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“The fundamental laws necessary for the mathematical treatment of a large part of

physics and the whole of chemistry are thus completely known, and the difficulty lies

only in the fact that application of these laws leads to equations that are too complex to

be solved.”

Dirac, 1929



Abstract

We investigate the performance and limitations of perturbation theory applied to “al-

chemical” interpolations of nuclear charges and positions. The performance of first and

second order estimates are examined for small molecules and crystalline systems within

KS-DFT. Chemical accuracy can be achieved for some cases by first order estimate due

to cancellations of higher order effects. In this case, the inclusion of second order cor-

rection gives worse results because the balance of error cancellation is disturbed. An

empirical reference bond length is found for each bond type, which provides maximal

error cancellation effects for first and second order estimates and is applicable across

different chemical environments including σ− and π− bonding. We showed that if ac-

curate density information is available, highly accurate first order estimates of potential

energy surface is achievable. Results are presented for (i) covalent bonds to hydrogen

in 12 molecules with 8 valence electrons (CH4, NH3, H2O, HF, SiH4, PH3, H2S, HCl,

GeH4, AsH3, H2Se, HBr); (ii) main-group single bonds in 9 molecules with 14 valence

electrons (CH3F, CH3Cl, CH3Br, SiH3F, SiH3Cl, SiH3Br, GeH3F, GeH3Cl, GeH3Br);

(iii) main-group double bonds in 9 molecules with 12 valence electrons (CH2O, CH2S,

CH2Se, SiH2O, SiH2S, SiH2Se, GeH2O, GeH2S, GeH2Se); (iv) main-group triple bonds

in 9 molecules with 10 valence electrons (HCN, HCP, HCAs, HSiN, HSiP, HSiAs, HGeN,

HGeP, HGeAs). First order estimates are utilized to predict band structure of crystalline

materials, including (i) III-V semiconductors AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP,

InAs, InSb; (ii) IV-IV semiconductors Si, Ge, Sn, SiGe, GeSn, SnSi, where quantitative

predictions is achieved with MAE = 0.05 eV for density changes less than 0.25 a.u./per

atom. A hybrid gradient based genetic algorithm has been applied to design AlxGa1−xAs

crystals with optimal band structure using first order alchemical estimates. Homoge-

neous Al0.67Ga0.33As crystals are identified to have the largest direct band gap of 2.1 eV.

Alchemical perturbation to geometry variations is also studied, which proves that it is

necessary to take the response of electron-electron interaction energy into account. The

behavior of alchemical estimates is investigated up to fourth order for one-electron H+
2

within Hartree-Fock theory. A finite radius of convergence is observed due to swapped

order of Hamiltonian eigenvalues.
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Chapter 1

Introduction

1.1 Rational compound design

When the first battery was invented by Alessandro Volta in 1799, the physical mecha-

nism of electrical current was not fully understood. His invention, or voltaic pile, used

alternating layers of copper and zinc to create a flow of electrons when the cathode and

anode are connected. Many ameliorations and redesigns have been made to improve the

performance of batteries ever since. Due to the lack of understanding of the detailed role

of the materials nature, those advances mainly came from trial and error. Such approach

was also taken by Edison to develop the first light bulbs. “Edisonian” approach has been

the principal method for materials innovations, in the realm of medicine, photovoltaics,

energy storage, and many other industries.

Materials by design is the focus of much ongoing scientific research because many

of the essential advancements of technologies depend on the performance of the em-

ployed materials. Modern techniques of synthesis, such as metal organic chemical va-

por decomposition[1], molecular beam epitaxy[2], or additive nanomanufacturing[3–5]

promise to deliver complex compounds with atomistic control. These techniques open

the door to explore copious amounts of possible material candidates, all part of chemical

compound space (CCS). However, the vast nature of CCS makes the quest to search for

the optimal compound a daunting challenge. Due to the combinatorial scaling of CCS,

Edisonian approaches are infeasible. Automatized algorithms with efficient evaluation

mechanisms are necessary to systematically search through CCS.

Rational compound design (RCD) aims to alleviate this problem by predicting the

optimal candidate compound in an efficient manner, before it is synthesized and ex-

perimentally evaluated. It holds many promises to deliver high-performance materials

which could be the solutions to various problems the world is facing today. The goal of

RCD corresponds to solving the inverse question, i.e. “which compounds exhibit a set

of pre-defined desired properties?”, at a rate that is superior to mere screening.[6–10]

1
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1.2 Quantum chemistry

It was a triumph of science when Schrödinger wrote down his famous equation in

1925[11]. The insight of his equation led to a fundamental understanding of the na-

ture of chemistry. However complicated, all chemistry can be explained in principle.

The “only” difficulty lies in the fact that the underlying equations are too complex to

solve in general.[12] Due to many-body effects, the solution must be approximated. De-

pending on the required accuracy and the number of atoms and electrons in the chemical

system, a versatile pool of approximations can be applied.

Among all the chemical approaches in existence, quantum chemistry, which applies

quantum mechanics to chemical systems, is of particular interest since it requires no

prior knowledge of the system. It exploits the descriptive power of quantum mechanics

to atoms and electrons and approximates the solution to Schrödinger equation. Thanks

to modern computers, it is nowadays possible to accurately calculate many of the prop-

erties, even before it is synthesized. The flexibility of quantum chemistry is necessary

to RCD because it enables an automatized algorithm to explore the entire CCS, given

sufficient computation resources. The theoretical breakthrough of quantum chemistry

throughout the last century, provides us with a powerful tool to model atoms and elec-

trons in molecules accurately. It is therefore safe to say that with the help of modern

computer and the development of quantum mechanics, the cost of exploring CCS has

been reducing dramatically.

The invention of computers, and the compelling improvements of processing power,

permits the possibility of simulating the physical world with unprecedented accuracy and

speed. Thanks to the rapid developments of silicon industry, the capacity of quantum

chemistry prediction has been improving in step, i.e. exponentially. Unfortunately, the

computational cost for solving Schrödinger equation is also growing enormously with

respect to the system size. Due the immense amount of possible compound and atomic

configurations, that naive enumeration is prohibitive. Efficient parameter-free methods

that circumvent costly procedures of obtaining quantum solutions are therefore highly

desirable for RCD applications. One promising approach of such a method correspond

to the use of “alchemical derivatives”, which apply perturbation theory to chemical

compositions.

1.3 Alchemical derivatives in compound space

Quantum mechanical alchemy with non-integer nuclear charges was introduced as a con-

ceptual tool for density functional theory by E. B. Wilson as early as 1962.[13] More

recently, conceptual density functional theory, pioneered by R. G. Parr and W. Yang,[14]
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Figure 1.1: Cartoon illustration of a property surface parametrized by continuously
defined CCS. A property is plotted as nuclear charges and nuclear positions change
continuously in CCS. Real molecules with integer nuclear charges are indicated by
empty circles. A reference molecule is highlighted by filled circle, where the local
alchemical derivatives and the corresponding tangent plan are shown. The direction of

steepest ascend is illustrated by dashed arrow.

further explores the implication of fractional electrons. These notations enable the es-

tablishment of a rigorous definition of CCS parametrized by a set of continuous variables,

namely number of electrons, nuclear charges, and nuclear positions.[15] The concept of

derivatives naturally arises within a continuous definition of CCS. This transforms the

quest of finding optimal compounds into a mathematical optimization problem, where

various gradient based optimization algorithm can be applied.

As shown schematically in Fig. 1.1, alchemical derivatives of the property of inter-

est can be evaluated for any reference molecule. This information implies a response of

the property due to infinitesimally small changes of nuclear charges and/or positions.

By following the gradient to the next best molecule, a gradient base optimization al-

gorithm can be constructed. However, not all the points in the CCS are “real”, since

only molecules with integer electrons and nuclear charges are observable. In fact, real

molecules form a sparse subset of all the theoretically interpolated compositions and

configurations. Nonetheless, the alchemical derivatives evaluated for a given reference

molecule contains important information about the local structure of the property sur-

face in CCS.
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1.4 Overview

The purpose of this thesis is to investigate the applicability of calculated alchemical

derivatives. It examines the performance and limitations of utilizing alchemical deriva-

tives in various circumstances. The thesis is organized as the following: Chapter 2 briefly

summarizes the underlying theories and methods. Chapter 3 provides an overview on

how to use alchemy in the context of quantum chemistry. Chapter 4 discusses first

and second order derivatives, used to estimate changes in covalent binding in small

molecules. Chapter 5 demonstrates the applicability of applying alchemical derivatives

to crystalline systems, and discusses a RCD application for band structure engineering.

Chapter 6 examines the feasibility of utilizing higher order alchemical derivatives and

perturbations including changes in geometry. Chapter 7 concludes the thesis.



Chapter 2

Theory

2.1 Quantum mechanics of N-electron system

The underlying theory describing closed shell time-independent non-relativistic chem-

istry within the Born-Oppenheimer approximation for the N -electron and M -nucleus

system is the Schrödinger equation[11]

H{RI ,ZI}Ψ{RI ,ZI}(r1, · · · , rN ) = E{RI ,ZI}Ψ{RI ,ZI}(r1, · · · , rN ), (2.1)

where H, Ψ, and E are the Hamiltonian operator, electronic wavefunction, and eigen-

value respectively. ri denotes the coordinates and spin of the ith electron and the nuclear

locations and charges {RI , ZI} are treated as predefined parameters.

The potential energy of the system in its electronic ground-state E{RI ,ZI} is a scalar

function of {RI , ZI}, and can be defined as the potential energy hyper surface of the

system, which is a function of 4M degrees of freedom. Six out of 4M can be subtracted

for rotational and translational invariance. All the quantities are assumed to be depen-

dent on nuclear locations and charges. The subscript {RI , ZI} will be omitted unless

otherwise noted.

The N -electron Hamiltonian operator is

H = −1

2

N∑
i

∇2
i +

1

2

N∑
i 6=j

1

|ri − rj |
−
N,M∑
i,I

ZI
|ri −RI |

+
1

2

M∑
I 6=J

ZIZJ
|RI −RJ |

. (2.2)

Once the wavefunction is found, the energy can be calculated by

E =
〈

Ψ
∣∣∣H∣∣∣Ψ〉

=

∫
dr1 · · · drNΨ∗(r1, · · · , rN )HΨ(r1, · · · , rN )

= T + U + V + Vnn,

(2.3)

5
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where

T = −1

2

∑
i

∫
dr1 · · · rN Ψ∗(r1, · · · , rN )∇2

iΨ(r1, · · · , rN ),

U =
1

2

∑
i 6=j

∫
dr1 · · · rN

Ψ∗(r1, · · · , rN )Ψ(r1, · · · , rN )

|ri − rj |
,

V = −
∑
i,I

ZI

∫
dr1 · · · rN

Ψ∗(r1, · · · , rN )Ψ(r1, · · · , rN )

|ri −RI |
,

Vnn =
1

2

M∑
I 6=J

ZIZJ
|RI −RJ |

,

(2.4)

stand for electronic kinetic energy, electron-electron repulsion energy, electron-nucleus

attraction energy, and nucleus-nucleus repulsion energy respectively, the later being a

constant independent of Ψ. The bracket notation used here is defined to integrate over

all degree of freedom of the wavefunction. The electron density ρ(r), or the possibility

of finding an electron at location r, can then be defined as[16]

ρ(r) = N

∫
dr2 · · · rNΨ∗(r, r2, · · · , rN )Ψ(r, r2, · · · , rN ). (2.5)

If Ψ was available, the only error in Eqs. (2.3) would come from neglect of relativistic

effects and Born-Oppenheimer approximation. The total energy summed from these

quantities in Eqs. (2.3) is also referred to as exact energy in the quantum chemistry

community. Unfortunately, the information of Ψ(r1, · · · , rN ) is not available due to 3N

spacial degrees of freedom.

2.1.1 Slater determinant

Slater proposed to approximate Ψ by N one-particle spin orbitals, {ψi(r)} where index

i runs through each available electronic orbital, with 3 degrees of freedom each,1 [17]

Ψ(r1, · · · , rN ) ≈ 1√
N !

∣∣∣∣∣∣∣∣
ψ1(r1) · · · ψ1(rN )

...
. . .

...

ψN (r1) · · · ψN (rN )

∣∣∣∣∣∣∣∣ . (2.6)

The electron density becomes

ρ(r) ≈
∑
i

ψ∗i (r)ψi(r). (2.7)

1Under this notation, the spin dependency is implicitly encoded in index i. For non-spin polarized
ground state, or closed shell system, the identity ψ2k = ψ2k+1, 1 ≤ k ≤ N/2 holds. This means the
spin-up and spin-down electrons are indistinguishable.
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Under Slater-Condon rules, the energy components in Eqs. (2.3) are given as

T = −1

2

∑
i

∫
dr ψ∗i (r)∇2ψi(r),

U =
∑
i 6=j

(
2

∫
dr1r2

ψ∗i (r1)ψi(r1)ψ∗j (r2)ψj(r2)

|r1 − r2|

−
∫
dr1r2

ψ∗i (r1)ψ∗j (r1)ψi(r2)ψj(r2)

|r1 − r2|

)
,

V = −
∑
i,I

ZI

∫
dr

ψi(r)2

|r−RI |
,

Vnn =
1

2

M∑
I 6=J

ZIZJ
|RI −RJ |

.

(2.8)

And the energy is the sum of these terms. This approximation reduces the spacial

degrees of freedom from 3N to 3 and producing a set of N self-consistent equations.

And thus it makes the numerical approximation computationally feasible.

2.1.2 Hartree-Fock method

According to the variational principle,[18] the ground state energy can be obtained by

varying orbitals until the minimum energy is achieved. The Slater determinate can be

solved by setting the first variation of Eq. (2.3) to zero. With the constraints that {ψi}
are normalized, the variational principle yields

0 =
δ

δψ∗i (r)

(
E −

∑
i

εi

∫
drψ∗i (r)ψi(r)

)
=
−∇2

2
ψi(r) + ψi(r)

∑
j

∫
dr′

ψ∗j (r
′)ψj(r

′)

|r− r′|

−
∑
j

ψj(r)

∫
dr′

ψ∗j (r
′)ψi(r

′)

|r− r′|
−
∑
I

ψi(r)

|r−RI |
ZI − εiψi(r)

= Hcore(r)ψi(r) +
∑
j

(
Jj(r)−Kj(r)

)
ψi(r)− εiψi(r),

(2.9)

or (
Hcore(r) +

∑
j

(
Jj(r)−Kj(r)

))
ψi(r) = εiψi(r), (2.10)
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where

Hcore(r) = −∇
2

2
−
∑
I

ZI
|r−RI |

,

Jj(r) =

∫
dr′

ψ∗j (r
′)ψj(r

′)

|r− r′|
,

Kj(r)ψi(r) = ψj(r)

∫
dr′

ψ∗j (r
′)ψi(r

′)

|r− r′|
.

(2.11)

{εi}, {Jj(r)}, and {Kj(r)} in Eq. (2.10) are Lagrange multipliers, Coulomb operator,

and exchange operator respectively. Note that Coulomb operator and exchange operator

depend explicitly on {ψi(r)}. This dependency implies Eq. (2.10) can only be solved

iteratively until a the self-consistent solution is achieved. This is also called the self-

consistent field (SCF) procedure.

The sum of Lagrange multipliers, referred to as orbital eigenvalues throughout the

present thesis, is not the ground state energy due to double counting. Instead, the

physical significance of εi is the energy required to add or remove an electron from

ψi. The ground state energy must be computed by sum over Eqs. (2.8) within SCF.

The difference of energy computed from Eq. (2.3) using Ψ and Eq. (2.10) using {ψi} is

referred to the correlation energy.[19]

2.2 Density functional theory

Various approaches have been proposed to approximate the correlation energy. Among

them density functional theory (DFT) is one of the more successful ideas. Good accu-

racy can be achieved with modern generalized gradient approximation (GGA) or hybrid

exchange-correlation (xc) functionals, at less or similar computational cost as Hartree-

Fock. Within DFT, the energy is considered to be a functional of the electron density.

Eq. (2.3) is rewritten as

E = E[ρ] = T [ρ] + U [ρ] + V [ρ] + Vnn, (2.12)

where T is an unknown kinetic functional,

V [ρ] =

∫
dr
∑
I

−ZI
|r−RI |

ρ(r) ≡
∫
dr v(r)ρ(r), (2.13)

is the external energy functional, and

U [ρ] =
1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|
+ Exc[ρ] ≡ J [ρ] + Exc[ρ], (2.14)

is the electron-electron interaction energy functional consisting of Coulomb energy func-

tional J and an unknown xc functional Exc.
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2.2.1 Hohenberg-Kohn theorem

Although DFT was proposed as early as 1927 by Thomas and Fermi,[20] an important

keystone was not in place until 1964 when Hohenberg and Kohn proved that instead of

{ψi} also the electron density
(
Eq. (2.7)

)
can be treated as the fundamental variable.

The Hohenberg-Kohn theorems state the following (for systems with non-degenerate

ground state):[21]

1. ρ(r) is as unique as {ψi} uniquely determined by external potential v(r).

2. The ground state energy can be obtained variationally, that is the density mini-

mizes the energy is the ground state density.

The ground state energy and density obtained by solving

δE

δρ(r)
= 0. (2.15)

Proof

The first part is easily shown by reductio ad absurdum: Assume two different external

potentials v1(r) and v2(r) (with corresponding ground state wavefunction Ψ1, Ψ2 and

energy E1, E2) would gives the same ground state density ρ(r). According to variational

principle, using a trail function Ψ2 on potential v1, and, a trail function Ψ1 on potential

v2 give

〈Ψ2|T + U + v1|Ψ2〉 > 〈Ψ1|T + U + v1|Ψ1〉 = E1,

〈Ψ1|T + U + v2|Ψ1〉 > 〈Ψ2|T + U + v2|Ψ2〉 = E2.
(2.16)

Because

〈Ψ2|T + U + v1|Ψ2〉 = E2 +

∫
drρ(r)

(
v1(r)− v2(r)

)
,

〈Ψ1|T + U + v2|Ψ1〉 = E1 +

∫
drρ(r)

(
v2(r)− v1(r)

)
.

(2.17)

Insert Eqs. (2.17) into (2.16) and add up the two inequalities leads to contradiction that

E + E′ > E + E′, which implies that the assumption that ρ(r) is not unique is wrong.

2.2.2 Kohn-Sham equation

Eq. (2.12) is exact in principle. But in reality T and Exc are unknown and must be ap-

proximated. A great challenge is to approximate the kinetic energy accurately. Because

the kinetic energy is in the same scale as the total energy, high accuracy of kinetic energy

estimate is necessary. Kohn and Sham (KS) proposed a useful scheme in 1967 to approx-

imate T .[22] They suggested to use a set of auxiliary normalized one-particle orbitals

{φi(r)} such that their square sum corresponds to electron density ρ(r) =
∑N

i φ
∗
i (r)φi(r)
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and

T [ρ] ≈ −1

2

N∑
i

∫
dr φ∗i (r)∇2φi(r). (2.18)

Instead of minimizing Eq. (2.12) with respect to ρ, in KS approach it is solved

with respect to {φi}. Applying variational principle with normalization constraint, as

in Eq. (2.9), one gets KS equations

(−∇2

2
+ v(r) + vxc(r) +

∫
dr′

ρ(r′)

|r− r′|

)
φi(r) = εiφi(r), (2.19)

where

vxc(r) =
δExc
δφ∗i (r)

, (2.20)

and εi stand for Lagrange multipliers. Because ρ depends on φ, Eq. (2.19) also need to

be solved iteratively. As such, all terms are known except for Exc.

