
Best-Case and Worst-Case Behavior of Greedy Best-First Search

Manuel Heusner, Thomas Keller and Malte Helmert
University of Basel, Switzerland

{manuel.heusner,tho.keller,malte.helmert}@unibas.ch

Abstract
We study the impact of tie-breaking on the behavior
of greedy best-first search with a fixed state space
and fixed heuristic. We prove that it is NP-complete
to determine the number of states that need to be ex-
panded by greedy best-first search in the best case
or in the worst case. However, the best- and worst-
case behavior can be computed in polynomial time
for undirected state spaces. We perform computa-
tional experiments on benchmark tasks from the In-
ternational Planning Competitions that compare the
best and worst cases of greedy best-first search to
FIFO, LIFO and random tie-breaking. The exper-
iments demonstrate the importance of tie-breaking
in greedy best-first search.

1 Introduction
While the theoretical properties of optimal state-space search
algorithms like A∗ or IDA∗ have been quite extensively stud-
ied (e.g., Martelli, 1977; Pearl, 1984; Dechter and Pearl,
1985; Korf et al., 2001; Helmert and Röger, 2008; Holte,
2010), satisficing search algorithms like greedy best-first
search (GBFS, Doran and Michie, 1966) are considerably
less well understood. The research goal of developing a
theory of GBFS and related algorithms has recently re-
ceived growing attention (e.g., Wilt and Ruml, 2014; 2015;
2016), but many basic questions remain unaddressed.

Anecdotal evidence suggest that tie-breaking has a signif-
icant impact on the performance of GBFS (e.g., Asai and
Fukunaga, 2017), and indeed this is easy to see when consid-
ering an extreme scenario: with a constant heuristic, GBFS
with best-case tie-breaking only expands the states along a
shortest solution path, while it expands all states that can be
reached without passing through a goal state with worst-case
tie-breaking. However, practical applications of GBFS do not
use constant heuristics, and understanding the impact of tie-
breaking in the general case is much more challenging.

To understand the difficulty in analyzing the tie-breaking
behavior of GBFS, it is instructive to contrast it with the much
better understood behavior of A∗ search with an admissible
and consistent heuristic. Consider such an A∗ search with an
optimal solution cost of K. Let us call a state s an early layer
state if f(s) < K and a goal layer state if f(s) = K, s can

be reached without passing through a goal state, and s itself
is not a goal state.1 The set of possibly expanded states then
consists of all early layer states and all goal layer states. Un-
der worst-case tie-breaking, A∗ expands exactly these states.
The set of necessarily expanded states consists of all early
layer states together with those goal-layer states that are part
of every optimal solution. Under best-case tie-breaking, A∗

expands exactly the early layer states plus the minimum num-
ber of goal-layer states that occur in any optimal solution.
The tie-breaking behavior of A∗ can be almost completely
understood in terms of the possibly and necessarily expanded
states, which can be easily computed.

For GBFS, the situation is significantly more complicated.
We recently made a step towards a better understanding of
GBFS by showing that every run of the algorithm can be
partitioned into different episodes defined by so-called high-
water mark benches [Heusner et al., 2017] . Based on this in-
sight, we fully characterized the possibly expanded states. We
also discussed necessarily expanded states, although without
providing a complete characterization. The goal of this pa-
per is to deepen the understanding of the best- and worst-case
behavior of GBFS with the following contributions:

1. We show that, given an explicit representation of a state
space, it is NP-complete to compute lower or upper
bounds on the number of states expanded by GBFS.

2. Based on the decomposition of GBFS runs into
high-water mark benches, we describe (worst-case
exponential-time) algorithms for determining the best-
case and worst-case tie-breaking of GBFS.

3. We show that for undirected state spaces, best-case and
worst-case tie-breaking of GBFS can be analyzed in
polynomial time.

4. We provide an experimental analysis that demonstrates
the gap between worst-case and best-case tie-breaking
of GBFS on benchmarks from the International Planning
Competitions. We also show how standard tie-breaking
strategies compare experimentally to the best and worst
case, and we explore the relationship between worst-
case tie-breaking and the set of possibly expanded states.

1There is no universal agreement in the literature whether the
final goal state considered by a search algorithm counts as expanded.
As their successors are not generated, we exclude goal states here.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1463

h = 4

h = 3

h = 2

h = 1

h = 0

A

B C D E

F G H I

J LK M

N

4

3 3 3 3

3 3
2 2

1 1∞ 1

0

Figure 1: State space topology 〈{A, . . . ,N}, succ,A, {N}〉 with
succ as indicated by the arrows. Heuristic values are given by the
levels, states are annotated with their high-water marks, and progress
states are gray.

2 Background
State Space Topology We begin by introducing the formal
background needed for this work.

Definition 1. A state space is a 4-tuple S =
〈S, succ, sinit, Sgoal〉, where S is a finite set of states,
succ : S → 2S is the successor function, sinit ∈ S is the
initial state, and Sgoal ⊆ S is the set of goal states. If
s′ ∈ succ(s), we say that s′ is a successor of s and that
s→ s′ is a (state) transition.

