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1. Abstract 
 

The success of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the 

complication of acute graft-versus-host disease (aGVHD) which may develop to some degree in 

up to 80% of patients. Unfortunately, aGVHD and the immunosuppression needed to control 

disease slow down posttransplantation immune regeneration and consequently also hamper anti-

tumor immunity. Tipping the balance towards efficient immune reconstitution but against the 

development of aGVHD remains a major goal in allo-HSCT. Furthermore, in clinical allo-HSCT, 

the development of aGVHD (that is initiated by alloreactive donor T cells) predisposes to chronic 

GVHD (cGVHD) with autoimmune manifestations. It is currently unclear, however, how 

autoimmunity is linked to antecedent alloimmunity. Using murine models of allo-HSCT, I could 

show in a collaborative effort that autoreactive T cells can be generated de novo in the host 

thymus, implying an impairment in self-tolerance induction as a consequence of aGVHD. As a 

possible mechanism, we have published that loss of medullary thymic epithelium expressing the 

autoimmune regulator (Aire+mTEChigh) was essential for failure to clonally delete self-reactive T 

cells. Our data therefore indicated that functional compromise of the mTEC compartment links 

alloimmunity to the development of autoimmunity during cGVHD. As a direct consequence of 

this work, I aimed to test in the second part of my PhD thesis project whether continuous 

blockade of donor T-cell trafficking from activation sites in secondary lymphoid organs (SLO) 

would prevent thymic injury and hence prevent the emergence of autoreactive T cells. Using 

different murine allo-HSCT models, I analyzed the effects of sphingosine-1-phosphate (S1P) 

pathway interference with the highly specific synthetic sphingosine-1-phosphate receptor 1 

(S1PR1) agonist KRP203. I found that prophylactic but not therapeutic S1PR1 agonism reduced 

donor T-cell migration to the host thymus, thus significantly attenuating thymic aGVHD. 

Moreover, prophylactic KRP203 administration was found to allow for normal intrathymic T-cell 

maturation in the absence and presence of aGVHD. In consequence, the Aire+mTEChigh pool 

remained normal. Maintenance of the TEC compartment was indeed associated with the 

emergence of lower numbers of thymus-dependent autoreactive T cells in the periphery. Lastly, 

my data confirmed that S1PR1 receptor agonism maintains the capacity to reject hematopoietic 

tumors that are retained in these sites. The present work closed gaps in knowledge with regard to 

the action profiles of S1PR1 agonism on two separate parameters that govern transplant outcome, 

i.e. posttransplantation T-cell neogenesis and anti-tumor immunity. It may hence accelerate 

clinical trials and the definitive implementation of S1PR1 receptor agonism as a principle for the 

prevention of aGVHD where the unmet medical need is high. 
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2. Introduction 
 
2.1 Hematopoietic Stem Cell Transplantation (HSCT) 

 

2.1.1 Current status of HSCT 

 

Hematopoietic stem cell transplantation (HSCT) is a preeminent therapy for certain hematological 

and non-hematological disorders. Worldwide, the one millionth HSCT was announced in 2013, 

and in Europe more than 40’000 transplants were recorded in 2016.1,2 Transferred HSC are 

obtained either from the patient itself (autologous), or from a genetically non-identical donor 

(allogeneic). The probability for a sibling being a compatible donor (human leukocyte antigen 

(HLA)-identical) is 25%.3 If there is no suitable sibling or family member, patients mostly receive 

HSC from HLA-identical but unrelated donors or from donors that are HLA-haploidentical 

(haplo-ID).4-6 There are several sources from which HSC can be obtained from the donor. The 

bone marrow (BM) punctuation was the conventional way to isolate HSC. Higher doses of HSC 

can now be harvested from the peripheral blood (PB) by mobilizing HSC from the BM with the 

help of the cytokine granulocyte-colony stimulating factor (G-CSF) in a procedure called 

peripheral HSC apheresis.7,8 HSC can also be isolated from cord blood but the recovery is small.9-

11 In Europe, allogeneic HSCT (allo-HSCT) is performed in 43% of all transplanted patients and 

is the favored therapy for acute myeloid leukemia (AML, a malignant disease which constitutes 

36% of all indications for which an allo-HSCT is done), acute lymphoblastic leukemia (ALL, 

16%) and non-Hodgkin lymphoma (NHL, 8%). Allo-HSCT currently represents the only curative 

treatment for patients with myelodysplastic syndrome and myeloproliferative neoplasm 

(MDS/MPN, 15%) so far.2,12 Other indications for an allo-HSCT are anemia, severe combined 

immune deficiencies (SCID) or metabolic diseases, as illustrated in Figure 1.2,13  
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Figure 1: Relative proportions of disease indications for an allo-HSCT in Europe in 2014. Acute myeloid leukemia 

(AML, 36%), acute lymphoblastic leukemia (ALL, 16%), non-Hodgkin lymphoma (NHL, 8%), myelodysplastic 

syndrome & myeloproliferative neoplasm (MDS/MPN 15%). Illustration is adapted from Passweg J. et al., Bone 

marrow transplantation, 2016.2 

 

2.1.2 Principles and clinical outcomes of allo-HSCT 

 

Eligible patients for an allo-HSCT first have to undergo preparative conditioning regimens in the 

form of chemotherapy and/or total body irradiation (TBI).14,15 The objectives are to reduce the 

bulk of malignant cells in instances where allo-HSCT is used for cancer treatment, decrease of the 

risk of graft rejection via general host immune suppression, and improve the engraftment of donor 

HSC by evacuating the host marrow. As a side effect the preconditioning also invariably 

compromises natural and adaptive immune responses of HSCT recipients, predisposing them to 

infections. This complication contributes to poor clinical outcome post-HSCT (see below). The 

classification of conditioning regimen intensity is based on the agents, doses and schedules used. 

According to the Center for International Blood and Marrow Transplant Research (CIBMTR), 

myeloablative conditioning regimens are defined as regimens with TBI of ≥500cGy, single 

fractionated doses of ≥800cGy, busulfan doses of >9mg/kg, or melphalan doses of >150mg/m2 

given as single agents or in combination with other drugs. Reduced-intensity conditioning (RIC) 

regimens are defined as regimens with lower doses of TBI and fractionated radiation therapy as 

well as lower doses of busulfan and melphalan than those used to define a myeloablative 

conditioning regimen.16 Both, type of conditioning and intensity, depend on the age and health 

status of the patient. The concept of RIC makes the allo-HSCT procedure safer and is often 

preferred over myeloablative regimens in elderly patients.17  

The subsequent stem cell transplantation then serves two purposes: I) to rescue the depleted host 

stem cell compartment with donor HSC which ultimately generate a new donor-derived complete 

hematopoietic system and II) to exploit the immunotherapeutic effect of anti-tumor activity of 

AML
ALL
MDS/MPN
NHL
Others
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infused mature donor T cells present in the donor graft (i.e. GVT, graft-versus tumor effect). 

These cells recognize tumor-associated and host allo-antigens.18-20  

 

A successful clinical outcome of HSCT is determined by a functional immune competence, a 

long-term disease-free survival and the absence of transplant-related toxicities (TRT) stemming 

from graft-versus host disease (GVHD) (see below) and from conditioning (Figure 2). Within the 

first weeks after HSCT, there is no fully reconstituted immune system yet. The longer this phase 

persists, the higher is the risk to develop fungal and viral infections and to suffer from tumor 

relapse.20-23 Hence, a fast and efficient re-establishment of a functional and self-tolerant immune 

system is favorable for successful HSCT outcome. Long-term disease free survival comprises the 

eradication of the tumor that mainly occurs trough the combination of cytoreductive conditioning 

and the GVT activity. The histocompatibility differences between donor and host T cells are 

crucial for a strong and sustained GVT effect.24,25 Unfortunately, in allo-HSCT, the donor T cells 

may react against the same epitopes that are also expressed on non-malignant host cells and thus 

can mediate an immune response against healthy recipient tissues. This immunological reaction 

results in GVHD which occurs in 40-60% of the patients receiving an allo-HSCT26,27 and is 

associated with significant mortality in approximately 15% of transplant recipients.28-30 

Importantly, GVHD increases the likelihood to be diagnosed with an opportunistic infection as it 

delays reconstitution of naïve T cells. Hence, this TRT is a detrimental factor for immune 

regeneration. The following chapters will first present current knowledge concerning I) the 

immunopathophysiology of GVHD and II) the immune regeneration following allo-HSCT and 

then address the known mechanistic relationship between these two events.31,32 
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Figure 2: Successful clinical outcome of allo-HSCT. Prior to allogeneic hematopoietic stem cell transplantation 

(allo-HSCT), the patients receive pretransplantation cytoreductive conditioning that eradicates the bulk of the tumor. 

However, this intervention also comprises host immune competence, resulting in an immune deficiency within the first 

weeks and months after allo-HSCT. This phase of immune deficiency increases the susceptibility to opportunistic 

infections and residual tumor cell growth. Successful clinical outcome of HSCT is defined trough three main factors: I) 

Disease-free survival due to the graft-versus tumor (GVT) effect provided by donor mature T cells. II) No 

complications, as defined by the absence of transplant-related toxicities from graft-vs-host disease (GVHD) and 

conditioning. III) A fast and efficient establishment of donor HSC-derived immune competence. 

 

2.1.3 Graft versus host disease (GVHD) 

 

GVHD is the major complication after allo-HSCT whose development and severity directly 

correlates with the number of transferred donor T cells and degree of major histocompatibility 

complex (MHC) and minor histocompatibility antigen (miHA) mismatch between the donor and 

host tissues.33-37 Billingham described as early as in 1959 three main factors leading to GVHD: I) 

The host must be immunocompromised II) the host must express tissue antigens that differ to the 

ones contained in the graft (histo-incompatible) III) the graft must contain competent cells that 

are able to induce an immune response.30,38 For long time, GVHD was categorized into its two 

distinctive forms according to the time when symptoms appear: The symptoms that emerged 

within the first 100 days after transplantation were characterized as the acute form of GVHD 

(aGVHD) that is induced by alloreactive donor T cells whereas symptoms that arose 100 days 
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post-transplantation were categorized as the chronic form (cGVHD), which is mainly 

characterized by autoimmune manifestations.65,39 However, recent advances in HSCT suggested 

to classify GVHD based on the manifestations of GVHD and disease severity rather than time of 

onset post-HSCT. This new classification was proposed by the National Institutes of Health 

(NIH) consensus criteria in 2005 and provided new guidelines for global assessment of GVHD 

severity.40,41  

 

aGVHD - pathomechanism 

The development of aGVHD results from donor T-cell recognition of genetically disparate 

recipient tissues. In MHC-mismatched settings, donor T cells react against both the antigen 

presented by the MHC and the MHC molecule itself.26 In MHC-matched settings, approximately 

40% of the patients also develop aGVHD. This fact is due to the genetic loci encoding miHA, 

which lie outside of the MHC region.39,42,43 The induction of aGVHD occurs in three main steps 

(Figure 3): The first step is the activation of antigen-presenting cells (APC) due to conditioning-

associated inflammation and the release of pro-inflammatory cytokines due to the underlying 

disease, thus leading to initial tissue damage.44 The damage of the gut leads to release of gut 

bacteria and the expression of pathogen- associated molecular patterns (PAMPs), damage-

associated molecular patterns (DAMPs), lipopolysaccharides (LPS) and other chemokines.45 This 

mechanism in turn recruits neutrophils, NK cells, macrophages and other innate cells that secrete 

more pro-inflammatory cytokines such as interferon gamma (IFNγ), tumor necrosis factor alpha 

(TNFα), IL-1, IL-2, or IL-6, IL-12, IL-21, IL-22 and IL-23.46,47 This cytokine storm further 

activates recipient APC.34 The second stage is the activation, differentiation and expansion of 

infused naïve donor T cells. Alloreactive donor T cells recognize foreign MHC molecules or self-

MHC molecules complexed with foreign peptide allo-antigen. CD8+ donor T cells respond to 

MHC-class-I molecules that are expressed on almost all nucleated cells, including non-

hematopoietic cells, and hence mediate further tissue damage. CD4+ T cells recognize peptides 

that are presented by MHC-class-II-molecules mostly on hematopoietic cells and differentiate 

into T helper 1 (TH1), TH2 or TH17 cells. Several studies showed that a TH1 response mainly 

mediates aGVHD whereas cGVHD rather involves a TH2 response.48,49 Moreover, CD4+ 

regulatory T cell (Treg) cell numbers are decreased. These cells normally have a protective role as 

they have a suppressive activity towards allo- and autoreactive T cells.50,51 In addition to T-cell 

receptor (TCR)-mediated signals, the co-stimulatory signal molecules (such as CD28, CD80) play 

a fundamental role in the induction of aGVHD. The migration of activated donor T cells to tissue 

via blood and lymphatic system induces the effector phase of the GVH reaction characterized by 

target tissue destruction predominantly in skin, liver and gastrointestinal tract.52 The 

preconditioning regimen-induced tissue injury allows facilitated access to these organs.44 The 
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progressive destruction of tissue results in further release of inflammatory cytokines such as IL-1, 

IFNγ, TNFα, IL-17 and may also induce secretion of perforin/granzyme B, Fas/Fas ligand and 

TNF-related apoptosis inducing ligand (TRAIL). The effector phase of tissue apoptosis-mediated 

by pro-inflammatory cytokines and cellular effectors leads to further tissue destruction. This may 

result in end organ damage.15,53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: The immunopathophysiology of aGVHD. Pretransplantation conditioning induces tissue inflammation and 

cytotoxicity, which results in the secretion of pro-inflammatory cytokines and chemokines and the upregulation of co-

stimulatory molecules. In addition, gut destruction releases lipopolysaccharides (LPS), enhancing inflammation and 

the recruitment of monocytes. This pro-inflammatory environment activates antigen-presenting cells (APC). In parallel, 

donor mature T cells traffic to secondary lymphoid organs (SLO) where priming occurs after interaction with APCs. 

Activated donor T cells differentiate and expand, producing more cytokines and further migrate to graft-vs-host disease 

(GVHD) target tissues, which mainly include the gastro-intestinal (GI) tract, liver, skin and thymus. There, the cytokine 

storm and cellular effectors mediate further destruction and tissue apoptosis with consequent end organ damage.  

 

cGVHD – pathomechanism 

cGVHD occurs within 3 years post allo-HSCT in 30-60% of patients and resembles autoimmune 

syndromes characterized by the appearance of scleroderma, bronchiolitis obliterans and 

fibrosis.54,55 cGVHD is classified into two categories based on symptoms that might overlap with 
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typical features of aGVHD.40 There is a strong association between antecedent aGVHD and 

autoimmunity in allo-HSCT recipients.56,57 Correlative human studies and preclinical murine 

models have advanced several hypotheses and thus far have proposed at least four distinct 

pathomechanisms to explain cGVHD: I) The damage of the thymus caused by prior aGVHD 

impairs the process of negative selection to eliminate T cells responsible for autoimmunity.58 II) 

Aberrant activation of allo- and autoreactive T- and B cells favors the production of auto-Ab.59 

The pathogenic role of B cells during cGVHD is supported by preclinical studies showing that 

cutaneous sclerosis could be improved in patients with cGVHD by the depletion of CD20+ B cells 

with an α-CD20mAb therapy (Rituximab).60 Moreover, increased levels of B-cell activating 

factor (BAFF) were reported to promote survival of allo- and autoreactive B-cells.61,62 III) 

Fibrogenic cytokines such as IL-10 or transforming growth factor-

β (TGFβ) released by macrophages also play an important role in the pathophysiology as they 

were shown to ameliorate murine cGVHD after neutralization.63 IV) Platelet-derived growth 

factor (pDGF) receptors on fibroblasts bind auto-Ab leading to further cytotoxicity, chronic 

inflammation and fibrosis.64,65 All four pathomechanisms need to be controlled in order to 

mitigate cGVHD after allo-HSCT. Therefore, many ongoing investigations focus on the role of 

Treg cells and cGVHD.66 

 

Current GVHD prophylaxis and therapy  

The standard prophylactic therapy for GVHD are calcineurin inhibitors (CNI) that dampen T-cell 

activation.67 The most widely used CNI are cyclosporine A and tacrolimus. Methotrexate (MTX) 

is a cytotoxic drug that exerts anti-inflammatory effects by attenuating T-cell activation when 

given at low doses. Several studies suggested a combination therapy of CNI and MTX with 

improved outcome in comparison to CNI alone.68 Currently, this combination is the most 

commonly used therapy in patients receiving allo-HSCT from URD. Another first-line standard 

therapy is the application of corticosteroids69 but almost 50% of the patients will not respond and 

develop steroid-refractory GVHD.70 Unfortunately, the administration of general 

immunosuppressants further exacerbates posttransplantation immune deficiency and predisposes 

patients to opportunistic infections. A more selective targeting includes the depletion of T cells 

from the BM (TCDBM, T-cell depleted bone marrow) before allo-HSCT. Another possibility to 

deplete T cells is by using anti-thymocyte globulin as part of prophylaxis following allo-HCST.71 

The administration of cyclophosphamide shortly post-HSCT selectively kills fast proliferating 

cells which mainly include alloreactive donor T cells after priming without affecting Tregs.72,73 

Thus, the depletion of T cells remains an effective way to prevent GVHD. Unfortunately, this 

approach decreases GVT activity and has also a negative effect on posttransplantation immune 

regeneration (see below).74,75 Although the use of standard interventions either prophylactically or 
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therapeutically potently diminish donor T-cell expansion and differentiation, the fact that high 

number of patients still develop GVHD highlights the need for better intervention strategies. 

Preventing GVHD while retaining the beneficial GVT effect and avoiding opportunistic 

infections presents a major challenge for successful HSCT. Hence, a deeper understanding of 

cellular and molecular key mechanism that cause GVHD are crucial in order to find new 

intervention strategies to prevent or control the disease.  
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2.2 T-cell development post allo-HSCT 

 

As stated in the previous chapter, successful allo-HSCT critically depends on a full reconstitution 

of immune competence following conditioning. Preclinical and clinical studies have examined the 

kinetics of T-cell recovery following allo-HSCT.76-78 This process normally operates along two 

different pathways that occur in parallel as illustrated in Figure 4. The thymus-independent 

pathway involves peripheral T cells, including either remaining host T cells that had survived 

pretransplantation conditioning or newly infused donor mature T cells that expand in the 

periphery. The thymus-dependent pathway in contrast involves donor-HSC derived T cells that 

are generated de novo in the recipients’ thymus and provide an efficient and long-lasting T-cell 

immune competence. 
 

 

 

 

 

 

Figure 4: Scheme of T-cell regeneration pathways after allo-HSCT. The graft contains hematopoietic stem cells 

(HSC) and donor mature T cells, resulting in two different pathways of T-cell recovery that occur in parallel. In the 

thymus-dependent pathway, HSC-derived T-cell progenitors migrate from the peripheral blood (PB) to the thymus, 

where they undergo normal positive and negative selection and are released to the periphery as naïve T cells. The 

thymus-independent pathway is based on the peripheral expansion of host T cells and donor mature T cells that directly 

migrate to SLO, where they encounter antigens from pathogens and tumor cells. This figure is adapted from Krenger et 

al, Blood 2011.21 
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2.2.1 Thymus-independent T-cell development  

 

The initial wave of T-cell recovery shortly after allo-HSCT involves the peripheral expansion of 

pre-existing host T cells and of donor mature T cells that are contained in the graft.79 In the first 

period post allo-HSCT donor T cells serve as a sufficient protection against infections since they 

have a mature phenotype and directly migrate to secondary lymphoid organs (SLO) where they 

proliferate upon exposure to nominal antigens including those which were previously 

encountered.21,80 Indeed an important clinical observation is the fact that the transfer of TCDBM 

is strongly associated with Cytomegalovirus (CMV) infections and Epstein-Barr Virus-associated 

disorders.81,82 However, expanding donor T cells have a limited and skewed TCR repertoire, 

which is not sufficient for a comprehensive response to a wide diversity of foreign antigens. The 

diversity of the T-cell pool largely depends on the diversity of the mature T cells that served as 

the source for expansion. Moreover, the clonal expansion is only transient and characterized by 

clonal exhaustion and activation-induced cell death of alloreactive donor T cells.78 Although 

CD8+ T cells can recover rapidly by peripheral homeostatic expansion, the same mechanism is 

not enough to replenish the CD4+ T cells. Thus, there is much evidence that the thymus-

independent T-cell regeneration is not able to reconstitute the complete host immune system and 

relies on the thymic output. 
 

2.2.2 Thymus-dependent T-cell regeneration 

 

Sustained immunity with a high TCR repertoire can only be achieved by a sizeable pool of naïve 

T cells whose formation relies on the de novo generation of the host thymus post allo-HSCT. The 

thymus-dependent pathway involves donor-BM derived thymic progenitors that are contained in 

the graft and replenish the thymus to undergo normal T-cell development. In the absence of TRT, 

donor-BM derived precursors undergo normal developmental processes including selection 

mechanism that are essential to eliminate autoreactive T cells, as outlined in the following 

chapters.78,80  

 

2.2.2.1 Normal thymic T-cell development  

The thymus is a primary lymphoid organ that is responsible for the maturation of T cells and 

comprises a subcapsular region, the cortex, cortico-medullary junction and medulla.83 The thymic 

microenvironment is a three-dimensional network consisting of stromal cells such as cortical and 

medullary thymic epithelial cells (cTEC and mTEC respectively), non-epithelial hematological 

cells such as dendritic cells (DC) and macrophages and fibroblasts that together build a complex 

scaffold. These cell types are responsible for T-cell survival, expansion, differentiation and 

central tolerance.84,85,86 The access of T-cell progenitors to the thymus depends on the expression 



  Introduction 
	 	
	  

	 13 

of selectins such as P-selectin, integrins and chemokine receptors like C-C chemokine receptor 7 

(CCR7).87-90 HSC-derived T-cell precursors enter the thymus as early thymic progenitors (ETPs) 

expressing CD117 (c-Kit) Sca-1 and CD44 whereas they are negative for the lineage markers 

(Lin) CD3, CD4, CD8, CD11b, CD11c, CD19 and CD25.91,92 After entry, ETPs migrate through 

the cortex as a double negative (DN) subset for CD4 and CD8 surface molecules. These DN 

stages can further be divided in DN1-DN4 (DN1: CD44+CD25-, DN2: CD44+CD25+, DN3: 

CD44-CD25+, DN4: CD44-CD25-).93 Within the DN1 stage, the cell population has still multi-

lineage potential for lymphoid and myeloid cells such as B cells, T cells, natural killer cells (NK 

cells) or DCs. With the additional expression of CD25 in the DN2 stage the cells lack B cell 

potential but keep their potential to become NK cells, DC or T cells. In the DN3 stage, the TCRβ 

chain rearrangement occurs together with the expression of the CD3 molecule.94 In this stage the 

T-cell lineage commitment is completed. With their productive TCRβ rearrangement, the 

thymocytes give rise to the CD4 and CD8 double positive (DP) subset that comprises around 85% 

of all cells in the thymus.95  

 

Positive selection 

Once thymocytes terminate the first wave of proliferation, the α-chain locus begins to rearrange. 

As αβ-DP cells, they undergo a process of positive selection that shapes the TCR repertoire. This 

process takes place in the cortex, which contains cTEC that are identified in the murine system 

through markers such as intracellular cytokeratin (CK) 8 and CK18 as well as the epithelial cell 

adhesion molecule (EpCAM; CD326) and the surface molecule Ly51.96 Together with other 

stromal cells, cTEC provide soluble factors such as interleukin 7 (IL-7), Fms-like tyrosine kinase 

3 ligand (Flt3L), C-C chemokine ligand 25 (CCL25) and membrane-bound proteins, including 

MHC, that are crucial for survival, division and migration of thymocytes.86,97,98 The positive 

selection process controls whether thymocytes can recognize self-peptide:self-MHC complexes. 

If the cells fail to recognize MHC molecules they will die by neglect. Only about 3-5% of all 

thymocytes will survive and further develop. Positively selected DP cells downregulate CD24 and 

CCR7 and further differentiate into CD4 or CD8 single positive (SP) cells that are restricted to 

recognize MHC II or MHC I, respectively. As CD4 or CD8SP thymocytes, they traffic to the 

medulla. 

 

Negative selection  

Self-tolerance of the nascent TCR is attained through negative selection in the thymic medulla 

(Figure 5). The medulla contains mTEC that are identified in the mouse and in human through 

CK5, CK14, EpCAM and Ulex europaeus agglutinin-1 (UEA-1).96,99,100 Mature mTEC express 

CD80 and high levels of MHC II (mTEChigh) and are the major contributors of negative selection. 
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The exposure of self-antigen, including those with highly restricted tissue expression is essential 

for clonal deletion. Under physiological conditions, interactions of immature T cells and a self-

peptide with too high affinity/avidity will mediate an intracellular signaling pathway that induces 

programmed cell death in developing thymocytes (Figure 5). In order to become negatively 

selected and eliminated, autoreactive T cells upregulate Helios and programmed cell death protein 

1 (PD-1).101,102  

Thymic ectopic expression of many tissue-restricted peripheral self-antigens (TRA) that can be 

presented to developing thymocytes is a distinct property of mTEChigh.103 This so-called 

promiscuous gene expression (pGE) is a stochastic process in which only a limited number of 

mTEC (1-3%) express a given TRA.104,105,106 TRA expression is partly controlled by the TF 

autoimmune regulator (Aire).107,108 Importantly, intimate associations exist between perturbations 

in TRA expression and the susceptibility to autoimmunity in both animals and human.109-111 The 

importance of Aire is illustrated in patients that have a mutation in Aire. This defect causes 

autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED; alternatively 

autoimmune polyglandular syndrome type I APS-1).112 Similarly, Aire deficient mice (Aire-/-) 

have an impaired negative selection.113 Consequently, loss of TRA expression by lack of 

Aire+mTEChigh cells results in de novo generation of autoreactive T cells.114 Because negative 

selection is not absolutely efficient, an alternative to clonal deletion is the development of 

CD4+CD25+ Forkhead-Box-Protein P3+ (FoxP3) thymocytes that are released to the periphery as 

tolerogenic thymic Tregs.115 Only 1-2% of all T cells survive these selection processes and are 

allowed to leave into the periphery.116  
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Figure 5: Positive and negative selection in the thymus. HSC-derived T-cell progenitors enter the thymus and migrate 

to the cortex, where thymocytes (Thy) undergo positive selection. A self-peptide:self-MHC complex is presented by 

cortical thymic epithelial cells (cTEC) to immature thymocytes. Thymocytes that do not respond die by neglect. 

Positively selected thymocytes migrate further to the medulla where they undergo negative selection. Here, 

autoimmune regulator expressing medullary TEC (Aire+mTEChigh) present in conjunction with dendritic cells (DC) 

many tissue restricted antigens on their surfaces. If thymocytes respond with too high affinity/avidity, they are 

negatively selected and die due to programmed cell death. Thymocytes that respond with intermediate to high 

affinity/avidity differentiate into Tregs. Thymocytes that respond with an optimal low affinity/avidity survive negative 

selection and are released into the periphery as naïve T cells.  

