1 data. To calculate the mean of B-

predictive and A-predictive axons in Fig. 3.3e, we first mean-subtracted as described above to select 

neurons, and then measured mean activity after a mean-subtraction of 1 s to 500 ms preceding onset. 

Figure 3.4. Omission-selective neurons were selected as having a mean ΔF/F response larger than 10% to 

the omission and as having an omission selectivity index larger than 0.33. The omission selectivity index 

is defined as SIOM = (ROM – Rmax)/(ROM + Rmax), where ROM is the mean response to the omission for each 

neuron and Rmax is the largest mean response to any other grating in the tunnel. For statistical comparison 

of omission-selective neuron activity in traversals with high and low predictive activity (Fig. 3.4c), data 

were bootstrapped 10 times with random replacement then a Wilcoxon rank-sum test was performed on 

the bootstrapped data. 

 

Code Availability. All imaging and image processing code can be found online at 

https://sourceforge.net/projects/iris-scanning/code (IRIS, imaging software package) and 

https://sourceforge.net/p/iris-scanning/calliope/HEAD/tree (Calliope, image processing software 

package). Code used for all data analysis is available from the corresponding author upon request. 

 

Data Availability. The data that support the findings of this study are available from the corresponding 

author upon request. 
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Epilogue 
 

Learning takes place constantly throughout life in the nervous system, it serves to adapt to new 

environmental circumstances and helps to succeed with new challenges. Learning recruits new neuronal 

assemblies, involves the rearrangement of subcellular components and induces gene expression 

(Holtmaat and Caroni, 2016). The immediate early genes Arc, c-Fos and EGR1 have been described more 

than twenty years ago and linked to learning related, plastic changes in the nervous system (Bramham et 

al., 2010; Curran and Morgan, 1995; Veyrac et al., 2014). These genes and their role during learning and 

plasticity have been characterized with histological methods mainly in the light of classical learning 

paradigms, but less so in the framework of predictive coding. With the advance of technology it is now 

possible to record immediate early gene expression and neuronal activity at the same time in vivo. This 

allows to gain deeper insight into plastic changes of neuronal activity and gene expression during 

sensorimotor and associative learning. This thesis is in line with the notion that the expression of 

immediate early genes is shaped by neuronal activity and supports the view that the expression of these 

genes can be linked to plastic changes in the functional type of input during learning. 

 

 

Specificity of immediate early genes to functional types of neurons during learning 
 

Chapter 1 of this thesis shows that the expression of the immediate early genes Arc and EGR1, less so c-

Fos, can be correlated with the functional type of input a neuron in visual cortex layer 2/3 receives during 

sensorimotor-learning. By using transgenic mouse lines, which express the immediate early gene of 

interest either fused to GFP or drive GFP expression through the endogenous promoter, and red-shifted 

calcium indicator (jRGECO1a) it is possible to simultaneously record both IEG expression and neuronal 

activity. When stimulating visual cortex with drifting grating stimuli after an over-night dark adaptation, 

we find a positive correlation of IEG expression and neuronal activity (Figure 1.1). During sensorimotor-

learning we show an increase in Arc expression and a decrease in EGR1 expression at the time of exposure 

to a 12/12h dark/light cycle. Such changes in average IEG expression go along with rearrangements of the 

IEG expression level pattern during learning (Figure 1.2). Additionally we find a rearrangement of the 

motor-related input in visual cortex during sensorimotor-learning (Figure 1.3). When selecting neurons 

with high IEG expression at the time of exposure to the 12/12h dark/light cycle, we observe a preference 
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for the functional type of input these high IEG neurons receive. Neurons with high Arc expression 

preferentially receive excitatory visual input and inhibitory motor-related input, as in contrast neurons 

with high EGR1 expression preferentially receive excitatory motor-related input (Figure 1.4). These results 

indicate a specificity of IEG expression for the plastic changes of the functional type of input a neuron 

receives in layer 2/3 of mouse visual cortex. The framework of predictive coding allows for three 

categories of predictions in visual cortex. Neurons in category I compute a negative prediction error and 

signal whenever there’s too much running compared to visual flow. In contrast neurons in category II 

compute a positive prediction error and signal whenever there’s too much visual flow compared to 

running, see (Attinger et al., 2017) for a detailed description. Based on the results in chapter 1 we 

speculate that neurons with high Arc expression might be associated with computations of category II, 

whereas neurons with high EGR1 expression might be associated with computation of category I. In line 

with such an interpretation we see a bias of high Arc/EGR1 neurons towards positive/negative mismatch 

signals (Figure 1.4) 

 

 

Figure 5: Three categories of circuit motifs for forming comparisons. 