A heuristic for S is a function h : S → R.
A state space topology is a pair 〈S, h〉, where S is a state

space and h is a heuristic for S .

Figure 1 shows the state space topology that we use as an
example throughout this paper.

For simplicity, we do not consider infinite heuristic values,
which can be derived from an arbitrary state space topology
by considering states with h(s) = ∞ as non-existent. We
also do not consider transition costs, as these are ignored by
greedy best-first search. A path of length n from state s to
state s′ is a sequence of states π = 〈s0, . . . , sn〉 where s =
s0, s′ = sn and si ∈ succ(si−1) for all 1 ≤ i ≤ n. We write
P(s) for the set of all paths from s to any goal state.

Greedy Best-First Search The objective in state-space
search is to find a path from the initial state to any goal state.
The greedy best-first search algorithm solves this problem by
keeping track of an open list (a set of states ready to be ex-
panded) and a closed list (a set of states that have already
been expanded), beginning with an empty closed list and an
open list including only the initial state. Expanding a state
involves generating its successors and adding those that are
not yet open or closed to the open list. Expanded states are
moved from the open to the closed list.

The algorithm terminates with success when a goal state
is generated and with failure when no further expansions are
possible because the open list has run empty. The search be-
havior in the failure case is easy to analyze (all reachable
states must be expanded), so we only consider the success
case in the following.

A critical decision for the efficiency of GBFS is which state
to expand next if there are multiple open states. GBFS always
selects a state with minimum heuristic value among all can-
didates. If there are multiple minimizers, the algorithm is un-

derspecified, and different choices of minimizers lead to dif-
ferent behaviors of GBFS. We refer to the process that selects
among these possible behaviors as a tie-breaking strategy.

The execution of GBFS on a given state space topology
where state si is expanded in the i-th iteration and where
the algorithm terminates after n expansions is called a run
〈s1, . . . , sn〉 of GBFS. In the trivial case where sinit ∈ Sgoal,
only the empty run is possible; otherwise, s1 = sinit and sn
always has a goal state as successor. We measure the perfor-
mance of GBFS in terms of the number of state expansions,
i.e., in the length of the run. This paper investigates the im-
pact of tie-breaking on the performance of GBFS, with an em-
phasis on the best case (the shortest possible run for a given
state space topology) and the worst case (the longest possible
run). 〈A,G,L,E, I,M〉 and 〈A,G,L,C,F,D,H, I,M〉 are
best and worst case runs in our example state space topology
with 6 and 9 expansions, respectively.

In the rest of this paper, we assume that the initial state has
a larger heuristic value than all other states and that all goal
states have lower heuristic values than all non-goal states.
These assumptions help avoid special cases in some of the
following definitions. They do not affect the behavior of
GBFS: the initial state is always the first expanded state re-
gardless of its heuristic value, and the heuristic values of goal
states are never considered because we terminate as soon as a
goal state is generated.

High-Water Marks and Benches We now briefly recapit-
ulate the observations of our previous work [Heusner et al.,
2017] on the behavior of greedy best-first search in so far as
they are relevant for this paper. We adapt the notations and
terminology to suit the following discussions. The concept of
high-water marks is central to the understanding of GBFS.
Definition 2. Let 〈S, h〉 be a state space topology with states
S. The high-water mark of s ∈ S is

hwm(s) :=

{
minρ∈P (s)(maxs′∈ρ h(s

′)) if P (s) 6= ∅
∞ otherwise.

We define the high-water mark of a set of states S′ ⊆ S as

hwm(S′) := min
s∈S′

hwm(s).

Intuitively, hwm(s) is the largest heuristic value that needs
to be considered to reach a goal state from s. Figure 1 shows
the high-water mark values of states from our example state
space topology. As A has the highest heuristic value of all
paths from A to a goal state, hwm(A) = 4, and hwm(F) = 3
as all paths from F to N are via B and h(B) = 3.

If S′ is the set of open states at any time during a GBFS run,
then at least one state s with h(s) = hwm(S′) and no state s
with h(s) > hwm(S′) will be expanded during the rest of the
run. Based on this observation, we showed that every GBFS
run can be partitioned into episodes, where a new episode
begins whenever a state is expanded whose high-water mark
is lower than the high-water mark of all previously expanded
states. We call the last state of every episode a progress state.
Definition 3. A state s of a state space topology 〈S, h〉 is a
progress state iff hwm(s) > hwm(succ(s)).

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1464

Progress states s always satisfy hwm(s) = h(s). The high-
water mark of the set of states expanded in an episode is al-
ways equal to hwm(s), and the high-water mark of the set of
states expanded after s has been expanded is always lower
than hwm(s).

Progress states are depicted in gray in our example state
space topology in Figure 1. In the run 〈A,G,L,E, I,M〉, for
instance, the episode that starts with the expansion of A lasts
until the next progress state, E, is expanded. The high-water
mark of the episode is hwm({A,G,L}) = 3 = hwm(E)
and the high-water mark of all states expanded after E is
hwm({I,M}) = 2 < hwm(E).