 

After complete maturation, thymocytes traffic from the thymus into the periphery via the 

bloodstream. The emigration step is associated with the downregulation of the surface marker 

CD69 and the presence of the lipid molecule sphingosine-1-phosphate (S1P) in the blood.117 In 

order to exit the thymus, T cells express the G-protein coupled receptor (GPCR) S1P receptor 1 

(S1PR1) on their surface (see chapter 2.3).118,119  

 

2.2.3 The effect of thymic dysfunction on immune reconstitution after allo-HSCT 

 

Newly generated T cells have a naïve phenotype, a broad TCR repertoire and are specific to 

foreign pathogens. Importantly, these cells are not host-reactive following allo-HSCT due to their 

thymic education. This de novo production of thymus-derived T cells is, however, a long process 

and 1-2 years are required to reach a normally sized T-cell pool.120,31 The potential for thymic 

renewal is present in younger patients but limited or even absent in older patients (>50 years of 
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age).121 Nevertheless, the phenomenon of “thymic rebound” can be observed in elderly patients, 

where the thymus enlarges after engraftment within the first weeks following HSCT.21,80 The 

numbers of exported naïve T cells to the periphery post allo-HSCT can be predicted by the 

kinetics as well as extent of thymopoietic reconstitution and is detected in the periphery by the 

emergence of CD45RA+, CD62L+ cells.76,78 The quality of newly generated T cells can be 

assessed by the determination of TCR diversity and function. The TCR repertoire can be 

measured by flow cytometry or polymerase chain reaction (PCR), where the complementary 

determining region 3 (CDR3) is typed or levels of TCR rearrangement DNA excision circles 

(TREC) are determined.122,123 A quantitative analysis of the function can be made by ex vivo 

stimulation of T cells and their capacity to secrete cytokines that are measured by Elispot.  

 

An efficient T-cell regeneration depends on a functional thymus but the latter can be affected by 

several risk factors such as disease status, age of the patient, the kind of preconditioning and the 

presence of GVHD.21,79,124 TRT stemming from cytoreductive regimens and GVHD harm the 

thymus and cause a poor clinical outcome post-HSCT characterized by immune deficiency and 

possibly autoimmunity. The presence of aGVHD in allo-HSCT recipients represents a major 

predictor for an increased risk for opportunistic infections and GVHD severity is inversely 

correlated with the ability to generate naïve T cells and thus recover immune competence.21 This 

situation is even worsened by the administration of immunosuppressive agents to prevent or treat 

GVHD. 15 In 1978, Seemayer et al. described for the first time the injury of the thymus during 

aGVHD in murine models.125 Typical histological features of thymic GVHD include the 

elimination of TEC, changes in number and composition of thymic subpopulations, phagocytosis 

of cellular debris and the depletion of Hassall’s bodies.126-128 The impact of alloreactive donor T 

cells themselves in the context of thymic damage is the subject of intensive investigation. Here, 

unconditioned mouse models serve as a valuable tool to study the direct influence of donor 

mature alloreactive T cells on thymic damage. A good mouse model to study is the 

transplantation of allogeneic splenocytes in a MHC mismatched transplantation setting 

independent of thymic injury induced by cytoreductive conditioning (parental C57Bl/6 (H-2b) 

into the F1 generation (BDF1, H-2bd)).129 Donor mature T cells infiltrate the thymus shortly after 

transplantation and react against the recipient’s antigens, thus triggering a local inflammatory 

cascade that induces thymic tissue injury130 leading to a smaller size and loss of cellularity.31 It 

was shown in several mouse models that loss of cellularity is mainly due to the decrease of 

CD4+CD8+ cells. This massive reduction of DP cells is largely caused by an impaired cellular 

proliferation capacity of immature host thymocytes within the DN3 stage, resulting in an 

accumulation of the DN1 stage and a block in the further development to DP cells.130 Another 

reason for DP reduction is increased apoptosis.77,131 Moreover, in patients with aGVHD, thymic 
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dysfunction is characterized by a decrease in Dβ-JβTREC and signal joint TREC (sjTREC) 

frequencies, which results in a normal sj/DβJβ ratio in the peripheral T cells.132 These 

observations suggest for impairment prior to CD3,CD4,CD8-triple negative (TN) proliferation as 

well as later when both TCR chain rearrangements have already occurred.31,76,133 Importantly, 

these data indicate that aGVHD impairs thymic function independent of advanced age since the 

thymus of older individuals displays a decline in the sj/β signature as a result of reduced TN 

proliferation.21  

Our lab has previously shown that naïve alloreactive donor T cells can be directly primed by 

TEC. Upon allorecognition, donor T cells secrete IFNγ, which in turn activates signal transducer 

and activator of transcription 1 (STAT-1), that stimulates programmed cell death in TEC. A 

subsequent diminished TEC compartment cannot deliver crucial survival, differentiation and 

expansion factors for developing thymocytes anymore. Hence, reduction in TEC numbers is a 

principal injury that limits T-cell maturation and thymic output of naïve T cells following allo-

HSCT.127,129,130 Recently, it has been reported that TRA-expressing Aire+mTEChigh are important 

targets of donor T cells, leading to a declined Aire+mTEChigh pool and restricted TRA diversity.134 

Hence, experimental-induced aGVHD weakens the platform for normal thymic repertoire 

selection, including the selection of conventional and Treg cells. This process likely indicates an 

association between the alloreactivity in aGVHD and autoimmune syndromes during cGVHD 

(see chapter below). 

 

2.2.4 Transition from aGVHD to cGVHD 

 

Flowers and colleagues suggested that the mechanisms which are involved in the respective 

pathologies of aGVHD and cGVHD are not the same and that cGVHD is not simply the end stage 

of aGVHD.135 Several experimental transplantation models now provide evidence that the 

decrease in Tregs and a damaged thymic microenvironment during aGVHD may be crucial events 

that lead to the chronic form of GVHD.55,136-138 During aGVHD, alloreactive T cells attack TRA-

expressing mTEChigh in the thymus that are crucial for negative selection. Importantly, many 

repressed TRAs are specific for tissues known to be major targets of (human) cGVHD (i.e. skin, 

eye).134 The restricted TRA diversity expression on mTEChigh hence suggests for an extrathymic 

presence of autoreactive T cells (“Hit-1”). Together with B cell dysregulation and Treg deficiency 

(“Hit-2”) this may lead to the development of cGVHD.139 Based on this ”2-hit model”,139 an 

etiological link between autoimmunity and antecedent alloreactivity was proposed (Figure 6).138  

 



  Introduction 
	 	
	  

	 18 

 
 
Figure 6: Suggested mechanism for the transition from aGVHD to cGVHD. During acute graft vs-host disease 

(aGVHD), alloreactive donor mature T cells infiltrate the thymus and damage tissue-restricted antigen-expressing 

Aire+mTEChigh that are crucial for negative selection. This mechanism leads to an impaired negative selection process 

resulting in a decreased number of Treg and probably the production and subsequent release of de novo generated 

autoreactive T cells into the periphery. There, autoreactive T cells might induce autoimmune symptoms that are 

manifested in the chronic form of GVHD. This figure is adapted from Pavletic et al., Hematology 2012140 and data 

from Flowers, Rangarajan, Parkman135,139,141 and Krenger were added.  

 

2.2.5 How may post-HSCT thymic function be improved? 

 

The immunological complexity post allo-HSCT shows that an impaired T-cell reconstitution due 

to thymic dysfunction during aGVHD has severe consequences for transplant outcome. A poor T-

cell output not only diminishes the protection against infections, it also increases the risks for 

relapse. Moreover, the diminished HSC-derived de novo T-cell development results in a shrinking 

peripheral naïve T-cell pool, skewed TCR repertoire, diminished Treg numbers and possible 

production of autoreactive T cells and the development of cGVHD.139  

To restore long-term T-cell immunity post-HSCT faster and more efficiently, approaches that 

enhance thymic function would offer an attractive perspective. Several therapeutic und 

prophylactic strategies have been investigated to avoid detrimental effects on the de novo 

generation of T cells post allo-HSCT. For example, an efficient way to enhance thymic function 

is the administration of fibroblast growth factor (Fgf)-7 (also known as keratinocyte growth 

factor, KGF or Palifermin). Fgf-7 is normally expressed by stromal cells and T cells within the 

thymus and stimulates thymic T-lymphopoiesis. Postnatal TEC require external growth factors 

for proliferation as it was demonstrated that immature as wells as adult mTEC and cTEC still 
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express the Fgf receptor FgfR2IIIb. The prophylactic administration of recombinant Fgf-7 indeed 

enhanced thymic function and (re-)generation of the thymic stromal compartment post-HSCT 

regardless of conditioning and aGVHD in mice by protecting TEC from cytotoxicity.142,143 As a 

result of an restored TEC compartment, a functional T-cell development was maintained and 

subsequent enhanced T-cell output positively affected the peripheral T-cell pool.76 Unfortunately, 

the relevance of Palifermin is uncertain since data from clinical trials showed that Palifermin has 

not ameliorated GVHD and not improved T-cell regeneration, and was also particularly 

ineffective in preventing signs of autoimmunity. Moreover, the standard administration of 

steroids in aGVHD negatively regulates Fgf7 mRNA.144  

Alternative strategies to enhance thymic formation and maintenance in the transplant setting, and 

which are currently tested in clinical trials, include hormonal modulation (i.e. growth hormone 

and insulin-like growth factor 1 administration) and cytokines (IL-7 and IL-22).79 Preclinical 

studies have shown that exogenous IL-7 administration indeed enhances thymopoiesis and boosts 

T-cell recovery in murine syngeneic but also allo-HSCT.145-147 In patients, recombinant human 

IL-7 was reported to increase T-cell numbers and patients receiving human IL-7 administration 

also showed a broader TCRβ repertoire in comparison to untreated patients.148 The cytokine IL-

22 also plays an important role in thymic recovery as intrathymic ILCs produce IL-22 as a 

response to acute thymic damage. IL-22 directly promotes proliferation and survival of TEC and 

supports the microenvironment in thymocyte renewal.149 Human recombinant IL-22 is currently 

tested in a clinical trial in aGVHD patients (#NCT02406651).  

These approaches need further testing but it is also clear that new and improved strategies are 

additionally needed that protect or maintain the TEC compartment and thymic microenvironment 

despite TRT to enhance T-cell recovery and a functional peripheral T-cell pool post allo-HSCT.78 

Instead of the initial focus on boosting thymic recovery after damage, an alternative approach 

would be to prevent thymic injury before it occurs. One possibility to prevent thymic damage 

could be by interfering with alloreactive donor T-cell migration to the thymus, as further 

elaborated in the next chapter.  
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2.3 Sphingosine 1-Phosphate (S1P) and the S1P Receptors (S1PR)  

 

S1P is a lysophospholipid that induces many functional responses and actions that are important 

for cell growth, survival, differentiation, lymphocyte traffic, vascular integrity and 

cytokine/chemokine production.150,151 The precursor of S1P, sphingomyelin, is normally 

integrated in the plasma membrane. In response to cytokines, it converts to the sphingolipid 

ceramide and then becomes phosphorylated either in the cytoplasm by the sphingosine-kinase 1 

(SPHK1) or in the endoplasmatic reticulum, mitochondria or nucleus by the SPHK2.152 In the ER, 

the phosphorylated sphingosine is irreversibly degraded or dephosphorylated.119 In the 

mitochondria or nucleus, S1P has direct intracellular targets such as NF-KB signaling via TNF 

receptor-associated factor 2 (TRAF2).153 In the cytoplasm, the phosphorylated sphingosine is 

transported to the blood stream via a S1P transporter. High levels of S1P in the blood plasma are 

produced by erythrocytes154 whereas in the lymph, endothelial cells mainly provide S1P.155 S1P 

binds with high-affinity a family of GPCRs to induce further signaling pathways in an autocrine 

or paracrine manner.118,119 The S1P-receptor (S1PR) family consist of 5 different receptors; 

S1PR1-5.156 S1PR1 was the first described receptor157,158 and was shown to be highly involved 

during embryogenesis in the formation of the vascular network.159,160 Relevant to the present 

thesis is the fact that also lymphocytes, mostly B- and T cell express the S1PR1. The persistent 

expression of S1PR1 allows T cells to migrate and re-cycle within the body.161 The migration 

process is determined by the concentration of S1P itself, suggesting for a tightly regulated 

gradient between S1P levels in the PB, in the lymph and within SLO in a concentration-

dependent manner.119,162  

 

2.3.1 S1P-S1PR1 axis in T-cell development and homeostasis 

 

The importance of S1PR1 in lymphocyte egress from the thymus to the periphery was shown in a 

S1PR1-deficient mouse model in the study of Matloubian and Allende et al..163,164 Thymii of 

S1PR1-deficient mice showed an accumulation of mature CD4/CD8SP thymocytes and a 

decreased proportion of less mature DP cells. Importantly, these DP cells had no phenotypical 

changes typical for their maturation status, suggesting for a normal thymic development but 

impaired egress from the thymus.163,164 During maturation of DP to CD4/CD8SP, S1PR1 mRNA 

is upregulated in thymocytes by the TF Krüppel-like factor 2.165 These and other studies indicated 

that S1PR1 is a key regulator for the egress of T cells from the thymus in response to surrounding 

S1P that is produced by neural crest-derived perivascular cells.163,166 As soon as T cells emigrate 

from the thymus and enter the circulation, they internalize the receptor in response to high S1P 

concentrations in the blood or lymph. This internalization allows T cells to further traffic to SLO 
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where they survey the organ for foreign antigens. In a non-inflamed lymph node, S1P levels are 

lower than in the blood and mature T cells re-express S1PR1. If the lymphoid tissue is inflamed, T 

cells get activated and upregulate CD69 on their surface. This expression induces internalization 

and degradation of S1PR1 to prolong the presence of T cells at the site of inflammation.167 After 

several cell divisions, newly generated effector T cells can then upregulate S1PR1 again to leave 

the peripheral tissue and enter the circulation.119,168 In S1PR1-deficient mice this egress from SLO 

is blocked.168,169  

 

2.3.2 Pharmacological S1PR(1) modulation  

 

The enhanced understanding of lymphocyte egress and traffic paved the way to use the 

S1P/S1PR1 axis for therapeutic interventions in situations where unwanted T-cell responses play 

a role in disease pathogenesis. Thus, manipulating S1P or its receptor might lead to lymphocyte 

trapping within SLO where T cells may maintain their immune response, while the migration to 

possible target organs is prevented. This idea makes it very attractive to use this axis as a target of 

immunosuppressive drugs. In 1996 the compound FTY720 (Fingolimod) was described, which 

acts as S1PR agonist. FTY720 was then used in many preclinical investigations where, for 

instance, it was shown to induce long-term graft acceptance in rats and dogs.170-174 Since then a 

large number of clinical trials have been performed which could clearly demonstrate the efficacy 

of FTY720 in unwanted T cell responses in solid organ transplantation settings, autoimmune 

diseases and cancer due to its agonistic effect on S1PR1,3-5.172,175,176  

   

2.3.3 Role of S1PR1 agonism in the context of GVHD, engraftment and GVT activity 

 

Engraftment 

HSC-derived engraftment post allo-HSCT remains a crucial factor for a successful HSCT 

outcome. The observation that CXC-chemokine receptor 4 (CXCR4), an important regulator in 

BM-derived cell engraftment from and to the BM cavity, is inhibited by S1P under physiological 

conditions, indicated the dependence of CXCR4 signaling on S1PR1 agonism.177,178 Indeed, 

FTY720 was shown to enhance BM-derived allo-reconstitution via the increased expression of 

CXCR4 on HSC-derived progenitors resulting in an improved BM-cell engraftment. However, 

these and other studies showed that improved allo-engraftment was only true for the homing of 

HSC to the BM and by the fact that HSC were retained in the niches.179,180  
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GVHD 

During aGVHD, activated APCs can prime donor T cells within SLO. These alloreactive T cells 

then migrate to GVHD target organs including skin, liver, gut and thymus, shortly after allo-

HSCT and induce tissue damage39 (as shown before, T cells may also be activated directly in the 

thymus). Thus, T-cell migration from SLO to target tissues is crucial for the GVHD effector 

phase and highlights the importance of interfering with T-cell trafficking. With its agonistic effect 

on S1PR1, FTY720 was shown to efficiently reduce alloreactive donor T-cell export from SLO 

and hence to diminish GVHD induction in target organs including the migration to the 

thymus.181,182 Moreover, FTY720 was shown to promote FoxP3+Treg cell differentiation from 

thymic Treg precursors and function of mature Treg via the functional antagonism of S1PR1, which 

normally activates mTORC1 signaling that in turn activates Smad3 and hence antagonizes Treg 

differentiation. 183 Thus, the promotion of higher incidence of Treg differentiation and function of 

mature Treg by FTY720 additionally supports the potential of S1PR1 agonism in GVHD 

prevention. The agonistic binding to S1PR1 by FTY720 leads to a phosphorylation of FTY720 

and a subsequent internalization of the receptor.184-186 Although the receptor is internalized, the 

binding of pFTY720 to S1PR1 leads to a permanent signaling.187 Thus, T cells stay resistant to 

egress-signals coming from S1P and persist within SLO.171  

 

GVT 

S1PR modulation via FTY720 was shown to efficiently separate GVHD from the beneficial GVT 

effect in preclinical models.182,188 The direct effect of S1P on tumor cells was described in several 

studies involving overexpression, inhibition or knockdown of the SPHK1 activity that normally 

promotes cell growth and inhibits apoptosis. An upregulation of SPHK1 for instance increases the 

production of S1P, leading to more activation and induced inflammation and directly correlates 

with poor cancer prognosis, suggesting for SPHK1 inhibitors as cancer therapy.189,190 Also, the 

S1PR agonist FTY720 was reported to have anti-cancer properties in leukemia and lymphoma by 

inhibiting cell growth and inducing apoptosis.191,192 Another potential reason for tumor 

eradication in GVHD during FTY720 administration could be the fact that cytotoxic NK cells are 

not limited in their migration by FTY720 and can migrate to the side of the tumor to support 

tumor killing.170,178  
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2.3.4 The S1PR1-specific agonist KRP203 

 

The molecular basis underlying the mode of action of FTY720 has only recently been 

investigated. The advantage of FTY720 over other immunosuppressants is the fact that it does not 

dampen B- or T-cell function but interferes with T-cell trafficking by trapping lymphocytes 

within SLO. In the context of GVHD, this further provides the GVT effect while the migration of 

alloreactive T cells to target tissue can be reduced. However, the undesirable risk of cardiac 

diseases due to S1PR3 binding overcame the beneficial effect of lymphocyte trapping upon 

FTY720 administration.193,194 These findings suggested using more selective S1PR agonistic 

compounds with an exclusive binding of S1PR1 (Figure 7). The novel compound 2-amino-2-

propanediol hydrochloride (KRP203) is the next generation of a more specific S1PR1 

modulator.195 In addition, KRP203 has already been shown to induce permanent acceptance of 

pancreatic islet allografts and an even enhanced Treg frequency and function in a mouse model.196 

Based on the beneficial function of Tregs and the highly selective affinity to S1PR1, KRP203 may 

be a promising novel approach for GVHD prevention. KRP203 is currently tested in a clinical 

trial phase I at the University Hospital of Basel for GVHD prevention in patients undergoing allo-

HSCT (#NCT01830010). The estimated primary completion of the study is expected in August 

2018.197  
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Figure 7: Suggested mode of action of KRP203 during aGVHD. Sphingosine-1-phosphate receptor 1 (S1PR1) is 

mainly expressed by naïve T-lymphocytes in order to egress out of secondary lymphoid organs (SLO) by 

chemoattractance by S1P in the blood. In acute graft-vs-host disease (aGVHD), the S1PR1 agonist KRP203 blocks the 

export of donor mature T cells once they migrated to SLO so they cannot migrate to any aGVHD target organ while 

maintaining graft-vs-tumor (GVT) activity at these sides. This figure is adapted from Rivera et al., Nature Immunology 

Reviews 2008.198 
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3. Aim of the Project and Hypotheses 
 

Before initiation of my PhD thesis, it was known that I) acute thymic GVHD is induced by 

alloreactive donor T cells that have entered the thymus and II) that thymic injury is characterized 

by a diminished pool of Aire+mTEChigh and consequently a loss of thymic ectopic expression of 

tissue-restricted self antigens (TRA).134 These observations raised the question whether functional 

impairment of the thymic medulla may be responsible for a defect in thymic self-tolerance 

induction and subsequently the release of autoreactive T cells into the periphery in the course of 

disease. Since aGVHD predisposes to cGVHD with autoimmune manifestations, it seemed 

possible that loss of central tolerance induction provided a pathogenic link between autoimmunity 

and antecedent alloreactivity. As a corollary, the interference with donor T-cell migration should 

prevent thymic injury and hence allow for a normal posttransplantation T-cell development in the 

absence of autoreactive T-cell generation. Founded on these hypotheses, I intended to investigate 

as core of my PhD thesis the following two interrelated specific aims: 

 

Specific aim 1: To test whether mTEC injury and consequent impairment of thymic TRA 

expression licenses the de novo generation of autoreactive T cells in aGVHD 

 

To address this hypothesis the following questions were asked: 

 

1.  Is there direct evidence that de novo production of TRA-specific T cells during aGVHD is 

a consequence of impaired ectopic TRA expression that results from a diminished 

mTEChigh cell pool?  

 

2.  Does the lack of appropriate thymic negative selection during aGVHD cause an escape 

of autoreactive T cells to the periphery? 
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Specific aim 2: To test whether preventing thymic donor T-cell infiltration via the S1PR1 

agonist KRP203 protects the TEC compartment and allows for normal thymic development and 

negative selection in experimental aGVHD.  

 

Sphingosine-1-phosphate receptor 1 (S1PR1) is critically involved in T-cell traffic and S1PR1 

agonism is known to prevent migration to GVHD target tissues.181 Therefore, I intended to ask 

the following questions: 

  

3.  Does KRP203 affect posttransplantation T-cell regeneration? 

 

4.  Does interference in the S1PR1 pathway via KRP203 prevent alloreactive donor T-cell 

migration into the host thymus during aGVHD? 

 

5.  Does KRP203 able to prevent thymic epithelial cell injury and hence allows for normal 

thymic negative selection and avoid the escape of autoreactive T cells during aGVHD? 

 

6.  Is KRP203 able to preserve GVT activity? 
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4. Materials & Methods 
 

4.1 Mice  

 

Female C57BL/6 (B6; H-2b), C57BL/6.CD45.1 (B6Ly5.1; H-2b), Balb/c (H-2d), CBy.PL (B6)-

Thy1a/ScrJ (Balb/c-Thy1.1;H-2d), B6.Cg-Tg(TcrαTcrβ)425Cbn/J (OT-II;H-2b) and C57BL/6-

Tg(Ins2-TFRC/OVA)296Wehi/WehiJ (RIP-mOVA;H-2b), C57BL/6RAG-/- were bred in house 

but originally purchased from The Jackson Laboratory (Bar Harbor, ME). C57BL/6 x DBA/2 F1 

(BDF1; H-2b/d) were purchased from Janvier (Le Genest Saint Isle, France). 129/Sv (H-2b) mice 

were purchased from Charles River (Lyon, France). All mice were kept in SPF conditions and in 

accordance with institutional regulations.  

 

4.2 Allo-HSCT and GVHD induction 

 

4.2.1 Myeloablative MHC mismatched allo-HSCT without aGVHD 

 

To evaluate thymus-dependent T-cell reconstitution post allo-HSCT without GVHD, B6 Thy1.2 

mice received total body irradiation (TBI = 1000cGy, in 2 series separated by 3 hours) and were 

reconstituted intravenously (i.v.) with 7x106 T-cell depleted bone marrow (TCDBM) from 

Balb/cThy1.1 mice. Mice were sacrificed at 1.5, 3 and 6 weeks post HSCT and thymus, spleen 

and LN were isolated, counted and analyzed by flow cytometry. To study thymic import and 

intrathymic T-cell development post allo-HSCT, B6 deficient for the recombinating activating 

gene (RAG-/-) recipients were lethally irradiated (1000cGy) and reconstituted with 7x106 TCDBM 

from B6CD45.1+ donors. Mice were analyzed 3 weeks post HSCT.  

 

4.2.2 Unconditioned haplo-ID MHC mismatched allo-HSCT model with aGVHD  

 

To investigate the direct effect of donor mature T-cell mediated alloresponses on thymic function 

in aGVHD 35x106 splenic T cells from C57BL/6 (H-2b) mice were i.v. injected into unirradiated 

F1 generation (BDF1 mice, H-2bd) (unconditioned haplo-ID allo-HSCT model; B6àBDF1 = H-2b 

àH-2bd; bàbd). These mice develop symptoms of aGVHD such as thymic injury, splenomegaly, 

skin inflammation and diarrhea within 2 weeks post-transplantation.130,199,200  
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4.2.3 Myeloablative MHC mismatched allo-HSCT model with aGVHD  

 

To study aGVHD in a fully myeloablative MHC)-mismatched model, 7x106 TCDBM from 

Balb/cThy1.2+ (H-2d) mice were co-transferred with 2x106 purified splenic CD3+ T cells 

(TCDBM + T cells) from Balb/cThy1.1+ (H-2d) donors into lethally (1000cGy) irradiated B6 (H-

2b) recipients (Balb/càB6 = H-2dàH-2b; dàb). TCDBM alone served as a control. Mice were 

sacrificed at 2 and 4 weeks post-HSCT and spleen, LN and thymus were analyzed.  

 

4.2.4 Myeloablative minor-HA mismatched allo-HSCT model with aGVHD  

 

To study aGVHD in a miHA-mismatched model, 7x106 TCDBM ± 4x106 purified CD3+ T cells 

from 129Sv/S1 (H-2b) donors were transferred into lethally (1000cGy) irradiated 

C57BL/6CD45.1+ (H-2b) recipients. Here, the symptoms of aGVHD manifest within 4 weeks 

post-HSCT. Mice were sacrificed 4 weeks post-HSCT and spleen, LN and thymus were analyzed. 