Visual and motor-related input can be used to from comparisons of too little visual flow (category I) or too much visual flow 

(category II). Note that signals of category II are indistinguishable under anesthesia from “classical” visual responses.  

Image from: (Attinger et al., 2017) 
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Such specific expression of immediate early genes might not be restricted to visual cortex. Chapter2 of 

this thesis shows that during associative learning both neurons with high expression of Arc and c-Fos 

undergo the most plastic changes to the relevant stimulus during learning. We find a positive correlation 

of immediate early gene expression and average neuronal activity and a stable pattern of expression of 

these two IEGs (Figure 2.3). When looking at the reward-associated stimuli in the paradigm, the tones, we 

observe a specific increase in the response to this stimulus of high Arc and c-Fos neurons with learning 

(Figure 2.4). These results indicate that the expression of Arc and c-Fos in the hippocampal CA1 area can 

be linked to specific input a neurons receives, confirming our conclusions from experiments done in visual 

cortex. It is interesting to note though that c-Fos might be differentially regulated and expressed across 

brain areas, as such a specificity to changes in the functional type of input were stronger in CA1.  

Interestingly two other immediate early genes have been reported to show specificity to the input a 

neuron receives. The immediate early gene NARP (Tsui et al., 1996) has been described to be exclusively 

expressed in parvalbumin-positive (PV+) inhibitory neurons and specifically scales excitatory synapse onto 

these PV+ interneurons (Chang et al., 2010; Gu et al., 2013). Recently it was shown that the IEG Npas4 

(Bloodgood et al., 2013) does not only regulate excitatory-inhibitory balance in a cell type specific manner 

(Spiegel et al., 2014), but also specifically regulates plasticity of mossy-fiber input onto neurons in the 

hippocampal CA3 area (Weng et al., 2018). Both studies underline the notion that immediate early genes 

play a critical role in plasticity and can be linked to specific functional input. 

 

 

Learning shapes sensory processing 
 

Plasticity in the nervous system is key for learning. Chapter 1 and 2 describe how plasticity-related genes 

influence sensory processing with learning. In Chapter 3 we show that learning about the visual 

environment shapes sensory processing and alters the strength of neuronal signals to identical visual 

stimuli based on their spatial location (Figure 3.1). In addition we find that V1 neurons develop predictive 

responses to approaching visual stimuli with experience (Figure 3.2). One source of such predictive 

responses is anterior cingulate cortex (ACC), as projections from ACC to V1 carry visual stimulus 

predictions (Figure 3.3). Intriguingly we also observe that the omission of an expected visual stimulus 

strongly drives activity in V1 (Figure 3.4). In summary we find predictive and visual signals for visual stimuli 

in visual cortex, which are shaped by the animal’s location in space and develop plastically with learning.  
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Outlook and concluding remarks 
 

While more and more pieces of the puzzle of immediate early gene expression are coming together, some 

open questions remain. The predictive coding theory states a comparison of top-down motor-related 

signals and bottom-up visual signals in visual cortex. If other brain areas use a similar mechanism of top-

down and bottom-up signal comparison, it would be interesting to see evidence for the bias of EGR1 

towards top-down and Arc towards bottom-up signals holds true. Somatosensory area S1 (barrel cortex) 

receives input from motor cortex (Pierre and Martin, 2003), providing the substrate for the testable 

hypothesis of a comparison of motor-related and somatosensory input. If again neurons with high 

EGR1/Arc expression could be correlated with the functional type of input a neuron in barrel cortex 

receives, it would support the notion that IEGs can be linked to a functional type of synaptic input. In 

general, this would lay ground for a change in the view of what triggers the expression of immediate early 

genes. Classically these genes have been seen as markers for average activity, in the light of new results 

it is worth designing experiments that address the question if the expression of these genes is more 

specific and related to plastic changes of a functional input neurons receive.  
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