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Summary

Despite the key role of magnetic resonance imaging (MRI) in the diagnosis and monitoring

of multiple sclerosis (MS) and cerebral small vessel disease (SVD), the association between

clinical and radiological disease manifestations is often only moderate, limiting the use of

MRI-derived markers in the clinical routine or as endpoints in clinical trials. In the projects

conducted as part of this thesis, we addressed this clinico-radiological gap using two different

approaches.

Lesion-symptom association: In two voxel-based lesion-symptom mapping stud-

ies, we aimed at strengthening lesion-symptom associations by identifying strategic le-

sion locations. Lesion mapping was performed in two large cohorts: a dataset of 2348

relapsing-remitting MS patients, and a population-based cohort of 1017 elderly subjects.

T2-weighted lesion masks were anatomically aligned and a voxel-based statistical ap-

proach to relate lesion location to different clinical rating scales was implemented. In

the MS lesion mapping, significant associations between white matter (WM) lesion loca-

tion and several clinical scores were found in periventricular areas. Such lesion clusters

appear to be associated with impairment of different physical and cognitive abilities,

probably because they affect commissural and long projection fibers. In the SVD lesion

mapping, the same WM fibers and the caudate nucleus were identified to significantly

relate to the subjects’ cerebrovascular risk profiles, while no other locations were found

to be associated with cognitive impairment.

Atrophy-symptom association: With the construction of an anatomical physical

phantom, we aimed at addressing reliability and robustness of atrophy-symptom associ-

ations through the provision of a “ground truth” for atrophy quantification. The built

phantom prototype is composed of agar gels doped with MRI and computed tomography

(CT) contrast agents, which realistically mimic T1 relaxation times of WM and grey mat-

ter (GM) and showing distinguishable attenuation coefficients using CT. Moreover, due

to the design of anatomically simulated molds, both WM and GM are characterized by

shapes comparable to the human counterpart. In a proof-of-principle study, the designed

phantom was used to validate automatic brain tissue quantification by two popular soft-

ware tools, where “ground truth” volumes were derived from high-resolution CT scans.

In general, results from the same software yielded reliable and robust results across scans,

while results across software were highly variable reaching volume differences of up to 8%.
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1 Introduction

1.1 Motivation

Magnetic resonance imaging (MRI) is a key tool in supporting the diagnosis and monitoring

of many neurological diseases, including multiple sclerosis (MS) and cerebral small vessel

disease (SVD) [1, 2]. In both diseases, local white matter (WM) lesions are the classic hall-

mark pathologies. Damage also occurs in grey matter (GM) as well as diffusely in normal

appearing WM, and may lead to regional or total brain volume loss called atrophy [3, 4].

Despite the central role of MRI in assessing these pathologies, the association between clin-

ical and radiological disease manifestations is often only moderate [5–7]. This limits the

use of MRI-derived markers in the clinical routine or as endpoints in clinical trials. In our

projects, we aimed at bridging this clinico-radiological gap using two different approaches.

Lesion-symptom association: By applying voxel-based lesion-symptom mapping to

two large cohorts of MS and SVD patients, we aimed at strengthening the lesion-symptom

associations by identifying strategic lesion locations.

Atrophy-symptom association: With the construction of an anatomical physical

phantom we aimed at providing a ”ground truth” for the validation of atrophy mea-

surements, which will allow to address the robustness and reliability of atrophy-symptom

associations.

1.2 Contribution

Lesion-symptom association: Voxel-based lesion-symptom mapping was performed in

two large cohorts: a dataset of 2348 relapsing-remitting MS patients, and a population-

based cohort of 1017 elderly subjects showing lesions characteristic of cerebral SVD. For

both studies, an automatized registration pipeline for alignment of the T2-weighted lesion

masks was implemented. In a second step, a voxel-based statistical approach to relate lesion

location to different clinical measures was encoded.

Previous voxel-based lesion-symptom mapping studies have already demonstrated their

validity and superiority over classical lesion-symptom correlation studies in both MS [8–14]

and SVD [15–19]. However, results across studies were partially inconsistent, some analy-

ses produced non-specific results, lesion-symptom associations were sometimes difficult to

interpret, and some studies even failed to demonstrate any relevance of lesion location for
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some clinical rating scales. This might partly relate to methodological issues linked to the

stereotaxic alignment of lesion masks and the conventional parametric statistical analyses

employed in previous studies. Indeed, in several previous studies, lesion masks were aligned

to a standard brain template using linear transformations only, potentially introducing bias

regarding the exact anatomical locations [20]. Moreover, the binary nature of the lesion

maps was not respected, e.g. if conventional parametric statistical models were applied

[14]. Finally, even in study cohorts of up to several hundred patients, voxel-based lesion

mapping approaches may not allow for sufficient statistical power in regions with low lesion

coverage [7]. In this regard, large cohorts including up to thousand or more patients depict

a more promising framework to study lesion-symptom associations. For these reasons, we

here propose two optimized preprocessing and data analysis pipelines allowing for robust

automatized lesion-symptom mapping in big sample input data.

Atrophy-symptom association: We here suggest the design of an anthropomorphic phys-

ical phantom mimicking brain WM and GM, which, after its construction, is used in a

proof-of-principle study to validate two commonly-used software tools for the quantification

of atrophy.

In previous validation studies, it was shown that the choice of the algorithm for autom-

atized atrophy quantification had the largest impact on variability of computed WM and

GM volumes. Since the discrepancies between results reach the same order of magnitude as

volume changes observed in disease, these software effects were shown to limit the usability

of these methods for following volume changes in individual patients over time [21, 22]. To

date, validation of these methods for the quantification of atrophy has never been done

using a physical phantom, which realistically mimics T1 relaxation times and structure of

the main brain compartments. A number of multipurpose physical phantoms mimicking

brain T1 relaxation times and showing increased anatomical similarity to the real counter-

part have been developed by research groups or academic centers [23–28]. These existing

physical phantoms were hampered by a few limitations – most importantly the substantial

simplification of brain anatomy or the presence of physical (e.g. 3D-printed) walls separating

the phantom compartments. In this regard, due to the increased anatomical similarity and

the absence of in-built compartments, the here proposed phantom allows to more realisti-

cally mimic atrophy quantification compared to existing phantoms. Moreover, following the

validation of two software, we are able to identify the algorithm that provides more robust

and reliable results for future studies.

1.3 Outline

In Chapter 2, the reader is made familiar with the medical background of MS and cerebral

SVD, emphasizing on the role of MRI in these two neurological diseases.

Chapters 3 and 4 focus on the conducted voxel-based lesion-symptom mapping studies.

Chapter 3 starts by describing the mismatch between disease severity and conventional

lesion-derived metrics, discusses the role of strategic lesion location in strengthening the

associations between clinical and radiological disease manifestations, introduces the concept
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behind voxel-based lesion-symptom mapping, and references to prior work that has been

done in this context. Chapter 4 describes the two publications on the voxel-based lesion-

symptom mapping studies, which were conducted as part of this thesis.

Chapters 5 and 6 describe the construction and application of the designed anatomical

physical phantom used for the validation of brain atrophy measurements. Chapter 5 gives an

introduction on the role of atrophic disease manifestations in explaining clinical disability

in neurological disease, describes different established methods used for the validation of

brain tissue quantification, and refers to existing physical phantoms mimicking shape and

MR relaxation times of brain WM and GM compartments. Chapter 6 comprises the second

part of the thesis on the construction of an anatomical phantom used for the validation of

brain atrophy measurements, which resulted in two publications: a first manuscript on the

phantom construction, and a proof-of-principle study where the designed phantom is used to

validate the quantification of WM and GM atrophy by two commonly-used software tools.

The thesis is completed by a discussion and conclusion in Chapter 7.
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2 Medical background

This chapter provides a brief introduction on some important aspects of the two neurological

diseases MS (Section 2.1) and cerebral SVD (Section 2.2), including epidemiology, etiology,

symptoms and subtypes, pathogenesis, and diagnosis. Most importantly, the radiological

manifestations of both diseases are discussed.

2.1 Multiple sclerosis

2.1.1 Disease overview

MS is a chronic, immune-mediated, demyelination disorder of the central nervous system

[29]. An early detailed description of MS dates back to the 19th century and the French

neurologist Jean-Martin Charcot. Indeed, Charcot’s description of MS (described as “la

sclérose en plaques”) in 1868, accompanied by the first illustrations on the expansion of

the so-called plaques from the ventricles into the cerebral hemispheres, provided the earliest

insight into the pathology of MS [30].

Epidemiology: MS is the most common cause of nontraumatic disability in young adults.

The incidence of MS is low during childhood and increases after the age of 18, reaching a

maximum between the age of 20-40 [31]. MS affects women more than men (sex ratio 2.5:1)

and the prevalence varies by geographic area. Across Europe, the prevalence rate of MS is

about 83 in 10’000 individuals [32].

Etiology: The etiology of MS is largely unknown, however, epidemiological data indicate

that both environmental (e.g. geographic latitude, tobacco exposure, obesity, and viral

infections) and genetic factors (e.g. female gender, genes mainly associated with immune-

pathway) play a key role in the disease development [29].

Symptoms and subtypes: The disease can present with changes in sensation, mobility,

balance, vegetative functions, vision, and cognition [33]. It is classified as either relapsing-

remitting or primary progressive based on the initial disease course. Relapsing-remitting

MS is more common, affecting 85–90% of patients with MS, and is characterized by relapses

followed by periods of remission of symptoms. Primary progressive MS, affecting 10–15% of

patients, is characterized by a slowly progressive increase in neurological disability over time.

Primary progressive MS typically presents at an older age than does relapsing-remitting MS.

People with relapsing-remitting MS may develop a progressive course with time (secondary

progressive MS) with a gradual increase in disability in this later disease phase [34].
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Pathogenesis: The pathologic hallmark of MS is multiple focal areas of myelin damage

and destruction within the central nervous system called plaques or lesions. Damage can

occur throughout the central nervous system and is most easily recognized in the WM as

focal areas of demyelination, inflammation, and glial reaction. MS pathology results from a

complex and dynamic interplay between innate and adaptive immune system, glia (myelin-

making oligodendrocytes, microglia, and astrocytes), and neurons. The traditional view

is that myelin-specific autoreactive lymphocytes (mainly T helper cells), which are primed

outside the central nervous system, cross the blood-brain barrier, and cause the formation

of inflammatory demyelinating lesions [29]. A recent hypothesis, however, suggests that MS

is an immunological convolution between a primary degenerative disorder and an aberrant

immune response [35]. Besides focal lesions within the central nervous system, diffuse WM

and GM damage and atrophy are observed. Atrophy refers to tissue loss through pathologic

neurodegenerative processes. Volume loss can also arise from resolution of inflammatory

edema and other pathological and physiological reductions in the water content of brain

tissues [3].

Diagnosis: MRI has become a critically important tool in the diagnosis of MS, which is

based on the demonstration of lesion dissemination in space (i.e. lesions at different MS-

typical locations within central nervous system) and time (i.e. evidence of at least a second

episode of disease activity). Diagnostic criteria for MS combining clinical, imaging, and

laboratory evidence have evolved over time, with the most recent being described in the

2017 revisions of the McDonald criteria [1].

2.1.2 Role of magnetic resonance imaging

Since its innovation and introduction in the clinical practice in the early 1980s, MRI has

quickly been adopted as an essential tool in supporting the diagnosis, longitudinal mon-

itoring, evaluation of therapeutic response, and scientific investigations in MS. Although

MS is a disease that predominantly affects the WM, different pathologies can be detected

throughout the central nervous system. A number of MRI techniques are routinely used to

identify or quantify MS pathology.

White matter lesions: The hallmark lesions in MS are within the WM of the brain

(Figure 1). Lesions are typically round and are varying in size from a few millimeters to

some centimeters. MS lesions mainly occur within periventricular regions, the corpus cal-

losum, the juxtacortical WM-GM junction and the infratentorial brain regions (i.e. brain

stem, cerebellar peduncles and cerebellar WM in the posterior fossa) and spinal cord [1, 36].

The classical sequences that allow to visualize MS plaques in vivo are T2-weighted imag-

ing techniques, where lesions appear as hyperintense. Lesions detected with T2-weighted

imaging have different pathophysiological correlates (e.g. demyelination, remyelination, in-

flammation, edema, Wallerian degeneration, axonal loss). The most common T2-weighted

sequences are fast spin echo (FSE) based techniques and fluid attenuation inversion recov-

ery (FLAIR). In the latter acquisition technique, an additional inversion recovery pulse is

used to suppress the cerebrospinal fluid (CSF) signal allowing for an improved detection of
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cerebral hemispheric lesions owing to an increased tissue contrast [37].

A subset of T2-weighted lesions appear hypointense in T1-weighted imaging. Indeed, ap-

proximately 30% of T1-weighted hypointensities, the so-called ”black-holes” will persist and

are associated with more severe tissue loss or axonal injury [37].

The contrast agent Gadolinium is used to detect blood brain barrier breakdown, an indirect

sign of acute focal disease activity [37].

Cortical lesions: The detection of cortical lesions is typically done using T2-weighted

imaging techniques, including FLAIR or double inversion recovery (DIR) (Figure 1). At

standard field strengths, large part of cortical lesions remain undetected, especially if their

location is purely intracortical. Studies have shown improved detection and localization of

cortical lesions by using higher field strengths up to 7 Tesla [38].

Optic nerve lesions: The optic nerve is frequently involved in demyelinating disease. Op-

tic neuritis is present in up to 50% of patients with MS and is frequently the presenting

sign [37]. Fat-saturated T2-weighted imaging and contrast-enhanced T1-weighted imaging

are sensitive methods to detect optic nerve lesions, which typically occur in the retrobulbar

nerve segments (Figure 1) [39].

Spinal cord lesions: The spinal cord is also frequently involved in MS and, for most

patients, both spinal cord and the brain are affected. Most spinal lesions are localized in

the cervical rather than the thoracic cord. At MR imaging, spinal lesions show increased

T2-weighted signal intensity and frequently also gadolinium enhancement (Figure 1) [40].

Brain atrophy: Brain atrophy, which is usually quantified on T1-weighted images, is an-

other hallmark of MS (Figure 1). The rate of whole-brain atrophy in MS is 0.5 to 1% per

year. It is not confined to specific structures but occurs throughout WM and GM and also

the spinal cord [3].
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Fig. 1: Lesions characteristic of MS. (a) Sagittal image with WM lesions (black arrow)

and juxtacortical lesions (white arrows) on T2-weighted FLAIR; (b) Other common lesion

locations in MS include spinal cord (top image, black arrows, sagittal T2-weighted sequence)

and optic nerve lesions (bottom image, white arrows, gadolinium-enhanced T1-weighted

MRI); (c) Brain atrophy typically manifests through brain parenchymal shrinkage and is

usually quantified in T1-weighted MRI (images taken from [37] and from MS Rehab study,

University Hospital of Basel).

2.2 Cerebral small vessel disease

2.2.1 Disease overview

The term cerebral SVD is used with various meanings in different contexts, to describe a

range of neuroimaging and pathological findings, as well as associated clinical and cognitive

features or syndromes. However, in its most basic form, the term encompasses a range of

pathological processes affecting the microvasculature of the brain and is one of the most

common causes of cerebrovascular disease including stroke and vascular/mixed dementia

[41].

Epidemiology: Studies have shown that SVD is a leading cause of cognitive decline in the

elderly, accounts for 20–30% of all strokes, and is also thought to account for about 45% of

dementia cases [2, 42]. SVD is more common in elderly people and seen more in women com-

pared to men. It often progresses subclinically for many years until the individual presents

with first symptoms. Since cerebral SVD is not a standardized concept yet but relates to a

range of neuroimaging and pathological findings, the prevalence of cerebral SVD is not well

established in the general population [41].

Etiology: The majority of SVD is sporadic and seems to be driven by a complex mixture of

genetic and cardiovascular risk factors. Especially, arteriosclerosis is strongly associated with

aging, diabetes, and hypertension. Such risk factors are likely to worsen disease progression

via deleterious effects on both the structure and functioning of cerebral blood vessels [2]. A

number of hereditary forms of cerebral SVD have also been identified [2, 43].
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Symptoms and subtypes: Since the vasculature can be affected throughout the brain,

the disease presents with a variety of symptoms. Besides cognitive impairment, other clini-

cal characteristics mainly associated with SVD are gait, mood and behavioral, and urinary

disturbances [2]. Different types of SVD are differentiated, among which arteriolosclerosis

(i.e. type 1 SVD) and sporadic and hereditary cerebral amyloid angiopathy (i.e. type 2

SVD) are the most prevalent forms [2].

Pathogenesis: Arteriosclerosis and cerebral amyloid angiopathy are the most prevalent

forms of SVD and, therefore, only the pathological characteristics of these diseases are de-

scribed here. Arteriosclerosis, or type 1 SVD, is also known as age-related and vascular

risk-factor-related SVD. From a pathological point of view, type 1 SVD is mainly char-

acterized by loss of smooth muscle cells from the tunica media, deposits of fibro-hyaline

material, narrowing of the vessel lumen, or thickening of the vessel wall [2]. Cerebral amy-

loid angiopathy, or type 2 SVD, is characterized by the progressive accumulation of amyloid

protein in the walls of small-to-medium-sized arteries and arterioles. Importantly, cerebral

amyloid angiopathy is a pathological hallmark of Alzheimer’s disease, in which it is almost

invariably seen [2]. The mechanisms that link SVD with brain damage are heterogeneous

and not completely understood. In general, the described pathological changes in all types

of SVD can lead to both hemorrhage and ischemia [2]. An increased rate in brain volume

loss is also associated with SVD. The mechanism underlying atrophy in cerebral SVD is not

fully understood yet. In general, axonal loss, resolution of inflammation and edema, gliosis,

demyelination, dehydration, and normal aging can result in a decrease in brain volume.

No direct pathological studies have been performed yet looking at the histology underlying

atrophy in SVD [6].

Diagnosis: The diagnosis is based on the underlying pathological changes of small vessels

(e.g. including arteries, arterioles, capillaries) of the brain. Clinical findings include WM

hyperintensities, small infarctions or hemorrhages in WM or deep GM, and brain atrophy,

which are typically detected using MRI or CT [41]. One of the difficulties in diagnosing

cerebral SVD is that these markers are not specific for SVD alone. Therefore, clinicians rely

on the presence of a combination of these features for proper diagnosis of the disease [44].

Yet, the definition of SVD is not uniform and so is its diagnosis. Neuroimaging standards

only begin to be established [4].

2.2.2 Role of magnetic resonance imaging

The effect of SVD on the brain parenchyma is usually derived from MRI or CT, and these

changes are considered the hallmarks of the disease [41]. As mentioned earlier, the con-

sequences of cerebral SVD on the brain tissue are heterogeneous, including ischemic and

haemorrhagic manifestations [2]. A number of MRI techniques are routinely used to iden-

tify or quantify these pathologies (Figure 2).

