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1 Summary

Diminished mitochondrial function impacts on cellular metabolism but also critically

in�uences life and also health span. Mitochondrial dysfunction due to accumulating

mitochondrial damage is considered one of the main factors of aging and aging-related

disease such as Alzheimer's disease and other neurodegenerative disorders. Mitochondrial

quality control is essential to prevent dysfunction and associated deleterious outcomes.

Multi-tiered molecular machinery is in place to remove and degrade super�uous or dam-

aged proteins to maintain mitochondrial proteostasis, cull mitochondrial subunits beyond

repair or remove entire mitochondrial networks through apoptosis. Besides proteolytic

pathways, autophagic removal is an important part of mitochondrial quality control.

Severe damage to mitochondria exceeding the repair capacity of proteolytic systems,

but below the apoptotic threshold, leads to the removal of mitochondrial units through

mitochondria-speci�c autophagy or mitophagy under control of the kinase PINK1 and

the ubiquitin ligase Parkin. Following recognition of damaged mitochondrial subunits by

PINK1, Parkin is recruited causing the ubiquitination of mitochondrial proteins. This

results in the recruitment of autophagy cargo adaptors leading to the engulfment of

the damaged mitochondria and its subsequent degradation in the lysosome. Among the

proteins recruited during mitophagy is the AAA-ATPase VCP/p97. As ubiquitously

expressed protein, p97 acts in a plethora of cellular functions involving ubiquitination,

including cell cycle control, transcriptional regulation as well as proteostasis. In addition,

p97 was recently connected to ubiquitin-mediated degradation of mitochondrial proteins,

Parkin-dependent mitophagy and deubiquitinating enzymes. These multiple diverse func-

tions of p97 suggest tight spatial and temporal control of its activity, which is brought

upon by the interaction with various cofactors promoting substrate recognition and pro-

cessing by p97.

In this in vitro study the connection of p97 to mitochondrial quality control with focus

on mitophagy was studied. In a �rst step, p97 cofactors were screened using subcellular

localization analysis for their ability to translocate to mitochondria under mitophagic
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conditions. From this screen, UBXD1, SAKS1, and Erasin were found to alter their

locations following mitophagic induction implicating these proteins in the autophagic

clearance of mitochondria. Further analysis suggested a role for UBXD1 as recruitment

factor for p97 to damaged mitochondria. It was shown that UBXD1 recognizes depolar-

ized mitochondria via its C-terminal UBX domain and translocates to mitochondria in

a Parkin-dependent manner. Once translocated, UBXD1 recruits p97 to mitochondria

via a bipartite binding motif consisting of its N-terminal VIM and PUB domains. Re-

cruitment of p97 by UBXD1 only depends on the presence of UBXD1 on mitochondria

without the need for further mitochondrial signals. Following translocation of UBXD1

to CCCP-depolarized mitochondria and p97 recruitment, formation of autolysosomes is

strongly enhanced and autophagic degradation of mitochondria is signi�cantly acceler-

ated. Diminished levels of UBXD1 result in decreased mitophagic �ux.

In a next step, a potential role in mitophagy for the deubiquitinating enzyme YOD1 was

studied. YOD1 was previously reported to facilitate together with p97 and UBXD1

lyosphagy and ERAD. Alternative transcript analysis revealed a di�erential role for

YOD1. Under mitophagic conditions, the shorter YOD1.2 was translocating to mito-

chondrial while the longer YOD1.1 remained in the cytosol. In addition, ecotopic expres-

sion of UBXD1 greatly enhanced mitochondrial translocation of YOD1.2. Under these

conditions, UBXD1 and YOD1.2 translocate to depolarized mitochondria in a mutually

exclusive manner with YOD1.2 seemingly to displace UBXD1.

In summary, the work presented here suggests a novel role for UBXD1 as sensor for

mitochondria undergoing mitophagy and mitochondrial recruitment factor for p97 dur-

ing mitophagy. Furthermore, UBXD1 potentially initiates a multi-step cascade involving

YOD1.2 ultimately aiding the mitophagic quality control of damaged mitochondria.

2



2 Aims of the thesis

� Identi�cation of p97 cofactors potentially involved in mitophagy

� Cloning of p97 cofactors into mammalian expression vectors

� Subcellular localization under normal and mitophagic conditions

� Characterization of p97 cofactor UBXD1

� Parkin dependency of UBXD1 mitochondrial translocation

� Structure-function relationship for mitochondrial translocation

� Structure-function relationship for p97 recruitment to mitochondria

� Mitophagic �ux under elevated/diminished levels of UBXD1

� Analysis of potential mitophagic role for YOD1

� Subcellular localization of YOD1 during mitophagy

� Structure-function relationship for mitochondrial translocation

� Interplay between YOD1 and UBXD1 under mitophagic conditions
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3 Introduction

3.1 Mitochondria

3.1.1 Mitochondrial structure and function

Mitochondria are multifunctional organelles in eukaryotic cells. Although mostly recog-

nized as powerhouses because of their respiratory energy conversion, mitochondria per-

form various other essential functions. Mitochondria provide iron�sulfur cluster assembly,

integrate anabolic and catabolic processes, including amino acid and lipid metabolism,

and participate in cellular ion homeostasis and signalling pathways [1, 2, 3]. Their in-

volvement in cellular metabolism makes mitochondria crucial even for eukaryotes that

inhabit anaerobic environments, with only one recent example of the evolutionary loss

of this organelle [4]. The perturbation of mitochondrial function results in cellular stress

and often has devastating e�ects, including mitochondrion-related diseases in humans [3].

Mitochondria possess well-de�ned boundaries that are provided by two membranes that

outline the organelle [5]. These membranes, external or outer mitochondrial membrane

(OMM) and internal or inner mitochondrial membrane (IMM), surround two distinct

aqueous subcompartments: the mitochondrial intermembrane space (IMS) and the mito-

chondrial matrix. The IMM is further divided into an inner boundary membrane that is

adjacent to the OMM and is separated by crista junctions from invaginations that pro-

trude into the matrix, called cristae. Mitochondria are organized into a dynamic network

that is shaped by frequent fusion and �ssion processes [6, 7, 8].

To perform their functions, mitochondria need a set of proteins to build the mitochondrial

proteome. The best-characterized proteomes of yeast and human mitochondria comprise

approximately 1000�1500 di�erent proteins, but the annotation of mitochondrial proteins

is an ongoing process [8, 9]. Mitochondria have their own genome and transcription and

translation machinery [10, 11]. However, only a very limited number of mitochondrial

proteins, peptides and ribonucleic acids (RNAs) are synthesized inside the organelle. The

majority of mitochondrial components is produced outside of mitochondria and imported
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using sophisticated import machinery.

Given the overarching importance of mitochondria, impaired mitochondrial homeostasis

and function has been linked to multiple human diseases including cancer and neurode-

generation, but also aging. Their important role, but also their susceptibility to damage,

is mirrored in a multi-layered quality control system keeping mitochondria in shape [12].

Mitochondrial maintenance and quality control are an concerted e�ort of protein degra-

dation either through specialized mitochondrial proteases or the UPS, lysosomal degra-

dation triggered through autophagy, and also programmed cell death. The goal of this

study was to further elucidate mitochondrial quality control at the intersection between

ubiquitin-mediated protein degradation and autophagy.

3.1.1.1 Structural properties of mitochondria Structurally, mitochondria are

highly compartmentalized organelles [13]. As shown in Figure 1, mitochondria contain

two lipid bi-layers, an OMM and an IMM, leading to the IMS, topologically equivalent

to the cytoplasm, and the matrix, an internal space that contains enzymes important

for fatty acid oxidation as well as for the Krebs tricaboxylic acid cycle (TCA). The ma-

trix also hosts mitochondrial DNA (mtDNA) and is the site of mitochondrial protein

synthesis[14, 15]. The IMM is highly impermeable, and by folding in a convoluted man-

ner, forms the cristae, a large surface area where the respiratory chain (RC) complexes

I�V are located [16]. The IMS is part of the proton gradient necessary for adenosine

triphosphate (ATP) generation across the IMM [17], where an increased concentration

of protons in the IMS compared to the matrix is established during mitochondrial respi-

ration (see 3.1.1.2). The inner boundary membrane as part of the IMM forms a double

membrane layer with the OMM. It houses translocase of the inner membrane (TIM) com-

plex, which facilitates protein transport across the IMM into the matrix [18]. The protein

complexes of the electron transport chain (ETC) are largely localized to the cristal region

of the IMM. The invaginations or cristae of this cristal membrane contain the majority

of the mitochondrial cytochrome c pool [19].

The OMM acts as a di�usion barrier [20], while permitting size-restrictive passage across
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Figure 1: Mitochondrial compartments. Shown is a scheme of a mitochondrion with annotations
for the di�erent mitochondrial compartments. Mitochondria are double membrane-bound organelles
with an outer and inner mitochondrial membrane (IMM). The mitochondrial matrix is the inner
most part of mitochondria harboring mtDNA and also the enzymatic machinery for the tricarboxylic
acid cycle (TCA cycle). The IMM is highly folded forming so called cristae in order to expand the
membrane surface for the components of the electron transport chains (ETC). The ETC is generating
the mitochondrial membrane potential ultimately used for the production of ATP by complex V.
Ion transporters such a voltage-dependent anion channel (VDAC) are involved in Ca2+ bu�ering.
Cytochrome c is a small protein localized in intermembrane space as part of the ETC.

the membrane through porins and receptor-mediated tra�c via the translocase of the

outer membrane (TOM) complex [21, 22]. Mitochondria-associated membranes (MAM)

[23] are sites of connection of the OMM to the endoplasmic reticulum (ER) and are in-

volved in both Ca2+ [24] and in�ammasome signalling [25]. Additionally, the OMM is

lipids source for the formation of the isolation membrane during autophagy [26].

3.1.1.2 Mitochondrial energy production The structure, function, and organi-

zation of the respiratory chain have been under investigation since Otto Warburg dis-

covered Atmungsferment, the enzymatic basis for cellular respiration [27]. Mitochondria

are the site of OXPHOS and generate as much as 90 % of all ATP used by cells via a

chemiosmotic mechanism. Mitochondria generate the energetic potential via the respira-

tory complexes I to IV [28]: complex I (CI or reduced nicotinamide adenine dinucleotide
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(NADH):ubiquinone oxidoreductase), complex II (CII or succinate:ubiquinone oxidore-

ductase), complex III (CIII or ubiquinol:cytochrome-c oxidoreductase), and complex IV

(CIV or cytochrome-c oxidase). Together with complex V (CV or FO F1 -ATP-synthase)

they form what is usually called the OXPHOS system (Figure 2). The entry point for

mitochondrial metabolism consists of electron donors. These donors are generated during

the metabolization of glucose by the TCA and though ÿ-oxidation of fatty acids. Com-

plex I, Complex III, and Complex IV generate proton motive force across the IMM and

their actions are facilitated by Complex II and electron transfer cofactors (i.e., ubiquinone

and cytochrome-c). Proton translocation back to the mitochondrial matrix drives Com-

plex V, which is coupled to ATP synthesis. Most of the ATP produced by Complex V

is exchanged against cytosolic adenosine diphosphate (ADP) through a speci�c adenine

nucleotide carrier to supply the rest of the cell with energy and to maintain the ADP

phosphorylation capacity of mitochondria [29].

3.1.1.3 Mitochondria are highly dynamic organelles Mitochondria are highly

dynamic organelles forming an organellar network shaped by the balanced �ssion and

fusion of mitochondrial tubules. The integrity of the mitochondrial network relies on

the ability of individual subunits to establish new connections with or break away from

the network. Fusion of individual mitochondrial subunits with the network allows for

the exchange of mitochondrial DNA, proteins, lipids and metabolites, for example to

alleviate localized imbalances of these components or dilute impaired components across

the mitochondrial network. In this manner, the mitochondrial network can act as a bu�er

against a build-up of damage in individual subunits. Fission on the other hand allows for

easier transport of mitochondria across the cell. At the same time, subunits irreaparably

damaged for example due to accumulating oxidative stress can be separated from the

network and degraded, without further compromising the integrity of the mitochondrial

network. Both fusion and �ssion rely on their own sets of mitochondrial proteins.

Mammalian fusion proteins are mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2) [30] on the

OMM as well as Opa1 [31] on the IMM. Mitofusins are thought to facilitate fusion of
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the OMM by tethering opposing membranes, either through heterodimerization of Mfn1

and Mfn2 [32] or Mfn2 homodimers [33]. Fusion of the IMM is performed by Opa1 [34].

Fission of mammalian mitochondria is driven by dynamin-related protein 1 (Drp1) [35],

mitochondrial �ssion factor (M�) [36], mitochondrial dynamics proteins (MiD) 49 and

51 [37] and mitochondrial �ssion 1 protein (�s1) [38]. Mitochondrial �ssion relies on an

inhibition of fusion proteins and recruitment of cytosolic Drp1 to the OMM [39] where

it may interact with Fis1 [40], although the importance of �s1 has recently been called

into question and may be cell type speci�c [36, 41]. Both M� as well as MiD49 and

MiD51 on the other hand have been shown as essential for a successful �ssion event to

take place [42, 37]. After recruitment of Drp1 to the OMM, Drp1 forms oligomeric rings

encompassing the future �ssion site [35]. These rings are able to constrict by hydrolyzing

GTP, which eventually leads to scission of the OMM. The importance for balanced �ssion

and fusion of mitochondria is highlighted by the diseases connected to dysregulation of

mitochondrial morphology. Lack of proper mitochondrial fusion due to mutations in

fusion factors Mnf2 and OPA1 cause neurodegenerative diseases Charcot-Marie-Tooth 2A

and autosomal dominant optic atrophy, respectively [43]. Lack of mitochondrial �ssion

due to mutations in Drp1 are linked to birth defects [44] and optic nerve degeneration

[45].

3.1.2 Mitochondrial damage

3.1.2.1 Generation of reactive oxygen species Mitochondria and oxidative phos-

phorylation open up a highly e�cient source of chemical energy for cells (3.1.1.2). How-

ever, chemical reactions involving singlet oxygen come with the price of generating highly

reactive oxygen derivatives, which if left unchecked, wreak havoc on the cell [46]. The

term reactive oxygen species (ROS) is used to describe a variety of molecules and free rad-

icals derived from molecular oxygen. Molecular oxygen in the ground state is a bi-radical,

containing two unpaired electrons in the outer shell (also known as a triplet state). Since

the two single electrons have the same spin, oxygen can only react with one electron at
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a time and therefore it is not very reactive with the two electrons in a chemical bond.

On the other hand, if one of the two unpaired electrons is excited and changes its spin,

the resulting singlet oxygen becomes a potent oxidant as the two electrons with opposing

spins can quickly react with other pairs of electrons, especially double bonds [47].

ETC-linked ROS production was �rst reported a half century ago. It was observed that

antimycin A-treated, isolated mitochondria are producing hydrogen peroxide [48]. Fur-

ther studies identi�ed the mitochondrial components responsible for ROS production,

including complex I, complex III, and other mitochondria-localized redox systems.

Complex I is the largest and �rst enzymatic complex of the ETC. It is essential for cel-

lular energy production, providing about 40 % of the proton motive force required for

ATP synthesis. It oxidizes NADH to NAD+ and donates the released electrons to the

electron carrier coenzyme Q10 (CoQ10, also known as ubiquinone), linking this process to

the translocation of four protons from the mitochondrial matrix to the IMS [49]. These

electron transfers generate superoxide (O2
-) [50]. Superoxide is normally converted to

H2O2 by manganese superoxide dismutase (MnSOD); the former can easily di�use across

the membranes and be quickly reduced to water by mitochondrial and cytoplasmic per-

oxiredoxins, catalases, and glutathione peroxidases. It is estimated that 40 % of all

mitochondrial disorders are related to mutations of complex I subunits [51]. Parkin-

son's disease (PD) is one of the typical examples. PD is characterized with a progressive

loss of dopaminergic neurons and cell bodies of the substantia nigra pars compacta and

nerve terminals in the striatum (see also 3.3.4). ROS are considered as one of the main

pathogenesis factors based on dopamine oxidation-related metabolic pathways. Under

physiological circumstance, oxidative deamination of dopamine by monoamine oxidase

produces hydrogen peroxide [52]. In the pathological pathway, dopamine can be oxidized

non-enzymatically by superoxide forming dopamine quinone which will be reduced by

mitochondrial complex I to generate semiquinone followed by a transfer of its electron

to molecular oxygen to form superoxide, completing a vicious oxidative cycle [53]. Both

somatic and mitochondria DNA point mutations might cause complex I dysfunction,
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thus subsequently linking ROS-mediated damage to neurodegenerative disorders such as

Leber's hereditary optic neuropathy (LHON), Leigh's syndrome (LS), and mitochondrial

encephalomyopathy, lactic acidosis, and stroke like episodes (MELAS) [54].

Complex II, succinate-ubiquinone oxidoreductase, commonly known as succinate dehy-

drogenase (SDH), is a tetrameric iron-sulfur �avoprotein of the IMM and acts as part

of the TCA and respiratory chain [29]. SDH catalyzes the conversion of succinate to

fumarate, yielding reducing equivalents in the form of reduced �avin adenine nucleotide

(FADH2). This is followed by a reduction of ubiquinone to ubiquinol [55].

Typically, complex II is excluded from the list of potential candidates for important

physiological contributors of ROS [56]. It is partially due to fact that the succinate level

in the tissue is low. During oxidation of succinate in isolated respiring mitochondria,

electron �ow can bifurcate forming direct (towards cytochrome oxidase) and reverse (to-

ward NAD; rotenone-blocked) transport with the latter requiring energy input [57, 58].

The succinate-driven ROS generation during reverse electron transport from succinate

to NAD resulting in the formation of NADH is higher when compared with that form-

ing under direct oxidation of NAD-dependent substrates [59]. The observed relationship

between ROS formation and the redox state of the couple NADH/NAD resulted in the

proposition that the ROS formation is directly proportional to the level of reduction of

NAD.

The role of complex II in maintaining and modulating the mitochondrial and cellular

redox environment remains undetermined. It is unknown whether in vivo mitochondria

reverse electron transfer from complex II to complex I occurs, and whether under physio-

logical conditions the reverse electron transport could result in substantial ROS produc-

tion considering that physiological concentrations of NADH would signi�cantly attenuate

O2·- production under conditions where reverse electron transport could be observed in in

vitro model systems [60]. Complex III (ubiquinol-cytochrome c oxidoreductase) accepts

reducing equivalents formed in complexes I and II and processes them by the Q-cycle

operating mechanism. Operation of this cycle is initialized by ubiquinol, which releases
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a proton to the IMS and donates one electron to the Riske iron-sulfur protein producing

unstable semiquinone on the outer side of the IMM. The semiquinone serves as an elec-

tron donor for hemes of cytochrome bL, and then of cytochrome bH which is located close

to the inner side of the membrane. Cytochrome bH reduces ubiquinone in an antimycin

A-sensitive way producing ubisemiquinone followed by its further reduction with a second

electron and protonation [61]. However, if the �ow of electron through the complex III is

stalled e.g. following application of complex III inhibitors such as antimycin A, myxoth-

iazol, or stigmatellin, semiquinone levels are elevated resulting in more opportunities to

donate single-electron to reduce oxygen [62, 63].

Aside of complex I and III as the major production site of mitochondrial ROS, also com-

plex IV is able to generate ROS [64]. Complex IV, also called cytochrome c oxidase, is a

protein- phospholidpid complex containing four redox centers (CuA, cyt. a, cyt. a3 and

CuB) involved in electron transport and the conversion of oxygen to water. During this

process, several -peroxyl and -ferryl intermediates are produced, which are considered as

potential sources of free radicals [65, 66]. In vitro mitochondrial ischemia/reperfusion

experiments showed signi�cant increase of ROS production, and complex IV has been

suggested to contribute around 30-35 % of total mitochondrial superoxide production

[67].