The key insight into understanding the search behavior of
GBFS is that progress states behave like reset points upon
whose expansion the open list could be cleared without af-
fecting the behavior of the algorithm. In the example just
given, even though C is inserted into the open list upon ex-
panding A, it will never be expanded by GBFS regardless of
the tie-breaking strategy after the expansion of E.

Hence, we can simulate the search behavior by treating all
episodes as separate searches on a restricted state space called
bench with a progress state as the initial state and subsequent
progress states as goal states.2

Definition 4. Let 〈S, h〉 be a state space topology with set of
states S. Let s ∈ S be a progress state.

The bench level of s is level(s) = hwm(succ(s)).
The inner bench states inner(s) for s consist of all states

s′′ 6= s that can be reached from s on paths on which all
states s′ 6= s (including s′′ itself) are non-progress states and
satisfy h(s′) ≤ level(s).

The bench exit states exit(s) for s consist of all progress
states s′ with h(s′) = level(s) that are successors of s or of
some inner bench state of s.

The bench states states(s) for s are {s}∪inner(s)∪exit(s).
The bench induced by s, denoted by B(s), is the state space

with states states(s), initial state s, and goal states exit(s).
The successor function is the successor function of S re-
stricted to states(s) without transitions to s and from bench
exit states exit(s).

In our example state space topology, A induces the
bench B(A) with inner(A) = {C,F,G,L} and exit(A) =
{B,D,E}. Another bench is defined by progress state D with
inner(D) = {G,H,L} and exit(D) = {I}. Note that benches
do not partition the state space but may overlap. In the exam-
ple, states G and L are inner states both of B(A) and B(D).

The bench transition system is the meta state space where
states are the benches that are generated by at least one GBFS
run and where edges are such that two benches are connected
if an exit state of one bench induces the other bench.
Definition 5. Let T = 〈S, h〉 be a state space topology with
initial state sinit. The bench transition system B(T) of T is a
directed graph 〈V,E〉 whose vertices are benches. The vertex
set V and directed edges E are inductively defined as the
smallest sets that satisfy the following properties:

2The main differences of the following definitions to our previ-
ous work [Heusner et al., 2017] are that we define benches as state
spaces, that we consider the progress state which induces a bench as
part of the bench and that we only consider reduced benches.

1. B(sinit) ∈ V
2. If B(s) ∈ V , s′ ∈ exit(s), and s′ is a non-goal state,

then B(s′) ∈ V and 〈B(s),B(s′)〉 ∈ E.

A bench may contain craters which consist of states that
are guaranteed to be expanded after expansion of a state.
Definition 6. Let 〈S, h〉 be a state space topology with set of
states S.

The crater crater(s) of a progress state s ∈ S is the set
of all states s′′ ∈ S that can be reached from s on paths
on which all states s′ 6= s (including s′′) satisfy h(s′) <
hwm(succ(s)) and hwm(s′) ≥ hwm(succ(s)), and the crater
of a non-progress state s is the set of all states s′′ ∈ S that
can be reached from s on paths on which all states s′ 6= s
(including s′′) satisfy h(s′) < h(s) and hwm(s′) ≥ hwm(s).

The escape states escape(s) of a progress state s are
all successor states s′′ of states s′ ∈ crater(s) that sat-
isfy h(s′′) = hwm(succ(s)) and the escape state of a non-
progress state s are all successor states s′′ of states s′ ∈
crater(s) that satisfy h(s′′) = h(s).

Progress state A induces crater crater(A) = {G,L}
with escape(A) = {D}, and non-progress state C induces
crater(C) = {F,G,L} with escape(C) = {B,D}. Note that
G and L are part of both craters.

3 NP-Completeness Results
We now formally introduce the problems of analyzing the
best and worst case of GBFS. As is usual in complexity the-
ory, we study the related decision problems and show that
these are already NP-complete. It follows that the more gen-
eral problems of computing the number of states expanded
in the best/worst case and computing the best/worst runs are
NP-equivalent [Garey and Johnson, 1979].
Definition 7. The GBFSBESTCASE problem is defined as
follows: given a state space topology T and K ∈ N0, does
there exist a GBFS run on T with at mostK expanded states?

Definition 8. The GBFSWORSTCASE problem is defined as
follows: given a state space topology T and K ∈ N0, does
there exist a GBFS run on T with at leastK expanded states?

We now show that both problems are NP-complete. To
be clear, we assume that the state spaces in the input are ex-
plicitly represented as directed graphs, so the hardness is not
related to the state explosion problem that makes state-space
search in implicitly defined state spaces hard.
Theorem 1. GBFSBESTCASE is NP-complete.

Proof: For membership in NP, we guess a run for the given
state space topology that satisfies the given bound and ver-
ify that it is a legal run. For hardness, we polynomially re-
duce from the NP-complete VERTEXCOVER problem: given
a graph 〈V,E〉 and number M , does there exist a subset
C ⊆ V with |C| ≤M such that C ∩ e 6= ∅ for all e ∈ E?