White matter lesions: The ischemic WM lesions on MRI are seen as more or less conflu-

ent areas that are bilaterally and symmetrically sited in the brain parenchyma and appear

hyperintense on T2-weighted and FLAIR images (Figure 2) [2]. Typical lesion locations
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include the periventricular WM of the cerebral hemispheres, basal ganglia, pons, brainstem,

and cerebellum [41]. Lesion location is thought to differ based on SVD etiology [45]. WM

lesions have a variety of pathological correlates depending on the severity of ischemic tissue

damage: myelin pallor, gliosis, axonal loss, complete nerve fiber destruction, and, in the

worst cases, blood-brain barrier disruption and loss of endothelium [41].

Lacunar infarcts: Acutely, these infarcts appear as hyperintense on diffusion-weighted

imaging (DWI), and within hours to days on T2-weighted imaging or FLAIR sequences.

Chronic infarcts or lacunes appear hypointense on T1-weighted images and FLAIR [41].

They are typically found in the basal ganglia, internal capsule, thalamus, and pons (Figure

2) [2].

Cerebral microbleeds: This phenotype of SVD refers to small hemorrhages of 2-10

mm in diameter seen by MRI. The T2*-weighted gradient echo sequence, and the newer

susceptibility-weighted imaging (SWI), are sensitive methods in detecting these (Figure 2)

[41]. Microbleeds can occur throughout the brain, and their location seems to differ based

on SVD etiology [45].

Atrophy: An alternative, promising marker that may be computed from conventional T1-

weighted MRI sequences is whole or regional brain volume. A previous longitudinal follow-

up study has demonstrated that the rate of atrophy in patients with SVD is approximately

1% per year and twice the one found in age-matched control subjects. However, to date,

defined cut-offs regarding whether atrophy is related to normal aging or SVD are missing [6].

Fig. 2: Lesions characteristic of cerebral SVD. (a) Axial image with periventricular WM

hyperintense lesions on FLAIR MRI; (b) Axial T2*-weighted image showing microbleeds as

rounded hypointensities in the basal ganglia (white arrows) and the cortex; (c) An axial

FLAIR image showing a lacunar infarct in the deep WM and GM (white arrow; images

taken from [36]).
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3 Relevance of lesion location and lesion-symptom

mapping

As described in Chapter 2, MRI is a key tool in the diagnosis and monitoring of both

MS and cerebral SVD, based on its ability to show lesions in different compartments of

the central nervous system. However, the number and volume of (especially brain WM)

lesions explain only a small fraction of the diversity of symptoms. In Section 3.1, different

factors contributing to this clinico-radiological mismatch are discussed. Section 3.2 explains

how lesion location may be taken into account in voxel-based lesion-symptom mapping

approaches. Then, existing lesion-symptom mapping approaches in MS (Section 3.3) and

SVD (Section 3.4) are presented.

3.1 Clinico-radiological association

Clinico-radiological association: The clinical course of MS and SVD may be diverse and

unpredictable: Some people develop rapidly evolving impairment, whereas others accrue lit-

tle or no detectable neurological disability over years or decades [5, 7]. In both diseases, MRI

plays a key role in diagnosis and monitoring [1, 4]. However, clinico-radiological associations

are often weak on a single subject level when regarding the total WM lesion burden. In-

deed, this is illustrated by the frequent observation that some individuals with severe disease

manifestation on MR images show little to no symptoms, while others with only a moderate

visible lesion burden can be affected more severely [5, 7]. In MS, this observation has oc-

cupied researchers since decades and the mismatch between clinically detectable symptoms

and the presence or amount of neuroradiological manifestations on MRI was termed the

“clinico-radiological paradox” in the early 2000s [46]. In SVD, since clinically silent WM

lesions can frequently be found in the elderly population, the clinical significance of WM

lesions was even doubted until several case reports and small cohort studies repeatedly de-

scribed an association between these WM lesions and cognitive impairment [7].

Factors contributing to moderate association: Today, several themes and issues are

thought to underlie this clinico-radiological mismatch including the relevance of strategic

lesion location, the low histopathological specificity of some neuroradiological markers, the

underestimation of lesions with conventional MRI (such as cortical and subcortical GM

lesions or damage to normal-appearing WM), the relevance of an integrated network under-

lying brain function, or cortical adaptive changes [5, 46].
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3.2 Relevance of lesion location and voxel-based lesion-symptom map-

ping

Relevance of lesion location: Lesion location is one important factor potentially con-

tributing to the clinico-radiological paradox in MS or to the moderate WM lesion-symptom

associations in cerebral SVD. Indeed, it is thought that while strategic lesions may directly

lead to disability, other lesions in non-eloquent areas may remain clinically silent [5, 7]. For

this reason, in the early 2000s, researchers started to implement different lesion mapping ap-

proaches, where not only the total lesion burden but also the anatomical location of lesions

was respected [47].

Historically, mapping of lesions has been done without the use of objective statistics. For

example, many studies have simply reported which region of the brain is most commonly

damaged in individuals who exhibit a specific neurological impairment [48]. However, there

are two main problems with this approach. First, it is not an objective test: Any random

collection of patient lesions will necessarily show some region of maximal overlap, regardless

of whether this location has any influence on the observed symptoms. Second, brain damage

is not random: Because of the pathophysiological mechanisms underlying the disease, certain

regions of the brain are particularly vulnerable to injury. Therefore, specific brain regions

might commonly be injured regardless of their influence on symptoms [48].

For this reason, statistical lesion analyses to determine significant associations between

symptoms and the location of brain injury were introduced. These analyses are either con-

ducted by examining damage to predefined anatomical regions of interest or on a voxelwise

basis [48]. Region of interest studies can offer better statistical power because fewer tests

are computed and therefore less correction for multiple comparisons is needed. On the

other hand, voxelwise lesion-mapping potentially offers better spatial resolution compared

to region-based approaches and can reveal critical brain regions associated with a given

deficit without a priori assumptions [48].

Voxel-based lesion-symptom mapping: In voxel-based approaches (the so-called voxel-

based lesion-symptom mapping), the entire brain is mapped as a volume of voxels, with an

independent statistical test conducted in each voxel [47]. A scheme summarizing a classical

voxel-based lesion-symptom mapping pipeline is depicted in Figure 3. In a first step, lesions

of all patients within a cohort are typically segmented (i.e. outlined) yielding an individual

binary lesion mask for each patient. In a second step, these lesion masks are then trans-

formed and overlaid (i.e. registered) on the same standard template so that anatomically

homologous regions are brought into alignment [49]. Thirdly, for every voxel of this stan-

dard brain, it is computed whether or not injury to that voxel predicts a clinical deficit of

interest in the given patient cohort. More in details, for each voxel, patients are divided into

two groups according to whether they do have or do not have a lesion affecting that voxel.

Clinical rating scores are then compared for these two groups using a statistical test suiting

the nature of the clinical scale [47]. Finally, results are corrected for multiple comparisons

and voxels that cross a given significance threshold are then considered as being part of the

functionally critical brain areas whose damage leads to the deficit [49].
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Fig. 3: Voxel-based lesion-symptom mapping. Scheme depicting the voxel-based lesion-

symptom mapping pipeline. In a first step, lesions of all patients within cohort are segmented

yielding an individual binary lesion mask for each patient. In a second step, these lesion

masks are then aligned with or registered to a standard brain template. Then, for every

voxel of this standard brain, it is computed whether or not injury to that voxel predicts

a clinical deficit of interest in the given patient cohort. Finally, the statistical tests are

corrected for multiple comparisons and a significance threshold is applied. In the final map,

functionally relevant voxels are color-coded.

3.3 Voxel-based lesion-symptom mapping in multiple sclerosis

Several previous studies have investigated the association between strategic WM lesion lo-

cation and standard clinical rating scales in MS using voxel-based approaches [8–14]. These

studies and their most relevant findings are reported in Table 1. The study populations

were either exclusively relapsing-remitting MS patients or a combination of different MS

subtypes (including patients with clinically isolated syndrome). Most studies assessed dis-

ability using the two established clinical rating scales in MS (i.e. Expanded disability status

scale, EDSS [50]; and MS functional composite, MSFC [51]; with/without separate correla-

tions for functional subdomain scores), and a popular neuropsychological test battery (i.e.

Brief repeatable battery of neuropsychological tests, BRB-N [52]; with separate correlations

for all/some cognitive subdomain scores). Overall, studies agree that periventricular WM

lesions non-specifically correlate with total EDSS and MSFC [8, 11, 12, 14]. These results

can be explained by the fact that these clinical rating scales do not address a particular

central nervous system function but comprise a multitude of clinical tests [11]. Moreover,

in two studies, impaired memory could consistently be linked to lesions in the internal cap-

sule [9, 10], which might highlight the relevance of thalamo-frontal connections for human

memory. For the remaining findings, studies vary in the spatial resolution of the reported

results and identified associations were often only reported by a single study.
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Study Domain N Lesions Results

Charil et al.,

(2003), [8]

RRMS 452 WM (T1w,

T2w)

- Integrative score: periventricular WM,

internal capsule

- Motor functions: internal capsule

- Cognition: grey-white junction of asso-

ciative, limbic, and prefrontal cortex

- Vegetative functions: frontal lobe,

parietal lobe, temporal lobe, dorsal

midbrain, pons, cerebellum, insula

- Coordination functions: periventricular

WM

- Brainstem functions: internal capsule

- Sensory and visual functions: None

Sepulcre et

al. (2008), [9]

MS 46 WM (T1w) - Memory: temporal lobe (lateral to hip-

pocampus and anterior temporal stem),

thalamus, internal capsule, cingulum,

fronto-occipital fasciculus

Sepulcre et

al. (2009),

[10]

MS 46 WM (T1w) - Memory: cingulum, superior/inferior

occipito-frontal fasciculus, longitudinal

fasciculus, internal capsule, tegmentum,

cerebellar peduncles

Vellinga et

al.(2009), [11]

MS 325 WM (T2w) - Integrative scores: Periventricular WM

- Motor functions: Periventricular WM

- Executive functioning: Periventricular

WM

Kincses et al.

(2011), [12]

MS, CIS 121 WM (T2w) - Integrative score: periventricular WM

- Motor, sensory, and coordination func-

tions: None

- Executive functioning: parietal lobe, su-

perior longitudinal fasciculus (no results

were found for the remaining cognitive

scores tested)

Rossi et al.

(2012), [13]

RRMS 142 WM (T2w) - Processing speed: forceps major/minor,

splenium of corpus callosum, inferior

fronto-occipital fasciculus (no results

were found for the remaining cognitive

scores tested)

Ge et al.

(2014), [14]

MS, CIS 250 WM (T2w) - Integrative score: periventricular WM,

forceps minor/major

- Processing speed: periventricular WM,

corpus callosum

Tab. 1: Summary on previous voxel-based lesion-symptom mapping studies in MS. Table

reporting the identified associations between MS lesion location and disease symptoms as

assessed using established clinical rating scales in MS. Only results corrected for multiple
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comparisons are reported. N: Number of enrolled patients; RRMS: Relapsing-remitting MS;

CIS: clinically isolated syndrome; T1w: T1-weighted imaging sequence; T2w: T2-weighted

imaging sequence.

3.4 Voxel-based lesion-symptom mapping in cerebral small vessel disease

More recently, the first voxel-based and region of interest-based lesion-symptom mapping

studies have also emerged in SVD (Table 2) [15, 17, 19]. The study populations varied from

healthy individuals, patients with manifest arterial disease, patients with cerebral autoso-

mal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL,

a rare monogenetic form of SVD), to memory clinic patients. These studies thus cover the

full spectrum of SVD-related cognitive impairment, which ranges from subtle cognitive dis-

turbances to manifest dementia, from pre-clinical MRI manifestations of SVD to extensive

WM damage, from pure vascular aetiology (such as CADASIL) to mixed pathologies. Most

studies focused on processing speed and executive functions, which are typically the most

severely affected in patients with SVD, while some studies also included memory as outcome

measure. These studies consistently found WM lesions or lacunar volume in the anterior

thalamic radiation and the forceps minor to impact on poor processing speed [15, 17, 19].

The anterior thalamic radiation connects thalamic nuclei with frontal and cingulate cor-

tices and cognitive impairment most likely results from a disconnection syndrome, which

highlights the crucial role of frontal-subcortical projections in SVD-related impairment in

processing speed. Then, studies reported a relationship between WM lesions and lacunar

volume in the anterior thalamic radiation, forceps minor and superior longitudinal fascicu-

lus and poor executive functioning [16, 19]. The superior longitudinal fasciculus is a major

pathway that connects frontal, parietal, and temporal association cortices and is known to

be relevant in executive functions [53]. Associations between memory and WM lesions were

found in forceps minor, forceps major, temporo-occipital WM, right parietal WM, and the

left internal capsule, though there is insufficient evidence to draw definite conclusions to

date [15, 18, 19].
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Study Domain N Lesions Results

Duering et al.

(2011), [15]

CADASIL 215 WM (T2w),

Lacunes

- Processing speed: anterior tha-

lamic radiation, forceps major,

forceps minor, corticospinal tract

- Memory: forceps major

Smith et al.

(2015), [18]

Controls,

MCI, AD

145 WM (T2w) - Executive functioning: inferior

frontal and temporal-occipital

WM, parietal WM, anterior inter-

nal capsule

- Memory: inferior temporo-occipital

WM, temporo-occipital WM, right

parietal WM, anterior internal

capsule

Biesbroek et

al. (2013),

[16]

Manifest ar-

terial disease

516 WM (T2w),

Lacunes

- Processing speed: none

- Executive functioning: anterior

thalamic radiation, superior longi-

tudinal fasciculus

- Memory: none

Duering et al.

(2014), [17]

Controls 584 WM (T2w) - Processing speed: left anterior

thalamic radiation, forceps minor

Biesbroek et

al. (2016),

[19]

Memory

clinic patients

with SVD

167 WM (T2w) - Processing speed: anterior thala-

mic radiation, forceps minor

- Executive functioning: anterior

thalamic radiation, forceps minor

- Memory: forceps minor

Tab. 2: Summary on previous voxel-based lesion-symptom mapping studies in SVD. Ta-

ble reporting the identified associations between WM lesion or lacune location and cogni-

tion. N: Number of enrolled patients; CADASIL: cerebral autosomal dominant arteriopathy

with subcortical infarcts and leukoencephalopathy; MCI: Mild cognitive impairment; AD:

Alzheimer’s disease; T2w: T2-weighted imaging sequence.
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4 Two large cohort voxel-based lesion-symptom

mapping studies

Voxel-based lesion-symptom mapping was performed in two large cohorts: a dataset of 2348

relapsing-remitting MS patients (from the multicenter FREEDOMS and FREEDOMS II

phase 3 clinical trials; first publication presented in this chapter), and a population-based

cohort of 1017 elderly subjects (from the INtervention project on cerebroVAscular disease

and Dementia in the district of Ebersberg, INVADE; second publication presented in this

chapter). Prior to our analyses, lesion segmentation of T2-weighted WM lesions (in the

dataset of MS patients) and WMHs (in the population-based cohort of elderly subjects)

was done at MIAC AG (Medical Image Analysis Center AG). In a first step, for both

studies, an automatized registration pipeline for alignment of the provided binary lesion

masks to standard stereotaxic space was elaborated and implemented. In a second step,

the normalized lesion masks were overlaid, and a voxel-based statistical approach to relate

lesion location to different clinical measures was defined and encoded.

Publication: Clinical correlations of brain lesion location in multiple sclerosis: voxel-based

analysis of a large clinical trial dataset. Anna Altermatt, Laura Gaetano, Stefano Magon,

Dieter A. Häring, Davorka Tomic, Jens Wuerfel, Ernst-Wilhelm Radue, Ludwig Kappos,

Till Sprenger. This publication has been submitted to the journal Brain Topography and is

currently under review.

Publication: Association of cerebral T2-weighted lesion load and location, vascular risk

factors, and cognition in a large population-based cohort. Anna Altermatt, Laura Gaetano,

Stefano Magon, Lorena Bauer, Regina Feurer, Hans Gnahn, Julia Hartmann, Christian L.

Seifert, Holger Poppert, Jens Wuerfel, Ernst-Wilhelm Radue, Ludwig Kappos, Till Sprenger.

This publication has been submitted to the journal NeuroImage and is currently under

review.
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Abstract 

 

There is a limited correlation between white matter (WM) lesion load as determined by magnetic resonance imaging 

and disability in Multiple Sclerosis (MS). The reasons for this so-called clinico-radiological paradox are diverse and 

may, at least partly, relate to the fact that not just the overall lesion burden, but also the exact anatomical location of 

lesions predict the severity and type of disability. We aimed at studying the relationship between lesion distribution 

and disability using a voxel-based lesion probability mapping approach in a very large dataset of MS patients. T2-

weighted lesion masks of 2348 relapsing-remitting MS patients were spatially normalized to standard stereotaxic 

space by non-linear registration. Relations between supratentorial WM lesion locations and disability measures were 

assessed using a non-parametric ANCOVA (Expanded Disability Status Scale, EDSS; Multiple Sclerosis Functional 

Composite, MSFC, and subscores; Modified Fatigue Impact Scale, MFIS) or multinomial ordinal logistic regression 

(EDSS functional subscores). Data from 1907 (81%) patients were included in the analysis because of successful 

registration. The lesion mapping showed similar areas to be associated with the different disability scales: 

periventricular regions in temporal, frontal, and limbic lobes were predictive, mainly affecting the posterior thalamic 

radiation, the anterior, posterior, and superior parts of the corona radiata. In summary, significant associations 

between lesion location and clinical scores were found in periventricular areas. Such lesion clusters appear to be 

associated with impairment of different physical and cognitive abilities, probably because they affect commissural 

and long projection fibers, which are relevant WM pathways supporting many different brain functions. 

 

Keywords: Multiple sclerosis; magnetic resonance imaging; motor impairment; cognitive dysfunction; lesion 

probability map; white matter 
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Introduction 

 

Although conventional magnetic resonance imaging (MRI) is sensitive for depicting white matter (WM) lesions in 

Multiple Sclerosis (MS), the association between the cumulative WM lesion load and clinical disability is at best 

moderate (Barkhof, 2002). The reasons of this so-called clinico-radiological paradox are probably diverse, ranging 

from methodological to physiological aspects (Mollison et al. 2017). Lesion location is one factor potentially 

contributing to this paradox: while strategic lesions may directly lead to disability, other (even larger) lesions in non-

eloquent areas may remain clinically silent. Hence, to better predict clinical scores, one would need to take lesion 

location into account  (Kincses et al. 2011). In this regard, several previous studies have investigated the relation 

between WM lesion distribution and neurological deficits in patients with different subtypes of MS using voxel-

based approaches (Charil et al. 2007; Sepulcre et al. 2008; Sepulcre et al. 2009; Vellinga et al. 2009; Kincses et al. 