While mitochondria are a major producer of ROS, these organelles are also a major

sink for these toxic metabolites. Only if the antioxidant capacity of mitochondria are

overwhelmed can ROS accumulate and cause signi�cant mitochondrial as well as cellular

damage. As result of aging or disease, the e�ciency of the ETC is diminished causing

increased production of ROS. In case of insu�cient antioxidant defense, increased levels

of ROS cause a further decrease of ETC e�ciency leading in a vicious circle to increased

ROS production. It is widely accepted that oxidative damage is at the bottom of many

age-related disorders and that keeping oxidative damage to mitochondrial components in

check is essential to maintain mitochondrial energy production and, thus, cellular func-

tion.

11



Figure 2: The ETC. The ETC is composed of �ve complexes (complex I - V). The substrates NADH
and succinate generated by the TCA pass electrons through the ETC (I - IV) to O2 generating H2O,
meanwhile protons (H+) are transferred out of the matrix into the intermembrane space generating an
electro-chemical potential across the IMM to store the energy. At last, H+ �ow back through complex
V or F0F1-ATPase into the matrix compartment driving ATP production. As byproduct of OXPHOS,
the ETC is involved in ROS production. ROS are being neutralized by local antioxidants, such as
superoxide dismutase 2 (SOD2). However, overwhelming ROS production due to mitochondrial
dysfunction will lead to oxidative stress. Inside the ETC, complex I and III are the two major sites of
ROS production. For example, ROS production increases after inhibition of complex I by rotenone
or complex III by antimycin.

3.2 Mechanisms of cellular quality control and their connection

to mitochondrial maintenance

A major cause for mitochondrial dysfunction and associated disease is oxidative stress

(3.1.2.1). Several mechanisms are in place to deal with oxidative stress and damaged

mitochondrial components including mtDNA, lipids and proteins. Antioxidant activity is

the �rst line of defense directly detoxifying reactive species to prevent direct damage to

mitochondrial components. However, additional mechanisms are in place trying to repair

damage caused by ROS escaping the antioxidant defense. These mechanisms are active

on the level of the entire cell (3.2.1), the organellar level (3.2.4.2), or the level of damaged

proteins (3.2.3).
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3.2.1 Mitochondria and programmed cell death

Programmed cell death or apoptosis, the last line of defense in mitochondrial quality

control, is a process whereby cells are induced by either intrinsic or extrinsic signals to

die. Dysregulation of this process leads to several diseases ranging from neurodegenerative

disease to cancer and viral infections [68]. A wide variety of neurological disorders such

as Alzheimer's disease (AD) (3.3.3), PD (3.3.4), amyotrophic lateral sclerosis (ALS) and

others are characterized by a loss of neuronal cells. In these diseases, inappropriate

apoptosis results in the untimely death of neurons causing ultimately dysfunction of the

central nervous system [69]. On the other hand, cancer cells are able to survive due

to their decreased ability to undergo apoptosis in response to cytotoxic conditions [70].

Thus, apoptosis is an essential process for the removal of damaged or harmful cells, so

that the organism as a whole can survive [71]. As opposed to death-receptor induced

apoptosis, intrinsic programmed cell death is initiated by the release of apoptotic factors

such as cytochrome c from the mitochondria to the cytosol. The release of these apoptotic

factors requires mitochondrial outer membrane permeabilization (MOMP) modulated by

various pro- and anti-apoptotic proteins [72]. It was found that cytochrome c, a 15kD

redox carrier protein, responsible for the electron transfer between complex III and IV in

the electron respiratory chain, is released during MOMP subsequently leading to caspase

activation [73]. Thus, mitochondria are an important hub for integrating di�erent intrinsic

apoptotic signals and are involved in important cellular life-death decisions which upon

dysregulation can lead to the development of cancer or neurodegeneration.

3.2.2 The UPS

The UPS constitutes one of the principal pathways for cellular protein homeostasis. The

UPS plays a key role in regulating many crucial processes including cell cycle progression,

DNA repair, apoptosis and gene transcription by mediating the elimination of relatively

short-lived regulatory proteins when they are no longer needed. In addition to modulat-

ing cellular activities, it also controls the degradation of unfolded or misfolded proteins
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to prevent cellular damage [74].

For substrate recognition, the UPS relies on tagging substrates with the 76 amino acid-

short protein modi�er ubiquitin. Upon ubiquitination, substrate proteins are targeted by

the 26S proteasome for degradation into peptide fragments followed by further degrada-

tion into their component amino acids by cytoplasmic peptidases. This process occurs

in the cytoplasm and nucleoplasm of the cell [75]. The 26S proteasome is a multimeric

complex consisting of about 31 di�erent proteins. It is comprised of two di�erent sub-

complexes, the 19S cap complex and the 20S proteolytic core [76]. The 19S cap is

responsible for regulating access to the 20S core recognizing ubiquitinated substrates,

removing and recycling their ubiquitin chains by complex component deubiquitinating

enzymes [77, 78]. Next, bound proteins are unfolded and fed into the barrel-shaped 20S

proteolytic core for degradation [79]. Once inside the 20S proteolytic core, substrate

proteins are sequentially cleaved into small peptides by three di�erent proteolytic activ-

ities [80, 81]. In addition to the 19S cap complex, proteasome activity and function is

regulated through binding with a variety of proteins, such as chaperones or cofactors,

which regulate subcellular localization and substrate speci�city. Sec61 e.g. targets the

26S proteasome to the ER membrane [82, 83].

3.2.2.1 The machinery of ubiquitination

3.2.2.1.1 Ubiquitin activating, ubiquitin conjugating and ubiquitin ligating

enzymes Ubiquitination is a covalent, post-translational protein modi�cation where a

small 76 amino acid ubiquitin (Ub) moiety via the C-terminal carboxyl is covalently con-

jugated onto a lysine residue of a target protein (Figure 3). This is accomplished through

the joint action of three families of enzymes [84]. In a �rst step, the E1 ubiquitin-

activating enzyms binds individual ubiquitin molecules in an ATP-dependent manner via

a high-energy thioester linkage between the ubiquitin carboxy terminus and a cysteine

side chain on the E1 enzyme. This activated ubiquitin is subsequently transfered onto

a E2 ubiquitin-conjugating enzyme again in a thioester linkage. An ubiquitin ligase or

14



E3 enzyme then binds both the E2-ubiquitin complex and a substrate protein facilitating

ubiqutin transfer [85]. This substrate can either be a target protein or any of the seven

lysine residues of ubiquitin leading to the formation of poly-ubiquitin chains [86]. While

there is only one ubiquitin-activating enzyme, about 50 E2 enzymes and hundreds of E3

enzymes are found in the human genome [87]. This allows for multiple combinations

of E1, E2 and E3 enzymes conferring very selective substrate speci�city for ubiquitina-

tion [88]. Depending on the type of ubiquitin ligase, binding of the E2 complex and the

substrate occur either simultaneously or sequentially [89]. There are two main groups

of E3 ligases classi�ed according to their catalytic domain. Homologous to the E6AP

C-Terminus (HECT) ubiquitin ligases generate Ub-thiolester-intermediate prior to estab-

lishing an isopeptidic bond between the C-terminus of ubiquitin and an amino group on

the substrate protein, while really interesting new gene (RING)-�nger E3 ligases facilitate

the transfer of activated ubiquitin directly from E2 to the substrate[90] without forming

an E3-ubiquitin intermediate.

Depending on ubiquitin conjugating and ligating enzymes involved, the outcome of ubiq-

uitination can be manifold. Substrate proteins might be mono-ubiquitinated, multiply

mono-ubiquitinated, or poly-ubiquitinated with ubiquitin chains of di�erent con�gura-

tion with the most common form being lysine 48 linked ubiquitin chains. For ubiquitin-

dependent degradation by the 26S proteasome a minimum of four Lys48 linked ubiquitin

moieties seems to be required [91]. More recently, polyubiquitin chains involving Lys6,

Lys11, Lys27 and Lys29 [92, 93] and heterogeneous chains involving Lys11, Lys48 and

Lys63 linkages [94] have also been implicated in proteasomal targeting [95].

3.2.2.2 Determining the fate of ubiquitinated proteins

3.2.2.2.1 DUBs Next to the complex system of ubiquitinating enzymes, a class of

dDUBs facilitates the removal of ubiquitin chains. These DUBs are able to hydrolyze

all types of polyubiquitin chains [96]. The 19S lid of the 26S proteasome contains DUB

activity [97, 98]. The removal of poly-Ub chains by DUBs associated with the protea-
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Figure 3: The UPS. Substrate proteins are recognized by E3 ubiquitin ligases and are subsequently
conjugated with ubiquitin chains. These chains serve as recruitment signals for subsequent tra�cking
to the 26S proteasome for degradation into peptides and component amino acids.

somal lid precedes the threading of unfolded proteins through a narrow pore into the

proteolytic chamber of the core 20S proteasome [99, 100, 101]. The removal of ubiquitin

prior to degradation also recycles this essential modi�er and replenishes the cellular pool

of free ubiquitin. It follows that DUB activity can have distinct outcomes for proteaso-

mal turnover of proteins: some DUBs facilitate degradation, whereas others may stabilize

proteins destined for degradation [102].

In addition to their important role in ubiquitin recycling, DUBs also regulate the fate

of subcellular proteins makes them a prominent diagnostic and therapeutic target for

research [103]. Multiple studies have clearly illustrated the auto-ubiquitylation of E3

ligase and their subsequent interaction with DUBs [104]. DUBs have been classi�ed

into �ve families [105]. Papain-like cysteine proteases with the ubiquitin-speci�c pro-

teases (USP), the ubiquitin C-terminal hydrolasess (UCHs), the ovarian tumor domain

proteases (OTUs), the Josephin domain proteases, and zinc-dependent metalloproteases

containing a JAB1/MPN/Mov34 (JAMM) [106].
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The OTU family of DUBs has emerged as regulators of important signaling cas-

cades. A20 [107], OTUD7B/Cezanne [108] and OTULIN [109] regulate NF-κB signaling,

OTUD5/DUBA regulates interferon signaling [110], OTUD2/YOD1 and VCPIP regulate

p97-mediated processes [111], while OTUB1 is involved in the DNA damage response

[112]. The astonishing variety of di�erent types of DUBs might be explained by the com-

plexity of ubiquitin modi�cation. DUBs must display various layers of speci�city. They

must distinguish not only between ubiquitin and ubiquitin-like modi�cations but also

between the eight ubiquitin linkage types. Moreover, chain topology and length may also

a�ect DUB activity [96]. In sum, DUBs are what phosphatases are to kinases and are an

integral part of the ubiquitination machinery and ful�ll important regulatory functions.

3.2.2.2.2 P97 � a key component of the UPS P97, also called valosin containing

protein (VCP), or CDC48 in yeast is a member of the ATPase associated with diverse

cellular activities (AAA ATPase) family of proteins [113, 114, 115]. P97 is highly con-

served and expressed in mammals, with around 1 % of total cellular protein being P97

[116]. It is involved in a wide variety of regulatory functions, which are conferred through

cofactors, in the cytosol [117], the plasma membrane [118], the nucleus [119], and various

organelles, such as the endoplasmic reticulum, [116], mitochondria [120], golgi [121], lyso-

somes [118], autophagosomes [122] and peroxisomes [123, 124]. These functions of P97

include cell cycle regulation [125], control of membrane fusion [126, 127], DNA damage

response [119], and various aspects of the UPS [128, 129, 115].

Structure of p97

Initially identi�ed as a homohexameric particle by negative stain electron microscopy,

p97 was shown to possess ATPase activity that is dependent on its oligomeric state and

the presence of Mg2+ [130, 131]. Subsequently, the crystal structure of the N-domain and

�rst ATPase domain (ND1) was solved by crystallography [132, 133, 134]. The hexamer

displays a mushroom-like shape where two rings of ATPase domains stack on top of each

other and the N-domain is co-planar to the D1 ATPase domain in ADP-bound p97 and

in an `up' conformation in the ATP-bound state [135]. The D1 and D2 ATPase domains
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both fold into typical AAA domains with an α/β-subdomain followed by a helical sub-

domain. Of the 12 ATPase domains in a p97 hexamer, the D1 domains are primarily

involved for oligomerization, while the D2 domains play a larger role in ATP hydrolysis

for force generation [136, 137]. There is some evidence that the D1�D2 linker is required

for activity. While D1 domain alone displays negligible ATPase activity, a slightly longer

protein containing the 20 aa D1�D2 linker possesses ATPase activity roughly half of full-

length p97 [138, 136, 139]. ATP hydrolysis is also regulated by inter-subunit interactions

between the D2 domain and the C-terminal tail of the neighboring protein [140, 141].

P97 processes ubiquitinated client proteins

P97 together with its cofactors recognizes and processes ubiquitinated client proteins

[123]. One of the ubiquitin mediated pathways with a well-established role for p97 is

ER associated degradation (ERAD) [116, 142]. ERAD governs the retrotranslocation

of misfolded and super�uous proteins, of both luminal and membrane-bound, from the

ER to the cytosol. First, ERAD consists of a recruitment step from the ER-lumen to

the ER-membrane. This is followed by ubiquitination of the substrate protein in the

ER membrane through specialized, ER-membrane anchored E3 ubiquitin ligases. P97

cofactors on the ER-membrane then recruit P97 [143], which then extracts the misfolded

proteins through ATP hydrolysis from the ER-membrane [144]. After extraction, these

proteins may undergo further processing by cofactors, for example removal of sugars from

glycoproteins [145], ubiquitin chain elongation [146], or ubiquitin removal by DUBs [147].

Ultimately, retrotranslocation ends with degradation of the substrate by the proteasome,

although DUBs can divert certain substrates from proteasomal degradation through deu-

biquitination [122].

P97 can also act as part of a positive feedback loop through recruitment of an E4 ubiqui-

tin chain elongation factor, where oligo-ubiquitinated substrates are poly-ubiquitinated

before proteasomal degradation [148]. Transfer of ubiquitinated substrate proteins to the

proteasome is also regulated. P97 cofactors UFD2 and RAD23 promote the transfer of

ubiquitinated substrates to the proteasome [148], while the cofactor UFD3 acts in an
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antagonistic manner [149]. Similar to its segregase activity, P97 aids in the unfolding

of its substrates, which facilitates processing by the proteasome [150, 151]. The central

role of p97 for the UPS is especially evident after inhibition of P97, which leads to the

accumulation of ubiquitin conjugates in the cytosol [152, 153].

P97 adapter proteins and cofactors

A large collection of p97-interacting proteins has been identi�ed. These proteins either

function as adaptors that link p97 to a speci�c subcellular compartment or substrate, or

serve as cofactors helping to process substrates. Binding of and competition between p97

cofactors regulates p97 activity. Although a few proteins such as PLAA/Ufd3, PNGase,

HOIP, and Ufd2 bind p97 at the short C-terminal tail [149, 154, 155, 98, 156, 157], the

vast majority of p97-interacting proteins bind N-domain [158]. Representative N-domain-

interacting proteins include Ufd1, Npl4, p47, ataxin3, and FAF1. Binding of cofactors

is mediated by a small group of conserved protein-protein interaction motives. Sequence

analyses identi�ed several frequently occurring p97-interaction patterns such as the UBX

motif [159], the VCP interacting motif (VIM) [160], VCP-binding motif (VBM) [161] and

SHP box [162].

The UBX domain is an 80-residue module structurally homologous to ubiquitin and

found in a several p97 cofactors. The VCP-interacting motif (VIM) is a linear sequence

motif (RX5AAX2R) found in a number of p97 cofactors or adaptors including gp78

[163], SVIP (small VCP-inhibiting protein) [164] and VIMP (VCP-interacting membrane

protein) [165]. The VBM domain features a highly polarizing linear sequence motif

(RRRRXXYY) found in ataxin-3, Ufd2 and Hrd1 [161]. The SHP box is a short amino

acid stretch enriched in hydrophobic residues, which can be found in p47 [166], Ufd1-Npl4

[167] and Derlin-1 [168, 169, 165]. The cofactors can be divided into two groups depend-

ing on what part of p97 they interact with. The larger group of cofactors binds the p97

N-domain, via UBX, UBX-L, VIM, VBM or SHP (binding segment 1) motif [128, 170].

A smaller group binds the very C-terminus of p97, via peptide N-glycosidase/ubiquitin-

associated (PUB) (PNGase/UBA- or UBX-containing proteins) and PUL (PLAA, Ufd3p
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and Lub1p) domains.

3.2.2.2.3 UBX domain containing cofactors UBX-domain containing proteins

represent the largest family of p97 cofactors with 13 members identi�ed in the human

genome. The UBX domain has a tridimensional structure similar to ubiquitin [171] and

interacts with the p97 N-terminus [159]. UBX proteins can be further classi�ed into two

main groups based on their domain composition: UBA-UBX and UBX-only proteins.

UBA-UBX proteins (p47, UBXD7, UBXD8, FAF1, and SAKS1) contain an additional

ubiquitin-associated (UBA) domain at their N-terminus, which enables them to bind

ubiquitinated substrates [172]. UBX-only proteins (UBXD1, UBXD2, UBXD3, UBXD4,

UBXD5, ASPL, p37, VCIP135 and YOD1) lack such an UBA domain and therefore likely

ability to bind polyubiquitinated proteins [173].

UBA-UBX proteins bind ubiquitinated substrates in a manner that is enhanced upon

inhibition of the proteasome, suggesting that they function as ubiquitin-receptors in the

ubiquitin-proteasome pathway. Furthermore, they interact with an assortment of HECT

and RING-domain E3 ubiquitin-ligases, including a large number of cullin-ring ligase

subunits [173]. Thus, each UBA-UBX protein is likely to target a particular subset of

substrate proteins carrying an ubiquitin modi�cation. UBX-only proteins on the other

side do presumably not interact with ubiquitin and, as a consequence, the type of sub-

strates they target is less clear. The distinctive substrate speci�city of each UBX protein

is the key to de�ning the p97 functions they mediate [174]. The family of UBX domain

[175, 171] proteins appear to associate with p97 via their UBX domains [176], and UBX

proteins are therefore generally considered to function as p97 adaptors. The approxi-

mately 80 amino acid long UBX domain displays a remarkably similar structure to that

of ubiquitin [171]. A loop region in the p47 UBX domain lacking in ubiquitin, appears to

be speci�c for interaction with a hydrophobic binding pocket in the N-terminal part of

p97 [177]. Another group of proteins, containing the so-called PUB [178] or PUG [179]

domain, was also shown to mediate interaction with p97 [180]. UBX and PUB domains do

not bind to p97 in a mutually exclusive manner [180], and accordingly the PUB binding
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site maps downstream of the UBX binding site [157]. The structure of the PNGase PUB

domain was recently solved [180], revealing a hydrophobic groove which binds p97, an

association which is occluded upon tyrosine phosphorylation of p97 [157]. Interestingly,

many of the UBX family of adaptors have no identi�ed ubiquitin-association domain, and

no other functional domain to suggest a function. The diversity within the UBX family

suggests an array of potential e�ects on cellular processes and it is of high interest to

determine the function of other known p97 adaptors.

3.2.2.2.4 Non-UBX domain containing cofactors While the UBX domain may

constitute the major p97 interaction domain, the bulk of the functional work deciphering

the speci�c roles of p97 cofactors has been done with the non UBX containing inter-

actors. These p97 cofactors can be further divided into two subgroups, adapters and

accessory proteins. Adapters are required for substrate binding, while accessory proteins

may use p97 as a docking site to perform a speci�c enzymatic function on the already

associated substrate. The majority of non-UBX p97 interactors have been shown to per-

form a variety of key roles in mediating ERAD. Arguably the two best studied and most

important p97 adapters, Npl4 (nuclear protein localization 4) and Ufd1 (ubiquitin fusion

degradation 1), form a heterodimer crucial for binding p97 in a 1:1 ratio [167]. Npl4-Ufd1

function as essential substrate recruiting factors binding to ubiquitinated substrates at

the ER membrane linking p97's physical conformational change upon ATP hydrolysis to

the translocation of these proteins into the cytosol [145, 152, 181, 182]. p97 interacting

proteins consist not only of adapters, but also accessory proteins that use p97 as a docking

site to target for their speci�c functions. They are called substrate-processing cofactors.