Exact exchange functional

Hartree-Fock exchange functional can be defined as

vHF
x (r)φi(r) =

(∑
j

δEHF
x

δφ∗j (r)

)
φi(r) =

∑
j

φj(r)

∫
dr′

φ∗j (r
′)φi(r

′)

|r− r′|
. (2.21)

Since exchange energy is computed exactly without any approximation, Eq. (2.21) is

also referred to as the exact exchange functional.

Eq. (2.10) and (2.19) are identical if vxc in Eq. (2.19) is set to be vHF
x . In other words,

any other xc functional defines a different auxiliary Hamiltonian operator different from

Eq. (2.2). Instead of adding missing pieces to Slater determinant, as all other correction

schemes do, KS approach modifies the Hamiltonian operator to match up with Slater

wavefunctions.

2.2.3 PBE functional

There are over 100 xc functionals proposed for various chemical environments today,[23]

Perdew-Burke-Ernzerhof (PBE) functional[24] was exclusively used throughout this the-

sis. The PBE functional belongs to GGA family, which depends not only on density

ρ(r) but also on its gradient ∇ρ(r). It is an analytic functional with correct asymptotic

limits. It is defined as

EPBE
xc [ρ,∇ρ] = EPBE

x [ρ,∇ρ] + EPBE
c [ρ,∇ρ]

=

∫
dr ρ(r)εunif

x (rs, ξ)Fx(s) +

∫
dr ρ(r)

(
εunif
c (rs, ξ) +H(rs, ξ, s)

)
.

(2.22)

The components in Eq. (2.22) are explained below:
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• rs is the local Seitz radius defined as rs =
(

3
4πρ(r)

) 1
3 .

• ξ is the relative spin polarization defined as ξ =
ρ↑(r)−ρ↓(r)

ρ(r) , where ρ↑ and ρ↓

represent spin-up and spin down density respectively and ρ↑ + ρ↓ = ρ.

• s is the dimensionless density gradient defined as s = |∇ρ(r)|
2kF(r)ρ(r) , where kF(r) =(

3π2ρ(r)
) 1

3 is Fermi-wavevector.

• εunif
x (rs, ξ), ε

unif
c (rs, ξ) are exchange and correlation energy density of spin polarized

uniform electron gas, defined as

εunif
x (rs, ξ) = − 3

4πrs

(
9π

4

) 1
3 (1 + ξ)

4
3 + (1− ξ)

4
3

2
,

εunif
c (rs, ξ) = −0.8851

rs

(
1− 0.5177

((1 + ξ)
4
3 + (1− ξ)

4
3

2

))
.

• Fx(s) is the GGA exchange enhancement factor, defined as

Fx(s) = 1 + κ− κ

1 + µs2

κ

,

where κ ≈ 0.804, µ ≈ 0.21951 are derived quantities.

• H(rs, ξ, s) is the second order expansion of correlation energy, defined as

H(rs, ξ, s) =
e2

a0
γφ3 ln

(
1 +

β

γ
t2

1 +At2

1 +At2 +A2t4

)
,

where e and a0 stand for electron charge and Bohr radius. β ≈ 0.066725, γ ≈
0.031091 are derived quantities.

• φ = (1+ξ)2/3+(1−ξ)2/3

2 is the spin scaling factor.

• Function A = β
γ

(
exp

(
−εunif

c (rs,ξ)
e2

a0
γφ3

)
− 1

)−1

in H(rs, ξ, s) is defined such that the

second order expansion of correlation energy subjected to correct asymptotic lim-

its.

Hybrid variant: PBE0

Becke pointed out in 1993 that the exact exchange functional, EHF
x in Eq. (2.21), must

play a role in highly accurate xc approximations.[25] Decent improvement to PBE func-

tional is achieved by including a small fraction of exact exchange. It is called PBE0

functional,[26] and is defined as

EPBE
xc → EPBE0

xc =
1

4
EHF
x +

3

4
EPBE
x + EPBE

c . (2.23)
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For many circumstances, the PBE0 functional provides more accurate results. How-

ever, the four-centered integral of EHF
x scales as N4, which makes it computationally

demanding for large systems.

Range separation: HSE

Heyd, Scuseria, and Erzerhof proposed in 2003 that a screened Coulomb potential can

be used to alleviate the computational demand for EHF
x , where only the short range

overlaps are evaluated.[27] In a recent parametrization it is defined as[28]

EHSE
xc = 0.25EHF,SR

x (ω) + 0.75EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c , (2.24)

where ω = 0.11 bohr−1. The range separation of EHF
x is done by replacing the Coulomb

potential 1
|r1−r2| = 1

r kernel of Eq. 2.8 by a the screened Coulomb potential is defined as

1

r
=

1− erf(ωr)

r︸ ︷︷ ︸
SR

+
erf(ωr)

r︸ ︷︷ ︸
LR

, (2.25)

where the superscripts SR and LR denote short range and long range while erf stands

for error function. On the other hand, however, the range separation of EPBE
x is more

complex. It is done by scaling the exchange-correlation hole by a SR Coulomb screening

factor. This yields a SR exchange enhancement factor F SR
x (s, ω). The range separated

EPBE
x is therefore defined as2

EPBE,SR
x =

∫
drρ(r)εunif

x (rs, ξ)F
SR
x (s, ω),

EPBE,LR
x = EPBE

x − EPBE,SR
x .

2.3 Perturbation theory and alchemical derivatives

Perturbation theory was proposed by Schrödinger in 1926 to estimate the responses

of quantum mechanical systems under small perturbations. Later in 1943 Møller and

Plesset applied this technique and considered electron-electron interaction as the pertur-

bation, as an attempt to approximate the correlation energy.[29] In the present thesis,

changes in external potential is considered as perturbation, or “alchemical perturbation”.

Once a set of eigenvalues {εi} and orbitals {φi} have been obtained for a reference sys-

tem described by the Hamiltonian HR, the solution of a similar target Hamiltonian

HT can be approximated by perturbation series, or alchemical derivatives. Through-

out the thesis, alchemical perturbation is defined as an adiabatic infinitesimally small

2The detailed derivation of FSRx (s, ω) is outside the scope of the current thesis, and can be found in
Ref. [27].
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E

Figure 2.1: Cartoon illustration of alchemical paths. (a) Reference molecule is de-
noted by the filled circle on the upper PES, while one of the target molecules is denoted
by the filled circle on the lower PES. While many targets can be connected to the ref-
erence molecule (dotted lines), a selected target is highlighted by dashed line. (b)
Energy as a function of λ and the system goes from the reference molecule to the target
molecule. Linear alchemical path and a realistic path is represented by dotted and solid

lines respectively. The corresponding arrows indicates the reaction direction.

change along an interpolation between two distinct compounds with the same number

of valence electrons.

2.3.1 Linear alchemical path

The reference molecule is defined by the Hamiltonian HR with a collection of nuclear

charges, nuclear positions, and number of electrons
{
{ZR

I }, {RR
I }, N

}
. The target

molecule is defined by HT with
{
{ZT

I }, {RT
I }, N

}
as illustrated by the filled circles

in Fig. 2.1(a). A linear alchemical path connecting HR to HT, illustrated by the dashed

line in Fig. 2.1(a), is defined by the Hamiltonian

Hλ = HR + λ(HT −HR), (2.26)

where 0 ≤ λ ≤ 1 is the coupling parameter.

The energy as a function of λ can be approximated by Taylor series

Eλ = ER + λ∂λE +
λ2

2
∂2
λE + · · · . (2.27)

The derivatives with respect to λ are referred to as alchemical derivatives.
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As λ goes from 0 to 1, the system gradually changes from the reference molecule to

the target molecule, denoted by the dashed arrow in Fig. 2.1(b). The changes can include

varying nuclear charges and positions. While a realistic path, denoted by the solid

arrow in Fig. 2.1(b), incorporates such changes through complex chemical reactions, an

alchemical path is merely a mathematical construct interconverting two realistic systems.

As such, no reaction barriers should be expected when interpolating two molecules in

their relaxed structure.

2.3.2 First order energy derivative

First order energy derivative was shown by Hellmann-Feynman theorem that[30, 31]

∂λEλ = ∂λ

∫
dr Ψ∗λHλΨλ =

∫
dr Ψ∗λ(∂λHλ)Ψλ =

∫
dr
(
∂λv(r)

)
ρλ(r), (2.28)

where v is the external potential function defined in Eq. (2.13) and the derivative with

respect to λ is the alchemical perturbation. Eq. (2.28) requires no more than a single

integration of the electron density multiplied by the perturbation.3

2.3.3 Second order energy derivative

Second order energy derivative can be obtained by deriving Eq. (2.28) once more. Be-

cause the alchemical perturbation ∂λv(r) = HR(r)−HT(r) does not depend on λ, ∂2
λEλ

becomes

∂λ(∂λEλ) =

∫
dr
(
∂λv(r)

)
∂λρλ(r), (2.29)

where the response of electron density needs to be taken into account.[32]

The electron response to a perturbation is complicated within DFT framework be-

cause T , U , and Exc in Eq. (2.12) functionals implicitly depend on ρ. These effects can

be computed analytically by susceptibility χ(r, r′) = δρ(r)
∂λv(r′) , which measure how the

electron density changes at location r due to the perturbation at location r′. This leads

to

∂λρλ(r) =

∫
dr′χ(r, r′)∂λv(r′). (2.30)

Detailed derivation of analytic expressions of χ(r, r′) can be found in Ref. [33]. Finite

difference is used to approximate ∂λρ(r) in chapter 4, while analytic expressions are used

for higher order investigated in chapter 6.

3Eq. (2.28) can be proved without the notion of orbital but purely use electron density of variational
principle. It is done by requiring first variation of Eq. (2.12), δE

δρλ(r)
= 0.



Chapter 3

Overview of alchemy

3.1 Introduction

Ever since the introduction of Hess’s law and Carnot’s cycle, chemists have known that

some properties, called state functions, always change by the same amount when a

system is moved reversibly from one state to another—regardless of how the change

has been implemented. The freedom to choose any paths, even paths without any

realistic correspondence except for the endpoints, is exploited within many applications.

We generally refer to “alchemical” paths as paths that cannot be followed and verified

through experimental observations. For example, Fig. 2.1(a) illustrates how, according

to Hess’ law, the change of enthalpy of reaction can be calculated either by following the

(realistic) reaction path, or, just as well, by following a more convenient yet non-realistic

(alchemical) reaction path to product via dissembled elemental states as intermediates.

Depending on the choice of state function, external conditions, system, and process,

realistic reaction paths can be significantly more challenging because they can involve

many intermediate and transition states which are difficult to identify and characterize.

Even worse, they might even be experimentally impossible to probe, as it is the case for

the chemistry of the earth’s core, some other planet’s bio-sphere, for distant historical

or future events, or for very slow or very fast processes.

Within the atomistic theories of quantum and statistical mechanics, any path con-

necting the Hamiltonian of some reference molecule or material system, HR, to some

target system HT, can be defined in a coupling order parameter λ as long as as the

end-points are met, [34–36] i.e.

Hλ =

 HR, λ = 0,

HT, λ = 1,
(3.1)

where 0 ≤ λ ≤ 1. Hλ in Eq. (3.1) denotes some intermediate state at λ, not necessarily

differentiable. At boundaries of first order phase transitions, for example, the entropy

15
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(state function) is not continuous in temperature (λ). Often, Hλ is (arbitrarily) chosen

to be linear in λ, as in Eq. (2.26) As alluded to above, Hλ does not have to be realistic

for all values of λ. Thermodynamics textbook examples of such changes include the

calculation of the errors made when relying on the ideal gas equation. Introduced as

“computational alchemy”[35, 36] in the realm of computational chemistry, this concept

has successfully been used for the interpolation of forces and energies for molecular

dynamics and Monte Carlo simulations. Also for the purpose of quantum mechanical

observables, we can denote any such unrealistic path as “alchemical”.[9, 15, 37] We note

however that Eq. (3.1) is also known as “mutation path” or “adiabatic connection”.[38–

40]

An even more intriguing possibility for exploiting the freedom of alchemical changes

relates to the challenge of rational compound design. RCD attempts to circumvent (or at

least reduce) the combinatorially scaling challenge of having to virtually enumerate and

screen larger subsections of chemical or materials compound space using computationally

demanding simulation methods. It has already been shown to yield promising results for

the virtual atomistic control of material, nanoparticle, and even molecular structures.[41,

42] Because of the vastness of CCS, identification of novel compounds that meet desired

property requirements still remains a challenge.[9, 43] Once an alchemical interpolating

path, Hλ, is defined, property derivatives with respect to λ can be evaluated [31] (see

Sec. 3.4). Similar to an iterative gradient descent-like algorithm, one can thus navigate

gigantic combinatorial compound libraries at dramatically reduced computational costs

by visiting the most promising compounds one after the other while avoiding the least

promising candidates.[44, 45]

The concept of connecting different systems via Eq. (3.1) has been in frequent use

in various research fields, including computational engineering, physics, biophysics, and

chemistry. Here, we first briefly summarize the most common application of Eq. (3.1) to

calculate free energy changes, or alloy formation energies in Sec. 3.2. In Sec. 3.3 we review

the quantum mechanical treatment of alchemical changes. To this end, we mainly rely

on the use of DFT even though analogous arguments can be made using conventional

wave-function based quantum chemistry methods. In Sec. 3.4 we present numerical

results that demonstrate the use of alchemical derivatives for the screening of entire

potential energy binding surfaces with semi-quantitative accuracy without additional

self-consistent field calculations.

3.2 Common alchemical applications

Free energy is one of the most important state functions in chemistry. Since it is a

statistical average, large numbers of configurations need to be taken into account to

yield accurate predictions. [46] E.g., calculating a free energy of solvation following a
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path that mimics the realistic complex process of reversible microscopic immersion of

the solute into a condensed ensemble of a very large number of solvent molecules would

imply a severe simulation effort that ensures that all relevant degrees of freedom have

sufficiently been sampled. Furthermore, to account for hysteresis effects, this simulation

should be repeated for various initial conditions and immersion rates. And one would

have to start anew for any changes made to temperature, pressure, or solvent and solute

species. Alternatively, one could also calculate the change in free energy with respect

to some solute for which the free energy of solvation is already known. Thermody-

namic integration, i.e. numerical integration of the statistical mechanical average of the

“alchemical force” along the path converting known solute (λ = 0) into query solute

(λ = 1),[36]

∆G =

∫ 1

0
dλ

〈
∂Hλ

∂λ

〉
λ

. (3.2)

Jorgensen and Ravimohan[38] proposed an even more efficient alternative: One can

also estimate the change in free energy of solvation due to changing the solute using

perturbation theory and MC simulation. Specifically, they considered the effect on the

free energy of hydration due to an alchemical change of a methyl into hydroxy-group,

∆G = GT − GR = GCH3CH3 − GCH3OH. One can show that if the sampling of the two

states, HR and HT, yields sufficient overlap, the corresponding free energy difference

can be accurately predicted using perturbation theory,

e−β∆G ≈
〈
eβ(HT−HR)

〉
R
. (3.3)

Here, 1/β = kBT , and the right-hand-side refers to the average of the Hamiltonian

difference Boltzmann’s weight over a trajectory generated using Hi. The authors used a

linear interpolation of force field parameters for methanol and ethane, Hλ = HCH3OH −
λ(HCH3CH3 −HCH3OH), from which the energy can be calculated for any λ.

As such, alchemical changes enable the prediction of changes in free energy differ-

ences without having to actually model the realistic process under investigation. Lin-

ear interpolation approaches have been applied to free energy calculations in various

chemical and biological systems.[47–50] Smith and van Gunsteren found that non-linear

alchemical coupling not necessarily leads to linear free energy changes.[51] Further ap-

plications of alchemical coupling to the estimation of free energy difference include the

free energy of hydration of ions using ab initio molecular dynamics,[52] differences in free

energy of binding between various host-guest complexes,[53] free energy differences at

phase boundaries to predict melting points,[54, 55] the free energy of mixing to identify

eutectics in ternary mixtures of molten alkali-nitrate salts,[56] kinetic isotope effects,[57]

as well as constraints on the composition of the Earth’s core.[58]
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But also from the solid state point of view the concept of alchemical coupling is

used for the prediction of properties of disordered materials, such as co-crystals, solid

solutions, or solid mixtures, as a function of mole-fraction.[59] It is computationally

difficult to deal with such mixed disordered systems since the minimal self-repeating

units can become very large. As a result it is nearly impossible to set up disordered

systems within periodic boundary conditions. One alternative consists of using cluster-

expansion methods [60], another alternative, akin to alchemical coupling, is the virtual

crystal approximation (VCA)[61] which averages the system, rather than explicitly rep-

resenting the full system. One of the simplest disordered class of materials are ternary

semiconductors, AxB1−xC, where AC and BC are two different semiconductors while x

is the mole-fraction between A and C. Consider, for example,[62] Eq. (3.1) applied to

AlxGa1−xAs: H(x) = HGaAs + x(HAlAs − HGaAs). The linear interpolated alchemical

path describes an averaged Hamiltonian between AlAs and GaAs for any mole-fraction

of Al and Ga.

3.3 Alchemy in Quantum Mechanics

3.3.1 Fictitious systems

Within a first principles notion of CCS,[43] one can view every compound in any ge-

ometry as a state described by a unique Hamiltonian H. More specifically, the total

potential energy’s molecular Hamiltonian, H, is a function of a given set of nuclear

charges, coordinates, and number of electrons, {{ZI}, {RI}, N}, respectively. Without

any loss of generality, we here rely on the Born-Oppenheimer approximation, neglecting

all non-adiabatic electronic or nuclear quantum effects. Studies of alchemical paths have

historically provided essential insight into the density functional theory (DFT) formu-

lation of the many-electron problem in molecules. [16, 21] In 1974, Harris and Jones

introduced an adiabatic connection,[63] coupling the system of interest to an fictitious

but relevant system of non-interacting electrons,

Hλ = T + λVee + Vext, (3.4)

where T , Vee, and Vext represent kinetic energy, electron-electron interaction energy,

and external potential energy operator. By changing λ from 1 to 0, one can dial in the

electron-electron interaction. For λ = 0, the electronic Schrödinger equation can thus

be solved analytically, providing useful information on properties such as the exchange-

correlation hole,[16, 64, 65] an important ingredient for current exchange-correlation

potential development efforts.[24, 66–68] Another important study of electron-electron
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interaction, carried out by Seidl, Perdew and Levy, introduces the limit of strictly corre-

lated electrons.[69] Replacing the variable λ = 1
µ for 0 < µ ≤ 1 in Eq. (3.4), one obtains

a coupled system where electron-electron interaction is dominant.

E. B. Wilson introduced the idea to alchemically couple any system to the uniform

electron gas. Based on this path, he derived an expression for an exact four-dimensional

density functional theory, integrating over three spatial and one λ-dimension.[13, 16]

Subsequently, Politzer and Parr[70] showed that, by defining free-atom screening func-

tions, Wilson’s functional can be decomposed into kinetic and potential energy of N

electrons. These definitions of DFT related alchemical paths constitute the underlying

framework for the results and discussions here within.