2011; Rossi et al. 2012). In a larger study by Charil et al. (2007), significant correlations to motor scores were found 

to be located mainly in the internal capsule. Moreover, it has been shown that lesions in WM tracts connecting 

associative areas are correlated with cognitive impairment. Another group (Kincses et al. 2011) was able to link 

compromised sensory functions to lesions in the left thalamus, while cerebellar lesions were shown to account for 

deficits in coordination. In the same study, amygdalar, frontal, temporal, and parietal lesion locations were found to 

correlate with cognitive performance. Rossi et al. (2012) showed that patients with MS and cognitive impairment 

more frequently had lesions in commissural fiber tracts. They hypothesized that a functional disconnection between 

key grey matter structures may (partly) account for cognitive impairment in MS. Sepulcre et al. (2008) reported lesion 

locations correlating with declarative verbal memory storage in the temporal lobe (particularly in the anterior 

temporal stem), the left thalamus, and the left internal capsule. The same volumes were shown to be relevant for 

retrieval, but to them were added the cingulum and the fronto-occipital fasciculus. In a further study (Sepulcre et al. 

2009), the same group described significant associations of a verbal memory task with lesions in the cingulum, in 

parieto-frontal pathways, and within thalamo-cortical projections as well as in the right cerebellar WM. Finally, 

Vellinga et al. (2009) identified bilateral periventricular clusters to correlate with different disability measures.  

Most previous lesion mapping studies in MS included relatively small numbers of patients with only few studies 

that enrolled more than hundred patients (Charil et al. 2007; Vellinga et al. 2009; Kincses et al. 2011; Rossi et al. 

2012). Most studies considered few clinical scores or only composite scores of disability (Vellinga et al. 2009). 

Moreover, in several previous studies individual lesions (in subject space) were transformed to standard stereotaxic 

space using linear transformations only (Charil et al. 2003; Vellinga et al. 2009), potentially introducing bias 

regarding the exact anatomical location in standard space (Klein et al. 2009). Finally, in a few studies (Charil et al. 

2003), the binary nature of the lesion maps was not respected (Ge et al. 2014), as conventional parametric statistical 

models were applied. 

Therefore, the objective of this study is to investigate the relation between supratentorial WM lesion location 

and 13 different disability scales in a large clinical trial dataset. Investigated clinical scores comprise multiple 

domains of impairment seen in MS and include EDSS (Expanded Disability Status Scale and functional subscores; 

Kurtzke, 1983)  with scores of functional subsystems, MSFC (Multiple Sclerosis Functional Composite; Fischer et 

al. 1999) with subscores, and MFIS (Modified Fatigue Impact Scale; Fisk et al. 1994). Alignment to standard 

stereotaxic space is done using non-linear registration. Voxel-by-voxel associations between lesion occurrence and 
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clinical disability are assessed using a non-parametric ANCOVA or ordinal logistic regression. Furthermore, 

principally affected WM tracts overlapping with statistically significant locations are identified. 
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Materials and Methods 

 

2.1 Patients 

All available data from patients participating in the multicenter FREEDOMS (N=1272) and FREEDOMS II (n=1083) 

phase 3 clinical trials (details in Kappos et al. 2010; Calabresi et al. 2014) were analyzed. A total of 2355 relapsing-

remitting MS (RRMS) patients, diagnosed according to the revised McDonald criteria (Polman et al. 2005), were 

analyzed from these two studies. In the trials, MRI scans were conducted at baseline, month 6, month 12 and month 

24, but only baseline data were considered in this lesion-mapping study.   

 

2.2 Disability scores  

EDSS (Kurtzke 1983) with scores of functional subsystems (pyramidal, sensory,  cognition, vegetative,  visual), 

MSFC (Fischer et al. 1999) including sub-scores (Timed 25-Foot Walk, T25FW; 9-Hole Peg Test, NHPT; Paced 

Auditory Serial Addition Test, PASAT) and MFIS (Fisk et al. 1994) data were available.  

 

2.3 MR imaging protocol 

The MRI protocol of the two studies included T1-weighted (T1w) images and a dual echo proton density-weighted 

(PDw)/T2-weighted (T2w) sequence (in plane resolution = 1x1 mm², slice thickness = 3 mm) acquired at 1.0 (3.6%), 

1.5 (87.8%), or 3.0 (8.6%) Tesla (T) scanners depending on the local MRI center. In 5/2355 (<1%) patients, 

PDw/T2w images were missing or of low quality and subsequent lesion segmentation could not be carried out. In 

1/2355 (<1%) patient, the T1w images were missing, leading to an exclusion of this subject as subsequent image 

registration to standard stereotaxic space was not possible.  

 

2.4 Lesion segmentation 

Lesion segmentation was done by trained and experienced raters at MIAC AG (Medical Image Analysis Center AG, 

Basel, Switzerland) in three distinct steps according to the in-house standard operating procedures. In a first step, 

lesions are assessed and marked according to the trial-specific evaluation matrix and using the software package 

AMIRA 3.1.1 (Mercury Computer System Inc.). The results of the marking process are checked by the rater 

responsible for the following segmentation step (first consensus reading). Lesions are then automatically segmented 

on the PDw images using the same software and manually corrected by the second rater if needed. All raters undergo 

a training period and a standardized reliability testing prior to any study involvement. Reliability is tested in all raters 

at yearly intervals. This ensures a consistent quality of lesion marking and segmentation. After lesion marking and 

segmentation, results are reviewed by a radiologist (second consensus reading). In case of discrepancies in any of the 

consensus reading, the examination is returned to the previous rater to achieve an agreement (Magon et al. 2014).  

 

2.5 Image registration 

Binary lesion masks were first registered to T1w images applying the transformation parameters resulting from 

linearly registering the PDw image to the T1w image using FLIRT (FMRIB’s linear registration tool; default settings, 

6 degrees of freedom; Jenkinson and Smith, 2001; Jenkinson et al. 2002). These lesion masks were used to perform 

lesion filling on the T1w images (Sdika and Pelletier, 2009; Magon et al. 2014) Then, a two-stage linear (default 
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settings, 6 degrees of freedom) and subsequently non-linear registration was carried out to align the T1w images to 

the MNI152 standard brain template (2x2x2 mm³) (Mazziotta et al. 2001) using FNIRT (settings as specified in the 

provided configuration file, Jacobian range between 0.1 – 10; Andersson et al. 2007). The obtained transformation 

matrices were applied to the lesion masks previously registered to the T1w images. The quality assessment of the 

registration was done visually in two steps by two trained and experienced raters. In a first step, registrations were 

either approved or rejected by a first rater based on the quality of the aligned images. In a second step, all images 

were again rated independently by a second person. In case of discrepancies, a common agreement was found 

between the two raters (consensus reading). Using this procedure, 442/2355 (19%) patients were excluded from 

subsequent statistical analyses due distortions in the registered images. Finally, the transformed binary lesion maps 

of all accepted subjects were overlaid in MNI152 space and a lesion distribution map was computed.   

 

2.6 Statistical analysis 

For each voxel, patients were divided into two groups depending on whether they did or did not have a lesion in this 

voxel (Bates et al. 2003). Disability scores were then compared for those two groups. A non-parametric ANCOVA 

was employed for the main disability scores (i.e. EDSS, MSFC, T25FW, PASAT, NHPT, MFIS), while a multinomial 

ordinal logistic regression model was employed for the EDSS functional subsystem scores (distinguishing maximally 

up to 6 scoring levels). In the latter model, which applies parametric statistics, a minimal lesion occurrence threshold 

of 30 lesions per voxels was set. This minimal lesion occurrence (i.e. event rate) for the logistic regression model 

was estimated to allow for the detection of a difference of 25% in the number of subjects with an increased disability 

score in the subjects with a lesion in a voxel compared to the subject without a lesion in the same voxel. Based on a 

power of 0.8 to detect a significant difference of this effect size and a 5% significance level, a minimum of 30 patients 

with a lesion in a voxel were required. The models were corrected for the effects of age, gender, disease duration, 

imaging center, and field strength. All statistical tests were adjusted for multiplicity applying a Benjamini & 

Hochberg procedure (α=0.05) (Benjamini and Hochberg 1995). The whole statistical analysis was implemented in R 

(http://r-project.org/). Finally, the percentage of voxels showing significant correlations between disability measures 

and lesion location was computed (i.e. percentage of significant voxels, PSV = 100*number of voxels significant/total 

number of voxels affected by lesions) and the WM fiber tracts affected were identified using the JHU white-matter 

labels atlas (Mori and Crain, 2005) available in FSL. 
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Results 

 

3.1 Demographic data, MS disease characteristics, and clinical test performance 

Following successful T2w lesion segmentation and registration to MNI space, a total of 1907/2355 (81%) patients 

were included in the voxel-wise analysis. Clinical data are represented in Table 1. 

 

Table 1: Demographic data, disease features, and clinical test performance  

 Median (range) or N N (%) 

Demographics   

Age (years)  39 (17-57) 1907 (100%) 

Women 1362 1907 (100%) 

MRI-related features   

Imaging centers (FREEDOMS/FREEDOMS II) 138/117 1907 (100%) 

Field strength (1T/1.5T/3T) 84/2068/203 1907 (100%) 

Disease features   

Disease duration (years)  7.3 (0.2-49.9)  1907 (100%) 

Lesion load (T2w lesion volume) (mm³)  2936 (0-69203) 1907 (100%) 

Clinical test performance   

EDSS  2 (0-6)  1907 (100%) 

Pyramidal (pyramidal functions)  1 (0-5) 1907 (100%) 

Sensory (sensory functions)  1 (0-5) 1907 (100%) 

Cognition (cerebral functions)  0 (0-3) 1907 (100%) 

Vegetative (bowel & bladder functions)  0 (0-4) 1907 (100%) 

Visual (visual functions)  0 (0-4) 1907 (100%) 

MSFC (z-score) 0.1388 (-6.4133-2.0639) 1886 (98.9%) 

T25FW  5.1 (2.1-91.5)  1899 (99.6%) 

NHPT  20.8 (9.2-330.5) 1891 (99.2%) 

PASAT  52 (0-60) 1894 (99.3%) 

MFIS  23 (0-63) 790 (41.4%) 

 

N=number of patients. EDSS: Expanded Disability Status Scale and functional subscores; MSFC: Multiple Sclerosis Functional Composite; 

T25FW: Timed 25-Foot Walk; NHPT: 9-Hole Peg Test; PASAT: Paced Auditory Serial Addition Test; MFIS: Modified Fatigue Impact Scale.  

 

3.2 Spatial distribution of MS lesions  

The lesion masks of 1907 patients were summed in MNI space (Fig. 1) showing a scattered distribution of lesions in 

the WM, with the highest lesion occurrence in the periventricular areas of both hemispheres. In those regions, 

individual voxel reached a maximal lesion overlap of 420 (patients), meaning that up to 22% of patients were 

characterized by lesions in a given voxel. 
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Figure 1: Lesion distribution. Voxelwise lesion distribution across the patient group in stereotaxic standard space. Only voxels where at least 

30/1907 (1.6%) patients had a lesion are color-coded.  

 

3.3 Association of lesion location with clinical scale 

An overview of the correlational lesion mapping results, by clinical scale, is shown in Fig. 2. Voxel counts in both 

hemispheres and PSV for each score are depicted in Table 2.  Table 3 lists the WM fiber tracts coinciding with 

lesional clusters that reached statistical significance. The highest PSV was reached for MSFC (18.4%), NHPT 

(18.7%) and PASAT (11.8%): the according voxels were located mainly in the WM of the temporal, frontal, and 

limbic lobe, interrupting wide parts of the corpus callosum, bilaterally the anterior, superior and posterior corona 

radiata, and the posterior thalamic radiation in both hemispheres. Fewer correlating lesional clusters were identified 

for the overall EDSS (PSV = 5.8%), pyramidal EDSS subscore (PSV = 6.9%), and the T25FW (PSV = 4.8%). The 

spatial distribution found for these scores was very similar, affecting a subarea of the regions found for the scores 

with highest PSV. Most affected WM tracts for the latter scores were bilaterally distributed in the anterior, superior 

and posterior corona radiata and the posterior thalamic radiation. The most restricted and well-defined patterns of 

spatial distribution were found for the visual EDSS subscore (PSV = 1.2%) and MFIS (PSV = 0.5%). For the visual 

EDSS subscore, the right posterior corona radiata and the left thalamic radiation (including optic radiation) were the 

most affected WM tracts. For the MFIS, significant voxels were distributed posteriorly and coinciding mainly with 

the posterior corona radiata of both hemispheres. No correlating brain regions were found for sensory, cognitive, and 

vegetative EDSS subscores. 

 

Table 2: Number of voxels reaching statistical significance and PSV 

  Number of significant voxels   PSV (%) 

 
Left Right Total Total 

EDSS 3034 3282 6316 5.8 

Pyramidal 3612 3949 7561 6.9 

Visual 683 612 1295 1.2 

MSFC 10327 9777 20104 18.4 

T25FW 2496 2767 5263 4.8 

NHPT 10224 10202 20426 18.7 

PASAT 6613 6267 12880 11.8 

MFIS 229 324 553 0.5 

          

EDSS: Expanded Disability Status Scale and functional subscores; MSFC: Multiple Sclerosis Functional Composite; T25FW: Timed 25-Foot 

Walk; NHPT: 9-Hole Peg Test; PASAT: Paced Auditory Serial Addition Test; MFIS: Modified Fatigue Impact Scale. “Left” and “right” refers 

to the left and right cerebral hemispheres. PSV refers to the percentage of significant voxels and is calculated as PSV = 100*number of voxels 

reaching significance/number of voxels affected by lesions. The total number of voxels affected by lesions corresponds to all voxels where at 

least one lesion occurred (N=109183).  

N = 22% 

N = 1.6% 

z=34 z=37 z=41 z=45 z=49 z=53 

R 
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Figure 2: Significant correlations between lesion location and disability scores. The maps depict voxels with statisticallysignificant (p<0.05 

in blue; p<0.01 in red) association to disability scores after applying the Mann-Withney U test (in case of EDSS, MSFC, T25FW, NHPT, 

PASAT, MFIS) or ordinal regression (for pyramidal and visual EDSS subscores) in standard stereotaxic space.  EDSS: Expanded Disability 

Status Scale and functional subscores; MSFC: Multiple Sclerosis Functional Composite; T25FW: Timed 25-Foot Walk; NHPT: 9-Hole Peg 

Test; PASAT: Paced Auditory Serial Addition Test; MFIS: Modified Fatigue Impact Scale.  
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Table 3: Localization of lesional associations with clinical scores 

WM tracts 

Percentage of WM tract affected by lesional voxels that were 

associated with the respective score 
Percentage of significant voxels on WM tract 

EDSS Pyr. Visual MSFC T25FW NHPT PASAT MFIS EDSS Pyr. Visual MSFC T25FW NHPT PASAT MFIS 

Genu of corpus callosum 
15.7 17.4 4.5 35.2 8.9 33.1 26.2 1.1 2.8 2.6 3.9 2.0 1.9 1.8 2.3 2.2 

Body of corpus callosum 
11.4 16.5 0.6 30.2 9.0 30.9 19.7 1.5 3.1 3.8 0.8 2.6 3.0 2.6 2.6 4.7 

Splenium of corpus callosum 
14.7 16.2 1.9 24.8 9.7 27.5 15.9 2.1 3.6 3.3 2.2 1.9 2.9 2.1 1.9 6.0 

Anterior corona radiata R 
35.9 32.9 6.9 77.2 25.4 79.1 64.0 2.8 4.9 3.7 4.6 3.3 4.1 3.3 4.3 4.3 

Anterior corona radiata L 
29.2 32.0 7.7 81.7 27.2 80.5 63.4 2.4 4.0 3.7 5.2 3.5 4.5 3.4 4.3 3.8 

Superior corona radiata R 
31.2 46.8 3.9 89.5 39.5 87.1 70.8 3.8 4.5 5.7 2.8 4.1 6.9 3.9 5.1 6.3 

Superior corona radiata L 
27.9 35.6 4.8 87.7 33.3 80.2 75.8 2.9 4.1 4.4 3.4 4.0 5.9 3.6 5.4 4.9 

Posterior corona radiata R 
81.0 86.7 23.2 98.7 77.7 98.5 92.7 10.4 5.8 5.2 8.1 2.2 6.7 2.2 3.3 8.5 

Posterior corona radiata L 
81.2 84.5 12.8 96.9 65.9 97.3 92.6 11.0 5.7 5.0 4.4 2.1 5.6 2.1 3.2 8.9 

Posterior thalamic radiation 

(optic rad.) R 
68.4 80.7 16.8 94.7 61.8 93.2 74.3 1.8 5.3 5.2 6.3 2.3 5.7 2.2 2.8 1.6 

Posterior thalamic radiation 

(optic rad.) L 
59.4 68.8 24.9 95.6 51.0 95.4 79.9 1.3 4.5 4.4 9.2 2.3 4.6 2.2 3.0 1.1 

Superior longitudinal 

fasciculus L 
10.7 16.2 5.5 70.4 14.0 69.0 44.7 0.1 1.4 1.7 3.5 2.9 2.2 2.8 2.8 0.2 

 

WM tract computations were done using JHU WM atlas labels (Mori et al. 2005) available in FSL. Only WM tracts where at least 3% of the 

significant voxels were located for one disability score, are shown. EDSS: Expanded Disability Status Scale and functional subscores 

(pyramidal and visual); MSFC: Multiple Sclerosis Functional Composite; T25FW: Timed 25-Foot Walk; NHPT: 9-Hole Peg Test; PASAT: 

Paced Auditory Serial Addition Test; MFIS: Modified Fatigue Impact Scale.   
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Discussion 

We studied the correlation between supratentorial lesion location and clinical scores in a large cohort of RRMS 

patients. Voxel-by-voxel associations between lesion occurrence and clinical impairment were assessed using either 

a non-parametric ANCOVA or ordinal logistic regression and WM tracts overlapping with statistically significant 

locations were identified. 

Significant associations between lesion location and clinical scores were mainly found in periventricular areas, 

reflecting the typical lesion distribution seen in MS. Periventricular lesions principally affect commissural and long-

distance projection fibers and damage to even a small number of such large WM tracts might have a dramatic effect 

on different brain networks causing a variety of disease symptoms (Sepulcre et al. 2009). The size of correlating 

clusters within these areas depends on the investigated scale: MSFC, NHPT and PASAT showed largest clusters of 

correlating voxels. Fewer correlating lesional clusters were identified for the overall EDSS, pyramidal EDSS, and 

the T25FW. Results found for the MSFC seem to resemble the widespread patterns shown by the NHPT and PASAT. 

Similarly, results found for the total EDSS, seem to be dominated by the pyramidal EDSS subscore. When comparing 

results of total MSFC and EDSS, we could speculate that the tasks involved in the MSFC subscores seem to recruit 

a more complex network of brain regions suggesting that the latter score captures the MS pathology more holistically. 

