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ABSTRACT 

Saccharomyces cerevisiae is the main species responsible for the alcoholic fermentation in 

wine production. One of the main problems in this process is the deficiency of nitrogen sources 

in the grape must, which can lead to stuck or sluggish fermentations. Currently, yeast nitrogen 

consumption and metabolism are under active inquiry, with emphasis on the study of the 

TORC1 signalling pathway, given its central role responding to nitrogen availability and 

influencing growth and cell metabolism. However, the mechanism by which different nitrogen 

sources activates TORC1 is not completely understood. Existing methods to evaluate TORC1 

activation by nitrogen sources are time-consuming, making difficult the analyses of large 

numbers of strains. In this work, a new indirect method for monitoring TORC1 pathway was 

developed based on the luciferase reporter gene controlled by the promoter region of RPL26A 

gene, a gene known to be expressed upon TORC1 activation. The method was tested in strains 

representative of the clean lineages described so far in S. cerevisiae. The activation of the 

TORC1 pathway by a proline-to-glutamine upshift was indirectly evaluated using our system 

and the traditional direct methods based on immunoblot (Sch9 and Rps6 phosphorylation). 

Regardless the different molecular readouts obtained with both methodologies, the general 

results showed a wide phenotypic variation between the representative strains analysed. 

Altogether, this easy-to-use assay opens the possibility to study the molecular basis for the 

differential TORC1 pathway activation, allowing to interrogate a larger number of strains in 

the context of nitrogen metabolism phenotypic differences. 
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INTRODUCTION 

The yeast Saccharomyces cerevisiae is a species of industrial importance given its role in the 

production of bread and various alcoholic beverages, being the main species responsible for 

the alcoholic fermentation in the process that involves the transformation of grape must into 

wine (Pretorius, 2000). One of the main problems in the wine industry is the deficiency of 

nitrogen sources in the grape must, which are the key factors regulating the biomass content 

during the fermentation process and directly impacting the fermentation rate (Varela, Pizarro, 

& Agosin, 2004). Thus, nitrogen deficiencies can lead to stuck or sluggish fermentations, 

reducing the fermentation rate and generating economic losses for the industry  (Taillandier, 

Ramon Portugal, Fuster, & Strehaiano, 2007). 

Recently, the TORC1 signalling pathway activation during the fermentation process has gotten 

renewed attention due to its central role in nitrogen metabolism regulation (Tesniere, Brice, & 

Blondin, 2015). TOR kinases are key components of this eukaryotic signalling pathway that 

connects nutrient sufficiency to growth, promoting anabolic processes such as protein synthesis 

and ribosome biogenesis. There are two kinases (Tor1 and Tor2) in S. cerevisiae that are part 

of two protein complexes (TORC1 and TORC2), of which TORC1 is inhibited by rapamycin 

(Loewith & Hall, 2011; Loewith et al., 2002). Nutrients, especially nitrogen sources, activate 

TORC1 which lead to two main effectors of this pathway: the Sch9 kinase and the Tap42-

PP2A phosphatase complex (Broach, 2012; Loewith & Hall, 2011). 

Although proximal and distal effectors of TORC1 are well characterized, the mechanism by 

which nitrogen sources activate TORC1 is not completely understood (Conrad et al., 2014; 

Gonzalez & Hall, 2017). In this regard, it has been determined an amino acid-dependent 

mechanism of TORC1 activation through the EGO complex (EGOC), whose main components 

are the GTPases Gtr1 and Gtr2 (Hatakeyama & De Virgilio, 2016; Powis & De Virgilio, 2016). 
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However, it is unknown how amino acids are sensed, with the exception of leucine, which is 

thought to be sensed by the leucil-tRNA synthetase (Bonfils et al., 2012). The EGOC-

dependent activation of TORC1 occurs rapidly but transiently by both poor and preferred 

nitrogen sources. In general, glutamine, glutamate, asparagine and ammonium sustains high 

specific growth rate in yeast, and are considered as preferred nitrogen sources. Conversely, 

proline, allantoin and urea allows slow growth rate in yeast, and are considered poor or non-

preferred nitrogen sources (Crepin, Nidelet, Sanchez, Dequin, & Camarasa, 2012). Only 

preferred sources promote sustained activation coupled with an accumulation of intracellular 

glutamine, but independently of EGOC (Stracka, Jozefczuk, Rudroff, Sauer, & Hall, 2014). 