Within DFT,[21] we can explicitly calculate E(λ) for any iso-electronic change of

geometry and composition, i.e. under the constraint that
∫
dr ρλ(r) = N ∀ 0 ≤ λ ≤ 1,

E[ρλ, λ] = T [nλ] + Vee[ρλ] +

∫
dr ρλ(r) vext(r, λ). (3.5)

Here, the coupling is introduced explicitly through the external potential. In practice,

such coupling can be realized by scaling up or down the pseudopotentials or nuclear

charges of reference and target molecules at their distinct clamped geometries. Note that

kinetic and potential electron energy terms are only implicitly dependent on λ, namely

through the electron density’s dependency on the λ-dependent external potential—which

is imposed through application of the variational principle.

3.3.2 Alchemical teleportation of an atom

To illustrate the idea of alchemical changes within quantum chemistry, we now consider

a process which is trivial when done through a realistic path, and non-trivial when

done alchemically: The “teleportation” of an atom from one site to another with the

constraint that the total number of electrons and protons is kept constant. Thus, instead

of the trivial real space displacement of the atom, we continuously decrease the nuclear

charge (annihilation) at one site while continuously increasing (creation) the nuclear

charge at the other site by the same amount. For example, the external potentials of an

atom at two sites can be linearly coupled through an alchemical path,

Hλ = T + Vee + Z

N∑
i

((1− λ)

|ri|
+

λ

|ri −R|

)
, (3.6)

where the respective atomic sites are located at the origin and at R. Considering only

the endpoints (λ = (0,1)), the location of the atom obviously shifted from origin to

R. For any intermediate value of λ, however, the electrons will distribute among the
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two competing poles of the external potential given in Eq. (3.6), forming an attractive

chemical bond.

To numerically exemplify this process, we have chosen the highest occupied molec-

ular orbital (HOMO) eigenvalue, ε, as property of interest, and an alchemical change

corresponding to the linear teleportation of a Z = 2 and N = 2 system, i.e. effec-

tively translating the He atom. The numerical calculation of ε for variable λ has been

carried out using pseudopotential interpolation within plane-wave basis set PBE DFT

calculations, in analogy to previous studies.[9, 31, 44]

In Fig. 3.1(a), the λ-dependence of ε is shown for various distances between the two

atomic sites, d = |R| Clearly, while alchemical paths for small d yield simple parabolic

shapes of ε, for teleportation involving larger interatomic distances ε develops into a

double hill. ε versus d is plotted in Fig. 3.1(b) for various λ values. We note that for

λ = 0.5 (magenta), the d dependency of ε corresponds to the case of stretching H2. ε

increases monotonically at λ = 0.1 and λ = 0.2 as d increases. For these λ values, the

buildup of integrated electron density at the R, is still negligible, Fig. 3.1(c). Overall,

the effect of nuclear potential in Eq. (3.6), 2λ
|ri−R| , amounts to a static electric field, which

induces static Stark effect.[18, 71, 72] Because the electric field decreases according to

Coulomb’s law ∝ 1
d , ε rises as a result of decreasing electric field perturbation. Apart

from the delocalization error of DFT,[73, 74] such nonlinear behavior could also be

related to the instability of H+
2 -like systems, which has been shown analytically.[75]

Hogreve pointed out that strongly polarized electron density of asymmetric H+
2 -like

molecule severely destabilizes the system.[76] While the additional electron stabilizes

the system, nonlinear behavior can be expected for ε in the case of strongly polarized

density, i.e. for λ > 0.3 (in Fig. 3.1(c)). Fig. 3.1(c) displays integrated electron density

slices, Pλ(z) =
∫
dxdy ρ(x, y, z), for various λ values at interatomic distance, d = 5Å.

Note that for λ = 0.5, the electron density distribution corresponds to H2. The non-

linear dependency of electron density ρ on linearly changing growth of nuclear charge

can be seen in Fig. 3.1(d) for the abrupt changes in electron density response induced

by going from λ ≈ 0.2 to λ ≈ 0.3. To investigate the impact of parameterized exchange

correlation potentials in DFT, Cohen and Mori-Sánchez calculated similar changes for

N = 1 and N = 2 using the hydrogen atom plus one additional atomic site where

a nuclear charge is grown, i.e. Z(λ) with Z(λ = 0) = 0, Z(λ = 0.5) = 1 (H), and

Z(λ = 1) = 2 (He). [77]



Contents 21

5 10
d [Å]

-12
-10

-8
-6

ε 
[e

V
]

0 0.5 1
λ

-12
-10

-8
-6

ε 
[e

V
]

0 5
z [Å]

0

0.5

P λ
(z

) [
a.

u]

0 5
z [Å]

-1

0

∆P
λ(

z)
 [a

.u
]

λ = 0.0
λ = 0.1
λ = 0.2
λ = 0.3
λ = 0.4
λ = 0.5

d = 5Å

d = 5Å

(a)

(b)

(c)

(d)

Figure 3.1: Alchemical transportation of a He atom. (a) ε as a function of λ for various
distances d ∈ {1, 2, 4, 7}Å denoted by solid, dashed, dash-dotted, dotted, respectively.
(b) ε as functions of d. (c) Integrated electron density, Pλ(z) =

∫
dxdy ρλ(x, y, z) for

various λ at d = 5Å. The electronic cusps at the nuclear sites have been highlighted
by their corresponding λ symbols. (d) Integrated response of electron density due to

changing λ, ∆Pλ(z) =
∫
dxdy ∂λρλ(x, y, z) for various λ at d = 5Å.

3.4 Rational Compound Design

3.4.1 Motivation

Various approaches tackle the challenges of RCD. These approaches include the in-

verse spectrum approach,[78] linear combination of atomic potentials,[79, 80] and many

others.[8, 81–83] For the electronic potential energy, an alchemical path coupling E(λ =

0) of one molecule to an unknown E(λ = 1) of another compound makes explicit the com-

positional dependence of the energy. Understanding such a dependence holds promise

to dramatically reduce the computational burden of having to stubbornly screen one

compound after the other. More specifically, we can expand E in λ in terms of a Tay-

lor series as in Eq. (2.27). In other words, if all derivatives of ER were available one

could simply follow a steepest descent procedure to screen a set of coupled “neighbor-

ing” molecules, e.g. with small differences in geometry or stoichiometry, to identify and

proceed to more promising compound candidates. Fig. 2.1(b) illustrates the exploration

of CCS following such alchemical predictions. Ideally, only a single calculation of the

electronic ground-state ER would be required (denoted by black circle). The energy of

neighboring compounds can then be estimated via Eq. (3.7) (denoted by white circles).
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As we discuss below, it is possible to make such scans through changes in geometry as

well as composition.

In Ref. [31] we already discussed that for any iso-electronic alchemical change, the

first order derivative is simply the Hellmann-Feynman derivative. [30] Consequently,

differentiation of Eq. (3.5) yields,

∂λE[ρλ, λ] = 〈∂λH〉λ =

∫
dr ρλ(r) ∂λv(r, λ), (3.7)

which is the same as the first order perturbation term.[18] Higher order derivatives can

be evaluated or approximated by linear response theory,[84–86] and will be discussed

below in the context of linearizing the energy in λ in Sec. (3.4.4).

3.4.2 Alchemical changes in geometry

We now consider alchemical changes that only involve teleportation. To demonstrate

the versatility and transferability of the discussed approach, we have calculated alchem-

ical predictions of changes in binding energy for two very different modes of binding:

The covalent interatomic potential in hydrogen fluoride, as well as the hydrogen-bond-

dominated van der Waals potential of the water dimer. In both cases the binding energy

is given as the difference in potential energy of dimer (dim) and (relaxed) monomers m1

and m2,

Eb(d) = Edim(d)− Em1 − Em2. (3.8)

Any approximate solution of the electronic Schrödinger equation at some initial dis-

tance di enables us to estimate the binding energy of any other d using the Hellmann-

Feynman derivative and first order Taylor expansion in the alchemical teleportation path

(Eqs. (3.7,2.27)),

Eb(d) ≈ E
(1)
b (d) = Eb(di) + ∂λEb(di), (3.9)

where the super script (1) denotes the first order truncated Taylor estimate.

Considering now the case of di corresponding to the equilibrium distance, deq, the

insets of the two top panels in Fig. 3.2 show the resulting scatter plots of E
(1)
b (d) versus

the actual Eb(d) for various values of d in the case of HF and (H2O)2. While there

is clear correlation, the scale differs dramatically for the two modes of binding. Most

importantly, in the case of the dissociative tail E(1) correlates practically linearly with

the actual binding energy. Consequently, if we now approximate the true Eb ≈ Epb =

al/rE
(1)
b + bl/r, (l and r correspond to the left-hand repulsive wall and the right-hand

attractive tail, respectively) one can solve for the coefficients if further constraints are

known. Since this is a rather exploratory study, we here simply assume that (i) Eb(d =

deq) = E
(1)
b (deq), and (ii) Eb(d → ∞) = 0 in the dissociative region of the curve, and

(iii) in the case of the repulsive region that Eb(d = 2
3deq) = 0 for covalent binding, and
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Figure 3.2: Actual (black lines) and alchemical (blue squares) binding energy Eb
of repulsive (filled) and attractive (empty) regions of binding potentials for HF (a),
(H2O)2 (b), HCl (c), and H2O-HF (d). Each screen corresponds to using only one
self-consistent field (SCF) calculation at di = deq, together with the first order Taylor-

expansion based model, Epb = al/rE
(1)
b + bl/r (Eq. (2.27)). Insets in (a) and (b) show

Eb versus E
(1)
b . The screens in (c) and (d) are slightly less predictive because they are

made using SCF results from HF and (H2O)2, respectively. deq is set to 1, 2.8, 1.4 and
2.8 Å for (a), (b), (c), and (d) respectively.

Eb(d = 5
6deq) = 0 for intermolecular binding. Assumption (iii) is based on experience

using typical Morse and Lennard-Jones parameters. All resulting coefficients {al/r, bl/r}
are specified in Ref. [87]. The predictions for scanning the entire binding potential

agree reasonably well with the true binding potentials, and are shown together for both

systems in the top panels in Fig. 3.2. Integrated deviations of these predictions are also

shown in Table 3.1, yielding single digit percentage error for predicting the integral over

the covalent bonding potential of hydrogen fluoride, and ∼14% error for the integral

over the van der Waals potential of the water dimer. We stress that the entire screen

using this model only requires a single self-consistent field cycle to calculate energy and

derivatives at d = deq.

3.4.3 Alchemical changes in stoichiometry

We now extend the use of Eq. (3.9) to also make predictions not only for teleportation

changes in geometry but also for transmutational changes in stoichiometry. In particular,

we have calculated predictions for changing hydrogen fluoride into hydrogen chloride at

various distances, as well as changing the water dimer into the water-hydrogen fluoride
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Table 3.1: Numerical integrals of reference energies Eb (REF) and of absolute de-
viation of alchemical predictions Epb from reference energies Eb (PRE-REF) over the
binding region, i.e. for all d where Eb < 0, and percentage thereof (%) for the repulsive
wall predictions as well as for the attractive tail. Columns correspond to (a) HF, (b)

(H2O)2, (c) HCl, and (d) H2O-HF on display in Fig. (3.2),

Integral [eV×Å] (a) (b) (c) (d)

REF [eV×Å] (wall) -2.542 -0.059 -3.054 -0.095
PRE-REF [eV×Å] (wall) 0.150 0.009 0.656 0.036

% (wall) 5.9 15.6 21.5 37.6

REF [eV×Å] (tail) -8.199 -0.275 -6.017 -0.594
PRE-REF [eV×Å] (tail) 0.692 0.031 0.239 0.072

% (tail) 8.4 11.4 4.0 12.1

complex. Since we use pseudopotentials for both of these changes the total number of

valence-electrons in our calculations does not change. To calculate E
(1)
b according to

Eq. (3.9) we have chosen deq to correspond to the equilibrium distance of the target

system, i.e. HCl and H2O-HF. Again, the same assumptions (i)-(iii) as above are used

to calculate al/r and bl/r to obtain a linear approximation of the actual Eb(d) in E
(1)
b .

Also for these changes, the resulting coefficients are specified in Ref. [87]. The predicted

binding curves show reasonable agreement with the actual numbers, as shown for both

systems in the bottom panels in Fig. 3.2. Again, integrated and relative errors are given

in Table 3.1, and show a reasonable albeit slightly worse performance than in the case

of predicting the water dimer or the hydrogen fluoride. We reiterate, however, that

the entire screen results from only one self-consistent field cycle carried out to calculate

energy and derivative of another molecular system—at the deq of the target system.

While it is also possible to use other d to calculate energies and derivatives this typically

leads to less accurate predictions. We do not think that this constitutes a problem

since knowledge about equilibrium distances of target structures can easily be obtained

from literature or through inexpensive force-field or semi-empirical quantum chemistry

calculations which incur negligible computational overhead.

3.4.4 Linearizing chemical space

As we have seen above for the teleportation of the He atom, as well as in other studies,[31,

43] there are cases when the first order Taylor expansion of Eq. (3.9) does not provide

satisfactory predictive power. This is not surprising since changes in composition cor-

respond to large perturbations that typically lead to non-linear responses. We believe

that the good performance obtained above for the binding curves is due to cancellation

of higher order effects and due to the calibration of the linear model to the appropriate

physical dissociation or repulsion limits. One way to systematically improve the pre-

dictive accuracy consists of including increasingly higher-order terms. Sebastiani and



Contents 25

coworkers[86, 88, 89] as well as Geerlings, De Proft and others[90–92] proposed promis-

ing approaches in this direction. For example, akin to our discussion above, Benoit,

Sebastiani and Parrinello investigated the performance of second order linear response

theory for screening the potential energy surface of the water dimer, and achieved very

high predictive power. [93] How to efficiently calculate susceptibility accurately and

in general, however, is still a matter of current research. Furthermore, typically one

observes a (sometimes dramatic) increase in computational cost due to wave function-

dependent susceptibilities, thereby defying the original motivation of RCD to navigate

CCS without having to solve Schrödinger’s equation from scratch for each and every new

geometry or molecule. As pointed out in Ref. [31], a promising alternative route towards

improving the predictive power of the first order derivative consists of deviating from

the assumption that the alchemical coupling must be linear in λ. In fact, as already

mentioned above in the context of interpolating force-fields, [51] we are free to use any

kind of coupling as long as we meet our endpoints, i.e. comply with Eq. (3.1). More

specifically, if we knew the form of some coupling external potential vext(r, λ) that in-

duces such changes in the electron density that E(λ) becomes linear in λ, then Eq. (3.9)

would result in perfect predictions. The quest for such a potential has been discussed in

Ref. [43], in particular in connection to a 1-ounce-of-gold prize for anyone who provides

a solution to this problem.

For a coupling path to generally fulfill the requirement that E(λ) becomes linear in

λ we note that the potential must have such a shape that the first order derivative, ∂λE

is a constant (as already pointed out and used in Ref. [31]), and that furthermore, all

higher order energy derivatives must be zero. Consequently,

0 = ∂mλ E =

∫
dr ∂m−1

λ (ρλ(r)∂λvext(r, λ)), (3.10)

∀ m > 1. This imposes certain constraints on the interpolating potential. For example,

in the case of the second order derivative, equating the integrand to zero and solving for

the electron density’s response results in

∂λρ(r) = −ρλ(r)
∂2
λvext(r, λ)

∂λvext(r, λ)
. (3.11)

Similar expressions can be obtained for higher order density response functions. Possibly,

Eq. (3.10) could be transformed into a variational problem that yields an interpolating

potential with the desired effect that the associated energies that are indeed linear in λ.
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3.5 Conclusions

We discussed recent theoretical developments and approaches based on coupling states

using unrealistic “alchemical” paths. Numerical evidence has been presented for the ap-

plicability and versatility of alchemical approaches applied to the inexpensive prediction

of quantum mechanical observables of novel systems. The derivative based predictions

certainly reflect the qualitative trend of the desired binding potentials, and are accurate

within single, or low double, digit percentage accuracy. Results, discussions, and current

state of the field indicate that the study of generalized coupling approaches still holds

great promise for the predictive simulation of molecular and materials properties, as well

as for rational compound design.



Chapter 4

Alchemy on covalent bonds

4.1 Introduction

Solving Schrödinger’s time independent equation for the unperturbed electronic ground-

state within the Born-Oppenheimer approximation yields the potential energy surface

(PES) of any molecule as a function of nuclear charges {ZI} (stoichiometry), nuclear

positions {RI} (geometry), and number of electrons N (molecular charge). [11, 12] The

PES plays a fundamental role in chemistry and elsewhere because many properties can be

derived from it. Efficient estimations of the PES for ensembles of molecules are crucial

in the context of virtual compound design efforts.[47, 94, 95] These efforts typically

attempt to search chemical compound space (CCS) spanned by {{ZI}, {RI}, N}[15, 43]

for novel materials with desirable properties. As such, accurate yet efficient quantum

mechanics (QM) based PES estimates hold the key for successful rational compound

design applications.[6–8, 80, 96] While many inexpensive semi-empirical QM methods

are available, for this study we restrict ourselves to first principles in the spirit of Refs. [9,

10, 31, 43, 44, 79, 97, 98] More specifically, we investigate the application of “alchemical”

coupling to the problem of efficiently estimating the PES of new molecules using Taylor

series expansions in CCS, rather than empiricism.

The alchemical coupling approach can be related to grand-canonical ensemble theory

(Widom insertion) [99–101], and has been well established for empirical force-field based

molecular dynamics studies. [34, 35, 38, 48, 49] Using QM, alchemical changes are less

common despite E. B. Wilson’s early proposal of variable Z, back in 1962. [13] Within

QM, any two iso-electronic molecules in CCS can be coupled “alchemically” through

interpolation of their external potentials. Here, we have investigated if alchemical pre-

dictions can be used to model the PES of covalent bonds occurring in small closed-shell

molecules made up from main group elements. We have limited ourselves to covalent

hydrogen bonds, as well as single, double, and triple bonds in molecules with no more

than 14 valence electrons. We present and discuss numerical evidence for the following

27
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set of observations: First order Taylor-expansions of covalent bonding potentials can

reach chemical accuracy (∼1 kcal/mol) if two conditions are met. Firstly, the alchemi-

cal change has to be “vertical”, meaning that initial reference molecule as well as final

target molecule have to possess the same number of atoms located at the exact same

positions. Secondly, all elements involved in the alchemical change, i.e. all {ZI} destined

to vary, have to occur late in the periodic table. Second order Taylor-expansion based

predictions are less accurate than first order predictions if these conditions are met. If

reference and target molecule have different geometries, the predictive power of the first

order Taylor expansion substantially deteriorates, while second order estimates based

on coupled perturbed Kohn-Sham equations offer some improvement, however, without

reaching chemical accuracy. Second order estimates based on the independent particle

approximation result in Taylor expansion estimates that are even worse than first order

estimates.

In Sec. 4.2 we briefly summarize the framework of alchemical derivatives within

Hartree-Fock and density functional theory (DFT) as well as our notations. Numerical

estimations of covalent bond stretching of small molecules are presented and discussed

in Sec. 4.3: Extending previous work on alchemical perturbation,[31, 98] we discuss al-

chemical energy derivatives with respect to vertical transmutation, interpolating only

the identity of the atoms while keeping the geometry fixed. Estimates of single, dou-

ble and triple bonds are included as an application. Finally, conclusions are drawn in

Sec. 4.4.