A potential explanation to this finding could lie in the fact that the MSFC, in addition to motor abilities, emphasizes 

more on the cognitive aspects of MS (Fischer et al. 1999) when compared to the EDSS (Kurtzke 1983). The most 

well-defined clusters were found for the visual EDSS subscore, and the MFIS. Lesion mapping using visual EDSS 

subscores revealed focal clusters in the posterior corona radiata and the posterior thalamic radiation, coinciding with 

the optic radiation. MFIS correlations were mainly restricted to the posterior corona radiata of both hemispheres.   

Our results indicate a limited specificity in terms of distinctive regions being related to different scores. This is 

in accordance with the findings of Vellinga et al. (2009), who observed rather diffuse patterns of correlation between 

lesion location and EDSS, MSFC and its subscores in periventricular areas. Some other previous studies (Sepulcre 

et al. 2008; Sepulcre et al. 2009; Kincses et al. 2011; Rossi et al. 2012) showed a more focal relationship between 

lesion location and disability measures, though none of them reported spatial correlations with pyramidal and visual 

EDSS subscores. For example, Kincses et al. (2011) were able to link lesions in the left thalamus and cerebellum, 

respectively, to sensory and coordination deficits. However, most results were only significant if uncorrected 

statistics were employed. Rossi et al. (2012) stated that areas relevant for cognition are located in commissural fiber 

tracts. Sepulcre et al. (2008) reported lesion locations correlating with declarative verbal memory storage in the 

temporal lobe (particularly in the anterior temporal stem), the left thalamus, the left internal capsule, the cingulum, 

and the fronto-occipital fasciculus. In a further study (Sepulcre et al. 2009), the same group described significant 

associations of a verbal memory task with lesions in the cingulum, in parieto-frontal pathways, and within thalamo-

cortical projections, and in the right cerebellar WM.  However, this group studied lesion-symptom associations in a 

comparatively small dataset (Sepulcre et al. 2008; Sepulcre et al. 2009). Therefore, previous results might be driven 

by trends specific to the dataset rather than being representative for MS in general. 

The relative lack of specific WM areas related to some of the disability measures we observed could be attributed 

to several reasons. First of all, the scales used in this analysis assess relatively complex brain functions that are 

probably not related to one specific region or network in the brain, but rather reflect multifocal neural systems 

(Bressler and Tognoli 2006). For example, functional MRI experiments conducted during PASAT performance in 
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healthy subjects have shown that a complex pattern of parietal, frontal, limbic, occipital, and temporal cortical 

activation occurs during this demanding verbal working memory/processing speed task (Tombaugh 2006). Complex 

activation patterns have also been shown related to even relatively simple motor tasks. As an example, the T25FW 

has been shown to be associated with networks encoding attention and executive function (Benedict et al. 2011). This 

suggests that disability as measured by the applied scores results from pathway disruptions at any possible location 

within complex brain networks involved in the respective task. Another important aspect that could influence the 

relative lack of specificity observed in our results could relate to compensatory strategies to cope with 

functional/behavioral deficits and neuroplastic mechanisms. Indeed, mechanisms of adaptive reorganization or 

plasticity limits the effects of brain damage on daily life and, as a consequence, may impact the scores of disability 

scales (Tomassini et al. 2012).  

We acknowledge that the relative lack of specific areas associated with different disability measures could also 

relate to technical factors: For a given dataset of this size, very small group differences may be detectable in voxels 

with high lesion frequency (Sullivan and Feinn 2012). Imposing a significance threshold may help to identify areas 

that are correlated with a clinical score with high certainty, but it may also limit the ability to observe signals in areas 

where lesions occur less frequently. Significant correlations are therefore more likely found in those voxels where 

lesions are commonly present in MS patients. In addition, the applied analysis method considers each voxel 

independently and cannot borrow information from neighboring voxels in the same brain region, which may have 

limited our ability to detect association between lesions in regions that are infrequently occupied by lesions (e.g. in 

the infratentorial brain) and clinical scales (e.g. walking ability).  Moreover, the type of lesions considered for this 

study could influence the results: T2w lesions reflect a variety of pathological processes (i.e. acute inflammation, 

edema, demyelination, remyelination, axonal loss etc.) that may impact MS-related disability in different ways. The 

cross-sectional assessment of T2w lesions represents the history of a patient’s MS, and a single MRI scan does not 

allow differentiation of the severity of tissue damage (Rovira et al. 2013). Finally, lesions in other CNS regions 

known to be relevant for the development of disability were not included in the analyses. Although MS is commonly 

termed chronic inflammatory-demyelinating disease of the WM, several recent neuropathological studies disclosed 

an extensive involvement of the cortex and deep GM, where the extend is also correlated to physical disability and 

cognitive dysfunction (Calabrese et al. 2013).  

In conclusion, we found significant associations between lesion location and different clinical scores in 

periventricular areas. This reflects the characteristic lesion distribution seen in MS. It is likely that periventricular 

lesions affect commissural and long projection fibers, which are involved in a multitude of brain functions. Results 

found for the MSFC seem resemble patterns identified for NHPT, and to a lesser extent, for the PASAT. Similarly, 

results found for the total EDSS, seem to be dominated by the pyramidal EDSS subscore. The relative numbers of 

voxels showing significant associations for the main clinical scores suggest that the MSFC recruits a more complex 

network of brain regions when compared to the EDSS possibly due to the stronger weighting of cognition in the 

MSFC. 
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Abstract 

 

Background: Subcortical T2-weighted (T2w) lesions are very common in elderly subjects and can be associated with 

dementia. However, little is known about the strategic lesion distribution and how lesion patterns relate to vascular risk 

factors and cognitive impairment. 

 

Aim: The aim of this study was to analyze the association between T2w lesion load and location, vascular risk factors, and 

cognitive impairment in a large population-based cohort of elderly subjects.  

 

Methods: 1017 patients participating in a large prospective cohort study (INtervention project on cerebroVAscular disease 

and Dementia in the district of Ebersberg, INVADE) were analyzed. Cerebral T2w white matter and deep gray matter 

lesions, the so-called white matter hyperintensities (WMHs), were outlined semi-automatically on fluid attenuated inversion 

recovery images and normalized to standard stereotaxic space (MNI152) by non-linear registration. Separate lesion 

distributions were obtained for two protocol-defined risk groups and according to the Framingham score. Moreover, the 

vascular risk as assessed using the two risk ratings were mapped to specific locations using a voxel-based lesion probability 

mapping approach. Moreover, we assessed the relation between lesion location and cognitive impairment (demographically 

adjusted z-scores of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment 

Battery Plus, CERAD-NAB Plus) using voxel-based statistics (α=0.05). 

 

Results: A total of 878 out of 1017 subjects (86%) had evaluable MRI data and were included in the analyses (mean age: 

68.2 ± 7.6 years, female: 515). In the INVADE protocol-defined risk assessment, patients in the high-risk group were 

characterized by a significantly higher age, a higher proportion of men, and a higher lesion load (p < 0.001). Similarly, 

patients with an intermediate Framingham risk score were characterized by a higher age, male sex, and a higher lesion load 

(p < 0.05) compared to patients with a low Framingham risk score. Statistically significant associations were found for the 

INVADE protocol-defined or the Framingham risk groups and several of the CERAD-NAB Plus subscores (p<0.05). 

Voxels with significant associations to the subjects’ cerebrovascular risk profiles were mainly found at periventricular 

locations principally affecting commissural and large projection fibers and the caudate nucleus. No WMH locations were 

found to be significantly associated with cognitive impairment.  

 

Conclusion: Age, gender, several cognitive scores, and WMH lesion load were shown to be significantly associated with 

vascular risk factors in a population of elderly, but cognitively preserved adults. Moreover, periventricular WMH lesions 

affecting commissural and large projection fibers and the caudate nucleus were identified to significantly relate to the 

subjects’ cerebrovascular risk profiles. 

 

Keywords: magnetic resonance imaging, cognition, lesion probability mapping, white matter hyperintensity, vascular risk, 

small vessel disease. 
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Introduction 

 

Cerebral small vessel disease (SVD) is characterized by white matter T2-weighted (T2w) hyperintensities (WMHs), lacunar 

infarcts, and cerebral microbleeds, and has been shown to be an important etiological factor for the accrual of cognitive 

impairment and dementia (Rincon and Wright, 2014). WMH lesion burden, in particular, has been shown to be more 

common and extensive in patients with cardiovascular risk factors and symptomatic cerebrovascular disease (Abraham et 

al., 2016). However, little is known to date about the strategic distribution of WMHs in subcortical brain regions and how 

lesion patterns relate to vascular risk factors and cognitive impairment.  

We here employed magnetic resonance imaging (MRI) analyses in a large population-based cohort of elderly subjects 

(INtervention project on cerebroVAscular disease and Dementia in the district of Ebersberg, INVADE) to better understand 

the association between WMH load and location, vascular risk factors, and the impact of these lesions on cognitive 

impairment. More in detail, patients were grouped according to their vascular risk profiles and compared in terms of 

demographic features, WMH load and location, and neuropsychological test performance. A lesion probability mapping 

approach was used to identify lesion locations which correlate with the participants’ risk profiles. Finally, the same lesion 

mapping approach was employed to identify lesion locations, which specifically correlate with cognition, thereby trying to 

identify locations being specific for different cognitive domains and to shed light on the association of damage to distinct 

white matter (WM) tracts and deep grey matter (DGM) regions and cognitive impairment in the elderly.  
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Materials and Methods 

 

2.1 Study population 

Between 2001 and 2003, 3908 patients born before 1946 were recruited for the INVADE study. All patients underwent an 

assessment session that included the medical history, different physical examinations and the evaluation of risk factors 

based on distinct investigations (12-lead electrocardiography; venous blood sample; ultrasound examination of the carotid 

arteries; measurement of ankle-brachial-index). From April 2010 to November 2011, MRI and a neuropsychological 

examination (Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery Plus, 

CERAD-NAB Plus; Morris et al., 1989; Schmid et al., 2014) were additionally performed in a subgroup, termed 

“Neuroprevention-1” cohort, which included 1017 patients. Inclusion criteria were defined as follows: patients were born 

before 1946; patients were living in the district of Ebersberg, southern Bavaria (Germany); patients were able to give 

informed consent to study participation. Exclusion criteria were defined as follows: contraindications for MRI, severe 

claustrophobia, known history of stroke (ischemic stroke or intracerebral hemorrhage), refusal of getting informed about 

potentially relevant incidental findings on MRI, being unable to give informed consent and lack of cooperation for either 

the MRI- or the neuropsychological assessment (like deafness, blindness or existing movement disorders).  

  

2.2 MR imaging protocol and lesion segmentation 

All MR scans were acquired on a Philips Gyroscan NT 1.5 Tesla scanner. The MRI protocol included a highly resolving 

T1-weighted turbo field echo (T1w TFE, resolution = 0.96x0.96x1 mm3, TR = 8 ms, TE = 4 ms, α = 8°), a T2*-weighted 

(T2*w; resolution = 0.9x0.9x5 mm3 [interpolated to 0.45x0.45x5 mm3], slice spacing = 1 mm, TR = 753 ms, TE = 23 ms, 

α = 22°) and a fluid attenuated inversion recovery sequence (FLAIR; resolution = 0.9x0.9x5 mm3 [interpolated to 

0.45x0.45x5 mm3], slice spacing = 1 mm, TR = 6000 ms, TE = 150 ms, TI = 2000 ms). The brain was extracted 

automatically on the T2*w images (FMRIB’s brain extraction tool, BET; using default settings, fractional intensity 

threshold of 0.4; Smith, 2002). Segmentation of WMHs was done at MIAC AG (Medical Image Analysis Center AG, Basel, 

Switzerland), blinded to clinical information. WMHs were outlined semi-automatically on the FLAIR contrast using a 

previously described procedure (Magon et al., 2014) with the software AMIRA 3.1.1 (Mercury Computer System Inc.), 

according to MIAC AG internal commercial grade standards. Lesion masks were dilated slice-by-slice by one voxel, 

because diffusion tensor imaging studies have shown that WM integrity is compromised immediately outside WMHs 

(Maillard et al., 2014).  

 

2.3 Image registration 

As the brain was outlined on T2*w images and lesions were segmented on FLAIR images, the T2*w brain images were 

first registered linearly to the FLAIR images (FMRIB’s linear registration tool, FLIRT; using default settings, 6 degrees of 

freedom; Jenkinson and Smith, 2001; Jenkinson et al., 2002). Secondly, lesion masks and the above T2*w brain images 

were transformed to T1w coordinates using nearest-neighbor interpolation, applying the transformation parameters 

resulting from linearly registering the FLAIR brain images to the T1w. At this step, the skull was removed from the T1w 

whole-brain images using the brain masks generated from the T2*w images that were previously transformed into the T1w 

coordinate space. Then, a two-stages linear and non-linear registration (FMRIB’s non-linear registration tool, FNIRT; 

settings as specified in the provided configuration file, Jacobian range chosen as 0.1 - 10; Andersson et al., 2007) was 

carried out to align the T1w images to the Montreal Neurological Institute standard brain template (MNI152, resolution of 
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2x2x2 mm³; Mazziotta et al., 2001). The obtained transformation matrices were applied to the lesion masks previously 

registered on the T1w image again using nearest-neighbor interpolation. The quality assessment of the registration was 

done visually in two steps by two trained and experienced raters. In a first step, subjects were either approved or rejected 

by a first rater based on the quality of the registered images. In a second step, all images were again rated independently by 

a second rater. In case of discrepancies, an agreement was found between the two raters (consensus reading). 

 

2.4 Risk evaluation 

Two vascular risk assessments, a study-specific and an established one, were employed in this study. First, in the INVADE 

study-specific cerebrovascular risk assessment, patients were assigned to either a high-risk or a low-risk group. High-risk 

patients were defined as patients presenting with at least one of the following criteria: Ankle brachial index ≤ 0.9, intima 

media thickness ≥ 1.0mm, stenosis of the internal carotid artery ≥ 70%, atrial fibrillation, transient ischemic attack, 

myocardial infarction, coronary artery disease, clinical manifest peripheral artery disease or Arriba-score ≥ 20% 

(http://www.arriba-hausarzt.de). Second, the Framingham risk score, an established algorithm used for estimating a 

patient’s 10-year risk of developing cardiovascular disease, was computed for each patient (D’Agostino et al., 2008).   

 

2.5 Cognition scores 

Neuropsychological testing was carried out using the CERAD-NAB Plus test battery (Morris et al., 1989; Schmid et al., 

2014). CERAD-NAB Plus was originally developed to detect cognitive impairment associated with early Alzheimer 

Disease and has become a frequently used tool in clinical settings for cognitive impairment in general. It includes nine 

subtests measuring executive functions (Verbal Fluency, Trail Making Tests A and B), language (modified Boston Naming 

Test), verbal episodic learning (Word List Learning), verbal episodic memory (Word List Delayed Recall and Recognition), 

constructional praxis (Figure Learning), visual episodic memory (Figure Delayed Recall), processing speed (Trail Making 

Tests A and B), and frontal functions (S Words). Three additional measures were computed: the total number of intrusions 

at Wordlist Learning and Wordlist Delayed Recall (Wordlist Intrusions), the proportion of correct words recalled during 

verbal delayed recall relative to the words recalled during the learning process (Wordlist Savings), and the proportion of 

correctly reproduced figures at Figures Recall relative to Figures Learning (Figures Savings) (Mistridis et al., 2015). All 

subtest scores were transformed into z-scores, standardized for age, gender and education, using the integrated 

standardization program of the CERAD-NAB Plus German version. 

 

2.6 Statistical analyses 

Demographic data, WMH lesion load, and standardized CERAD-NAB Plus z-scores were compared between the study-

specific risk groups and between subjects with low (F < 10), intermediate (10 ≤ F < 20), and high Framingham risk (20 ≤ F 

< 30) using a paired t-test for normally distributed variables and the Wilcoxon rank sum test for non-normally distributed 

variables.  The Fisher exact test was used to compare gender differences between the risk groups.  

Then, the transformed binary lesion masks of all successfully registered subjects were overlaid in MNI152 space. In 

this way, a probabilistic lesion distribution map was obtained. Separate lesion distribution maps were obtained for the two 

study-specific risk groups and subjects with low, intermediate and high Framingham scores. For the according spatial lesion 

distribution maps, the number of voxels where at least 10% of subjects with evaluable MRI data had a lesion was identified.  

The spatial lesion mapping analyses were performed in a voxel-wise fashion. The aim was to relate the individual 

results of the INVADE protocol-defined risk evaluation, the Framingham risk score, and the CERAD-NAB Plus subscores 
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to specific lesion locations in the brain. For this purpose, two groups were defined for each voxel: one including all the 

patients with a lesion in that particular voxel, and one including all the patients without a lesion there (Bates et al., 2003). 

Then, the INVADE study-specific risk scores were compared between these two groups using a logistic regression model. 

The Framingham risk score and the demographically corrected z-scores of the CERAD-NAB Plus subscores were compared 

between these two groups using the Wilcoxon rank sum test. The same analyses were repeated simply including the subjects 

with particularly high/low cognition scores (z<-1.03 and z>1.03) or simply including the subjects belonging to the study-

specific high-risk group. All statistical tests were corrected for multiplicity using a Benjamini & Hochberg correction. The 

whole statistical analysis was implemented in R (http://r-project.org/). The WM fibers passing through the voxels with 

significant associations were identified by overlaying the map of significant voxels and the John Hopkins University (JHU) 

WM labels atlas (Mori and Crain, 2005) for each score. Similarly, DGM structures affected by significant relations were 

identified by overlaying the map of significant voxels for each score and the Montreal Neurological Institute (MNI) 

structural atlas (Mazziotta et al., 2001). Both atlases are available in the FMRIB Software Library (FSL).   
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Results 

 

3.1 Demographic data, disease features, and cognition scores according to risk groups 

A total of 878 out of 1017 subjects (86%) had evaluable MRI data and were included in the analyses. Demographic data, 

MRI features, and demographically adjusted z-scores of the CERAD-NAB Plus subtests of the included subjects are 

reported in Table 1. Overall, participants had a mean age of 68 years, a male:female ratio of roughly 1:1.7, and a WMH 

lesion load of 5065  mm3. Average neuropsychological test scores as measured using the CERAD-NAB Plus battery were 

comparable to those of a healthy population.  

In the study-specific risk assessment, patients in the INVADE high-risk group were characterized by a significantly 

higher age (p < 0.001), a higher proportion of men (p < 0.001), and a higher lesion load (p < 0.001). Moreover, statistically 

significant differences were observed between INVADE high-risk and low-risk groups for the ‘Figure Recall’ and ‘TMT 

A’ subtests (p < 0.05). Similarly, patients with an intermediate Framingham risk were characterized by a higher age (p < 

0.001), male sex (p < 0.001), and a higher lesion load (p < 0.05) compared to patients with a low Framingham risk score. 

Statistically significant associations were found for the Framingham risk groups and several cognition scores (Word List 

Savings/ Recognition, Figure Learning/ Recall/ Savings, Trail Making Test A) at a significance threshold of p<0.05 (Table 

1). 