Furthermore, constitutive activity of EGOC fails to supress the TORC1 signalling defect under 

ammonium deprivation (Binda et al., 2009). Thus, there is an alternative mechanism of TORC1 

activation independent of EGOC in which the participating proteins have not been fully 

determined (Chantranupong, Wolfson, & Sabatini, 2015; Gonzalez & Hall, 2017), with only 

suggested actors like Pib2 protein (Kim & Cunningham, 2015; Michel et al., 2017; Tanigawa 

& Maeda, 2017; Ukai et al., 2018; Varlakhanova, Mihalevic, Bernstein, & Ford, 2017). 

New methodologies to study the activation of the TORC1 pathway in response to nitrogen 

sources have been developed, such as the recently developed in vitro TORC1 assay based on 

phosphorylation of 4EBP1, a well-known target of mTORC1 (mammalian TORC1) (Tanigawa 

& Maeda, 2017). Similarly, two methods based on immunoblot detection of TORC1 targets 

have proved a direct survey of its activity. The first of them uses the phosphorylation of the 

Sch9 kinase as readout, the best-characterized TORC1 direct target in yeast (Stracka et al., 

2014), while the second uses the phosphorylation of the  target ribosomal protein S6 (Rps6) 

(Gonzalez et al., 2015; Yerlikaya et al., 2016). These methods have allowed the phenotyping 

of TORC1 pathway activation in response to different amino acids. However, current methods 

are laborious, making difficult the analysis of larger number of yeast strains. 



 

 
This article is protected by copyright. All rights reserved. 

In this scenario, an alternative to study the TORC1 pathway is the use of genetic approaches, 

such as those that have been used to shed light into the molecular bases that underlie the 

phenotypic variability in nitrogen consumption in yeasts (Brice, Sanchez, Bigey, Legras, & 

Blondin, 2014; Contreras et al., 2012; Cubillos et al., 2017; Gutierrez, Beltran, Warringer, & 

Guillamon, 2013; Ibstedt et al., 2015; Jara et al., 2014). However, linkage approaches require 

phenotyping of a larger number of strains, which is unaffordable for monitoring TORC1 

activity using the abovementioned methodologies based on immunoblot detection. 

In this work, a new microculture-based methodology was developed to indirectly evaluate 

TORC1 activation in a nitrogen upshift experiment. Our approach utilizes the luciferase 

reporter gene controlled by the promoter region of RPL26A gene, a gene known to be expressed 

upon TORC1 activation, resulting in an indirect measuring of TORC1 activation. We used our 

method to indirectly evaluate TORC1 activity in four yeast strains belonging to the main 

phylogenetic lineages described so far, showing the existence of natural variation in TORC1 

signalling pathway activation in S. cerevisiae. 

 

MATERIALS AND METHODS 

Yeast strains and plasmids 

The strains used in this work correspond to stable haploid versions of strains representative of 

four clean lineages previously described for S. cerevisiae (Liti et al., 2009). These strains are 

YPS128 (North American, ‘NA’), Y12 (Sake, ‘SA’), DBVPG6044 (West African, ‘WA’) and 

DBVPG6765 (Wine/European, ‘WE’) (Cubillos, Louis, & Liti, 2009). Strains were 

transformed using lithium acetate method (Gietz & Schiestl, 2007) with the pJU733 plasmid, 

which has the SCH9-3xHA insert and URA3 gene as selectable marker (Urban et al., 2007). 
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The pRS426 plasmid carrying the firefly luciferase reporter gene and URA3 gene as selection 

marker (Luc-URA3 construct) was previously described (Salinas et al., 2016). This firefly 

luciferase reporter gene is a destabilized version that allows real-time quantification of gene 

expression in vivo (Rienzo, Pascual-Ahuir, & Proft, 2012). The construct Luc-URA3 was 

amplified by PCR and used to replace the endogenous RPL26A ORF. Additionally, strains 

carrying GTR1 deletion were generated replacing the ORF by the hygromycin cassette. All 

strains used are listed in Table 1. 