4.2 Method

4.2.1 Taylor expansion in CCS

A Taylor expansion in CCS can be constructed with the exclusive knowledge acquired

by solving Schrödinger’s equation for some reference molecule, with Hamiltonian HR.

And consequently, ∂mλ Eλ = ∂mλ 〈Hλ〉, with ∂λHλ = HT − HR being the alchemical

perturbing Hamiltonian. If the alchemical derivatives can be computed, the energy of

target system ET can be estimated according to Eq. (2.27) by setting ∆λ = 1. Note

that we couple reference and target systems in a linear and global fashion. This is an

arbitrary choice, non-linear and local interpolation functions could have been chosen

just as well. In fact, in Ref. [31], an empirical quadratic interpolation function is found

to yield superior results for first order predictions of highest occupied molecular orbital

(HOMO) eigenvalues. In this study of alchemical changes of covalent bonding, we begin

with linear and global interpolations, future work might deal with alternative functions.

Given a pair of isoelectronic reference/target systems, described by {{ZR
I }, {RR

I }, N}
and {{ZT

I }, {RT
I }, N} respectively, one can couple the two systems such that certain ZR

I
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and ZT
I are paired. Note that ZR

I or ZT
I can be scaled down to/up from zero if the num-

ber of atoms in one molecule is smaller. Under isoelectronic conditions, the λ-dependent

terms in the coupling Hamiltonian (Eq. (2.26)) are the electron-nucleus and nucleus-

nucleus interaction operators,

vλ(r) =

NI∑
I

(
−

(1− λ)ZR
I

|r−RR
I |
−

λZT
I

|r−RT
I |

)
,

Vλ =

NI∑
I<J

(
(1− λ)ZR

I Z
R
J

|RR
I −RR

J |
+

λZT
I Z

T
J

|RT
I −RT

J |

)
.

(4.1)

Since different pairing schemes result in different vλ(r) and Vλ, it is obvious that the

alchemical perturbation is alignment dependent. To investigate the behaviour of higher

order corrections and the effects of varying geometry/stoichiometry, we neglect all re-

laxation effects for vertical iso-valence-electronic changes (see Sec. 4.2.4).

4.2.2 Predicting changes in covalent bonds

For the study of covalent bonds we focus on the changes in binding potential due to

alchemical coupling. We consider the difference in total potential energy between two

bounded atoms at two arbitrary interatomic distances d and d0,

∆E(d, d0) = E(d)− E(d0). (4.2)

If, for example, d0 is large and d is the geometry minimum, ∆E becomes the bond

dissociation energy. We are interested in changes of ∆E(d, d0) as a function of d due

to alchemical changes for a fixed d0. More specifically, we couple a reference to target

system via the corresponding Hamiltonians yielding expectation values as a function of

λ,

∆Eλ(d, d0) = Eλ(d)− Eλ(d0) (4.3)

= 〈HR(d) + λ(HT (d)−HR(d))〉

−〈HR(d0) + λ(HT (d0)−HR(d0))〉.

As λ goes from zero to one, the two components in Eq. (4.2) change from reference

(ER(d), ER(d0)) to target (ET(d), ET(d0)) compound. The truncated Taylor expansion

based estimate of the target compound’s potential is then obtained via,

∆ET(d, d0) ≈ ∆E
(m)
T (d, d0) = ∆ER(d, d0) (4.4)

+

m∑
k=1

1

k!
∂kλ∆Eλ(d, d0),
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where the superscript m stands for Taylor expansion with m terms, as a function of

bond-length d for vertical alchemical changes. Since ∆ET is the property of interest,

the subscript T, λ, and the dependency of d0 will be omitted for the rest of this work,

unless otherwise noted. In this study we investigated orders up to m = 4 for the

stretching of H+
2 , and up to m = 2 for all other molecules. For a fixed d0, first and

second order estimation are

∆E(1)(d) =
(
ER(d) + ∂λEλ(d)

)
(4.5)

−
(
ER(d0) + ∂λEλ(d0)

)
,

∆E(2)(d) =
(
ER(d) + ∂λEλ(d) +

1

2
∂2
λEλ(d)

)
−
(
ER(d0) + ∂λEλ(d0) +

1

2
∂2
λEλ(d0)

)
.

Since d and d0 in Eq. (4.2) are arbitrary, one can infer the binding curve via scanning d

for any fixed d0. The predictive power, however, happens to dependent on d0. For this

reason, we optimize d0 such that the integrated error in dissociation region is minimal.

As shown in Fig. 4.5, an empirical linear relationship exists between equilibrium bond

length of target molecule dT
eq, and dopt

dopt ≈ 0.76 dT
eq + 0.97 Å. (4.6)

d0 is determined according to Eq. (4.6) for all vertical changes. If dT
eq is not known it

can easily be estimated with semi-empirical quantum chemistry methods.

4.2.3 Error measures

For bond lengths, we quantify the predictive power of the Taylor expansions by evalu-

ating the deviation of prediction from the DFT bond length ∆deq = d
(m)
eq − deq, where

d
(m)
eq stands for the predicted equilibrium distance of ∆E(m). We calculate the devia-

tion of the predicted energy at the minimum from the DFT energy at the DFT mini-

mum, ∆Eeq = ∆E(m)(d
(m)
eq ) − ∆E(deq). The deviation harmonic vibration frequency,

∆ω = ω
(m)
eq −ωeq, of the stretching bond is also considered to quantify the predicted stiff-

ness of the binding potential. The vibration frequency is computed via the curvature of

cubic spline interpolated binding potential, ωeq = 1
2π

√
keq

µ where keq = ∂d∆E(deq) and

µ is the reduced mass. Finally, we measure the integrated error (IE) for the dissociative

tail, defined as

IE =
1

|dmax − d(m)
eq |

∫ dmax

d
(m)
eq

dx|∆E(m)(x)−∆E(x)|, (4.7)
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for vertical iso-valence-electronic changes. These four quantities provide a numerical

indication of how good a prediction is. One would expect (∆Eeq,∆deq,∆ωeq, IE) =

(0, 0, 0, 0) for a perfect prediction. Note that we compare the predictions to DFT. This

is an arbitrary choice, any other QM method could have been applied just as well.

4.2.4 Computational details

Alchemical interpolations of molecules containing elements from different rows in the

periodic table can still be iso-electronic if effective core or pseudo potentials (PPs) are

used, resulting in a constant number of valence electrons [43]. For example, one can

couple carbon to silicon using just four valence electrons. Non-local PPs are widely

used to mimic the presence of core electrons in atoms [102], and are amenable to the

tuning of a wide range of properties including dispersion forces, band-gap, or vibrational

frequencies [103–105]. The non-local external potential vλ(r) in Eq. (4.1) then becomes

vλ(r, r′) =

NI∑
I

(
(1− λ)vR

I (r, r′) + λvT
I (r, r′)

)
, (4.8)

where vR
I and vT

I are PPs for ZR
I and ZT

I respectively. Note that vλ(r, r′) in Eq. (4.8)

and vλ(r) in Eq. (4.1) result in different coupling Hamiltonians, and therefore different

derivatives.

All results have been obtained within the Born-Oppenheimer approximation, where

nuclei are clamped, nuclear repulsion Vλ is decoupled from the electronic wavefunction,

and is added as a geometry- and λ-dependent constant to the electronic energy. Nuclear-

nuclear repulsion energy is computed automatically by most QM codes. However, it

must be removed and recomputed independently for Vλ according to Eq. (4.1) to avoid

self-repulsion between transmutating atoms. Throughout the present study, standard

atomic and plane-wave basis functions, linearly interpolated PPs, as well as the PBE xc

potential [24] within KS-DFT is used. The scanning of 0.5 Å ≤ d ≤ 3.0 Å is carried out

with increments ∆d = 0.1 Å. For each prediction order m, ∆E(m)(d) are interpolated

with cubic splines, from which the stiffness ∂2
d∆E(m)(d

(m)
eq ) = keq is computed. All

density volumetric data is printed into Gaussian CUBE files, from which integrated

density slices are calculated.

Numerical results for vertical iso-valence-electronic alchemical changes (discussed in

Sec. 4.3.1 and 4.3.2) have been obtained with CPMD[106], a plane wave basis with 100 Ry

cutoff, and Goedecker PPs.[107–109] The periodic supercell size is 20×15×15 Å3, and

one heavy atom is fixed at (7.5 Å, 7.5 Å, 7.5 Å) while the stretching atom shifts along

+x-axis. For each geometry, heavy atoms are mutated to other elements in the same

column of the periodic table while all H are fixed at the same location as in the reference

compound.
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Since Eq. (4.8) is a non-local operator, Eqs. (2.28) and (2.29) need to be converted to

wavefunction expressions. The first order derivative for the Hamiltonian HR→T is evalu-

ated using RESTART files in which the reference compound’s density and wavefunctions

have been stored: ∂λE = 〈∂λH〉R = ET[ρR]− ER[ρR]. And the second order derivative

is evaluated correspondingly relying on FD, ∂2
λE ≈

〈∂λH〉∆λ−〈∂λH〉R
∆λ , with ∆λ = 0.05.

Wavefunctions of reference compound are used for ∆E(1), while ∆E
(2)
FD is evaluated by

FD with linearly interpolated PPs parameter.

4.3 Results and Discussions

4.3.1 Vertical iso-valence-electronic changes of X-H

Using Taylor expansions binding potentials have been estimated for covalent bonds in-

volving hydrogen (X-H) for the following 12 molecules with 8 valence electrons: (second

period) CH4, NH3, H2O, HF, (third period) SiH4, PH3, H2S, HCl, (fourth period) GeH4,

AsH3, H2Se, HBr. Fig. 4.1 illustrates the first and second order truncated Taylor series

estimations of the change in X-H binding energy as one goes from reference to target

compound, i.e. ∆∆E.

Semi-quantitative dissociative tail are obtained for all combinations of reference/-

target molecules. The precise predictive power depends strongly on the choice of refer-

ence/target molecule pair. Overall, first order estimates among molecules with elements

from the third or fourth row are highly accurate (Fig. 4.1). By contrast, predicting, or

starting with, second row elements consistently yield worse results.

Surprisingly, inclusion of second order corrections does not necessarily lead to better

performance. Second order truncated Taylor series only gives better predictions then

first order when a molecule containing heavier elements is used as reference in order to

predict target molecules with lighter element. Note that the performance of truncated

Taylor series varies dramatically when choosing other d0 values. Fig. 4.2 illustrates this

for ∆E(2Å, d0) for HF→HBr as a function of λ with d0 = dopt as well as d0 = deq

the equilibrium bond length of HF. While the general landscape of total energies is

not changing much, small differences between E(2Å), E(deq), and E(dopt) give rise

to great variations in ∆E as a function of λ. By choosing d0 = dopt, ∆E(d, dopt) in

Eq. (4.3) becomes linear, while plotting ∆E(d, deq) reveals substantial non-linearities.

As a result, first order predictions of ∆E(d, dopt) are more predictive. This observation

is very similar to the convergence behavior of the reference geometry Harris-Foulkes

functional. [110, 111] Note that the Harris-Foulkes functional is often used for scanning

the PES of a single compound, using the converged density at a reference geometry, while

our alchemical approach offers a way to scan the PES across the CCS. The deterioration

in predictive power of the second order estimate, when using molecules elements from
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Figure 4.1: True (black circles), first (red squares) and second (blue triangles) order
predictions of changes in the covalent bond of hydrogen due to vertical alchemical in-
terpolations. The gray background panels correspond to the true potentials of reference
compounds employed for the predictions. ∆E is shown as a function of d in Eq. (4.4).
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Figure 4.2: Alchemical coupling of HF (λ = 0) to HBr (λ = 1). TOP panels:
E and ∆E where deq = 0.94 Å and dopt = 1.57 Å denote the equilibrium bond
length of reference molecule HF, and error minimizing distance, respectively. BOT-
TOM panels: y and z integrated valence electron density difference planes, where
∆Pλ(x) =

∫
dydzρλ(r, d) −

∫
dydzρλ(r, d0) with r = (x, y, z), as a function of λ for

vertical interpolation of ∆E(d, d0) in Eq. (4.2) using d0 = 0.94 Å (left) or d0 = 1.57 Å
(right), respectively. Location of heavy atom at x = 0 (red dashed lines), hydrogen
atoms at x = d (red dotted lines). Values for x = deq or x = dopt (red dash-dotted line)

are highlighted and projected onto x = −5 Å plane.

second row, is due to the presence of an inflection point: The curvature at λ = 0 has the

opposite sign. For coupling the other compound pairs in Fig. 4.1 analogous observations

have been made.

Prediction errors for energy minima, equilibrium bond lengths, force constants, and

integrated error in dissociation region (calculated as described in Sec. 4.2.3) have been

obtained for all predictions in Fig. 4.1, and are listed in Table. 4.1. The results lend

quantitative support for the observations made above: First order Taylor series based

estimates are nearly chemically accurate alchemical interpolations among compounds

with third and fourth row elements Second order based predictions are always worse

except when a molecule with heavier element is used as a reference to predict a molecule

with lighter one, for example HBr→HF.

Overall, the best prediction performance is found for first order based estimates

using reference molecules containing third row elements (nR = 3) in order to predict

target molecules made up of fourth row elements (nT = 4). The overall average devia-

tion from reference bonding potential energies and integrated error are ∼2.5 kcal/mol.

Corresponding predictions of equilibrium distances deviate at most by 0.03Å, and the
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vibration frequencies deviate no more than 32 cm−1. Second order estimates for the

same third and fourth row combinations give slightly worse results. Not surprisingly,

the worst predictions are made if the coupled molecules skip a row, i.e. involve ele-

ments from second and fourth row—for first as well as second order truncated Taylor

expansions.

Moreover, second order overcorrections are also reported in Table. 4.1 whenever

molecules containing fourth row elements are used to predict molecules containing third

row elements. Both, predicted energy minimum and equilibrium bond length, show

negative deviations.

We highlight the systematic asymmetry in the predictive power of first order based

predictions: Consider any two iso-electronic compounds A and B, the respective alchem-

ical derivatives will differ depending on the assignment of reference and target. In other

words, the error in estimating A based on B will not be the same as the error in estimat-

ing B based on A. Results in Table. 4.1 suggest that predictions downward the columns

in the periodic table are more accurate them upward. For example, predicting HBr

(nT = 4) using HF (nR = 2) as a reference, a better estimate is obtained (error = +25.7

kcal/mol) than for predicting HF (nT = 2) using HBr (nR = 4) as a reference (error =

+61.1 kcal/mol). Correspondingly, predicting HCl (nT = 3) using HBr (nR = 4) has an

error = +5.4 kcal/mol, while the prediction of HBr (nT = 4) using HCl (nR = 3) has

only 3.6 kcal/mol. Similar observations hold for bond lengths, and force constants. The

asymmetry is also illustrated in Fig. 4.2. ∆E(d, d0) is not necessarily symmetric with

respect to λ = 0.5 for a given choice of (d, d0). Consequently, truncated Taylor series

based predictions from either end will not be equally accurate.

Interestingly, the inflection point near λ = 0 occurs only when the reference molecule

has lighter element. Conversely, no inflection point has been observed for atoms transmu-

tating upward the column. The absence of inflection points gives a negative curvature,

thus smaller error. We believe this behaviour is due to the specifics of the employed

PPs. Future studies will show if similar trends hold for other PPs.

4.3.1.1 Superior performance from better density

Once the density is converged for reference molecule, inexpensive first order alchemical

estimate comes with the cost of a single numerical integration as in Eq. (2.28). What

if a more accurate density is used? In this section we demonstrate the applicability of

Eq. (2.28) following one of the best performing alchemical coupling HBr→HCl, using

PBE0[26] as higher level of theory. Fig. 4.3 illustrates the first order predicted binding

potential of HCl using converged HBr PBE0 density. It demonstrate similar behaviour

as HBr→HCl in Fig. 4.1. More importantly, when compared to PBE HCl binding

potential, first alchemical prediction provides more accurate estimates to PBE0 HCl
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Table 4.1: Errors for first (left tables) and second (right tables) order predictions
of vertical iso-valence-electronic alchemical changes of covalent bond potentials in X-
H→A-H. The compound pairs are arranged in the same way as in Fig. 4.1. Error
measures of each panel are collected in corresponding cell with unit [kcal/mol] for
∆Eeq and IE, [Å] for ∆deq, and ∆ωeq with [cm−1]. Avg corresponds to averaged signed
error for each target period with corresponding unit. Reference and target periods are
denoted by the primary quantum number nR, nT = {2, 3, 4}. IV, V, VI, VII represent

the column of X and A in the periodic table.

∆E(1), nR = 2

nT IV. V. VI. VII. Avg

nT = 3

∆Eeq 10.55 17.19 22.16 24.05 18.49
∆deq 0.12 0.14 0.15 0.15 0.14
∆ωeq -46.9 -109.6 -188.5 -213.7 -139.7
IE 13.01 20.00 27.43 30.18 22.65

nT = 4

∆Eeq 10.76 19.97 23.77 25.74 20.06
∆deq 0.15 0.20 0.24 0.21 0.20
∆ωeq -22.8 -137.8 -164.1 -196.8 -130.3
IE 13.19 28.19 36.84 39.42 29.41

∆E(1), nR = 3

nT = 2

∆Eeq 32.90 36.17 41.62 44.65 38.84
∆deq 0.21 0.23 0.23 0.22 0.22
∆ωeq -308.4 -373.8 -527.3 -575.0 -446.1
IE 47.26 55.58 65.66 68.61 59.28

nT = 4

∆Eeq 1.52 2.13 2.93 3.55 2.53
∆deq 0.01 0.02 0.03 0.03 0.02
∆ωeq -5.8 -11.7 -31.9 -20.9 -17.6
IE 1.45 2.26 2.83 3.25 2.45

∆E(1), nR = 4

nT = 2

∆Eeq 38.08 44.22 54.03 61.07 49.35
∆deq 0.26 0.31 0.33 0.33 0.31
∆ωeq -331.4 -455.1 -636.6 -738.0 -540.3
IE 60.39 78.48 106.16 121.95 91.75

nT = 3

∆Eeq 1.26 2.43 3.81 5.39 3.22
∆deq 0.01 0.02 0.02 0.04 0.02
∆ωeq -14.4 -15.0 -31.0 -60.4 -30.2
IE 1.16 2.31 3.56 5.13 3.04

∆E(2), nR = 2

nT IV. V. VI. VII. Avg

nT = 3

∆Eeq 18.92 26.34 31.39 33.94 27.65
∆deq 0.25 0.27 0.28 0.26 0.26
∆ωeq -53.6 -144.1 -233.7 -256.4 -172.0
IE 32.34 41.13 52.19 56.39 45.51

nT = 4

∆Eeq 18.14 27.34 30.60 33.66 27.43
∆deq 0.28 0.34 0.36 0.34 0.33
∆ωeq -39.1 -136.4 -141.2 -182.0 -124.6
IE 32.30 55.27 67.82 68.92 56.08

∆E(2), nR = 3

nT = 2

∆Eeq 12.33 15.46 19.08 20.63 16.88
∆deq 0.07 0.08 0.09 0.08 0.08
∆ωeq -143.1 -202.4 -259.0 -312.3 -229.2
IE 12.95 16.79 21.26 22.16 18.29

nT = 4

∆Eeq 4.66 7.24 9.33 10.90 8.03
∆deq 0.04 0.08 0.09 0.09 0.08
∆ωeq -25.1 -48.3 -56.5 -68.3 -49.6
IE 4.83 8.69 10.69 11.89 9.03

∆E(2), nR = 4

nT = 2

∆Eeq 19.91 22.19 30.44 33.75 26.57
∆deq 0.12 0.12 0.16 0.15 0.14
∆ωeq -211.2 -276.1 -418.1 -487.4 -348.2
IE 22.83 25.10 38.88 42.45 32.31

nT = 3

∆Eeq -1.30 -3.64 -5.32 -6.49 -4.19
∆deq -0.01 -0.03 -0.03 -0.04 -0.03
∆ωeq 12.3 12.4 24.0 51.1 24.9
IE 1.43 3.07 4.39 5.23 3.53

results. In other words, if accurate electron densities are available, one would expect

better performance from first order alchemical prediction. However, we note that in

the case of dissociation, PBE performs better then PBE0, as can be observed by the

deviation from coupled-cluster results.