Given a VERTEXCOVER instance with vertices V , edges
E = {e1, . . . , en} and bound M , we produce a GBFSBEST-
CASE instance with bound K = 2n + 1 + M and a state
space topology with initial state s1 with heuristic value 3;
edge branch states s2, . . . , sn+1 with heuristic value 2; for

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1465

h = 3 h = 2

h = 1 h = 0

s1 s2 s3 s4 s5

sA1 sA2 sB3 sC4

sB1 sC2 sC3 sD4

A B C D s∗

Figure 2: Illustration of the proof of Theorem 1, depicting a
GBFS run that allows to compute the vertex cover of a graph
〈{A,B,C,D}, {{A,B}, {A,C}, {B,C}, {C,D}}〉.

every edge ei = {u, v}, two edge decision states sui and svi
with heuristic value 2; for every vertex v ∈ V , a vertex state
v with heuristic value 1; a goal state s∗ with heuristic value
0; for every edge ei and vertex v ∈ ei, transitions si → svi ,
svi → si+1 and svi → v; and a transition sn+1 → s∗.

The reduction is illustrated in Figure 2. Every GBFS run
must expand the initial state (1 expansion), all edge branch
states (n expansions) and at least one edge decision state per
edge (n expansions). If edge decision state eui is expanded,
vertex state u must also be expanded. It is easy to see that
the expanded vertex states form a vertex cover, and that a run
with at most K = 2n + 1 + M expansions exists iff there
exists a vertex cover of size at most M . �

We remark that the state space topology used in the reduc-
tion only consist of a single bench, and that the best case of
GBFS is hence already hard to compute for a single bench.
The difficulty of minimizing GBFS expansions stems from
overlapping crater states: expanding certain states (the edge
decision states in the reduction) forces the expansion of ad-
jacent crater states that form a heuristic depression (the ver-
tex states in the reduction). The cost incurred by crater state
expansions cannot be quantified locally because craters can
overlap and global optimization is hence required.

In contrast to the best case, the worst case of GBFS is easy
to determine for a single bench: the worst case on a single
bench is always to expand all non-exit states in some order,
and then any exit state. (This is always possible.) Still, ana-
lyzing the worst case of GBFS is hard as we prove next.
Theorem 2. GBFSWORSTCASE is NP-complete.
Proof: For membership in NP, we guess a run for the given
state space topology that satisfies the given bound and verify
that it is a legal run. For hardness, we polynomially reduce
from the NP-complete SAT problem: given a set of proposi-
tional variables V and a set of clauses C over V (represented
as sets of literals), does there exist a truth assignment for V
that satisfies all clauses?

Given a SAT instance with variables V = {v1, . . . , vn}
and clauses C, we produce a GBFSWORSTCASE instance
with bound K = 2n + 1 + |C| and a state space topology
with variable branch states s1, . . . , sn+1 with heuristic val-
ues h(si) = 2(n − i) + 4 (s1 is the initial state); for every
variable vi, two literal states vi and ¬vi with heuristic value
2(n − i) + 3; for every clause c ∈ C, a clause state c with
heuristic value 1; a goal state s∗ with heuristic value 0; for

s1 s2 s3 s4

v1 v2 v3

¬v1 ¬v2 ¬v3

{¬v1} {v1,¬v2} {v2, v3} s∗
h = 1

h = 8 h = 7 h = 6 h = 5 h = 4 h = 3 h = 2

h = 0

Figure 3: Illustration of the proof of Theorem 2, depicting a GBFS
run that allows to determine the satisfiability of the formula ¬v1 ∧
(v1 ∨ ¬v2) ∧ (v2 ∨ v3).

every variable vi and literal ` ∈ {vi,¬vi}, transitions si → `,
` → si+1 and ` → c for all clauses c with ` ∈ c; and a
transition sn+1 → s∗.

The reduction is illustrated in Figure 3. It is very similar
to the one from the previous proof. The main difference is
that we define the heuristic values in such a way that GBFS is
prevented from expanding both literal states belonging to the
same variable in one run. Truth assignments correspond to
paths through the variable branch and literal states. From this,
it is easy to see that satisfying assignments correspond to runs
where all clause vertices are expanded, which is equivalent to
saying that at least K = 2n+1+ |C| states are expanded. �

Again, the hardness stems from the difficulties caused by
overlapping craters. The difference to the result above is that
now the overlap is between craters from different benches, as
determining the worst case for a single bench is easy.

4 Algorithms
Despite the discouraging results of the previous section, we
now present algorithms for the computation of the best- and
worst-case tie-breaking behavior of GBFS. A straightforward
approach searches in the space of open and closed list con-
figurations and starts with a search node whose open list
only contains the initial state and whose closed list is empty.
Search nodes are expanded by creating successors for each
state in the open list of the search node with minimal heuris-
tic value, and successor nodes are equal to their predecessors
except that the expanded state is moved to the closed list and
all successor states of the expanded state that are not yet open
or closed are added to the open list.