Selection of RPL26A  

A revision of previously described genes responding to TORC1 pathway was carried out to 

select candidate genes, considering those genes whose expression is strongly activated by the 

TORC1 signalling pathway. From the analysis of the TORC1-dependent transcriptome 

(Oliveira et al., 2015), we selected the ribosomal protein encoding gene RPL26A, due to its 

minor effects on translation and low pleiotropic effects generated by its deletion in a laboratory 

genetic background, according to the SGD (Saccharomyces Genome Database, 

www.yeastgenome.org). 

Indirect monitoring of the TORC1 pathway activation in microculture conditions 

The activation of the TORC1 pathway in the strains carrying the Luc-URA3 reporter construct 

under the control of the RPL26A promoter (PRPL26A) was evaluated by monitoring the optical 

density at 600 nm (OD600) and luminescence (Lum) of the cells in microculture conditions 

(Salinas et al., 2016). We used a nitrogen (proline-to-glutamine or proline-to-leucine) upshift 

experiment, where the strains were grown until OD600 ~0.8 at 30 ºC in 96-well plates containing 

300 µL of yeast minimal medium (1.7 g/L yeast nitrogen base without amino acids and without 

ammonium sulphate and 20 g/L glucose) with proline (0.5 mg/mL) as the only nitrogen source 

(YMM+Pro), supplemented with luciferin (1 mM) (Figure 1). Then, 10 µL of glutamine or 

http://www.yeastgenome.org)/
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leucine (15 mg/mL; 0.5 mg/mL final concentration) were added. Luminescence was measured 

up to 12 hours using 5 min intervals in a Cytation 3 microplate reader (Biotek, USA). To check 

that luciferin is not limiting in the production of luminescence, we also added luciferin (25 

mM; 1 mM final concentration) together with the glutamine pulse (Supplementary Figure 3).  

All the micro-cultivation experiments were carried out in three independent biological replicas. 

Analysis of growth curves 

Relative fitness variables (growth parameters) for each strain were calculated as previously 

described (Kessi-Perez et al., 2016; Warringer et al., 2011). Briefly, efficiency of proliferation 

(population density change), rate of proliferation (population doubling time) and lag of 

proliferation were extracted from high-density growth curves using Gompertz growth equation 

(Yin, Goudriaan, Lantinga, Vos, & Spiertz, 2003). Statistical analysis of these parameters 

consisted in Welch two sample t-tests, which were performed using R software (R-Core-Team., 

2013). 

Evaluation of the activation of TORC1 pathway by immunoblot 

The activation of the TORC1 pathway in the strains carrying the pJU733 plasmid was evaluated 

by assessing both the phosphorylation of its proximal effector Sch9 and the ribosomal protein 

Rps6 in a nitrogen (proline-to-glutamine) upshift experiment (Gonzalez et al., 2015; Stracka et 

al., 2014). Briefly, strains were grown in flasks containing 50 mL of YMM+Pro medium until 

OD600 ~0.8 and then 700 µL of glutamine (25 mg/ml; 0.5 mg/mL final concentration) were 

added. Samples were taken at different time points (0, 5, 15 and 30 min) to perform protein 

extraction and subsequent immunoblot as previously described (Gonzalez et al., 2015). To 

evaluate Sch9 phosphorylation, cell extracts were subjected to chemical cleavage with 2-nitro-

5-thiocyanatobenzoic acid (NTCB, Sigma). Antibodies used included anti-HA (Cell Signaling 

Technology Cat# 2367S, RRID:AB_10691311), phospho-Ser235/Ser236-S6 (Cell Signaling 



 

 
This article is protected by copyright. All rights reserved. 

Technology Cat# 2211, RRID:AB_331679), RPS6 (Abcam Cat# ab40820, 

RRID:AB_945319), peroxidase-Monoclonal Mouse Anti-Rabbit IgG (Jackson 

ImmunoResearch Labs Cat# 211-032-171, RRID:AB_2339149) and peroxidase-Goat Anti-

Mouse IgG (Jackson ImmunoResearch Labs Cat# 115-035-174, RRID:AB_2338512). 