 

4.2.5 OTIIàRIP-mOVA; Transgenic myeloablative MHC mismatched allo-HSCT model 

with aGVHD  

 

To study de novo production of autoreactive T cells in mice with aGVHD, a transgenic mouse 

model was used: B6 RIP-mOVA mice (H-2b) that express membrane-bound ovalbumin (mOVA; 

residues139-385) as a surrogate self-antigen under control of the rat insulin promoter (RIP) in the 

pancreas but also in the thymus medulla were lethally irradiated and received TCDBM ± T cells 

from Balb/c (H-2d) donors. After 4 weeks, mice that received T cells develop aGVHD including 

thymic damage. To study negative thymic selection, the d→RIP-mOVAb recipients were re-

irradiated 4 weeks after the 1st allo-HSCT and infused with syngeneic TCDBM from OTII mice 

mixed with B6 wild-type TCDBM in a 1:3 ratio. Transgenic OT II mice were bred with Rag2-

deficient OT-II mice, generating transgenic Vα2Vβ5 TCR specific for OVA323-339, with B6.SJL-

PtprcaPep3b/BoyJ (B6.CD45.1;H-2b) on a CD45.1+ congenic background originally at the 

Benaroya Research Institute (Seattle, WA).201 HSC-derived OTII+ (Vα2+Vβ5+ T cells) will 

undergo normal thymic development and will be negatively deleted after OVA recognition.202,203 

Mice that developed aGVHD will have an impaired negative selection due to mTEC damage and 

thus are not able to delete OT-II+ cells. The consequence is the release of de novo generated 

OVA-specific T cells into the periphery. Emergence and function of OVA-specific CD4+ T cells 

(CD4+CD45.1+Vα2+Vβ5+) was tested after the 2nd syngeneic HSCT.  
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4.2.6 Myeloablative MHC mismatched allo-HSCT model with cGVHD  

 

To study the development of cGVHD through thymic dysfunction, 0.1x106 of CD8+ T cells from 

C57BL/6 (H-2b) donors were transferred into lethally (800cGy) irradiated Balb/c (H-2d) 

recipients. In this model, auto-Ab are produced in skin and salivary glands within 60 days post-

HSCT.137 

 

4.3 KRP203 administration 

 

4.3.1 Dose-response 

 

Naïve WT C57Bl/6 mice were injected i.p. with 0.3mg/kg, 1mg/kg or 3mg/kg KRP203 every 

second day for 7 days to test dose/response relationships. KRP203 was initially dissolved in 0.5% 

methyl cellulose (MC) for oral gavage. As a control, MC alone was given orally. For i.p. 

injections, KRP203 was dissolved in PBS. Safety, tolerability, pharmacokinetics and efficacy 

of KRP203 in patients undergoing stem cell transplant for hematological malignancies will be 

evaluated in a parallel clinical study that had been initiated prior to initiation of our preclinical 

research (ClinicalTrials.gov Identifier: #NCT01830010). This interventional study is sponsored 

by Novartis Pharmaceuticals 

 

4.3.2 Therapeutic administration 

 

For therapeutic application, mice received 3mg/kg KRP203 i.p. every 2nd day starting 1 week 

after HSCT until the end of experiment.  

 

4.3.3 Prophylactic administration 

 

For prophylactic administration, mice were injected i.p. with 3mg/kg of KRP203, every 2nd day 

continuously from day-1 of transplantation until the end of experiment.  

 

4.3.4 Withdrawal 

 

For withdrawal experiments, mice received KRP203 at a dose of 3mg/kg from day -1 of 

transplantation every 2nd day for 7 or 14 consecutive days. Analysis of mice was either at day 14 

or 21 respectively. 
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4.4 In vivo tumor injection  

 

To induce aGVHD in mice carrying the A20 tumor, 7x106 TCDBM from B6CD45.2+ (H-2b) mice 

were co-transferred with 2x106 purified splenic CD3+ T cells (TCDBM + T cells) from 

B6CD45.1+ (H-2b) donors into lethally irradiated (800cGy) Balb/c recipients (H-2d) recipients 

(B6àBalb/c = H-2bàH-2d; bàd). 1x104 A20 luciferase+ cells (this cell line was a present from 

Gang Zhou from Johns Hopkins University) were injected into the inguinal lymph node as 

described204 one day post allo-HSCT under anesthesia with isoflurane. Mice recovered from 

anesthesia within 2min after the injection. 

 

4.5 In vivo cell proliferation 

 

To determine proliferation in different DN stages, mice were pulsed with BrdU [1mg/mouse, 

dissolved in PBS, 200ml injection volume] i.p. 3 hours and 1 hour before sacrificing the mice. To 

determine long-term proliferation, BrdU was diluted to 0.8mg/ml in the drinking water and mice 

received the drinking water for 1 consecutive week. Mice were sacrificed, organs isolated and 

BrdU+ cells were determined by flow cytometry according to the manufactory’s protocol (BD 

Pharmingen #559619 BrdU Flow Kits) and as published in Krenger et al. 130 

 

4.6 Cell preparation 

 

4.6.1 Cell counting 

 

To determine absolute cell numbers, organs were harvested and cell suspensions made. From the 

cell suspension, 50ml were taken aside and 5ml were acquired with the flow cytometer BD 

AccuriTM C6 (BD Bioscience). The absolute cell numbers were calculated by multiplying 

acquired cell numbers with the dilution factor.  

To determine absolute cell numbers in the PB, counting beads were used according to the 

manufacturer’s protocol (Invitrogen, AccuCheck Counting Beads, #PCB100, Invitrogen)  

 

4.6.2 T-cell enrichment  

 

For T-cell enrichment, whole splenocytes were isolated from donors. Erythrolysis was performed 

with ACK buffer (self-made) for 3min. The cells were magnetically enriched with an anti-CD3 

antibody according to the manufacturer’s protocol (Invitrogen, #11413D Dynabeads Untouched 

Mouse T cell Kit) and used for further injection.  
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4.6.3 T-cell depletion  

 

To obtain BM cells, bones (tibia and femur) were crushed with a mortar. To deplete T cells the 

cell suspension was incubated with hybridoma supernatant containing monoclonal Abs against 

CD4 (RL172), CD8 (31M), pan-Thy (T24) and/or Thy1.2 (HO-12-4-9) for 15min on ice. The 

cells were washed and incubated with complement (Cedarlane, #CL3051, Low Tox-M Rabbit 

complement) for 45min in a water bath at 37°C. The cells were washed, counted and used for 

injection. 

 

4.6.4 Thymic epithelial cell enrichment 

 

For TEC enrichment, the thymus was isolated from the mouse and put in digestion buffer 

(Liberase (Roche) and DNAse I (Roche)) for 5min at 37°C. The cell suspension was then pipetted 

up and down about 10-20 times. This step was repeated several times until all cells were in 

suspension. Cells were washed and stained with α-G8.8 biotin antibody for 20min on ice. Cells 

were washed and anti-biotin microbeads (Miltenyi, #130-090-485) were added for 15min in the 

fridge. The cells were washed again and positively selected with the AutoMACS Machine as 

already described138. 

 

4.7 Antibodies and flow cytometry analysis 

 

Single cell suspension were prepared from different organs, cells were stained, acquired on 

Fortessa® (Becton Dickinson, Mountain View, CA) and analyzed with the FlowJo Software 

(Treestar). For surface staining, cell suspensions were stained for 30min on ice, for intracellular 

staining cells were stained according to the manufactory’s script (Intracellular Fix/Perm Kit, 

eBioscience, # 88-8824-00). The murine monoclonal antibodies that were used are listed in the 

chapter 8: Reagents.  

 

4.8 Immunohistochemistry 

 

For the localization of Aire+mTEC cells in the thymus, immunofluorescence microscopy was 

used. Therefore the organs were embedded in OCT and frozen with dry ice. The frozen organs 

were cut with a cryostat (Leica, CM1950) and fixed in acetone for 5 minutes. Samples were then 

rehydrated in PBS for approximately 5 min. The slide was dabbed on a tissue to remove the fluid. 

The slide was then incubated in blocking solution (PBS, 0.1% TritonX, 1% BSA, 1% goat serum) 

for 30 min. The samples were then washed and stained with the first antibody against cytokeratin 
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14 (CK14; rabbit, biotinylated) that is expressed by the medulla, for 60min at RT in blocking 

solution. In case of a directly labeled Ab (Aire) this step was skipped or blocking solution was 

added for 60min. After washing with PBS the slide was stained with the second Ab (goat anti-

rabbit A488) or a directly labeled Ab for another 60min. After washing with PBS the slides were 

mounted with Hydromount and analyzed by fluorescent microscopy (Olympus BX61 Diana) or 

confocal microscopy.  

 

4.9 Bioluminescence imaging 

 

To detect bioluminescence of mice receiving luciferase+ tumor cells, mice were injected i.p. with 

150mg/kg Luciferin (Promega, #1605) 3 minutes before anesthesia and another 2min under 

anesthesia, before imaging. Imaging was performed with the NightOwl LB 983 in vivo Imaging 

System (Berthold Technologies). Peak signal intensity and tumor area were analyzed with the in 

vivo imaging software IndiGO (Berthold Technologies). 

 

4.10 Statistical Analysis 

 

All values are depicted as mean ± SD. Statistical analysis comparing two groups was performed 

using Mann-Whitney U test. Three groups or more were analyzed using Kruskal-Wallis one-way 

ANOVA and a Dunn’s multiple comparison with the GraphPad Prism (GraphPad Software, La 

Jolla California USA). Pooled experiments were analyzed with two-way ANOVA and Fishers’ 

LSD uncorrection. This uncorretion test is commonly used to exclude inter-experimental 

variations when pooled data were used. For P values > 0.05 = ns (not significant), P ≤ 0.05 = *, P 

≤ 0.01 = **, P ≤ 0.001 = ***. 
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5. Results 
 
5.1 Impaired thymic expression of tissue-restricted antigens licenses the de novo 

generation of autoreactive CD4+ T cells in acute GVHD 

 

Our laboratory had previously generated data in experimental allo-HSCT systems which 

demonstrated that the thymus is an important target of donor T-cell alloreactivity during 

aGVHD.129 This TRT weakens in consequence the platform for central tolerance induction as 

individual TRA are purged from the total repertoire due to a decline in Aire+mTEChigh.134 These 

data had provided a putative mechanism for how autoimmunity may develop in the context of 

antecedent alloimmunity. However, a formal proof of this contention was still lacking at the time 

of initiation of the present PhD thesis. Therefore, my first experiments - as part of a collaborative 

effort with the first author of this ongoing project - were aimed at demonstrating whether a direct 

link existed between a functional compromise of mTEC and the peripheral emergence of 

autoreactive T cells during aGVHD. Transgenic mice that express membrane-bound ovalbumin 

(mOVA) under the rat insulin promoter (RIP) were deemed suitable to address putative 

mechanistic links between altered thymic TRA expression and the thymic production of TRA-

specific T cells in aGVHD. In these RIP-mOVA mice, OVA is expressed in the pancreas but also 

in the thymus specifically in mTEC as a membrane bound surface protein. mOVA thus mimics an 

unique surrogate self-antigen that can be subject to self-tolerance induction. Conversely, 

transgenic OT-II mice that are deficient for the recombinant activating gene (RAG) mice carry a 

TCR (Vα2Vβ5 chain) that is specific for the OVA323-339 peptide. Therefore, to test whether loss of 

mOVA expression affected central deletion of OT-II OVA-specific T cells during aGVHD, we 

transplanted lethally irradiated RIP-mOVA mice (H-2b) with TCDBM ± T cells from Balb/c (H-

2d) donors (Figure 8). After 4 weeks, mice that had received T cells developed aGVHD and 

thymic damage. After a secondary irradiation, TCDBM from OT-II mice were transplanted. In 

this system, HSC-derived Vα2+Vβ5+ OT-II T cells were expected to undergo normal thymic 

development and to be negatively selected after high-affinity OVA recognition in the thymus. In 

contrast, mice that developed aGVHD were expected to own an impaired negative selection due 

to mTEC damage and TRA (mOVA) loss. In consequence, OT-II T cells were not expected to be 

deleted to the same extent anymore and hence should be released into the periphery.  
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Figure 8: Mouse model to study thymic de novo generation of autoreactive T cells during aGVHD. To induce acute 

GVHD (aGVHD), age-matched lethally irradiated RIP-mOVA recipients (H-2b) received co-injection of TCDBM from 

Balb/cThy1.1+ mice (H-2d) + splenic T cells from Balb/c Thy1.2+ (H-2d) donors. Injection of TCDBM alone served as a 

control. 4 weeks after the 1st allo-HSCT, RIP-mOVA recipients got lethally re-irradiated and transplanted with 

TCDBM from OT-II CD45.1+ and C57BL/6 CD45.2+ donors. Another 4 weeks later, mice got sacrificed and thymus 

and secondary lymphoid organs were analyzed. Thymus-dependent autoreactive T cells were detected by the congenic 

marker CD45.1+ together with the expression of the TCR chains Vα2+Vβ5+ that were expressed by the OTII+ T-cell 

clones.  

 

All experiments were performed in 2014-2015. The data were published (Dertschnig et al., Blood 

2015,125:2720, see Annex) and are hence only summarized here: 

 

Our data consistently demonstrated a reduction in the expression of both Aire mRNA and protein 

and also mOVA RNA expression as a consequence of aGVHD-mediated TEC injury. Since Aire 

regulates OVA expression205 and since the Aire+mTEChigh subset is reduced in numbers during 

aGVHD,134 our data argued that loss of Aire+mTEChigh was responsible for the deficiency in 

thymic OVA during aGVHD. 

We postulated that aGVHD interfered with negative selection of the OVA TCR because (a) Aire-/-

RIP-mOVA mice cannot efficiently delete OT-II T-cells205 and (b) total thymic mOVA 

expression levels correlate with deletion efficacy of OVA-reactive TCR.104,203,205-207  

Thymic OT-II CD4+ T-cell development was monitored by assessment of CD45.1+ cells (Figure 

8). An adequate ratio206 between CD45.1+ immature CD4+CD8+ (DP) and mature CD4+CD8- 

thymocytes (CD4SP) indicated regular deletion of OVA-specific TCR in OT-IIb→[d→RIP-

mOVA] mice without disease, as expected (see publication). Much lower DP/CD4SP ratios were 

observed in transgenic recipients with aGVHD (low thymic mOVA) however, indicating 
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inefficient deletion of OT-II cells. DP/CD4SP ratios were in the majority of these mice not 

distinguishable from ratios in OT-IIb→[d→C57BL/6] non-deleting controls (no thymic mOVA). 

Deficient elimination of OT-II cells in transgenic mice with aGVHD was substantiated by two- to 

three-fold higher frequencies of CD45.1+CD4SP among total thymic CD4SP cells when 

compared to mice without aGVHD. Thus, an aGVHD-mediated loss of OVA expression in 

mTEChigh resulted in an unopposed escape of "forbidden" OVA-specific Vα2+Vβ5+CD4+ T-cell 

clones within the host thymus.202 Importantly, higher numbers of OT-II cells were also present in 

LN and spleens of transgenic mice with aGVHD when compared to transgenic mice without 

disease. Since mature OT-II T cells were not passively transferred from donor grafts, formation of 

the peripheral OT-II pool was thymus-dependent. 

 

Moreover, in transgenic recipients with aGVHD, the fraction of C57BL/6 (CD45.1-) donor bone 

marrow-derived Foxp3+ Tregs among total splenic CD4+ cells were reduced in frequency from a 

normal average of 10% to an average <1% (see Appendix, Manuscript Figure 2B). Among 

CD45.1-Foxp3+ cells, some were FR4highCD73high, documenting their anergic phenotype. In 

contrast, emerging OT-II (CD45.1+) cells were exclusively Foxp3- conventional T cells whose 

FR4-CD73- phenotype suggested that they were non-anergic. Indeed, CD45.1+CD4+ (OT-II) cells 

but not CD45.1-CD4+ (non-OT-II) cells isolated from aGVHD mice vigorously responded to 

OVA peptide in culture (see Appendix, Manuscript Figure 2C and 2D). 

 

Taken together, these results provided direct evidence in transgenic mice using OVA as model 

TRA that intrathymic de novo production of TRA-specific CD4+ T cells during aGVHD is 

triggered by impaired ectopic TRA expression. These OVA-reactive T cells are exported into a 

periphery that is characterized by Treg deficiency. Hence, the functional compromise of the mTEC 

compartment may provide a pathogenic link between alloimmunity and the development of 

autoimmunity.  
 

Our results published in Blood led me to propose that interference with alloreactive donor T-cell 

trafficking to the host thymus might prevent thymic damage. Protection of the mTEC 

compartment, including TRA-expressing Aire+mTEChigh could in turn prevent breakdown of 

thymic central tolerance induction. A successful intervention could hence avert the export of 

autoreactive T cells to the periphery and therefore block the pathogenic mechanism responsible 

for the transition of aGVHD to the chronic form of disease. Since S1PR1 is known to be critically 

involved in lymphocyte trafficking, I hypothesized that the specific S1PR1 agonist KRP203 could 

achieve this goal. Using experimental allo-HSCT models, I tested this hypothesis in my 

subsequent work. 
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5.2 The influence of KRP203 on thymus-dependent T-cell regeneration in the 

absence of aGVHD 

 

5.2.1 Continuous KRP203 administration reduces T-cell numbers circulating in the blood of 

untransplanted mice 

 

The administration of KRP203 may offer an effective novel modality to prevent human GVHD 

by inhibiting alloreactive T-cell trafficking from SLO into peripheral tissue.181 Gaps in 

knowledge remain, however, with regard to KRP203-mediated S1PR1 agonism on 

posttransplantation intrathymic T-cell development and thymic export of new naïve T cells. Since 

S1PR1 activation is required for the export of new naïve T cells from the thymus,163,164 any 

intervention intended for GVHD prophylaxis may also alter the magnitude of posttransplantation 

thymic T-cell production and therefore impair T-cell regeneration. I addressed this importation 

issue in my first experiments using naïve mice and non-GVHD transplantation models, which are 

uniquely suited for independent manipulations of different experimental variables and to assess 

the efficacy and pharmacodynamics of KRP203.  

Novartis Inc. has previously generated preclinical data to describe the pharmacodynamics and 

toxicology of KRP203,197 which were not required to be repeated in the present thesis. KRP203 

has been shown to effectively redistribute lymphocytes to SLO and thus prevents effector cell 

migration to the target organs in various animal models of autoimmune disease.196 Nevertheless, 

to confirm the efficacy of the drug in the specific murine models studied during the present PhD 

project, I chose to initiate experiments using naïve mice. To establish a dose-response 

relationship, I firstly injected wild-type C57BL/6 mice i.p. with 0.3mg/kg, 1mg/kg or 3mg/kg 

KRP203 dissolved in 0.5% methyl cellulose (MC) every second day based on published 

protocols208,195,188. As a control, 0.5% MC alone was injected. On day 7 after continuous KRP203 

administration, mice that received 3mg/kg had the lowest lymphocyte counts in the PB (25±15% 

reduction), in comparison to the group that received 1mg/kg (15±7%) or 0.3mg/kg (11±3%) 

(Figure 9A). Since the S1PR1 is strongly expressed on T cells, I tested whether the reduction was 

true for both CD4+ and CD8+ T cells after KRP203 administration for 2 weeks. Indeed, I observed 

a decrease for CD4+ (from 3.5±1.2x104 to 1.5±1.2x103) and CD8+ T cells (from 2.9±1.5x104 to 

8.7±6.1x102) among whole peripheral blood mononuclear cells (PBMC) (Figure 9B). To 

determine the pharmacokinetics of KRP203, PBMC from B6 mice were measured during a 14-

day treatment period. During that time, mice received 3mg/kg KRP203 i.p. every 2nd day for 11 

days. KRP203 application was then withdrawn (WD) for another 4 days (Figure 9C). 

Lymphocyte counts were significantly reduced in the PB between day 1 and 2 after the first 

injection (from ≤1x104 to ≤1x102 lymphocytes/ml) and remained so for 11 days until the drug 
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was withdrawn. Since the ultimate goal was to apply KRP203 in an allo-HSCT setting, this was 

an important observation and strongly advocated the use of a prophylactic KRP203 regimen (i.e. 

start one day before transplantation (day-1)) in order to reach an optimal efficacy in lymphocyte 

migration reduction. Importantly, two days after WD, lymphocyte counts returned to numbers 

present in normal control B6 mice (≤1x104 lymphocytes/ml) (Figure 9D). These results indicated 

that KRP203 administration was best applied continuously (every second day). Based on these 

data, I decided to use a standard KRP203 administration schedule for future experiments that 

consisted of i.p. injections of the highest dose tested (3 mg/kg) continuously (meaning every 2nd 

day) from day-1 until the end of a given experiment.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Continuous KRP203 administration reduces T-cell numbers in the peripheral blood (PB) of naïve mice in 

a dose-dependent manner. Reduction (in %) of peripheral blood mononuclear cells (PBMC) is shown as a function of 

the applied KRP203 dose after 7 days of continuous (every 2nd day) i.p. injection of 0.3mg/kg, 1mg/kg or 3mg/kg 

KRP203. Control mice received methyl cellulose (MC) alone (A). Absolute cell numbers of CD4+ and CD8+ T cells 

among whole PBMC are shown at 2 weeks after continuous KRP203 application (3mg/kg, i.p., every 2nd day) (n). 

Untreated control mice received MC only (O) (B). Experimental scheme of KRP203 administration (C). Lymphocyte 

counts from peripheral blood (PB) were measured over 15 days during continuous KRP203 injection and after 

withdrawal (WD) at day 11 (D). This figure represents pooled data from independent experiments with ≤3 mice per 

group. *p< 0.05, Mann-Whitney U-test.  
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5.2.2 KRP203 increases frequencies of CD4SP and CD8SP T cells in the thymus of 

untransplanted mice 

 

The ultimate goal of my experiments was to establish whether KRP203 - via interference with 

alloreactive donor T-cell migration to the thymus - would limit aGVHD-mediated thymic injury 

and hence improve thymus-dependent T-cell regeneration following allo-HSCT. The effects of 

S1PR1 agonism on posttransplantation intrathymic T-cell development and thymic export of new 

naïve T cells have not been investigated to date. Since S1PR1 activation is required for both the 

import of progenitors to and export of new T cells from the thymus in normal mice,163 any 

intervention intended for aGVHD prophylaxis via KRP203 may, however, also unintentionally 

lower the magnitude of thymic T-cell production and hence impair posttransplantion T-cell 

regeneration. To approach this possible problem, my first experiments were aimed at establishing 

the effects of KRP203 on intrathymic T-cell development in normal untransplanted mice. To this 

end, I injected KRP203 (3mg/kg) i.p. every 2nd day in naïve mice. After 1 week, mice were 

sacrificed and the thymic T-cell compartment was analyzed by flow cytometry. The CD4,CD8 

double negative (DN) compartment was not affected by KRP203 with regard to absolute cell 

numbers (Figure 10A, upper row) and frequencies (Figure 10B, upper row). In contrast, the 

CD4,CD8 double positive (DP) compartment showed a significant decrease in its frequency 

(mean from 82.7±3.6% to 70.6±5.8%, ***P=0.0001) when mice received KRP203 for 1 

consecutive week (Figure 10B, upper row). The decrease of the DP cell compartment was 

associated with a concomitant increase of CD4SP cells with regard to absolute cell numbers 

(4.8±1.6x106 to 1.4x107±3.4x106 ***P= <0.0001) and frequencies (from 8.8±2.7% to 

18.1±4.6%, ***P=0.0001). Similarly CD8SP cell numbers increased from 2.1x106±8.1x105 to 

3.9±1.3x106, ***P=0.0057 and frequencies were also higher from 3.9±1.7% to 7.2±1.5%, 

***P=0.0008 upon KRP203 administration (Figure 10A, B, respectively, lower panel).  
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Figure 10: KRP203 increases cell numbers and frequencies of CD4SP and CD8SP T cells in the thymus of naïve 

mice. Naïve female B6 mice received KRP203 (3mg/kg, i.p., every 2nd) day for 2 consecutive weeks. Absolute cell 

numbers (A) and frequencies (B) of CD4SP, CD8SP, DN and DP T cell subsets were determined in the thymus from 

naïve mice with KRP203 application (n) or without (O). These data represent combined data from 3 independent 

experiments with n=3 mice per group. Endothelial cells (CD45-CD31+) in the thymus were stained for P-Selectin 

expression 1 week with (n) and without (O) KRP203 injections and absolute cell numbers were determined from one 

representative experiment (C). *p< 0.05, Mann-Whitney U-test. 

 

This increase of SP cells suggested an accumulation of T cells upon KRP203 administration that 

might be due to a block of thymic export as it was previously reported for FTY720.163 It was 

previously shown in mice that if the export of thymocytes is blocked, CD4SP and CD8SP T cells 

fill up the niches in the thymus over time that in turn leads via a feedback mechanism to a block 

in thymic import.(209 where S1P is suggested to act as a feedback signal.210 Thus, diminished 

thymic import has no or reduced expression of P-Selectin (CD62P) on endothelial cells acting as 

a recruitment signal for thymic progenitors.210 Thus, to answer the question if KRP203 might 

affect the export of thymocytes, I measured P-Selectin expression on CD31+ endothelial cells in 

the thymus by flow cytometry and calculated absolute cell numbers. I did not observe a 

significant decrease in CD31+P-Selectin+ cells (Figure 11A) although there was a trend towards 

lower P-Selectin expression (albeit not statistically significant). Decreased P-Selectin expression 

indeed suggested the presence of full niches within the thymus. However, my results did not 

provide conclusive results if the accumulation is indeed due to a blocked thymic export. 

Therefore, I further tested if the accumulation was a consequence of increased proliferation. To 

address this question, I injected naïve B6 mice with KRP203 for 3 days and pulsed them with 

BrdU 3 hours and 1 hour before analysis. BrdU incorporates into the DNA and can be detected 

with α-BrdU Ab by flow cytometry in proliferating cells. I did not observe a significant 
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difference in proliferation. Nevertheless, a trend towards higher proliferation upon KRP203 

administration in all T-cell subsets was observed (CD4SP, CD8SP, DP and DN) (Figure 11B 

from left to right respectively). These data led to the tentative conclusion that both – enhanced 

proliferation and blocked export – may have been causes for the accumulation of SP cells. This 

contention, however, needs to be examined in more detail in studies not performed in this thesis.  

 

 
 

Figure 11: Accumulation of CD4, CD8 single positive cells might be due to full niches and increased proliferation. 

Naïve female B6 mice received KRP203 (3mg/kg, i.p., every 2nd) day for 7 days. Thymic endothelial cells (CD45-

CD31+) were stained for P-Selectin expression 1 week with (n) and without (O) KRP203 injections and absolute cell 

numbers were determined (A). These data represent 1 experiment with n=4 mice per group. *p< 0.05, Mann-Whitney 

U-test. Naïve female B6 mice received KRP203 (3mg/kg, i.p., every 2nd day) for 3 days. Mice were pulsed with BrdU 

i.p. 3 hours and 1 hour before analysis. Frequencies of BrdU+ subsets were determined from naïve mice with KRP203 

application (n) or without (O) (B). These data represent 1 experiment with n=3 mice per group.  

 

Taken together, these results raised the possibility whether KRP203 inadvertently influenced 

thymus-dependent T-cell production post-HSCT in a negative way. To address this problem, I 

next tested whether and how posttransplantation thymus-dependent T-cell regeneration was 

indeed affected in transplanted mice without aGVHD. 