They include the deglycosylase, PNGase I, the E3 ubiquitin ligases Hrd1, gp78, and Ufd2,

and the deubiquitinase Ataxin-3. PNGase I contains a PUB domain responsible for main-

taining the interaction with p97's carboxy-terminal tail [157]. The E3 ubiquitin ligases,

Hrd1, gp78 and Ufd2 have all been identi�ed as being tied to substrate ubiquitination in

ERAD.
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3.2.2.2.5 UBXD1 Human UBXD1 has recently been shown to be an abundant and

stable protein that localizes to the nucleus, cytosol, microsomal pellet, and centrosomes in

HeLa cells [175]. Interestingly, UBXD1 contains from the N- to the C-terminus a valosin-

containing protein (VCP) interacting motif (VIM), a peptide N-glycosidase/ubiquitin-

associated (PUB), as well as an ubiquitin regulatory X (UBX) domain. Unlike other

UBX domain containing proteins which bind to p97 via their UBX domain, UBXD1 in-

teracts with p97 via its VIM and PUB domain [183]. This is due to the absence of a

phenylalanine-proline-arginine conserved motif in between β-strands 3 and 4 within the

p97 interaction site of UBXD1 [175].

Recently, insights into the function of UBXD1 became available. Initial work suggests

that UBXD1 plays a role in ERAD through moderate defects in the clearance of an

ERAD substrate, CFTRΔF508 upon UBXD1 overexpression [184]. In addition, UBXD1

was shown to co-purify with a known member of the ERAD pathway, the E3 ubiquitin

ligase Hrd1 one of two main ubiquitin ligases involved in ubiquitinating ERAD substrates.

The authors theorize that this interaction is likely indirect, instead mediated by p97 [175].

Recent work, however, has provided some convincing evidence that UBXD1 does play an

important role in directing p97's function, not only in ERAD but also in endolysosomal

sorting. UBXD1 and p97, have been implicated to be key mediators in the internal-

ization and post-endocytic tra�cking to the lysosome of membrane protein Caveolin-1

[185]. Furthermore, UBXD1 is of clinical relevance, as p97 mutations linked to inclusion

body myopathy associated with Paget's disease of the bone and frontotemporal dementia

(IBMPFD) and ALS are defective at interacting with UBXD1 [185].

UBXD1 is of particular interest to study due to the lack of a clear ubiquitin binding do-

main, in addition to the unique di�erences within its UBX domain (lack of phenylalanine-

proline-arginine motif essential for p97 interaction). Additionally, it is one of a few adap-

tors that have been shown to bind both at the N-terminal and C-terminal domains of

p97. Work presented here will show pro-mitophagic function for UBXD1, which acts as

a mitochondrial recruitment factor for p97 during Parkin-dependent autophagic removal
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of damaged mitochondria.

3.2.2.2.6 YOD1 � a DUB linked to UBXD1 and p97 YOD1/OtuD2/DUBA8

is a ubiquitin-speci�c protease containing a UBX domain, considered a hallmark of p97-

associated proteins [159]. YOD1 is the closest homolog of S. cerevisiae Otu1, which

associates with Cdc48 to regulate the processing of the ER-membrane embedded tran-

scription factor Spt23, a crucial component of the OLE pathway [98]. Although highly

conserved, the function of YOD1 is not clear in higher eukaryotes. The human genome

lacks a homolog of Spt23, suggesting that YOD1 participates in other, presumably con-

served, cellular processes. YOD1 comprises three domains, an N-terminal UBX domain, a

central otubain domain, and a C-terminal C2H2-type zinc �nger domain [111]. Recently,

YOD1 was suggested to act together with UBXD1 and p97 in the autophagic removal of

ruptured lysosomes by selectively removing K48-linked ubiquitin chains from lysosomes

thereby improving recognition by the autophagic machinery [186].

3.2.3 UPS-mediated protein degradation on mitochondria

3.2.3.1 Outer mitochondrial membrane associated degradation Recognition

and elimination of misfolded proteins are essential cellular processes. More than thirty

percent of the cellular proteins are targeted to the secretory pathway. They fold in the

lumen or membrane of the endoplasmic reticulum from where they are sorted to their

�nal destination. The folding process, as well as any refolding after cell stress, depends

on chaperone activity. In case, proteins are unable to acquire their native conformation,

chaperones with di�erent substrate speci�city and activity guide them to elimination.

For most misfolded proteins of the ER this requires retrotranslocation to the cytosol and

polyubiquitylation of the misfolded protein through (ERAD). Thereafter ubiquitinated

proteins are guided to the proteasome for degradation [187]. Similar to the ER, mito-

chondria were recently linked to UPS in form of outer mitochondrial membrane associated

degradation (OMMAD) [188] (Figure 4). Interestingly proteasome inhibitors can increase
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Figure 4: Outer mitochondrial membrane associated degradation or OMMAD refers to the protein
quality control machinery localized on the outer mitochondrial membrane, in which multiple ubiquitin
ligases namely MARCH5, IBRDC2, RNF185, MULAN/MAPL and Parkin are involved. OMMAD is
not only restricted to protein quality control. Other mitochondrial functions such as morphology and
mitophagy are in�uenced by OMMAD.

the levels of ubiquitinated mitochondrial proteins, indicating the role that proteasomes

play for mitochondrial protein degradation. In this way, OMM proteins such as Mfn1,

Mfn2 and Mcl-1 were found to be polyubiquitinated and degraded by the proteasome.

Also, several speci�c E3 ligases were found to localize to the OMM and were shown to

be involved in the ubiquitylation of mitochondrial proteins, including MULAN, Parkin,

MARCH5, RNF185, and IBRDC2 [189, 190, 191] (Table 1). Among many others, RING-

E3 ligases Parkin, MULAN and MARCH5 are widely studied together with their potential

mitochondrial substrates (mitofusins, Drp1, Mutated SOD1, ETC) (1). Interestingly and

analogous to ERAD, p97 is also involved in promoting extraction of polyubiquitinated

proteins from the mitochondrial membrane and transport to the cytosolic proteasome

[192]. Described by many studies, several mitochondrial dynamics regulators as mito-

fusins and Drp1 are the target of ubiquitination [193]. Thus, by a�ecting mitochondrial

�ssion and fusion machinery, the UPS is certainly connected to mitochondrial dynam-

ics, therefore participating in mitochondrial maintenance. The UPS is also through the

ubiquitin E3 ligase Parkin, which serves to initiate mitophagy (3.2.4.2), connected to

autophagic mitochondrial quality control [194].
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Ubiquitin ligase Localization Mitochondrial Substrates
Parkin cytosol, mitochondria Mcl-1, Mfn1/2, Drp1
Mulan/MAPL mitochondria Omi/HtrA2, Drp1
MARCH5 mitochondria Drp1, Mfn1/2, MuSOD1, ataxin-

3, polyQ
IBRDC2 cytosol, mitochondria Bax

Table 1: Overview of mitochondrial ubiquitin ligases, their localization and known and
potential substrates. Please note Mulan/MAPL is described as ubiquitin as well as SUMO
ligating enzyme.

3.2.4 Autophagy

3.2.4.1 General autophagy Autophagy is a major pathway for endo-lysosomal

degradation of cellular cargo sequestered within double-membrane organelles called au-

tophagosomes. Upon induction of autophagy, autophagosomes form de novo and initially

appear as small membrane structures referred to as isolation membranes or phagophores.

The isolation membranes expand, gradually enclosing a part of the cytoplasm, and even-

tually close to give rise to autophagosomes. Subsequently, the outer membrane of the

autophagosome fuses with the lysosomal membrane, and autophagosome inner mem-

brane and autophagosome cargo are degraded by lysosomal hydrolases. When induced

by starvation, autophagy is largely nonselective with regard to the cargo enclosed in au-

tophagosomes and serves mainly to replenish intracellular metabolite stores. In addition

to unspeci�c autophagy, targeted autophagic processes are known. Damaged or super�u-

ous organelles such as lysosomes, peroxisomes or mitochondria are degraded in a targeted

fashion through lysophagy [195], pexophagy [196] or mitophagy [197].

The formation of autophagosomes is generally thought to require the action of conserved

machinery that includes the ULK1/Atg1 complex, the class III phosphatidylinositol 3-

kinase complex 1, ATG9, WD-repeat protein interacting with phosphoinositides (WIPI),

and the ATG12 and LC3/GABARAP conjugation systems. All of these components lo-

calize to the isolation membrane at some stage of autophagosome formation. In addition

to these conserved core components, other factors such as cargo receptors are required

for selective autophagy [197]. Autophagy represents a highly conserved process for the
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lysosomal degradation of cytoplasmatic long-lived proteins and organelles. It can result

in �nal decomposition of proteins contributing to a certain form of programmed cell death

(autophagic cell death), but it may also serve as a survival mechanism through intracel-

lular clearance of toxic or damaged proteins and organelles or, in times of starvation,

through protein recycling and maintenance of intermediary metabolism [198].

3.2.4.2 Mitochondria-selective autophagy Mitochondria-selective autophagy or

mitophagy is a specialized form of autophagy for to the elimination of dysfunctional

mitochondria, and is a crucial quality control mechanism to ensure mitochondrial net-

work's integrity and functionality. Besides the removal of dysfunctional mitochondria,

mitophagy is also responsible for mitochondrial degradation during erythrocyte matura-

tion, and it contributes to maternal inheritance of mitochondrial DNA, by eliminating

the sperm-derived mitochondria [199]. In mammals, two major mitophagic pathways

can be distinguished - Parkin-dependent as well as Parkin-independent mitophagy. In

Parkin-dependent mitophagy, damaged or dysfunctional mitochondria are removed by the

concerted action of the PTEN induced putative kinase 1 (PINK1) and of the E3 ubiquitin

ligase Parkin (see also 3.3.4). PINK1 and Parkin accumulate on damaged mitochondria,

�agging these organelles with Parkin-dependent ubiquitination of outer membrane pro-

teins, thus allowing their autophagic degradation [200]. In the PINK1/Parkin indepen-

dent pathway, di�erent protein regulators, such as BNIP3L [201], FUNDC1 [202], or

Autophagy And Beclin 1 Regulator 1 (AMBRA1) [203] contribute to the �agging and

recognition of mitochondria. E�cient mitophagy relies on the engulfment of the dam-

aged organelles by a forming autophagosome, without a�ecting the entire mitochondrial

network. For this reason, mitochondrial network fragmentation is observed prior to mi-

tophagy, which thus results to be strictly connected with mitochondria dynamics and

the machineries controlling the balance between fusion and �ssion of the organelles. In

fact, not only the main pro-�ssion protein Drp1 is modulated through post-translational

modi�cations such as SUMOylation, but also proteins favoring the fusion and transport

of the organelles such as Mfn2 or Miro, are selectively degraded in order to promote
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mitophagy [204]. Interestingly, proteomic studies have shown proteins on the IMM to

be eliminated at rates similar to the turnover of whole mitochondria through mitophagy

[205]. At the same time, proteins of the OMM and mitochondrial matrix redistribute

much faster through �ssion and fusion events through the mitochondrial network than

proteins of the IMM [206]. These observations suggest that protein degradation on the

IMM may mainly be a product of mitophagy.

3.3 Mitochondria and neurodegeneration

Mitochondria have a fundamental role in eukaryotic metabolic processes by generating

ATP to maintain cellular functions. Dysfunctional mitochondria deprive cells of energy,

produce cytotoxic ROS, and release proapoptotic mediators to initiate cell death. The

mitochondrial quality-control pathways that evolved to maintain the integrity of mito-

chondria therefore have key roles in the normal function of cells [2, 207]. Many neurode-

generative disorders are age related, which is also the most important risk factors for such

diseases like AD, PD, and ALS. And interestingly, mitochondrial function declines with

aging. It is assumed that mitochondria accumulate mtDNA mutations and, thus, non-

functional proteins during the lifespan of the organism, thus contributing to the process

of aging as well as neurodegeneration due to insu�cient ATP production. In addition,

mitochondria are the trigger of intracellular apoptosis responsible for the �nal loss of

neuron cell numbers [208]. Also, extensive literature point at oxidative stress as the key

perpetrator for neurodegeneration further linking mitochondria to the demise of neurons

as the main source of ROS [209]. As oxidative stress causes mitochondrial dysfunction

and as failing mitochondria producing even more ROS [210], a vicious cycle progresses in

which more oxidative stress induces more structural and metabolic damages - nucleic acid

breakdown, enzymatic proteins inactivation, lipid peroxidation - resulting in even more

severe mitochondrial dysfunctions [211]. Thus, mitochondrial dysfunction is the center of

many neurodegenerative disorders. Not only de�ciencies in mitochondrial respiration are

responsible for neuron loss and cell death, mitochondrial quality control, mitochondrial
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dynamic and apoptosis all play important roles in the survival of neurons.

3.3.1 Dysfunction of p97 and neurodegeneration

Given the crucial role of p97 in maintaining cellular proteostasis, it is not surprising that

autosomal dominant mutations in VCP, the gene encoding p97, lead to a rare multi-

system degenerative disorder IBMPFD, also called VCP disease. IBMPFD is associated

with progressive muscle weakness including heart and respiratory muscles leading to dif-

�culty breathing and heart failure. IBMPFD also a�ects the bones causing chronic pain

and might lead to frontotemporal dementia. Interestingly, pathogenic mutations in the

N-terminal half of p97 in the interface region between N- and D1-domain suggest that

communication between these two regions is important for disease pathogenesis. Disease-

associated mutations do not appear to alter p97 oligomerization but have been reported

to enhance basal ATP hydrolysis, which is mediated through the D2 domain [212]. How-

ever, this seems not to be an essential requirement for disease pathogenesis as not all

mutations a�ect ATP hydrolysis [213]. Other studies have found that disease-associated

mutations might a�ect the association of p97 with certain cofactors [214]. This suggests

that disease-associated mutations in p97 do not lead to a global loss of function but,

instead, to impairment of a distinct subset of p97 functions.

Pathogenic p97 mutations have been suggested to interfere with the interaction be-

tween p97 and UBXD1 a�ecting ubiquitin-dependent membrane sorting at endosomes

and degradation in lysosomes and implying this pathway in IBMPFD. This altered p97-

UBXD1 interaction seems to weaken substrate recognition. In particular, the interaction

of p97-UBXD1 with caveolin-1 (CAV1), a main component of caveolae, is a�ected [185].

For degradation, CAV1 is modi�ed with mono-ubiquitin, a signal important for endosomal

sorting, and transported to intraluminal vesicles in endolysosomes. UBXD1 is necessary

for the endolysosomal tra�cking of ubiquitinated CAV1 [215]. Mice and patients with

pathogenic p97 mutations accumulate CAV1-positive endolysosomes and have reduced

levels of CAV3, a muscle-speci�c caveolin, at the sarcolemmal membrane of skeletal mus-
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cle [215, 215]. Intriguingly, autosomal dominant inherited mutations in CAV3 cause limb

girdle muscular dystrophy 1C, which has phenotypic similarities to p97-associated mus-

cle disease and also shows reduced localization of CAV3 to the sarcolemma [216]. These

data suggest that p97 might have tissue-speci�c functions and that the selective dis-

ruption of these cellular processes (e.g. CAV1 or CAV3 sorting) leads to tissue-speci�c

phenotypes. Endolysosomal degradation is likely to be more broadly a�ected in VCP

disease pathogenesis as cells that express mutant p97 have enlarged late endosomes with

absent intraluminal vesicles (ILVs), implicating a defect in multivesicular body (MVB)

biogenesis [215].

3.3.2 Huntington's disease

Huntington's disease (HD) is an inherited neurodegenerative disorder characterized by

unsteady gait and uncoordinated body movements as well as dementia in late stage dis-

ease. Early onset HD as symptomatic overlap to PD. HD is caused by mutations in

Huntingtin causing expansion of CAG triplet repeats. Interestingly, diminished removal

of dysfunctional mitochondria observed in HD suggested impairment in the mitophagy

process. It has been proposed that mutant Huntingtin could impair the delivery of �agged

dysfunctional mitochondria to onforming autophagosomes, because of its reduced inter-

action with the autophagy receptor SQSTM1/p62 [217], and by a�ecting autophagosome

transport towards the lysosome [218]. Recently, it has been observed that Huntingtin is

involved in selective autophagy, by serving as a sca�old for both SQSTM1/p62 and the

autophagy initiation kinase ULK1 [219], re-opening the question about the role of mutant

Huntingtin in these processes. A partial answer has been suggested by the observation

that a reduced delivery of dysfunctional mitochondria to the autophagosome could be

partially rescued when PINK1 is overexpressed, in �y and mice HD models [220]. In ad-

dition, the analysis of PINK1-/- mice indicates that mitophagy levels are very di�erent in

various areas of the brain [221], thus suggesting that di�erent neuronal population could

rely on or modulate di�erent forms of Parkin-dependent/Parkin-independent mitophagy,
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probably in response to di�erent stimuli. Thus, recent insight into HD further support

the importance of selective mitophagy and mitochondrial quality control to prevent neu-

rodegeneration.

3.3.3 Alzheimer's disease

Mitochondrial dysfunction in AD is due to the accumulation of Aβpeptides on these

organelles. In particular, Aβtoxicity could depend upon: i) its interaction with mito-

chondrial matrix proteins [222]; ii) the perturbation of the �ssion and fusion processes

[223]; iii) the alteration of mitochondrial motility [224]; iv) the disruption of the function-

ality of the electron transfer chain and of the ATP/ADP exchange [223]. Accumulation of

autophagic vacuoles in AD brains suggested defective autophagy as one of the pathogenic

features of AD [225]. Very recently, it has been reported that although the autophagic

machinery is competent in AD neurons, the �ux is impaired in the �nal stages of the

process, namely the fusion of autophagosomes with lysosomes [226]. In addition, it has

been reported that Parkin overexpression in an AD mouse model results in an enhance-

ment of the autophagic clearance of defective mitochondria, and in the prevention of

mitochondrial dysfunction [227]. Taken together these observations suggest that whereas

enhanced mitophagy increases the autophagic �ux, defective lysosomal removal of au-

tophagic vesicles is responsible for the aberrant accumulation of defective mitochondria

in AD. Further, it has been very recently reported that N-terminal truncated Tau is able

to induce aberrant Parkin recruitment, thus leading to excessive mitophagy, contributing

to synaptic failure [228].

3.3.4 Parkinson's disease

PD is a neurodegenerative disorder causing characteristic movement abnormalities known

as parkinsonism. The disease mainly a�ects the dopamin-producing neurons substantia

nigra in the midbrain. Death of these neurons and the resulting lack of dopamin is re-

sponsible for the movement disorder and other symptoms such as sleep and emotional

30



problems. Most cases of PD are idiopathic and late onset. Rare, early onset PD is caused

by autosomal recessive mutations in the PARK2 gene, coding for the Parkin protein

[229], or by mutations in the PARK6 gene encoding the PINK1 protein [230]. PINK1

and Parkin are key factors acting on the same biological pathway, leading to the tag-

ging and engulfment of dysfunctional mitochondria by the autophagy machinery [231].