Coupled-cluster with single, double, and perturbative triple (CCSD(T)) results in

this section is computed by Gaussian09[112] using basis set aug-cc-pVTZ-[113] with

default setup.

4.3.2 Vertical iso-valence-electronic changes involving single, double,

and triple bonds

Having discussed covalent bonds involving hydrogen, we now turn to single (XH3-Y),

double (XH2=Y), and triple (HX#Y) bonds among p-block elements. Since third row

elements can either be alchemically compressed to the corresponding second row element

in the same column, or expanded to the fourth row element, we chose third row based
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CCSD(T) (dashed line).

reference systems for single, double, and triple bonds, namely SiH3Cl, SiH2S, and HSiP.

The resulting eight alchemical paths are combinations of changing the Si atom (Si→C,

Si→Ge) or its binding partner (Cl→F, Cl→Br, S→O, S→Se, P→N, P→As). In Figs. 4.4

first and second order alchemical predictions are shown for the bonding potential using

vertical transmutations from the three reference molecules.

More specifically, single bonds have been investigated in the nine following molecules

with 14 valence electrons: (nX = 2) CH3F, CH3Cl, CH3Br, (nX = 3) SiH3F, SiH3Cl,

SiH3Br, (nX = 4) GeH3F, GeH3Cl, and GeH3Br. For double bonds, we have considered

the following nine unsaturated molecules with 12 valence electrons: (nX = 2) CH2O,

CH2S, CH2Se, (nX = 3) SiH2O, SiH2S, SiH2Se, (nX = 4) GeH2O, GeH2S, and GeH2Se.

And finally for triple bonds, we studied the following nine molecules with 10 valence

electrons: (nX = 2) HCN, HCP, HCAs, (nX = 3) HSiN, HSiP, HSiAs, (nX = 4) HGeN,

HGeP, and HGeAs.

Prediction results in Fig. 4.4 suggest that the accuracy of the alchemical predic-

tion of ∆E(d, d0) exhibits very similar trends as the ones discussed above for vertical

changes in the hydrogen containing single bond: First order predictions systematically is

achieve remarkable predictive power of chemical accuracy whenever a third row element

is coupled to a fourth row element. Corresponding second order predictions deteriorate

the accuracy due to inflection points near λ = 0. Second order Taylor series provides

superior predictive power only in the case when at least one of the heavy elements in the
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tom) bond potentials. Curves are shown for eight target systems (specified as insets),
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eq. Linear regression gives dopt = 0.76deq+

0.97 Å with MAE=0.11 Å and RMSE=0.15 Å. First order (red empty squares) and
second order (blue empty triangles) dopt of covalent X-H bond stretching, as well as
first order (red filled squares) and second order (blue filled triangles) dopt of X-Y,
X=Y, X#Y stretching are shown, where -, =, # stand for single, double, and triple
bonds. Some of the alchemical paths are highlighted by black arrows. All numbers are

given in Table. 4.1 and Table. 4.2.

reference molecule couples to a lighter element. If both heavy atoms are simultaneously

transmutated vertically up, e.g. SiH3Cl→CH3F, second order estimates reduce the error

of the first order prediction, a substantial over correction is observed.

For the case of one heavy element transmutating upward, the other vertically down-

ward, second order corrections from both atoms nearly cancel each other. One atom

couples to a lighter element resulting a negative curvature. The other couples to a heav-

ier one giving a positive curvature, as observed in the asymmetry of ∆E in Fig. 4.2 and

systematic behaviour of second order corrections in Fig. 4.1 and Table. 4.1. Summation

of the two gives a near zero curvature behaviour at λ = 0.

The observations above are supported by quantitative prediction errors (described

in Sec. 4.2.3), summarized in Table. 4.2. The best performance is achieved for the change

SiH3Cl→GeH3Br (nX/nY = 4/4) with energy error ∆E = 0.6 kcal/mol and integrated

IE = 0.9 kcal/mol. Corresponding predictions of equilibrium distance deviates 0.03 Å

with vibration frequency deviate -1.1 cm−1. However, the worst prediction occurs for

the change SiH3Cl→CH3F (nX/nY = 2/2), estimated by second order correction.
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4.3.3 Empirical dopt

Given these observations, it becomes clear that the choice of d0 in Eq. (4.3) is crucial for

linearizing the property in alchemical coupling parameter λ, and hence essential for the

performance of the perturbation based predictions. All the error minimizing dopt have

an approximately linear dependence of target molecule’s deq, no matter if the reference

is single, double, or triple bond. Also, the relationship is preserved, independent of

the fact if predictions are made with first or second order estimates. This is shown in

Fig. 4.5. The relationship obtained through linear regression is specified as well. The

outlier in Fig. 4.5 at target deq ≈ 1.35Å and dopt ≈ 1.0Å is due to the second order

prediction of SiH3Cl→CH3F, where a strong overcorrection is present.

4.4 Conclusions

The performance and predictive power of truncated Taylor series in iso-electronic chem-

ical spaces through alchemical coupling has been investigated for changes in covalent

bonding. For vertical linear transmutation interpolations (same geometry, same number

of atoms) between reference and target compounds our results suggest that chemically

accurate predictions are possible when transmutating p-block atoms from the third and

fourth row of the periodic table and using first order, Hellmann-Feynman theory, based

predictions. Since these estimates are analytical, our results suggest that it is possible

to scan PES throughout CCS with unprecedented accuracy and speed.

Second order estimates are less accurate. This is not due to the fact that higher order

terms cancel, but rather due to the fact that (a) changes in relative energies (bonding)

are near-linear with respect to alchemical coupling, and (b) inflection points can occur

which lead to worse predictions. An inflection point near λ = 0 is always observed when

an main group element is coupled to heavier element. The absence of inflection points

near λ = 1 gives rise to different predictive power of second order correction: As such,

the asymmetry of ∆E(d, d0) with respect to λ = 0.5 results in asymmetric predictive

performance. Furthermore, the choice of the reference geometry has a dramatic impact

on the predictive power of the alchemical estimates. A linear relationship has been

identified, (dopt ≈ 0.76 dT
eq + 0.97 Å), that can be used to predict optimal d0 requiring

only rough estimates of the equilibrium bond-length in the target molecule.

In summary, our findings indicate that a careful choice of alchemical interpolation

paths enables predictive power through alchemical perturbation.
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Table 4.2: Summary of error measure in Fig. 4.4 for first order (upper table)
and second order (lower table). The reference molecules are denoted by HR =
{SiH3Cl,SiH2S,HSiP}. The primary quantum number of heavy atom X = {C,Si,Ge}
and Y = {N,P,As,O,S,Se,F,Cl,Br} in target molecule are denoted by nX and nY re-
spectively for each column. Error measures of each panel are collected in corresponding

cell with unit [kcal/mol] for ∆Eeq and IE, [Å] for ∆deq, and ∆ωeq is in [cm−1].
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Chapter 5

Rational crystal design

5.1 Introduction

The essential advancements of technologies hinge upon the performance of underly-

ing materials. The efficiency of photovoltaic materials heavily depends on the elec-

tronic properties of the solid-state or organic semiconductors, the performance of a

drug molecule is usually affected by the free energy of binding between drug target

compound, the stability of energy storage materials is governed by their energy land-

scapes and vibrational modes. Until the theoretical breakthrough of quantum mechanics

(QM) at the beginning of last century, improvements in performance were achieved by

trial and error. Nowadays, with the help of modern computers, properties of materials

can be predicted in silico even before their assessments are carried out experimentally.

[7, 10, 47–49, 114, 115] The costly experimental evaluations can focus only on those ma-

terials predicted to exhibit the most promising properties. Such computational materials

design procedures therefore hold much promise to lift some of the chemical challenges

that the world is facing today.

Finding materials with superior properties can be seen as an optimization problem

in chemical compound space (CCS), the space consisting of all possible materials.[43,

116, 117] In practice, due to the combinatorial nature of CCS, an enormous number

of possible materials makes a random search for optimal candidates a daunting chal-

lenge. Both, approximations to accelerate the evaluation of QM solution, as well as

algorithms for efficient searching over CCS are desirable. Optimization algorithms can

be applied iteratively by performing QM calculations for intermediate materials dur-

ing each optimization step. [8, 79, 103, 118] Among these, gradient-based methods

utilizing alchemical derivatives have been shown to yield promising results for many

applications.[15, 31, 119, 120]

Once the QM solution of a reference material, represented by its Hamiltonian HR, is

found, any unknown target material, encoded by HT, can be considered as the end point

42
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of a coupling Hamiltonian H(λ) = HR − λ(HT −HR), where 0 ≤ λ ≤ 1 is the coupling

parameter. Electronic eigenvalues, of any target material can be approximated by a first

order truncated Taylor series E(λ) ≈ E(0)+∂λE(λ)|λ=0, where the “alchemical” deriva-

tive is readily available due to the Hellmann-Feynman theorem
(
Eq. (2.28)

)
.[30] Note

that the Hellmann-Feynman theorem, while typically used only for (relative) energies,

including total energies, holds for any of the Hamiltonian eigenfunctions, as long as the

eigenfunctions form an orthogonal set.

It has been demonstrated that chemical accuracy can be achieved by alchemical

prediction,[120, 121] under the condition that the number of valence electrons and ge-

ometry remain unchanged, and that the interpolating elements come from the third or

fourth period in Mendeleev’s table. In this chapter, we study the use of alchemical

derivatives for the design of solid-state materials, and discuss some applications and

limitations of exploring CCS.

Kohn-Sham density functional theory (KS-DFT)[22] and generalized gradient ap-

proximation (GGA) functional are used throughout. The prediction performance is

measured in terms of deviation from KS-DFT/GGA results. Note that the choice of the

level of theory is somewhat arbitrary: The approach pursued is valid for any level of

theory if the perturbation theory can be applied. The predictive performance, however,

possibly depends on the level of theory employed. We focus on the prediction of band

structures of III-V semiconductors. More specifically, we perform a computational de-

sign application for AlxGa1−xAs crystals, carried out by optimization in CCS based on

a combination of alchemical derivatives with a genetic algorithm.

5.2 Results and discussion

5.2.1 Predictions and objective function

The band structure is one of the most important properties in semiconductors due to

their many electronic applications.[104, 122–124] We investigate the predictive power

of alchemical predictions for estimating band structures of III-V and IV-IV semicon-

ductors drawn from 3rd to 5th period elements, i.e. AlP, GaP, InP, AlAs, GaAs, InAs,

AlSb, GaSb, InSb for III-V semiconductors and Si, SiGe, SiSn, Ge, GeSn, Sn for IV-IV

semiconductors. Alchemical prediction from the reference material (ref) of lattice con-

stant a to any target material (tar) on the ith band at a given crystal momentum k is

constructed as follows:

εpred
i,a (k) = εref

i,a(k) + ∂λε
ref→tar
i,a (k), (5.1)
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where the derivative is a 3D integral, ∂λε
ref→tar
i,a (k) = 〈φi,a|HT − HR|φi,a〉k, calcu-

lated from the ith Hamiltonian eigenfunction of the reference material of lattice con-

stant a with crystal momentum k, |φi,a〉k. The prediction of band gap is therefore

Epred
g,a = min

k

(
εpred

LUMO,a(k) − εpred
HOMO,a(Γ)

)
, where the maximum of conduction band of

materials investigated is located at Γ-point. A predicted band gap is direct if and only

if the predicted minimum of εLUMO is located at Γ-point. Lattice constants for the

semiconductors are scanned from 5.4 Å to 6.5 Å in step of 0.05 Å including extra points

correspond to the lattice constant reported in the literature (see Tabel 5.2). This range

covers all equilibrium constants reported for all the semiconductors considered.

We quantify the performance of our predictions using the mean absolute error

(MAE) of a prediction to the entire ith band of a target material at lattice constant

a, made from some reference material as

MAEi,a(ref, tar) =
∑
k

|εpred
i,a (k)− εtrue

i,a (k)|w(k), (5.2)

where εi,a(k) is the ith eigenvalue of Hamiltonian at lattice constant a and crystal mo-

mentum k. w(k) is the corresponding Monkhorst-Pack[125] weight for the sampled

special k-points. Throughout this chapter, the error reported corresponds to average

over all bands and lattice constants. The subscripts i and a in Eqs. (5.1) and (5.2) are

omitted unless noted otherwise.

5.2.2 Alchemical band structure prediction of binary III-V and IV-IV

semiconductors

The averaged MAE over all lattice constants and bands for all combinations of ref-

erence/target pair, or alchemical path, is on display in the upper panels in Fig. 5.1.

Overall, decent agreement is found with most predictions being in agreement with tar-

get by less than 0.5 eV. Alchemical estimates with averaged MAE less than 0.2 eV are

highlighted by the white circles. A general trend can be observed: Predictions using

semiconductors containing 3rd-row elements in the reference give overall the largest av-

eraged MAE, when the target material has elements from the 5th row, as can be seen by

the red/orange corner of the upper panels (left for III-V semiconductors and right for

IV-IV semiconductors) in Fig. 5.1. A similar target-reference pattern has been observed

for alchemical predictions of covalent bonding, and is due to lack of similarity of electron

densities (see Chapter 4)

A scatter plot between averaged MAE and integrated electron density difference,

defined as ∆ρ(r) = ρtar(r)− ρref(r), is shown in the lower left panel in Fig. 5.1. The

results suggest that there is an upper error bound: Any alchemical path with small

density changes will give a small predictive error to band structure, as all the points lie
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Figure 5.1: The upper panels: Prediction errors of band structure on alchemical
paths for III-V (upper left) and IV-IV (upper right) semiconductors. Errors less than
0.2 eV are highlighted by white circles. Combinations with

∫
dr|∆ρ(r)| < 0.5 a.u. are

highlighted by white crosses. For guidance, the relevant block in the periodic table
is shown in the top right corner. The lower left panel: Correlation of averaged MAE
and integrated density difference for III-V and IV-IV semiconductors. The error bars
represent the variations due to changes in lattice constant of the corresponding term.
The lower right panel: Scatter plot of band gap prediction vs. true for alchemical
paths with

∫
dr|∆ρ(r)| < 0.5 a.u.. The region with negative Eg is highlighted by the

gray background. A linear fit gives Etrue
g ≈ 0.93Epred + 0.019 eV, with R2 = 0.93,

RMSE = 0.047 eV and MAE = 0.036 eV.

beneath the red dotted line. However, a small error does not necessarily imply small

density changes, as many results with small predictive error correspond to large density

changes. This is because the band structure is determined by the relative differences in

Hamiltonian eigenvalues and the corresponding orbital structure. Cancellation of higher

order (curvature) effects along the alchemical path can lead to a small predictive er-

ror for first order estimates yet large density change. Similar error cancellation has also

been discussed in the context of covalent bonding in Chapter 4. The fact that small den-

sity changes imply accurate predictions can be used as a sufficient condition to detect

good predictive power. This might be useful for future studies if decent approxima-

tions to inexpensively estimate electron density changes can be found. The region with∫
dr|∆ρ(r)| < 0.5 a.u. electron/primitive cell is highlighted by the white background in

the lower left panel. The band gap predictions of the corresponding alchemical paths
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Figure 5.2: Band structure and DOS of alchemical predictions with minimal error.
AlAs predicted from GaAs is plotted in the upper panels, while SeGe predicted from
Ge is plotted in the lower panels. The true (predicted) band structure and DOS of the
target crystals are represented by black solid (blue dashed) curves, while black dotted

curves represent the reference crystals. Fermi-level is shifted to zero.

highlighted as white crosses in the upper panels of Fig. 5.1. A scatter plot versus the true

band gap is shown in the lower right panel, remarkable agreement is found with MAE

of less than 0.05 eV. The negative Eg in the lower right panel of Fig. 5.1 correspond to

GaSb and InSb with small lattice constants. In such environment, the conduction band

minimum is lower than the valence band maximum. Notice that decent predictive power

can be achieved by alchemical predictions, satisfying the sufficient condition above, even

at such extreme situation.

Band structures and density of states (DOS) corresponding to two alchemical paths

exhibit minimal predictive errors: AlAs predicted with GaAs as a reference, and SiGe

predicted with Ge as a reference. Corresponding results are plotted in Fig. 5.2. The

prediction correctly captures the change from direct band gap at Γ in Brillouin zone for

GaAs to indirect band gap at X for AlAs. Furthermore, most of the other details in the

band structure and DOS are correctly predicted.

It is possible to use III-V semiconductor reference calculations to predict the band

structure of other IV-IV semiconductors. However, such interpolations do not provide

satisfactory predictive power when using only first order alchemical derivatives, due to

the dissimilarity of the electronic density. Similar conclusions hold when attempting to

predict band structures of II-VI semiconductors using III-V reference densities.
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Figure 5.3: Schematic illustrations of the hybrid gradient based GA, described in
Algorithm 1. Left panel presents the alternating procedures, full DFT and GA search,
with two optimization steps. Right panel illustrates the mechanism of the mating
procedure. For clarity, the cubical zinc blende unit cell of 8 atoms (4 Ga or Al and 4 As)
are shown instead of fcc supercell. The 4 symmetrically unique atoms are highlighted.
A child crystal is generated via from parent A (blue) and parent B (green). Atom site
1, 3, and 4 of the child crystal are inherited from parent A while atom site 2 is inherited
from parent B. A mutation occurred at atom-site 4 (yellow). The resulting child crystal

is evaluated alchemically and inserted to the population list.

5.2.3 Band structure engineering

Motivation

Now we turn to addressing the “inverse question”, utilizing alchemical derivatives.[8]

Based on the sufficient condition discussed above and on display in Fig. 5.1, alchemical

predictions provide good predictive power for III-V semiconductors when swapping Ga

for Al or vise versa. We have investigated if this kind of predictive accuracy is sufficient

to enable the design of crystals made up of Al, Ga, and As.

In this context, the inverse question can be formulated as follows: Assuming that

AlxGa1−xAs crystals can be fabricated with atomistic control, e.g. using techniques

such as additive nanomanufacturing[3–5], without vacancy or replacement defects, what

is the precise spatial arrangement of Al and Ga in the crystal which will result in a

maximal direct band gap? To search for crystals with large direct band gap is relevant

for optoelectronic and quantum computing applications. However, from the alchemical

perspective, the choice to maximize the direct band gap is arbitrary. In fact, any other

property could have been targeted just as well, as long as alchemical estimates can be

set-up.