 

5.2.3 Thymic T-cell maturation is normal in allo-HSCT recipients under the KRP203 

umbrella 

 

I tested whether S1PR1 agonism via KRP203 had an inhibitory effect on the export of newly 

generated naïve T cells from the thymus to the periphery in mice receiving allo-HSCT but in the 

absence of thymic injury induced by alloreactive donor T cells. To this end 7x106 TCDBM from 

Balb/c donors were transplanted into lethally irradiated MHC-mismatched B6 recipients 

(Balb/càB6 = H-2dàH2b; dàb). KRP203 was administered prophylactically (day-1) and 

continuously until the end of the experiment (1.5, 3 and 6 weeks). Mice were sacrificed 1.5, 3 and 

6 weeks after transplantation and the thymus was analyzed. Donor BM-derived T cells could be 
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detected with the congenic marker Thy1.1 (CD90.1) that was exclusively expressed by donor 

cells (Figure 12A). Different thymic subsets including CD4SP, CD8SP, DP and DN were 

determined by flow cytometry and absolute cell numbers were counted. The data demonstrated 

that all T-cell subsets were comparable to the untreated control mice with regard to absolute cell 

numbers at all time points analyzed (Figure 12B).  

 

 
 

Figure 12: Thymic T-cell maturation is normal in allo-HSCT recipients in the presence of KRP203. Lethally 

irradiated B6 recipients received TCDBM without (O) and with (n) KRP203 administration (3mg/kg, i.p., ever 2nd day) 

day-1 before allo-HSCT until 1.5, 3 and 6 weeks post-HSCT from a fully MHC-mismatched (H-2dàH-2b) Balb/c donor. 

Reconstituted donor BM-derived T cells were identified by the expression of the congenic marker Thy1.1 (A). The 

absolute cell numbers of the thymus were determined at 1.5, 3 and 6 weesk post allo-HSCT (B). The graphs represent 

data from 4 independent experiments with n=4 mice per group. *p< 0.05, Mann-Whitney U test.  

 

To evaluate the effect on early thymocyte development, I determined absolute cell numbers of 

DN stages 1-4 (DN1-DN4; CD44+CD25-, CD44+CD25+, CD44-CD25+, CD44-CD25- 

respectively). DN1, DN2 and DN4 were not affected by KRP203 as cell numbers were 

comparable at 3 weeks post allo-HSCT in both cohorts. However, the DN3 and an intermediate 

DN3-4 stage showed a significant decrease of absolute cell numbers when mice received KRP203 

(Figure 13A). This observation raised the question whether KRP203 affected proliferation of the 

thymocytes within these particular stages. To address this question, I applied BrdU in the 

drinking water for 1 consecutive week. The frequencies of BrdU+ cells within the different DN 

subsets did not show any significant differences in mice that received KRP203 and those that did 
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not (Figure 13B). Next, I aimed to quantify thymic import in response to KRP203. To evaluate 

the import of ETP, I took advantage of lethally irradiated recombinant activating gene deficient 

(RAG-/-) mice. Thymocytes of these mice are not able to develop further than the DN stage. Thus, 

I could specifically focus on the early thymic development in the absence of any influence or 

feedback mechanism of mature T cells. Therefore, I transplanted 7x106 TCDBM from 

B6CD45.1+ donors into lethally irradiated MHC-mismatched B6RAG-/- recipients. At 3 weeks 

post-HSCT I determined absolute cell numbers of ETP that have recently entered the thymus and 

which express the following markers91: Lin-CD44+c-Kit+Sca-1+ (Figure 13C). The Lin-cocktail 

contained CD4, CD8, CD11b, CD11c, CD19 and CD25. The data clearly demonstrated that there 

was no significant differences in ETP numbers and frequencies between mice with or without 

KRP203 (Figure 13C).  

 

 
 

Figure 13: Intrathymic T-cell development is normal post allo-HSCT in the presence of KRP203. Cells were 

harvested from the thymus of lethally irradiated B6 recipients that received TCDBM alone (¡) or TCDBM + KRP203 

(3mg/kg, i.p., every 2nd day) day-1 before allo-HSCT until the end of experiment (n) from MHC-mismatched Balb/c 

donors at 3 weeks post allo-HSCT. Absolute cell numbers were determined and analysis of (CD4-CD8-) DN stages 1-4 

was performed by the surface expression of CD44+CD25-, CD44+CD25+, CD44-CD25+, CD44-CD25- respectively (A). 

Proliferation was measured by BrdU administration in the drinking water for 1 week. BrdU+ DN cells are illustrated as 

frequencies. (B). Early thymic progenitors (ETP) were identified by gating on Lin- (Lin: 

CD4,CD8,CD11b,CD11c,CD19,CD25) and CD44+c-Kit+Sca-1+ cells. Absolute ETP numbers were determined in the 

thymus from lethally irradiated B6 recipients that were reconstituted by TCDBM from RAG-/- mice with (n) and 

without (¡) KRP203 administration for 3 weeks (C).These data represent combined data from three independent 

experiments with n=4 mice per group. *p< 0.05, Mann-Whitney U test.  
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In conclusion, I found that prophylactic administration of KRP203 followed by continuous 

administration did not impair the intrathymic T-cell maturation process after allo-HSCT in the 

absence of TRT. 

 

5.2.4 Peripheral T-cell compartment is normal in allo-HSCT recipients under the KRP203 

umbrella 

 

As the thymocyte numbers did not show a significant difference upon KRP203 administration 

compared to control mice, I next investigated the peripheral T-cell compartment in LN and spleen 

in the same mouse model (Balb/càB6 = H-2dàH2b; dàb). KRP203 was administered 

prophylactically (day-1) and continuously until the end of the experiment. Mice were sacrificed 

1.5, 3 and 6 weeks after transplantation and SLO were analyzed by flow cytometry and absolute 

cell numbers counted. I did not observe any significant differences in absolute cell numbers of 

BM-derived CD4+ and CD8+ T cells between mice that received KRP203 and control mice in the 

peripheral LN nor in the spleen (Figure 14A and B respectively). These results indicated that 

during KRP203 exposure there was no impairment of thymic export of BM-derived and de novo 

generated T cells into the periphery.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Peripheral T-cell compartment is normal post allo-HSCT in the presence of KRP203. The peripheral 

lymphocyte compartment was analyzed of lethally irradiated B6 recipients that received TCDBM alone (¡) or TCDBM 

+ KRP203 (3mg/kg, i.p., every 2nd day) day-1 before allo-HSCT until the end of experiment (n) at 1.5, 3 and 6 weeks 

post allo-HSCT from MHC-mismatched Balb/c donors. Cells were harvested from peripheral lymph nodes (pLN) (A) 
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and spleen (B) and absolute cell numbers of CD4+ and CD8+ T cells were determined. The graphs represent data from 

4 independent experiments with n=4 mice per group. *p< 0.05, Mann-Whitney U test.  

 

Taken together, my data gained in an allo-HSCT model did not confirm a previously published 

finding that thymic export is negatively affected by S1P modulation using FTY720 in 

untransplanted mice.211 I therefore concluded that KRP203 did not have a detrimental effect on 

thymic export of newly developed T cells and in result allowed for the regeneration of a normal 

peripheral T-cell compartment with regard to its total cellularity following allo-HSCT. 

 

5.3 The influence of KRP203 on intrathymic T-cell development in mice with 

aGVHD 

 

5.3.1 Continuous prophylactic but not therapeutic KRP203 application reduces donor T-cell 

infiltration into the thymus during aGVHD 

 

Having established that KRP203 did not negatively affect thymus-dependent T-cell regeneration 

in the absence of aGVHD, I then proceeded to test the effects of this drug in aGVHD where the 

use of S1PR1 agonist KRP203 had been proposed to constitute a safe and effective novel modality 

for disease prevention.197 Entry of pro-inflammatory donor T cells is a characteristic of aGVHD-

induced thymic injury.130 However, interference with alloreactive donor T-cell trafficking might 

prevent thymic damage. This hypothesis was tested in the following experiments. I used a well-

studied unconditioned haplo-ID allo-HSCT model (B6àBDF1 = H-2b à H-2bd; bàbd).130 I 

chose to use this particular model since it helps to decipher mechanisms that cannot be studied in 

more complex models that more closely reflect the clinical situation. Control mice received 

35x106 splenocytes from a syngeneic donor (bdàbd) and did not develop aGVHD. Conversely, 

the transfer of 35x106 splenocytes from an allogeneic B6CD45.1+ donor into BDF1 recipients 

(bàbd) induced aGVHD that was manifested in splenomegaly, weight loss and thymic loss of 

cellularity within 2 weeks (data not shown). The third group received allogeneic T cells together 

with continuous KRP203 administration (bàbd + KRP203). Based on the fact that efficient 

lymphocyte reduction was reached 1-2 days post injection (Figure 9), I started KRP203 

administration at day-1 before allo-HSCT and injected mice until the end of experiment. At 2 

weeks after T-cell transfer, mice were sacrificed and thymic donor T-cell infiltration was 

analyzed by flow cytometry. To distinguish donor mature T cells from host T cells, I used the 

surface expression of CD45.1, a congenic marker that was exclusively expressed by donor mature 

T cells (Figure 15A, left panel). Among the host (Figure 15, middle panel) and donor 

compartments (Figure 15, right panel) I further gated on CD4+ and CD8+ T cells in order to 

calculate absolute cell numbers of the corresponding populations. Prophylactic KRP203 
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administration led to a significant reduction of absolute donor T-cell numbers infiltrating the 

recipient thymus at 2 weeks after T-cell transfer in comparison to mice with aGVHD but without 

KRP203 administration (from 1.5±1.2x105 to 2.2±1.8x106 respectively, **P=0.0091) (Figure 

15B, upper graph). Alloreactive donor T cells attacked host thymocytes in the absence of 

KRP203, resulting in a decrease of absolute thymic cell numbers at 3 weeks after aGVHD 

induction. Thymic cellularity was preserved, however, when KRP203 was given (data not 

shown). In addition, donor T-cell numbers did not increase over time by continuous KRP203 

administration (Figure 15B, lower panel). Moreover, the host CD4-, CD8-DP compartment was 

increased (60±5%) when KRP203 was given prophylactically in comparison to mice with 

aGVHD (48±20%) (Figure 15C). This reduction of DP in mice that received KRP203 in 

comparison to the control group (82±5%) only arose from the fact that CD4-, CD8SP cells 

increased in the presence of KRP203 administration which was compensated by a decreased 

frequency of DP. The decrease of alloreactive donor T-cell infiltration was mirrored in a fully 

myeloablated MHC-mismatched model, where I co-transferred 7x106 TCDBM + splenic T cells 

(TCDBM + T cells) from Balb/c (Thy1.2+, Thy1.1+ respectively) donors into B6 recipients in 

order to induce aGVHD, (Balb/càB6 = H-2dàH-2b; dàb). TCDBM alone served as a control. 

Thymus-infiltrating donor T-cell numbers were reduced by ≥1log (1.5±1.2x105 to 1.6±2.6x104, 

P=0.0933) when mice received prophylactic KRP203 (Figure 15D, left graph). The same was 

true for a minor-HA mismatched mouse model, where I co-transferred 7x106 TCDBM ± 4x106 

splenic T cells from 129Sv/1 donors into B6Ly5.1 recipients. Absolute cell numbers of donor T 

cells were decreased from 3.4x105±9x104 to 1.1x105± 4.6x104 (Figure 15D, right graph).  
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Figure 15: Thymic donor T-cell infiltration is reduced by KRP203 in the presence of acute GVHD. Acute GVHD 

(aGVHD) (bàbd) was induced in 8-week old female BDF1 recipients by injection of splenic T cells from B6 donors. 

The gating strategy is displayed as FACS plots from one representative experiment. Donor T cells express the congenic 

marker CD45.1 (left column). The middle column shows the T-cell compartment of the host thymus (CD45.1-) and the 

right column shows donor mature CD4 and CD8 T cells (A). Donor T-cell infiltration (CD45.1+) was analyzed in mice 

without aGVHD (¡), mice that developed aGVHD (!) and mice that received T cells and KRP203 (3mg/kg, i.p., every 

2nd day from day-1 until the end of experiment) (n). Donor T-cell infiltration at 2 weeks is given as absolute cell 

numbers among total thymic cells from a haplo-ID unirradiated model (bàbd) that is depicted in the upper graph and 

absolute cell numbers of thymus-infiltrating donor T cells were determined over time at 2 and 3 weeks after T-cell 

transfer (bàbd) (B, lower graph). Host CD4, CD8 double positive (DP) compartment is shown in frequencies at 2 

weeks post allo-HSCT (C). Donor T-cell infiltration (CD90.1+) was analyzed in mice without aGVHD (¡), mice that 

developed aGVHD (!) and mice that received T cells and KRP203 (n) (3mg/kg, i.p., every 2nd day from day-1 until the 

end of experiment) from a major-HC mismatched lethally irradiated model (dàb) which is shown in the left graph (D) 

and from a minor-HA mismatched mouse model (D,right graph) at 2 weeks post allo-HSCT. *p< 0.05, Kruskal-Wallis 

and Dunn‘s multiple comparison test.  

 

These data showed that prophylactic KRP203 administration could indeed diminish infiltration of 

pro-inflammatory donor T cells into the host thymus after allo-HSCT in mice with aGVHD.  
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5.3.2 Prophylactic but not therapeutic KRP203 application reduces thymic donor T-cell 

infiltration during aGVHD 

 

To study not only the prophylactic but also the therapeutic effectiveness of KRP203 in mice that 

had already developed aGVHD, I used the same murine aGVHD, haplo-ID non-conditioned 

model as described before (B6àBDF1 = H-2b à H-2bd; bàbd). Here, I included a fourth group: 

1 week after T-cell transfer (day 7) mice received 3mg/kg KRP203 for another week. Totally 2 

weeks after T-cell transfer, mice were sacrificed and PB and thymus were analyzed (Figure 16A). 

In the PB, absolute cell numbers of CD45.1+ donor mature T cells were counted. As expected, 

mice that developed aGVHD had high numbers of donor T cells present in the PB, whereas 

prophylactic KRP203 administration led to a reduction of CD4+ (from 7.2±7x104 to 3.6±3x103) 

and CD8+ (from 1.9±3.4x106 to 8.3x103±1.1x104) donor mature T cell counts in the PB. In 

contrast, the therapeutic administration did not result in reduction of T-cell numbers in the PB for 

CD4+ T cells (1.5±1.7x104) and CD8+ (7±7.4x105) (Figure 16B). The diminished T-cell migration 

upon prophylactic KRP203 administration could be confirmed by a reduction of ≥1log of 

CD45.1+ donor T cells in the thymus. In comparison, mice that received therapeutic KRP203 7 

days after T-cell transfer even showed an increase of donor T cells present in the thymus (Figure 

16C). These data indicated that therapeutic KRP203 administration resulted in an abundant 

number of alloreactive T cells in the thymus during aGVHD. These observations were highly 

relevant for potential use of KRP203 in the clinics as they helped to establish a suitable drug 

administration protocol. 
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Figure 16: Prophylactic but not therapeutic KRP203 application reduces donor T-cell migration during aGVHD 

Acute GVHD (aGVHD) (bàbd) was induced in 8-week old female BDF1 recipients by injection of splenic T cells from 

B6 donors. The approach for the KRP203 application is illustrated in (A): Mice without GVHD (O), with GVHD (!), 

with GVHD and prophylactic (start day-1 until the end of experiment) KRP203 administration (n) and therapeutic 

KRP203 application (start day 7 after T-cell transfer until the end of experiment) (u). Both groups received the same 

dose and application form of KRP203 (3mg/kg i.p. every 2nd day) (A). Absolute donor T-cell numbers (CD45.1+) were 

determined 2 weeks after T-cell transfer in the PB (B) and in the thymus (C) by flow cytometry and cell counting of the 

appropriate population. *p< 0.05, Kruskal-Wallis and Dunn‘s multiple comparison test.  

 

5.3.3 The inhibitory effect of KRP203 on thymic donor T-cell infiltration is maintained for 

several weeks after drug withdrawal 

 

An observation that is likely to be clinically relevant is the effect on donor T-cell migration after 

KRP203 withdrawal (WD) in the presence of aGVHD. Therefore, I used the same model as 

described above (B6àBDF1 = H-2b à H-2bd; bàbd). To investigate the effect after WD, mice 

received prophylactic KRP203 administration (day-1 until end of experiment), KRP203 for 2 

weeks followed by WD for 1 week; and KRP203 for 1 week followed by WD for 2 weeks. As 

controls, mice without KRP203 or mice without aGVHD were analyzed. Mice were analyzed at 3 

week after T-cell transfer (Figure 17A). Notably, one and 2 weeks after KRP203 WD, frequencies 

of donor T cells infiltrating the thymus remained low in comparison to mice that did develop 

aGVHD without KRP203 (1±0.5% to 17±1% respectively). The frequency of thymus-infiltrating 

donor T cells was comparable to frequencies in mice that continuously received KRP203 

(1±0.5%) (Figure 17B). Importantly, lack of intrathymic inflammation allowed for normal T-cell 

development to occur in mice with KRP203, which was characterized by normal DP numbers 
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(1.6x107±1.1x107) (Figure 17C). In parallel, the size of the Aire+mTEChigh compartment remained 

normal (1.5±1.4x103) (Figure 17D) which will be further discussed in chapter 5.4. In 

collaboration with Phil Smith (Novartis Inc.) I could confirm these data also in another mouse 

model where mice developed symptoms of cGVHD. To induce cGVHD, 1.2x106 splenocytes 

from B6 donors were injected into lethally irradiated Balb/c recipients. These mice usually show 

clinical symptoms of cGVHD within 60 days and survival of mice at day 60 is around 20% (data 

not shown). Therefore, mice received KRP203 either prophylactically and continuously until day 

60 or for 1 week only (day-1 until day 7). Importantly, WD of KRP203 administration for no 

longer than 1 week resulted ultimately in the same survival rate as mice that received continuous 

KRP203 (around 40%) (Figure 17E).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: After withdrawal, the effect of KRP203 is maintained for a limited time period. Acute GVHD (bàbd) was 

induced in 8-week old female BDF1 recipients by injection of splenic T cells from B6 donors. To investigate the effect 

after withdrawal (WD), mice received prophylactic KRP203 administration (day-1 until end of experiment) (n), 

KRP203 for 2 weeks and WD for 1 week (�) and KRP203 for 1 week and WD for 2 weeks (∨). As control, mice 

without KRP203 were analyzed with GVHD at 2 weeks (!), GVHD at 3 weeks (¢) and no GVHD (O). Mice were 

analyzed 3 weeks after T-cell transfer (A). Frequencies of donor T-cell infiltration (CD45.1+) into the thymus were 

determined (B). Absolute cell numbers of host DP were analyzed (C) and absolute cell numbers of Aire+mTEChigh cell 
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numbers were determined (D). The graphs represent pooled data from 3 independent experiments with ≥3 mice per 

group. *p< 0.05, Kruskal-Wallis and Dunn‘s multiple comparison test. Chronic GVHD (cGVHD) was induced by the 

transfer of low numbers of splenocytes into lethally irradiated Balb/c mice. The survival curve was generated over time 

and shows mice that did not develop GVHD (yellow line), mice that developed cGVHD (bright orange), mice with 

cGVHD but KRP203 for 1 week, then WD (dark orange) or mice with continuous KRP203 application (brown line). 

This graph is representative from data from Phil Smith (Novartis Inc.).  

 

From the combined data, I concluded that the beneficial effect of prophylactic KRP203 

administration could be maintained even after WD (albeit a time span of only 1-2 weeks was 

tested). Moreover, the reduced number of alloreactive T cells invading the thymus might 

consequently have had a beneficial effect on the thymic stromal compartment – a direct target of 

alloreactive donor T cells during aGVHD. 

 

5.3.4 KRP203 allows for normal intrathymic T-cell regeneration in transplanted recipients 

with aGVHD 

 

Reconstitution of a functional T-cell pool in a fast and competent manner is critical for a 

successful HSCT outcome. However post-transplantation T-cell regeneration is impeded by 

aGVHD.21 To investigate whether KRP203 administration could improve thymus-dependent T-

cell regeneration in the presence of aGVHD, I took the same fully myeloablated MHC-

mismatched model as described above (chapter 5.2.3) but co-transferred donor mature T cells 

(Balb/càB6CD45.1+ = H-2dàH2b; dàb). This aGVHD model is characterized by injury of the 

typical target organs, but also by impairment in thymic function and a delayed peripheral T-cell 

regeneration.134 2 weeks post allo-HSCT, mice were sacrificed, the thymus was analyzed and 

absolute cell numbers were counted. To discriminate between donor and host cells, I firstly gated 

on CD45.1+ (host) and CD45.1- (donor) cells (Figure 18A, first column). I intentionally did not 

use H-2b/H-2d as markers to distinguish donor and host since MHC expression presents a 

continuum on early developing thymocytes. Among the CD45.1+ host compartment, I 

investigated cell population frequencies by gating on CD4+ and CD8+ T cells. Among the 

CD45.1- compartment, I further distinguished between donor mature T cells (Thy1.2+) and 

TCDBM-derived T cells (Thy1.2-) that were contained in the graft (Figure 18A, middle column). 

I further differentiated between CD4+ and CD8+ T cells among Thy1.2+ and Thy1.2- cells (Figure 

18A, column 4 and 5 respectively). Based on the T-cell subset determination by flow cytometry, I 

calculated absolute cell numbers of donor-BM DP, DN, CD4SP and CD8SP populations. Mice 

that received TCDBM alone showed a normal T-cell regeneration, beginning with a normal 

development of DN to DP subsets, as expected at 2 weeks post-HSCT (Figure 18B). In the 

presence of aGVHD however, intrathymic T-cell development was delayed with regard to 

immature DP cell population sizes compared to the control group: The DN compartment was 
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increased in the presence of aGVHD in comparison to control mice (4.9±2.4x105 to 2.1±3.4x105) 

while the DP compartment was decreased (1.1±1x103 to 2.4±4.7x105) respectively. This aberrant 

intrathymic T-cell maturation process could be prevented by the prophylactic administration of 

KRP203 (DN compartment 1.2x105±7.7x104, DP compartment 2.4±2.2x104). Importantly, 

allogeneically transplanted mice that received KRP203 did not show any significant difference to 

control mice that received no alloreactive T cells (TCDBM alone) (Figure 18B). Hence, the 

presence of KRP203 allowed for normal thymus-dependent T-cell development most likely by 

preventing injury to elements of the host thymic microenvironment (see next chapter). 

 

 
 

Figure 18: KRP203 allows for normal intrathymic T-cell regeneration in transplanted recipients with aGVHD. In a 

fully MHC-mismatched murine allo-HSCT model (H-2dàH-2b) acute GVHD (aGVHD) was induced in lethally 

irradiated B6 recipients by co-injection of TCDBM + T cells (aGVHD (!)). The second group received TCDBM + T 

cells + KRP203 (3mg/kg, i.p., every 2nd day from day-1 until end of experiment) (n) and the control group received 

TCDBM alone (¡) from Balb/c mice. Mice were sacrificed at 2 weeks post allo-HSCT. Thymic cellularity was analyzed 

by gating on the CD4 and CD8 compartment of the host thymus (CD45.1-) (2nd column from left) and on the donor 

compartment (CD45.1+) (3rd column from left). Among CD45.1+ cells, donor BM-derived (Thy1.1+) T cells can be 
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separated from donor mature T cells (Thy1.2+) (4th and 5th column from left respectively) as it is demonstrated in 

representative FACS plots (A). Absolute cell numbers of donor BM-derived DP, DN, CD4SP and CD8SP T cells were 

determined (B). The graphs represent data from one experiment with n=5 mice per group. *p< 0.05, Kruskal-Wallis 

and Dunn‘s multiple comparison test.  

 

5.4 Cytoprotection by KRP203 of mTEC prevents the release of de novo generated 

autoreactive T cells 

 

5.4.1 KRP203 protects the thymic mTEC compartment  

 

Our laboratory has demonstrated earlier that alloantigen-specific recognition of host TEC by 

mature donor T cells provides the principal injury that limits thymocyte expansion and selection 

in mice with aGVHD.134 To investigate the direct consequence of reduced numbers of intrathymic 

alloreactive donor T cells upon KRP203 administration on the thymic microenvironment, I used 

the same mouse model as described above (B6àBDF1 = H-2b à H-2bd; bàbd) (see chapter 

5.3.1). 2 weeks after T-cell transfer, the mTEC compartment was analyzed by flow cytometry 

using the following markers: CD45-EpCAM+Ly51-UEA-1+MHCIIhigh (Figure 19A). As expected 

and described before,129 mice with aGVHD had significant lower numbers of mTEChigh in 

comparison to control mice (5.9±4.7x103 to 1.2±1x104 respectively, *P=0.0293) (Figure 19B). 

Mice that received KRP203 had absolute mTEC numbers that were comparable to control mice 

(P=0.8120) which were higher than in mice with aGVHD (7.1±5.4x103, *P=0.0497) (Figure 

19B, upper panel). Importantly, numbers of mTEChigh expressing the TF Aire in mice that 

received KRP203 were comparable to control mice with respect to absolute cell numbers 

(P=0.0680) and significantly higher than in mice with aGVHD (from 1±1.3x103 to 2±1.7x103, 

**P=0.0020) (Figure 19B, lower panel). I further confirmed these data with immunofluorescence 

microscopy where I examined the expression of Aire (PE Cy5, red) by CK14+ mTECs (A488, 

green) (Figure 19C). The results observed by flow cytometry were substantiated in two other 

irradiated allo-HSCT models that included a fully myeloablated MHC-mismatched model 

(Balb/càB6 = H-2dàH-2b; dàb) at 2 weeks post allo-HSCT (Figure 19D, upper graph) and a 

MHC-matched but minor HA-mismatched cell transfer (B6129S1/Sv à B6Ly5.1; bàb). The 

latter model also has defective thymopoiesis as hallmark of aGVHD but defects are not as strong 

as in the MHC-mismatch model. Therefore, I analyzed these mice at 4 weeks post allo-HSCT. In 

both models, Aire+mTEChigh numbers were determined. Consistent with previous results, I 

observed a trend towards increased Aire+mTEChigh numbers in the presence of KRP203 (Figure 

19D, lower graph).  
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Figure 19: KRP203 prevents damage to the thymic epithelial microenvironment during aGVHD. Acute GVHD 

(aGVHD) was induced in 8-week old female BDF1 recipients by injection of splenic T cells from B6 donors without 

KRP203 (bàbd) or with KRP203 (bàbd+KRP203). As controls, mice without aGVHD received T cells from a 

syngeneic donor (bdàbd). The gating strategy is displayed as FACS plots from one representative experiment. Thymic 

epithelial cells (TEC) express the surface marker EpCAM but are negative for CD45 (left column). Medullary TEC 

(mTEC) and cortical TEC (cTEC) can be differentiated with UEA-1+Ly51- and Ly51+UEA-1- respectively (middle 

column). Mature mTEC further express MHCIIhigh and Aire (right column) (A). Absolute cell numbers of mTEChigh and 

Aire+mTEChigh cells were examined from mice without aGVHD (¡), mice that developed aGVHD (!) and mice with 

aGVHD and KRP203 (3mg/kg, i.p., ever 2nd day from day-1 until the end of experiment) (n) (B). The graphs represent 

data from 4 independent experiments with ≤ 4 mice per group. Immunofluorescent microscopy was performed from 

frozen thymus sections. The medulla was stained with Cytokeratin 14 (CK14, green) and Aire (red). The cryo-sections 
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are shown from one representative mouse of each group (C). Absolute cell numbers of Aire+mTEChigh cells were 

determined from a lethally irradiated MHC-mismatched model (dàb) ((D) upper graph)) at 2 weeks post allo-HSCT 

and minorHA-mismatch (bàb) at 4 weeks (lower graph) ((D, lower graph).* p< 0.05, two-way ANOVA and 

uncorrected Fisher‘s lsd test. 