PINK1 is a mitochondrial resident protein kinase, which is rapidly degraded after its

import into healthy organelles, by the action of mitochondrial matrix protease (MMP)

and the presenilins-associated rhomboid-like protein (PARL) [232]. Whereas, in dys-

functional mitochondria, characterized by a lack of mitochondrial membrane potential,

PINK1 is not degraded and accumulates on the OMM [233]. OMM-localised PINK1

in turn phosphorylates cytosolic Parkin, as well as mitochondrial ubiquitin chains, thus

providing signals for Parkin recruitment to the damaged organelle [234]. Indeed, Parkin

mediates the ubiquitination of the OMM proteins, including Mfn1 and Mfn2, Miro, the

translocase of outer mitochondrial membrane 20 (TOMM20), and VDAC. Ubiquitinated

Mfn1 and Mfn2 are delivered to the proteasome for degradation, thus stimulating mito-

chondrial �ssion and mitochondrial network fragmentation [235]. Other ubiquitinated

proteins are recognised by autophagy receptors, such as p62 and optineurin [236], al-

lowing the selective engulfment of mitochondrial subunits in the forming autophagosome

[237]. The mitophagy process acting through PINK1-Parkin seems to be important not

only to protect neurons from the damage caused by dysfunctional mitochondria in the

soma, but it has been proposed that this system could be very e�cient in the removal

of damaged organelles in axons of these cells [238]. Perturbation of the system in PD

patients, could depend upon both mutations in the genes encoding key proteins in the

system [239], but also on altered Parkin solubility, as a consequence of age or oxidative

and/or nitrosative stress [240]. In addition, a number of di�erent proteins have been iden-

ti�ed as important for interacting with and/or being able to modify the PINK1-Parkin

pathway [231]. Notably, among these are proteins able to antagonise Parkin activity, such

as the anti-apoptotic members of the Bcl-2 family Bcl-X or Mcl-1, or DUBs USP30 [241]

31



and USP15 [242]. On the other side, Parkin activity is induced by the deubiquitinase

USP8 [243], and mitophagy is induced by its interaction with AMBRA1 [244], whose

localization on the OMM induces mitophagy even in the absence of Parkin [203]. The

relevance of Parkin-independent mitophagy activation has yet to be addressed in PD, as

other ubiquitin ligases have been identi�ed as able to mark mitochondria for removal. In

fact, it has been proposed that PINK1-generated phospho-ubiquitin on mitochondria is

the main signal for mitophagy and that Parkin acts as an ampli�er in the system [245].

Parkin-mediated mitophagy is likely a rare event in vivo and acts only on severely dam-

aged mitochondria only present when other mitochondrial quality control mechanism are

insu�cient or overwhelmed [246]. The importance of Parkin-mediated mitophagy to id-

iopathic PD is still not completely understood and other regulators of mitophagy might

be involved in the onset and progression of neurodegenerative diseases [247]. However,

the importance of mitochondrial quality control on all levels for neuronal survival and

prevention of neurodegeneration is strongly supported by the elucidation of mechanism

leading to PD.
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4 Material and Methods

4.1 Materials

4.1.1 Equipment

Equipment Manufacturer
CyAn ADP Analyzer Beckman Coulter (Nyon, CH)
Easyject Plus Electroporator Equibio Ltd (Belgium)
Odyssey CLx Imaging System Li-Cor (DMP AG, Fehraltorf, CH)
Thermomixer comfort VWR (Eppendorf, Basel, CH)
TProfessional TRIO Thermocycler Analytik Jena (Reinach, CH)
Trans-Blot SD Semi-Dry Transfer Cell Bio-Rad (Cressier, CH)
Nanodrop Thermo Scienti�c (Waltham, USA)
Scale PM1200 Mettler Toledo (Zurich, CH)
Sterile �lter 0.2 µM Roth (Karlsruhe, D)
Thermomixer Eppendorf (Hamburg, D)
Transfer-blot Semi-Dry Transfer cell Biorad (Berkley, USA)
VisiScope Visitron Systems (Puchheim, D)
Water bath Memmert (Buchenbach, D)
Water puri�cation system Millipore (Billercia, USA)

Table 2: Equipment used during this study.

4.1.2 Reagents

Item Order number Supplier
1 Kb plus DNA ladder 10787018 TFS (Reinach, CH)
1,4-Dithiothreitol 6908 Carl Roth (Arlesheim, CH)
Acetic acid (glacial) 100 % 1000631000 Merck Millipore (Zug, CH)
Aceton 650501 Sigma-Aldrich (Buchs, CH)
Adenine A3159 Sigma-Aldrich (Buchs, CH)
Agarose 2267.4 Carl Roth (Arlesheim, CH)
Amersham Protran 0.45 NC 10600002 GE Healthcare (Glattbrugg, CH)
Ammoniumperoxidsulfate 9592.3 Carl Roth (Arlesheim, CH)
Ampicillin sodium salt K029.1 Carl Roth (Arlesheim, CH)
Aureobasidin A 630466 Sigma-Aldrich (Buchs, CH)
BCA protein assay kit 23225 TFS (Reinach, CH)
Bovine serum albumin Fraction V 8076.4 Carl Roth (Arlesheim, CH)
Bromophenol blue 1610404 Bio-Rad (Cressier, CH)
Calcium chloride dihydrate C7902 Sigma-Aldrich (Buchs, CH)
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CCCP C2759 Sigma-Aldrich (Buchs, CH)
D-(-)-Mannitol 4175.1 Carl Roth (Arlesheim, CH)
D-(+)-Glucose G7528 Sigma-Aldrich (Buchs, CH)
D-(+)-Saccharose 6421.1 Carl Roth (Arlesheim, CH)
dam-/dcm- E. coli C2925l NEB (Bioconcept, CH)
DAPI 6335.1 Carl Roth (Arlesheim, CH)
Digitonin HN76.3 Carl Roth (Arlesheim, CH)
Dimethyl sulfoxide D8418 Sigma-Aldrich (Buchs, CH)
DMEM D5671 Sigma-Aldrich (Buchs, CH)
ECL Plus Substrate 32132 TFS (Reinach, CH)
EDTA CN06.1 Carl Roth (Arlesheim, CH)
Ethidium bromide 1410433 Bio-Rad (Cressier, CH)
FBS F7524 Sigma-Aldrich (Buchs, CH)
Fugene 6 E2691 Promega (Dübendorf, CH)
Medical X-ray Super RX-N 47410 19284 FujiFilm (Lucerna-Chem, CH)
Gel Cassettes NC2015 TFS (Reinach, CH)
GenElute kit G1N70-1KT Sigma-Aldrich (Buchs, CH)
Gene Pulser Cuvettes 165-2086 Bio-Rad (Cressier, CH)
Glycerol 3783.1 Carl Roth (Arlesheim, CH)
Glycine 3790.3 Carl Roth (Arlesheim, CH)
HeLa cell line LGC Standards (Wesel, D)
Hepes H3375 Sigma-Aldrich (Buchs, CH)
Histidine Sigma-Aldrich (Buchs, CH)
Hydrochloric acid 9277.1 Carl Roth (Arlesheim, CH)
Hypodermic Needles 25G NN-2516R Terumo (Spreitenbach, D)
Kanamycin sulfate T832.2 Carl Roth (Arlesheim, CH)
Leucine L8912 Sigma-Aldrich (Buchs, CH)
L-glutamine G7513 Sigma-Aldrich (Buchs, CH)
LB broth X968.3 Carl Roth (Arlesheim, CH)
Leupeptin L2884 Sigma-Aldrich (Buchs, CH)
Magnesium sulfate M7506 Sigma-Aldrich (Buchs, CH)
Manganese(II) chloride T881.1 Carl Roth (Arlesheim, CH)
Matchmaker Gold Y2H System 630489 Clontech Laboratories
Methanol 4627.5 Carl Roth (Arlesheim, CH)
MF-Millipore Membrane Filter VMWP02500 Merck Millipore (Zug, CH)
Mounting medium H1000 Vector Labs (ReactoLab, CH)
MOPS M1254 Sigma-Aldrich (Buchs, CH)
NEB 5-α E. coli C2987I NEB (Bioconcept, CH)
NSC-687852 ab142195 Abcam (Lucerna-Chem, CH)
TEMED 2367.2 Carl Roth (Arlesheim, CH)
N-Ethylmaleimide E1271 Sigma-Aldrich (Buchs, CH)
NucleoSpin Gel/PCR Clean-Up 740609.250 Macherey-Nagel (Oensingen, CH)
NucleoSpin Plasmid 470588.250 Macherey-Nagel (Oensingen, CH)
Opti-MEM 11058021 TFS (Reinach, CH)
Orange G O3756 Sigma-Aldrich (Buchs, CH)
Paraformaldehyde 28906 TFS (Reinach, CH)
PBS, 1x D8537 Sigma-Aldrich (Buchs, CH)
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PBS, 10x 70011036 TFS (Reinach, CH
Pepstatin A P5318 Sigma-Aldrich (Buchs, CH)
Peptone 2366.2 Carl Roth (Arlesheim, CH)
Phenylmethanesulfonyl �uoride 78830 Sigma-Aldrich (Buchs, CH)
PEI MAX 40000 24765 Polysciences (Warrington, USA)
Potassium chloride (KCl) P9311 Sigma-Aldrich (Buchs, CH)
Protease inhibitor cocktail 05892791001 Roche, CH
ProtA/G beads E2512 Santa Cruz (Heidelberg, D)
RIPA bu�er 89901 TFS (Reinach, CH)
Rotiphorese Gel 30 (Acrylamide) 3029.1 Carl Roth (Arlesheim, CH)
Rubidium chloride 4471.1 Carl Roth (Arlesheim, CH)
Superfrost microscope slides 10143560W90 TFS (Reinach, CH)
Sodium dodecyl sulfate (SDS) 2326.2 Carl Roth (Arlesheim, CH)
Sodium Chloride (NaCl) 3957.1 Carl Roth (Arlesheim, CH)
Sodium pyruvate S8636 Sigma-Aldrich (Buchs, CH)
TopBlock TB232010 LuBioScience (Luzern, CH)
Tris base 4855.2 Carl Roth (Arlesheim, CH)
Triton X 100 6683.1 Carl Roth (Arlesheim, CH)
Trypsin-EDTA T3924 Sigma-Aldrich (Buchs, CH)
Tryptophan T0254 Sigma-Aldrich (Buchs, CH)
TWEEN 20 P9416 Sigma-Aldrich (Buchs, CH)
Whatman GB003 WHA10427826 Sigma-Aldrich (Buchs, CH)
Whatman GB005 WHA10426994 Sigma-Aldrich (Buchs, CH)
Yeast extract 2904.1 Carl Roth (Arlesheim, CH)
X-αGal 630462 Sigma-Aldrich (Buchs, CH)

Table 3: Material used during thesis. Supplier TFS - Thermo Fisher Scienti�c, NEB-
New England Biolabs.
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4.1.2.1 Antibodies

Antibody order no. supplier usage
mouse anti-cytochrome c 556432 BD (Allschwil, CH) 1:1000 IF
mouse anti-GAPDH sc-32233 Santa Cruz (Heidelberg, D) 1:6000 WB
rabbit anti-GFP G1544 Sigma-Aldrich (Buchs, CH) 1:4000 WB
rabbit anti-GFP ab290 Abcam (Lucerna-Chem, CH) 1:500 IF
mouse anti-p97 MA3-004 TFS (Reinach, CH) 1:1000 IF
rabbit anti-Flag PA1-984B TFS (Reinach, CH) 1:1000 IF,WB
rabbit anti-UBXD1 ab80659 Abcam (Lucerna-Chem, CH) 1:1000 WB
mouse anti-Flag F1804 Sigma-Aldrich (Buchs, CH) 1:1000 IF
mouse anti-myc M5546 Sigma-Aldrich (Buchs, CH) 1:1000 IF
goat anti-mouse-Alexa546 11003 TFS (Reinach, CH) 1:1000
goat anti-rabbit-Alexa546 11010 TFS (Reinach, CH) 1:500
goat anti-mouse-Alexa680 11010 TFS (Reinach, CH) 1:500
goat anti-Rabbit-HRP - TFS (Reinach, CH) 1:20000
goat anti-Mouse-HRP - TFS (Reinach, CH) 1:20000

Table 4: Antibodies used during this work. Antibodies were used for immuno�uorescence
(IF) and Western blotting (WB). Supplier TFS - Thermo Fisher Scienti�c

4.1.2.2 Composition of bu�ers and media

4.1.2.2.1 2YT medium

NaCl 10 g/l

yeast extract 10 g/l

peptone 12 g/l

MgSO4 20 mM

KCl 10 mM

MgSO4 and KCl were added from sterile 1 M stock solutions after autoclaving.
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4.1.2.2.2 6x Orange G DNA loading dye

Tris/HCl, pH 7.5 10 mM Tris/HCl

Orange G 0.15 % (w/v)

glycerol 60 % (v/v)

4.1.2.2.3 10x Laemmli running bu�er (SDS-PAGE)

Tris base 30 g/l

glycine 144 g/l

SDS 10 g/l

4.1.2.2.4 2x Laemmli sample bu�er

Tris/HCl, pH 6.8 125 mM

SDS 4 % (w/v)

glycerol 20 % (v/v)

Bromophenol blue 0.04 % (w/v)

dithiothreitol 100 mM (fresh before use)
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4.1.2.2.5 PBS-T

10x PBS 10 %

Tween20 0.1 %

4.1.2.2.6 SOB media

peptone 2 % (w/v)

yeast extract 0.5 % (w/v)

NaCl 10 mM

KCl 2.5 mM

MgCl2 10 mM

MgSO4 10 mM

4.1.2.2.7 10x TAE bu�er

Tris base 400 mM

acetic acid (glacial) 200 mM

EDTA 10 mM
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4.1.2.2.8 Transformation bu�er 1 (TFB 1)

MnCl2 30 mM

RbCl 100 mM

CaCl2 10 mM

glycerol 15 % (v/v)

pH 5.8

4.1.2.2.9 Transformation bu�er 2 (TFB 2)

MOPS 10 mM

RbCl 10 mM

CaCl2 75 mM

glycerol 15 % (v/v)

pH 6.8
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4.1.2.3 Enzymes and nucleic acids

Name order number vendor
BamHI R0136 NEB (Bioconcept, CH)
EcoRI R0101 NEB (Bioconcept, CH)
EcoRV R0195 NEB (Bioconcept, CH)
HindIII R0104 NEB (Bioconcept, CH)
NdeI R0111 NEB (Bioconcept, CH)
NheI R0131 NEB (Bioconcept, CH)
NotI R0189 NEB (Bioconcept, CH)
XhoI R0146 NEB (Bioconcept, CH)
Phusion Polymerase M0530 NEB (Bioconcept, CH)
T4 DNA ligase M0202 NEB (Bioconcept, CH)
Shrimp alkaline phosphatase M0371 NEB (Bioconcept, CH)

Table 5: DNA modifying enyzmes used during this study. Supplier NEB - New England
Biolabs.

4.1.2.4 Oligonucleotides

Name Sequence
OAN2020 TCATCTCTCGAGCTATGAAGAAATTCTTTCAGGAGTTCAAG
OAN2021 TGTACTAAGCTTTCACAAGAGCTTCTCGATGGCT
OAN2022 TCATCTGAATTCATGGATTACAAGGATGACGACGA
OAN2024 TCTATCCTCGAGTCACCGCTTGATCTCCTCTGCTGT
OAN2025 TGTACTGGATCCTGAGCCACCTGAGCCACCGTTGAACGTGTAGATCTTCA

TGAT
OAN2333 GTCCGGACTCAGATCTCGAG
OAN2334 AGATGAGAATTCTCAATTGTTTTTTCTCAGCTGAATAATTTTGATAAAGG

CGCCCAGGGAGAACACGCCAATAGCCAGCATGGCGAGAATCAGCAAGAGC
TTCTCGATGGCTG

OAN2398 AGATGACATATGAAGAAATTCTTTCAGGAGTTCAAGG
OAN2399 TCATCTGGATCCTCACAAGAGCTTCTCGATGGC
OAN2400 AGATGACATATGAAGAAATTCTTTCAGGAGTTCAAGGC
OAN2401 TCATCTGCGGCCGCTCACAAGAGCTTCTCGATGGC
OAN2402 TCATCTGGATCCTCACCGCTTGATCTCCTCTG
OAN2403 AGATGACATATGTCGCAGGACACCATCCG
OAN2404 AGATGACATATGCGGGAGCAGAGGCTCAGG
OAN2412 GCTCGTAAGCTTATGGATTACAAGGATGACGACGATAAGTCGCAGGACAC

CATCCG

40



OAN2413 GCTCGTAAGCTTATGGATTACAAGGATGACGACGATAAGCGGGAGCAGAG
GCTCAGG

OAN2414 TCATCTGATATCTCACAAGAGCTTCTCGATGGC
OAN2415 AGATGAGCTAGCATGTCCGTCCTG
OAN2416 AGATGAAAGCTTTCAGATCTTCTTCAGAGATGAGTTTCTGCTCAGGGCCG

GGATTCTCCTCCACGTCACCGCATGTTAGAAGACTTCCTCTGCCCTCCTT
GTACAGCTCGTCCATGC

OAN2504 CTTGAAGCTTAGACATGGTGAGCAAGGGC
OAN2505 GGCTGGATCCTCAATTGTTTTTTCTCAGCTGAATAATTTTGATAAAGGCG

CCCAGGGAGAACACGCCAATAGCCAGCATGGCGAGAATCAGCTTGTACAG
CTCGTCCATG

OAN2518 AGATGAGCTAGCATGTCCGTCCTGACG
OAN2519 AGATGAAAGCTTTCAGATCTTCTTCAGAGATGAGTTTCTGCTCAGGGCCG

GGATTCTCCTCCACGTCACCGCATGTTAGAAGACTTCCTCTGCCCTCACC
GAGCAAAGAGTGGG

OAN2675 TCATCTCTCGAGTTATGTGGGGCCCCAGGC
OAN2272 CACCGCCTTGATGAGCCGCTCCCAA
OAN2273 AAACTTGGGAGCGGCTCATCAAGGC
OAN2569 AGATGACTCGAGATGTTTGGCCCCGCTAAAG
OAN2570 TCATCTAAGCTTCACTTCTCCAAAGTTGGTATGGC
OAN2571 AGATGACTCGAGATGGAAACATTACATATAATTTATTCAGAAGCAAAGTC

TTTTACAGTGGAGGGGCTGTCCAGCCGG
OAN2656 AGATGACATATGTTTGGCCCCGCTAAAG
OAN2657 AGATGACTCGAGATGGAAACATTACATATAATTTATTCAGAAGCAAAGTC

TTTTACAGTGGAGGGGCTGTCCAGCCGG
OAN2658 AGATGACATATGGAAACATTACATATAATTTATTCAGAAGC
OAN2661 TCATCTAAGCTTACGTTTAGTAAATGCAGGTGAACTTCTG
OAN2662 AGATGACTCGAGATGGAAACATTACATATAATTTATTCAGAAGCAAAG
OAN2663 AGATGACTCGAGATGGGTGCTTCTAGTTACGTCAGGGAA
OAN2664 AGATGACTCGAGATGTTCCCTGATCCAGATACACCTCC
OAN2665 AGATGACTCGAGATGACCCTGAGATGCATGGTATGTCA

Table 6: Oligonucleotides used in this study were purchased from Sigma-Aldrich.