 

 
   INVADE study-specific risk  Framingham risk 

  Total  

 

Low-risk  High-risk  

 

F < 10   10 ≤ F < 20   20 ≤ F < 30   

(N=878) (N=471) (N=407)  (N=442) (N=313) (N=104)  
             

Demographics N   Mean ± SD   Mean ± SD Mean ± SD p   Mean ± SD Mean ± SD Mean ± SD p 

Age [years] 864   68.2 ± 7.6  65.8 ± 7.4 70.9 ± 6.9 < 0.001  65.6 ± 6.9 70.8 ± 7.2 71.9 ± 7.0 < 0.001 
a,b

 

Sex [male/female] 878  363 / 515  135 / 336 228 / 179 < 0.001  56 / 386 205 / 108 91 / 13  < 0.001 
a,b,c

 

Education [years] 864  10.7 ± 1.9  10.8 ± 1.9 10.6 ± 1.9 -  10.8 ± 1.8 10.6 ± 2 10.5 ± 2.1 - 

             

MRI features                         

Lesion load [mm
3
] 878   5065 ± 7199    3981 ± 5445 6319 ± 8642

 
 < 0.001   4421 ± 6417 5916 ± 7734 5666 ± 8766  0.001 

a
, 0.021 

b
 

             

CERAD-NAB Plus z-

scores 
                        

Verbal Fluency  863   -0.19 ± 0.97   -0.15 ± 1.03 -0.23 ± 0.91 -   -0.16 ± 0.99 -0.19 ± 0.98 -0.22 ± 0.85 - 

mBNT  863   0.37 ± 1.05  0.39 ± 1.01 0.35 ± 1.10 -  0.39 ± 1.01 0.36 ± 1.12 0.35 ± 1.01 - 

Word List Learning 864  -0.31 ± 1.20  -0.34 ± 1.20 -0.29 ± 1.21 -  -0.34 ± 1.17 -0.25 ± 1.26 -0.37 ± 1.16 - 

Word List Recall 863  -0.06 ± 1.11  -0.06 ± 1.11 -0.07 ± 1.10 -  -0.08 ± 1.10 0.01 ± 1.11 -0.21 ± 1.09 - 

Word List Intrusions 862   0.06 ± 1.01  0.05 ± 0.97 0.07 ± 1.05 -  0.04 ± 0.99 0.07 ± 1.03 0.11 ± 1.05 - 

Word List Savings 863  -0.15 ± 1.28  -0.15 ± 1.27 -0.15 ± 1.30 -  -0.11 ± 1.33 -0.10 ± 1.24 -0.41 ± 1.20 0.034 
b
, 0.027 

c
 

Word List Recognition 863  -0.13 ± 1.14  -0.13 ± 1.10 -0.12 ± 1.19 -  -0.13 ± 1.07 -0.03 ± 1.15 -0.33 ± 1.35 0.030 
c
 

Figure Learning 864  0.30 ± 1.15  0.34 ± 1.04 0.26 ± 1.26 -  0.40 ± 1.08 0.22 ± 1.17 0.19 ± 1.33 0.030 
a
 

Figure Recall 860  0.18 ± 1.32  0.27 ± 1.33 0.08 ± 1.31 0.041  0.30 ± 1.34 0.13 ± 1.29 -0.09 ± 1.33 0.009 
b
 

Figure Savings 860  0.03 ± 1.00  0.09 ± 1.00 -0.03 ± 1.00 -  0.09 ± 0.98 0.01 ± 1.01 -0.13 ± 1.08 0.045 
b
 

S Words 862  0.46 ± 1.04  0.46 ± 1.06 0.47 ± 1.01 -  0.42 ± 1.07 0.50 ± 1.00 0.47 ± 1.06 - 

TMT A 860  -0.15 ± 1.16  -0.07 ± 1.19 -0.23 ± 1.11 0.048  0.00 ± 1.21 -0.27 ± 1.08 -0.33 ± 1.12 0.002 
a
, 0.014 

b
 

TMT B 828  -0.17 ± 1.22  -0.15 ± 1.30 -0.20 ± 1.12 -  -0.11 ± 1.33 -0.24 ± 1.08 -0.20 ± 1.13 - 

TMT B/A 827  -0.08 ± 1.13  -0.1 ± 1.18 -0.05 ± 1.07 -  -0.11 ± 1.20 -0.05 ± 1.07 -0.03 ± 0.97 - 

 

Table 1: Characteristics of the study cohort according to risk groups. Demographic data, MRI features, and CERAD-NAB Plus z-scores were 

compared between the INVADE study-specific risk groups and between subjects with low (F < 10), intermediate (10 ≤ F < 20), and high Framingham 

risk (20 ≤ F < 30) using a paired t-test for continuous variables and a Fisher exact test for gender (a: comparison of low and intermediate Framingham 

risk, b: comparison of low and high Framingham risk, c: comparison of intermediate and high Framingham risk).  
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3.2 Spatial distribution of SVD lesions 

Registered SVD binary lesion masks of all 878 participants were overlaid on the MNI brain template. Highest lesion 

occurrence was seen bilaterally in the periventricular WM, where lesion probability reached a maximum of 72% (Figure 

1). Separate lesion distributions were obtained for the two INVADE study-specific risk groups and subjects with low, 

intermediate and high Framingham scores. Subjects in the protocol-defined high-risk group showed a slightly higher and 

more extended periventricular lesion occurrence (73%) compared to the low-risk group (71%). Moreover, the number of 

voxels where at least 10% of the subjects had a lesion was higher in the INVADE high-risk (n10 = 8293) versus low-risk 

(n10 = 4467) groups (Figure 1). Similarly, an increasing periventricular lesion load was observed from low (71%; n10 = 5057) 

to intermediate (74%, n10 = 7625) Framingham risk groups. For the patients in the highest Framingham risk group, a slight 

increase in the lesion overlay (75%) was observed, while the number of voxels affected by a lesion in at least 10% of the 

subjects was lower (n10 = 7010) (not shown).   

 

 

 

Figure 1: Lesion distributions. Sum of spatially normalized lesions of the total study cohort, per INVADE protocol-defined risk groups. The risk 

group-wise lesion distributions were thresholded at a minimal lesion occurrence of 10%. Only the results of the protocol-defined risk groups are shown. 

 

3.3 Associations of lesion location and clinical scores 

Lesion mapping results are shown in Figure 2, Table 2 shows the WM fiber tracts and the DGM regions affected by the 

significant areas. Overall, the lesion probability mapping analyses showed a similar number of voxels with significant 

associations to the subjects’ risk profiles (INVADE protocol-defined risk assessment: n = 2602 voxels; Framingham risk 

score: n = 2485 voxels). Patients in the higher risk group had a more extensive lesion load mainly at periventricular 

locations, affecting the corpus callosum, bilaterally the superior corona radiata, and the right caudate. In patients with higher 

Framingham risk scores, there was stronger lesional involvement of the body of the corpus callosum, the superior corona 
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radiata, the right posterior corona radiata, the left thalamic radiation, and the caudate in both hemispheres compared to 

subjects with intermediate and low Framingham scores.  

No brain lesion locations were identified to significantly impact on the patients’ cognitive performance as assessed 

using the subscores of the CERAD-NAB Plus test battery. Moreover, also if the subjects with particularly high/low 

cognition scores (z < -1.03 and z > 1.03) or only the subjects belonging to the INVADE protocol-defined high-risk group 

were included in the analyses, no lesion locations significantly influencing the patients’ neuropsychological test 

performance could be identified.   

 

 

 

Figure 2: Significant correlations between lesion location and vascular risk. The maps depict voxels with statistically significant (p<0.05) 

association to disability scores after applying ordinal regression (in case of INVADE study-specific risk) or the Wilcoxon rank sum test (in case of 

Framingham risk score) in standard stereotaxic space.  

 

 INVADE protocol-defined risk  Framingham risk 
      

WM tracts 
Percentage of brain 

region affected by 

lesional voxels 

Percentage of voxels in 

brain region 
 

Percentage of brain 

region affected by 

lesional voxels 

Percentage of voxels on 

brain region 

Body of corpus callosum 9.1 6.1  10.5 7.3 

Superior corona radiata R 22.3 7.9  18.6 6.9 

Superior corona radiata L 24.6 8.7  15.5 5.8 

Posterior corona radiata R 26.1 4.5  31.6 5.8 

Posterior thalamic 

radiation L 14.4 2.7  27.4 5.3 
 

     
DGM region      

Caudate R 22.2 6.0  28.0 8.0 

Caudate L 17.3 4.7  23.4 6.6 

 

Table 2: Table showing the WM tracts and DGM regions where voxels with significant associations occur. Only regions where at least 5% of 

the significant voxels were located for one disability score are shown. The affected WM fibers were identified using the JHU WM labels atlas (Mori 

et al., 2005) and the involved DGM structures were determined using the MNI structural atlas (Mazziotta et al., 2001) and compared between protocol-

defined and Framingham risk groups. 

  

39



Discussion 

 

We here studied the association between WMH load and location, vascular risk factors, and cognitive impairment in a large 

population-based cohort of 878 elderly adults from the INVADE “Neuroprevention-1” study. Patients were grouped 

according to their vascular risk profile and compared in terms of demographic features, WMH load and location, and 

neuropsychological test performance. In the INVADE protocol-defined risk assessment, patients in the high-risk group 

were shown to be characterized by a significantly higher age, male sex, equal or worse cognition, a higher lesion load and 

a more extended periventricular lesion occurrence compared to patients in the low-risk group. Voxels with significant 

associations to the subjects’ cerebrovascular risk profiles were mainly found in periventricular areas, while no WMH 

locations were found to be associated with cognitive impairment in this study.  

WMH lesions, lacunar infarcts, and cerebral microbleeds are hallmarks of cerebral microangiopathy and important 

risk factors leading to cognitive impairment and dementia (Rincon and Wright, 2014). WMH burden in particular has been 

shown to be more common and extensive in patients with cardiovascular risk factors and symptomatic cerebrovascular 

disease (Abraham et al., 2016).  For this reason, we aimed at analyzing more in depth the interplay between lesion load and 

location, vascular risk factors, and cognitive impairment. As expected, patients with high-risk profiles were shown to be 

characterized by a higher lesion load compared to patients with a lower risk. In addition to this well-established relationship, 

the current study adds the finding on a predilection for periventricular lesion location, more specifically at locations of 

commissural and large projection fibers and the caudate nucleus, in patients with a more pronounced vascular risk profile. 

The predilection of periventricular lesions could relate partly to the vascular anatomy of the affected WM, which has been 

shown to play a crucial role in lesion development in regions located at arterial watershed or border zones (Martinez and 

Smith, 2017).  

Regarding the relation between cerebrovascular risk profiles and cognition, patients with vascular risk profiles were 

shown to perform worse in several cognitive domains (reflecting executive functions and processing speed, verbal episodic 

learning and memory, constructional praxis and visual episodic memory) compared to patients with a lower cerebrovascular 

risk. The lack of specific WMH locations relating to cognition in our study could be attributed to several reasons. First of 

all, the present patient cohort represents a healthy population of elderly adults showing normal cognition on average. As a 

consequence, the relative number of cognitively impaired subjects might be too small to allow for the detection of specific 

lesion locations being associated with a pathological performance in any of the cognitive scores. Moreover, effects of WMH 

on cognition could be cumulative, i.e. cognitive impairment might result from a progressive and accumulating diffuse brain 

damage rather than from singular lesions at well-defined locations (Wardlaw et al., 2015). 

This study addresses for the first time the association between demographic features, vascular risk factors, cognitive 

impairment and WMH burden in a dataset of this size in the elderly. The present study is based on an elderly population 

with a relevant WMH burden, but still being cognitively preserved on average. Indeed, since WMHs can be measured 

quantitatively and non-invasively in asymptomatic patients, they are considered as potential screening markers for the 

identification of subjects at risk of developing clinically manifest cerebrovascular disease such as stroke or dementia. 

There are some methodological limitations in our study that should be considered. First, the T2*w and FLAIR imaging 

sequences were characterized by a relatively large slice thickness. When registering the initial images to the isotropic MNI 

brain template, missing intensity values perpendicular to the slice plane had to be interpolated. We therefore cannot exclude 

slight inaccuracies in the normalization and registration processes. However, we consider these errors to be small as all 

images at all processing steps were rigorously controlled by visual inspection. Second, the imaging protocol did not include 
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MRI sequences such as diffusion tensor images allowing to directly identify WM tracts traveling through the regions, where 

associations between WMH frequency and vascular risk groups were observed.  

In the future, the current approach could be extended to relate WMH patterns at baseline to progression in cognitive 

decline. Moreover, computer learning strategies could be used to stratify the present study population based on observed 

lesion patterns or cognition scores, providing a potential clinically useful prognostic tool at a single subject level (for a 

review, see Orrù et al., 2012). 

In summary, age, gender, several cognitive scores and WMH lesion load were shown to be associated with vascular 

risk factors in a population of elderly adults. Periventricular lesion locations affecting commissural and large projection 

fibers and the caudate nucleus were identified to significantly relate to the subjects’ cerebrovascular risk profiles. 
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5 Relevance of segmentation validation in brain

atrophy measurements

5.1 Clinico-radiological association

Studies have shown that brain atrophy is an important marker of MS or SVD disability

status and progression, showing a better clinico-radiological association than conventional

lesion assessments. Yet, one cause for concern relates to the repeatability of individual mea-

surements. Section 5.1 introduces the role of WM and GM segmentation, and the factors

which potentially confound computed volumes. Then, different methods for segmentation

validation are discussed, including manual expert delineation, digital and physical phantoms

(Section 5.2). Finally, existing anatomical physical phantoms are presented together with

their most relevant limitations (Section 5.3).

Clinico-radiological association: Brain atrophy is an MRI measure reflecting brain vol-

ume loss through neurodegeneration. In MS, studies linking brain atrophy to clinical impair-

ment state that irreversible tissue destruction – to a greater extent than can be explained

by conventional lesion assessments – is an important determinant of disability and disease

progression [54]. Indeed, whole-brain atrophy was shown to have a stronger imaging asso-

ciation with physical disability and cognitive impairment, and to be a stronger predictor of

future disability than total lesion burden [55]. Moreover, regional brain volume loss (e.g.

GM atrophy [56]) may even reveal a more pronounced relation to clinical disease symptoms,

and we rely on both, robust whole-brain and regional volume measures [5]. In comparison

to MS, there are less data on brain atrophy in SVD [6]. Still, SVD-related atrophic changes

have been shown to correlate with SVD disease progression, and GM atrophy in particular,

was shown to be the major contributor to whole brain atrophy in symptomatic cerebral

SVD [6, 57].

Segmentation methods: Clinically, brain atrophy can be identified from qualitative im-

ages by the detection of an increase in CSF spaces or a reduction in size of the parenchyma

compared with the normal appearance for age. Such relatively simple analyses would be

easy to implement in routine patient care. However, because of the limited reproducibility

and precision of visually based atrophy measurements, we rely on automated or semiauto-

mated quantitative methods to segment whole or regional brain volumes [54]. Classically,

image segmentation is defined as the partitioning of an image into nonoverlapping parts

that are homogeneous with respect to some characteristic such as intensity or texture [58].
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In the absence of artefacts, segmentation of the main brain tissues could in principle be

done by simple thresholding strategies. Indeed, the histogram of T1-weighted images of

the adult brain MRI has three main peaks corresponding to WM, GM, and CSF. Images

acquired in clinical or research routine are, however, noisy and deployed algorithms need to

be able to cope with different types of artefacts (i.e. intensity inhomogeneity, noise, partial

volume, as well as overlap in intensities of brain and nonbrain tissue) [58]. Hence, during the

past decades, a wealth of dedicated segmentation algorithms in the field of medical image

analyses have emerged.

Different automated segmentation tools are implemented in the most popular soft-

ware packages for brain image processing, including FMRIB software library (FSL; https:

//fsl.fmrib.ox.ac.uk/fsl/fslwiki), Statistical Parametric Mapping (SPM; www.fil.ion.ucl.ac.

uk/spm), and FreeSurfer (https://surfer.nmr.mgh.harvard.edu). In these software pack-

ages, the algorithms underlying the standard segmentation tools all employ unsupervised

intensity-based classification, which partitions an image into regions of voxels with simi-

lar intensities without using training images [59–61]. Various additional improvement are

further encoded in these methods such as borrowing of local spatial information from neigh-

boring voxels (e.g. using Markov random fields as in FSL FAST and FreeSurfer; [59, 60] or

inclusion of a priori atlas information (e.g. atlas priors as in SPM and FreeSurfer; [60, 61]).

Fig. 4: Segmentation of main brain tissues. Figure depicting the segmentation of a (a)

T1-weighted brain MRI into (b) WM, (c) GM, and (d) CSF. This exemplary segmentation

was done using SPM [61].

Factors contributing to moderate association: Several issues linked to the quantifica-

tion of brain tissues are yet thought to weaken or distort the clinico-radiological associations.

The most relevant cause for concern relates to the repeatability (i.e. test-retest reliability)

of individual measurements. Indeed, there are different confounding factors which can affect

computed brain volumes independent of real tissue destruction. These factors can either be

of technical or biological origin. Confounding technical factors are for example linked to the
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patient positioning, the combination of scans from different hardware, the use of different

pulse sequences, or the employment of different segmentation software. Biological factors are

linked to sources of variability intrinsic to the patient, for example due to hydration levels or

the menstrual cycle [62]. The influence of these factors might prevent robust comparison of

single patient measurements against those in a database of normal subjects. It can further

confound the analysis of longitudinal measurements from an individual, since it is crucial to

know whether any apparent trend is simply due to measurement variation or a true disease

effect [62].

5.2 Relevance of segmentation validation in brain atrophy measure-

ments

To guarantee robust measurements of brain atrophy and to reliably associate clinical and

radiological disease manifestations, segmentation validation requires a “ground truth” or

gold standard to which the segmentation outcome can be compared [58].

Manual segmentation: Usually, the gold standard for real patient data is made by one or

more expert physicians who manually outline the anatomical structures of interest. Since

this is the only method to validate the real patient MRI data, this method is used very

frequently in brain image analyses. A popular repository with real MRI data and avail-

able manual expert segmentations is the Internet Brain Segmentation Repository (IBSR;

https://nitrc.org/projects/ibsr/). Despite its popularity, this validation method should be

used with caution, since manual segmentations are prone to errors, highly subjective, diffi-

cult to reproduce (even by the same expert), and time-consuming (especially for large brain

regions such as WM or GM) [58].

Digital phantoms: Another popular validation method is the use of software simulations.

In these simulations, artificial MR images are generated digitally through a simulation of the

real acquisition process. In this way, the “ground truth” is known in advance and the influ-

ence of different acquisition parameters and imaging artifacts on the segmentation outcome

can be controlled. This type of validation is very flexible and efficient. The most popular

simulated images used for brain MRI segmentation methods are found in the BrainWeb

repository (brainweb.bic.mni.mcgill.ca/brainweb/). Another example is the Alfano digital

phantom [63]. A drawback of this type of validation is that software simulations cannot

take into account all factors linked to the image acquisition [58]. Indeed, processes that

are optimized based on numerical simulations may fail or introduce systematic bias when

presented with real scanner data if specific factors are ignored or overlooked. Moreover,

although many elements linked to the image acquisition can be identified and incorporated

in the signal model, yet there are some arbitrary experimental factors that remain mathe-

matically intractable in the framework of digital simulations [64].