 

From the combined data I concluded that prophylactic and continuous administration of KRP203 

allowed - indeed via prevention of donor T-cell passage into the thymus - to maintain a normal 

thymus stromal microenvironment and hence should allow for a normal thymopoiesis to occur 

following allo-HSCT. This in turn might sustain a normal negative selection process during 

aGVHD, a hypothesis that was tested in the next chapters.  

 

5.4.2 KRP203 allows for a normal negative selection process in thymus 

 

The exposure of developing T cells to self-antigens expressed in the thymus is essential for clonal 

deletion. Strongly self-reactive T cells undergoing negative selection induce Helios and PD-1 

expression101,102 in response to self-antigens that are particularly expressed by the Aire+mTEChigh 

compartment. During aGVHD, injury to the stromal network, including Aire+mTEChigh, disables 

these cells to serve as a healthy platform for central T-cell tolerance induction.129 The preserved 

Aire+mTEChigh pool size in allo-HSCT recipients receiving alloreactive T cells together with 

prophylactic KRP203 was promising especially in light of the potential of maintaining a normal 

negative selection despite aGVHD. I consequently tested whether KRP203 administration would 

improve thymic negative selection following allo-HSCT. Therefore, I used the haplo-ID non-

conditioned model as described before (B6àBDF1 = H-2b à H-2bd; bàbd) (see chapter 5.3.1). 

At 3 weeks after T-cell transfer, mice were sacrificed and T-cell subsets were analyzed by flow 

cytometry. In order to detect negative selection marker, I gated on either host DN or CD4SP cells. 

Among these subsets, I further gated on TCRβ+CD5+CCR7- cells. Negatively selected cells could 

further be characterized trough their PD-1 and Helios induction (among DN) or Helios induction 

alone (among CD4SP) (Figure 20A). Mice that did not develop aGVHD, had 40±18% PD-

1+Helios+ cells among the CD4-CD8-CD5+CCR7- population. In contrast, mice that did develop 

aGVHD had much lower frequencies of PD1+Helios+ cells or Helios+ cells (18.8%), indicating 

that during aGVHD, thymocytes could not induce these markers anymore in order to become 

negatively selected. Mice that received prophylactic KRP203 administration had comparable 

frequencies (40±10%) of CD4-CD8-TCRβ+CD5+CCR7- PD-1+Helios+ cells to control mice 

(Figure 20B). Among the CD4+CD8-TCRβ+CD5+CCR7- population, control mice had 3.2% of 

Helios+ cells. In the presence of GVHD, mice had <2% Helios+ cells whereas mice that received 

KRP203 showed even higher frequencies (3.6%) of Helios-inducing cells (Figure 20C).  
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Figure 20: Negative selection marker Helios cannot be induced in aGVHD but rescued with KRP203 application. 

Acute GVHD (aGVHD) (bàbd) was induced in 8-week old female BDF1 recipients by injection of splenic T cells from 

B6 donors for 3 weeks. The gating strategy is displayed as FACS plot from one representative experiment. Negatively 

selected T cells can be detected among the DN compartment or among CD4SP cells. Thymocytes that undergo negative 

selection express TCRβ and are negative for CD5. Among TCRβ+CD5- they are negative for CCR7 while PD-1 and 

Helios or Helios expression alone is induced among DN or CD4SP respectively (A). Absolute cell numbers were 

determined of cells that were marked to become negatively selected and express PD1 and Helios (B) or Helios alone 

(C). Data are shown from one representative experiment including mice without aGVHD (¡), mice that developed 

aGVHD (!) and mice with aGVHD and KRP203 administration (3mg/kg, i.p., every 2nd day from day-1 until the end of 

experiment) (n). The graphs demonstrate representative data from one experiment with n=5 mice per group. *p< 0.05, 

Kruskal-Wallis and Dunn‘s multiple comparison test.  

 

In summary, my data indicated that self-reactive T cells were not able to induce Helios or PD-1 

anymore in the presence of aGVHD. These markers are crucial for strongly self-reactive T cells 

to become negatively selected. Thus, a damaged Aire+mTEChigh compartment might directly link 

donor T-cell alloimmunity to the appearance of autoreactive T-cell clones that may, however be 

prevented by KRP203 administration. 
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5.4.3 KRP203 reduces the release of de novo generated autoreactive T cells during aGVHD 

 
As the above results demonstrated, it is the protection of the mTEC pool that governs the efficacy 

of thymic negative T-cell selection as it regulates the expression levels of self-antigens. 

Importantly, intimate associations exist between perturbations in TRA expression and the 

susceptibility to autoimmunity. This led me further to the study whether preserved central 

tolerance via KRP203 may hence prevent the emergence of autoreactive T cells. To this end, I 

used an established transgenic model using B6 RIP-mOVA mice (Figure 21A) that express 

mOVA as a surrogate self-antigen in the medulla of the thymus201,203 (see chapter 5.1). First, I 

wanted to investigate if the Aire+mTEChigh pool can be preserved in a fully myeloablated MHC-

mismatched model (Balb/càB6 = H-2dàH-2b; dàb) at 4 weeks post allo-HSCT. This model 

was comparable to the transgenic Balb/càRIPmOVA model with respect to impaired 

thymopoiesis and defect in the Aire+mTEChigh compartment during aGVHD. At 4 weeks post 

allo-HSCT, absolute Aire+mTEChigh numbers were determined. Control mice received TCDBM 

alone showed normal numbers (7.4±5.5x103) of Aire+mTEChigh in this conditioned mouse model 

(Figure 21B). Mice that developed aGVHD after co-injection of TCDBM+ T cells had 

diminished Aire+mTEChigh numbers (2.5±3.4x103) whereas mice that received TCDBM + T cells 

+ KRP203 showed higher numbers than untreated mice with aGVHD (3.8±4.3x103, P=0.9764), 

albeit not significantly different (Figure 21B). The next step was to induce GVHD in the 

transgenic model. Therefore, RIPmOVA mice were lethally irradiated and transplanted with 

7x106 TCDBM from Balb/cThy1.1+ (no GVHD) or 7x106 TCDBM + 1x106 T cells from 

Balb/cThy1.2+ (aGVHD) and were either left untreated or treated with KRP203 administration for 

4 weeks. At 4 weeks after the 1st allo-HSCT, mice were lethally re-irradiated and transplanted 

with TCDBM from B6 and B6OT-II+CD45.1+ mice (4:1 ratio). OT-II+ BM derived cells 

contained a TCR (Vα2+Vβ5+) specific for OVA peptide and could therefore be detected by flow 

cytometry (Figure 21C). Another 4 weeks later, mice were sacrificed and OT-II-specific T-cell 

numbers were determined in the peripheral LN. In the TCDBM group, only low numbers of 

CD4+CD45.1+ T cells were detected in the peripheral LN (1.3±1.5x104) (Figure 21D). Here, BM-

derived cells T cells underwent thymus-dependent negative selection, as expected, and OT-II+ 

cells were negatively selected and eliminated. In mice that had developed aGVHD CD4+CD45.1+ 

T cells were, however, present in higher numbers (1.3±1.5x105). This observation strongly 

indicated that inadequate clonal deletion of OVA-reactive T cells resulted from loss of thymic 

OVA expression during aGVHD (see also Appendix, Manuscript Figure 1). Hence, OVA-specific 

cells could escape negative selection and were released into the periphery as de novo generated 

autoreactive T cells. As a control, non-tg B6 recipients received TCDBM from B6 and B6OT-

IICD45.1+ mice. Here, the OT-II specific TCR did not recognize OVA peptide and none of the 
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OT-II+ cells were deleted in the thymus. As a consequence, high numbers of CD4+CD45.1+ T 

cells were present in the periphery (5.9 x106±1x107). In contrast to mice with aGVHD, mice that 

received KRP203 within the first 4 weeks had a diminished number of autoreactive T cells 

(2.8±3.6x104, P=0.4235) present in the periphery (Figure 21D). To specify the CD45.1+ subset, I 

further gated on the OT-II specific TCR clone chains Vα2+Vβ5+. Confirming the above results, 

the group that received TCDBM only had no CD4+CD45.1+Vα2+Vβ5+ T-cell numbers present in 

the periphery. Mice that developed aGVHD within the first 4 weeks had higher numbers of 

CD4+CD45.1+Vα2+Vβ5+ T cells (1.3±3x104), non-tg B6 mice had even higher numbers 

(6.5x105±1x106) whereas mice with KRP203 had low numbers of CD4+CD45.1+Vα2+Vβ5+ T 

cells (5.6x102±1x103) (Figure 21E).  
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Figure 21: KRP203 reduces the release of de novo generated autoreactive T cells during aGVHD. Mouse model to 

study central tolerance during acute GVHD (aGVHD) as described in Figure 8 (A). Absolute cell numbers of 

Aire+mTEChigh cells were calculated from the host thymus in lethally irradiated B6 mice that received TCDBM only 

(¡), TCDBM + T cells (!) and TCDBM + T cells + KRP203 (n) from MHC-mismatched Balb/c donors (H-2dàH-2b) 

at 4 weeks post allo-HSCT (B). FACS plots from one representative experiment are depicted for the gating strategy of 

ovalbumin (OVA)-specific T cells in the peripheral lymph nodes (pLN). De novo generated OVA-specific CD4+ T cells 

express the congenic marker CD45.1+ (left and middle column) and the OTII specific TCR chain Vα2+Vβ5+ (right 

column) (C). Absolute cell numbers of CD4+CD45.1+ OTII-specific T cells were determined from mice that received 

TCDBM only (¡), mice that received TCDBM + T cells (!), mice that received TCDBM + T cells + KRP203 during 4 

weeks after the first allo-HSCT (n) and B6 mice as positive control (�) (D). The graph represents data from 5 
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combined experiments. Absolute cell numbers of TCR clones expressing the Vα2+Vβ5+ chain among CD4+CD45+ cells 

were determined in the pLN (E). The graph depicts values from 4 different experiments. KRP203 application was the 

same for all mice (3mg/kg, i.p., ever 2nd day from day-1 until the end of experiment). *p< 0.05, Kruskal-Wallis and 

Dunn‘s multiple comparison test.  

 

These data indicated that elimination of mTEC and hence failure to express OVA in the thymus, 

led to the emergence of de novo generated OVA-specific autoreactive T-cell clones as a 

consequence of thymic aGVHD. This deficit, however, could be prevented to a large degree by 

the presence of KRP203.  

 

5.5 Graft-vs- Tumor activity is maintained under the KRP203 umbrella  

 

5.5.1 T cells accumulate in SLO under KRP203 treatment 

 

The data shown above illustrated that alloreactive donor T cells did not infiltrate the thymus upon 

KRP203 administration even in the presence of conditioning-related toxicity. Thus, the absence 

of donor T cells in the thymus directly led to the next question whether donor mature T cells were 

accumulating in SLO. Therefore, I took the same fully myeloablated MHC-mismatched model as 

described above (chapter 5.3.4) (Balb/càB6CD45.1+ = H-2dàH2b; dàb) where spleen and LN 

were analyzed at 2 weeks post allo-HSCT. Donor mature T cells were identified by the surface 

expression of H-2d+ cells (Figure 22A, 2nd column). At 2 weeks post-HSCT, only few thymus-

derived T cells were yet expected to be detectable in the periphery, as confirmed by low absolute 

cell numbers in the control group that received TCDBM only (upper row). Therefore, no further 

marker was necessary to distinguish between donor mature T cells and donor BM-derived T cells. 

Among H-2d+ cells, I further gated on CD4 and CD8 (Figure 22A, 3rd column). Based on this 

gating strategy, I calculated absolute cell numbers for both, spleen and LN. In the spleen, 

TCDBM control mice showed low numbers of CD4+ donor T cells (1.8±1x104) whereas in mice 

receiving T cells or T cells+KRP203, CD4+ T-cell numbers were >1log higher (2.5±1.5x105 and 

1.7±1x105 respectively). The same was true for CD8+ T cells which were higher in mice with 

aGVHD and aGVHD+KRP203 (6.3±3.4x105 and 3±2.1x105 respectively) in contrast to control 

mice that received TCDBM only (5.5±3x104) (Figure 22B). I could substantiate this observation 

in the peripheral LN. Mice that received TCDBM alone had low numbers of CD4+ donor T cells 

(1.6±2.2x103), whereas mice that received additional T cells and T cells + KRP203 showed 

increased numbers of donor T cells within the LN (1.2x104±8.9x103 and 3.5±3.1x103 

respectively). However, I could not detect high numbers of CD8+ donor T cells when mice 

received KRP203 (6.2±6x103) in contrast to TCDBM (6.8±8.2x103) and TCDBM + T cells 

(1.5±1.2x104) (Figure 22C). 
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Figure 22: Donor mature T cells are “trapped” in secondary lymphoid organs upon KRP203 administration in the 

presence of aGVHD. In a fully MHC-mismatched murine allo-HSCT model (H-2dàH-2b) acute GVHD (aGVHD) was 

induced in lethally irradiated B6 recipients by co-injection of TCDBM + T cells (aGVHD (!)) TCDBM + T cells + 

KRP203 (3mg/kg, i.p., every 2nd day from day-1 until the end of experiment (n)) or TCDBM alone (¡) from Balb/c 

mice. Mice were sacrificed 2 weeks post allo-HSCT and spleen and lymph nodes (LN) were analyzed. Representative 

FACS plots of one mouse per group depicts the gating strategy. Among all lymphocytes (1st column) one can 

differentiate between donor (H-2d+) and host (H-2b+) T cells (3rd and 4th column respectively) (A). Absolute cell 

numbers of CD4+ and CD8+ T cells were determined in the spleen (B) and LN (C). The graphs represent data from one 

experiment with n=5 mice per group.  

 

Taken together, the data hence demonstrated that prophylactic and continuous KRP203 

administration could prevent an aGVHD-mediated or conditioning-related injurious effect on 

thymus-dependent T-cell regeneration with regard to cell pool sizes. Concomitantly, in mice with 
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KRP203 there was an accumulation of donor mature T cells within SLO at 2 weeks post-HSCT. 

This observation was highly relevant and strongly implied a functional effect of donor mature T 

cells on tumor cells residing within SLO.  

 

5.5.2 GVT effect is maintained under the KRP203 umbrella  

 

Donor mature T cells, rather than HSC-derived thymus-dependent T cells, may represent the 

major therapeutic principle to cure patients from malignant hematological disease. Although 

previous studies have demonstrated that GVT activity is mostly retained under FTY720 

administration, I did not know whether the same applied for KRP203, a drug with a narrower 

binding specificity with S1P receptors. The data above raised thus the possibility that the GVT 

effect might still have been preserved due to the fact that donor mature T cells indeed were 

“trapped” within SLO post allo-HSCT. Before I could investigate the GVT effect in a 

transplantation setting, I had to establish a lymphoma tumor model. A lymphoma tumor might be 

good target of alloreactive donor T cells under the KRP203 umbrella because the tumor resides in 

SLO where donor T cells were observed to be trapped. I took the A20 B-cell lymphoma cell line, 

generated in Balb/c (H-2d) mice containing a luciferase reporter protein.212 This A20 reporter cell 

line can be tracked in vivo by bioluminescence imaging, making it a great tool to study tumor 

growth. To test tumor development, I injected 1x104 A20 cells directly into the left inguinal LN 

and obtained bioluminescence images 4 days post-injection (Figure 23A). At day 4, the mouse 

was sacrificed (Figure 23B) and I compared absolute cell numbers of the right non-injected LN 

versus the left LN containing A20 cells (<5x106 to >1.5x107 respectively) (Figure 23C).  
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Figure 23: Establishment of a lymphoma tumor model. 1x104 A20 luc+ cells were directly injected into the left-side 

inguinal LN of a WT B6 mouse. Bioluminescence image of a mouse 4 days after tumor injection into the left LN (A). 

Left-side inguinal LN 7 days after tumor injection (B). The picture shows the comparison of the size of the right LN 

without injection and left LN with injected cells. Absolute cell numbers of both LN were counted (C). 

 

Based on the image, size of the LN and cumulative cell numbers of the left inguinal LN, I decided 

to use this method as a forthcoming tumor model in a transplantation setting. To address the 

question if KRP203 still provided the GVT effect while preventing aGVHD, I lethally irradiated 

Balb/c recipients and transplanted them with 7x106 TCDBM from B6 donors or 7x106 TCDBM + 

2x106 T cells (bàd) with or without KRP203. One day after allo-HSCT, mice were injected 

directly into the left inguinal lymph node with 1x104 luciferase+A20 lymphoma cells. The tumor 

development was observed by bioluminescence imaging 2.5 and 3.5 weeks after HSCT+A20 

injection. Mice that received TCDBM alone developed lymphoma. In contrast, mice that received 

TCDBM+T cells were able to attack and eliminate the tumor. The latter was also true for mice 

that received TCDBM+T cells + KRP203 (Figure 24A). Mice that received TCDBM alone 

showed a tumor size in the range of 120-150mm2. In contrast, mice with TCDBM+T cells 

+KRP203 had a tumor size in the range of 0-30mm2. Mice that received TCDBM + T cells did 

not show any tumor development, as expected. The signal intensity of TCDBM recipients was in 

the range of ~50x106 photons/sec whereas the tumor of mice with KRP203 administration 

showed only low signal intensity in the range of 0.1-0.4x106 photons/sec (Figure 24B).  
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Figure 24: KRP203 preserves anti-tumor immunity. The A20 lymphoma cell line was directly injected into the left 

inguinal LN (1x104 cells). The tumor cell line was positive for the luciferase and could be detected with D-luciferin 

injection 3min before imaging. One representative bioluminescence image is shown of each group of mice at 2 and 3.5 

weeks post allo-HSCT; Mice that received TCDBM alone are shown in the left panel. Mice that received TCDBM + T 

cells are shown in the middle panel and mice that received TCDBM+ T cells + KRP203 are shown in the right panel 

(A). Tumor area and signal intensity of the A20 luc+ lymphoma cell line were determined by the software of the 

NightOwl (B). Data are shown from one out of three independent experiments. 

 

Taken together, these data confirmed that induction of immune responses in lymphoid organs 

were preserved and thus maintained the capacity to reject hematopoietic tumors that are retained 

in these sites. An overview of the effect of KRP203 on all different mouse models tested is given 

in table 2 in the appendix. 
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6. Discussion 
	
To restore immunity following allo-HSCT, an efficient reconstitution of the peripheral T-cell pool 

is essential and relies on a de novo generation of T cells in the recipient’s thymus. However, the 

thymus has been identified as a target of TRT stemming from the conditioning regimen and from 

aGVHD which is a debilitating and often life-threating condition following allo-HSCT.78 This 

toxicity hence negatively affects T-cell regeneration giving rise to posttransplantation immune 

deficiency, and possibly autoimmunity. cGVHD was originally regarded to be a continuation of 

aGVHD, primarily through expansion and persistence of donor T cells specific for MHC antigens 

or miHA uniquely expressed by recipient cells.26,37,43 As an alternative explanation it was later 

considered possible that the thymus may play a role in the devlopment of cGVHD. An incomplete 

understanding regarding the molecular and cellular mechanisms underlying post-HSCT loss of 

central T-cell tolerance induction in the thymus provided the rationale for the first project. In 

collaboration with the first author of the paper, published in Blood 2015,138 I was able to show in 

murine aGVHD models that autoreactive T cells can escape negative selection in a damaged host 

thymus during aGVHD and thus de novo generated autoreactive T cells can be exported to the 

periphery (see Appendix, Manuscript Figure 2A). With these data I could provide an important 

mechanistic link between the pathogenesis of aGVHD and cGVHD, which will be discussed in 

more detail in chapter 6.1. These results highly suggested for thymic cytoprotection via inhibiting 

T-cell migration into the thymus. 

 

S1PR1 agonism may successfully prevent aGVHD by inhibiting lymphocyte traffic from LN into 

peripheral tissues. Thus, I investigated how the S1PR1-mediated receptor agonist KRP203 

interfered with other important events that govern in combination the transplantation outcome: 

thymus-dependent T-cell regeneration, the preservation of the thymic microenvironment and 

consequent development of autoimmunity and anti-tumor immunity in allo-HSCT recipients. 

None of these variables could be addressed directly in the parallel clinical study in Basel. I could 

indeed demonstrate, firstly, in murine allo-HSCT models that KRP203 administration allowed for 

a normal intrathymic T-cell development post allo-HSCT (Figure 12). Secondly, I could show 

that KRP203 prophylaxis reduced alloreactive donor T-cell infiltration into the thymus (Figure 

15). Consequently, detrimental effects of aGVHD on central tolerance induction (i.e. intrathymic 

deletion of de novo generated autoreactive T cells) could be prevented (Figure 21). Importantly, 

prophylactic KRP203 administration preserved anti-tumor immunity in an A20 mouse lymphoma 

model (Figure 24). This study will be discussed in chapter 6.2. 
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6.1 GVHD clears the Aire in thymic selection 

 

During murine aGVHD, mTEChigh are targets of donor T-cell alloimmunity,3,7,13 and thymic 

aGVHD interferes particularly with the capacity of Aire+mTEChigh to sustain TRA diversity.14 

Mechanistic links between altered thymic TRA expression, and hence deviations in the TRA 

repertoire, the thymic production of autoreactive T cells, and ultimately their peripheral 

appearance during aGVHD (ultimately leading to cGVHD) have not yet been established. 

Unfortunately, the specificities of these autoreactive T cells present during cGVHD have not been 

identified to date and can thus not used to demonstrate direct evidence for a causal relationship 

with antecedent impaired TRA expression in the thymus. Therfore, I took advantage of the OT-

II→RIP-mOVA mousel model, where OVA acts as a surrogate self-antigen.201,203 This model is 

suitable to study thymic negative selection mediated by mTEC since OVA is expressed in their 

cell membrane under the control of the RIP-promoter, whose activity is restricted to pancreatic 

islets but also to Aire+mTEChigh cells in the thymus. Thus, OVA expression acts as a tissue-

specific protein that should cause negative selection in the thymus and normally should lead to 

elimination of autoreactive T cells that recognize mOVA peptides. To overcome the limitation 

that the unphysiological high frequency of OVA-specific precursors interferes with negative 

selection post allo-HSCT process,206 I co-transferred OT-II TCDBM with TCDBM from WT B6 

mice. This strategy ensures proper negative selection of OVA-specific T cells mimicking a 

normal scenario as it would be expected in normal T-cell development. 

By using the transgenic RIP-mOVA mice as transplant recipients, I could show that mice without 

aGVHD efficiently deleted OT-II specific T cells as there were only low frequencies of OT-II+ T 

cells among all CD4+ T cells present in the peripheral LN and spleen. On the contrary, in non-

transgenic WT B6 mice, which do not express mOVA, OVA-specific T cells were not negatively 

selected and thus could be released into the periphery. The induction of aGVHD in RIP-mOVA 

recipients, however, allowed the emergence of OT-II T cells to the periphery due to diminished 

thymic OVA expression. Indeed, aGVHD led to deletion of mTEChigh cells since the absolute cell 

numbers were decreased (Manuscript, Figure 1B). In contrast, Aire mRNA expression was not 

significantly affected by disease (Manuscript, Figure 1D). The question why aGVHD only 

interferes with Aire protein expression, but not on mRNA levels remains to be investigated. 

Several mechanisms could be affected, including defects in mRNA translation, stability of 

protein, or degradation of the Aire protein. These data strongly indicated that the loss of a single 

TRA (i.e. OVA peptide) licenses the de novo generation of autoreactive CD4+ T cells during 

murine aGVHD (Manuscript, Figure 2A). I could demonstrate that emerging OVA-specific T 

cells were still functional and OT II+ T cells had a non-anergic phenotype (Manuscript, Figure 

2C) and remained their capacity to respond to their cognate antigen in vitro. The finding that the 
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peripheral OT-II+ T cells represented effector T cells and not conventional Treg, was important and 

indicated that they were capable of responding to their antigen. This observation was supported 

by the finding that T-cell proliferation was strong in response to in vitro exposure to OVA peptide 

and syngeneic APC (Manuscript, Figure 2D).  

 

6.1.1 Functionality of de novo generated autoreactive T cells? 

 

It is of great importance to address the question whether these OVA-specific T cells that leave the 

thymus suffice to cause autoimmunity as a consequence of aGVHD. Since mOVA is expressed 

under the rat-insulin promoter, the question arose whether OT II+ T cells would infiltrate the 

pancreas, induce damage of islet cells and cause type 1 diabetes. I investigated if emerged OVA-

specific T cells infiltrated pancreatic LN in these recipients but I did not observe a significant 

infiltration. In this respect, two previous publications argued against an islet-destructive function 

of CD4 cells alone.213,205 Kurt et al. could demonstrate that even high numbers of OT-II cells 

alone would not induce islet infiltration and ensuing diabetes in RIP-mOVA mice in the absence 

of OT-I cells. Moreover, impaired negative selection in Aire-deficient RIP-mOVA x OT-II mice 

did not suffice to cause diabetes, in contrast to OT-I. Since we focused on OT-II cells in our 

experimental setting, I hypothesize that emerging OT-II cells alone would not mediate islet 

infiltration and/or destruction. An alternative approach to test in vivo if the emerging cells are still 

functional could be by the injection of EL4-OVA cells into the RIPmOVA recipients, expecting 

the escaping OVA-specific T cells to attack the tumor and eliminate it. Unfortunately, I was 

limited in the experimental set up because the EL-4 OVA cell line was made on a MHC-I 

background and there was not sufficient time to genetically alter them for use as a potential target 

for MHC-II restricted CD4+ OVA-specific T cells.  

 

In summary, I provided direct evidence in transgenic mice that de novo production of TRA-

specific T cells during aGVHD is a consequence of impaired ectopic TRA expression that results 

from a diminished mTEChigh cell pool. Our data therefore indicate that a functional compromise 

of the mTEC compartment may link alloimmunity to the development of autoimmunity which is 

a characteristic event of cGVHD. 