Applying this algorithm to our example state space topol-
ogy leads to a search node whose open list contains the
states C and E and whose closed list conisists of A,G and
L. Expanding this search node creates the two succes-
sors 〈{E,F}, {A,C,G,L}〉 and 〈{C, I}, {A,E,G,L}〉. The
straightforward algorithm keeps track of the whole open and
closed list in each search node and creates a search node
for each possible open and closed list configuration. We
present two algorithms in the following that operate on a more
compact data structure and omit search inside of craters (for
GBFSBESTCASE) and benches (for GBFSWORSTCASE)
by exploiting previous insights on the search behavior of
GBFS.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1466

h = 4

h = 3

h = 2

h = 1

h = 0

A {G,L}

B C

{F,G,L}

D E

H{L} I

J K M

N

Figure 4: Surface graph of our example state space topology from
Figure 1. States are annotated with their crater unless it is empty.

Best Case Analysis The algorithm that determines the min-
imum number of states expanded by GBFS for a given state
space topology operates on the surface graph, the search
space that contains only states s with h(s) = hwm(s) that
are expanded by at least one instance of GBFS. To derive the
surface graph, we

1. compute hwm(sinit) by running an instance of GBFS
with an arbitrary tie-breaking strategy;

2. expand all states s with h(s) ≤ hwm(sinit) that can be
reached from sinit without passing through a goal state;

3. determine hwm(s) for all expanded states s by backprop-
agation from goal states;

4. reduce the state space by removing all states and adja-
cent transitions that are not included in a bench of the
bench transitions system;

5. remove all remaining states s and adjacent transitions
with h(s) 6= hwm(s); and

6. for each remaining state s, add a transition from s to
each s′ ∈ escape(s).

Steps 1 and 2 compute an overapproximation of the set of
possibly expanded states, and steps 3 and 4 refine the approx-
imation to the exact set (the fact that finite high-water marks
larger than hwm(sinit) are considered infinite by our proce-
dure is irrelevant for the computation of the set of possibly
expanded states). The final steps 5 and 6 reduces this fur-
ther to the surface graph 〈S,E〉 by removing all states with
different heuristic and high-water mark values and by adding
transitions between states that lead into and out of each crater.

Our algorithm exploits the fact that we are not interested in
the behavior of any tie-breaking strategy, but in the best-case
behavior of GBFS: first, it only considers successors nodes
that are implied by a transition, as a best-case run must be
such that subsequent states in the surface graph are connected
in the surface graph (this is not the case for other tie-breaking
strategies: e.g., it is possible to expand state E after state F in
our example even though they are not connected). And sec-
ond, rather than keeping track of all states in the closed list it
restricts to the set of states that can be encountered in the best-
case more than once, i.e., visited states that are part of at least
one crater. By picking an appropriate cost function that en-
sures that states that have to be expanded are reflected in the
cost of the expansion and by tracking visited crater states, we
can turn the problem into a shortest path problem that can be
solved with uniform cost search on the surface graph. Search

nodes are hence pairs 〈s,D〉, where s ∈ S is the last ex-
panded state, and D is the set of crater states that has been
expanded on the way to s.

A search node 〈s,D〉 is expanded by creating a successor
〈s′, D ∪ crater(s′)〉 for each (s, s′) ∈ E, and the cost of the
transition from 〈s,D〉 to 〈s′, D′〉 is cost(〈s,D〉, 〈s′, D′〉) =
1 + |D′ \ D|; 1 for the expansion of s′ and |D′ \ D| for
the expansion of previously unexpanded crater states. The
initial search node is 〈sinit, crater(sinit)〉 and each 〈s,D〉
with succ(s) ∩ Sgoal 6= ∅ is a goal node. The number
of states that are expanded by GBFS under best-case tie-
breaking corresponds to the sum of cost of the shortest path
and 1+ |crater(sinit)| for the expansion of the initial state and
its crater states.

The surface graph of our example state space topology is
depicted in Figure 4. It contains exactly the states s with
h(s) = hwm(s). All crater states crater(s), which are anno-
tated with s in Figure 4, are removed from the surface graph.
This also leads to the removal of the transition from H to G
even though G is not in a crater on B(D). However, the tran-
sition from H to G cannot be part of a best-case run of GBFS
because there cannot be a path to a goal from G on B(D)
(since it is part of another crater on a higher bench, it only
has escape states on the higher bench).

Computing GBFSBESTCASE on the surface graph rather
than a search in the space of open and closed list configura-
tions results in smaller search nodes where we only have to
keep track of the last expanded state and all expanded crater
states, and it results in a smaller number of search nodes since
we do not perform search in craters (the expansion of crater
states is encoded in the cost and transition functions) and non-
crater states with infinite high-water mark which can never be
part of a best-case tie-breaking strategy.