Physical phantoms: Since software simulations have certain limitations, segmentation

validation can be done using physical phantoms, which mimic certain in vivo properties.

47

https://nitrc.org/projects/ibsr/
brainweb.bic.mni.mcgill.ca/brainweb/


The design and construction of such physical phantoms offer less flexibility and are more

labor intensive compared to digital phantoms. However, their biggest advantage relates to

the fact that images of these phantoms can be acquired using the MRI hardware [58].

5.3 Anthropomorphic physical phantoms

Physical phantoms: In general, MRI phantoms are fluid-filled objects that mimic body

dimensions or shape, and most are cylindrical or spherical in shape (Figure 5) [65]. There

are only a few standard MRI phantoms that are routinely used for quality assurance testing.

Examples are the American College of Radiology Accreditation (ACR; [66]), the Alzheimer’s

Disease Neuroimaging Initiative (ADNI; Figure 5; [67]A), or the National Institute of Stan-

dards and Technology (NIST; [68]) phantoms. Devices mimicking the tissue-specific lon-

gitudinal and transverse relaxation times are typically made from a rigid container, filled

with an aqueous solution doped with paramagnetic ions such as GdCl3, MnCl2, CuSO4, or

NiCl2. Typically, a gelling agent (e.g. gelatin, polyacrylamide, polyvinyl alcohol, agarose,

carrageenan, or agar) is added to the aqueous solution to avoid flow artifacts [65]. Still, to

our knowledge, there is no commercially available phantom mimicking relaxation times and

structure of the main brain compartments, and which is routinely used for segmentation

validation.

Fig. 5: Conventional physical phantoms. (a) Photograph showing several MRI load-

ing phantoms. Each vendor provides coil-specific loading phantoms. (b) Photograph of

the Magphan R© Quantitative Imaging Phantom from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI). It consists of 165 spherical objects inside a water-filled urethane shell.

The spherical objects are polycarbonate shells filled with various concentrations of CuSO4

(figure taken from [65]).
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Anthropomorphic physical phantoms: A number of physical phantoms – which are not

commercially available – mimicking brain relaxation times and showing increased anatom-

ical similarity to the real counterpart have been developed by research groups or academic

centers (Table 3; Figure 6). Phantoms mimicking the outer brain contours (i.e. ventricle

shape and cortical folding patterns) have been proposed by Chen et al. (2012) [25] and Khan

et al. (2012) [26]. Curtis et al. (2010) [23] suggested the first phantom mimicking relaxation

times of two brain compartments (i.e. WM and GM). In the proposed constructing pro-

cedure, 14 brain slices were separately milled from plastic, filled with the tissue-mimicking

solutions, and assembled to a whole brain phantom. Kuss et al. (2011) [24] developed a

head phantom consisting of a skull, an adipose layer for the skin, and a deformable brain in-

cluding WM and GM compartments. Surfaces of WM and GM were mimicked by manually

cutting the gels to resemble the cortical folding patterns. Another multipurpose phantom

was proposed by Fujimoto et al. (2015) [27] who printed chambers from polylactic acid for

WM, GM, and CSF and filled them with three different solutions. Very recently, Gopalan

et al. (2017) [28] constructed a 3D-printed, anatomy-mimicking, quantitative MRI phan-

tom for validating methods that rely on spatio-temporal modeling. Similar to the previous

phantom, 3D-printed polylactic acid chambers were filled with the corresponding solutions

mimicking WM, GM, and CSF.

Fig. 6: Existing anthropomorphic brain phantoms. Photographs (top row) and T1-

weighted MRI (bottom row) of some existing anatomical phantoms. (a) Phantom by Kuss

et al. [24]; (b) Phantom by Khan et al. [26]; Phantom by Gopalan et al. [28]. These

phantoms are described in detail in Table 3.
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Study Phantom

compart-

ments

Support

between

WM

and GM

compart-

ments

Gelling

and MR

contrast

agents

MR

prop-

erties

Constructing proce-

dure

Curtis et al.,

(2010), [23]

WM, GM Slices

milled

from plas-

tic

Agarose,

GdCl3

T1, T2 Slice-by-slice

Kuss et al.,

(2011), [24]

WM, GM,

CSF

None Gelatin,

CuSO4

T1, T2 Shell-wise, manually

cutting shapes into gels

Chen et al.,

(2012), [25]

Brain

parenchyma

- Polyvinyl

alcohol,

CuSO4

T1, T2 Filling of flexible rubber

mold, immersion of

rubber ventricle

Khan et al.,

(2012), [26]

Brain

parenchyma

- Agar, Gd-

DTPA

T1 Filling of robust plastic

mold, immersion of

plastic ventricle

Fujimoto et

al., (2015),

[27]

WM, GM,

CSF

3D-

printed

chambers

Agar,

MnCl2

T1 Filling of 3D-printed

chambers

Gopalan et

al., (2017),

[28]

WM, GM,

CSF

3D-

printed

chambers

Agar,

NiCl2 or

MnCl2

T1, T2 Filling of 3D-printed

chambers

Tab. 3: Existing physical phantoms. Table describing the existing physical phantoms,

which mimic T1 relaxation times of main brain tissue types and show increased anatomical

similarity with real counterpart.

These existing physical phantoms showing increased anatomical similarity to the brain were

hampered by a few limitations: precise T1 (or T2) relaxation times of WM and GM were

only matched in a few phantoms [23, 27, 28]; contours of brain or brain regions were substan-

tially simplified [23–28]; and some phantoms were characterized by the presence of thicker

physical walls separating the solution compartments [23, 27, 28]. These limitations make it

difficult/impossible to realistically mimic segmentation with these existing phantoms. For

this reason, to our knowledge, no study has ever been conducted using an anthropomorphic

physical phantom to validate segmentation of WM and GM in MRI.
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6 An anthropomorphic physical phantom for

segmentation validation

Aiming at constructing a physical brain phantom, which mimics structure and T1 relaxation

properties of WM and GM, different materials and assembling procedures were elaborated

and tested. An innovative framework for the construction of anatomical physical brain

phantoms was established. The constructed phantom prototype is presented in the first

publication presented in this chapter. Briefly, WM and GM relaxation times were repro-

duced using an agar gel doped with MR (and CT) contrast agent. Folding patterns of these

two phantom compartments were simulated through a molding-casting procedure using 3D-

printed casts and flexible silicone molds. The second publication presented in this chapter is

a proof-of-principle study, where the designed phantom was used to validate automatic brain

tissue segmentation. Ground truth volumes of the phantom are derived from highly-resolved

CT scans acquired together with T1-weighted MR images for automatic segmentation by

two popular software tools.

Publication: Design and construction of an innovative brain phantom prototype for mag-

netic resonance Imaging. Anna Altermatt, Francesco Santini, Xeni Deligianni, Stefano

Magon, Till Sprenger, Ludwig Kappos, Philippe Cattin, Jens Wuerfel, Laura Gaetano. This

publication has been submitted to the journal Magnetic Resonance in Medicine and is cur-

rently under review.

Publication: Evaluation of Automated Brain MR Image Segmentation Methods: A Phys-

ical Phantom Study. Anna Altermatt, Francesco Santini, Xeni Deligianni, Stefano Magon,

Till Sprenger, Ludwig Kappos, Philippe Cattin, Jens Wuerfel, Laura Gaetano. This publi-

cation has been submitted to the journal NeuroImage and is currently under review.
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Abstract 

 

Purpose: The purpose of this project was to construct a physical brain phantom for MRI, mimicking structure and T1 

relaxation properties of white matter (WM) and grey matter (GM). 

 

Methods: The phantom design comprised two compartments, one resembling the WM and one the GM. Their T1 

relaxation times, as assessed using an inversion recovery turbo spin echo sequence, were reproduced using an agar 

gel doped with contrast agent (CA) and their folding patterns were simulated through a molding-casting procedure 

using 3D-printed casts and flexible silicone molds. Three versions of the assembling procedure were adopted to build: 

Phantom1 without any separation; Phantom2 with a varnish layer; and Phantom3 with a thin wax layer between the 

compartments. 

 

Results: Phantom1 was characterized by a pronounced diffusion of CA between the two compartments. Phantom2 

and Phantom3, instead, showed relaxation times and shape comparable with the target ones identified in a healthy 

control subject (WM: 754±40 ms; GM: 1277±96 ms). Moreover, both compartments revealed intact gyri and sulci. 

However, the diffusion of CA made Phantom2 stable only for a short period of time. Phantom3 showed stability 

within a longer time window but the wax layer between the WM and GM was visible in the MRI.     

 

Conclusion: Structural and intensity properties of the constructed phantoms are useful in evaluating and validating 

steps from image acquisition to image processing. Moreover, the described constructing procedure and its modular 

design make it adjustable to a variety of applications.  

 

Keywords:  Magnetic resonance imaging, physical phantom, brain anatomy, 3D printing, T1 relaxation time 
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Introduction 

 

Phantoms have been used as tools for any type of MRI validation. They are physical or digitally-simulated objects 

of known geometry and/or composition with a reduced number of experimental confounds with respect to living 

subjects. Physical phantoms are commonly used when calibrating scanner hardware or designing pulse sequences. 

Digital phantoms instead, are especially prevalent in the image processing and reconstruction fields, as they facilitate 

quantitative comparison between algorithms and enable optimization over a wide variety of imaging sequences. 

While digital phantoms allow for modeling complex structures, physical phantoms are limited by the manageability 

of the used materials and the corresponding physical properties (1). Consequently, most existing physical phantoms 

are characterized by a simple geometry, i.e. spherical or cylindrical (2). Conversely, using digital phantoms, factors 

linked to the image acquisition can only be simulated and the testing procedure largely depends on the accurateness 

of this simulation (1). 

 In the specific context of brain MRI, a limited number of physical phantoms with increased similarity to the 

real counterpart, both in terms of tissue intensities and shape, have been developed in the past years (3, 4, 5, 6, 7, 8). 

However, some of those just mimicked one tissue (7, 8), some required the presence of walls separating different 

compartments to maintain the shape (5, 6), and some others produced non-realistic or substantially simplified 

contours of brain or brain regions  (4, 5, 6, 7, 8). 

 To overcome those limitations, we propose an innovative design for the construction of a 3D brain phantom 

that, at the same time, resembles the anatomy of the main brain tissue types (i.e. WM and GM) and produces T1 

relaxation times corresponding to those observed in vivo. To reach those goals, we evaluated three slightly different 

designs and we characterized the final properties of the phantoms, in terms of shape, intensity, and stability over 

time.   
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Methods 

 

The phantom structures and properties were based on a healthy volunteer (26-year-old female without history of 

neurological and psychiatric diseases) that provided written informed consent and the study was conducted in 

accordance with the Declaration of Helsinki. All images were acquired at a 3 Tesla (T) scanner (Magnetom Prisma, 

Siemens Healthineers, Erlangen, Germany) with a 20-channel head coil.  

 

2.1. Phantom intensity 

To determine the reference values, T1 mapping was performed on the healthy brain using an inversion recovery turbo 

spin echo sequence (2D IR-TSE, axial slice plane, resolution = 1.3x1.3 mm2, slice thickness = 5 mm, TR = 6000 ms, 

TE = 12 ms, TI = 30/50/100/200/500/750/1000/2000 ms, Echo train length = 7, α = 180°, total scan time = 12 min 

48 s). T1 values of 2 regions of interest (ROIs) of dimensions 3x3 mm2 in the white matter (WM) and 2 ROIs of 

dimensions 3x3 mm2 in the gray matter (GM) were computed by nonlinear fitting of the average intensity inside the 

ROIs with the standard inversion recovery signal model (9). 

 To match those reference values, six different concentrations of MRI contrast agent MnCl2 (Sigma-Aldrich 

Chemie GmbH, Steinheim, Germany) were diluted in 0.6 % agar solution (Morga AG, Ebnat-Kappel, Switzerland) 

(Supporting Table 1), that was always done in batches of 0.5 L or 1 L to ensure the reproducibility of T1 values. For 

each concentration, three samples were prepared in 50-mL plastic tubes (diameter equal to 28 mm) with the following 

procedure. Half liter of water was heated to 100 °C, 10 g of agar were added to the boiling water and the solution 

was kept at boiling temperature for 2 minutes 30 seconds while stirred constantly. The boiling agar solution was then 

poured into the prepared tubes with the different MnCl2 volumes. Samples were mixed to ensure a homogeneous 

mixture of contrast agent and agar powder, and then left to cool down to room temperature in order to gel.  

 The samples were subsequently scanned with the same quantitative sequence (2D IR-TSE, axial slice plane, 

resolution = 1x1 mm2, slice thickness = 5 mm, TR = 6000 ms, TE = 12 ms, TI = 30/50/100/200/500/750/1000/2000 

ms, Echo train length = 7, α = 180°) and T1 of each was calculated using a 3x3 mm2 ROI located in the center of the 

tubes to avoid edge effects. The T1 values were then used to find the quantitative relation between T1 values and 

contrast agent concentration by means of the relaxivity equation:  

 

 

𝑅1 =
1

𝑇1
=

1

𝑇1
0 + 𝑟1[𝐶𝐴], [1] 

 

where 𝑅1is the relaxation rate constant, 𝑇1
0 is the relaxation time of the tissue in the absence of contrast agent, 𝑟1 is 

the relaxivity and [𝐶𝐴] is the concentration of contrast agent. 

 

 Thus, MnCl2 concentrations yielding T1 relaxation times in the ranges of WM and GM were identified. To 

ensure the correctness of the concentrations just selected, six control samples (three for WM and three for GM) were 

prepared with the previous procedure and their T1 values were estimated with the 2D IR-TSE sequence.  
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2.2. Phantom shape 

A whole-brain isotropic T1-weighted image (3D MPRAGE, sagittal orientation, resolution = 1x1x1 mm3, TR = 1570 

ms, TI = 900 ms, TE = 2.48 ms, α = 8°, scan time = 7 min 38 s) was acquired from the healthy subject. Surfaces of 

WM and GM of the left hemisphere were segmented using FreeSurfer 6.0 (Havard University, Cambridge, 

Massachusetts, United States). 3D Slicer (Surgical Planning Laboratory, Brigham and Women’s Hospital, Boston, 

Massachusetts, United States) was used to extract the inner skull mesh of the hemisphere by means of the semi-

automated threshold effect and change island effect modules. These surfaces, i.e. the WM, GM and skull, were 

converted to triangular meshes and saved as stereolithography files (Meshmixer 2.9, Autodesk, Inc., San Rafael, 

California, USA). 

 The mesh density was reduced to 50% of the initial trial count and the surfaces were smoothed to reduce noise 

using a smoothing filter at the lowest setting. Then, to facilitate the phantom assembling, the cortical thickness was 

increased by 20 mm through scaling down the WM compartment. The final surfaces were printed on a fifth-

generation MakerBot Replicator+ 3D printer (MakerBot® Industries, Brooklyn, New York, United States) using 

polylactic acid (PLA) thermoplastic (WM: resolution = 77974 vertices, print time = 14 h 16 min, with support; GM: 

resolution = 78077 vertices, print time = 20 h 59 min; skull: resolution = 48558 vertices, print time = 29 h 22 min; 

0.2 mm slice thickness and including support for all prints), and brushed on with a platinum-cure silicone rubber in 

3 layers (shore A and hardness 30, DWR Plastics, Broadway, Newport, Shropshire, UK) to create three flexible 

negative molds (10), easily allowing the detachment of the paramagnetic gels in the next stages.  

 A multi-step procedure was adopted for the final assembly of the brain-mimicking gels: the WM sample was 

injected into the WM surface mold; once the sample gelled, the mold was removed; the GM mold was positioned on 

top; the GM sample was then injected and the corresponding mold was pulled off when the gel became solid; finally, 

a silicone shell mimicking the skull was positioned on top of the gel composite (Fig. 1). Three versions of this 

procedure were tested: no layer was put between the WM and GM gels (Phantom1), a varnish layer (MOTIP DUPLI 

GmbH, Haßmersheim, Germany) was sprayed on the WM gel (Phantom2), or a thin wax layer (GLOREX GmbH, 

Rheinfelden, Germany) was applied between the two compartments (Phantom3).  

 

2.3. Phantom characterization 

After the phantoms were completed, their final structure and properties were examined (Day1). The structural 

accuracy was verified using T1-weighted imaging (3D MPRAGE, sagittal slice plane, resolution = 0.82x0.82x1.00 

mm3, TR = 1570 ms, TI = 900 ms, TE = 1.34 ms, α = 8°, scan time = 6 min 38 s). To determine the intensities of 

WM and GM compartments, T1 mapping was performed on the phantoms using the IR-TSE sequence described in 

the previous setup (2D IR-TSE, horizontal slice plane, resolution = 1x1 mm2, slice thickness = 5 mm, TR = 6000 ms, 

TE = 12 ms, TI = 30/50/100/200/500/750/1000/2000 ms, Echo train length = 7, α = 180°, total scan time = 13 min 

52 s). In this case, two different slices were acquired and, for every slice, average T1 intensities within two ROIs for 

both compartments (3x3 mm2, one in the frontal area and one in the posterior part) were computed.  

 

2.4. Stability 

To assess the stability of the phantoms in terms of T1 relaxation times and shape, the same protocol (i.e. 3D MPRAGE 

and 2D IR-TSE) was acquired after 2, 4, 8, 15, 21, and 28 days (Day2, Day4, Day8, Day15, Day 21, Day28, 

respectively) after the preparation.  
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Fig. 1: Phantom Assembling. Multi-step procedure followed for the phantom assembling. Briefly, the WM gel was injected into the WM 

surface mold (a); once the gel set, the mold was removed (b); then, the GM mold was positioned on top and the GM gel was injected (c); after 

2 hours, the GM gel became solid and the corresponding mold was pulled off (d); finally, the silicone shell mimicking the skull was positioned 

on top of the gel composite (e). Three versions of this procedure were tested: no layer was put between the WM and GM gels (Phantom1), a 

varnish layer was sprayed on the WM gel (Phantom2), or a thin wax layer was applied between the two compartments (Phantom3).  
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Results 

 

The targeted values for WM and GM derived from the template brain were 754±40 ms and 1277±96 ms, respectively. 

Those values could be reproduced with MnCl2 concentrations of 0.12 mM for the WM and 0.04 mM for the GM, 

leading to T1 values of 732±5 ms and 1303±8 ms in the WM and GM control samples, respectively (Fig. 2). Silicone 

molds of WM, GM, and skull were created from the 3D-printed surface meshes (Fig. 3). Using the procedure depicted 

in Figure 1, the WM and GM gels (Fig. 3d) were assembled and scanned. 