4.1.2.5 Plasmids

Name Description
Vector Insert
pAN940 YFP-Parkin
gift from Richard Youle
pAN941 mcherryParkin
gift from Richard Youle
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pGBKT7 GAL4BD (bait)
Matchmaker (Clontech)
pGADT7 GAL4AD (prey)
Matchmaker (Clontech)
pAN3198 mKeima (Addgene #56018)
gift from Michael Davidson
pAN2741 FLAGUBXD1
pcDNA3.1+-DYK UBXD1 (Genscript: OHu09321)
pAN2861 YFP-UBXD1
EYFP-C1 (Clontech) pAN2741 PCR: OAN2020/2021
pAN2862 FLAGUBXD1DPUB
pcDNA3.1 *EcoRI, HindIII pAN2741 PCR: OAN2022/2025 *EcoRI, HindIII
pAN2863 FLAGUBXD1DUBX
pcDNA3.1 *EcoRI, XhoI pAN2741 PCR: OAN2022/2024 *EcoRI, XhoI
pAN3104 FLAGUBXD1DVIM
pAN2741*HindIII, EcoRV pAN2741 PCR: OAN2412/14 *HindIII, EcoRV
pAN3105 FLAGUBXonly
pAN2741*EcoRV, HindIII pAN2741 PCR: OAN2413/14 *HindIII, EcoRV
pAN3307 FLAG-VIMonly
pAN2855 *EcoRI/XhoI pAN2741 PCR: OAN2022/2675 *EcoRI/XhoI
pAN3080 YFP-UBXD1-ActA
pAN2861 *XhoI, EcoRI pAN2861 PCR: OAN2333/2334 *XhoI, EcoRI
pAN3187 YFP-ActA
pcDNA3 *BamHI, HindIII YFP-C1 PCR: OAN2504/2505 *BamHI, HindIII
pAN3090 GAL4BD-UBXD1
pGBTK7 *NdeI, BamHI pAN2861 PCR: OAN2398/9 *NdeI, BamHI
pAN3091 GAL4BD-UBXD1DPUB
pGBTK7 *NdeI, NotI pAN2862 PCR: OAN2400/01 *NdeI,NotI
pAN3092 GAL4BD-UBXD1DUBX
pGBTK7 *NdeI, BamHI pAN2863 PCR : OAN2400/02 *NdeI, BamHI
pAN3093 GAL4BD-UBXD1DVIM
pGBTK7 *NdeI, BamHI pAN2861 PCR: OAN2403/2399 *NdeI, BamHI
pAN3094 GAL4BD-UBXonly
pGBTK7 *NdeI, BamHI pAN2861 PCR: OAN2404/2399 *NdeI, BamHI
pAN3103 mitoYFP-T2A-3xmycParkin
pAN940*NheI, HindIII mitoYFP PCR: OAN2415/2416 *NheI, HindIII
pAN3216 mKeima-T2A-3xmycParkin
pAN940 *NheI, HindIII pAN3198: OAN2518/2519 *NheI, HindIII
pX45945 pSpCas9(BB)-2A-Puro (Addgene # 48139)
gift from Feng Zhang
pAN3046 UBXD1-CRISPR/Cas9
pX459 *BbsI Annealed OAN2272/2273
pAN3225 Homo sapiens YOD1 cDNA
pCR-XL-TOPO BC137167-seq-TCHS1003-GVO-TRI Biocat
pAN3238 YOD1isoform 1-mCherry
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mCherry-N1*XhoI, HindIII pAN3225 PCR: OAN2569/70 *XhoI, HindIII
pAN3239 YOD1isoform 2-mCherry
pmCherry-N1*XhoI, HindIII pAN3225 PCR: OAN2571/70 *XhoI, HindIII
pAN3283 pGBTK7-YOD1-1 full length
pGBTK7 *NdeI, BamHI pAN3238 PCR: OAN2656/57 *NdeI, BamHI
pAN3284 pGBTK7-YOD1-2 full length
pGBTK7*NdeI, BamHI pAN3239 PCR: OAN2658/57 *NdeI, BamHI
pAN3285 pGADT7-YOD1-1 full length
pGADT7*NdeI, BamHI pAN3238 PCR: OAN2656/57 *NdeI, BamHI
pAN3286 pGADT7-YOD1-2 full length
pGADT7 *NdeI, BamHI pAN3239 PCR: OAN2658/57 *NdeI, BamHI
pAN3292 YOD1-1 aa 1-136-mCherry
pAN3238 *XhoI, HindIII pAN3238 PCR: OAN2569/2661 *XhoI, HindIII
pAN3293 YOD1-2 aa 1-92-mCherry
pAN3238 *XhoI, HindIII pAN3239 PCR: OAN2662/2661 *XhoI, HindIII
pAN3294 YOD1 aa 93-304-mCherry
pAN3238 *XhoI, HindIII pAN3239 PCR: OAN2663/2570 *XhoI, HindIII
pAN3295 YOD1 aa 231-304-mCherry
pAN3238 *XhoI, HindIII pAN3239 PCR: OAN2664/2570 *XhoI, HindIII
pAN3296 YOD1 aa 273-304-mCherry
pAN3238 *XhoI, HindIII pAN3239 PCR: OAN2665/2570 *XhoI, HindIII
pAN3297 YOD1-1 - 3xFLAG
pAN3238 *BamHI, NotI Annealed OAN2666/7
pAN3298 YOD1-2 - 3xFLAG
pAN3239 *BamHI, NotI Annealed OAN2666/7
pAN3300 YOD1-1 - mCherry-ActA
pAN3238 *BamHI, NotI pmCherry-N1 PCR: OAN2668/9 *BamHI, NotI
pAN3301 YOD1-2 - mCherry-ActA
pAN3239 *BamHI, NotI pmCherry-N1 PCR: OAN2668/9 *BamHI, NotI

Table 7: Plasmids used in this study.

4.2 Methods

4.2.1 Molecular biological methods

4.2.1.1 Bacterial strains The Escherichia coli (E. coli) strains DH5α and

dam-/dcm- E. coli were used for cloning as well as ampli�cation of plasmid DNA. Both

strains were grown in Luria-Bertani media (LB) and on LB agar plates supplemented

with the appropriate antibiotic for selection. Antibiotics used were ampicillin (100 µg

/ml) or kanamycin (50 µg/ml).
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4.2.1.2 Preparation of chemically competent E. coli 6 ml of 2YT medium were

inoculated with either DH5αor dam-/dcm- E. coli strain and grown overnight. This

culture was diluted 1:100 in 10 ml 2YT medium and grown to OD600 = 0.5. This new

culture was diluted 1:100 in 100 ml 2YT medium, grown again until OD600 = 0.5 and

then chilled for 10 minutes in an ice-water bath. Bacteria were spun down in a pre-cooled

centrifuge at 2000 g and 4 °C for 7 minutes. The pellet was resuspended in ice-cold

transformation bu�er 1 and chilled in an ice-water bath for 10 minutes. Bacteria were

again spun down in a pre-cooled centrifuge at 2000 g and 4 °C for 7 minutes, and the pellet

was resuspended in 2 ml of ice-cold transformation bu�er 2. The bacterial suspension

was aliquoted on dry ice in 50 µl increments and immediately stored at -80 °C.

4.2.1.3 Preparation of electrocompetent E. coli DH5α or dam-/dcm- E. coli

were grown overnight in 6 ml LB medium and used to inoculate 400 ml LB medium at

1:100. This new culture was grown until OD600=0.5 and then chilled for 20 minutes in an

ice-water bath. Bacteria were spun down in a pre-cooled centrifuge at 2000 g and 4 °C

for 20 minutes. The bacterial pellet was resuspended in 400 ml ice-cold water and spun

down again in a pre-cooled centrifuge at 2000 g and 4 °C for 10 minutes. After repetition

of this washing step for a total of two washes, the bacterial pellet was resuspended in 1

ml of ice-cold LB medium containing 10 % glycerol. 50 µl aliquots were prepared on dry

ice and immediately stored at -80 °C.

4.2.1.4 Polymerase chain reactions (PCR) Polymerase chain reaction is a

method for exponential ampli�cation of a de�ned DNA-sequence by a thermo stable

DNA-polymerase [248].
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component PCR1 PCR2 PCR3 PCR4
template (< 250 ng) 1 µl 1 µl 1 µl 1 µl

oligonucleotide 1 (10 µM) 2.5 µl 2.5 µl 2.5 µl
oligonucleotide 2 (10 µM) 2.5 µl 2.5 µl 2.5 µl

dNTPs (2 mM each) 5 µl 5 µl 5 µl 5 µl
5x HF bu�er 5 µl 5 µl - -
5x GC bu�er - - 5 µl 5 µl

DMSO - 1.5 µl - 1.5 µl
Phusion polymerase 0.5 µl 0.5 µl 0.5 µl 0.5 µl

water ad 50 µl ad 50 µl ad 50 µl ad 50 µl

Table 8: Pipetting scheme for optimization of DNA ampli�cation using Phusion poly-
merase. For DNA cloning purposes, DNA was ampli�ed by PCR using high �delity
Phusion polymerase. Four di�erent conditions were tested. The condition with the most
optimal DNA ampli�cation was chosen for further processing.

temperature time
1x 98 °C 30 s
35x 98 °C 15 s

annealing 30 s
68 °C 60s/kb

1x 10 °C ∞

Table 9: Temperature pro�le for DNA ampli�cation using Phusion polymerase. The
annealing temperature was chosen based on the recommendation the web-based NEB tm
calculator (https://tmcalculator.neb.com). PCR ampli�ed DNA was separated from free
oligonucleotides through agarose gel electrophoresis and puri�ed using NucleoSpin Gel
and PCR Clean-Up according to the manufacturer's recommendations.

4.2.1.5 DNA digestion For cloning purposes, plasmid DNA was treated with re-

striction enzymes. To this end, between 0.5 and 5 µg of plasmid DNA was treated with

1 to 10 U of restriction enzyme for at least 1 h at the manufacturer recommended tem-

perature and bu�er conditions. DNA obtained through PCR ampli�cation was digested

overnight to improve digestion at the 5' and 3' ends. Whenever possible and were indi-

cated, double digestion using two or more restriction enzymes were performed according

to the manufacturer's instructions. Digested DNA was puri�ed using agarose gel elec-

trophoresis (4.2.1.9) followed by Machery and Nagel's NucleoSpin Gel and PCR Clean-Up

kit.
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4.2.1.6 DNA ligation For DNA ligations, vector DNA and insert DNA obtained

by DNA digestion (4.2.1.5) were mixed at a 1:3 ratio, 1 µl of T4 DNA ligase and 2 µl

of the appropriate bu�er (Thermo Fisher Scienti�c) in a total reaction volume of 20 µl

were added. The ligation mix was incubated at room temperature overnight, which was

followed by transformation into DH5α or dam-/dcm- E. coli (4.2.1.7).

4.2.1.7 DNA transformation into chemically competent E. coli Competent

DH5α or dam-/dcm- E. coli were thawed on ice. 3 µl of DNA ligation mix (4.2.1.6) was

added to 40 µl of competent bacteria and incubated for 30 minutes on ice. Heat shock

was carried out by incubating the reaction mix for 45 seconds at 42 °C, immediately

followed by cooling for 2 minutes on ice. The transformed bacteria were resuspended in

900 µl SOC medium and shaken at 700 rpm and 37 °C in a Thermomixer. An aliquot

of the transformation mix was spread on LB plates containing an appropriate antibiotic

and incubated at 37 °C overnight.

4.2.1.8 DNA plasmid isolation After DNA transformation, several E.coli clones

grown on LB plates were picked for veri�cation. Each clone was used to inoculate 5

ml of LB medium containing the appropriate antibiotic and incubated overnight at 37

°C and 250 rpm. Machery-Nagel's NucleoSpin Plasmid kit was used to isolate plasmid

DNA. DNA digestion (4.2.1.5) with appropriate restriction enzymes followed by agarose

gel electrophoresis (4.2.1.9) was performed to select correct clones. Correct clones were

veri�ed by sequence analysis (Microsynth, Basel, CH).

4.2.1.9 Agarose gel electrophoresis Agarose gels were prepared from 0.7 % (w/v)

agarose diluted in 50 ml TAE bu�er supplemented with 0.5 µg/ml ethidium bromide.

Plasmid DNA was mixed with DNA loading dye, and gel electrophoresis was carried out

at 85 V for 45 minutes. For puri�cation of DNA fragments, NucleoSpin Gel and PCR

Clean-Up kit (Machery-Nagel) was used according to manufacturer's recommendations.
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4.2.1.10 Phosphatase treatment of DNA Vector DNA for ligation reactions was

treated with shrimp alkaline phosphatase (SAP) to minimize vector religation. After

DNA digestion of plasmid DNA (4.2.1.5) and before puri�cation, 1 µl of TSAP with 2

µl of 10x bu�er was added to the reaction mix and incubated at 37 °C for 15 minutes.

SAP was inactivated by incubation at 74 °C for 15 minutes. The reaction product was

puri�ed via agarose gel electrophoresis (4.2.1.9) followed by Machery-Nagel's NucleoSpin

Gel and PCR Clean-Up kit.

4.2.1.11 Yeast two hybrid In a Matchmaker GAL4-based two-hybrid assay, a bait

protein is expressed as a fusion to the Gal4 DNA-binding domain (DNA-BD), while

libraries of prey proteins are expressed as fusions to the Gal4 activation domain. The

essay is based on the reconstitution of a functional transcription factor when two proteins

or polypeptides of interest interact (Figure 5). This takes place in genetically modi�ed

yeast strains, in which the transcription of a reporter gene leads to a speci�c phenotype,

usually growth on a selective medium or change in the color of the yeast colonies [249]. A

downstream analysis in order to quantify the e�ects of point mutations on the strength

of interaction was used. In this way, the Gal-responsive LacZ gene (b-galactosidase)

integrated in Y187 was implemented as a reporter for quantitative studies of protein-

protein interactions because has in this strain expresses strongly.

4.3 Biochemical methods

4.3.1 Preparation of cell lysates

Cells were harvested and cell pellets were stored on ice for immediate use or at -80 °C

for several days. For lysis, pellets were resuspended in RIPA bu�er supplemented with

protease inhibitor cocktail and incubated on ice for 15 minutes. After incubation on

ice, samples were centrifuged at 14000 g for 15 minutes. Supernatants were mixed with

2x Laemmli sample bu�er supplemented with 50mM DTT and heated to 95 °C for 10

minutes.
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Figure 5: The yeast-two-hybrid (Y2H) principle. Two proteins are expressed separately, one (a bait
protein) fused to the Gal4 DNA-binding domain (BD) for YOD1 (both isoforms) and the other (a
prey protein) fused to the Gal4 transcriptional activation domain (AD) �p97 and UBXD1.

4.3.2 Measurement of protein content

During preparation of cell lysates (4.3.1), 10 µl of the supernatant obtained after cen-

trifugation were removed and diluted 1:10 in ddH2O. This diluted sample was used to

measure protein content using the Pierce BCA protein assay kit (Thermo Fisher Scien-

ti�c) according to manufacturer's recommendations. Brie�y, 25 µl of sample and eight

BCA reference solutions were added in triplicate to a 96 well plate. 200 µl of BCA Work-

ing Reagent was added to each well, followed by incubation at 37 °C for 30 minutes.

Absorption at 562 nm was measured on an ELISA reader to calculate protein content of

the sample.
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4.3.3 SDS PAGE

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is a method used

to distribute proteins on an acrylamide gel according to their size. Gels consisting of a

4 % (w/v) acrylamide stacking gel overlaid on a 7 %, 9 % or 12 % (w/v) acrylamide

resolving gel were prepared in plastic 1.5 mm gel cassettes. Samples loaded onto the gels

were separated at 120 V for 110 minutes in Laemmli running bu�er.

0.5 M Tris/HCl pH 6.8 2.5 ml

10 % SDS 100 µl

30 % acrylamide 1340 µl

10 % APS 200 µl

TEMED 10 µl

ddH2O 6 ml

Table 10: Preparation of stacking gels for SDS-PAGE.

component for 7 % gels 9 % gels 12 % gels

1.5 M Tris/HCl pH 8.8 5 ml 5 ml 5 ml

10 % SDS 200 µl 200 µl 200 µl

30 % acrylamide 4.7 ml 6 ml 8 ml

10 % APS 135 µl 135 µl 135 µl

TEMED 13 µl 13 µl 13 µl

ddH2O 10 ml 8.7 ml 6.7 ml

Table 11: Preparation of gels with di�erent resolving power for SDS-PAGE.

4.3.4 Western blotting

Western blotting is a method to transfer proteins from an SDS-PAGE gel to a nitrocel-

lulose membrane and was performed on a Trans-Blot SD Semi-Dry Transfer Cell (Bio-

Rad). After blotting, nitrocellulose membranes were blocked in PBS-T containing 3 %
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(w/v) TopBlock for 1 h to reduce nonspeci�c antibody binding. Primary antibody was

added to the membranes in PBS-T/TopBlock and incubated with gentle shaking at 4

°C overnight. After three washes in PBS-T, secondary HRP-coupled antibody diluted in

PBS-T/TopBlock was added to the membrane and incubated with gentle shaking for 2 h,

after which the membrane was washed three times with PBS-T. Proteins were detected

using a chemiluminescent substrate.

4.3.5 Immunoprecipitation

Cells were lysed for 20 min on ice using IP Bu�er consisting of 50 mM Tris-HCl, pH

7.5, 150 mM NaCl, 2 mM ethylenediaminetetraacetic acid (EDTA), 0.75 % NP40. After

centrifugation (14000 g; 10 min; 4 °C) supernatant was collected and immunoprecipita-

tion assays were performed. Supernatant was incubated with anti-myc antibody against

3xmyc-tagged p97 for 2 h at 4 °C under constant rotation following immobilization onto

A/G PLUS Agarose Beads for 2h at 4 °C. After seven washing steps with IP bu�er, SDS

page was performed according to a standard protocol. The following antibodies were

used for detection: mouse α-p97 (1:3000); rabbit α-FLAG (1:3000); mouse α-GAPDH

(1:3000); anti-rabbit HRP (1:20000); anti-mouse HRP (1:20000). Immunopuri�ed pro-

teins were detected by Western blot.

4.3.6 Extraction of genomic DNA

Genomic DNA was extracted from cells using the GenElute Mammalian Genomic DNA

Miniprep kit according to the manufacturer's recommendations.

4.4 Cell Biology Methods

4.4.1 Cell culture

All cell lines were grown in a humidi�ed incubator at 5 % CO2 and 37 °C. HeLa cells

were maintained in (Dulbecco's modi�ed Eagle's media (DMEM)) supplemented with
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10 % fetal bovine serum (FBS), 1 mM sodium pyruvate and 2 mM L-glutamine. Cells

were passaged after reaching 90 % con�uency by removing growth medium, washing

once with PBS and incubating with Trypsin/EDTA at 37 °C until cells had detached.

Trypsin/EDTA was inactivated by adding medium 1:1. The solution was centrifuged at

1000g for 3 minutes and the cell pellet was re-suspended in fresh medium. Cells were

distributed into new tissue culture containers as required. For western blot experiments

and �ow cytometry, cells were grown in tissue culture dishes. For single cell cloning

experiments, cells were grown in 96 well tissue culture plates. For immunocytochemistry,

cells were grown on circular coverslips suspended in 6 well tissue culture plates. To

induce mitophagy, HeLa cells were treated with 50 µM carbonyl cyanide m-chlorophenyl

hydrazine (CCCP)

4.4.2 Induction of mitophagy

For measurements of mitochondrial membrane potential via �ow cytometry induction

of mitophagy and Parkin recruitment, cells were treated where applicable with 50 µM

CCCP for 12 hours before measurement.

4.4.2.1 Transfection of mammalian cells For confocal microscopy, cells were

transfected with Fugene 6. Cells were grown on circular coverslips suspended in 6 well

tissue culture plates or on Nunc Lab-Tek chamber slides. After 24 h at approximately

60 % con�uency, cells were transfected as follows. 3 µl Fugene 6 was added to 100 µl

Opti-MEM in an Eppendorf Safe-Lock tube while minimizing direct contact of Fugene 6

to plastic surfaces. After incubation at room temperature for 5 minutes, 1 µg of plasmid

DNA was added to the solution, which was incubated for another 15 minutes at room

temperature. Finally, the solution was added dropwise to the cells. 24 h after trans-

fection, cells were either �xed for immunocytochemistry. All other transfections were

done using linear polyethylenimine (PEI). PEI MAX 40000 was dissolved 0.1 % (w/v) in

ddH2O adjusted to pH 7 with NaOH and stored at 4 °C. Cells were grown for 24 h before
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transfection with PEI [250]. PEI and plasmid DNA were added to Opti-MEM in a ratio

of 2:1. The solution was incubated at room temperature for 30 minutes and added to

the cells. After 4 h the medium was exchanged. Cells were grown for an additional 24 h

before obtaining lysates.