 

6.1.2 A mechanistic link for the transition from acute to chronic GVHD 

 

Based on my findings and others, I propose the following mechanistic link between aGVHD and 

cGVHD: After allo-HSCT BM-derived T-cell progenitors migrate to an intact host thymus where 

they undergo normal positive selection. Being positively selected, thymocytes migrate to the 
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medulla, undergoing negative selection, where developing T cells are exposed to self-antigens, 

including TRA. The ability of Aire+mTEChigh to build a reservoir of a large array of TRA is 

essential for the negative selection of self-reactive T cells. TCR ligation of these TRA with high 

affinity leads to clonal deletion of the developing thymocyte (see also chapter 2.2.2.3). However, 

the expression of an individual TRA is restricted to a small subset of Aire+mTEChigh. The high 

level of heterogeneity between mTEC subpopulations hence explains why the size of the 

Aire+mTEChigh compartment contributes to TRA diversity. Ectopic TRA expression is a 

stochastic process, where different mTEChigh cells express different TRA on their surface, as 

illustrated in Figure 25. Therefore, a comprehensive mosaic of TRA is only achieved by the 

complete mTEChigh pool. This mechanism ensures an efficient deletion of a highly diverse self-

reactive TCR repertoire. Normally, mature T cells that have survived negative selection are 

exported to the periphery as naïve T cells, being self-tolerant but pathogen-specific. During 

aGVHD alloreactive donor T cells (Tallo) infiltrate the thymus and specifically attack 

Aire+mTEChigh cells, however, leading to cell death and consequently a diminished transcription 

of a smaller array of TRA (Figure 25, blue arrow, blurry Aire+mTEChigh cell). Hence, proper 

negative selection cannot occur anymore, leading to the de novo generation of autoreactive T cells 

which can then be released into the periphery. This proposed mechanism is supported by another 

study from our laboratory where it was shown that these TRA whose expression levels were 

reduced as a consequence of aGVHD represented proteins that are specifically expressed in 

known target tissues of cGVHD, including i.e. salivary glands (e.g. salivary protein), liver (e.g. 

urinary protein) and lung (e.g. secretoglobin).134 
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Figure 25: Proposed etiological link between aGVHD and cGVHD. During aGVHD, alloreactive T cells infiltrate the 

thymus and target TRA-expressing Aire+mTEChigh cells. This includes the antigen-presentation of i.e. 

interphotoreceptor retinoid-binding protein (IRBP), a target protein during cGVHD. If there is a lack of IRBP-

expressing mTEC, de novo generated autoreactive T cells against IRBP emerge from the thymus and might induce 

uveitis – a syndrome in cGVHD.  

 

Although these data highly suggest for a possible mechanistic link between aGVHD and cGVHD, 

it should be noted that de novo generated autoreactive T cells that emerge from the thymus may 

not be sufficient to cause an autoimmune syndrome typical for cGVHD. This fact may be due to 

additional control mechanisms that regulate autoimmunity in the periphery. One example is the 

presence of natural Treg that are generated in the thymus and suppress peripheral autoreactive T 

cells. Since the thymic microenvironment is damaged during aGVHD, there is much evidence 

that not only the elimination of autoreactive T cells is affected but also the generation of Treg cells 

is impaired. If such a mechanism was true, this would argue for a “2-hit model”139 (see also 

chapter 2.2.4). Here, development of cGVHD is caused by the emergence of autoreactive T cells 

from the thymus to the periphery “Hit 1” and the parallel deficiency of Treg “Hit 2”.  

 

An alternative working model that helps to clarify how the loss of Aire is leading to spontaneous 

autoimmunity can be the use of Aire deficient mice. Mice that lack Aire demonstrate an impaired 

negative selection process and mirror the proposed mechanism occurring during aGVHD. It was 

previously reported that Aire deficient mice spontaneously develop an autoimmune response 

against the posterior chamber of the eye, resulting in uveitis – a severe inflammation in the eye.205 

It was also demonstrated that the target of the immune infiltrates in the eye is a specific Ag, 

namely the interphotoreceptor retinoid-binding protein (IRBP).214 Moreover, it was shown that 
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the IRBP antigen is expressed as TRA by Aire+mTEChigh and tightly regulated within the 

thymus.214 Although the development of uveitis is mainly induced by auto-Ab against IRBP, 

several studies could show that athymic nude mice with aire-deficient thymii did develop uveitis, 

indicating that the eye disease is indeed mainly driven by effector T cells in Aire-/- mice.114,205 

Interestingly, a commonly observed feature of cGVHD patients is ocular GVHD characterized by 

uveitis that occurs in 40-60% of patients that undergo allo-HSCT.215 It may be hypothesized that 

chronic eye infection in cGVHD patients indeed depends on the impaired negative selection of 

autoreactive T cells against IRBP. In this scenario, lack of IRBP expressing Aire+mTEChigh during 

aGVHD leads to autoreactive T cells that escape negative selection and can be released into the 

periphery inducing uveitis (see Figure 25). In order to test this hypothesis, I performed a qPCR 

for IRBP detection in my aGVHD model. Unfortunately, mRNA was undetectable. An easier way 

to detect autoreactive T cells against IRBP within a T-cell pool with a polyclonal repertoire would 

be with a tetramer or pentamer reagent.214 Such experiments were, however, out of the scope of 

this thesis project due to time limitations. In the future, the identification of the specificities of 

autoreactive effector T cells in cGVHD may allow to test whether such mechanism operates not 

only for a surrogate TRA but is universal for thymic ectopic expression of those TRA that are 

present in tissues known to be targets of cGVHD. I could not answer this particular question 

during my PhD and there is a need for further investigations.  

 

Other previously reported observations provide additional evidence that antecedent impaired 

negative selection during aGVHD might act as predisposition of cGVHD.55,135,137If this 

mechanistic link is true, this would in fact explain, why cGVHD is correlated with lower 

leukemic relapse.216 Many of the TRA that are expressed by Aire+mTEChigh are also present in 

tumors – thus within the autoreactive T-cell pool that recognizes TRA with too high affinity there 

are also tumor-recognizing T cells present and get eliminated by negative selection.217 It was 

previously reported that manipulation of negative selection by the blockade of RANKL enhanced 

anti-tumor immunity.216 These results support the assumption that during aGVHD, thymic 

negative selection fails. Thus, tumor-specific T cells may survive central tolerance and can be 

released into the periphery, where they induce cGVHD but at the same time reduce the risk for 

tumor relapse.216  

 

To summarize, my data provide a mechanism for how autoimmunity may develop in the context 

of aGVHD. This mechanism is based on a contracted mTEC cellularity and consequently 

impaired TRA representation due to altered gene expression. In conclusion, the weakened 

platform for negative selection might provide the explanation for the emergence of autoreactive T 

cells seen in the murine transplantation models. As a consequence, therapy for cGVHD has 
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traditionally been directed at suppressing the donor anti-recipient immune response. There is 

currently no effective treatment for acute and chronic GVHD apart from immunosuppressive 

drugs that unfortunately enhance the risk for infections and inhibit an advantageous anti-tumor 

immunity. In an effort to find alternative solutions, I focused in the second part of my thesis on an 

approach that included cytoprotection of the TEC compartment via interfering with T-cell 

migration patterns from SLO into the thymus using the administration of KRP203. 
 

6.2 S1PR1 agonist KRP203 in the context of allo-HSCT 

 

6.2.1 Relevance of the KRP203 study 

 

New approaches are sought that specifically prevent aGVHD but do not interfere with T-cell 

immunity directed against cancerous cells. Since both beneficial anti-tumor effects and 

deleterious anti-host effects responses are based on T-cell immunity, a generalized 

immunosuppression will inhibit both effects equally. The separation of GVT and GVH responses 

is hence a major challenge to both transplant immunologists and physicians. Recent work has 

revealed a novel concept for GVHD prophylaxis.181,195 This approach uses interference with early 

T-cell trafficking and is based on the concept that inhibition of donor T-cell migration from SLOs 

to peripheral target organs reduces GVHD. S1P receptor agonists such as KRP203 or FTY720 

have shown beneficial therapeutic effects in preclinical models of GVHD.182,188 

 

As introduced in chapter 2.3, a parallel clinical study had been initiated prior to initiation of our 

preclinical research (ClinicalTrials.gov Identifier: #NCT01830010). This interventional study is 

sponsored by Novartis Pharmaceuticals and is entitled: "A Two-part, Single- and Two Arm 

Randomized, Open-label Study to Evaluate the Safety, Tolerability, Pharmacokinetics and 

Efficacy of KRP203 in Patients Undergoing Stem Cell Transplant for Hematological 

Malignancies". Primary outcome measures: Number of participants with adverse events as a 

measure of safety (111 days). Secondary outcome measure: GVHD-free, relapse-free survival (1-

2 years posttransplantation). The study is still in the recruiting stage and a primary completion 

date of January 27, 2020 is targeted. For this reason the data are not yet reportable. By using a 

two-pronged approach of our KRP203 study that combines preclinical and clinical investigations 

at the same time, I believe that there will be a reciprocal benefit for both the scientific and the 

clinical perspectives. The experimental data obtained herein are expected to provide a basis for 

the rational use of KRP203 in the clinical setting. 
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6.2.2 KRP203 administration in naïve mice in the absence of aGVHD 

 

An optimal administration protocol for KRP203 for preventing or treating GVHD has thus far not 

been reported. The conventional readout to analyze lymphocyte migration is the analysis of 

lymphocyte counts within the PB. Since the S1PR1 agonist Fingolimod is approved as an oral 

drug, I first compared oral administration of KRP203 versus i.p. injections as the latter is more 

convenient to apply in mice (data not shown). I did not observe any differences between both 

application forms, therefore I decided to use i.p. injections for future experiments. However in 

patients, KRP203 is still suggested to be given in an oral form. The recommended dose was 

reported to be in a range between 0.3 - 3mg/kg. Therefore I tested several doses and observed the 

highest reduction in lymphocyte counts with 3mg/kg. It is important to note that I never reached 

an absolute block in lymphocyte migration but a large reduction in absolute cell numbers and 

frequencies was always observable (Figure 9). Due to the fact that lymphocyte reduction was only 

observed at 1 and 2 days after the first injection, I argued that prophylactic administration might 

be crucial to diminish donor T-cell migration in murine allo-HSCT recipients. Moreover, the fact 

that lymphocyte numbers returned to normal values again within 2 days after WD, I decided to 

apply KRP203 every 2nd day. An interesting but not surprising finding was the fact that CD4SP 

and CD8SP T cells did accumulate in the thymus of naïve mice under KRP203 administration 

(Figure 10), suggesting for either higher proliferation in thymocyte subsets or, alternatively, a 

block in thymic egress, as it was already reported for FTY720.163,164 I could detect proliferation 

capacity by BrdU administration and observed that proliferation tended to be increased among SP 

cells. These results indicated that the accumulation of mature T cells indeed might be due to an 

increased proliferation and not due to an impairment in thymic export when mice received 

continuous KRP203. However, the difference was not statistically significant (Figure 11). 

Interestingly, I did not observe an accumulation of thymocytes when I investigated the effect of 

KRP203 in an allo-HSCT mouse model where mice experienced TBI (Figure 12). Moreover, I 

found that engraftment of HSC-derived T-cell progenitors to the thymus remained normal with 

regard to absolute cell numbers and frequencies of ETP (Figure 13). Also, intrathymic T-cell 

development was not different in mice that received KRP203 compared to control mice within all 

DN stages. Lastly, I did not see any block in the export of mature CD4SP or CD8SP T cells, as 

they were also present in SLO 3.5 and 6 weeks post allo-HSCT (Figure 12). An explanation for 

this contradictory observation between unirradiated and lethally irradiated recipients could be the 

fact that the thymic importation is a highly regulated periodic event.210 The thymus does not 

replenish itself since it does not contain any self-renewing thymic progenitors. Thus, a continuous 

importation is necessary to sustain a normal T-cell output. When I continuously applied KRP203 

in naïve mice, T-cell numbers were likely to be already high, resulting in full intrathymic niches. 
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Occupied niches within the thymus are believed to negatively regulate thymic import of early 

progenitors via a feedback mechanism.210 Indeed, it was shown that P-Selectin expression is an 

essential factor in this feedback mechanism and the size of the progenitor pool is dependent on P-

Selectin expression on endothelial cells.87 Thus, to address the question if egress is blocked 

(followed by a negative feedback loop of thymic import) I analyzed P-Selectin expression on 

endothelial cells in naïve mice. I did not find a significant difference when compared to untreated 

mice after 1 consecutive week of KRP203 administration although I did see a trend towards 

reduced P-Selectin expressing endothelial cells (Figure 13). Thus, in the conditioned model, 

where recipients underwent TBI, it could be that there was still space to fill up thymic niches and 

the tightly regulated import and export were not affected under KRP203 administration post allo-

HSCT. In addition to that, and as already mentioned before, I never saw a complete block of 

lymphocyte migration in the PB (chapter 6.2.2). This might also be true for thymic input but also 

export from the thymus.210 Lastly, independent lines of preclinical evidence suggest that homing 

and engraftment of donor cells are not hampered in FTY720 pretreated animals receiving allo-

HSCT.218 However, the combination of a CXCR4 antagonist and an S1P1 agonist was shown to 

have the potential to mobilize HSC’s in normal donors,219 suggesting a direct effect of S1P 

receptor modulation on stem cells homing which might translate into impaired engraftment in 

humans. 

 

6.2.3 KRP203 reduces thymic donor mature T-cell infiltration but still provides intrathymic 

donor BM-derived T-cell development 
 

aGVHD is initiated by alloreactive donor T cells, which target a restricted set of host tissues. In 

preclinical models, FTY720 has been demonstrated to markedly reduce aGVHD in multiple 

clinically relevant murine strain combinations.179,181 The failure of FTY720 to treat established 

advanced GVHD in both mouse and dog models220 underlines the importance of starting 

treatment before symptoms occur. Therefore, the use as a prophylactic drug seems to bear the 

greatest clinical potential. To investigate the effect of KRP203 on aGVHD prevention, I used of 

the non-ablative B6→BDF1 transplantation model. This model allowed me to distinguish 

pathophysiological influences on the TEC compartment caused by aGVHD from those that 

resulted from cytoreductive therapy. Thus, unirradiated mice were transplanted with T cells from 

a haplo-ID donor and developed aGVHD within 2 weeks. In this model, the prophylactic 

administration of KRP203 caused indeed a decrease in total numbers and frequencies of thymus-

infiltrating donor mature T cells (Figure 15). As a consequence of diminished thymic injury, I 

observed that pro-inflammatory cytokines were also decreased as I measured reduced secretion of 

TGFβ in the thymus when mice received prophylactic KRP203 (Figure S1). Importantly, I could 
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confirm by immunohistochemistry as well as flow cytometry that the diminished intrathymic anti-

host immune response resulted in the preservation of the Aire+mTEChigh pool (Figure 19). 

Absolute cell numbers of Aire+mTEChigh remained normal, as they were comparable to mice 

without aGVHD. I also investigated the effect of KRP203 on thymic donor T-cell infiltration in 

two additional murine allo-HSCT models including a lethally irradiated and fully MHC-

mismatched model and a lethally irradiated miHA mismatch model. In both models, I could 

confirm that KRP203 prophylaxis decreased frequencies and absolute cell numbers of donor T 

cells infiltrating the thymus. These mice had, as a direct effect of lower pro-inflammatory T cells 

present, a preserved TEC compartment and increased numbers of Aire+mTEChigh cells when 

compared to mice that developed aGVHD but were left untreated. These data directly proved that 

TRT such as aGVHD but also conditioning regimen cannot harm the thymus to the same extent, 

when KRP203 is given prophylactically and continuously.  

Having seen a beneficial effect of KRP203 on thymic function, I wondered whether KRP203 also 

influenced thymus-dependent T-cell regeneration in the recipient following allo-HSCT. As 

already observed in the MHC-mismatched model without aGVHD, I found that prophylactic and 

continuous KRP203 application did not impair the intrathymic T-cell maturation process even in 

the presence of aGVHD. An overview of the effect of KRP203 on several host compartments in 

all different mouse models tested is summarized in table 2 (see appendix). I did not test whether 

the peripheral T-cell pool was affected by KRP203 in the presence of aGVHD later than 2 weeks 

(Figure 18). However, data from lethally irradiated mice that received TCDBM (no GVHD) from 

MHC-mismatched donors showed normal peripheral T-cell development 3.5 and 6 weeks post 

allo-HSCT (Figure 14). I therefore concluded from these results that KRP203 did not have a 

detrimental effect on thymic export of new naïve T cells. Whether this resulted following allo-

HSCT in a normal peripheral T-cell pool remains to be investigated.  

 

6.2.4 KRP203 increases Treg numbers  
 

There is much evidence that Treg have a beneficial function in GVHD prevention.221 Based on the 

observation that CD4SP T cells are increased in the thymus during KRP203 administration, I 

asked whether the Treg subset also had higher cell numbers. For that reason I investigated the 

frequencies of CD4+CD25+FoxP3+ Treg in the same experimental setting as described above 

(chapter 6.4). Treg were indeed increased in frequencies among CD4+ T cells when mice received 

prophylactic KRP203 administration (Figure S2A). Moreover, I analyzed frequencies of host Treg 

in the periphery since S1PR1 agonism is expected to trap T cells in SLO. Mice that had clinical 

signs of aGVHD had -as expected- decreased frequencies of Treg whereas prophylactic KRP203 

administration increased Treg frequencies in spleen and LN in comparison to mice with aGVHD 
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but without treatment (Figure S2B). This finding was, however, not surprising since it was 

already reported that FTY720 promotes FoxP3+Treg cell differentiation from thymic Treg 

precursors. This observation was explained by the fact that functional antagonism of S1PR1 

activates mTORC1 signaling which triggers Smad3 activation and hence antagonizes Treg 

differentiation.183 Thus, by the use of S1PR1 agonism, this effect should be reversed.  

 

In total, the experiments demonstrated that prophylactic application could significantly reduce 

infiltration of donor T cells to the thymus and subsequently diminish the secretion of pro-

inflammatory cytokines. This in turn had an advantageous effect on the thymic microenvironment 

and provided normal donor-BM derived T-cell development as a normal TEC compartment was 

preserved. Concomitantly, host Treg were increased in frequencies suggesting for an additive role 

in the prevention of aGVHD which remains to be investigated. 

 

6.2.5 Withdrawal of KRP203 reduced T-cell migration only for a limited time frame 

 

As an observation that is likely clinically relevant, the WD of KRP203 administration resulted in 

diminished import of donor-derived T cells to the thymus at 1 and 2 weeks after WD (Figure 17). 

In parallel, the size of the mTEC compartment remained normal with regard to absolute cell 

numbers. In addition to this observation, I detected (in collaboration with Phil Smith, Novartis) 

that mice that developed cGVHD had much higher probability to survive when KRP203 was 

given either continuously (from day-1 until day 60) but also when KRP203 was given 

prophylactically for 1 week and then withdrawn.  

These results suggested that, although low numbers of alloreactive donor T cells were present in 

the thymus over 2 or 3 weeks during continuous KRP203 administration, they were not sufficient 

in numbers to induce damage in the TEC compartment. However, it remains to be elucidated why 

donor T-cell numbers in the thymus remained low 1-2 weeks after WD, although I observed in 

previous experiments that T cells resumed migration 2 days after WD as they were detectable in 

the PB. One explanation could be the fact that KRP203 might rather be a S1PR1 modulator than 

agonist.222 Under physiological conditions, S1P (acting as an S1PR1 agonist) induces only the 

internalization of its receptor S1PR1, which then recycles back to the cell surface within hours.223 

The phosphorylated form of Fingolimod (FTY720) however works as a S1PR1 functional 

antagonist, where the internalized receptor is degraded by the proteasome.185,222 This results in a 

long-term absence of the receptor and thus a long-term effect until there is de novo production of 

the receptor, which needs days, rather than hours.223 My results hence strongly suggest 

degradation of the receptor after long-term internalization and not recycling and resensitization. 

Thus, after KRP203 administration for 2 weeks, the effect might endure for another 1-2 weeks 
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after WD. This is a very relevant observation for the translation into the clinics. These results are 

important indicators for duration of KRP203 administration and suggest for a prophylactic and 

continuous period of administration during the first weeks after allo-HSCT, until there is full 

regeneration of a new T-cell compartment.  

 

6.2.6 Prophylactic but not therapeutic administration prevents thymic T-cell infiltration 

during aGVHD 

 

I did not observe a beneficial effect of KRP203 on aGVHD prevention, when KRP203 was given 

therapeutically instead of prophylactically (Figure 16). When I started drug application at day 7 

after allo-HSCT, I detected high numbers of donor mature T cells present in the blood and I 

observed elevated numbers of pro-inflammatory donor T cells in the thymus in mice with 

aGVHD (Figure 16). This observation could indicate that alloreactive donor T cells invade the 

thymus within the first 7 days post-HSCT. As a consequence, the therapeutic administration 

effectuates a reduced ability for T cells to egress from SLO, leading to an accumulation of donor 

mature T cells that induced even more harm. This observation was reflected by the fact that the 

Aire+mTEC compartment was not preserved during aGVHD when KRP203 was applied 

therapeutically (Figure 17). Furthermore, I observed that therapeutic application also resulted in 

very low frequencies of host Treg, thus intensifying symptoms of aGVHD (Figure S2B). 

 

Taken together, I concluded from my experiments that prophylactic and continuous 

administration of KRP203 maintained a normal thymic stromal microenvironment and hence 

normal thymopoiesis to occur following allo-HSCT.  

These results are pertinent for several reasons: The use of S1PR1 agonist allowed me to determine 

the threshold for donor T-cell numbers to infiltrate the thymus without inducing irreversible 

damage to the thymic environment, including the TEC compartment. Moreover, I could define a 

time frame for how long alloreactive T cells can stay in the thymus without worsening thymic 

damage. Lastly, I found an optimal dose that reduces the quantity of alloreactive donor T cells to 

an amount that thymic damage is not induced while on the same time, BM-derived T-cell 

precursor still can engraft in the thymus and egress to the periphery.  

 

6.2.7 Negative selection of autoreactive T cells is preserved upon KRP203 administration 

 

My observation that the TEC compartment was preserved with regard to absolute cell numbers 

during aGVHD by prophylactic KRP203 administration led me to the next question whether the 

preserved mTEC compartment also remained functional in its ability to eliminate strongly self-
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reactive T-cell clones. Thymocytes that are highly self-reactive induce Helios and PD-1101,102 as 

response to self-antigens that are particularly expressed by the Aire+mTEChigh compartment. The 

surface expression of Helios and PD-1 thus helps mTEC to recognize highly self-reactive T cells 

and to eliminate them.101 The expression of Helios by CCR7-TCRβ+ thymocytes therefore 

provides a direct way to enumerate T cells that carry a strong self-reactive TCR and are 

susceptible to deletion. I detected normal numbers of autoreactive T cells that will be negatively 

selected by the induction of Helios in mice without GVHD and mice that received KRP203. 

Interestingly, mice that did develop aGVHD had, against my expectation, only low frequencies of 

Helios expressing cells, as I expected higher frequencies of autoreactive T cells to be present 

(Figure 20). A reason for this observation could be that during aGVHD, autoreactive T cells 

indeed can escape negative selection and not even induce Helios or PD-1 as response to antigen-

presentation because of lacking TRA-expressing Aire+mTEChigh. These data presented a new 

finding that indeed negative selection is directly affected during aGVHD via the lack of Helios 

and PD-1 induction by autoreactive T cells. Moreover, I found that this mechanism could be 

preserved by the administration of KRP203. In the presence of aGVHD, de novo generated 

autoreactive T cells can be released to the periphery.137,138 Based on the observation that central 

tolerance is still provided by KRP203 administration during aGVHD, I wondered whether this 

directly led to a diminished release of de novo generated autoreactive T cells. Indeed my data 

indicated that KRP203 administration diminished, through the preservation of Aire+mTEC and 

subsequent capacity to express OVA in the thymus, the emergence of de novo generated OVA-

specific autoreactive T-cell clones to the periphery (Figure 21). 

 

Taken together, my data suggested that the lack of abundant numbers of host-reactive T cells 

rendered the transition from acute, inflammatory disease to autoimmune-like syndromes such as 

cGVHD more unlikely. My results confirmed that prophylactic KRP203 administration was able 

to prevent loss of Aire+mTEChigh cells. These cells serve as a platform for central T-cell tolerance 

induction. My data raised the possibility that preventing mTEC damage had averted the export of 

autoreactive T cells that are believed to be responsible for the transition from aGVHD to the 

autoimmune form of cGVHD.  

 

6.2.8 KRP203 – a drug for cGVHD? 

 

There is evidence that the advantageous effect of KRP203 on the thymic environment during 

aGVHD could also have a function in cGVHD prevention. Wu et al. recently established a 

cGVHD mouse model where mice develop symptoms of cGVHD within 60 days. Here, 

antecedent thymic damage leads to an impaired negative selection process due to mTEC damage 
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and the generation of autoreactive T cells.137 To test if KRP203 prevents symptoms of cGVHD, I 

chose to establish that model in our lab (Figure S3A). However, I did not observe thymic damage 

to the same extent as published (Figure S3C). Furthermore, I took serum from these mice and 

tested for auto-Ab production against salivary glands and skin on tissue from RAG-/- mice. I did 

detect low amounts of anti-dsDNA auto-Ab production (~10%) in the salivary glands in mice that 

developed cGVHD and less auto-Ab in mice that received TCDBM only (Figure S3D). However, 

these were only preliminary results and hence this issue needs further investigation. Another 

approach to test if auto-Ab are produced, may be by the isolation of the retina of RAG-/- mice and 

test if the serum of mice with cGVHD contains auto-Ab against IRBP. Moreover, one could test 

if autoreactive T cells are present against IRBP. Future experiments may wish to address this 

question which is beyond the scope of my PhD. 

 

There are patients who develop cGVHD symptoms without antecedent aGVHD symptoms.40 It 

still could be possible that thymic damage could already occur before symptoms of cGVHD arise. 

In these patients, KRP203 administration could also be helpful since it could block (if it is applied 

at higher doses) or at least reduce egress of autoreactive T cells that already might have 

developed in the thymus. Hence, KRP203 could temper autoimmune symptoms present during 

cGVHD. However, this hypothesis needs to be tested. A possible mechanism for KRP203 

administration in cGVHD is illustrated in Figure 26. 
 

 

Figure 26: Possible mechanism for KRP203 application in cGVHD. KRP203 blocks donor T-cell infiltration into the 

thymus and thus preserves the Aire+mTEChigh compartment. This may allow a proper elimination of autoreactive T-cell 

clones and subsequently no emergence of autoreactive T cells. In addition, Treg numbers in thymus and periphery are 
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increased upon KRP203 administration. When KRP203 would be applied in higher doses, thymic egress of already 

generated autoreactive T cells might be blocked. 