 Phantom1 was characterized by an indistinguishable intensity difference between WM and GM at Day1 (data 

not shown). The absence of a layer between the WM gel and the GM one allowed the MnCl2 contrast agent to diffuse 

from one compartment to the other as soon as the two gels were put into contact. The application of some kind of a 

hydrophobic layer in Phantom2 and Phantom3, instead, prevented this process and allowed us to evaluate the entire 

constructing procedure.  

 WM and GM T1 relaxation times of Phantom2 were shown to be comparable to the values identified in the 

healthy control subject (Fig. 5). Both compartments were characterized by intact gyri and sulci typical of a human 

brain (Fig. 3e; Fig. 4), showing that the assembly process did not alter the target shape. The geometric fidelity was 

assessed qualitatively comparing the external surfaces (Fig. 3) as well as in-plane slices (Supporting Fig. S2) of the 

simplified model (i.e. the one used for the 3D printer) and the phantom. Only few issues were identified in the shape 

of the phantom: a very limited number of gyri showed an unusual profile because the mold was not entirely filled by 

the MnCl2-agar solution (Fig. 4, green arrow) and some small air cavities were observed at the WM/GM interface 

(Fig. 4, red arrows). The shape and T1 relaxation times of the GM of Phantom2 remained stable within an observed 

time window of 84 hours from preparation. However, due to an increase in WM T1 relaxation times, an overall 

decrease in the contrast difference between WM and GM was observed (Fig. 5).   

 Similar to Phantom2, Phantom3 showed relaxation times and shape comparable with the target ones. In this 

case, the diffusion of MnCl2 was prevented by the wax layer for a longer period than in Phantom2, but it started 

occurring after 8 days (Fig. 5 and Supporting Fig. S3). Moreover, the applied wax layer was clearly distinguishable 

in the MRI (Fig. 5).    

 

 

 

Fig. 2: Calibration curve. Six different MRI contrast agent (i.e. MnCl2) concentrations were chosen and three samples were prepared for each 

concentration. The resulting T1 relaxation times were used to fit a calibration curve (line). According to this formula, the concentrations of 

MnCl2 for WM and GM similar to the template brain were derived and corresponding control samples were prepared (shown in red).  
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Fig. 3: Phantom shape. The surface meshes (a) were extracted from the template brain, 3D-printed with PLA (b), and brushed on with silicone 

to create flexible molds (c). Those molds were then used to shape the WM and GM gels (d). The left column represents the WM, the middle 

the GM and the last one the skull. Note that the GM gel (d, middle column) includes the WM gel (d, left column). 
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Fig. 4: MRI of the complete phantom. Axial (left), sagittal (middle), and coronal (right) view of the phantom mirrored along the midline. 

The 3D MPRAGE image shows the complexity of both WM and GM shapes achieved by the phantom and the homogeneity of the T1 relaxation 

times in the two compartments. Some cavities are observed in the WM/GM interface (red arrows) and a limited number of gyri are characterized 

by an unusual profile because they were not completely filled or broke off after removing the GM silicone mold (green arrow).   

 

 

 

 

Fig. 5: Phantom interfaces and stability. T1 relaxation times and 3D MPRAGE images of Phantom2 (a) and Phantom3 (b) are shown. At 

Day1, both phantoms are characterized by T1 relaxation times and folding patterns comparable to those in the healthy volunteer. The wax layer 

applied between WM and GM in Phantom3 creates a distinguishable interface in the 3D MPRAGE image. At Days2 and 4, diffusion through 

the applied varnish layer in Phantom2 led to a decrease in the contrast difference between WM and GM. In Phantom3, the wax layer completely 

prevented the diffusion of MnCl2, keeping the two compartments well separated during the observed time window of 4 days.   
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Discussion and Conclusions 

 

The design and construction of the anthropomorphic physical phantoms described here were motivated by the need 

of providing a unique framework to test factors linked to image processing or reconstruction in conjunction with 

elements related to image acquisition. T1 relaxation times were reproduced using an agar gel doped with the MR 

contrast medium MnCl2 and brain folding patterns were simulated using flexible silicone molds. We showed that our 

design does not require additional structures (i.e. chambers) to support and shape the geometry of the compartments, 

but at the same time, we demonstrated the need of some kind of water-repellent layer to prevent the diffusion of 

contrast agent. We here proposed two hydrophobic coatings that could be applied depending on the application.   

 The phantom features are normally dictated by the applications. Having anatomy-mimicking phantoms 

available for brain MRI is an important step forward for overcoming the limitations of both current physical and 

digital phantoms in specific applications. In this regard, a few physical phantoms with increased similarity to the real 

counterpart, both in terms of tissue intensities and shape, have been developed in the past years. For example, Curtis 

et al. (3) built 14 slices of a brain mimicking T1 and T2 tissue parameters, magnetic RF field behavior, and coil 

loading effects. WM and GM T1 and T2 relaxation times were reproduced using an agarose gel doped with 

gadolinium chloride, while each slice shape was determined from plastic compartments that were filled with the 

tissue-mimicking solutions. Kuss et al. (4) developed a head phantom for MRI and computed tomography (CT) to 

verify subdural electrode localization tools in epilepsy surgery. The phantom consisted of a skull, an adipose layer 

for the skin, and a deformable brain including WM and GM compartments (gelatin doped with copper sulfate for 

MRI, and barium sulfate for CT contrast), and CSF (agarose). Surfaces of WM and GM were imitated by manually 

cutting the gels to resemble the sulci structures. Another multipurpose phantom was proposed by Fujimoto et al. (5) 

who printed chambers from polylactic acid for WM, GM, and CSF and filled them with three different brain 

mimicking solutions composed of agar and manganese chloride (MnCl2) to calibrate imaging methods. Very recently, 

Gopalan et al. (6) constructed a 3D-printed, anatomy-mimicking, quantitative MRI phantom for validating spatio-

temporal models. Similar to the previous phantoms, brain-mimicking gels were composed of agar with nickel 

chloride and MnCl2, and 3D-printed polylactic acid chambers were filled with the corresponding solutions to mimic 

GM, WM and CSF. Among those existing physical phantoms, to our knowledge, these are the first prototypes built 

as 3D volume, characterized by such high degree of structural similarity with the real counterpart, without additional 

support (e.g. chambers) to maintain the shape and with a demonstrated stability of the properties over a short period 

of time. 

 Thanks to these features, the proposed phantom design could provide a unique framework to assess the impact 

of different steps related to image acquisition and processing on biomarkers while excluding completely the effect of 

biological and pathological variability. For example, the presence of WM and GM compartments and their relative 

complex geometries could be used to evaluate the accuracy of brain segmentation, cortical thickness estimation, 

shape analysis as well as the impact of different scanners and/or different imaging sequences on the accuracy of those 

analyses (e.g. 11). Another example of application could be in experimentally confirming the accuracy of magnetic 

resonance elastography (12) in detecting the in vivo brain tissue mechanical properties. Last but not least, our 

phantom could also be used in simulating longitudinal experiments. For instance, two phantoms could be built: one 

‘normal’, and one, instead, in which physiological process occurring in pathologies, such as global or regional 

atrophy, lesions, and tumors, are replicated. In this case, an assessment on how, for example, different image 
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reconstruction techniques, compressed sensing (13), or MRI fingerprinting (14), are able to properly catch the 

changes simulated in the phantom could be carried out.  

 There are some limitations in the current phantom prototype that could be addressed in future work. First, some 

structural simplifications were adopted. Since only the left brain hemisphere was constructed, the phantom position 

within the RF coil is different from a patient scan. Then, the WM was shrunk to facilitate the assembling of the two 

compartments, but this step led to a thickening of the cerebral cortex. Finally, this phantom was developed focusing 

on T1, because this is the contrast most frequently used for morphometric measurements (for example in brain tissue 

segmentation, 15). However, based on this concept, further tissue properties could be added to it, for example by 

using a mixture of contrast agents with different T1 and T2 relaxivities to also achieve physiologically accurate T2 

properties. 

 In conclusion, an innovative framework that allows the production of brain phantoms with realistic shape and 

homogenous T1 contrast of WM and GM has been created. The structural and intensity properties of the proposed 

phantoms make it useful in evaluating and validating steps from image acquisition to image processing. Moreover, 

the modular design makes it easily adjustable to a variety of applications. 
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Supplementary Material for Review 

 

 

Supporting Table S1: Sample compositions for calibration curve. 

SAMPLE 1 2 3 4 5 6 

  

Volume 2.5 mM MnCl
2
 (ml) 

  

0 

  

0.5 

  

1 

  

2 

  

2.6 

  

3 

Volume of 0.6 % agar (ml) 50 49.5 49 48 47.4 47 

Total sample volume (ml) 50 50 50 50 50 50 

              

Concentration MnCl
2
 (mM) 0 0.03 0.05 0.1 0.13 0.15 

 

 

 

 

Supporting Fig. S1: T1 mapping in template brain. T1 mapping was performed using an inversion recovery spin echo sequence (2D IR-

TSE, axial slice plane, resolution = 1.3x1.3 mm2, slice thickness = 5 mm, TR = 6000 ms, TE = 12 ms, TI = 30/50/100/200/500/750/1000/2000 

ms, Echo train length = 7, α = 180°, total scan time = 12 min 48 s). In the T1 brain maps, average intensities within WM (2 ROIs of dimensions 

3x3mm2; red squares) and GM (2 ROIs of dimensions 3x3 mm2; green squares) were computed. 

 

 

 

Supporting Fig. S2: Geometric accuracy. (a) The created surface meshes of WM and GM were converted back to the original image format 

(i.e. stl-to-nifti conversion) to generate binary masks of both WM and GM. (b) These masks were then compared in a slice-by-slice fashion to 

the structural phantom scans.  
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Supporting Fig. S3: Phantom long-term stability. Diffusion of contrast agent between the two compartments starts to set in at Day8. The 

contrast between the two phantom compartments then diminishes constantly within the observed time window of one month.  
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Abstract 

 

Background: Validation of results obtained by magnetic resonance (MR) image segmentation techniques are essential 

to their introduction in clinical protocols. However, the validation of segmentation algorithms still remains an open 

issue, as the determination of the actual ground truth is not feasible in vivo. 

 

Aim: Validating the quantification of white matter (WM), grey matter (GM), and total brain volumes of two 

commonly used automatic algorithms using a ground truth derived from a multimodal physical brain phantom. 

 

Methods: The anthropomorphic phantom was built with two agar gels that resembled the WM and GM compartments 

of a real brain tissue, both in terms of signal intensity characteristics and shape. The ground truth volumes of WM, 

GM and total brain were derived from high-resolution computed tomography (CT) images. T1-weighted MR images 

acquired at 3T were used as input for automatic segmentation carried out using FMRIB Software Library (FSL v5.0; 

FMRIB's Automated Segmentation Tool, FAST) and Statistical Parametric Mapping (SPM v12; ‘Segment’). 

Accuracy of the two algorithms was assessed by computing the percentage volume difference (VD) between the 

segmentation output and the ground truth for each compartment. Two additional T1-weighted MR images were 

acquired (without/with repositioning) to assess the scan-rescan reliability by comparing the computed volumes of 

those two scans to the ones calculated for the first scan.  

 

Results: The ground truth volumes derived from the CT scan were: 237.60 mL for the WM, 737.92 mL for GM, and 

975.52 mL for the total brain. FSL and SPM performed comparably in terms of accuracy and reliability. For the 

accuracy, FSL slightly prevailed in computing the volumes of WM, GM, and whole brain, yielding lower absolute 

values of VD than SPM (VDFSL-WM = 3.4%, VDFSL-GM = 2.3%, VDFSL-Brain = 2.6%; VDSPM-WM = -4.4%; VDSPM-GM = -

2.6%; VDSPM-Brain = -3.0%). Regarding the reliability, instead, SPM provided slightly less variable results compared 

to FSL (VDSPM ≤ 0.5% without repositioning, VDSPM ≤ 1.0 with repositioning; VDFSL ≤ 0.2% without repositioning; 

VDFSL ≤ 2.0 with repositioning). 

 

Discussion and Conclusions: The brain phantom, with its structural and intensity properties, allowed the validation 

of two popular automatic segmentation algorithms. Since the variability in computed volumes between the two 

software packages is comparable to the atrophy rates observed in aging and pathological conditions, our study 

underlines the huge impact of software choices for quantifying brain volumes. 

 

 

Keywords: Segmentation, white matter, gray matter, FSL, SPM, physical phantom, T1 
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Introduction 

 

Magnetic resonance (MR) based brain tissue segmentation is a fundamental tool for in vivo quantitative evaluation 

of brain atrophy caused by normal aging and pathological conditions (Despotović et al., 2015).  

 Two of the most commonly used software packages for this purpose are encoded in Statistical Parametric 

Mapping (SPM; http://www.fil.ion.ucl.ac.uk/spm/; Ashburner and Friston, 2005) and FMRIB software library (FSL; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki; Zhang et al., 2001). Both include automated segmentation routines that utilize 

iterative approaches to classify brain images into the three tissue classes white matter (WM), gray matter (GM), and 

cerebrospinal fluid (CSF). Besides the basic intensity-based classifications, various refinements are encoded in the 

standard algorithms of the two software. While the FSL algorithm borrows local spatial information from neighboring 

voxels (Zhang et al., 2001), the SPM algorithm relies on prior atlas information (Ashburner and Friston, 2005) to 

improve segmentation accuracy and robustness. 

 Variability in computed volumes has been shown to arise from factors related to the image acquisition or 

processing (Klauschen et al., 2009). Other sources of variability include physiological (circadian) variations in the 

hydration status and cardiovascular risk factors, which are associated with reduced brain volume (Tur et al., 2018). 

Most importantly, the choice of the segmentation algorithm was shown to have the biggest impact on computed WM 

and GM volumes (Clark et al., 2006). Since discrepancies between the different software may cause variability in 

computed brain volumes - which is comparable to the atrophic volume loss caused by neurodegeneration in aging or 

diseases - these might limit the power of tissue quantification for monitoring changes in individual patients over time 

(Klauschen et al., 2009).  

 For this reason, the validity of brain segmentation algorithms for MRI has been evaluated using manual 

segmentation and/or digital brain phantoms as “ground truth”. Overall, existing validation studies produced 

conflicting results and no clear consensus could be found on the accuracy and reliability of the underlying algorithms 

(Klauschen et al., 2009; Eggert et al., 2012; Kazemi and Noorizadeh, 2014; Mendrik et al., 2015; Tudorascu et al., 

2016). Despite the fact that these studies could provide an indication on which segmentation algorithm is 

characterized by high accuracy and reliability, a definite answer is challenging to formulate due to the challenging 

task of defining a “ground truth”. Indeed, gold standard manual segmentations are very time-consuming with a not 

negligible intra- and inter-operator variability (Lampert et al., 2016). Digital brain phantoms are more flexible and 

easy to implement, but they might fail to incorporate all acquisition-related factors into the signal model (Kasten et 

al., 2016). 

 Hence, we proposed to validate the FSL and SPM algorithms with a novel, multimodal and anatomical physical 

phantom (Altermatt et al., 2017). This phantom simulates the WM and GM compartments of the human brain in 

terms of T1 relaxation times, radiopacity, and shape. Being a physical object, it can be scanned using the MRI 

technology, therefore incorporating the real acquisition process in the evaluation, as well as imaged with high 

resolution computed tomography (CT), thus providing an accurate and objective “ground truth”.  
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Materials and Methods 

 

2.1. Physical Brain Phantom 

The single-hemisphere brain phantom was built according to the procedure described in (Altermatt et al., 2017). 

Briefly, the phantom mimics the brain WM and GM compartments, both in terms of T1 relaxation times and shape. 

The former was achieved with two 0.6% agar gels (Morga AG, Ebnat-Kappel, Switzerland) doped with, 0.12 and 24 

mg/mL of MR contrast agent respectively (Manganese chloride, MnCl2; Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany). The latter was obtained using a dedicated molding-casting procedure that allowed the replication of the 

complex 3D geometry of the two compartments. For this study, 24 mg/mL CT contrast agent (Iopromidium; Bayer 

AG, Leverkusen, Germany) was also added to the WM agar solution to obtain distinguishable attenuation coefficients 

in the CT scan. 

 

 

 

Figure 1: Anthropomorphic Phantom. (a) Phantom WM compartment. (b) Phantom GM compartment (enclosing the WM). 

 

2.2. Ground truth volumes 

For the computation of the ground truth volumes, the described phantom design allowed us to take advantage of the 

high spatial and temporal resolution of the CT technology. The phantom was thus first scanned using CT (Somatom 

Edge, Siemens Healthineers, Erlangen, Germany resolution = 0.44x0.44x0.25 mm3, eff. mAs of 270, 0.6 mm slice 

thickness, J30s/3 reconstruction kernel, 226 mm FOV). After mirroring the resulting image at the mid-sagittal plane, 

the number of voxels belonging to the WM and GM compartments was computed applying a threshold at 1170 HU: 

if the voxel intensity was below this value, then the voxel was considered as part of GM tissue, if equal or above, as 

WM. The number of voxels of the two compartments was then multiplied by the voxel dimension to obtain the ground 

truth WM and GM volumes. The ground truth whole brain volume was computed as the sum of WM and GM 

volumes.  

 

2.3. MR image acquisition 

The MRI protocol included a T1-weighted imaging sequence (3D MPRAGE, sagittal slice plane, resolution = 

0.82x0.82x1.00 mm3, TR = 1570 ms, TI = 900 ms, TE = 1.34 ms, α = 8°, scan time = 6 min 38 s) acquired with a 20-

channel head coil at a 3 Tesla clinical scanner (Magnetom Prisma, Siemens Healthineers, Erlangen, Germany). 2D 

distortion correction of the images was performed according to the manufacturer’s specifications by enabling the 

relevant parameter in the sequence options. The protocol was repeated three times within the same session: a baseline 

scan, a rescan without repositioning, and a rescan with repositioning of the phantom between the scans.  
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2.4. Image segmentation 

Following the acquisition, all MRI data were first mirrored along the mid-sagittal plane of the phantom. The images 

were then used as input for FSL and SPM to compute WM, GM, and whole brain volumes. The FSL segmentation 

algorithm was run using the default parameters. A threshold of 0.5 was applied to the resulting probability masks to 

generate binary masks for each class. Volumes of WM and GM were computed by multiplying the number of voxels 

in each mask by the voxel dimensions. Unlike FSL, SPM uses tissue probability maps as priors for the segmentation 

(Ashburner and Friston, 2005). To account for the anatomical features of the phantom (Altermatt et al., 2017), only 

three priors were selected (the WM, GM, and the background one) and modified in the following way: the ventricles 

in the WM prior were filled; in the GM prior, the cortical thickness was increased by 20 mm and the WM prior was 

scaled down by the same amount. A threshold of 0.5 was applied to the probability maps derived from the 

segmentation, generating binary masks from which the WM and GM volumes were calculated. The whole brain 

volume was computed by adding together the WM and GM volumes. The same procedure was then repeated to assess 

the volumes in the scan-rescan experiments (without and with repositioning). 