4.4.2.2 Knockdown of UBXD1 using CRISPR/Cas9 CRISPR consists of two

components: a guideRNA (gRNA) and a non-speci�c CRISPR-associated endonuclease

(Cas9). The gRNA is a short synthetic RNA composed of a sca�old sequence necessary

for Cas9-binding and a user-de�ned 20 nucleotide targeting sequence which de�nes the ge-

nomic target to be modi�ed. CRISPR was originally employed to knock-out target genes

in various cell types and organisms, but modi�cations to the Cas9 enzyme have extended

the application of CRISPR to selectively activate or repress target genes, purify speci�c

regions of DNA, and even image DNA in live cells using �uorescence microscopy. The ge-

nomic target can be any 20 nucleotide DNA sequence, provided it meets two conditions:

The sequence is unique compared to the rest of the genome and the target is present

immediately upstream of a protospacer adjacent motif (PAM). The PAM sequence is ab-

solutely necessary for target binding and the exact sequence is dependent upon the species

of Cas9 (5' NGG 3' for Streptococcus pyogenes Cas9) (Figure 6). Once expressed, the

Cas9 protein and the gRNA form a riboprotein complex through interactions between the

gRNA �sca�old� domain and surface-exposed positively-charged grooves on Cas9. Cas9

undergoes a conformational change upon gRNA binding that shifts the molecule from

an inactive, non-DNA binding conformation, into an active DNA-binding conformation.

The Cas9-gRNA complex will bind any genomic sequence with a PAM, but the extent

to which the gRNA spacer matches the target DNA determines whether Cas9 will cut.

Once the Cas9-gRNA complex binds a putative DNA target, a seed sequence at the 3'

end of the gRNA targeting sequence begins to anneal to the target DNA. If the seed and

target DNA sequences match, the gRNA will continue to anneal to the target DNA in a

3' to 5' direction. In this study, using CRISPR/Cas9, UBXD1 was targeted in HeLa cells

and several alleles of UBXD1 were replaced with a reporter cassette coding for secreted
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Figure 6: Schematic representation of CRISPR/Cas9 strategy for UBXD1 knockdown. Using
CRISPR/Cas9, UBXD1 was targeted in HeLa cells and several alleles of UBXD1 were replaced with a
reporter cassette coding for secreted Gaussia luciferase. Each gRNA needs homology arms (use 800
bp immediately CRISPR tream and downstream of the target). CMV promoter and Gluc gene were
knock in for fast screening of single clones.

Gaussia luciferase. Gaussia luciferase is secreted into the cell culture media and the light

output generated by the luciferase reaction can be correlated to the amount of Gaussia

luciferase protein produced. In this way the activity of the promoter driving Gaussia

expression was measured. PCR analysis and western blot (anti-UBXD1) were performed

to con�rm knockdown of UBXD1.

4.4.2.3 Immunocytochemistry Cells grown on circular coverslips suspended in 6

well tissue culture at a density of 30000 cells per well and where applicable transfected or

treated were washed once in PBS. Cells were suspended in 4 % paraformaldehyde / PBS

for 15 minutes at room temperature. Cells were washed again in PBS and suspended in

0.15 % Triton X 100 / PBS for 15 minutes at room temperature. Cells were re-suspended

in 10 % bovine serum albumine (BSA)/PBS for 1 h. The primary antibody was added as

indicated in 10 % BSA/PBS and cells were incubated at 4 °C overnight. Cells were washed

three times in 10 % BSA/PBS, and the secondary antibody was added as indicated in 10

% BSA/PBS. Cells were incubated at room temperature for 2 h and �nally washed three

times in PBS before being mounted on Superfrost microscope slides with Vectashield

mounting medium.
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4.4.2.4 Confocal microscopy Confocal images were obtained on a Visitron, Spin-

ning Disk, confocal laser scanning microscope �tted with 405 nm, 458 nm, 488 nm, 514

nm, 543 nm and 633 nm laser lines using 63x/1.40 oil DIC objective.

4.4.2.5 Image analysis Image analysis was done using the Fiji distribution of Im-

ageJ [251].

4.4.2.6 Flow cytometric analysis of mitophagy HeLa cells were grown in 10cm

culture plates and transfected with mKeima and Parkin (mKeima-T2A-3xmycParkin) as

well as UBXD1 or control vector were treated with CCCP or left untreated as indi-

cated. 24 h after induction and treatment, cells were harvested using Trypsin/EDTA,

washed with PBS and equal numbers of cells for each condition were transferred to

Eppendorf Safe-Lock tubes. Cells were gated to exclude debris (FlowJo) and cells

not expressing mKeima (488 nm). To quantify mitophagy, cells expressing mKeima

and transfected with vector control without CCCP treatment were used to establish

mKeima561nm/mKeima488nm threshold. Using R, a linear model was established based

on the mean of the 99th percentile mKeima561nm for each mKeima488nm value using

the R quantreg package. Cells above the mKeima561nm/mKeima488nm threshold were

counted to determine percentage of cells with above control mitophagy levels.

4.4.2.7 Assessing cytochrome release HeLa cells grown in Nunc Lab-Tek chamber

slides, �xed and stained with mouse anti cytochrome c and anti mouse Alexa546-labeled

antibodies. Cells were assessed in a blinded manner by confocal microscopy. Apoptosis

is accompanied by the release of mitochondrial cytochrome c into the cytosol. Therefore,

randomly chosen YFP-positive cells were classi�ed after their cytochrome c localization

as either sharply de�ned mitochondrial or unspeci�c cytosolic.

4.4.2.8 Statistical methods All experiments were performed independently at least

three times. Statistical signi�cance was assessed by ANOVA with posthoc two-tailed Stu-
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dent's t-test using Bonferroni or Holm adjustment to account for multiple comparisons.

P-values > 0.05 are marked with n.s., p < 0.05 with *, p < 0.01 with **, p < 0.001 with

***.

5 Results

5.1 Identi�cation of p97 cofactors involved in mitochondrial

maintenance

Failing mitochondrial quality control is connected to aging and neurodegeneration [43].

Mounting evidence connects the UPS with mitochondrial maintenance [252, 253] in a

process termed OMMAD. Recently, the ATPase associated with various cellular activities

(AAA-ATPase) p97 was connected to OMMAD and likely constitutes the retrotranslocase

for the extraction of mitochondrial proteins for proteasomal degradation in the cytosol

[254, 255]. Furthermore, p97 was recently connected to the execution of mitophagy,

another important mitochondrial quality control pathway [254]. As diverse p97 functions

are governed by interaction with a plethora of cofactors, the mitochondrial translocation

of UBX domain-containing p97 cofactors under mitophagic conditions was investigated

to elucidate the cofactor requirements of p97 to perform its function at the interface

between OMMAD and mitophagy.

5.1.1 Subcellular localization of p97 cofactors under mitophagic conditions

In order to identify mitochondrial cofactors of p97, a list of all known and suspected p97

cofactors was compiled (Table 12). Thirteen proteins with known or suspected connec-

tion to p97 were identi�ed. Except for Ufd1 and Npl4, no mitochondrial function was

suggested in the literature so far [256] . For all candidates except Ufd1 and Npl4, open

reading frames were obtained and cloned into mammalian expression vector pcDNA3.1*-

DYK leading to the expression of FLAG epitope-tagged protein. Subsequent transfection
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name Gene ID localization localization CCCP/Parkin
UBXN8 7993 ER ER
UBXN7 26043 Nucleus Nucleus
UBXN9 79058 Cytosol Cytosol
Derlin-1 79139 ER ER
UBXD5 91544 ER ER
VIMP 55829 ER ER
UBXD3 127733 Cytosol Cytosol
UBXD4 165324 Cytosol Cytosol
UBXD1 80700 Cytosol mitochondrial

SAKS1 (UBXN1) 51035 Cytosol mitochondrial
Erasin (UBXN4) 23190 ER mitochondrial

Table 12: UBX-domain containing p97 cofactors analyzed for mitochondrial
localization. Eleven p97 cofactors were cloned as FLAG fusion proteins and their sub-
cellular localization under normal and mitophagic conditions (co-transfection with Parkin
and CCCP treatment) was determined.

of these expression constructs into HeLa cells together with mcherryParkin followed by

staining for FLAG-tagged p97 cofactors revealed in the absence of the mitophagic in-

ducer CCCP staining patterns typical for cytosolic, nuclear or ER localization (Table

12, Figure 7). Upon addition of CCCP for 6 h three of the eleven p97 cofactors ana-

lyzed displayed co-localization with mcherryParkin. As CCCP induces the translocation of

Parkin to mitochondria, this was indicative for a potential mitochondrial translocation

of UBXD1, SAKS1 and Erasin under mitophagic conditions.

5.1.2 Localization of p97 cofactors UBXD1, SAKS1, and Erasin

To con�rm the suspected mitochondrial translocation of UBXD1, SAKS1, and Erasin

under mitophagic conditions, subcellular colocalization studies between FLAG-tagged

UBXD1, SASK1, and Erasin and mitochondria-targeted mitoDsRed were performed (Fig-

ure 8). While all three cofactors did not colocalize with mitoDsRed in the absence of

CCCP, following induction of mitophagy by addition of CCCP UBXD1, SAKS1, and

Erasin displayed overlap with mitoDsRed in YFP-Parkin expressing cells. This data

strongly suggested an involvement of UBXD1, SAKS1, and Erasin together with their

e�ector p97 in mitophagy.
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Figure 7: HeLa cells were transfected with eleven known p97 cofactors constructs for mitochondrial
matrix-targeted Parkin Cherry (red) expression, treated for 6 h with 50 µM CCCP to induce mitophagy
or left untreated as control. Fixed cells were stained using anti-FLAG antibodies (green) and imaged
by confocal microscopy. Please note the no localization of any of these twelve candidate proteins on
mitochondria upon CCCP treatment.
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Figure 8: HeLa cells were transfected with expression constructs for mitochondrial matrix-targeted
mitoDsRed (red), YFP-Parkin (green), FLAG-tagged UBXD1, SAKS1 or Erasin, treated for 6 h with
50 µM CCCP to induce mitophagy or left untreated as control. Fixed cells were stained using anti-
FLAG antibodies (blue) and imaged by confocal microscopy. Please note the localization of these
three p97 cofactors together with Parkin towards mitochondria upon CCCP treatment.
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Figure 9: Expression of mitochondrial p97 cofactors UBXD1, SAKS1, and Erasin in HeLa cells. HeLa
cells were harvested and total RNA was extracted. Levels of UBXD1, SAKS1, Erasin and β-actin
were determined by qRT-PCR. Shown are boxplots (three biological with three technical replicates)
of Δct-values for the expression level of UBXD1, SAKS1 and Erasin relative to β-actin expression
levels.

In order to better assess HeLa cells as a model for studying mitochondrial cofactors of p97,

the expression of UBXD1, SAKS1 and Erasin were analyzed by quantitative RT-PCR.

As shown in Figure 9, all three p97 cofactors are expressed in HeLa cells.

5.2 Combined expression of mitochondria-targeted YFP and

Parkin using T2A peptide fusion

HeLa cells do not express Parkin, thus, studying Parkin-mediated mitophagy necessi-

tates the ectopic expression of this ubiquitin ligase. In this study, the simultaneous ec-

topic expression of more than one gene was necessary. To this end, a gene fusion between

mitochondria-targeted YFP and 3xmycParkin separated by a T2A sequence was generated.

Upon translation of the fusion gene, the ribosome co-translationally cleaves the T2A pep-
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tide resulting in the production of two polypetides from one mRNA [257, 258]. To assess

whether mitoYFP-T2A-3xmycParkin was indeed cotranslationally processes, HeLa cells

were transfected with an expression plasmid for mitoYFP-T2A-3xmycParkin treated with

CCCP or left untreated and stained using anti-myc antibodies. As shown in Figure 10,

in the absence of CCCP mitoYFP displays a clearly mitochondrial pattern, while Parkin

resides in the cytosol. Upon addition of CCCP, Parkin translocates to mitochondria

as expected. Thus, mitoYFP-T2A-3xmycParkin is processed cotranslationally and Parkin

shows translocation to depolarized mitochondria.

5.3 Assessing the impact of CCCP treatment on cellular viability

CCCP causes the depolarization of mitochondria through proton shuttling across the

IMM while circumventing F0F1-ATPase. To establish that CCCP does not induce

unwanted cell death possibly confounding results, HeLa cells were transfected with

mitoYPF-T2A-3xmycParkin and treated with 0, 10, 25, and 50 µM CCCP for 12 and

24 h. Under these conditions, no release of cytochrome c was observed (Figure 11).

Thus, the employed CCCP concentrations to induce mitochondrial depolarization and

mitophagy did not cause apoptotic cell death.

5.4 Dependency of UBXD1 translocation on CCCP concentra-

tion

The p97 cofactor UBXD1 translocates to mitochondria under mitophagic conditions. To

further characterize this shift in subcellular localization, UBXD1 translocation in Parkin

expressing cells was assessed in cells treated with increasing concentrations of CCCP.

As shown in Figure 12, treatment of cells expressing mitoYFP-T2A-3xmycParkin together

with FLAGUBXD1 revealed translocation of UBXD1 at all analyzed CCCP concentrations.

Interestingly, increasing CCCP concentrations caused increasingly e�cient translocation

of UBXD1 to mitochondria.
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Figure 10: Combined expression of mitochondria-targeted YFP and Parkin. (A) HeLa cells transfected
with an expression plasmid for mitodsRED and a fusion protein between mitoYFP and 3xmycParkin
separated with the cotranslationally-cleaved T2A peptide were analyzed by confocal microscopy after
treatment with CCCP for 6 h or no treatment as control. Note that mitoYFP and mitodsRED colo-
calize and that both markers show the typical CCCP-induced mitochondrial fragmentation. (B) HeLa
cells transfected with mitoYFP-T2A-3xmycParkin were treated with CCCP for 6 h or left untreated,
�xed and stained using mouse anti-myc antibodies. Please note the lack of co-localization between
mitoYFP and 3xmycParkin in the absence of CCCP and the overlap of both mitoYFP and Parkin in
the presence of CCCP, con�rming intended cotranslational processing of mitoYFP-T2A-3xmycParkin.
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Figure 11: CCCP treatment does not induce apoptosis in HeLa cells. HeLa transfected with mitoYPF-
T2A-3xmycParkin were treated for 12 or 24 h with 0, 10, 25, or 50 µM CCCP, �xed, stained using
anti-cytochrome c antibodies and analyzed by �uorescence microscopy. Shown are representative
images of three independent experiments.

Figure 12: HeLa cells transfected with expression constructs for FLAGUBXD1 and mitoYFPT2A-
3xmycParkin were treated with 10, 15, 25, 40, or 50 µM CCCP for 6 h or left untreated as control.
Cells were �xed, stained using mouse anti-FLAG antibodies to detect UBXD1 and analyzed by confocal
microscopy.
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Figure 13: UBXD1 translocates to depolarized mitochondria in a Parkin-dependent manner. HeLa
cells transfected with expression constructs for FLAGUBXD1, mitoYFP, and Parkin or vector control
were treated with 50 µM CCCP for 6 h of left untreated as control.

5.5 UBXD1 translocates to depolarized mitochondria in a

Parkin-dependent manner

To assess the Parkin-dependency of mitochondrial translocation of UBXD1, cells express-

ing FLAGUBXD1 in the presence or absence of Parkin were treated with 50 µM CCCP or

left untreated. As shown in Figure 13, in the absence of Parkin and CCCP, FLAGUBXD1

displays cytosolic localization and does not colocalize with the mitochondrial marker mi-

toYFP. However, in the presence of Parkin and following mitochondrial depolarization, a

proportion of UBXD1 translocates to mitochondria. These �ndings suggest that UBXD1

is able to recognize a signal which becomes apparent on depolarized mitochondria after

Parkin recruitment.

5.6 Mutational analysis of UBXD1

Cofactors of p97 are characterized by their modular structure consisting of protein

domains with known functions mediating interaction with p97 and ubiquitinated pro-

teins. To further characterize the connection of UBXD1 to mitochondria, FLAG-

tagged UBXD1 mutants lacking the VIM (UBXD1ΔVIM), PUB (UBXD1ΔPUB), UBX

(UBXD1ΔUBX), PUB and UBX (VIMonly) or VIM and PUB domain (UBXonly) were

generated (Figure 14).
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Figure 14: Schematic domain organization of wildtype UBXD1 and mutants used in this study.
UBXD1 contains with VIM, PUB and UBX three protein-protein interaction domains. Shown are
drawn to scale schematic representation of UBXD1 truncation mutants.

5.6.1 Protein-protein interaction domains in UBXD1

HeLa cells transiently coexpressing FLAGUBXD1 or mutants of FLAGUBXD1 together

with mitoYFP-T2A-3xmycParkin were treated with CCCP or left untreated. As shown

in Figure 15A, FLAGUBXD1 lacking VIM, PUB or both domains was still capable of

mitochondrial translocation, similar to wildtype FLAGUBXD1. Strikingly, FLAGUBXD1

without the UBX domain lacked mitochondrial localization even under mitophagic con-

ditions. To quantify UBXD1 mitochondrial translocation, the ratio of FLAGUBXD1 on

mitochondria to non-mitochondrial FLAGUBXD1 was determined (Figure 15B). In line

with the �ndings shown in Figure 15A, a signi�cant di�erence (p< 0.001) in the mito-

chondrial to total FLAGUBXD1 ratio (expressed as median ± median absolute deviation)

between control cells and cells treated with CCCP was found for wildtype FLAGUBXD1

(no CCCP: 1.11 ± 0.24; plus CCCP: 1.63 ± 0.4), FLAGUBXD1ΔPUB (no CCCP: 1.09±

0.1; plus CCCP: 1.92 ± 0.93), FLAGUBXD1ΔVIM (no CCCP: 1.04 ± 0.21; plus CCCP:

1.34± 0.47) and FLAGUBXonly (no CCCP: 1.12 ± 0.16; plus CCCP: 1.58 ± 0.61), but

not for FLAGUBXD1ΔUBX (no CCCP: 0.99 ± 0.22; plus CCCP: 1.04±0.21). These

data point to an UBX domain-dependent targeting of UBXD1 to mitochondria under

mitophagic conditions, while VIM and PUB domains, whether separate or in concert, are
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not su�cient to mediate mitochondrial translocation.

5.7 UBXD1 mediates mitochondrial recruitment of p97

As shown in Figure 15, the UBX domain of UBXD1 determines translocation to mito-

chondria under mitophagic conditions. Interestingly, the UBX domain is generally con-

sidered to confer binding to p97. However, UBXD1 is particular in this regard as it has a

complex interaction mode with p97 likely involving its VIM and PUB domains [158]. To

assess whether translocation of UBXD1 to mitochondria might also cause recruitment of

p97, mitochondrial translocation of p97 was studied.

5.7.1 UBXD1 recruits p97 to mitochondria under mitophagic conditions

Analyzing the distribution of endogenous p97 in cells co-expressing FLAGUBXD1 and

mitoYFP-T2A-3xmycParkin in the presence or absence of CCCP, a strong redistribution

of p97 from the cytosol to mitochondria upon addition of CCCP compared to controls

was found (Figure 16A). Quantitative image analysis (Figure 16B) con�rmed a signi�-

cant (p<0.0001) accumulation of endogenous p97 on mitochondria in cells with ectopic

expression of FLAGUBXD1 under mitophagic conditions (plus FLAGUBXD1/plus CCCP:

2.01 ± 0.7) compared to control cells either with undisturbed mitochondrial membrane

potential (plus FLAGUBXD1/no CCCP: 1.15 ± 0.24) or lacking ectopic UBXD1 expres-

sion (no FLAGUBXD1/plus CCCP: 1.25 ± 0.31; no FLAGUBXD1/no CCCP: 1.21 ± 0.18).

These data are consistent with UBXD1 acting as p97 mitochondrial recruitment factor

under mitophagic conditions.