 

6.2.9 Out of the thymus – what happens in the periphery? 

 

KRP203 still provides an anti-tumor response 

Although previous studies have demonstrated that GVT is mostly retained under FTY720 

administration, mechanistic information as to where and how anti-tumor immunity is functional 

was lacking. I hypothesized that lymphomas were better targets of donor T cells under the 

KRP203 umbrella because this tumor resides in SLO. In contrast, as control of disseminated 

leukemia requires trafficking of donor T cells, an anti-tumor immunity to those tumors would be 

possible only after drug WD. Indeed, I observed that the tumor could be cleared with KRP203 

administration (Figure 24). In the same model but without tumor development, I could detect 

donor mature T cells being present within SLO during KRP203 administration (Figure 22). These 

results indicated that an optimal dosage and application protocol of KRP203 could effectively 

retain a sufficient number of T cells in SLO when desired. However, I did not test whether this 

was also true for other disseminating tumors. However, WD of KRP203 might allow for anti-

leukemic effects upon release from SLO. These data were not generated during my thesis but may 

be generated by following up incidences of relapse in patients that participate the parallel clinical 

trial. 

 

Previously published findings showed that naïve T cells but not effector memory CD4+ (Tem) and 

CD8+ (Tem) cells nor central memory T cells (Tcm) induce GVHD while CD4+ Tem cells mediated 

GVT effect against leukemia.224 Moreover, the CD8+CD44high memory T cell subset containing 

central memory and effector memory cells was able to exploit the GVT effect against lymphoma 

without inducing GVHD.24,225 In parallel, Mehling et al., showed that naïve T cells and Tcm, 

which home trough LN, were significantly reduced upon FTY720 administration, whereas Tem, 

that preferentially screen tissue, were not as affected as naïve T cells and Tcm cells.226 These data 

support my observations that tumor eradication is still provided under KRP203 administration. 

Activated T cells with cytotoxic activity are able to kill the tumor and are not “trapped” to the 

same amount as naïve T cells under KRP203 administration – an observation that may even be 

better for GVHD prevention. 

Another potential mechanism for anti-tumor immunity might be the tumor killing by NK cells. 

NK cells are known to provide strong anti-tumor immunity227 and were reported to be only 

partially affected by S1PR1 agonists.170,178 I also checked for different lymphocyte subsets that 

were affected by KRP203 in naïve mice and did not observe a block in NK cell migration. Thus, I 
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argued that the same was true in my tumor model and NK cells supported the T cells in the 

elimination of the tumor.  

 

Another important question was raised whether the lymphocytes that are trapped within the SLO, 

still remained functional. To test whether residual T cells within SLO had an effector phenotype 

and did not become anergic upon continuous KRP203 application, I first measured folate receptor 

4 (FR4) and CD73228 expression on peripheral T cells in LN of mice that developed aGVHD with 

or without KRP203 and in mice without GVHD. In the control group, the majority of CD4+ T 

cells expressed FR4 and CD73 at very low levels indicating a non-anergic phenotype (Figure 

S4A). During aGVHD, a higher frequency of T cells expressed FR4 and CD73 at high levels, a 

typical feature of anergic cells (see Appendix, Manuscript Figure 2C). Continuous KRP203 

administration resulted in only small numbers of CD4+FR4highCD73high cells (Figure S4A). In 

addition to the phenotypical characterization of anergic cells, I also tested their function via 

analyzing the capacity of IFNγ secretion. I observed that during aGVHD phenotypical anergic 

cells were still able to secrete IFNγ independent of KRP203 administration (Figure S4B). These 

data showed that only low numbers of T cells became anergic with respect to surface marker 

expression and cytokine secretion, when KRP203 was continuously applied for 2 weeks. I did not 

answer the question whether these cells remained functional with regard to their ability to fight 

pathogens. This question is of great importance as opportunistic infections are a frequent setback 

for allo-HSCT patients. Microbial infections are mostly controlled by the migration of effector T 

cells from LN to the site of infection. Since it was shown that Tem are not as affected as naïve T 

cells by S1PR1 agonists,226 it is likely that the ability to clear infections is provided despite 

KRP203 administration. Moreover, innate cells that are not trapped by KRP203, might still serve 

as first-line protection.  

Lastly, I asked whether S1PR1 agonism led to lymphopenia, as S1P as well as the phosphorylated 

form of FTY720 were reported to subsequently internalize the receptor.184 
185,186 However, I could exclude the latter mechanism since in a transplantation setting, 

lymphocyte retention in LN does not induce subsequent lymphopenia as it was shown after allo-

HSCT that the peripheral T-cell expansion is not sufficient to replenish the T-cell pool which 

needs thymic output to be complete.78  
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6.3 Translation of preclinical findings to the clinical application – general 

considerations 

 

Although there was an overall increased survival probability after allo-HSCT over the years, there 

is still room for improvement.229 While many specific mechanistic insights have been gained by 

experimental work, not a single proposed mechanistic pathway that has been identified 

experimentally has successfully translated into clinical reality. The PhD project was situated at 

the interphase of basic transplantation immunology and clinical stem cell transplantation. Using a 

synthetic drug of a known class of successful experimental GVHD prophylaxis that is also being 

used in a clinical trial that we have initiated in June 2013, I have aimed to close gaps in the field 

and to facilitate the clinical implementation of S1PR agonism as a prophylactic principle, thereby 

preventing the suffering of many patients. 

 

In 2014, Markey et al. suggested considerations that should be taken in order to evaluate the 

translation of new therapeutic interventions into clinical practice (table 1).230  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Table 1: Predicting the translation of preclinical therapeutic strategies. According to Markley et al. this list of 

questions helps to predict if preclinical therapeutic strategies will be translated into the clinics.  

 

Although the compound KRP203 is already being tested in a parallel clinical trial, I evaluated the 

potential for this compound to be used for GVHD prevention for higher clinical trial phase. Based 

on the questions that were listed in the table, KRP203 seems to be a promising new therapeutic 

strategy for preventing aGVHD. First of all, KRP203 restricts T-cell migration by interfering with 
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the S1P-S1PR1 axis, a pathway that still might be active in patients that receive 

immunosuppressive drugs, which only dampen T-cell activation but not migration (REF). The 

effect, if applied prophylactically, is large and systemic. Interference by KRP203 inhibits 

(thymic) aGVHD at a very early stage of its pathophysiology and might even have advantageous 

long-term effects as it may mitigate cGVHD symptoms by reducing the emergence of 

autoreactive T cells. S1PR1 is expressed by both CD4+ and CD8+ T cells and thus interferes with 

MHCII and MHCI downstream signaling pathways, respectively. Possible toxicities that can arise 

in patients - but were not evident in animals - will be revealed in the parallel clinical trial. Since 

similar S1PR agonists are Food and Drug Administration (FDA)-approved and widely used for 

other disease, it is likely that KRP203 has no detrimental side effects in humans. As I observed 

for lymphoma, the GVT effect remained active under the KRP203 umbrella. However, I could 

only test this issue for a lymphoma tumor while it remains unclear how the tumoricidal activity 

will be for disseminating tumors. Moreover, to this time point, I could not answer the question, if 

pathogenic-specific immunity is still provided. Nevertheless, I hypothesize that the beneficial 

effects of KRP203 outweigh possible risks for infections or other side effects. Relating to the last 

point of the table, I think that this compound has high potential to become commercially viable. 

This contention is supported by the facts that FTY720, a similar drug like KRP203, is already on 

the market and frequently used for prevention of other diseases (i.e. multiple sclerosis) and 

moreover, many preclinical trials for different diseases are ongoing with KRP203. 

In summary, KRP203 is administered prophylactically as treatment of already established 

aGVHD is likely too late for intervention with S1P modulation. Co-administration of KRP203 

with standard of care treatment used in the peri-stem cell transplant phase (using drugs such as 

cyclophosphamide, busulphan, methotrexate, fludarabin, cyclosporine or myophenolate), based 

on pharmacokinetic characteristics of KRP203 and of those drugs, is expected to result in no 

major interaction. Overall, based on the preclinical and clinical data generated to date, the 

prophylactic use of KRP203 may be a safe and effective novel modality to successfully prevent 

severe aGVHD by inhibiting lymphocyte trafficking into the target organs. Before embarking on 

a large study addressing efficacy, a small trial is proposed mainly to explore initial safety of S1P 

modulation in this unique patient population. This Phase Ib study is planned as the first step to 

enable development of KRP203 for the prevention of aGVHD where the unmet medical need is 

high. 
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6.3.1 Of mice and men - Mouse models to study human GVHD  

 

In cases when compounds are transferred to clinical trials, there is still the problem that patients 

differ in variables such as age, underlying disease, conditioning regimens, prophylactic drugs and 

organ involvement. This heterogeneity of the patient groups makes the evaluation of a trial very 

complex.231 The necessity for parallel pre-clinical trials is evident. Experimental animal studies 

have made major contributions to the understanding of the pathophysiology of GVHD. Thus, 

preclinical research in experimental models facilitates the translation into the next phase of a 

clinical trail.232 The major advantages of using mouse models to study GVHD are the ability to 

control multiple variables and dissect every step of the disease progress in an accurate and 

reproducible way.233 Markey et al. described in 2015 several benefits using murine systems to 

study GVHD pathogenesis: I) Environmental conditions can be controlled – such as the 

microbiota or conditioning regimens. II) The transplantation setting can be controlled by using 

MHC mismatched or miHC mismatched donor/recipient pairs. III) Genetically mutated key 

molecules can be studied in donor and recipients and within different cell sub-populations. IV) 

The GVH reaction can be observed in real time and at various time points. V) Therapeutic 

applications can be tested in clinical relevant mouse models.230 However, there are also some 

limitations using animal models for preclinical studies, which are important to note and need to 

be addressed in the future: One limitation is the bias of several mouse strains to reflect either an 

isolated CD4 or CD8-dependent response that facilitates the understanding of a MHC class I vs. 

II response. However, the GVT response requires similar CD4 and CD8-dependent pathways. 

The bias towards a TH1 or TH2 response can also influence the outcome of the disease and varies 

within different strains such as B6 or Balb/c.234,235 Another important aspect to improve is to 

integrate various treatments in one mouse model. It should also be taken into account that most 

preclinical mouse studies include TBI as the only conditioning regimen. In the future, all of these 

different factors have the potential to improve predictive values in preclinical experimental mouse 

models.232,233,236 These factors highlight why basic research in animal models is further needed in 

order to better understand the mechanism underlying any disease and the drug in the context of a 

controlled environment, where all variable factors can be determined.  
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7. Conclusion & Significance 
	

Allo-HSCT offers an effective treatment for a broad spectrum of malignant and non-malignant 

disorders. The success of allo-HSCT is not only dependent on the swift regeneration of immune 

competence and the lasting control of the underlying disease, but also the minimization of 

transplant-related complications such as aGVHD and cGVHD, respectively which, however, may 

still develop to some degree in up to 80% of allo-HSCT recipients. Unfortunately, aGVHD and 

the immunosuppression needed to control disease slow down regular posttransplantation immune 

regeneration and consequently also hamper efficient anti-tumor immunity. Moreover, aGVHD 

also presents a risk factor for the development of cGVHD which owns severe autoimmune-like 

features. Both aGVHD and cGVHD hence can seriously affect a patients’ quality of life. Indeed, 

no therapy or combination of therapies exist at present to effectively prevent clinical aGVHD 

while at the same time preserving desired immune responses against foreign pathogens and the 

underlying malignancy. 

 

In the present work, I aimed at the better understanding in animal allo-HSCT models of the 

mechanisms how autoimmunity may develop as a consequence of aGVHD and how to prevent 

such pathomechanism. With regard to mechanistic explanations, I extended research initiated in 

our laboratory that had focused on the role of thymic injury and the resultant loss of central 

tolerance induction as a cause for de novo production of autoreactive T cells during aGVHD. 

With regard to intervention into this unwanted path, I extended recent work done by others which 

had revealed a novel concept for GVHD prophylaxis. This approach uses agonists for S1PR1 and 

is based on the concept that interference with alloreactive T-cell migration from activation sites in 

SLO to effector sites in peripheral target organs reduces or even prevents aGVHD. 

 

I here demonstrate I) in published data (see Annex) that loss of central tolerance induction via 

injury to thymic Aire+mTEChigh is essential for failure to centrally delete self-reactive T cells and 

the emergence of de novo generated autoreactive T cells in the periphery. II) In unpublished work, 

I here describe that prophylactic but not therapeutic blockade of donor T-cell trafficking using the 

specific S1PR1 agonist KRP203 (obtained from Novartis Inc. Basel) reduces donor T-cell 

migration to the host thymus, thus significantly attenuating thymic aGVHD and the de novo 

production of autoreactive T cells. Moreover, my data confirms that S1PR1 receptor agonism via 

KRP203 traps alloreactive T cells in SLO and hence maintains the capacity to reject 

hematopoietic tumors residing in these locations. 

 

The significance of my PhD thesis research is three-fold: I) Basic research: New approaches are 

required that specifically prevent GVHD but do not interfere with T-cell immunity directed 
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against tumoricidal cells. The data shown in the present thesis contributes to basic understanding 

of the cellular and molecular mechanisms responsible for complications of allo-HSCT. The use of 

experimental mouse allo-HSCT models that are amenable for manipulations was able to answer 

the question how S1PR1-mediated receptor agonism interferes with other important events that 

govern in combination the transplantation outcome: thymus-dependent T-cell regeneration and 

anti-tumor immunity (which cannot be addressed directly in the phase I clinical study in Basel). 

II) Clinical relevance: The morbidity and mortality of the allo-HSCT procedure remains 

unacceptably high even 40 years after its introduction. GVHD is the main culprit of the 

unsatisfying outcome of stem cell transplantation. The PhD project was situated at the interphase 

of basic transplantation immunology and clinical stem cell transplantation. I have aimed to close 

gaps in the understanding of the mode of action of the synthetic drug KRP203 and to facilitate its 

implementation as a prophylactic principle in clinical practice, thereby reducing the suffering of 

transplant recipients. III) Socioeconomic significance: Today our aim is not only to cure a 

patient’s underlying disease but also to minimize the incidence and severity of transplant-related 

complications and thus to optimize the patient’s quality of life. As HSCT is a high-cost medicine, 

a steady increase in utilization has put a burden on health care providers. Thus, the successful 

development of aGVHD prophylaxis approach that spares patients from developing 

immunodeficiency would be important for economics of transplantation medicine. As economic 

strength is the main determinant for transplant rate, lower costs would also support a wider use of 

HSCT for treatment of hematologic malignancies. 
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8. Reagents 
	
8.1 General buffers and solutions 

 

ACK buffer:        8.29g NH4Cl (0.15M) 

1g NaHCO3 (10mM) 

EDTA (0.5M) 

add 800ml bidest water  

adjust pH to 7.2-7.4  

add 1L bidest water 

 

Blocking solution:       PBS 

100x Triton X 

1% BSA (Sigma)  

1% (goat) serum 

 

FACS buffer:        1x PBS 

2% FCS 

 

PBS:         8g/L NaCl  

        0.2g/L KCl 

        1.78g/L Na2HPO x 2H20 

        0.27g/L KH2PO4 

 

8.2 Reagents and chemicals 

 

Anti-biotin micro beads: MACS beads    Miltenyi Biotec 

Anti-NK cell monoclonal Ab (clone PK136)   BioXCell 

Counting Beads       Invitrogen 

Cryo Embedding medium     Medite 

DNAse I       Roche 

Geneticin       Cellgro 

Heparin        Braun 

Hydromount        National diagnostics 

Hygromycin       Invitrogen 

Inactivated fetal calf serum (FCS)     Gibco (Lot: 10270) 

KRP203       Novartis 



  Reagents 
	 	
	  

	 88 

Liberase       Roche 

Low Tox-M rabbit complement     Cedarlane 

D-Luciferin       Promega 

Power SYBR Green PCR Master Mix    Life technologies 

Ultra Comp eBeads      eBioscience 

 

8.3 Cytokines 

 

Brefeldin A (BFA) 10ug/ml 

Ionomycin       500ng/ml   

Phorbol myristate acetate (PMA): C36H56O8   50ng/ml 

 

8.4 Cell culture media and supplements 

 

Hybridoma cell lines and ex vivo cell culture:  

SF-IMDM powder (Gibco)     3.024g Bicarbonat 

2% FCS   

0.1% kanamycin 

5mg/ml insulin (Sigma)  

0.3% primatone (Sigma  

1% NEAA (Sigma)  

0.1M b-mercapotethanol 

   

A20 luciferase+ cell line (gift from Gang Zhou, Levitsky laboratory, John Hopkins University, 

US) 

Complete RPMI (Sigma)     5% FCS 

400 g/ml geneticin  

200g/ml hygromycin 

EL4 OVA cell line:  

RPMI 1640 2mM L-glutamine (Sigma)     1.5g/L Sodium Bicabonate 

4.5g/L glucose  

10mM HEPES 

Sodium pyruvate 

0.05mM beta mercapotethanol 

0.4 mg/ml G418 (Geneticin) 

10% FCS 
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Freezing medium 

Cell culture medium      10% DMSO 

20% FCS 

 

8.5 Kits  

 

BrdU Flow Kit       BD Pharmingen (#559619) 

CD8+ T-cell enrichment Kit      Miltenyi Biotec 

Dynabeads untouched mouse T cell Kit    Invitrogen 

FoxP3 Staining Buffer Set      eBioscience 

 

8.6 Cell lines 

 

 

  

Cell lines Description 

A20 luc+ B-cell lymphoma cell line expressing luciferase (on Balb/c (H-2d) background) 

EL-4 OVA T-cell lymphoma cell line expressing the OVA peptide 

 (C57Bl/6 background and MHC I specific) 

T24 Hybridoma cell line for α-pan Thy 

31M Hybridoma cell line for α-CD8 

RL-172 Hybridoma cell line for α-CD4 

HO-134 Hybridoma cell line for α-Thy1.2 
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8.7 Animal strains 

 

Strain Definition Source 

129Sv/S1 
Wild-type (H-2b/CD45.2+/CD90.1+) with 
 minor-HA mismatch to CD57Bl/6 Jackson 

Balb/c Wild-type (H-2d/CD45.2+/CD90.2+) Animal Facility DBM Basel 

Balb/cThy1.1 Wild-type (H-2b/CD45.2+/CD90.1+) Animal Facility DBM Basel 

BDF1 
Wild-type (F1 generation of DBA & B6) 
 (H-2bd/CD45.2+/CD90.2+) Janvier 

C57Bl/6 Wild-type (H-2b/CD45.2+/CD90.2+) Animal Facility DBM Basel 

OT II CD45.1 
RAG-/- 

Mice that have a transgenic TCR specific  
for the OVA peptide expressed on  
MHCII+ cells (H-2b/CD45.1+/CD90.2+) Animal Facility DBM Basel 

RAG-/- 
Mice deficient for the  
recombinating activating gene (RAG) Animal Facility DBM Basel 

RIPmOVA 

Transgenic mice that express membrane-bound 
 OVA peptide under the rat insulin promoter 
 (H-2b/CD45.2+/CD90.2+) Animal Facility DBM Basel 

 

 

8.8 Antibodies: 

 

Antibody    Clone    Company 

CD3     17A2    BioLegend 

CD4     GK1.5    BioLegend  

CD5     53-7.3     BioLegend 

CD8a     53-6.7     BioLegend 

CD11b      M1/70    BioLegend 

CD19      6D5     BioLegend 

CD24      M1/69    BioLegend 

CD25      PC61     BioLegend  

CD31      390     BioLegend 

CD44     IM7     BioLegend 

CD45      30-F11     BioLegend 

CD45.1     A20     BioLegend 

CD45.2     104     BioLegend 

CD45R (B220)     RA-3-6B2   Bio Legend 

CD62L      MEL-14    BioLegend 
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CD62P (P-selectin)    RMP-1     BioLegend 

CD69      H1.2F3    BioLegend 

CD73      TY/11.8    eBioscience 

CD90.1     OX-7     BioLegend 

CD90.2     30-H12    BioLegend 

CD117 (c-Kit)     ACK2     BioLegend 

CD279 (PD-1)     29F.1A12   BioLegend 

CD326 (EpCAM)    G8.8     BioLegend 

Aire      5H12     eBioscience  

BrdU     Mebou-1   BD 

CCR7     4B12    BioLegend 

FoxP3      150D     BioLegend 

H2b      AF6-88.5    BioLegend 

H2d      SF1-1.1    BioLegend 

Helios      22F6     BioLegend 

I-Ab (MHC II)     M5/114.15.2    BioLegend 

IFNγ     XMG1.2   eBioscience 

IL-2     JES6-5H4   eBioscience 

Ly51      6C3     BioLegend 

Ly6G/Ly6C (Gr-1)    RB6-8C5   BioLegend 

NK1.1     PK136     BioLegend 

OVA (SIINFEKL)    25-D1.16    BioLegend 

Sca-1      D7     BioLegend 

TCRβ      H57-597    BioLegend 

Ter119      Ter119     BioLegend 

TNFα     MP6-XT22   eBioscience 

UEA-1      FL-1061   Vector    

         Laboratories 

Vα2     B20.1     BioLegend 

Vβ5.1/5.2     MR9-4     BioLegend 
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8.9 Software 

 

FlowJo        Tree Star In., USA 

Indigo software       Berthold Technologies 

Prism        GraphPad Software, Inc., USA 
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Ι  Abbreviations 
 
Abbreviations for biological terms 

 
Ab     Antibody 

aGVHD    Acute graft-versus-host disease 

Aire     Autoimmune regulator 

ALL     Acute lymphoblastic leukemia 

Allo     Allogeneic 

AML     Acute myeloid leukemia 

ANA     Anti-nuclear antobodies 

APC     Antigen-presenting cell 

APECED Autoimmune-polyendocrinopathy-candidiasis 

ectodermal dystrophy 

APS-1     Autoimmune polyglandular syndrome type 1 

B6     “Black 6” C57BL/6 mouse strain 

BAFF     B cell activating factor 

BM     Bone marrow 

BMT     Bone marrow transplantation 

CCL     C-C chemokine ligand 

CCR     C-C chemokine receptor 

CD     Cluster of differentiation 

CDR3     Complementary determining region 3 

cGVHD    Chronic graft-versus-host disease 

CK     Cytokeratin 

CMV     Cytomegalovirus    

CNI     Calcineurin inhibitors 

cTEC     Cortical thymic epithelial cells 

CTL     Cytotoxic T lymphocytes 

CXCR     Chemokine (C-X-C motif) receptor  

DAMP     Damage-associated molecular pattern 

DC     Dendritic cell 

DN     CD4, CD8-Double negative 

DNA     Deoxyribonucleic acid 

DP     CD4, CD8-Double positive 

ETP     Early thymic progenitor 
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Fgf7     Fibroblast growth factor 7    

Flt-3 (L)    Fms-like tyrosine kinase 3 (ligand) 

FoxP3     Forkhead-Box-Protein 3 

FR-4     Folate receptor 4 

G-CSF     Granulocyte-colony stimulating factor  

GI tract     Gastrointestinal tract 

GPCR     G-protein coupled receptor  

Grzm B     Granzyme B 

GVHD     Graft-versus-host disease 

GVT     Graft-versus-tumor  

HLA     Human leukocyte antigen    

HSC     Hematopoietic stem cell 

HSCT     Hematopoietic stem cell transplantation 

Ig     Immunoglobulin 

i.p.     Intraperitoneal 

i.v.     Intravenous 

ICOS     Inducible T cell co-stimulator 

IFNγ     Interferon gamma 

IL     Interleukin 

IRBP     Interphotoreceptor retinoid-binding protein 

KGF     Keratinocyte growth factor 

Lin     Lineage 

LN     Lymph node 

LPS     Lipopolysaccharide 

Luc     Luciferase 

MDS     Myelodysplastic syndrome 

MHC     Major histocompatibility complex 

miHA     Minor histocompatibility antigens 

mOVA     Membrane bound OVA 

MPN     Myeloproliferative neoplasm 

mTEC     Medullary thymic epithelial cells 

mTORC1    Mammalian target of rapamycin complex 1 

MTX     Methotrexate 

NF-KB     Nuclear factor kappa-light-chain enhancer 

NFAT     Nuclear factor of activated T cells 

NHL     Non-Hodgkin lymphoma 
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NK cell     Natural killer cell 

OVA     Ovalbumin 

PAMPs     Pathogen-associated molecular patterns 

PB     Peripheral blood 

PD-1     Programmed cell death protein 1 

pDGF     Platelet-derived growth factor 

pGE     Promiscuous gene expression 

pLN     Peripheral lymph node 

RAG     Recombination activating gene 

Reg      Regenerating islet-derived protein 

RIC     Reduced intensity conditioning 

RIP     Rat insulin promoter 

s.c.     Subcutaneously 

S1P     Sphingosine 1 phosphate 

S1PR     Sphingosine 1 phosphate receptor 

SC     Stem cell 

Sca-1     Stem cell antigen-1 

SCID     Severe combined immune deficiency 

SLO     Secondary lymphoid organ 

SP     CD4 or CD8-Single positive 

SPF     Special pathogen-free 

SPHK     Sphingosine kinase 

STAT     Signal transducer and activator of transcription  

TBI     Total body irradiation 

TCDBM    T-cell depleted bone marrow 

TCR     T-cell receptor 

TEC     Thymic epithelial cell 

TF     Transcription factor 

TGFβ     Transforming growth factor b 

TH cell     T-helper cell 

TN     CD3, CD4, CD8-triple negative 

TNFα     Tumor necrosis factor alpha 

TRA     Tissue restricted antigen 

TRAF2     TNF receptor associated factor 2 

TRAIL     TNF-related apoptosis inducing ligand 

TREC     TCR rearrangement DNA excision circles 
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Treg     Regulatory T cell 

TRT     Transplant related toxicity 

UEA-1     Ulex europaeus agglutinin-1 

WD     Withdrawal 

WT     Wild-type 

 

Abbreviations for chemicals/ instruments/techniques 

 

ACK     Ammonium-chloride-potassium 

BrdU     5’-bromo-2’-deoxyuridin 

DAPI     4’, 6-iamino-2-phenylindole 

dH2O     Distilled water 

EDTA     Ethylendiamintetraacetat 

FACS     Fluorescence associated cell sorting 

FCS     Fetal calf serum 

IMDM     Iscove’s modified dulbecco’s medium 

MACS     Magnetic associated cell sorting 

MC     Methyl cellulose 

NEAA     Non-essential amino acids 

PBS     Phosphate buffered saline 

PCR     Polymerase chain reaction 

RT     Room temperature 

SA     Streptavidin 

SN     Supernatant 

 

Others 

 

cGy     Centi gray 

CIBMTR Center for International Blood and Marrow 

Transplantation 

e.g.     exempli gratia (for example) 

et al.     et alii (and others) 

FDA     Food and Drug Administration 

NIH     National Institutes of Health 

SD     Standard deviation 
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Impaired thymic expression of tissue-restricted antigens licenses the
de novo generation of autoreactive CD41 T cells in acute GVHD
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Key Points

• Loss of thymic ectopic self-
antigen expression during
murine acute GVHD is
responsible for the de novo
generation of autoreactive
T cells.

• Functional impairment of
the thymus medulla
mechanistically links acute
GVHD to posttransplantation
autoimmunity.

During acute graft-versus-host disease (aGVHD) inmice, autoreactive T cells can be gen-

erated de novo in the host thymus implying an impairment in self-tolerance induction.