In order to assess the usefulness of alchemy for design, we investigate disordered

AlxGa1−xAs crystals with an explicit description of each III-site occupancy, using 3×3×3

face-centered-cube (fcc) supercells with 54 atoms. The objective of the optimization

is set to maximize the band gap while the bottom of the conduction band must be
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located at Γ-point in the Brillouin zone. To this end, we vary the mixing ratio of

Al and Ga, as well as their locations. Instead of performing a DFT evaluation for

each candidate crystal, the band structure of a candidate crystal is estimated using

alchemical derivatives as presented in Sec. 5.2.1. Each alchemical prediction takes less

than 1% of the computational cost for a full DFT band structure calculation. This

enables the rapid exploration of many configurations and mixture ratios with decent

accuracy. The Brillouin zone of the supercell is unfolded such that it corresponds to

the one from a primitive cell using spectral weights.[126, 127] There are 27 III-sites

in a 3×3×3 AlxGa1−xAs crystal, which can be either Al or Ga. This permits 227

candidate crystals (including some redundant duplicates due to symmetry). As such,

despite the location of atoms being clamped, the CCS for AlxGa1−xAs is extremely high

dimensional. Consequently, even with alchemical estimates, it is prohibitive to scan

through the entire space.

Hybrid gradient based genetic algorithm

A genetic algorithm (GA) is used for stochastic search of the most promising directions

for following steepest descent steps using alchemical derivatives. The pseudocode of the

global optimization using such hybrid gradient based GA is shown in Algorithm 1

Each of the routines (denoted in bold) in Algorithm 1 is described below:

• hybrid optimization: The main routine consist of: A gradient sampling pro-

cedure GA search; and a wavefunction updating procedure full DFT following

the steepest gradient, as schematically shown in the left panel of Fig. 5.3. The

convergence criterion |Ejg − E(j−1)
g | < 0.001 eV at jth optimization step.

• full DFT: It performs full DFT evaluations on the requested crystals and returns

the best corresponding true band gap, Etrue
g , and orbitals, {φi}.

• GA search: The routine stochastically samples the alchemical estimates, using

reference orbitals {φi}. The initial population of twenty crystals is randomly gen-

erated. The best five crystals are used for full DFT evaluations. The sampling

criterion is at least 1400 crystals with direct band gap are found. And the differ-

ence between the average of the top-20 population, Ēpred
g , and the best predicted

crystal, Ebest
g , is less than 0.02 eV.

• get parents: At each iteration of GA search, two parents, ParentA and ParentB,

are randomly drawn from the top-20 of all searched crystals. In other words, the

population size of GA is twenty.

• mate: The routine to generate a child from two parent crystals. The occupancy

at each of the III-sites in the child crystal is randomly inherited from either parent
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Algorithm 1 Hybrid gradient-based/genetic algorithm using alchemical derivative for
crystal optimization. The pseudocode of the main routine, hybrid optimization, and
two primary functions, full DFT and GA search, are explicitly stated. The variables are
denoted by typewriter font.

procedure hybrid optimization(starting crystal)

E
(0)
g ← 0

j ← 1

(E
(j)
g , {φ(j)

i })← full DFT(starting crystal)

while |E(j)
g − E(j−1)

g | > 0.001 eV do

top 5 predicted crystals ← GA search({φ(j)
i })

(E
(j+1)
g , {φ(j+1)

i }) ← full DFT(top 5 predicted crystals)
j ← j + 1

return E
(j)
g

function full DFT(crystals)
preform full DFT evaluations on every crystals

return (Etrue
g , {φi}) of the best crystal among crystals

function GA search({φi})
initialize population of size 20
history ← population

Epred
g ← alchemical evaluation({φi}, population)

initialize Ēpred
g and Ebest

g

j ← 1
while j < 1400 and |Ēpred

g − Ebest
g | < 0.02 eV do

(ParentA, ParentB) ← get parent(population)
Child ← mate(ParentA, ParentB)
if Child is not in population then
{Epred

g } ← alchemical evaluation({φi}, Child)
update population

if Epred
g is direct then
j ← j + 1
update Ēpred

g and Ebest
g

else
Epred
g = 0

update history

return top 5 crystals in the population and history



Contents 50

0 200 400 600 800 1000 1200 1400
iterations (within the first GA search)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

E
p
re

d
g

 [e
V]

searched crystals
best in population
average of population

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
Epred
g  [eV]

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

E
tr

u
e

g
 [e

V]

best
good
bad
worst

L Γ X

wavevector k
-14
-12
-10
-8
-6
-4
-2
0
2
4

E
(k

) [
eV

]

x= 0.741, Eg = 1.413

0.2
0.4
0.6
0.8
1.0

Figure 5.4: Optimization history of the first GA search is plotted in the upper panel,
where the best crystal in the population at each iteration is highlighted by black crosses.
The averaged band gap value over the population of the best 20 crystals is indicated
by blue curve, while all searched crystals are plotted as gray crosses. Scatter plot
of Etrue

g vs. Epred
g in the first GA search is shown in the lower right panel for the

following four groups: The best, good, bad, and the worst. The same symbols are also
used to highlight the corresponding iteration in the upper panel. The linear fit gives
Etrue
g ≈ 0.7Epred

g + 0.28 eV, where R2 = 0.85, MAE = 0.014 eV, and RMSE = 0.018
eV. The true band structure of the Al0.67Ga0.33As crystal with largest predicted band

gap value (see Fig. 5.6 and table 5.1) is shown in the lower right panel.

with 50/50 possibility, as illustrated in the right panel of Fig. 5.3. A mutation rate

of 0.05% is used at each of the III-sites, where the atom type would flip from Al

to Ga or vise versa as indicated the yellow atom in the right panel of Fig. 5.3.

• alchemical evaluation estimate the band structure of the requested crystal using

reference orbital {φi}, as demonstrated in Sec. 5.2.2. If the prediction of the band

gap is indirect, the value of the direct band gap is set to 0.

Analysis: Optimization history

Three independent hybrid gradient based GA optimizations have been carried out, start

with three starting crystals: Pure GaAs and two random crystals, where either Ga or

Al is randomly chosen for each of 27 III-sites. All three hybrid optimizations converged

after two hybrid optimization steps, which give total six GA search histories. Only the
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first GA search history is extensively investigated. 3137 crystals have been evaluated

in total. Out of these, 1444 are predicted to be direct band gap crystal. Roughly half

of the searched crystals are indirect band gap. Etrue
g are calculated for the following

four groups of crystals from the first GA search history, depending on the sorted direct

band gap predictions: the best 50 Ebest
g , the top 491 to 504 Egood

g , the top 1001 to 1010

Ebad
g , and the worst 15 Eworst

g . The analysis of the first optimization history is shown

in Fig. 5.4, while the analysis of all three optimization histories is presented in Fig. 5.5.

In Fig. 5.4, the average trend of predicted direct band gap is moving upward as

the iteration proceed. It implies that the mating procedure in GA search steers the

population towards larger band gap. Since the band structure is determined by the

structure of occupied and unoccupied orbitals, the fact that a simple mating mechanism

(as in Fig. 5.3) works indicates that crystal truncation and catenation roughly preserve

the local structure of orbitals around each atom. As a result, the algorithm identifies

crystals with predicted band gap of around 1.6 eV after only several hundred iterations.

Among the best twenty crystals out of 1444 identified (see table 5.1) within the

first GA search, a crystal, Al0.74Ga0.26As (structure shown in Fig. 5.6), provides the

largest direct band gap of 1.413 eV
(
#(PBE)=1 in Table 5.1

)
. The unfolded true band

structure is plotted in the lower right panel in Fig. 5.4, where the spectral weight at

Γ-point is 61.4%. The prediction error of 0.18 eV, as the predicted band gap is 1.583

eV, is large but acceptable. The unexpectedly large error comes from the fact that 19

out of 27 Ga atoms in the pure GaAs crystal are being alchemically transformed into

Al, while only one atom is transformed for the aforementioned case of the primitive cells

used for Fig. 5.1. The larger error is expected due to the fact of larger perturbation.

Accordingly, alchemical predictions have less prediction error when made from reference

crystals with fewer alchemical transformations.

Despite the large prediction error, a decent correlation between the predicted band

gap and the true band gap can be observed, as shown in the lower left panel of Fig. 5.4.

Since the trends are preserved between Etrue
g and Epred

g , one GA search step is sufficient

to identify the global optima. Following the steepest gradient of the band gap derivative,

the consecutive GA searches confirm that the best crystals identified during the first

GA search belong to the best global optima (see the lower left panel of Fig. 5.5). The

qualitative identification of crystals with the largest band gap, therefore, indicates that

one-step hybrid optimization is possible, as long as the steepest gradient is found during

the first GA search.

Analysis: Optimized structure

The structure analysis on the history of the hybrid optimization is shown in Fig. 5.5.

Epred
g span from 0.9 eV to 1.6 eV in the history of the first GA search, as plotted as a
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Figure 5.5: The upper panel shows the sorted history of the first GA search according
Epred
g in Fig. 5.4 in descending order, with corresponding mole fraction x. Radial

distribution functions are shown in the lower panels. gfcc(r) is shown as the black circles
in both panels. The crystals used to calculate ḡbest(r) and ḡworst(r) are highlighted by
the left and right gray regions in the upper panel respectively. Error bars for ḡbest(r)
and ḡworst(r) denote the standard deviation among three hybrid optimization within
the corresponding best/worst regions. Gaussian smearing is applied for visualization.
Corresponding crystals of gtop(r) and glayer(r) are shown as the inset, where Al, Ga,

and As atoms are denoted by blue, green, and red spheres respectively.

sorted sequence in the upper panel of Fig. 5.5. The mole fraction x fluctuates between

30% to 70%, roughly following the trend of Epred
g . That is, larger x implies greater

possibility of larger Epred
g . However, the fluctuation of x implies the significance of

explicit Ga/Al spatial configuration. On the contrary to implicit methods, such as virtual

crystal approximation or special quasirandom structure[61, 128], a fixed mole fraction,

say x > 0.6, provides crystals of a wide range of band gap values 1.12 < Eg < 1.36 eV

(according to the linear fit from the history of the first GA search in the lower right

panel of Fig. 5.4). The band gap variation of 0.24 eV could be critical for applications

where high precision is required, such as quantum computing.

The lower panels of Fig. 5.5 show the analysis of radial distribution functions be-

tween Ga and Al atoms, calculated from the history of all three hybrid optimization

histories, or six GA searches (two hybrid optimization steps each). ḡbest and ḡworst are

calculated for the best and the worst crystals, as highlighted by the gray regions in the

upper panel, and averaged over all six GA searches out of three independent hybrid

optimization histories. Notice that the III-sites in the zinc blende crystal structure are
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identical to fcc structure. Since the Al-Ga radial distribution function of a random al-

loy of AlxGa1−xAs will give gfcc(r). It is therefore meaningful to compare with gfcc(r),

which is equivalent to Ga-Ga radial distribution function of a perfect GaAs crystal. The

comparison to gfcc(r) quantifies how much the structure differs from random alloy.

ḡbest(r) follows closely gfcc(r) except for a significant decrease in the number of

Al-Ga pairs separated by 12 Å, which indicates a structural motif in the best crystals.

The small standard deviation over 300 best crystals (50 from each of the six GA search

histories) suggests that this motif should be observable in most of the best crystals.

Moreover, the feature similar to gfcc(r) implies that the Ga and Al atoms form more or

less a homogeneous alloy, except for the structure motif which gives rise to the special

feature at 12 Å. The overall small standard deviations imply that similar structures can

be found within the best crystals. However, large standard deviations at r = 5.6 Å,

r = 6.9 Å, and r = 8.0 Å imply that small structural variations should be expected

among the best crystals. As an example, the best crystal Al0.74Ga0.26As
(
#(PBE)=1 in

Table. 5.1
)

from the first GA search is shown as gtop(r), where all peaks coincide with

ḡbest except for peaks located at r = 5.6 Å, r = 6.9 Å, and r = 8.0 Å. Since multiple

structures could reproduce any given g(r), however, the spatial motif which gives rise to

the decreased peak at 12 Å can not be easily visualized directly.

In contrast for the best crystals, there are more structural variations, as can be

observed by the large standard deviations in the lower right panel of Fig. 5.5. A rough

trend can be observed that ḡworst(r) tend to increase with respect to r. This means

the number of Al-Ga pairs as the nearest neighbor, r ≈ 4 Å, is reduced. This can be

exemplified by a layered Al0.67Ga0.33As structure, which results in a relatively small

band gap of Etrue
g = 1.19 eV, (see Fig. 5.5). Because the Ga atoms form a layer, two

out of four nearest neighbor sites for each Ga atom are occupied by two Ga atoms in

the same layer. The increases of glayer(r) with larger distances can be observed in in

Fig. 5.5. This suggests that Ga clusters are more likely to be found among the worst

crystals, rather than among the best ones.

HSE validation

To validate our results, we also calculated the corresponding HSE band gap which is

known to have better agreement with experiments than PBE.[129–131] The final popu-

lation of the best 20 crystals predicted by the first GA search is listed in Tab. 5.1, where

the crystals are sorted according to EHSE
g ordering. The best four HSE crystals are

shown in Fig. 5.6. The mole fraction x ≈ 0.7 is identified as transition point from direct

band gap to indirect band gap, which is in line with what implicit methods, such as

virtual crystal approximation or special quasirandom structure, predicted.[61, 128, 132]
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#1, Al0.67Ga0.33As #2, Al0.74Ga0.26As

#3, Al0.67Ga0.33As #4, Al0.7Ga0.3As

Figure 5.6: The best four crystals with EHSE
g ≈ 2.1 eV according to Table. 5.1. The

HSE ordering rank and the crystal formula with mole fraction is shown for each crystal.
The 3× 3× 3 supercell is extended to 6× 6× 6 to illustrate 2-fold symmetry, where Al,

Ga, and As are represented by blue, green, and red spheres.

(Fig. (5.5) linear fit in Fig. 5.4). Yet the ordering of the band gap value changes signifi-

cantly when using PBE or alchemical estimates.

Differences between the ordering of EPBE
g and EHSE

g are expected because it was

shown that the exact exchange gives better accuracy.[133] Different ordering between

Epred
g and EPBE

g is due to the higher order effects in CCS, where the first order gradient

does not reproduce the correct value at the end point of the alchemical interpolation.

Since the difference between Epred
g and EPBE

g is small, as shown in Fig. 5.1 and 5.4,

significant differences between Epred
g and EHSE

g can be expected as well.

5.3 Conclusion

We have discussed the performance of first order alchemical derivatives to calculate

band structures of III-V and IV-IV semiconductors. A sufficient condition for predictive

estimate has been formed. It can be formulated as following: If the integrated density

change is smaller than 0.5 a.u., errors of the predicted band structure are guaranteed

to be smaller than 1 eV. This condition is used to select a RCD application, where the

band structure of AlxGa1−xAs is optimized.

Direct band gap AlxGa1−xAs crystals with Eg > 2.1 eV and mole fraction x ≈ 0.7

were found. Inspection of radial distribution functions of crystals with largest direct band

gap suggests that for heterogeneous AlxGa1−xAs, such as quantum wells, quantum wires,
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Table 5.1: Sorted direct band gap of the best 20 AlxGa1−xAs crystals from the first
GA search. The ordering of HSE, HSE band gap EHSE

g , ordering of PBE, PBE band

gap EPBE
g , ordering of predicted band gap, predicted band gap Epred

g , mole fraction x,
and spectral weight of the bottom of conduction band at Γ-point wΓ are listed. All

band gap values are reported in eV.

# EHSE
g #(PBE) EPBE

g #(pred) Epred
g x wΓ (%)

1 2.100 5 1.400 8 1.583 0.67 70.72
2 2.099 1 1.414 9 1.583 0.74 61.39
3 2.098 13 1.405 16 1.572 0.67 70.87
4 2.098 12 1.394 18 1.569 0.70 64.76
5 2.098 9 1.413 2 1.601 0.74 59.77
6 2.098 2 1.406 3 1.594 0.74 62.34
7 2.098 8 1.400 6 1.589 0.74 59.43
8 2.098 18 1.390 10 1.582 0.67 67.89
9 2.096 17 1.396 1 1.601 0.70 65.48
10 2.096 3 1.376 4 1.593 0.67 67.63
11 2.096 20 1.382 19 1.569 0.70 64.54
12 2.096 16 1.397 5 1.590 0.70 63.40
13 2.096 15 1.379 15 1.573 0.67 69.01
14 2.096 14 1.368 20 1.568 0.67 66.22
15 2.096 7 1.370 12 1.576 0.67 70.31
16 2.095 19 1.376 13 1.575 0.70 64.57
17 2.095 6 1.382 7 1.585 0.70 63.47
18 2.094 10 1.382 11 1.579 0.70 63.12
19 2.094 11 1.367 14 1.574 0.67 68.18
20 2.092 4 1.359 17 1.570 0.67 70.64

Table 5.2: Lattice constants of III-V and IV-IV semiconductors in Å. Most of the
lattice constants are taken from Ref. [134], while SnSi from Ref. [135], GeSn from

Ref. [136], and SiGe from Ref. [137]

AlP 5.4635 AlAs 5.6600 AlSb 6.1355 Si 5.4310 SiGe 5.4320

GaP 5.4510 GaAs 5.6535 GaSb 6.0900 Ge 5.6580 GeSn 6.0758

InP 5.8600 InAs 6.0500 InSb 6.4700 SnSi 5.9610 Sn 6.4892

and quantum dots, one should expect smaller band gaps than for more homogeneous

crystals.

5.4 Computational details

Alchemy and PBE results were computed using the ABINIT package[138]. The PBE

functional[24] with Goedecker norm-conserving pseudopotentials[108, 109] and planewave

cutoff of 100 Ry was used for all single point GGA computations. Monkhorst-Park

mesh[125] in Brillouin zone of 6× 6× 6 for primitive cell band structure, and 3× 3× 3

for band structure optimization (with 3× 3× 3 fcc supercell) were used respectively.

HSE[28] results for AlxGa1−xAs 3× 3× 3 fcc supercell were obtained using the VASP[139]
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package with PAW[140] pseudopotentials. VASP default energy cutoff is used for all HSE

calculations. Experimental lattice constants (if available) were used for every crystal

considered in this report. Otherwise calculated values were used from the literature

(see table 5.2). Alchemical derivatives were printed by restarting with the reference

wavefunction in ABINIT, and setting the SCF iteration step to 0 to evaluate Eq. (2.28).

The results of all searched crystals are synchronized at a centralized database, where

the result are sorted and the top-20 population list are generated on the fly at each

optimization step. This setup permits massively distributed threads to be executed at

the same time. The 54-atom 3×3×3 supercell crystal is extended to 18×18×18 supercell

with 11664 atoms to cover larger Ga-Al distances for radial distribution function analysis.

Averaged radial distribution functions are calculated over the best 1-50 and the worst

51-100 crystals among six GA searches. Gaussian smearing with width 0.1 Å is applied

to each of the peaks for visualization purpose. The choice of the worst 51-100 instead

of the worst 1-50 crystals is to eliminate structural outliers.