 

RESULTS AND DISCUSSION 

A new indirect method for monitoring TORC1 activation 

We developed a new method to evaluate TORC1 activation by monitoring the luminescence 

produced by yeast cells in microculture conditions. We used the method to indirectly 

characterize TORC1 activity in four strains representatives of clean lineages previously 

described in S. cerevisiae (Liti et al., 2009). We chose the strains YPS128 (North American, 

NA), Y12 (Sake, SA), DBVPG6044 (West African, WA) and DBVPG6765 (Wine European, 

WE). These four strains were transformed with the reporter construct (Luc-URA3), designed to 

replace the endogenous ORF of RPL26A, such that luciferase expression is now under the 

control of the endogenous RPL26A promoter (PRPL26A). We selected the RPL26A promoter as 

readout of our system since RPL26A gene showed strong expression upon TORC1 activation 

(Supplementary Figure 1, adapted from (Oliveira et al., 2015)). The growth and luciferase 

expression of the strains were evaluated in YMM+Pro medium, monitoring both the OD600 and 

luminescence of the cultures over time (Figure 1). Once cells reached OD600 ~0.8, a pulse of 

glutamine was added to continue recording luciferase expression until 12 hours (Figure 1). It 

is important to remark that we used strains auxotroph for uracil (Cubillos et al., 2009), being 

the unique auxotrophy present in those strains, and therefore, the reporter construction have 

URA3 as selectable marker, avoiding the use of uracil in the YMM medium, which can be used 

as an alternative nitrogen source. 
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Initially, we evaluated the growth and luciferase expression under the control of PRPL26A in the 

four strains expressing the reporter gene in YMM+Pro medium, showing a maximum level of 

luciferase expression at the beginning of the exponential phase and before OD600 ~0.8 (Figure 

2). This behaviour is commonly observed for yeast promoters, with activity during a transient 

period at the exponential growth phase (Dolz-Edo, Rienzo, Poveda-Huertes, Pascual-Ahuir, & 

Proft, 2013; Rienzo et al., 2012; Rienzo et al., 2015). Interestingly, the WA strain showed a 

slower growth in comparison with the other three strains in this medium, reaching OD600 ~0,8 

at later time points (Figure 2). Considering that OD600 ~0.8 is a requisite to perform the nitrogen 

upshift experiment, we overcome this problem by increasing ten-fold the concentration of WA 

strain at the beginning of the experiment, allowing us to evaluate the four strains in a single 

experiment. Additionally, we compared the growth parameters (lag time, rate and efficiency) 

for the strains carrying RPL26A deletion by luciferase (rpl26a∆) versus the wild type (WT) 

strains. We observed a small growth defect in the rpl26a∆ strains compared to the WT strains 

when growth in YMM+Pro, with statistically differences in lag time and growth rate for the 

NA genetic background (Figure 2 and Table 2). Overall, the results showed that RPL26A 

promoter is active at the beginning of the exponential phase and before OD600 ~0.8, avoiding 

interferences with the signal produced by a nitrogen pulse at this OD. Additionally, RPL26A 

deletion generated minor effects over the growth parameters under the culture conditions 

assayed, in all four genetic backgrounds evaluated.    

We then performed an upshift nitrogen experiment in a microplate reader for the four strains 

simultaneously, adding glutamine at OD600 ~0.8 and monitoring the luminescence of cells 

during 12 hours after glutamine addition. In all strains, the luciferase expression increased 

rapidly and then decreased to background levels 10-12 hours after the nitrogen pulse (Figure 

3A). The NA and WA strains showed the more similar behaviour, with a similar first maximum 

of luciferase expression at 2-3 hours after nitrogen pulse and a second maximum at 6-8 hours 
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(Figure 3 and Table 3). The WE strain showed the smaller first maximum of luciferase 

expression but with a comparable second maximum with NA and WA strains, while SA strain 

showed the biggest first maximum and no second expression peak (Figure 3 and Table 3).  

We evaluated the robustness of our method using strains carrying different mating types. We 

observed similar results when cells were subjected to a nitrogen upshift experiment 

(Supplementary Figure 2). Moreover, we demonstrated that luciferin depletion over time does 

not affect the results obtained, which was corroborated by performing a simultaneous addition 

of glutamine and luciferin in the nitrogen upshift experiment (Supplementary Figure 3). 