As a possible mechanism, we have previously reported that mature medullary thymic

epithelial cells (mTEChigh) expressing the autoimmune regulator are targets of donor

T-cell alloimmunity during aGVHD. A decline in mTEChigh cell pool size, which purges

individual tissue-restricted peripheral self-antigens (TRA) from the total thymic ectopic

TRA repertoire, weakens the platform for central tolerance induction. Here we provide

evidence in a transgenicmousesystemusingovalbumin (OVA) asamodel surrogateTRA

that the de novo production of OVA-specific CD41 T cells during acute GVHD is a direct

consequence of impaired thymic ectopic OVA expression in mTEChigh cells. Our data,

therefore, indicate that a functional compromise of themedullarymTEChigh compartment

may link alloimmunity to the development of autoimmunity during chronicGVHD. (Blood.

2015;125(17):2720-2723)

Introduction

Acute graft-versus-host disease (aGVHD) andchronic graft-versus-host
disease (cGVHD) remain primary complications of allogeneic hema-
topoietic stem cell transplantation (alloHSCT).1,2 Acute graft-versus-
host disease is initiated by alloreactive donor T cells, which target a
restricted set of tissues including the thymus.3,4 Human aGVHD pre-
disposes to cGVHD with autoimmune manifestations that are integral
components of the disease.5,6 It remains uncertain howautoimmunity is
mechanistically linked to alloimmunity, but the thymusmay play a role
in this process.1,4,7,8

In the thymus, self-toleranceof thenascentT-cell receptor repertoire
is attained through negative selection.9 Essential for clonal deletion is
the exposure of developingTcells to self-antigens, including thosewith
highly restricted tissue expression.Thymic ectopic expressionof tissue-
restricted peripheral self-antigens (TRA) is a distinct property ofmature
medullary thymic epithelial cells (mTEChigh) that express the tran-
scription factor autoimmune regulator (Aire).10 Importantly, intimate
associations exist between perturbations in TRA expression (indepen-
dent of cause), and the susceptibility to autoimmunity in both animals
and humans.10-12

We and others have demonstrated that mTEChigh are targets
of donor T-cell alloimmunity during aGVHD,3,7,13 and that thymic
aGVHD interferes with the capacity of Aire1mTEChigh to sustain

TRA diversity.14 Mechanistic links between altered thymic TRA
expression and hence deviations in the TRA repertoire, the thymic
production of autoreactive T-cells, and ultimately their peripheral
appearance during aGVHD have not yet been established. Here we
provide direct evidence in transgenicmice that de novo production of
TRA-specific T-cells during aGVHD is a consequence of impaired
ectopic TRA expression that results from a diminished mTEChigh

cell pool.

Study design

Female C57BL/6 (H-2b), Balb/c (H-2d), CBy.PL(B6)-Thy1a/ScrJ (Balb/
c-Thy1.1;H-2d), B6.Cg-Tg(TcraTcrb)425Cbn/J (OT-II;H-2b), and C57BL/6-Tg
(Ins2-TFRC/OVA)296Wehi/WehiJ (rat insulin promoter [RIP]-membrane-
bound form of ovalbumin [mOVA];H-2b) were purchased from the Jackson
Laboratory and were kept in accordance with institutional regulations.
RIP-mOVA mice express a membrane-bound form of OVA (mOVA;
residues139-385) under control of the RIP.

15 These mice express mOVA in the
pancreas, but also in the thymus specifically in mTEC.16 We bred Rag2-
deficient OT-II mice, producing transgenic Va2Vb5 T-cell receptor (TCR)
specific for OVA323-339, with B6.SJL-PtprcaPep3b/BoyJ (B6.CD45.1;H-2b)

Submitted August 22, 2014; accepted February 10, 2015. Prepublished online
as Blood First Edition paper, February 17, 2015; DOI 10.1182/blood-2014-08-
597245.

The online version of this article contains a data supplement.

There is an Inside Blood Commentary on this article in this issue.

The publication costs of this article were defrayed in part by page charge
payment. Therefore, and solely to indicate this fact, this article is hereby
marked “advertisement” in accordance with 18 USC section 1734.

© 2015 by The American Society of Hematology

2720 BLOOD, 23 APRIL 2015 x VOLUME 125, NUMBER 17

For personal use only.on January 19, 2016. by guest  www.bloodjournal.orgFrom 



  Appendix 
	 	
	  

	 112 

 

on a CD45.11 congenic background at the Benaroya Research Institute
(Seattle,WA). Thymic aGVHD (H-2d→H-2b)was induced by transplantation of
Balb/c T-cells into total body irradiated and fully major histocompatibility com-
plex (MHC)-mismatched RIP-mOVA recipients (d→RIP-mOVAb; Figure 1A;
see the supplemental Methods on the BloodWeb site). The thymic epithelial
cell compartment was analyzed at 2 and 4 weeks after alloHSCT by flow
cytometry (FACSAria; BectonDickinson,MountainView,CA). ThemTECs
were identified as cells with a CD452EpCam1Ly512UEA11MHCIIlow

(mTEClow) or MHCIIhigh (mTEChigh) phenotype, respectively, as described.14

To study negative thymic selection, the d→RIP-mOVAb recipients were
reirradiated 4 weeks after the first alloHSCT and infused with syngeneic, rig-
orously (.2 log) T cell depleted OT-II bone marrow cells (TCDBM) mixed
with C57BL/6 wild-type TCDBM (designated as OT-IIb→[d→RIP-mOVAb];
Figure 1A). Emergence and function of OVA-specific CD41T cells (CD45.11)
was tested after the second syngeneic HSCT by flow cytometry (supplemental
Methods). Immunohistochemistry, polymerase chain reaction, T-cell function,
and statistical analyses were performed as described before14 and in the sup-
plement Data.

Results and discussion

We reported before that aGVHD causes a quantitative decline in
the Aire1mTEChigh pool and consequently a less diverse TRA
repertoire, thus impairing the molecular platform for central toler-
ance induction.14 It remained uncertain, however, whether such
mechanism sufficed for the escape of TRA-specific TCR from
thymic deletion. Because the precise antigen specificities of auto-
reactive effector T cells in cGVHD remain unidentified,17 we
usedmOVA as a surrogate self-antigen and tested whether loss of
mOVA expression affected central deletion of OVA-specific T cells
during aGVHD. We chose the OT-II→RIP-mOVA system because
(1) thymic mOVA expression is restricted to mTEC16; (2) TCR
selection against mOVA recapitulates physiological tolerance in-
duction to TRA in the thymus medulla16,18-21; and (3) a reduction of

Figure 1. Acute GVHD reduces thymic ectopic expression of the surrogate self-antigen OVA in RIP-mOVA recipients. The mTEC compartment was analyzed in

a transgenic murine model of H-2d→H-2b allo-HSCT. (A). Acute GVHD was induced in 8-week-old, lethally irradiated RIP-mOVA recipients by transfer of TCDBM mixed with
Thy1.21 splenic T-cells from Balb/c donors (TCDBM1 T group). This alloHSCT setting was designated as [d→RIP-mOVAb]. As controls without aGVHD, mice received Balb/
c-Thy1.11 TCDBM only (TCDBM group). Four weeks after the first alloHSCT, [d→RIP-mOVAb] mice were lethally reirradiated and retransplanted in a second syngeneic

HSCT with H-2b TCDBM from CD45.11 OT-II mice mixed at a 1:4 ratio with cells from wild-type CD45.21 C57BL/6 mice (H-2b). This approach generated OT-IIb→[d→RIP-
mOVAb] chimeric mice. (B) Flow cytometry analysis for identification of Epcam1Ly512 mTEClow and mTEChigh cells in [d→RIP-mOVAb] mice in the absence (TCDBM group; s) and
presence (TCDBM1 T group;d) of aGVHD at 2 and 4 weeks after the first alloHSCT. The numbers shown in each flow cytometry dot plot represent frequencies (%, mean6 standard

deviation [SD]) of the respective population among total mTEC. Line graphs depict absolute cell numbers of mTEClow and mTEChigh. The figure represents data from 3
independent experiments with $3 mice per group analyzed. *P , .05, Mann-Whitney U test. (C) Expression of mOVA mRNA was determined by quantitative polymerase

chain reaction in mTEChigh, which was purified from the total residual TEC pools isolated from mice with (d) or without (s) aGVHD at 2 and 4 weeks after the first alloHSCT.
Expression is shown as relative expression normalized to GAPDH. Dashed lines indicate normal mOVAmRNA expression in naı̈ve untransplanted RIP-mOVA mice. *P, .05,
Mann-Whitney U test. (D) Expression of Aire mRNA was analyzed in purified mTEChigh cells in the alloHSCT groups above. Aire expression is shown as relative expression

normalized to GAPDH. *P , .05, Mann-Whitney U test. To detect Aire protein, immunohistochemistry and confocal microscope analysis was performed on thymic frozen
sections taken from [d→RIP-mOVAb] mice with or without aGVHD (2 weeks). Cytokeratin-18 (CK18, blue) and CD14-positive cells (red) define cortical thymic epithelial cells
(cTEC) and mTEC, respectively. Aire1 cells are shown in yellow and localize to the thymus medulla. Thymic architecture and Aire are lost during aGVHD (lower right panel).
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mOVAmRNA inmTEC by,30% suffices for RIP-mOVA thymi to
fail to delete OT-II cells.22

We studied aGVHD in lethally irradiated RIP-mOVA recipients of
fullyMHC-mismatched Balb/c donors (designated [d→RIP-mOVAb];
Figures 1A and supplemental Figure 1). Consistent with previous data
that reduction in mTEC compartment size is a universal manifesta-
tion of thymic aGVHD,14 total mTEClow, andmTEChigh, cells were
diminished in numbers to#103 cells/mouse at 4weeks after alloHSCT
(Figure 1B). In addition, the presence of thymic aGVHD in [d→RIP-
mOVAb] mice (supplemental Figure 1) reduced global OVA mRNA
levels in total residual mTEChigh cell pools isolated after transplanta-
tion (Figure 1C). Our data also consistently demonstrated a reduction
in the expression of both Aire mRNA and protein as a consequence
of aGVHD-mediated TEC injury (Figure 1D). Because Aire regulates
OVAexpression19 and because theAire1mTEChigh subset is reduced in
numbers during aGVHD,14 our data argues that loss of Aire1mTEChigh

was responsible for the deficiency in thymic OVA during aGVHD.
We postulated that aGVHD interfered with negative selection of

theOVATCR because (1)Aire2/2RIP-mOVAmice cannot efficiently

delete OT-II T-cells19 and (2) total thymic mOVA expression levels
correlate with deletion efficacy of OVA-reactive TCR.16,18,19,21,22 To
test our hypothesis, transgenic recipients with or without aGVHDwere
reirradiated and transplanted with syngeneic OT-II TCDBM (desig-
nated asOT-IIb→[d→RIP-mOVAb]; Figure 1A). ThymicOT-II CD41

T-cell development was monitored by assessment of CD45.11 cells.
An adequate ratio (7:1)16,21 between CD45.11 immature CD4181

(DP) and mature CD41CD82 thymocytes (CD4SP) indicated regular
deletion of OVA-specific TCR in OT-IIb→[d→RIP-mOVA] mice
without disease, as expected (Figure 2A, top left). Much lower
DP/CD4SP ratioswere observed in transgenic recipientswith aGVHD
(low thymic mOVA), indicating inefficient deletion of OT-II cells.
DP/CD4SP ratioswere in themajorityof thesemicenot distinguishable
from ratios inOT-IIb→[d→C57BL/6] nondeleting controls (no thymic
mOVA). Deficient elimination of OT-II cells in transgenic mice with
aGVHD was substantiated by twofold to threefold higher frequencies
of CD45.11CD4SP among total thymic CD4SP cells when compared
with mice without aGVHD (Figure 2A, top right; supplemental
Figure 2). Thus, an aGVHD-mediated loss of OVA expression in

Figure 2. OVA-specific T-cell clones escape nega-

tive selection during aGVHD. Four weeks after their
first alloHSCT, the [d→RIP-mOVAb] mice with (d) or
without (s) aGVHD received TCDBM (H-2b) from

CD45.11 OT-II and CD45.21 C57BL/6 mice in a
second syngeneic HSCT as described in Figure 1A.
A third group included a second syngeneic HSCT into

nontransgenic GVHD- recipients of a first alloHSCT
(⩾ TCDBM OT-IIb→[d→C57BL/6b]). OT-II CD41 T-cells

were analyzed in primary and secondary lymphoid organs
4 weeks later in all 3 groups. (A) Upper panels: Thymic
OT-II CD41 T-cell development. Top left: the DP/CD4SP

ratios between immature and mature thymocytes de-
rived from CD45.11 OT-II bone marrow-derived cells
were calculated and are shown as mean 6 SD. The

figure represents data from 3 independent experiments.
*P , .05, Kruskall-Wallis test with Dunn’s multiple

comparison test. Top right: Flow cytometric analysis of
CD4SP thymocytes (live gate defined by 4,6 diamidino-
2-phenylindole2 cells). The frequencies of CD45.11

OT-II cells among total thymic CD4SP cells are shown
as mean 6 SD. Lower panels: Emergence of OT-II
cells in the periphery. The frequencies of OT-II cells

(CD45.11CD41) among total CD41 T cells in the
spleens and lymph nodes are shown as mean 6 SD.
The figure represents combined data from 3 indepen-

dent experiments with $6 mice analyzed per group.
*P , .05, Kruskall-Wallis test with Dunn’s multiple

comparison test. (B) Intracellular Foxp3 expression was
analyzed in splenic CD41 T cells isolated from OT-
IIb→[d→RIP-mOVAb] mice with or without aGVHD at

4 weeks after the second syngeneic HSCT. Flow cy-
tometry plots depict surface CD45.1 and intracellular
Foxp3 expression. (C) Quadrants [a], [b], [c], and [d] were

further analyzed for surface expression of folate receptor
4 (FR4) and CD73. Data are representative of at least

2 independent experiments with $6 mice analyzed per
group. (D) Cultures of carboxyfluorescein diacetate
succinimidyl ester (CFSE)-labeled CD41 T-cells isolated

from spleens and lymph nodes of transplanted mice
were used to detect ex vivo the proliferative response
to OVA323-339 peptide presented by syngeneic APC

(see supplemental Methods). Histograms of CFSE
fluorescence in CD41 responder cells are shown (log

fluorescence intensity and cell numbers). Data are rep-
resentative for $6 mice analyzed per group. The data
substantiate that peripheral OT-II cells are responsive

to their cognate antigen and therefore do not enter into
an anergic state.
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mTEChigh resulted in an unopposed escape of “forbidden” OVA-
specific Va21Vb51CD41 T-cell clones (Barnden et al.23; supplemen-
tal Figure 2) within the host thymus. OT-II cells were also present in the
lymph nodes and spleens of transgenic mice with aGVHD (Figure 2A,
bottom). Because mature OT-II T-cells were not passively transferred
from donor grafts (supplemental Figure 2), formation of the peripheral
OT-II pool was thymus-dependent.

In transgenic recipients with aGVHD, the fraction of C57BL/6
(CD45.12) donor bone marrow–derived Foxp31 regulatory T-cells
(Treg) among total splenic CD41 cells were reduced in frequency from
a normal average of 10% to an average ,1% (Figure 2B, upper
left quadrants [a]). Among Foxp31CD45.12 cells, some were
FR4highCD73high, documenting their anergic phenotype24 (Figure 2C,
far left panels [a]). In contrast, emerging OT-II (CD45.11) cells were
exclusively Foxp32 conventional T-cells whose FR42CD732 pheno-
type suggested that they were nonanergic24 (Figure 2C, panels [c]).
Indeed, CD45.11CD41 (OT-II) cells, but not CD45.12CD41 (non-
OT-II) cells, isolated fromaGVHDmice vigorously responded toOVA
peptide in culture (Figure 2D).

Taken together,weprovide direct evidence in transgenicmice using
OVA as model TRA that intrathymic de novo production of TRA-
specific CD41T-cells during aGVHD is triggered by impaired ectopic
TRA expression. These OVA-reactive T cells are exported into a
periphery that is characterized by Treg deficiency.We advocate that
functional compromise of the mTEC compartment may provide a
pathogenic link between alloimmunity and the development of
autoimmunity.25 The identification of the specificities of autoreactive
effector T cells in cGVHDwill allow to testwhether such amechanism
operates not only for a surrogate TRA, but is universal for thymic

ectopic expression of those TRA that are present in tissues known to
be targets of cGVHD.
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Comment 

trigger the same response to generate
intracellular ROS. Recent studies have
shown that CD36 signaling in macrophages
is quite complex and often requires cooperation
with other membrane proteins, including
toll-like receptors,10 tetraspanins, integrins,
and the sodium-potassium ATPase. Whether
these CD36 partners are involved in ROS
generation and whether different DAMPs
generate differential downstream signals
based on their capacity to recruit specific
CD36 membrane partners remains to be
determined, as do the mechanisms by which
ROS target the cGMP signaling pathway.
This interesting paper, however, points
to potential new targets for lowering
thrombotic risk in highly susceptible
patient populations.
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GVHD clears the Aire in thymic selection
-----------------------------------------------------------------------------------------------------

Mojibade N. Hassan and Edmund K. Waller WINSHIP CANCER INSTITUTE EMORY UNIVERSITY

In this issue of Blood, Dertschnig et al describe the development of autoreactive
T cells from the thymus in mice that had previously developed acute graft-versus-
host-disease (aGVHD).1

The findings of Dertschnig et al provide
an important mechanistic link between

the pathogenesis of acute graft-versus-host
disease (aGVHD) and itsmore indolent cousin,
chronic (c)GVHD.2,3 aGVHD typically
occurs in the first 100 days after allogeneic
hematopoietic stem cell transplant (HSCT),
and ismediated bymatureT cells present in the
donor graft that cause local inflammation and
damage epithelial cells in the skin, liver, and
gastrointestinal tract.2 In contrast, cGVHD
typically develops 4 to 6 months posttransplant
due to antigen-specific donor immune cells
that cause autoimmune clinical manifestations

including sclerosis and fibrosis in tissues and
organs.3 After donor stem cells have engrafted
in the bone marrow, including the setting of
major histocompatibility complex (MHC)
mismatched donor and recipient,4 donor-
derived T cells developing in the recipient
thymus should undergo negative selection,
one aspect of central tolerance, to eliminate
autoreactive clones. Thus, the presence of
autoreactive donor-derived T cells in the
periphery that recognize self-peptides in
patients with cGVHD represents a failure of
negative selection. Although aGVHD is well
established as a risk factor for the development

of cGVHD,5 the mechanism for the association
has not been clear. A clue to understanding
the relationship between acute and chronic
GVHD is based on the normal process by
which autoreactive T cells are eliminated.
Activity of the Aire gene in the thymus leads
to low levels of synthesis of a smorgasbord
of tissue-restricted proteins and subsequent
presentation of peptides derived from these
proteins on medullary thymic epithelial
cells (mTECs). During physiological
negative selection, thymocytes that are
autoreactive to proteins expressed in
peripheral organs are eliminated when they
come into contact with mTECs expressing
peptides normally restricted to peripheral
tissues. The study by Dertschnig et al
provides important insight into how negative
selection fails in the setting of allogeneic
transplant, and connects the pathophysiology
of aGVHD to the subsequent development
of cGVHD.1

The authors use a RIP-mOVA mouse
model system, in which ovalbumin (OVA)
is expressed under the control of the
tissue-specific rat insulin promoter (RIP),
as a model for a tissue-specific protein that
should cause negative selection in the thymus.
Using RIP-OVA transgenic mice as transplant
recipients, membrane-bound (m)OVA
is expressed in pancreatic islets and by
Aire1mTECs, normally leading to thymic
elimination of autoreactive T cells that
recognize mOVA peptides. The authors
established that alloreactive T cells that
are present in a donor graft from an
MHC-mismatched mouse strain cause
destruction and elimination of Aire1mTECs
during aGVHD. Mice that had developed
aGVHD and lacked Aire1mTECs were then
retransplanted with congenic T cell–depleted
bone marrow from MHC matched OT-II
donor mice that express a T-cell receptor on
CD41 T cells specific to an mOVA peptide.
The authors show that when negative selection
is intact in control mice that did not develop
aGVHD, transgenic OT-II T cells are deleted
from the repertoire during intrathymic T-cell
development. Inmicewith a history of aGVHD
and that lack Aire1mTECs expressing mOVA,
OT-II T cells survived negative selection and
migrated to the periphery unchecked. The
findings of Dertschnig et al illustrate the
relationship between aGVHD and the failure
of central tolerance: autoreactive T cells
were generated de novo following the second
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MHC-matched transplant of T cell–depleted
OT-II bone marrow due to loss of mTECs
in the damaged thymus (see figure).

Dertschnig et al show that the
mOVA-specific T cells generated in their
system are highly reactive to mOVA peptide
in culture but leave unanswered the important
question of whether these mOVA-specific
T cells are generated in sufficient number
and with the functional ability to cause
autoimmunity in these mice. Because mOVA
is under the RIP promoter in the transgenic
mice used in this model, this question could
be answered by assessing damage to pancreatic
islet cells and ensuing Type 1 diabetes.
Findings pertaining to this question have

the potential to further the understanding of
the link between cGVHD and the graft-
versus-leukemia (GVL) effect of the allogeneic
transplant. Because the development of
cGVHD is also associated with a reduced
risk of leukemia relapse and increased GVL
activity, it may be that leukemia-associated
antigens are also ectopically expressed by
Aire1mTECs. If so, elimination of mTECs
may permit the survival of GVL-specific
donor-derived T cells generated de novo
in the recipient thymus. However, the
contribution of the thymus to the GVL
effect may be limited by decreased thymic
T-cell output due to atrophy and depopulation
and thinning of the thymic cortex that

follows the development of aGVHD
(see figure).6

With the findings from Dertschnig et al
in hand,whatmethods can be used to eliminate,
reduce, or alter function of alloreactive
T cells in donor hematopoietic stem cell
grafts? Although outright elimination of all
alloreactive effector T cells in allogeneic
HSCThas had limited success due to increased
risks of leukemia relapse and delayed immune
reconstitution, a promising new approach is
to use recipient cells to condition donor grafts
to generate antigen-specific regulatory T (Treg)
cells that limit GVHD and tissue damage
when transplanted in combination with
alloreactive T cells.7 Such an approach might

Alloreactive donor T cells destroy Aire1mTECs during aGVHD, allowing escape of autoreactive T cells that contribute to cGVHD. (A) In healthy individuals, mTECs (purple) mediate
negative selection of thymocytes (blue) to eliminate autoreactive T cells (green) recognizing self-peptides presented on MHC molecules. (B) During aGVHD, alloreactive donor T cells

(yellow) damage the thymus and eliminate mTECs, allowing escape of autoreactive T cells (green) that contribute to the pathogenesis of cGVHD in the periphery. Professional
illustration by Patrick Lane, ScEYEnce Studios.
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be of great value if the immune-dominant
peptides that are the targets of donor
T cells that mediate cGVHD attack of
the skin, liver, and lungs might be used to
generate Treg cells that limit cGVHD while
sparing cytotoxic effector cells that mediate
GVL. It is also of interest to determine whether
ex vivo–generated donor Treg cells could be
used to prevent the damage to the thymus
during aGVHD and reduce the incidence
of subsequent cGVHD.

Dertschnig et al eloquently demonstrate
that destruction of Aire1mTECs during
aGVHD leads to de novo generation of
inappropriately licensed autoreactive
T cells and has helped “clear the Aire”

regarding the pathophysiology of acute and
chronic GVHD.
Conflict-of-interest disclosure: The authors

declare no conflicting financial interests. n
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Supplementary figures 

 

 
Figure S1: Pro-inflammatory cytokines are reduced in the thymus by KRP203 in the presence of aGVHD. Acute 

GVHD (aGVHD) (bàbd) was induced in 8-week old female BDF1 recipients by injection of splenic T cells from B6 

donors. The mean fluorescence intensity (MFI) of TGFβ+ cells was determined 2 weeks after T-cell transfer by flow 

cytometry (A). Absolute cell numbers and frequencies of TGFβ-secreting recipient T cells (Ly5.1-) (left panel) and 

donor T cells (CD45.1+) (right panel) were analyzed in mice without aGVHD (¡), mice that developed aGVHD (!) 

and mice that received T cells and KRP203 (3mg/kg, i.p., every 2nd day from day-1 until the end of experiment) (n). 

*p< 0.05, Kruskal-Wallis and Dunn‘s multiple comparison test.  
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Figure S2: Treg numbers are increased upon prophylactic KRP203 administration. Acute GVHD (bàbd) was induced 

in 8-week old female BDF1 recipients by injection of splenic T cells from B6 donors. Intracelullar FoxP3 expression 

was analyzed and frequencies of host Tregs (CD4+CD25+FoxP3+) were determined 2 weeks after T-cell transfer in mice 

without GVHD (O), with GVHD (!), with GVHD and prophylactic (start day-1) KRP203 administration (n) and 

therapeutic application (start day 7) (u) (3mg/kg i.p. every 2nd day) in the thymus (A) and the SLO such as spleen (left 

graph) and LN (right graph) (B). This figure represents data from 3 independent experiments with ≤ 3 mice per group. 

*p< 0.05, Kruskal-Wallis and Dunn‘s multiple comparison test.  
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Figure S3: Establishment of cGVHD model. Chronic GVHD (cGVHD) (bàd) was induced in a fully MHC-

mismatched murine allo-HSCT model (H-2bàH-2d) in lethally irradiated Balb/c recipients by co-injection of TCDBM 

+ 0.1*106 CD8+T cells (cGVHD (!)), TCDBM + T cells+ KRP203 treatment (n) or TCDBM alone (¡) from B6 mice 

that served as a control. Mice were analyzed at day 60 post-HSCT (A). Weight curve of mice with and without GVHD 

(B). Absolute cell numbers of H-2b+ cells (donor) and H-2d+ (recipient) at day 60 post allo-HSCT (two graphs left) and 

absolute cell numbers of thymic epithelial cell (TEC) compartment from the host (C). Measurement of auto-Ab. 

Supernatant of anti-nuclear antobodies (ANA) served as a control and was detected on kidney (left picture). After day 

60, serum was taken from mice with and without cGVHD and tested on salivary glands (pictures on the right) (D).  
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Figure S4: T cells do not become anergic after KRP203 administration. Acute GVHD (bàbd) was induced in 8-week 

old female BDF1 recipients by injection of splenic T cells from B6 donors. Mice were sacrificed at 2 weeks and 

lymphocytes were isolated from lymph nodes. Anergic cells were determined by the surface marker CD73 and folate 

receptor 4 (FR-4) in mice without GVHD (O), with GVHD (!) and with GVHD and prophylactic (start day-1) 

KRP203 administration (3mg/kg i.p. every 2nd day) (A). IFNγ cytokine secretion was measured by flow cytometry (B). 

The graphs represent data from one experiment with n=4 mice. 
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