Worst Case Analysis The introduction of the surface graph
allows us to perform uniform cost search to determine the
best-case behavior of GBFS. For the worst-case, we can sim-
plify the search space even further since transitions within
benches are irrelevant: for each bench, all non-exit states and
a single exit state are expanded in the worst-case (it is only
a single exit state as an algorithm has to move onto the next
bench once an exit state is expanded). To put this insight
into an algorithm, we reduce the surface graph even further
and remove all transitions within one bench and add a tran-
sition from the progress state that defines a bench to all exit
states of the bench. The resulting graph is equivalent to the
bench transition system (with the exception that nodes are
progress states rather than benches induced by the progress
states), which we have shown to be a directed acyclic graph
in previous work [Heusner et al., 2017].

We derive a similar search structure from this graph as in
the best-case. The only difference is the successor generation,
which creates a search node 〈s′, D∪inner(s′)〉 for each (s, s′)
in the bench transition system when 〈s,D〉 is expanded. In
this search space, we perform a longest path search, which
can be computed in time polynomial in the size of an directed
acyclic graph [Lawler, 1976] as the hwm-levels induce a suit-
able topological ordering.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1467

h = 4

h = 3

h = 2

h = 1

h = 0

A {C,F,G,L}

B{J} D{G,H,L} E

I

K M

N

Figure 5: Bench transition system of our example state space topol-
ogy from Figure 1. Progress states are annotated with the set of inner
bench states of the induced bench unless it is empty.

5 Tractability Results
In this section, we discuss properties of state space topolo-
gies that can be determined in polynomial time and that allow
a polynomial computation of GBFSBESTCASE and GBFS-
WORSTCASE despite the complexity of the general case.
Definition 9. Let T be a state space topology with set of
states S and bench transition system B(T) = 〈V,E〉.
T is undirected iff s′ ∈ succ(s) ⇔ s ∈ succ(s′) for all

states s, s′ ∈ S.
T is overlap-free with respect to benches iff inner(s) ∩

inner(s′) = ∅ for all benches B(s),B(s′) ∈ V with
level(s) 6= level(s′).
T is overlap-free with respect to craters iff crater(s) ∩

crater(s′) = ∅ for all pairwise distinct s, s′ ∈ states(p)
and all benches B(p) ∈ V with h(s) = h(s′) = hwm(s) =
hwm(s′) = level(p).

Let us now investigate what these properties mean for the
complexity of GBFSWORSTCASE and GBFSBESTCASE.
Theorem 3. GBFSWORSTCASE can be decided in polyno-
mial time and space for a given state space topology T and
K ∈ N0 if T is overlap-free with respect to benches.
Proof: We know that benches along each path in the bench
transition system have monotonously decreasing and there-
fore distinct hwm-levels [Heusner et al., 2017]. Moreover, the
complexity of GBFSWORSTCASE results from states that
occur on benches of different hwm-levels along a bench path.

As each pair of benches in a run is overlap-free, we can
determine the worst-case behavior of GBFS by running our
general algorithm of the previous section directly on the
bench transition system with cost function cost(s, s′) = 1 +
|inner(s′)| in time linear in the number of exit states from the
bench transition system.3 �

Theorem 4. GBFSWORSTCASE can be decided in polyno-
mial time and space for a given state space topology T and
K ∈ N0 if T is undirected.
Proof: We show that a state can only be shared between two
consecutive benches of the bench transition system.

Let us assume there is a state s and three consecu-
tive benches defined by progress states p, p′, and p′′ with

3Our result also holds if there is no pair of benches on a path in
the bench transition system that shares a state. However, since it is
not possible to compute this property in polynomial time for a given
state space topology, we present the less general result here.

best case worst case
of u o total of u o total

instances 406 31 327 764 471 10 283 764
covered 406 31 242 679 466 10 263 739

Table 1: Number of undirected (u), overlap-free (of), other (o) and
total number of instances where the search space and the best- and
worst-case tie-breaking have been computed.

level(p) > level(p′) > level(p′′) such that s ∈ inner(p)
and s ∈ inner(p′′). As s is in inner(p), we know that
hwm(s) ≥ level(p) (1). As s is in inner(p′′) and as S is
undirected, there must be a path from s over p′′ to a goal
bench which only includes states s′ with h(s′) ≤ level(p′′),
and hence h(p′′) ≥ hwm(s) (2). Finally, as p′′ is in exit(p′),
we know that level(p′) = h(p′′) and hence level(p) > h(p′′)
due to level(p) > level(p′) (3).

With this, we have hwm(s)
(1)

≥ level(p)
(3)
> h(p′′)

(2)

≥
hwm(s), which contradicts the assumption.