Finally, we assessed the capacity of our method to be used in haploid and diploid strains. For 

this, we generated a hybrid strain using the phenotypically more different strains (SA and WE 

strains), observing in the hybrid an intermediate phenotype with respect to the parent strains in 

nitrogen upshift experiments (Supplementary Figure 4).  

In conclusion, using our method the SA and WE strains showed the more dissimilar phenotypes 

for luciferase expression after a nitrogen (proline-to-glutamine) upshift experiment, which can 

be consider an indirect measure of the TORC1 activity. Previously, these strains were also 

different for other phenotypes such as fermentation kinetics and fungicide resistance (Kessi-

Perez et al., 2016), nitrogen consumption (Jara et al., 2014) and oenological traits (Salinas et 

al., 2012). The type of experiment performed in those studies and others, such as bulked 

segregant analysis (BSA) or comparative genomics, requires larger number of strains to be 

evaluated (Mackay, Stone, & Ayroles, 2009). Thus, the new method here developed could be 

an important tool to continue unravelling genetic determinants involved in the nitrogen sensing 

associated with the activation of the TORC1 signalling pathway. 

Confirming phenotypic variability in TORC1 pathway activation between yeast strains 
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To corroborate the phenotypic diversity seen by our method, we evaluated Sch9 

phosphorylation by Western blot in a proline-to-glutamine upshift experiment as readout of 

TORC1 activation (Figure 4). In general, phosphorylation of Sch9 increased after 5 min of 

glutamine addition, decreased after 15 min and raised up again at 30 min, consistent with results 

previously described (Stracka et al., 2014). This behaviour was observed in NA, SA and WA 

strains, with the SA strain showing the greater activation at 30 minutes (Figure 4A and 4B). 

However, the WE strain appears to lack a reactivation at 30 minutes, even though it shows a 

great activation 5 minutes after the glutamine pulse (Figure 4A and 4B). In general, these 

results are consistent with previously described observation where glutamine can activate 

TORC1 both dependent and independent of EGOC, with the activation at 5 minutes being 

EGOC-dependent and the activation at 30 minutes being EGOC-independent (Stracka et al., 

2014). Interestingly, although the WA strain showed the expected behaviour for Sch9 

phosphorylation (Figure 4A and 4B), the unphosphorylated isoform of Sch9 was highly 

abundant in this strain, confirming the variability in TORC1 activity for the analysed strains.  

Using the same experimental strategy, we evaluated TORC1 activation by monitoring Rps6 

phosphorylation. The NA and WA strains showed similar phenotypes, increasing Rps6 

phosphorylation after the glutamine pulse (Figure 4A and 4C). Nevertheless, SA strain seems 

to have a greater activation, while WE strain shows both a lower activation and a decay at 30 

min, in concordance with the results obtained for Sch9 phosphorylation (Figure 4). Overall, 

with exception of the WE strain, all strains showed the expected behaviour, in agreement with 

previously described observations where Rps6 phosphorylation increased over time in a 

nitrogen upshift experiment (Gonzalez et al., 2015). 

Altogether, the results obtained for Sch9 and Rps6 phosphorylation confirmed the existence of 

phenotypic differences between strains, showing SA strain as the one that have a greater 

TORC1 activation and the WE strain as the one with the less sustained one. This general 
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conclusion agrees with the results obtained by our method, although a direct comparison 

between them is not possible. Nevertheless, we compared these results with the obtained using 

the microculture method, focusing in the first 4 hours after the nitrogen pulse, where the first 

luciferase expression maximum appears (Figure 3B and Table 3). When we compared the 

maximum luminescence and the area under the curve achieved between strains, the results 

resemble the ones obtained by immunoblot of Rps6, with the SA and WE strains having 

extreme phenotypes and the NA and WA strains having similar intermediate phenotypes 

(compare Figure 4C at time 30 min versus Figure 3B). Moreover, this novel methodology 

seems to recapitulate the EGOC-independent activation of TORC1 observed by immunoblot 

of Sch9, because even though the WE strain exhibited a great activation 5 minutes after the 

glutamine pulse, it lacked a re-activation at 30 minutes, while the SA strain showed the greater 

activation at this time (compare Figure 4B at time 30 min versus Figure 3B), consistent with 

the previously described activation of TORC1 independent of EGOC (Stracka et al., 2014). 