5.7.2 The UBX domain of UBXD1 is essential for mitochondrial transloca-

tion of p97

To further explore the potential role of UBXD1 in targeting p97 to mitochondria, redis-

tribution of endogenous p97 following expression of FLAGUBXD1 mutants was analyzed.
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Figure 15: VIM and PUB, but not the UBX domain of UBXD1 are dispensable for mitochondrial
translocation during mitophagy. (A) HeLa cells transfected with mitoYFP-T2A-3xmycParkin and
FLAGUBXD1, FLAGUBXD1ΔPUB, FLAGUBXD1ΔVIM, FLAGUBXD1ΔUBX, or FLAGUBXonly expres-
sion constructs were treated with CCCP 6 h or left untreated as control, stained using mouse anti-
FLAG antibodies and analyzed by confocal microscopy. (B) The ratio of mitochondrial to total
FLAGUBXD1 or various FLAGUBXD1 variants as measure for mitochondrial translocation was quanti-
�ed by image analysis of confocal pictures obtain from cells treated as in A. Shown are box plots of
three independent experiments with at least 15 cells per experiment and condition. Statistical signif-
icance was assessed by ANOVA followed by Student's t-test using Bonferroni correction to account
for multiple comparisons. *** denotes p-values < 0.001, n.s. - no signi�cant di�erence.
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Figure 16: UBXD1 recruits p97 to mito-
chondria under mitophagic conditions. (A)
HeLa cells transfected with expression plas-
mids for FLAGUBXD1 and mitoYFP-T2A-
3xmycParkin were treated with CCCP for 6 h
or left untreated as control. Cells were �xed,
stained using rabbit anti-FLAG and mouse
anti-p97 antibodies and analyzed by confo-
cal microscopy. (B) HeLa cells transfected
with expression plasmids for FLAGUBXD1 or
vector control and mitoYFP-T2A-3xmycParkin
were treated as in A. To quantify p97 redis-
tribution to mitochondria, the ratio of mito-
chondrial p97 to total p97 was determined by
image analysis of confocal images. Shown are
box plots of three independent experiments
with at least 15 cells per experiment and con-
dition. Statistical signi�cance was assessed
by ANOVA followed by Student's t-test using
Bonferroni correction to account for multiple
comparisons. *** denotes p-values < 0.001.
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HeLa cells expressing mitoYFP-T2A-3xmycParkin together with wildtype FLAGUBXD1 or

FLAGUBXD1 mutants were treated with CCCP or left untreated as control, and ratios

of mitochondrial p97 to total p97 (p97m/p97t) and mitochondrial FLAGUBXD1 to total

FLAGUBXD1 (FLAGUBXD1m/ FLAGUBXD1t) were determined (Figure 17). Con�rm-

ing the previous �ndings, FLAGUBXD1 translocated to mitochondria under mitophagic

conditions via its UBX domain, while VIM and PUB domains did not contribute to

mitochondrial targeting. As for p97 recruitment, confocal microscopy and determination

of p97m/p97t revealed signi�cant mitochondrial enrichment of endogenous p97 under

mitophagic conditions compared to controls expressing FLAGUBXD1 (no CCCP: 1.18 ±

0.14; plus CCCP: 1.65 ± 0.29), FLAGUBXD1ΔPUB (no CCCP: 1.25 ± 0.14; plus CCCP:

1.62±0.47), and FLAGUBXD1ΔVIM (no CCCP: 1.23 ± 0.16; plus CCCP: 1.61 ±0.47),

but not in FLAGUBXD1ΔUBX (no CCCP: 1.18 ±0.17; plus CCCP: 1.10 ± 0.21) or

FLAGUBXonly (no CCCP: 1.15 ± 0.07; plus CCCP: 0.99 ± 0.1) expressing cells (Figure

17). These data are consistent with UBXD1 binding to depolarized, Parkin-containing

mitochondria via its UBX and recruiting p97 through its VIM and PUB domain.

5.7.3 VIM domain characterization

Analysis of UBXD1ΔVIM translocation (Figure 17) suggested a potential involvement

of the VIM domain in mitochondrial binding. To address this question, mitochondrial

translocation and p97 recruitment activity of the VIM domain (VIMonly) was analyzed.

HeLa cells expressing VIMonly and mitoYFP-T2A-3xmycParkin treated with CCCP or left

untreated showed neither translocation of VIMonly nor of p97 to mitochondria (Figure

18). These data are consistent with p97 recruitment to mitochondria via the VIM or PUB

domain upon binding of the UBX domain of UBXD1 to mitochondria. Thus, a direct

physical interaction between the VIM or PUB, but not the UBX domain of UBXD1 and

p97 would be expected.
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Figure 17: The UBX domain of UBXD1 is essential for mitochondrial translocation of p97. HeLa
cells transfected with expression plasmids for FLAGUBXD1 or variants of FLAGUBXD1 and mitoYFP-
T2A-3xmycParkin were treated with CCCP for 6 h or left untreated as control. Fixed cells were stained
using rabbit anti-FLAG and mouse anti-p97 antibodies and analyzed by confocal microscopy. The box
plots represent three independent experiments with at least 15 cells/experiment/condition. Statistical
signi�cance was assessed by ANOVA followed by Student's t-test using Bonferroni correction to
account for multiple comparisons. ** denotes p-values < 0.01, *** p-values < 0.001, n.s. � no
signi�cant di�erence.

69



Figure 18: The VIM domain of UBXD1 is not involved in mitochondrial translocation and p97
recruitment. HeLa cells transfected with expression plasmid for FLAG-VIMonly and mitoYFP-T2A-
3xmycParkin were treated with CCCP for 6 h or left untreated as control. Fixed cells were stained
using rabbit anti-FLAG and mouse anti-p97 antibodies and analyzed by confocal microscopy. The box
plots represent three independent experiments with at least 15 cells/experiment/condition. Statistical
signi�cance was assessed by ANOVA followed by Student's t-test using Bonferroni correction to
account for multiple comparisons. n.s. � no signi�cant di�erence.

5.7.4 Mitochondrial UBXD1 is su�cient for p97 recruitment

To assess whether UBXD1 alone is su�cient to cause translocation of p97 to mito-

chondria, full-length YFPUBXD1 or YFP as control were targeted to the OMM through

a C-terminal ActA tail anchor. ActA is a surface protein of 639 amino acids, anchored

to the bacterial membrane Listeria monocytogenes inducing actin nucleation on the bac-

terial surface. The continuous process of actin �lament elongation provides the driving

force for bacterial propulsion in infected cells or cytoplasmic extracts [259]. ActA, when

expressed in mammalian cells, is targeted to mitochondria via its C-terminal hydrophobic

tail [260].

As shown in Figure 19A , ActA tail targeted YFPUBXD1 as well as YFP to mitochondria

in the absence of ectopic Parkin expression or addition of CCCP. No signi�cant di�erence

in mitochondrial targeting between YFPUBXD1-ActA and YFP-ActA was observed (mito-

chondrial/total YFP � YFP-ActA: 2.09 ± 0.56, YFP-UBXD1-ActA: 1.77 ± 0.35 - Figure

19B). Interestingly, whereas endogenous p97 signi�cantly redistributed to mitochondria

in cells expressing YFP-UBXD1-ActA, p97 did not show this localization pattern in cells

expressing YFP-ActA (mitochondrial/total p97, YFP-ActA: 1.13 ± 0.08, YFP-UBXD1-

ActA: 1.3 ± 0.17, p = 0.0003). This observation suggests that the presence of UBXD1
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Figure 19: Induction of mitochondrial recruitment by ActA tail. HeLa cells transfected with ex-
pression plasmids for mitochondria-targeted dsRED (mitodsRED) and YFP-UBXD1 or YFP fused
to the mitochondrial membrane targeting signal ActA were �xed, stained using mouse anti-p97 an-
tibodies, and analyzed by confocal microscopy. (A) Shown are representative images out of three
independent experiments. (B) The box plots represent three independent experiments with at least 15
cells/experiment/condition. Statistical signi�cance was assessed by by Student's t-test. *** denotes
p < 0.001, n.s. � no signi�cant di�erence.

on mitochondria is su�cient for the recruitment of p97 to this organelle.

5.7.5 Physical interaction of UBXD1 with p97

To elucidate the molecular basis underlying the UBXD1-mediated mitochondrial recruit-

ment of p97, we analyzed the contribution of all UBXD1 domains to a potential direct

physical interaction between UBXD1 and p97. First, co-immunopuri�cation and, second,

direct yeast two hybrid interaction analyses were performed.

5.7.5.1 Immunopuri�cation of p97 Co-Immunoprecipitation experiments of

p97 from cells co-expressing UBXD1, UBXD1ΔVIM, UBXD1ΔPUB, UBXonly, or
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Figure 20: Physical interaction
of UBXD1 with p97. Lysates
of HeLa cells expressing 3x-myc
epitope-tagged p97 together with
FLAGUBXD1, FLAGUBXD1ΔVIM,
FLAGUBXD1ΔPUB, FLAGUBXonly or
FLAGUBXD1ΔUBX were incubated
with mouse anti-myc antibodies and
protein A/G beads. Immunopuri-
�ed (IP) 3xmycp97 and co-purifying
FLAGUBXD1 variants were analyzed
by Western blotting. Detection of
GAPDH in whole cell lysates (WCLs)
served as loading control. Shown
are representative blots from three
independent experiments.

UBXD1ΔUBX revealed co-puri�cation of UBXD1, UBXD1ΔVIM, UBXD1ΔPUB, and

or UBXD1ΔUBX but not UBXonly with p97 (Figure 20). This data is consistent with

UBXD1 interacting with p97 via its VIM and PUB, but not its UBX domain.

5.7.5.2 Yeast two hybrid system To further con�rm and quantify the observed

interaction pattern between UBXD1 and p97 (Figure 20), yeast two hybrid analysis was

performed. This essay is based on the reconstitution of a functional transcription factor

when two proteins or polypeptides of interest interact. This takes place in genetically

modi�ed yeast strains, in which the transcription of a reporter gene leads to a speci�c

phenotype, usually growth on a selective medium or change in the color of the yeast

colonies. The protein, which is fused to DNA-binding domain, was named the bait

and the protein which was fused to the activating domain was called the prey [249].
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As shown in Figure 21, a serial dilution of yeast strains containing Gal4BD-UBXD1

or Gal4BD-UBXD1 mutants as bait and Gal4AD-p97 as prey or GAL4AD vector as

prey control on media selective for interaction (drop-out) revealed growth of strains

containing Gal4AD-p97 and Gal4BD-UBXD1, or Gal4BD-UBXD1ΔVIM, or Gal4BD-

UBXD1ΔPUB or Gal4BD-UBXD1ΔUBX. In contrast, no growth was detected for yeast

strains containing empty pGBKT7 bait or Gal4BD-UBXonly. A serial dilution growth

assay on media not selective for bait-prey interaction served as control. These data

con�rm a direct physical interaction between p97 and UBXD1 via its VIM and also

the PUB domain of UBXD1. To elucidate to which extent VIM and PUB domain of

UBXD1 contribute to the observed interaction between p97 and UBXD1, we performed

a quantitative yeast two-hybrid interaction assay (Figure 21B). We found no signi�-

cant di�erence (p=0.13) in the interaction strength expressed as percentage of wildtype

GAL4BD-UBXD1 between GAL4AD-p97/GAL4BD-UBXD1ΔVIM (8.1 ± 2.8 %) and

GAL4AD-p97/GAL4BD-UBXD1ΔPUB (13.8 ± 3.8 %). Interestingly, the interaction

strength between GAL4AD-p97 and GAL4BD-UBXD1ΔUBX containing both PUB and

VIM domain is 29.2 ± 7.1 % of wildtype GAL4BD-UBXD1. Thus, both VIM and PUB

domain seem to contribute about equally to the physical interaction, and without obvious

cooperativity.

5.8 UBXD1 promotes mitophagy induction

E�cient mitophagy relies on the engulfment of the damaged organelles into the forming

autophagosome, without a�ecting the entire mitochondrial network [261]. Mitochondrial

network fragmentation is observed prior to mitophagy, allowing the e�cient uptake of

small, depolarized mitochondrial subunits into autophagosomes for lysosomal degrada-

tion. This mitochondrial fragmentation is triggered by the Parkin-mediated ubiquitina-

tion and the p97-dependent retrotranslocation and proteasomal degradation of the mito-

fusin Mfn2 [255]. Based on the UBXD1-dependent recruitment of p97, UBXD1 might be

a critical step for mitophagy onset and/or progression.
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Figure 21: Physical interaction of UBXD1
with p97. Cells of yeast strain Y2HGold
were transformed with expression constructs
for fusion proteins between UBXD1 and the
GAL4 DNA binding domain and p97 and
the GAL4 activation domain. Transformation
with pGADT7 (empty vector with GAL4 acti-
vation domain � labeled vector) or pGBKT7
(empty vector with GAL4 DNA binding do-
main � GAL4BD) served as control. Yeast
strains were serially diluted onto plates se-
lecting for expression plasmids (control) and
plates selecting for yeast two-hybrid interac-
tion (drop-out). (B) Strength of yeast two-
hybrid interaction between UBXD1 or vari-
ants of UBXD1 and p97 were quanti�ed us-
ing a para-nitrophenyl-alpha-galactoside as-
say. Shown is the average of three indepen-
dent experiments with �ve independent yeast
transformands per condition. Error bars rep-
resent SD.
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Figure 22: UBXD1 promotes mitophagy. HeLa cells transfected with expression plasmids for
FLAGUBXD1 or vector control, mcherryParkin and LC3-GFP were �xed, stained using mouse anti-
FLAG antibodies, and analyzed by confocal microscopy.

5.8.1 Increased mitophagy in cells expressing UBXD1

HeLa cells co-expressing FLAGUBXD1 and LC3-GFP in the presence of mcherryParkin were

treated with CCCP for 6 h and autophagic vesicle formation was observed. As shown in

Figure 22, LC3-GFP positive vesicle density near mitochondria was strongly increased

in FLAGUBXD1 expressing cells compared to controls. This observation is indicative of

UBXD1 acting in a pro-mitophagic fashion.

To analyze the impact of UBXD1 on mitophagy, mitophagic �ux in cells ectopically

expressing FLAGUBXD1 was measured. HeLa cells co-transfected with expression con-

structs for the pH-sensitive, mitochondria-targeted reporter mKeima fused to Parkin via

the ribosome-cleaved T2A peptide (mKeima-T2A-3xmycParkin) and UBXD1 or vector

control were treated for 12 h with CCCP to induce mitophagy and analyzed �ow cy-

tometrically. The �uorescent reporter mKeima is excitable at 488 nm at pH 7 (inside

mitochondria) and 561 nm at pH 4 as encountered inside autolysosomes. Thus, the ratio
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Figure 23: Increased mitophagy after ectopic expression of UBXD1. HeLa cells transfected with
expression plasmids for UBXD1 or vector control and mKeima-T2A-3xmycParkin were treated for 12 h
with CCCP or left untreated and analyzed by �ow cytometry. Shown are representative density plots
(left panels). The box plot represents 6 independent experiments with in total 11 technical repli-
cates. Statistical signi�cance was assessed by ANOVA followed by Student's t-test using Bonferroni
correction to account for multiple comparisons. *** marks p-values < 0.001, n.s. � no signi�cant
di�erence.

mKeima561nm/mKeima488nm is a measure for mitophagy [262]. In line with the obser-

vation of increased LC3-GFP positive vesicle formation (Figure 22), ectopic expression of

FLAGUBXD1 signi�cantly increased (p=0.0029) mitophagy following addition of CCCP.

While 16.8 +/-11.6 % of CCCP treated control cells displayed mitophagy, CCCP treat-

ment triggered mitophagy in 30.8 +/- 9.6 % of FLAGUBXD1-expressing cells (Figure 23).

Expression of FLAGUBXD1 in the absence of CCCP treatment did not result in signi�cant

induction of mitophagy.

5.8.2 Diminished levels of UBXD1 promote mitophagy

To further assess whether UBXD1 indeed promotes mitophagy in CCCP treated cells,

HeLa cells with diminished levels of UBXD1 were generated. To this end, CRISPR/Cas9

technology have been employed in this study [263]. An UBXD1 speci�c gRNA under

control of the human U6 promoter together with Cas9 and a plasmid containing a ex-
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Figure 24: CRISPR/Cas9-mediated knock down of UBXD1. Using CRISPR/Cas9, UBXD1 was
targeted in HeLa cells and several alleles of UBXD1 were replaced with a reporter cassette coding for
secreted Gaussia luciferase. Shown are schematics of CRISPR/Cas9 strategy (A), PCR analysis of
reporter integration, and levels of UBXD1 in HeLa and HeLaUBXD1-low (western blot, anti-UBXD1).

pression cassette for secreted Gaussia luciferase reporter �anked by UBXD1 sequences

(Figure 24A) was transfected into HeLa cells. Following single cloning by dilution, lu-

ciferase activity was measured in the cell culture supernatant to identify cell clones with

a potential deletion of UBXD1. Luciferase-positive single cell clones were expanded and

integration of the Gaussia reporter in the UBXD1 as veri�ed by PCR. In addition, de-

tection of UBXD1 levels by Western blotting was performed. As shown in Figure 24B

and C, PCR and Western blot analysis con�rmed correct targeting of UBXD1 and an

about 80 % knockdown of UBXD1 protein levels. Interestingly, no complete knock-out

of UBXD1 could be identi�ed.

These HeLa cells with diminished levels of UBXD1 were used to assess the impact of

UBXD1 on mitophagic �ux. To this end, HeLa and HeLaUBXD1-low cells were transfected
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with mKeima-T2A-3xmycParkin and treated with 10, 25 or 50 µM CCCP for 12 h before

�ow cytometric analysis. As shown in Figure 25, diminished levels of UBXD1 resulted in

blunted mitophagic �ux compared to wildtype control cells. While treatment of wildtype

HeLa cells with 10, 25, or 50 µM CCCP resulted in 23.2 ± 16.3, 36.8 ± 9.6 and 29.9 ± 11.1

% mitophagic cells, respectively, the percentage of mitophagic HeLaUBXD1-low cells was

signi�cantly reduced by at least 50 % (10 µM: 10.1 ± 2.7, 25 µM: 12.8 ± 5.8, 50 µM 10.7

± 2.8 %). This observation suggests that UBXD1 acts in a pro-mitophagic fashion with

lowered levels of UBXD1 causing a diminished mitophagic �ux. This is in line with the

observation of increased mitophagic �ux following ectopic expression of UBXD1 (Figure

23).

5.9 The UBXD1-interacting DUB YOD1

Papadopoulos and collegues reported about the DUB YOD1 which in collaboration with

p97 and UBXD1 causes the clearance of ruptured lysosomes through lysophay [186]. Also

YOD1 was shown to be involved in protein dislocation of proteins from the ER driven by

p97 during ERAD [111]. Thus is seems conceivable, that YOD1 is not only involved in

lysophagy and ERAD, but might also play a role in p97-dependent mitophagic processes.

5.9.1 YOD1 isoforms characterization

YOD1 belongs to the DUB subfamily characterized by an OTU domain [264]. Interest-

ingly, alternative splicing of the YOD1 gene results in two transcript variants. Protein

domain structure analysis using InterPro [265] revealed the presence of an UBX, an OTU

and a zinc �nger domain in both isoforms (Figure 26). Due to the alternative splicing,

the N-terminally located UBX domain di�ers in both isoforms. As the UBX domain is

involved in protein-protein interactions, both YOD1 isoforms - YOD1.1 and YOD1.2 -

were further analyzed.
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Figure 25: UBXD1 is a positive regulator of mitophagy.HeLa cells and HeLaUBXD1-low transfected
with mKeima-T2A-3xmycParkin were treated for 12 h with 10, 25 or 50 µM CCCP or left untreated
as controls and were analyzed by �ow cytometry. Shown are representative density plots. The box
plot represents 5 independent experiments. Statistical signi�cance was assessed by ANOVA followed
by Student's t-test using correction to account for multiple comparisons according to Holm. * marks
p-values < 0.05, ** < 0.01.
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Figure 26: Domain structure of YOD1. Both YOD1 isoforms contain with UBX, OTU and Zn
three protein-protein interaction domains. YOD1 isoform 2 has a distinct N-terminus and is shorter
compared to isoform 1.