Since dependencies can only arise between consecutive
benches, we can determine the worst-case behavior of GBFS
by running our general algorithm of the previous section
directly on the bench transition system with cost function
cost(s, s′) = 1 + |inner(s′) \ inner(s)|. �

Theorem 5. GBFSBESTCASE can be decided in polynomial
time and space for a given state space topology T and K ∈
N0 if T is overlap-free with respect to craters and benches.
Proof: The proof is analogously to the proof of Theorem 3
applied to craters instead of benches and with cost function
cost(s, s′) = 1 + |crater(s′)|. �

Theorem 6. GBFSBESTCASE can be decided in polynomial
time and space for a given state space topology T and K ∈
N0 if T is undirected.
Proof: Since s ∈ escape(s′) iff s′ ∈ escape(s) in undirected
state spaces, the surface graph of an undirected state space
is undirected as well. Moreover, (s, s′) ∈ E of the surface
graph iff crater(s) ∩ crater(s′) 6= ∅. Therefore, dependen-
cies arise only between two neighboring states and we can
run the general algorithm directly on the surface graph with
cost function cost(s, s′) = 1 + |crater(s′) \ crater(s)|. �

6 Experimental Results
We implemented all presented algorithms in the Fast Down-
ward planning system [Helmert, 2006] and performed ex-
periments on the benchmark sets of the 1998–2014 Interna-
tional Planning Competitions (IPC) with the hFF heuristic
[Hoffmann and Nebel, 2001] and unit cost. We restricted the
benchmark sets to tasks where GBFS search with hFF and
FIFO tie-breaking found a plan within 30 minutes and 3.5
GB memory, which has been possible for 2519 instances.

For each instance, we computed the reduced state space
with step 1 - 4 of surface graph computation, and determined
the relevant properties of the state space topology, i.e., if it
is overlap-free (with respect to benches and craters) or not
overlap-free but undirected. This was possible for 764 in-
stances from 78 domains within a time limit of 30 minutes

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1468

101 103 105 107

101

103

105

107

generated states

ge
ne

ra
te

d
no

de
s

best case
worst case

Figure 6: Number of states versus number of search nodes generated
by the best case and worst case algorithms for each search space that
is neither undirected nor overlap-free.

and a memory limit of 3.5 GB. These instances form the
benchmark set that we used for the further experiments. The
surface graphs and the bench transition systems were gener-
ated on the fly for the computation of best or worst case in
order to save memory.

6.1 Evaluation of Tractability
An overview on the number of instances for which we were
able to compute the minimal and/or the maximal number of
states that are expanded by GBFS is given in Table 1. In 665
instances, both values have been computed, and only the best
or worst case in an additional 14 and 74, respectively.

Even though the percentage of instances for which we
could perform the tie-breaking analysis is high in general, one
can see that the success rate is much higher for the polynomial
special cases: we have results for the best case for all overlap-
free or undirected instances, while there are only 5 instances
for which we could not come up with an upper bound on the
number of GBFS expansions.

The NP-hardness of the general problem can be observed
for the numbers on the remaining instances, where the pos-
sibly exponential blow-up seems to be more present when
computing the best case (not successfull in 85 instances) than
when computing the worst case (not successfull in just 20
instances). To support this hypothesis, Figure 6 plots the
number of generated states in the surface graph (best case)
or bench transition system (worst case) in comparison to the
number of generates search nodes for each instance that is
neither undirected nor overlap-free. For the worst case, the
blow-up is almost always signifcantly below an order of mag-
nitude, while it is usually close to one and up to more than
three orders of magnitude for the best case.

6.2 Evaluation of Tie-Breaking Strategies
In our second experiment, we compare the performance of the
well-known tie-breaking strategies FIFO, LIFO and random
(averaged over 10 runs) with the best and worst case. One of
our main results is that the influence of tie-breaking is indeed
highly significant in practice - Figure 7 shows that GBFS with
worst-case tie-breaking has to expand approximately 10 times
as many states as GBFS with best-case tie-breaking in state

space topologies without craters (left plot), and as much as
100 as many in the presence of craters (center plot).

The three considered tie-breaking strategies are not far
from the best case in crater-free state space topologies.
This result matches the insights of Hoffmann [2005], whose
heuristic benches relate to high-water mark benches in crater-
free instances. In state space topologies with craters, the pic-
ture is different: the number of expanded states of the spe-
cific tie-breaking strategies is about 10 times the number of
the best case. Since the differences between FIFO, LIFO and
random are additionally negligible, we assume that no good
GBFS tie-breaking strategy has been found so far.

6.3 Worst Case and Possibly Expanded States
In our final experiment, we are interested in the relationship
between the number of possibly expanded states and the num-
ber of states expanded under worst-case tie-breaking, which
is shown in Figure 7 for state spaces with or without craters.
In the presence of craters, both numbers are similar, i.e., al-
most all states that are expanded by some tie-breaking strat-
egy are expanded in the worst case. We assume this is because
most states can be reached on many different ways.

In crater-free state space topologies, this is not the case,
and the number of states expanded by the worst-case tie-
breaking strategy is often less than 1% of the possibly ex-
panded states. This is very different from the result in A∗

and is one explanation why GBFS is often a good choice in
satisficing planning.

7 Conclusion
We analyzed the problem of computing the number of states
expanded by GBFS under worst-case and best-case tie-
breaking and showed that the computation is NP-complete
for the general case, but polynomial in undirected or overlap-
free state space topologies. We presented worst-case expo-
nential time algorithms for arbitrary state spaces and polyno-
mial variants for the tractable subsets.