In general, our method is based on a transcriptional reporter, making unfavourable a direct 

comparison with the results obtained by detection of a post-translational modification by 

immunoblot.  Additionally, the temporary window used in the microculture experiment is 

greater than the used for immunoblotting experiments (4 hours vs 30 minutes, respectively). 

Therefore, our method has limitations, for example, it can take more time to overcome the 

background noise in this type of experiments than in a Western blot; in addition, cells take 

more time to transcribe and then translate the luciferase protein than to directly phosphorylate 

Rps6 or Sch9. Thus, this longer temporary window is also consistent with a possible evaluation 

of EGOC-independent activation of TORC1 by our method, because preferred nitrogen sources 

(like glutamine) are capable of a sustained TORC1 activation (Gonzalez & Hall, 2017; Stracka 

et al., 2014). 



 

 
This article is protected by copyright. All rights reserved. 

We corroborated that out method can detect the EGOC-independent activation of TORC1 by 

repeating the nitrogen upshift experiments using leucine, an amino acid that activates TORC1 

only in a EGOC-dependent (Gtr1-dependent) manner and is unable of a sustained TORC1 

activity (Stracka et al., 2014). The results showed that leucine is unable to increase the 

luminescence signal after a nitrogen upshift in the four strains evaluated, supporting the idea 

that our system only detect EGOC-independent activation of TORC1 by preferred nitrogen 

sources (Figure 5). We confirmed this result repeating the experiment in the SA and WE strains 

(the phenotypically more different strains) carrying GTR1 deletion (gtr1∆), confirming that this 

mutation has minimal effects on the TORC1 activation by a preferred nitrogen source such as 

glutamine (Figure 6A and C). Conversely, when we used leucine, a non-preferred nitrogen 

source, which activates TORC1 in an EGOC-dependent manner, we did not observe an increase 

in the reporter gene expression in the WT and gtr1∆ strains (Figure 6B and D). Altogether, 

these results are consistent with the idea that our system is capable to indirectly detect the 

EGOC-independent activation of TORC1, which occurs only by preferred nitrogen sources 

such as glutamine. 

In general, the destabilized version of the firefly luciferase reporter gene has become an ideal 

tool to assess gene expression dynamics in living cells, allowing to measure the transcriptional 

activity of genes regulated by nutrient availability, osmotic stress and oxidative stress in yeasts 

(Dolz-Edo et al., 2013; Rienzo et al., 2015). In this sense, we used the luciferase reporter gene 

to record the transcriptional activity of RPL26A gene –which gene is known to be expressed 

upon TORC1 activation– using nitrogen upshift experiments, results that showed strong 

activation RPL26A only by a preferred nitrogen source (glutamine). 

In conclusion, we report a new method based on growth under microculture conditions and 

using the luciferase reporter gene for indirect measuring of TORC1 EGOG-independent 

activity, being its results in partial agreement with those obtained through traditional 
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methodologies based on the relative estimation of the phosphorylation of Sch9 and Rps6 by 

immunoblot. The results obtained indicate that there are phenotypic differences in the kinetics 

of TORC1 activation by glutamine between distinct strains representative of S. cerevisiae clean 

lineages, with greater differences between Y12 (SA) and DBVPG6765 (WE) strains. This 

opens the possibility to use this new methodology to investigate the molecular basis of TORC1 

activation by different nitrogen sources using high throughput approaches, like BSA, linkage 

analysis or comparative genomics, which requires phenotyping of numerous strains. 
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Table 1. Yeast strains used in this work. 