 

2.5. Evaluation of segmentation 

The results obtained from the segmentation of the MRI were qualitatively and quantitatively compared to the ground 

truth derived from the CT image. A visual assessment was performed identifying misclassified voxels in the binary 

maps, if any. A quantitative evaluation of the results was also carried out calculating two indexes: the percentage 

volume difference (VD) and the Dice similarity coefficient (DSC, Dice, 1945). The VD quantified how much the 

volumes derived from FSL or SPM differenced from the ground truth ones. It was defined as  

 

𝑉𝐷 =
𝑉𝑀𝑅𝐼 − 𝑉𝐶𝑇

𝑉𝐶𝑇
∙ 100, 

 

where VMRI is the volume obtained from the segmentation algorithms (i.e. FSL or SPM) and VCT  is the ground truth 

volume extracted from the CT scan. 

 Then, CT images were registered to the MRI and the transformation matrix was applied to the CT-derived whole 

brain, WM, and GM binary mask. To assess the spatial overlap of the binary masks, the DSC was calculated as: 

 

𝐷𝑆𝐶 =
2|𝐴 ∩ 𝐺|

|𝐴| + |𝐺|
∙ 100, 

 

where A is the masks derived from the automatic segmentations (i.e. by FSL or SPM) and G is the corresponding 

ground truth mask.  

 To evaluate the scan-rescan reliability, the volumes of the first scan were compared to the second and third scans 

(without and with repositioning, respectively) by calculating VDs in which the volumes from the first scan were used 

as reference.  

 All the analyses were done using Matlab (version R2017b; https://www.mathworks.com/). 
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Results 

 

Acquired CT and T1-weighted MR images are shown in Figure 2. The ground truth volumes derived from the CT 

scan were: 237.60 mL for the WM, 737.92 mL for GM, and 975.52 mL for the whole brain. These ground truth 

binary masks for WM, GM, and total brain and the binary masks resulting from automatic segmentation are shown 

in Figure 3.  

 While the FSL algorithm overestimated volumes of WM, GM, and total brain by up to 3.4%, the same volumes 

were underestimated by up to -4.4% using SPM (Table 1). In terms of absolute values, FSL provided volumes closer 

to the ground truth than SPM. The visual assessment showed some false positive WM voxels in the FSL segmentation 

at locations within the GM area (Figure 3), which are correctly classified by the SPM algorithm. The visual 

assessment further showed that the FSL algorithm seems to accurately contour the outer GM border, while the same 

area was clearly underestimated by the SPM algorithm (Figure 3). Differences in computed volumes between the 

two automatic segmentation software reached discrepancies of 7.8% for the WM, 4.9% for the GM, and 5.6% for the 

total brain.  

 Both software packages were characterized by a very good and comparable scan-rescan reliability, as shown by 

the scan-rescan assay (without/with repositioning) (Table 2). In the scan-rescan experiment with repositioning, higher 

differences were generally observed (Table 2) reaching a maximal value of 2% for the WM volume calculated by 

FSL. 

 

 

 

Figure 2: Multimodal phantom images. (a) Acquired high-resolution CT images used to derive phantom ground truth volumes. (b) Acquired 

T1-weighted MRI used for automatic segmentation by the software FSL and SPM. Axial (left column), sagittal (middle column), and coronal 

(right column) slice planes.   
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Figure 3: Evaluation of segmentation. Figure depicting the binary masks of WM (left column), GM (middle column), and total brain (right 

column) derived from (a) ground truth derived from CT, (b) FSL FAST, and (c) SPM ‘Segment’ segmentations. 
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Table 1: Accuracy of segmentation 

 Total Brain WM GM 

 VD [%] DSC [%] VD [%] DSC [%] VD [%] DSC [%] 

FSL 2.55 96 3.37 92 2.29 94 

SPM -3.03 93 -4.39 94 -2.59 94 

VD: Volumetric difference; DSC: Dice similarity coefficient 

 

 

Table 2: Scan-rescan reliability  

 Total Brain  WM  GM 

 VD [%] VD [%] VD [%] 

FSL    

Rescan (w/o repositioning) -0.12 +0.08 -0.19 

Rescan (with repositioning) +0.61 +2.04 +0.14 

    SPM    

Rescan (w/o repositioning) +0.01 -0.49 +0.17 

Rescan (with repositioning) +0.38 +0.96 +0.20 

VD: Volumetric difference    
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Discussion 

 

We validated the quantification of whole brain, WM, and GM volumes by two commonly used automatic algorithms, 

FSL and SPM, using an objective and accurate ground truth derived from a multimodal physical brain phantom.   

 Regarding the accuracy, in the current study, FSL slightly prevailed in computing the volumes of WM, GM, and 

whole brain. This is in agreement with Klauschen et al. (2009) and Eggert et al. (2012), but in discordance with Tsang 

et al. (2005), Kazemi et al. (2014), Mendrik et al. (2015), and Heinen et al. (2016). The reasons for those differences 

could be various, ranging from which type of ground truth was used (i.e. digital simulations, real images with manual 

segmentation, or both), software version, field strength and type of sequences (Clark et al., 2006; Heinen et al., 2016). 

For example, both Tsang et al. (2005) and Kazemi et al. (2014) used previous versions of the segmentation 

algorithms, the ground truth was digital simulated brains and real images with manual tracing acquired at 1.5 Tesla. 

Mendrik et al. (2015) adopted the same versions of FSL and SPM as in the current study, the real images were also 

acquired at 3 Tesla, but the segmentation was performed on 2D T1 as input for SPM and FSL. Similarly, Heinen et 

al. (2016) downsampled the 3D T1 images to make the manual segmentation of WM and GM feasible. Finally, 

Tudorascu et al. (2016) preferred SPM based exclusively on a quality assessment by two neurologists performed on 

ten specific GM regions of interest.  

 Regarding the reliability, overall, SPM provided more consistent results compared to FSL. Also Klauschen et 

al. (2009) and Eggert et al. (2012) showed that FSL had more variable results, suggesting that FSL is more sensitive 

to noise factors than SPM. However, we obtained a lower GM volume difference between the two scans than Eggert 

et al. (2012) with both segmentation algorithms. Tudorascu et al. (2016), instead, showed a higher agreement in the 

segmentation of GM by SPM and of WM by FSL, that could be in agreement with our results that showed a lower 

GM volume difference by SPM and WM volume difference by FSL, instead. Moreover, our volume difference in the 

whole brain segmented by FSL is also included in the error range (0.46%) reported by (Smith et al., 2002) in a scan-

rescan experiment. However, despite being in this ranges, our values are comparable to, in the case of SPM, or 

exceeding, in the case of FSL, the annual rate of brain volume difference reported in neurodegenerative disorders, 

such as multiple sclerosis (De Stefano et al., 2010). This might especially limit the power of these methods for 

monitoring changes in individual patients over time in longitudinal studies (Klauschen et al., 2009). Indeed, these 

findings underline the tremendous effect of technical confounders in the analyses of brain volumes and that these 

considerations should be taken into account when interpreting existing studies, especially if in small cohorts.  

 Local discrepancies in the segmentation accuracy between the two software packages were detected. The FSL 

segmentation has shown many false positive WM voxels within the GM region. These voxels were most likely 

misclassified by the FSL algorithm because of their higher T1-weighted intensities compared to the average GM 

intensity. Since FSL primarily relies on the intensity distribution of the images and the local spatial information 

surrounding a voxel, it might be, in fact, more sensitive to imaging artefacts and noise (Zhang et al., 2001). The SPM 

algorithm, instead, may be less influenced by that because of its adoption of prior atlas information, which might 

reduce classification errors by assigning a low probability to the WM at atlas-defined locations of the GM class 

(Ashburner and Friston, 2005). Despite reducing the number of misclassifications in this way, the prior atlas 

information encoded in the SPM algorithm does not seem to strongly improve the overall segmentation accuracy. 
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Unlike FSL, the SPM algorithm was shown to slightly underestimate all volumes, which could mainly be linked to 

the misclassification of voxels affected by partial volume effects.   

 Compared to the “gold standard” established using manual segmentation, the automatic use of a physical 

phantom that we proposed here is more time-efficient, more accurate and not subjected to intra- inter-operator bias 

(Despotovic et al., 2015). Indeed, in the high-resolution phantom CT images, the ground truth can be established 

upon simple thresholding. This segmentation step is fully automatic and therefore easily reproducible.  Compared to 

digital phantoms, this physical phantom offers the advantage of allowing to assess the true effect of choices related 

to image acquisition (i.e. type of scanner/RF coil, sequence specifications, artefacts, patient positioning), which can 

only be simulated for artificial images (Despotovic et al., 2015). For example, methods that are optimized based on 

numerical simulations may fail or introduce systematic bias when presented with real scanner data if specific factors 

are discounted or overlooked. Although analytical Fourier expressions may be bound for a variety of objects, 

introducing additional experimental factors – such as for example arbitrary field perturbations -  may lead to 

mathematically intractable situations in digital simulations (Kasten et al., 2016). Among existing physical phantoms 

mimicking structure and T1 relaxation times of WM and GM (Curtis et al., 2010; Kuss et al., 2011; Khan et al., 2012; 

Fujimoto et al., 2015; Gopalan et al., 2017), to our knowledge, this is the first prototype characterized by such high 

degree of structural similarity with real brain anatomy and does not require additional chambers to maintain the 

shape.  

 However, despite this phantom being a step further in the definition of a ground truth, it is still a simplification 

of a real brain. The lack of a surrogate for the cerebrospinal fluid causes susceptibility artefacts that translated into a 

hyperintense margin at the outer border of the GM. Moreover, the very pronounced cortical thickness was 

fundamental for building the phantom (Altermatt et al., 2017), but it reduces the impact of partial volume effects on 

the GM compartment. Furthermore, the homogeneity of the gels used for the phantom in terms of T1 relaxation times 

influences the intensity histogram, simplifying to some extent the segmentation by both algorithms.  

 Future studies using the same anthropomorphic phantom could analyze the impact of different choices related 

to the image acquisition on computed total or regional brain volumes. For example, volume differences resulting 

from scanner changes (across field strengths and vendors), from modifications to the imaging sequences, or from 

phantom positioning could be quantified.  

 In conclusion, the multimodal physical brain phantom provided an accurate and reliable ground truth for the 

validation of segmentation algorithms. While FSL prevailed in terms of accuracy, SPM showed a better performance 

in terms of reliability. Since volume differences between scans and software were shown to reach discrepancies 

comparable to atrophy, this study underlines the tremendous impact of technical confounders in the quantification of 

total and regional brain volumes.    
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7 Discussion and Conclusions

Despite the central role of MRI in assessing and quantifying brain lesions and atrophy,

clinico-radiological associations are often weak, limiting the use of MRI-derived markers in

the clinical routine or as endpoints in clinical trials [5–7]. The work conducted as part of

this thesis was motivated by the need of bridging the gap between clinical and radiological

disease manifestations. The two approaches presented here, addressed two different topics,

which might underlie this mismatch: (A) In a voxel-based lesion-symptom mapping study,

we aimed at strengthening lesion-symptom associations by the identification of strategic

lesion locations; (B) With the construction of an anatomical physical phantom we aimed at

providing a ”ground truth” for the validation of atrophy measurements, which will enable

addressing the robustness and reliability of atrophy-symptom associations.

Lesion-symptom association: Voxel-based lesion-symptom mapping was performed

in two large cohorts: a dataset of 2348 relapsing-remitting MS patients, and a population-

based cohort of 1017 elderly subjects. For both studies, an automatized registration

pipeline for alignment of the T2-weighted lesion masks to standard stereotaxic space

was implemented. In a second step, a voxel-based statistical approach to relate lesion

location to different clinical measures was encoded.

In the MS lesion mapping study, significant associations between lesion location and

several clinical scores were found in periventricular areas. Such lesion clusters appear

to be associated with impairment of different physical and cognitive abilities, probably

because they affect commissural and long projection fibres, which are relevant WM

pathways supporting many different brain functions. In the SVD lesion mapping study,

age, gender, several cognitive scores, and WM lesion load were shown to be significantly

associated with vascular risk factors. Moreover, periventricular WM lesions affecting

the same WM fibres and the caudate nucleus were identified to significantly relate to

the subjects’ cerebrovascular risk profiles, while no other WM locations were found to

be associated with cognitive impairment in this population of elderly, but on average

cognitively preserved adults.

As becomes obvious from the obtained lesion distributions in these two large cohorts,

in both diseases, WM lesions occur more frequently around the ventricles than elsewhere.

For this reason, with conventional T2-weighted MRI it might be difficult to distinguish

between the two disease pathologies, especially since they often coexist. In SVD, sparing

of the U-fibers, relative sparing of the corpus callosum, temporal lobe and cerebellum,

more central involvement of brain stem, presence of lacunar infarcts and microbleeds and

sparing of spinal cord are common findings to distinguish it from MS with conventional
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MRI [36, 69]. The predilection for periventricular lesion locations in both diseases might

be suggestive for a common pathophysiological mechanism underlying the two diseases.

In MS, the underlying substrate for this topographic predilection is not fully under-

stood. Some studies suggest an increased vulnerability of periventricular sites due to the

presence of soluble mediators within the CSF which trigger autoimmunity [70]. Other

observations suggest that the relationship between MS lesions and the cerebral vessels

is important. Periventricular lesions form around subependymal veins and perivascular

(venous) inflammatory infiltrates are seen in these MS lesions [70]. Moreover, focal WM

lesions seem to occur in watershed areas of low arterial blood flow. Following this obser-

vation, tissue hypoxia has been suggested as common pathogenic mechanism potentially

underlying both disease. For haemodynamic reasons periventricular WM may be more

likely than other parts of the brain to become hypoxic, explaining the predilection for

lesion formation in this region [71].

There are several reasons for the lack or non-specificity of the identified lesion-

symptom associations that apply to both studies and which could be addressed in future

work. First, the type of lesions considered for these analyses reflect a variety of patho-

physiological processes and severity of tissue damage seen in MS and SVD. Second,

other central nervous system compartments (e.g. cortical lesions) which might play a

role in the development of disability, were not taken into account in these lesion-mapping

approaches [5–7]. Finally, future studies could aim at implementing a lesion-mapping al-

gorithm which allows incorporating information from neighboring voxels or which partly

captures the complex network underlying brain function [14, 72]. Indeed, studies ex-

ploring the relation between lesions and clinical disability in MS have shown that the

moderate clinico-radiological association is rather due to the intrinsic variability in the

clinical expression of lesions at different anatomical locations than due to deficiencies in

existing MRI markers or clinical rating scales [73].

In summary, significant associations between lesion location and clinical impairment

in MS and cerebrovascular risk factors relevant for SVD were found in periventricular

areas, reflecting damage to commissural and large projection fibres. No other lesion loca-

tions have shown a significant association to the cognitive scores considered in the SVD

lesion mapping. We conclude that voxel-based lesion-symptom mapping of T2-weighted

WM lesions may in some cases reveal a stronger lesion-symptom association to clinical

impairment compared to conventional lesion assessments. Future lesion-mapping studies

should try to partly capture the complex network underlying brain function by identify-

ing associations between lesional patterns and clinical impairment.

Atrophy-symptom association: With the construction of an anatomical physical

phantom we established a ”ground truth” for segmentation validation, which will en-

ables addressing the robustness and reliability of atrophy-symptom associations. The

constructed phantom prototype is composed of agar gels doped with MR and computed

tomography contrast agents, which realistically mimic T1 relaxation times at 3 Tesla and

showing distinguishable attenuation coefficients using computed tomography. Moreover,

due to the design of anatomical and flexible molds, both WM and GM are character-
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ized by shapes comparable to the human counterpart. Due to the increased anatomical

similarity and the absence of thick physical (e.g. 3D-printed) interfaces between the com-

partments, the phantom allows to more realistically mimic image segmentation compared

to existing phantoms.

In a proof-of-principle study, the designed phantom was used to validate automatic

brain tissue segmentation by two commonly-used software tools. ”Ground truth” vol-

umes of the two phantom compartments were derived from a high-resolution computed

tomography scan. Automatic image segmentation using the standard tools available

in the two software FSL and SPM was done on T1-weighted phantom images. Both

automatic segmentation algorithms were shown to perform comparably, while FSL was

shown to be slightly more accurate in computing the volumes of WM, GM, and total

brain. While the FSL algorithm slightly overestimated volumes of WM, GM, and total

brain, the same volumes were slightly underestimated by SPM. Regarding the reliability

of computed volumes by the two software, the two algorithms were again shown to per-

form comparably, while SPM provided slightly more consistent results compared to FSL.

Results across software were shown to be highly variable reaching volume differences of

up to 8%. These discrepancies are far beyond the yearly whole-brain or regional atrophy

rates observed in MS or SVD and, in accordance with results of several previous studies

[21, 22, 74, 75], our study underlines the huge impact of software choices in the analyses

of brain volumes.

There are some limitations in the current phantom prototype that need to be ad-

dressed in future work. Most importantly, the cortical thickness is increased in the

employed phantom, which might for example reduce the impact of partial voluming for

segmentation applications. Then, since the phantom does not realistically mimic the dif-

ference in susceptibilities between GM and CSF, a hyperintense margin is visible in the

T1-weighted MRI, which might slightly influence GM segmentation. Then, the current

phantom prototype produces constant T1 relaxation times only during several days and

future work is needed to create a phantom, which is stable within a longer time win-

dow. Finally, since we have established a modular framework for phantom construction,

different brain regions could be incorporated and different physical properties (e.g. T2,

PD) could be mimicked additionally.

Future envisioned applications of the constructed phantom are to study the impact

of different choices related to the image acquisition on computed total or regional brain

volumes. For example volume difference resulting from scanner changes (across field

strengths and vendors), from modifications to the imaging sequences, or from phantom

positioning could be quantified using the designed anatomical phantom.

To sum up, an anatomical physical brain phantom prototype mimicking shape and

T1 of WM and GM was successfully constructed. The phantom was used in a proof-

of-principle study to validate and compare two commonly-used automatic segmentation

tools. To sum up, while FSL slightly overestimated volumes of WM, GM, and total brain,

the same volumes were sightly underestimated by SPM. In general, results from the same

software yielded reliable results across scans, while results across software were shown to

be highly variable reaching volume differences beyond the yearly regional and total brain
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atrophy rates. In this regard, our findings underline the central role of software choices

to reliably and robustly associate MRI-derived atrophy measurements and symptoms in

neurological diseases.

82



Bibliography

[1] Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G.,

Correale, J., Fazekas, F., Filippi, M., Freedman, M. S., Fujihara, K., Galetta, S. L.,

Hartung, H. P., Kappos, L., Lublin, F. D., Marrie, R. A., Miller, A. E., Miller, D. H.,

Montalban, X., Mowry, E. M., Sorensen, P. S., Tintoré, M., Traboulsee, A. L., Trojano,
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