Input generation and output analysis for band structure optimization were each

distributed to compute node, across different networks on the fly to minimize data

transfer. Only the final band structure was collected and maintained in a centralized

database. All scripts to generate input and analyze output, rely on python quantum

chemistry toolkit.[141] All of the data and most run scripts are publicly available on

GitHub.[142]



Chapter 6

Varying geometry: Analytic

derivative

6.1 Introduction

There is no mathematical limitation on how to construct alchemical paths under iso-

electronic condition. Rather than using a previously obtained binding curve to explore

PES of iso-electronic compounds with the same geometry as in the previous chapters, we

have also investigated if one can use only one reference calculation in order to estimate

the entire PES through “non-vertical” interpolations. We have further assessed the ap-

plicability of Taylor expansion of Eq. (2.27) to non-vertical changes in the following, i.e.

varying geometry and/or number of atoms between reference and target molecule. We

report numerical results for alchemical stretching of chemical bonds using non-vertical

transmutations.

6.2 Methods

The same notations are used as introduced in Sec. 4.2.3 for binding energy to hydro-

gen atoms in small molecules. For non-vertical changes however, we fix the reference

bond length d0 = deq to the equilibrium distance of reference molecule, resulting in

∆E(m)(deq) = 0. Eq. (4.5) becomes

∆E(1)(d) =
(
ER(d) + ∂λEλ(d)

)
(6.1)

−
(
ER(deq) + ∂λEλ(deq)

)
,

∆E(2)(d) =
(
ER(d) + ∂λEλ(d) +

1

2
∂2
λEλ(d)

)
−
(
ER(deq) + ∂λEλ(deq) +

1

2
∂2
λEλ(deq)

)
.

57



Contents 58

6.2.1 Second order derivative

Differentiation of Eq. (2.28), based on linear interpolated Hamiltonian in Eq. (2.26),

yields

∂2
λEλ =

∫
dr
(
∂λρ(r)

)(
∂λvλ(r)

)
, (6.2)

requiring the density response due to the alchemical perturbation. Again, at λ = 0

this amounts to the density response of the reference system. Evaluation of Eq. (6.2)

implies a differing density response for each target system. We have considered three

approximations to ∂λρ including second order perturbation theory with independent

particle approximation[143] (IPA), coupled perturbed (CP) approaches,[33, 144] as well

as finite difference approximation (FD). Note that Eq. (6.2) can be rewritten as ∂2
λE =∫

drdr′(∂λv(r))(∂λv(r′)) δ2E
δv(r)δv(r′) , where δ2E

δv(r)δv(r′) = χ(r, r′) is the static linear response

function or susceptibility, well established within conceptual DFT [16, 86, 92, 145–147].

Perturbation theory provides ways to estimate ∂λρλ(r).[85] Within IPA [143, 148,

149], the static density response for a close-shell system is approximated by

∂λρλ(r) ≈ −4
∑
ia

φi(r)φa(r)

×
∫
dr′

φi(r
′)φa(r

′)

εa − εi
∂λvλ(r′),

(6.3)

where {φi, εi} denote the ith occupied molecular orbitals (MOs) and their eigenvalues,

while {φa, εa} denote the ath unoccupied counterparts. IPA neglects the influence of the

alchemical perturbation on the Hartree and exchange-correlation (xc) potentials.[144,

146] Note that Eq. (6.3) becomes numerically exact for 1-electron system with converged

basis set within Hartree-Fock approximation, because of the absence of Coulomb and xc

interaction between electrons.

Recently, Yang, Cohen, De Proft and Geerlings derived an expression of the density

response that also includes the dependence of Coulomb and xc potential,[33] the CP

approach,[92]

∂λρλ(r) = −4
∑
ij

∑
ab

φi(r)φa(r)

×(M−1)ia,jb

∫
dr′ φj(r

′)φb(r
′)∂λvλ(r′),

(6.4)
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where the matrix elements of M are

Mia,jb = (εa − εi)δijδab + 4Jia,jb + 4Xia,jb,

Jia,jb =

∫
drdr′

φi(r)φa(r)φj(r
′)φb(r

′)

|r− r′|
,

Xia,jb =

∫
drdr′φi(r)φa(r)φj(r

′)φb(r
′)

×
(

δ2Exc
δρ(r)δρ(r′)

)
.

(6.5)

In the limit of Jia,jb → 0 and Xia,jb → 0, Eq. (6.3) and Eq. (6.4) are equivalent.

Alternatively, one can also introduce an explicit small perturbation and converge

the new density at ∆λ� 1. The density response can then be estimated via FD,

∂λρ(r) ≈ ρ∆λ(r)−ρR(r)
∆λ . In practice, instead of starting the SCF for the perturbed system

from atom based initial guesses, we restart with ρR(r) resulting in convergence within

few SCF steps.

6.2.2 Higher order derivatives

Møller-Plesset (MP) perturbation theory[29, 150] is used to estimate correlation energy

corrections based on converged Hartree-Fock results. The derivation of higher order

corrections in MP theory are equivalent to the mth order alchemical derivative. Here,

instead of the two-particle operator for electron-electron interaction as perturbation in

MP theory, the alchemical perturbation operator HT − HR can be used. Within IPA,

the MP formula can be directly applied to obtain any mth order derivative.

6.3 Alchemical stretching of H+
2

Since Hartree-Fock approximation is numerically exact for one-electron systems, we em-

ploy atomic basis set and all-electron calculation with the following alignment scheme:

One proton is centered at R1 = (0, 0, 0), the other is aligned along the +x-axis. Equilib-

rium bond length is used as the single reference system to estimate PES of H+
2 . Instead

of moving in real space, the stretching is done by simultaneous annihilation and creation

of nuclear charges at RR
2 = (deq, 0, 0) and RT

2 = (d, 0, 0). Once a single SCF is done for

deq, the entire PES of stretching is estimated up to m = 4 order, according to Eq. (4.4),

by scanning through various d while setting d0 = deq.

Results for alchemical predictions of H+
2 bonding potential using only one SCF calcu-

lation at equilibrium geometry are shown in Fig. 6.1(a). Due to the variational principle

for linearly coupled alchemical Hamiltonians,[43] ∆E(1) > ∆E for all interatomic dis-

tances. We note that this behaviour is absent for E in Fig. 4.2 due to the effect of PPs.

Inclusion of second order term improves the ∆E(1) prediction, yielding more reasonable
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Figure 6.1: mth order truncated Taylor series of H+
2 are denoted by ∆E(m) in (a) as

a function of d at λ = 1 and in (b) as a function of λ at d = 3 Å. Inset shows the error
of ∆E(m) at λ = 1 (c) Integrated density Pλ(x) =

∫
dydz ρλ(r) where r = (x, y, z), is

presented as a function of both λ and x at d = 3 Å where the integrated density values
at nuclei locations highlighted by red lines at x = 0 Å, x = 1.1 Å, and x = 3 Å, while
contour lines are draw at the bottom. (d) HOMO/LUMO levels, denoted by εH and εL

respectively, are plotted as a function of λ at d = 3 Å.

estimation. However, when including third and fourth order the performance deterio-

rates again with oscillating behaviour for varying order, as ∆E(3) overshoot and ∆E(4)

over corrects. Overall ∆E(2) gives the best prediction.

To explain the oscillating behaviour, it is necessary to understand how the system

responds to alchemical perturbation. When λ increases gradually from 0 to 1, the

nuclear charge decreases from 1 to 0 at RR
2 , while increasing from 0 to 1 at RT

2 . Using

the alchemical derivatives at λ = 0, truncated Taylor series based estimates are plotted

as a function of λ: ∆E(1), ∆E(2), ∆E(3), and ∆E(4) are linear, quadratic, third order,

and fourth order polynomial, respectively. Fig. 6.1(b) shows truncated Taylor series as

a function of λ, up to fourth order of ∆E at d = 3Å. Clearly, the truncated Taylor series

will fail to converge to ∆E at λ = 1 due to a sharp stabilization of ∆E at λ ≈ 0.9. This

implies a strong nonlinear electronic response occurring late in the alchemical coupling

regime. This results in the oscillating behaviour of the predicted PES in Fig. 6.1(a).

The inset of Fig. 6.1(b) demonstrates the oscillating behaviour of the prediction error

at λ = 1 as a function of Taylor expansion order. While the sign of error changes,

the magnitude of error also increases as one includes third or fourth order corrections.

Similar behaviour can be observed for other values of d.

The energy stabilization at λ ≈ 0.9 is due to a rapid rearrangement of electron

density at λ > 0.9, as illustrated in Fig. 6.1(c) where integrated density Pλ(x) is plotted
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as a function of both λ and x at d = 3 Å. Cohen and Mori-Sánchez already pointed out

that electronic structure changes dramatically with infinitesimal changes in infinitely

separated nuclear charges.[77] One would expect this change to intensify as more basis

functions are taken into account. This behaviour is also illustrated in Fig. 6.1(c), where

integrated electron density planes are shown as a function of λ. The locations of the

proton at origin R1, as well as the location of the annihilated proton at RR
2 , and created

proton at RT
2 , are indicated by red lines. For λ > 0.5, both ground state and first

excited state orbitals are localized: The electronic ground state localized at R1 while

the first excited state is localized at RT
2 . At λ ≈ 0.9, the eigenvalues become degenerate,

resulting in a rapid change of the ground state density in order to meet the non polar

symmetry requirement of H+
2 , by taking a linear combination of both ground and first

excited state. Note that there is no orbital node at midpoint indicating a true ground

state for a dissociated H+
2 molecule. Also, the degeneracy only happens for the system

with fractional nuclear charges at λ ≈ 0.9, the degenerate perturbation theory is not

applicable is this case. The dramatic change in density stabilizes the system in λ, giving

rise to the sharp decrease in energy in Fig. 6.1(b), as λ increases from 0.8 to 1. The

degeneracy of the ground state and first excited state is illustrated by the eigenvalue

crossing in Fig. 6.1(d), where the eigenvalue of the (highest) occupied molecular orbital

(HOMO) and lowest unoccupied molecular orbital (LUMO) are plotted as a function of

λ. As the nuclear charge decreases at RR
2 while increasing at RT

2 , the HOMO-LUMO

gap decreases from λ > 0.3. Degeneracy occurs at λ ≈ 0.9 when HOMO-LUMO gap

reduces to zero. The degeneracy breaks when ground state and first excited state switch

order, which results in a delocalized ground state. By contrast, note that the eigenvalues

will not cross each other if the stretching is carried out by moving RR
2 in real space.

Crossing of eigenvalue surfaces limits the radius of convergence of alchemical Taylor

expansion series. As a result, the Taylor expansion for this system is diverging at λ = 1,

similar to many cases in Møller-Ploesset theory.[151–153] For asymmetric alchemical

interpolations, as exemplified in other examples of this study as well as in previous

studies,[9, 15, 31] the energy is typically smooth in all λ values, and perturbation based

approaches are reasonable.

6.4 Non-vertical iso-electronic changes

In the final section of this paper, we discuss alchemical non-vertical changes of molecules

with more than one electron. More specifically, we present numerical results of non-

vertical iso-electronic changes of molecules with ten electrons, including {CH4, NH3,

H2O, HF}, using all electron DFT. The H+
2 example has indicated that non-vertical

changes can profit from second order estimates. Since exact analytical expressions are
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Figure 6.2: Energy difference ∆E, first order truncated Taylor series ∆E(1), second

order truncated Taylor series calculated by coupled perturbed ∆E
(2)
CP, and second or-

der truncated Taylor series calculated by independent particle approximation ∆E
(2)
IPA

are plotted as black circles, red squares, blue open triangles, and blue filled trian-
gles respectively. Coupling Hamiltonians are arranged as follow: (a) CH4 → CH4, (b)
NH3 → CH4, (c) CH4 →NH3, and (d) NH3 →NH3. Insets of (b) and (c) show the

zoom-out energy scale for overall landscape.

not available for systems with so many electrons, we have relied on approximative second

order expressions IPA and CP (see above).

Fig. 6.2 presents estimated R-H covalent bond potentials of CH4 and NH3 predicted

by a single SCF, using optimized CH4

(
(a) and (c)

)
or NH3

(
(b) and (d)

)
geometry

as reference system. The second order derivative is calculated within IPA as well as

within CP. When the chemical composition of HR is the same as HT, Fig. 6.2(a) and

(d), ∆E(1) is an upper bound, i.e. it always overshoots due to the concave behaviour of

∆E as a function of λ, demonstrated by Fig. 6.1(b). It also fails to capture the changes

in equilibrium bond length when the chemical compositions of HR differ from HT, as

can be seen in Fig. 6.2(b) and (c).

∆E
(2)
IPA predicts a saddle point in Fig. 6.2(a) and (d), instead of a minimum at

optimized geometry. When the chemical compositions of HR and HT are different,

∆E
(2)
IPA gives a large error as shown in the energy zoom out in the insets of Fig. 6.2(b)

and (c). Considering Jia,jb and Xia,jb provides reasonable energy estimates, with ∆E
(2)
CP

outperforming ∆E
(2)
IPA. The superior performance of ∆E

(2)
CP over ∆E

(2)
IPA indicates that

the contributions of Coulomb and xc energy due to density response are crucial. In other

words, matrix elements Jia,jb and Xia,jb in Eq. (6.5) are not negligible for alchemical

perturbations, especially for varying chemical composition.
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Table 6.1: Prediction errors using first and second order based alchemical estimates
for non-vertical changes in ten electron systems. Deviation of predicted energy mini-
mum from actual ∆Eeq [kcal/mol], corresponding bond length deviation ∆deq [Å], and
vibration frequency ∆ωeq. Numerical results from first order ∆E(1), second order with

independent particle approximation ∆E
(2)
IPA, and second order with coupled perturbed

∆E
(2)
CP truncated Taylor series are presented. Average is calculated for each row in Avg

column.

∆E(1):

HR CH4 NH3 H2O HF Avg

CH4

∆Eeq -0.22 -2.30 -9.63 -21.99 -8.54
∆deq -0.01 0.12 0.22 0.30 0.15
∆ωeq 6061. 3545. 2641. 1874. 3530.

NH3

∆Eeq -4.33 -0.04 -4.34 -14.01 -5.68
∆deq -0.13 0.002 0.10 0.19 0.04
∆ωeq 4218. 4268. 4622. 2449. 3889.

H2O
∆Eeq -32.78 -5.97 -0.0000 -4.88 -10.91
∆deq -0.27 -0.11 0.0005 0.09 -0.07
∆ωeq 4360. 3933. 3886. 2568. 3687.

HF
∆Eeq -120.8 -38.63 -7.95 0.0003 -41.85
∆deq -0.44 -0.25 -0.10 -0.0008 -0.20
∆ωeq 5772. 4047. 3982. 3560. 4340.

∆E
(2)
IPA:

CH4

∆Eeq -8.99 -437.5 -935.2 -1356. -684.4
∆deq -0.31 -0.41 -0.40 -0.39 -0.38
∆ωeq 2207. 9625. 12610. 14600. 9761.

NH3

∆Eeq -113.4 -4.10 -673.2 -1394. -546.1
∆deq 0.29 -0.27 -0.45 -0.43 -0.21
∆ωeq 470.9 1471. 11200. 12660. 6452.

H2O
∆Eeq -198.7 -90.18 -0.007 -809.4 -274.6
∆deq 0.16 0.21 0.007 -0.43 -0.01
∆ωeq 2949. 1124. -1484. 9157. 2937.

HF
∆Eeq -212.6 -140.4 -64.95 0.002 -104.5
∆deq 0.05 0.11 0.15 -0.001 0.08
∆ωeq 6035. 4110. 1975. -1177. 2736.

∆E
(2)
CP:

CH4

∆Eeq -0.39 -2.74 -19.70 -41.12 -15.99
∆deq -0.02 -0.07 -0.10 -0.10 -0.07
∆ωeq 1663. -495.7 2116. 3584. 1717.

NH3

∆Eeq 0.90 -0.04 -1.84 -15.17 -4.04
∆deq -0.04 0.007 -0.06 -0.10 -0.05
∆ωeq 2133. 140.4 -1480. 1690. 620.9

H2O
∆Eeq 5.78 0.77 0.0000 -1.51 1.26
∆deq -0.08 -0.02 0.002 -0.04 -0.03
∆ωeq 2207. -75.3 -194.2 -345.3 398.0

HF
∆Eeq 13.12 4.25 0.65 0.001 4.50
∆deq -0.14 -0.07 -0.02 -0.0006 -0.06
∆ωeq 3501. 2272. 1074. -247.5 1650.
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Figure 6.3: ∂λPλ(x) is calculated by finite difference ∂λPλ(x) ≈ P∆λ(x)−Pλ=0(x)
∆λ .

∂λPλ(x), of HF→H2O at (a) d = 0.5 Å for compression and at (b) d = 1.5 Å for
extension are plotted as a function of x and λ. Nuclear positions are highlighted by red
dashed lines, with F→O at x = 0Å, H→void at x = 0.93Å, two void→H at x = −0.22Å

and x = d, where void denotes the nuclei with zero charge.

Different performances for compressing bonds d < deq, and stretching bonds d > deq,

are found. ∆E
(2)
CP performs better in the region 0.5 Å ≤ d ≤ 1.5 Å, except for Fig. 6.2(b)

where ∆E
(2)
CP over shoot for d > deq. Another systematic asymmetric feature of ∆E(m)

is also observed i.e. ∆E
(2)
CP for HCH4 → HNH3 in Fig. 6.2(c) performs better than

HNH3 → HCH4 in Fig. 6.2(b). When a growing nuclear charge is placed in a region of

low density, it requires a larger nuclear charge to deform the density of reference system.

By contrast the density easily adapts to a growing charge when it is placed in a region

of high density. Lack of sensitivity results in nonlinear behaviour. Note that dramatic

changes of electronic structure, as demonstrated for H+
2 in Sec. 6.3, are not presented for

many-electron systems.[74, 154] Since the performance of ∆E
(2)
CP is determined by how

the density rearranges when λ is changing. One expects a near-constant ∂λρ through

out the alchemical path for minimal higher order contributions. This is illustrated for

the integrated density response of the alchemical path HF→H2O in Fig. 6.3. Consistent

behaviour is also observed for other alchemical paths of compressing vs stretching bond.

∂λPλ(x) varies less when λ changes from zero to one for d = 0.5 Å Fig. 6.3(a), when

compared with d = 1.5 Å Fig. 6.3(b). A near constant ∂λPλ(x) at d = 0.5 Å results in

better performance to ∆E
(2)
CP.

Table. 6.1 summarizes the results for all 4×4 combinations of HR → HT, where

PESs of HT: {CH4, NH3, H2O, HF} are predicted by optimized geometry of HR: {CH4,

NH3, H2O, HF}. Consistent trends of ∆E(1), ∆E
(2)
IPA, and ∆E

(2)
CP can be observed for

other combinations of HR → HT. Best performance of ∆E(1), ∆E
(2)
IPT, and ∆E

(2)
CP is

observed when the chemical composition of HR is the same as HT, where the alchemical

perturbation is minimal. When the chemical composition of HT differs from HR, a

Coulomb potential is placed on the heavy atom to mutate it from HR to HT. Since

the density peaks at the heavy atom, this Coulomb potential strongly perturbs the

density. Worse performances are therefore expected for heavy atom perturbations. The

importance of Coulomb and xc energy contribution to density response for alchemical
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perturbation is further confirmed by the superior performance of CP over IPA, in terms

of averaged signed error for ∆Eeq, ∆deq, and ∆ω.

Interestingly, ∆E(1) is competitively accurate with respect to ∆E
(2)
CP—at the en-

ergy minimum and when CH4 is used as reference compound: ∆E(1) gives Avg=-

8.54 kcal/mol, while ∆E
(2)
CP gives -15.99 kcal/mol. This could be due to the more de-

localized CH4 density, when compared to NH3, H2O, or HF. The delocalization results

in smaller nonlinear effects in density response when alchemical perturbation is applied.