Name Relevant genotype Source/Reference 

YPS128 a (‘NA a’) Mat a, ho::HygMX, ura3::KanMX (Cubillos et al., 2009) 

Y12 a (‘SA a’) Mat a, ho::HygMX, ura3::KanMX (Cubillos et al., 2009) 

DBVPG6044 a (‘WA a’) Mat a, ho::HygMX, ura3::KanMX (Cubillos et al., 2009) 

DBVPG6765 a (‘WE a’) Mat a, ho::HygMX, ura3::KanMX (Cubillos et al., 2009) 

YPS128 α (‘NA α’) Mat α, ho::NatMX, ura3::KanMX (Cubillos et al., 2009) 

Y12 α (‘SA α’) Mat α, ho:: NatMX, ura3::KanMX (Cubillos et al., 2009) 

DBVPG6044 α (‘WA α’) Mat α, ho:: NatMX, ura3::KanMX (Cubillos et al., 2009) 

DBVPG6765 α (‘WE α’) Mat α, ho:: NatMX, ura3::KanMX (Cubillos et al., 2009) 

YC022 YPS128 a pJU733 This work 

YC023 Y12 a pJU733 This work 

YC024 DBVPG6044 a pJU733 This work 

YC025 DBVPG6765 a pJU733 This work 

YC027 YPS128 a rpl26a::Luc-URA3 This work 

YC028 Y12 a rpl26a::Luc-URA3 This work 

YC029 DBVPG6044 a rpl26a::Luc-URA3 This work 

YC030 DBVPG6765 a rpl26a::Luc-URA3 This work 

YC031 YPS128 α rpl26a::Luc-URA3 This work 

YC032 Y12 α rpl26a::Luc-URA3 This work 

YC033 DBVPG6044 α rpl26a::Luc-URA3 This work 

YC034 DBVPG6765 α rpl26a::Luc-URA3 This work 

YC043 YC028xYC034 This work 

YC231 YC032 gtr1::HygMX This work 

YC233 YC034 gtr1::HygMX This work 
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Table 2. Growth parameters for WT strains and its version carrying RPL26A deletion. 

Strain Efficiency ± SD Rate ± SD (h-1) Lag ± SD (h) 

NA (WT) 1.582 ± 0.039 0.081 ± 0.001 11.05 ± 0.39 

NA (rpl26aΔ) 1.542 ± 0.016 ns 0.070 ± 0.005 * 12.48 ± 0.67 * 

SA (WT) 1.607 ± 0.011 0.081 ± 0.004 13.18 ± 0.47 

SA (rpl26aΔ) 1.626 ± 0.010 * 0.078 ± 0.004 ns 12.66 ± 0.29 ns 

WA (WT) 1.518 ± 0.018 0.060 ± 0.006 19.95 ± 0.59 

WA (rpl26aΔ) 1.531 ± 0.039 ns 0.053 ± 0.002 ns 18.11 ± 1,07 * 

WE (WT) 1.440 ± 0.038 0.076 ± 0.004 12.61 ± 0.28 

WE (rpl26aΔ) 1.425 ± 0.007 ns 0.087 ± 0.002 * 12.65 ± 0.42 ns 

*: rpl26aΔ value significantly different form WT value (p-value < 0.05). ns: rpl26aΔ value not 

significantly different form WT value (p-value ≥ 0.05). SD: standard deviation.  
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Table 3. Parameters associated with luminescence curves. 

Strain Max0-12 ± 

SD (a.u.) 

Time0-12 ± 

SD (h) 

AUC0-12 ± 

SD (a.u.) 

Max0-4 ± 

SD (a.u.) 

Time0-4 ± 

SD (h) 

AUC0-4 ± 

SD (a.u.) 

NA 309 ± 50 5.2 ± 0.6 1230 ± 

176 

234 ± 44 2.4 ± 0.6 494 ± 40 

SA 410 ± 7 1.7 ± 0.3 1324 ± 

113 

410 ± 7 1.7 ± 0.3 930 ± 66 

WA 296 ± 43 3.5 ± 2.9 1408 ± 

313 

257 ± 13 2.3 ± 0.9 622 ± 44 

WE 289 ± 14 8.4 ± 0.3 1213 ± 

126 

121 ± 8 2.3 ± 0.5 273 ± 36 

Max: maximum luminescence. Time: maximum luminescence time. AUC: area under the curve 

of luminescence. 0-12: 0-12 hours’ interval. 0-4: 0-4 hours’ interval. SD: standard deviation. 
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Figure 1. Method overview for indirect monitoring TORC1 activation in different yeast 

strains. The RPL26A ORF was replaced by the firefly luciferase, which is carrying the 

cytochrome C transcriptional terminator (CYC1ter) and URA3 as selectable marker. This 

strategy allows luciferase expression under the endogenous RPL26A promoter (PRPL26A) control 

and without copy number bias. The four representative strains YPS128 (North American, 