5.9.2 Physical interaction of YOD1 with UBXD1 and p97

To better characterize the two YOD1 isoforms in terms of their ability to interact with

p97 and UBXD1, yeast two hybrid was employed. For that, a serial dilution of yeast

strains containing GAL4BD-YOD1.1 or GAL4BD-YOD1.2 as bait and GAL4AD-p97 or

GAL4AD-UBXD1 as prey was performed. Yeast strains containing GAL4BD-YOD1.1

and GAL4AD-p97 or GAL4AD-UBXD1 showed growth on plates selective for yeast two

hybrid interaction consistent with a direct physical interaction between YOD1.1 and

p97 or UBXD1. However, yeast strains containing GAL4BD-YOD1.2 grew only in the

presence of GAL4AD-UBXD1, but not in the presence of GAL4AD-p97 indicative for a

direct physical interaction between YOD1.2 with UBXD1 but not p97 (Figure 27). Thus,

di�erences in the UBX domain between YOD1 isoform 1 and isoform 2 might contribute

to a di�erential interaction pattern with p97.

5.9.3 Mitochondrial transloction of YOD1 during mitophagy

HeLa cells co-transfected with expression of mitoYPF-T2A-3xmycParkin and

mcherryYOD1.1 (Figure 28A) and mcherryYOD1.2 (Figure 28B) were treated with

CCCP for 6 h to induce mitophagy. As shown in Figure 28 upon confocal microscopy
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Figure 27: Physical interaction of YOD1 with p97 and UBXD1. Cells of yeast strain Y2HGold were
transformed with expression constructs for fusion proteins between YOD1 isoform 1 and isoform 2 and
the GAL4 DNA binding domain and p97 or UBXD1 and the GAL4 activation domain. Transformation
with pGADT7 (empty vector with GAL4 activation domain � labeled vector) served as control. Yeast
strains were serially diluted onto plates selecting for expression plasmids (control) and plates selecting
for yeast two-hybrid interaction (drop-out).
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analysis of both isoforms, only isoform 2 translocate to CCCP uncoupled mitochondria.

However, this translocation was only observed in a small subset of cells.

5.9.4 YOD1.2 translocates to depolarized mitochondria in a UBXD1 and

Parkin dependent manner

As YOD1.2 and UBXD1 physically interact, the dependence of mitochondrial transloca-

tion of YOD1.2 during mitophagic conditions on UBXD1 was assessed. To this end, HeLa

cells co-transfected with expression plasmids for FLAGUBXD1, mitoYPF-T2A-3xmycParkin

and mcherryYOD1.2 were treated with 50 µM CCCP for 0 to 6 h. As shown in Figure 29,

cells expressing mitoYPF-T2A-3xmycParkin together with FLAGUBXD1 and YOD1.2 re-

vealed YOD1.2 mitochondrial translocation after 6 h of CCCP treatment when UBXD1

is found in the cytosol. UBXD1 is found on mitochondria after 6 h of CCCP treatment

when YOD1.2 is cytosolic and does not co-localize with either UBXD1 or mitoYPF-

T2A-3xmycParkin. These observations are consistent with UBXD1 recognizing depolar-

ized, Parkin-containing mitochondria followed by increased recruitment of YOD1.2. The

exclusive mitochondrial localization of UBXD1 and YOD1.2 under mitophagic conditions

hints to a multi-step process where UBXD1 recognizes damaged mitochondria, recruits

p97 and YOD1.2 and is released back into the cytosol.

5.9.5 Domain organization of YOD1.2 and its mutant derivatives

To study the role of the di�erent protein domains in YOD1.2 and their impact on mito-

chondrial translocation, a variant lacking the N-terminal UBX and the OTU domain were

generated (Figure 30).

5.9.6 Domain requirement for YOD1.2 mitochondrial translocation

HeLa cells co-expressing FLAGUBXD1 and mcherryYOD1.2 lacking UBX or OTU domain

together with mitoYFP-T2A-3xmycParkin were treated with CCCP or left untreated. As
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Figure 28: YOD1.2 translocates to depolarized mitochondria in a Parkin-dependent manner. HeLa
cells transfected with YOD1 isoform 1 (A) or isoform 2 (B) and mitoYPF-T2A-3xmycParkin were
treated for 6 h with 50 µM CCCP, �xed and analyzed by �uorescence microscopy. Shown are
representative images of three independent experiments.
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Figure 29: UBXD1 enhances mitochondrial translocation of YOD1.2. HeLa cells transfected with
YOD1.2 isoform and mitoYPF-T2A-3xmycParkin were treated for 6 h with 50 µM CCCP, �xed, stained
using mouse anti-Flag antibodies to detect FLAGUBXD1 and analyzed by �uorescence microscopy.
Shown are representative images of two independent experiments.
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Figure 30: Schematic domain organization of YOD1.2 and YOD1.2 mutants. YOD1 contains with
UBX, OTU and Zn three protein-protein interaction domains. Shown are drawn to scale schematic
representation of YOD1 truncation mutants used in this study
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shown in Figure 31A, YOD1.2 lacking UBX, or lacking UBX and OTU (Figure 31B,C)

were not capable of mitochondrial translocation in UBXD1 dependent manner. This data

suggests that the UBX domain of YOD1.2 is critical for its mitochondrial translocation.
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Figure 31: UBX (A) and Zn domains (B+C) are essential for YOD1.2 mitochondrial translocation.
HeLa cells transfected with expression plasmids for FLAGUBXD1 or variants of YOD1.2 and mitoYFP-
T2A-3xmycParkin were treated with CCCP for 6 h or left untreated as control. Fixed cells were stained
using mouse anti-FLAG antibodies and analyzed by confocal microscopy. Shown are representative
images of two independent experiments.
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6 Discussion

Mitochondrial dysfunction is central to virtually all neurodegenerative processes [266],

with mitochondrial failure as consequence of accumulating damage to mitochondrial com-

ponents over time. Therefore multiple mitochondrial quality control mechanisms are an

essential part of maintaining cellular function to prevent aging and untimely death of

neuronal cells. Keeping mitochondria in a healthy state is a complex process and has

to be tightly regulated [267]. The aim of this work was to better understand the inter-

play between mitochondrial maintenance and the ubiquitin proteasome system with a

special focus on p97 and its cofactors. The work presented here further establishes the

role of p97 in mitochondrial quality control through mitophagic clearance of uncoupled

mitochondria. Also, with UBXD1, YOD1.2, SAKS1 and Erasin, four novel partners for

mitochondrial functions of p97 were identi�ed and UBXD1 and YOD1 were characterized

in more detail.

6.1 UBXD1 as mitochondrial recruitment factor for p97

UBXD1 contains with PUB and VIM two distinct p97 binding domains, enabling it

to interact with p97 in a bipartite manner [268]. According to the literature [158],

the N-terminal VIM and PUB domain are both su�cient to bind p97. Interestingly,

upon ectopic expression, both domains are individually capable of recruiting p97 to

mitochondria under mitophagic conditions. Based on results from quantitative yeast

two-hybrid (Figure 21), both domains might provide additive binding strength. These

observations point to additional functions of the bipartite, VIM/PUB-containing p97

binding motif in UBXD1. As suggested by Kern [183], VIM and PUB domain likely bind

to di�erent regions of p97 [183]. In accordance with our yeast-2-hybrid interaction data,

this leads to a stronger binding between p97 and UBXD1. However, also a regulatory

function for this binding pattern might be considered. It is conceivable, that UBXD1 not

only recruits p97 via its VIM and PUB domain to mitochondria, but also regulates p97
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activity additionally. Kern and colleagues [183] identi�ed the VIM as direct competitor

for binding between p97 and its cofactor p47. Whether such a mechanism is also involved

in the mitophagy-related function of UBXD1 is unclear. While, p47 was connected to

ER and Golgi biogenesis [269], no mitochondrial function for p47 is established until

now. Nonetheless, that the bipartite p97 interaction motif consisting of the VIM and

PUB domain might serve similar functions during mitophagy and not only recruits

p97 to mitochondria but might also adjust cofactor binding of p97 under mitophagic

conditions.

As for the UBX domain found in UBXD1, our data are consistent with UBXD1 recogniz-

ing depolarized mitochondria undergoing Parkin-dependent mitophagy and facilitating

p97 recruitment. As shown in Figure 15, recognition of mitophagic mitochondria depends

exclusively on the UBX domain contained in UBXD1, as evidenced by the complete lack

of mitochondrial translocation of UBXD1 missing its UBX domain. The UBX domain

does not contribute to p97 binding, although the UBX domain is generally considered

to be a p97 interaction motif [270]. Our data points to a role for the UBX domain of

UBXD1 as receptor for mitochondria undergoing mitophagy. It remains unclear what

mitochondrial signal triggers UBXD1 translocation, however, it is likely that the UBX

domain of UBXD1 recognizes a factor only present on mitochondria after mitophagic

induction. A yeast-two-hybrid screen using the UBX domain of UBXD1 as bait and

a cDNA library from CCCP-treated HeLa cells as prey did not reveal proteins with

mitochondrial localization in mitophagic cells (Neutzner, personal communication).

Bringing UBXD1 fused to the ActA tail to mitochondria in the absence of Parkin and

CCCP resulted in the recruitment of p97 (Figure 19). This suggests that UBXD1 is

su�cient for p97 to recognize mitophagic mitochondria and additional signals are not

necessary for this particular process. This observation further supports the notion that

UBXD1 bridges mitochondria undergoing mitophagy with p97 and subsequently with

the UPS.
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6.2 Multiple connections between p97 and mitochondria

The work presented here strongly connects p97 via UBXD1 and potentially YOD1.2 to

mitochondrial quality control. The identi�cation of other p97 cofactors, namely SAKS1

and Erasin, hints to potentially additional roles for p97 in mitochondrial health. Depolar-

ization of mitochondria in Parkin-expressing cells triggers likely a plethora of mechanisms

all with the goal of removing mitochondrial subunits. With mitophagy being highly reg-

ulated and the general importance of ubiquitination, it is likely that several regulatory

modules are in need for p97-mediated processing of ubiquitinated proteins. Also the di�er-

ent domain composition of the newly identi�ed p97 cofactors points in the same direction.

Especially interesting in this regard is Erasin. This cofactor contains a transmembrane

domain anchoring the protein in the ER membrane. Upon mitophagic induction, Erasin

seems to migrate towards ER-mitochondria contact sites (Neutzner, personal communica-

tion) suggesting a role for p97 at this important inter-organellar nexus during mitophagy.

While further work is necessary to de�ne the function of SAKS1, Erasin and YOD1.2, the

identi�cation of four novel accessory p97 proteins translocating to mitochondria under

mitophagic conditions suggests an even more intricate relationship between the UPS and

mitochondria as previously appreciated.

6.3 UBXD1 as pro-mitophagic factor

The translocation of UBXD1 after mitochondrial depolarization strongly suggests a

role during mitophagy. Since p97 acts in a pro-mitophagic manner, it is resonable

to expect that also UBXD1 is likely a pro-mitophagic factor. And indeed, ectopic

expression of UBXD1 caused an increase in LC3-containing vesicles near mitochondria

consistent with a positive regulatory function. In line with this observation, a signi�cant

decrease of mitophagy was observed in HeLaUBXD1-low cells (Figure 25). Increased

mitophagy following ectopic expression of UBXD1 and decreased mitophagic �ux under

conditions of lowered UBXD1 levels are consistent with a pro-mitophagic role. While
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it remains unclear how UBXD1 causes the observed increase in mitophagic �ux, it is

likely that removal of certain mitochondrial proteins by UBXD1 together with p97 is

involved. It was previously described that p97-mediated removal of mitofusins promotes

mitophagy. [255]. Interestingly, UBXD1 in concert with p97 and other cofactors was

recently shown to promote the removal of K48-linked ubiquitin from ruptured lysosomes,

thereby increasing the amount of K63-linked ubiquitin tipping the balance towards

lysophagy. [186]. A similar mechanism might be at work during mitophagy. Here,

Parkin is known to generate not only K48, but also K63-linked as well as other types

of polyubiquitin on mitochondria. In analogy to the role of K48 and K63 ubiquitin

chains in lysophagy, UBXD1 may also modulate the balance between these types of

polyubiquitin on mitochondria promoting mitophagy.

6.4 UBXD1 and YOD1 in mitochondrial quality control

In order to maintain mitochondrial homeostasis, p97-mediated retrotranslocation of mis-

folded proteins is needed likely involving di�erent cofactors and potentially deubiquiti-

nating enzymes. Based on our data connecting UBXD1 to OMMAD and reports by

Ernst and colleagues [111], we examined YOD1, an UBX-domain-containing member of

the otubain family of DUBs. According to the literature, YOD1 is a p97-associated deu-

biquitinting enzyme in association with ERAD [102, 111, 271, 272]. A dominant negative

mutant of YOD1 (YOD1C160S) has been shown to stabilize ERAD substrates mostly in

a non-ubiquitinated and glycosylated form. This accumulation of substrate proteins in

the ER lumen might be a consequence of stalling molecules in the putative exit channel

[102, 111]. As for p97-mediated retrotranslocation, deubiquitinating activity of YOD1 is

also required for retrotranslocation [120, 111, 271].

YOD1 comes in two di�erent isoforms - YOD1.1 and YOD1.2 - and is part of multipro-

tein complex containing p97 [111]. According to Pfam predictions [273], YOD1 comprises

three domains, an N-terminal UBX domain, OTU domain, and a C-terminal zinc �nger
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domain. Interestingly, the N-terminal UBX domain di�ers between the two YOD1 iso-

forms. As shown in Figure 29 upon UBXD1 expression both domains, UBX and Zn are

necessary for YOD1.2 mitochondrial recruitment, under mitophagic conditions.

In line with previous reports [186], YOD1 acts as an ubiquitin sensor and together with

UBXD1 drives the clearance of ruptured lysosomes by autophagy. Such a mechanism

might also be in play during mitophagy. Alternatively and based on our time course

experiments (Figure 29), initial recognition of mitophagic mitochondria is performed by

UBXD1 via its UBX domain. Following p97 mitochondrial recruitment through the VIM

and PUB domain of UBXD1, YOD1.2 translocates to this complex. Based on our �nd-

ings of direct interaction between UBXD1 and both isoforms of YOD1 and the di�erential

interaction between p97 and YOD1 isoforms (Figure 27), mitochondrial translocation of

YOD1.2 is likely triggered by binding to UBXD1 on mitochondria. Interestingly, YOD1.2

shows only very limited recruitment to mitophagic mitochondria in the absence of ectopi-

cally expressed UBXD1, and UBXD1 and YOD1.2 are not found on the same mito-

chondria together. This might be explained by a two-step mechanism. Upon recognition

of mitophagic mitochondria by UBXD1 and YOD1.2 recruitment, the presence of YOD1.2

triggers the next step in the UBXD1-mediated mitophagic process. Due to the presence

of DUB activity in YOD1.2 it is tempting to speculate that ubiquitinated mitochondrial

proteins are deubiquitinated. The consequence of this hypothesized deubiquitination

could be two-fold. Either mitophagy is damped by counteracting Parkin-mediated ubiq-

uitination, or mitophagy might also be accelerated due to diminishing K48 and enriching

K63 ubiquitination of mitochondria as observed during lysophagy [186]. Further work

will be necessary to address these questions.

6.5 Potential connections between UBXD1 and neurodegenera-

tive disease

Mutations in p97 are connected to the development of IBMPFD. Such disease-causing

mutations of p97 were shown to alter interaction with UBXD1 connecting this cofactor
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to a disease process [274]. Mutations in p97 causing myopathy and neurodegeneration

were shown to hamper interaction with UBXD1, resulting in impaired degradation and

subsequent accumulation of p97 client proteins [185]. Also, UBXD1 was recently con-

nected to the degradation of mitochondrial MCL1 in the context of an in vitro model

of Huntington's disease. [274]. Since impaired mitophagy is strongly linked to neurode-

generative diseases, it is tempting to speculate that, due to altered binding of mutant

p97 to UBXD1, p97-linked myopathy and neurodegeneration might not only be a conse-

quence of disrupted lysophagy, but might also result from impaired mitophagic clearance

of damaged mitochondria.

6.6 Organelle-linked ubiquitination shares p97-mediated retro-

translocation

Ubiquitination plays an essential role in virtually all cellular processes, and especially

in the quality control of proteins. Recently, the role of ubiquitination and ubiquitin-

dependent protein degradation in mitochondrial physiology became clearer. For OM-

MAD, the special topology of mitochondria requires specialized protein degradation

mechanisms. As the UPS is mainly cytosolic, ubiquitin-dependent degradation of mito-

chondrial proteins necessitates the presence of factors able to connect the UPS to mito-

chondria. OMM-anchored RING �nger ubiquitin ligases such as MARCH5 [253], MU-

LAN/MAPL [275] and IBRDC2 [191] might provide this interfacing function with the help

of p97 [276, 277] and its cofactors. This is similar to (ERAD) [278]. There too, membrane-

anchored ubiquitin ligases target organelle-resident proteins for proteasomal degradation,

and there too, p97 and its cofactors are involved in the retrotranslocation of ubiquiti-

nated protein. Interestingly, while both processes employ a di�erent set of ubiquitin

ligases relying on di�erent mechanisms for selecting substrate proteins for ubiquitination,

p97 seems to be a common component of OMMAD and ERAD linking organelle-speci�c

recognition and ubiquitination to the shared downstream degradation machinery. Also for

lysophagy, p97-mediated retrotranslocation of ubiquitinated proteins aids the autophagic
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process [184, 185, 186, 274]. These mechanisms do not only share p97, but also cofactors.

In this study, the recruitment of UBXD1 and YOD1.2 to mitochondria was established.

Interestingly, both p97 cofactors are also connected to ERAD and lysophagy. Although

protein retrotranslocation from lysosomes, mitochondria, and the ER certainly serves

di�erent functions and a varied machinery is involved in substrate targeting, p97 and to

some extent its cofactors are a common theme in ubiquitin-dependent organellar quality

control pathways.

6.7 UBXD1 linking UPS and mitophagy

Under physiological conditions, mitochondria are exposed to di�erent stressors leading

to di�erent levels of damage. While initial low level damage is likely dealt with OM-

MAD through the removal of ubiquitinated proteins from mitochondria, mitophagic pro-

cesses come in play once more extensive damage accumulates despite OMMAD activity.

Our data supports a new role for p97-retrotranslocation mechanism in association with

UBXD1 (Figure 32). In addition, our �ndings may connect the potential OMMAD mech-

anism with the clearance of damaged mitochondria through mitophagy. OMMAD may

therefore provide an initial mitochondrial quality control for the clearance of misfolded

proteins and help to keep mitochondria in a healthy state during constant low level of

stress conditions. However, if mitochondrial damage levels exceed the capacity of OM-

MAD, mitophagic processes are initiated. P97 together with UBXD1 and YOD1.2 might

be part of the regulatory mechanisms helping to switch from OMMAD to mitophagic

quality control mechanisms. Thus, UBXD1 might role for the UPS in the maintenance

of mitochondrial homeostasis by regulating organelle dynamics, the proteasome and mi-

tophagy.

94



Figure 32: Model of UBXD1 in modulating the mitochondria quality control. Polyubiquitination of
mitochondrial proteins by the catalyzed reaction of E1, E2 and E3 enzymes in this depiction leads
to the recruitment of the P97/VCP complex by UBXD1 to the OMM. P97/VCP can extract an
ubiquitinated protein in an ATP-dependent process that facilitates its proteasomal degradation with
the help of DUBs such YOD1. On the other hand, the UPS is also needed for the autophagic
degradation of damaged mitochondria, a process known as mitophagy.
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