6.4.1 Computation details

Numerical results for non-vertical iso-electronic alchemical changes have been obtained

using atom centered basis-sets. Restricted open-shell Hartree-Fock calculations have

been carried out using Cartesian aug-cc-pVTZ basis set[113] for H+
2 (Discussed in Sec. 6.3).

Eq. (6.3) and higher order derivatives are evaluated analytically by Gaussian expansion

of MOs. Reference geometry is first relaxed by Gaussian09[112] and the converged MO

coefficients are extracted to evaluate orbital integrals. NWChem[155] is used to scan ∆E

as a function of λ in Fig. 6.1(d) along alchemical path with discretization ∆λ = 0.01. It

is done by reassigning nuclear charges in the system.

Non-vertical alchemical changes in 10-electron molecules (discussed in Sec. 6.4) have

been calculated using the uncontracted Cartesian Def2TZVP basis set[156]. Uncon-

tracted neon basis is used for second row heavy atoms. Additional hydrogen basis

functions are placed along the stretching pathway, from d = 0.5 Å to d = 3.0 Å in in-

crements ∆d = 0.1 Å. All systems with integer nuclear charges have been calculated

using Gaussian09[112] while systems with fractional nuclear charges have been calcu-

lated using NWChem[155] with discretization ∆λ = 0.01. For each 0 ≤ λ ≤ 1, the atomic

density for SCF initial guess iterates through {C, N, O, F, Ne} to ensure convergence. In

all Gaussian and NWChem calculations we used Cartesian/Real spherical harmonic basis

functions.

6.5 Conclusion

We have found oscillating behaviour in predictions of truncated Taylor series when vary-

ing the order in the non-vertical alchemical stretching of H+
2 . The crossing of eigenvalue

surfaces is due to the necessity to be symmetric at λ = 0 and λ = 1. This leads to

a diverging series Taylor series, yet the second order correction could still provide fair

predictions. The behavior of first and second order truncated alchemical Taylor series

expansions in chemical space has been analyzed for molecules with many electrons. Nu-

merical evidence of the superior performance of ∆E
(2)
CP over ∆E

(2)
IPA suggests that the

response of Coulomb and xc energy to alchemical perturbation are crucial. Since the

magnitude of higher order terms is determined by the variation of ∂λρ when changing
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λ, a careful choice of target state could lead to better predictive power of truncated

Taylor series. This indicates alchemical coupling via minimal density changes could lead

to perturbative estimates with better predictive power.



Chapter 7

Conclusions

The applicability of alchemical derivatives to the exploration of CCS has been investi-

gated in this thesis.

Some historical notes and recent efforts are discussed in chapter 3. Among other

results, a sufficient condition for the linearizing alchemical path can be formulated as

Eq. (3.11). It is practical because for alchemical perturbations it is possible to carefully

design the coupling Hamiltonians such that they satisfy this condition.

Alchemical derivatives used to construct truncated Taylor series for estimating cova-

lent bond energies in small molecules within fixed geometries are presented in chapter 4.

Three significant conclusions can be drawn this study. Firstly, an universal correlation

between error minimizing reference bond length and the target’s equilibrium bond length

is found in Eq. (4.6). This relation holds across different elements. And it is also appli-

cable to σ- as well as to π-bonding. Secondly, if electron density information from higher

level of theory is numerically available, alchemical estimates can be made with chemical

accuracy at a fraction of computational cost, as shown in Fig. 4.3. Thirdly, accurate

first order predictions are possible if interpolating elements share the same position, and

have similar core radii.

In chapter 5, alchemical estimates are applied to solid-state systems. Qualitative

trends of alanates hydrogen absorption energy and vacancy energy ordering is achieved.

Quantitative predictions are made for band structure as well as density of states of

III-V and IV-IV semiconductors. It is found that if the integrated density differences

between the reference and the target system is smaller than 0.25 a.u./per atom, high

accuracy of the predicted band structure is guaranteed. With this insight, band structure

optimization of explicit disordered AlxGa1−xAs crystals has been carried out using a

hybrid gradient/genetic algorithm. The maximal direct band gap of 2.1 eV is achieved

by Al0.67Ga0.33As, as shown in Fig. 5.6

Alchemical perturbation involving changes in geometry is explored in chapter 6.

The significance of electron-electron interaction in second order alchemical estimates
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has been studied. Our results imply that it is necessary to take the response of electron-

electron interaction into consideration. If included, as within in coupled perturbed

Kohn-Sham approach, a descent estimate can be achieved. Moreover, a finite radius of

convergence, due to swapped eigenvalue ordering, is found for one-electron system of

H+
2 . This demonstrates that the choice of end points for alchemical paths can have a

severe impact on the convergence behavior of Taylor series based estimates in CCS.



Appendix A

Self-consistent field

Solving Eq. (2.19) with the information of
{
{ZI}, {RI}, N

}
is in principle done by the

following procedures:

1. At step s = 0, construct an starting density ρ(s) from an initial guess of {φ(s)
i }.

2. Solve the effective Schrödinger equation

(−∇2

2
+ v

(s)
eff (r)

)
φ

(s+1)
i (r) = ε

(s+1)
i φ

(s+1)
i (r), (A.1)

with the effective potential

v
(s)
eff (r) = vext(r) + v(s)

xc [ρ(s)](r) +

∫
dr′

ρ(s)(r′)

|r− r′|
, where ρ(s) =

occ∑
i=1

|φ(s)
i (r)|2.

3. Check consistency threshold, for example by
∑

i

∫
dr|φ(s+1)

i (r) − φ
(s)
i (r)| or by

energy difference where energy is evaluated by Eq. (2.8).

4. If the new solution {φ(s+1)
i } not yet consistent with old one {φ(s)

i }, update

{φ(s)
i } 7→ {φ

(s+1)
i }

and go back to procedure 2.

In practice, orbitals {φi} are expanded by a finite set of basis functions. These

basis function can be a linear combination of 3D Gaussian functions, planewaves, a set

of real space grid points, wavelet functions, or even some combinations of the basis

sets mentioned above. Implementation of Gaussian basis set and planewaves are briefly

summarized in Appendix B.
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Implementation

B.1 Gaussian basis set

Gaussian basis sets are among the most intuitive ways to discretize the Schrödinger

equation
(
Eq. A.1

)
. They provide a set of predefined electron-independent “atomic

orbitals” as a linear combination of some 3D Gaussian functions for each atom type

gI,l(x, y, z) =
∑
k

cI,kpI,lx(x)pI,ly(y)pI,lz(z) exp−αI,k(x2+y2+z2), (B.1)

where pI,l is the primitive polynomials (1, x, x2, x3, · · · ) of order l for atom I, l =

{lx, ly, lz} is the set of angular quantum number of each orbital, ck is the contraction

coefficient, αk is the exponential factor of each Gaussian function, and x2+y2+z2 = |r|2,

r being the distance to the atom’s position. Notice that the orthogonality is imposed

by the linear combination factor ck instead of the primitive polynomials for efficient

Gaussian integral evaluations.

The wavefunction of the mth molecular orbital can be expanded as

φi(r) =
∑
I,l

c
(m)
I,l gI,l(r), (B.2)

where c
(m)
I,l is the molecular orbital coefficient, which describes how the atomic orbital

recombine to molecular orbital (or eigenfunction of the Hamiltonian). Since the Gaussian

product can be integrated analytically,[19] each component of the Hamiltonian operator

in Eq. (2.8) can be easily evaluated. The matrix elements in Eq. (2.19) is therefore easy

to evaluate.
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B.2 Planewave basis set

Planewaves are a convenient basis functions for periodic systems. The computation

starts with a periodically repeating supercell, described by Bravais lattice vector {a1,a2,a3}
containing N electrons. These vectors determines the volume Ω, in which the wavefunc-

tion will be expanded by planewaves. A planewave basis function of this finite volume

is

fG(r) =
1√
Ω

exp(iG · r) ≡ |G〉, (B.3)

indexed by G such that the orthonormality condition, 〈G|G′〉 = δGG′ , is satisfied.

Notice that {G} is a discrete set of vectors due to the periodic boundary condition on a

finite volume boundary. The mth molecular orbital m is expanded by

φm(r) =
∑
G

cmG|G〉 (B.4)

Due to the finite size of the Bravais lattice vector, not every G satisfies the periodic

condition

fG(r + L) = fG(r), (B.5)

where L = l1a1 + l2a2 + l3a3, ∀ {l1, l2, l3} ∈ Z has the same periodicity as the lattice.

In other words, only a discrete selection of G is possible.

For convenience, the reciprocal lattice vector is defined as {b1,b2,b3}, such that

bi · aj = 2πδij . The G’s that satisfy Eq. (B.5) are integer multiples of reciprocal lattice

vectors such that

G · L = (g1b1 + g2b2 + g3b3) · L = 2π(g1l1 + g2l2 + g3l3), (B.6)

where G = g1b1 + g2b2 + g3b3, ∀ {g1, g2, g3} ∈ Z.

B.2.1 Bloch wavefunction

Under the notion of Slater determinant, the N -particle wavefunction can be approxi-

mated by a set of orbitals {φm} and eigenvalues {εm}, which solve the effective one-

particle Schrödinger equation (Hartree-Fock or Kohn-Sham equation)

(
− ∇

2

2
+ veff (r)

)
φm(r) = εmφm(r). (B.7)
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If the effective potential satisfies the periodic condition i.e. veff (r + L) = veff (r),

Bloch theorem showed that the solution of one-particle Schrödinger equation must satisfy

φmk(r) = exp(ik · r)umk(r)

= exp(ik · r)
1√
Ω

∑
G

cmG(k) exp(iG · r)

=
1√
Ω

∑
G

cmG(k)|G + k〉,

(B.8)

where cmG(k) is the k-dependent expansion coefficient of umk(r) and k is some given

wave vector in the reciprocal space. With this condition, the effective Schrödinger

equation can be rewritten in terms of uik(−1

2
(∇+ ik)2 + veff (r)

)
umk(r) ≡ Hkumk(r) = εmkumk(r). (B.9)

Notice that the momentum of electron in state φmk is

〈φmk| − i∇|φmk〉 = k + 〈umk| − i∇|umk〉. (B.10)

Therefore the momentum of electron in state φmk and φmk′ is different k 6= k′. An

momentum transfer is required for the transition φmk → φmk′ .

The final results are the average over all possible k values. In other words, instead of

infinitely many electrons, it is possible to consider only N electrons in the supercell but

averaging over infinitely many k-points. Specifically, the electron density is expressed

as

ρ(r) =
1

Ω

∫
Ω
dk
∑
m

φ∗mk(r)φmk(r)

=
1

Ω

∫
Ω
dk
∑
m

∑
GG′

cmk(G)∗cmk(G′) exp
(
i(G−G′) · r

)
.

(B.11)

B.2.2 Hamiltonian matrix element

If veff (r) is known, the left hand side of Eq. (B.7) can be rewritten for each k-vector as

a matrix equation

∑
G

〈G′ + k|
(
−∇2 + veff (r)

)
|G + k〉cmG(k) = εm(k)cmG′(k), (B.12)

where subscript m loops over the electronic states in the system. Notice that εm(k)

gives rise to the electronic band structure for each electron at k inside the first Brillouin
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zone. The matrix element is

〈G′ + k|
(
−∇2 + veff (r)

)
|G + k〉 =

1

2
|G + k|2δG′G + Veff (G)δG∆G, (B.13)

where Veff (G) is the Fourier coefficient of veff (r) at G and ∆G = G′ −G.

In practice, the large sum of reciprocal vector G is truncated by a cutoff value,

satisfying 1
2 |G|

2 < Ecut. And the k averaging is done with a finite set of k vectors with

corresponding weights wk. That is

∑
G

7→
Ecut∑
G

1

Ω

∫
Ω
dk 7→

∑
wk.

(B.14)

Moreover, Eq. (B.12) can be transformed into a set of predefined atomic wavefunction

basis, which can dramatically reduce the matrix size.

Notice that the Coulomb integral in veff (r) is computed via density instead of

wavefunctions. This trick reduces the computational cost of the Coulomb integral from

P 4 to P 2, where P is the number of planewaves within a cutoff condition. For this

reason, the exact exchange is very expensive under planewave implementation.

B.3 Density functional evaluation

One of the standard ways to calculate the density functional value Exc[ρ(r)] for a given

density ρ(r) at r is to use LibXC[23] library, which provides standard C/Fortran API.

Local functionals can be evaluated numerically for each r. The density functional eval-

uation is therefore decoupled from the underlying implementation of the basis function.

Gaussian basis function Becke integration grid[157] can be used for numerical eval-

uations. It is essentially a spherical grid system centered at each atom with a weighting

factor to guarantee correct integrated results. For Gaussian basis set, there is a open-

source Python interface implemented in the horton code[158] for Becke integration grid

generation.

Plane wave basis For planewave basis in periodic systems, on the contrary of using

Becke integration grid, the real space grid points are determined by the energy cutoff

value and the supercell lattice vector.



Appendix C

Pseudopotentials

Most of the chemical reactions can be accounted for by the changes in valence electron

distribution. On the contrary, core electrons are typically inert to changes of the chemical

environment. For this reason, it is common to replace core electrons by predefined core

potentials, or pseudopotentials (PPs), to reduce computational cost. Moreover, the

orbitals of valence electrons are more smooth at the core region which further reduces

the number of required basis functions. The basic formulation is briefly discussed in this

section.

Let |φAE
i 〉 and |φPP

i 〉 be an orbital of valence electron indexed by i with eigenvalue

εi for all electron and PP Hamiltonian respectively. They are connected by

|φAE
i 〉 = |φPP

i 〉+
core∑
j

aj |χj〉, (C.1)

where |χj〉 is the jth core state with eigenvalue εj . Notice that |φAE
i 〉 and |χj〉 are both

eigenfunctions of all electron Hamiltonian. Due to the orthogonality between eigenfunc-

tions, we have

〈χk|φAE
i 〉 = 〈χk|φPP〉+

core∑
j

aj〈χk|χj〉 = 0. (C.2)

The all electron valence state can therefore be rewritten as

|φAE
i 〉 = |φPP

i 〉 −
core∑
j

〈χj |φPP
i 〉|χj〉, (C.3)
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which gives exactly the same orthogonality. Replace Eq. (C.3) in to all electron Schrödinger

equation H|φAE
i 〉 = εi|φAE

i 〉 we get

H
(
|φPP
i 〉 −

∑core
j 〈χj |φPP

i 〉|χj〉
)

= H|φPP
i 〉 −

core∑
j

εj |χj〉〈χj |φPP
i 〉

= εi

(
|φPP
i 〉 −

core∑
j

〈χj |φPP
i 〉|χj〉

)
.

(C.4)

This implies the eigenvalue equation

H|φPP
i 〉+

(∑
j

(εi − εj)|χj〉〈χj |
)
|φPP
i 〉 = εi|φPP

i 〉, (C.5)

where the PP operator can be defined as VPP(ε) =
∑

j(ε − εj)|χj〉〈χj |, which is also

know as the projector.

In practice, PPs are parametrized for each atom type, combine with the shielded

Coulomb attraction potential for valence electron. Core states are expanded by spherical

harmonics to mimic the wavefunction of core electrons. The projector can be imple-

mented as a nonlocal potential
∑

j |χj〉〈χj | = Vnl(r, r
′) where the integral gives

〈φi|
(∑

j

|χj〉〈χj |
)
|φi〉 =

∫
drdr′φ∗i (r)Vnl(r, r

′)φi(r
′). (C.6)

Goedecker PPs are used throughout this thesis. It is in the form of

Vloc(r) + Vnl(r, r
′), (C.7)

where Vloc is the local screened Coulomb potential for valence electrons and Vnl is the

nonlocal potential consists of projector. The local part is of the form

Vloc(r) = −Zeff

r
erf
( r√

2rloc

)
+

4∑
i=1

Ci

( r

rloc

)2i−2
exp

(
−
( r√

2rloc

))
, (C.8)

with parameters {rloc, C1, C2, C3, C4} defined for each atom type. The nonlocal part is

of the form

Vnl(r, r
′) =

∑
lm

∑
ij

〈r|plmi 〉hlij〈plmj |r′〉, (C.9)

where the projector is defined as 〈r|plmi 〉 = N l
iYlm

(
r
|r|
)
rl+2i−2 exp

(
− r2

2r2
l

)
with param-

eters {hlij , rl} defined for each atom type. Specific parametrizations can be found in

Ref. [109].
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[58] D. Alfé, M. J. Gillan, and G. D. Price. Constraints on the composition of the

Earth’s core from ab initio calculations. Nature, 405:172, 2000.

[59] S. Adachi. GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research

and device applications. J. Appl. Phys., 58:R1, 1985.

[60] T. Mueller and G. Ceder. Bayesian approach to cluster expansions. Phys. Rev. B,

80:024103, 2009.

[61] L. Bellaiche and D. Vanderbilt. Virtual crystal approximation revisited: Appli-

cation to dielectric and piezoelectric properties of perovskites. Phys. Rev. B, 61:

7877, 2000.

[62] D. G. Pettifor. Electron theory in materials modeling. Acta Mater., 51:5649, 2003.

[63] J. Harris and R. O. Jones. The surface energy of bounded electron gas. J. Phys.

F: Metal Phys., 4:1170, 1974.

[64] O. Gunnarson and B. I. Lundqvist. Exchange and correlation in atoms, molecules,

and solids by the spin-density-functional formalism. Phys. Rev. B, 13:4274, 1976.

[65] W. Koch and M. C. Holthausen. A Chemist’s Guide to Density Functional Theory.

WILEY-VCH, Germany, 2nd edition, 2002.

[66] J. P. Perdew and A. Zunger. Self-interaction correction to density-functional ap-

proximations for many-electron systems. Phys. Rev. B, 23:5048, 1981.

[67] M. Levy. Density-functional exchange correlation through coordinate scaling in

adiabatic connection and correlation hole. Phys. Rev. A, 43:4637, 1991.



Bibliography 81

[68] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J.

Singh, and C. Fiolhais. Atoms, molecules, solids, and surfaces: Applications of

the generalized gradient approximation for exchange and correlation. Phys. Rev.

B, 46:6671, 1992.

[69] M. Seidl, J. P. Perdew, and M. Levy. Strictly correlated electrons in density-

functional theory. Phys. Rev. A, 59:51, 1999.

[70] P. Politzer and R. G. Parr. Some new energy formulas for atoms and molecules.

J. Phys. Chem., 61:4258, 1974.

[71] M. Okruss, R. Müller, and A. Hese. High-resolution ultraviolet laser spectroscopy

on jet-cooled benzene molecules: Ground and excited electronic state polarizabili-

ties determined from static Stark effect measurements. J. Chem. Phys., 110:10393,

1999.

[72] W. Xue and M. A. Ratner. Microscopic study of electrical transport through

individual molecules with metallic contacts. I. Band lineup, voltage drop, and

high-field transport. Phys. Rev. B, 68:115406–1, 2003.

[73] A. J. Cohen, P. Mori-Sánchez, and W. Yang. Insights into current limitations of

density functional theory. Science, 321:792, 2008.

[74] A. J. Cohen, P. Mori-Sánchez, and W. Yang. Challenges for density functional

theory. Chem. Rev., 112:289, 2012.
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