‘NA’), Y12 (Sake, ‘SA’), DBVPG6044 (West African, ‘WA’) and DBVPG6765 

(Wine/European, ‘WE’) were evaluated in a nitrogen upshift experiment, growing them in a 

96-well plate with YMM plus proline (YMM+Pro) medium an adding glutamine (Gln) as 

nitrogen source when the strains reached OD600 ~0.8. The luminescence (Lum) of the cells was 

recorded after the nitrogen pulse every 5 minutes. 
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Figure 2. Growth and luciferase expression for strains carrying the reporter construct. 

The strains (A) NA, (B) SA, (C) WA and (D) WE were transformed with the Luc-URA3 

construct replacing the RPL26A ORF. These strains (rpl26aΔ) and their wild type (WT) 

versions were grown in YMM+Pro medium plus luciferin in microculture conditions, 

monitoring the OD600 and the luminescence (Lum) of the yeast cells over time. Black dashed 

lines show the time at which an OD600 ~0.8 was reached by strains carrying the luciferase. 

Plotted values correspond to the average of three biological replicates, with their standard error 

represented by shadow regions (mean ± SEM). 

  



 

 
This article is protected by copyright. All rights reserved. 

 

Figure 3. Nitrogen upshift experiment using the new method developed. Luminescence 

(Lum) differences between strains were evaluated in microculture conditions after a pulse of 

glutamine. The luminescence was recorded until 12 hours after nitrogen pulse (A). A zoom in 

of the first four hours after the nitrogen (proline-to-glutamine) upshift experiment (B). In both 

panels (A and B), the time 0 h corresponds to the addition of glutamine. Plotted values 

correspond to the average of three biological replicates, with their standard error represented 

by shadow regions (mean ± SEM). 
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Figure 4. Measuring TORC1 activity by immunoblot. (A) Western blot for the strains NA, 

SA, WA and WE. In the case of Rps6, phosphorylated (pRps6) and total Rps6 protein levels 

were evaluated using specific antibodies. In the Sch9 phosphorylation, an antibody that 

recognizes the 3xHA epitope was used, which gives an upper and a lower band that are 

representative of phosphorylated (pSch9) and non-phosphorylated (non-pSch9) isoforms, 

respectively. Time 0 min corresponds to the addition of glutamine. (B) Quantification of Sch9 

phosphorylation. The “% pSch9” is the ratio between the pSch9 band intensity and the sum of 

the pSch9 and non-pSch9 band intensities, multiplied by 100. Plotted values correspond to the 

average of three biological replicates, with their standard error represented by bars (mean ± 

SEM). (C) Quantification of Rps6 phosphorylation. The “Ratio pRps6” is the ratio between 

pRps6 band intensity and the total Rps6 band intensity, normalized by the mean value of all 

the ratios obtained. Plotted values correspond to the average of three biological replicates, with 

their standard error represented by bars (mean ± SEM). 
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Figure 5. Nitrogen upshift experiment using glutamine and leucine. Luminescence (Lum) 

differences between strains (A) NA, (B) SA, (C) WA and (D) WE were evaluated in 

microculture conditions after a pulse of glutamine (Gln) and a pulse of leucine (Leu). The 

luminescence was recorded until 12 hours after nitrogen pulse. Time 0 h corresponds to the 

addition of glutamine or leucine. Plotted values correspond to the average of three biological 

replicates, with their standard error represented by shadow regions (mean ± SEM). 

Figure 6. Nitrogen upshift experiment using gtr1Δ strains. Luminescence (Lum) differences 

between strains SA (A and B) and WE (C and D) were evaluated in microculture conditions 

after a pulse of glutamine (A and C) or leucine (B and D). The luminescence was recorded 

until 12 hours after nitrogen pulse. Time 0 h corresponds to the addition of glutamine or leucine. 

Plotted values correspond to the average of three biological replicates, with their standard error 

represented by shadow regions (mean ± SEM). 

 