Our experimental analysis reveals that the gap between
best- and worst-case tie-breaking is large and that there is
plenty of room for improvement over standard tie-breaking
strategies in state space topologies with craters.

We plan to extend our work in multiple directions: there
is room for improvement in the computation of the graphs
required for our analysis, which is a promising direction since
the current implementation works for only approximately one
third of the instances that can be solved by GBFS; we plan to
use our insights to design tie-breaking strategies for GBFS
that are closer to the best case even in the presence of craters;
and we work on a comparison of different heuristics, where
numbers on best- and worst-case tie-breaking strategies allow
to compare the quality of heuristics for GBFS similar to the
dominance of higher admissible heuristic estimates in A∗.

Acknowledgments
This work was supported by the European Research Council
as part of the project “State Space Exploration: Principles,
Algorithms and Applications”.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1469

100 101 102 103 104

0

200

400

expansions

co
ve

re
d

in
st

an
ce

s

best
rand
lifo
fifo
worst

101 103 105

0

100

200

300

expansions

co
ve

re
d

in
st

an
ce

s

best
fifo
lifo
rand
worst

101 103 105 107

101

103

105

107

worst case

po
ss

ib
ly

ex
pa

nd
ed

st
at

es

non-crater
crater

Figure 7: Left and middle: number of instances where GBFS expands at most a given number of states for different tie-breaking strategies.
(Legend is sorted by decreasing performance of tie-breaking strategies) Right: comparison of the number of possibly expanded states and
expanded states under worst case tie-breaking.

References
[Asai and Fukunaga, 2017] Masataro Asai and Alex Fuku-

naga. Exploration among and within plateaus in greedy
best-first search. In Proceedings of the Twenty-Seventh
International Conference on Automated Planning and
Scheduling (ICAPS 2017), pages 11–19. AAAI Press,
2017.

[Dechter and Pearl, 1985] Rina Dechter and Judea Pearl.
Generalized best-first search strategies and the optimality
of A∗. Journal of the ACM, 32(3):505–536, 1985.

[Doran and Michie, 1966] James E. Doran and Donald
Michie. Experiments with the graph traverser program.
Proceedings of the Royal Society A, 294:235–259, 1966.

[Garey and Johnson, 1979] Michael R. Garey and David S.
Johnson. Computers and Intractability — A Guide to the
Theory of NP-Completeness. Freeman, 1979.

[Helmert and Röger, 2008] Malte Helmert and Gabriele
Röger. How good is almost perfect? In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence
(AAAI 2008), pages 944–949. AAAI Press, 2008.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Heusner et al., 2017] Manuel Heusner, Thomas Keller, and
Malte Helmert. Understanding the search behaviour of
greedy best-first search. In Alex Fukunaga and Akihiro
Kishimoto, editors, Proceedings of the 10th Annual Sym-
posium on Combinatorial Search (SoCS 2017), pages 47–
55. AAAI Press, 2017.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence
Research, 14:253–302, 2001.

[Hoffmann, 2005] Jörg Hoffmann. Where ‘ignoring delete
lists’ works: Local search topology in planning bench-
marks. Journal of Artificial Intelligence Research, 24:685–
758, 2005.

[Holte, 2010] Robert C. Holte. Common misconceptions
concerning heuristic search. In Ariel Felner and Nathan

Sturtevant, editors, Proceedings of the Third Annual Sym-
posium on Combinatorial Search (SoCS 2010), pages 46–
51. AAAI Press, 2010.

[Korf et al., 2001] Richard E. Korf, Michael Reid, and Ste-
fan Edelkamp. Time complexity of iterative-deepening
A∗. Artificial Intelligence, 129:199–218, 2001.

[Lawler, 1976] Eugene L. Lawler. Combinatorial Optimiza-
tion: Networks and Matroids. Holt, Rinehart and Winston,
1976.

[Martelli, 1977] Alberto Martelli. On the complexity of ad-
missible search algorithms. Artificial Intelligence, 8:1–13,
1977.

[Pearl, 1984] Judea Pearl. Heuristics: Intelligent Search
Strategies for Computer Problem Solving. Addison-
Wesley, 1984.

[Wilt and Ruml, 2014] Christopher Wilt and Wheeler Ruml.
Speedy versus greedy search. In Stefan Edelkamp and Ro-
man Barták, editors, Proceedings of the Seventh Annual
Symposium on Combinatorial Search (SoCS 2014), pages
184–192. AAAI Press, 2014.

[Wilt and Ruml, 2015] Christopher Wilt and Wheeler Ruml.
Building a heuristic for greedy search. In Levi Lelis and
Roni Stern, editors, Proceedings of the Eighth Annual
Symposium on Combinatorial Search (SoCS 2015), pages
131–139. AAAI Press, 2015.

[Wilt and Ruml, 2016] Christopher Wilt and Wheeler Ruml.
Effective heuristics for suboptimal best-first search. Jour-
nal of Artificial Intelligence Research, 57:273–306, 2016.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1470

