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Summary

SUMMARY

Malaria is a life-threatening infectious disease caused by Plasmodium parasites transmitted to humans through
bites of infected Anopheles mosquitos. An estimated 445,000 people die every year by an infection with
Plasmodium parasites, most of them children living in sub-Saharan Africa. As a result of increased malaria
control, the mortality was greatly reduced in the last decades. To develop new tools for elimination and to
evaluate the impact of control, a good understanding of the epidemiology and biology of malaria parasites is
required.

Studies of infection and transmission dynamics of Plasmodium parasites were greatly improved by
distinguishing individual parasite clones and monitoring their infection dynamics over time. In regions with high
transmission of Plasmodium parasites, individuals are often infected with several clones concurrently.
Individual parasites clones can be identified by genotyping. The current standard method used for genotyping
is amplification of highly length-polymorphic merozoite surface protein 2 (msp2) or other antigen genes
followed by sizing of the amplicon by capillary electrophoresis (CE). The sensitivity to detect low-abundant
clones (minority clones) of msp2-CE genotyping is however limited, resulting in an underestimation of
multiplicity of infection (MOI). A shortfall of this genotyping method is that frequency of individual clones within
a sample cannot be determined. This urges the search for new genotyping methods that rely on sequencing
of genomic fragments with extensive single nucleotide polymorphism (SNP).

Improvement in next generation sequencing (NGS) technologies permitted the use of amplicon sequencing
(Amp-Seq) in epidemiological studies. Genotyping by amplicon sequencing has a higher sensitivity to detect
minority clones, can quantify the frequency of each clone within a sample, and allows the use of SNP
polymorphic markers. In the frame of this thesis, a new Amp-Seq genotyping assay was developed, including
known SNP polymorphic markers, and novel marker ‘comp’, as well as a bioinformatic analysis workflow. This
genotyping assay was applied on field samples from a longitudinal study conducted in Papua New Guinea. A
comparison to msp2-CE genotyping confirmed the higher sensitivity to detect minority clones by Amp-Seq
genotyping method and showed a significant underestimation of MOI by classical size polymorphic marker.
However, no significant increase in molecular force of infection (,oFOI), i.e. number of new infections per
individual per year, was observed.

Quantification of the frequency of individual clones in longitudinal samples permitted to infer multi-locus
haplotypes. Multi-locus haplotypes increased discriminatory power of genotyping and robustly distinguished
new infections from those detected in an individual earlier. For calculating the density of clones from multi-
clone infections the within-host clone frequency is multiplied by parasitaemia of this infection determined by
quantitative PCR. Density of individual parasites clones in multi-clone infections over time is a new parameter
for epidemiological studies. It will permit to study the dynamics, and thus fitness, of parasite clones exposed
to within-host competition or to acquired natural immunity.

NGS also gained great importance in gene expression studies of Plasmodium parasites in patient samples.
Transcriptome studies are complicated by the mixture of different developmental stages present concurrently
in samples collected from patients. Even in in vitro cultured samples after tight synchronisation or enrichment
of a specific developmental stage, small fractions of other development stages are still found. This problem is
of particular relevance for P. vivax, as the absence of continuous in vitro culture so far has hampered the study
of isolated parasite stages. For example, the transcriptome of P. vivax gametocytes, one of the stages found
in peripheral blood and infective to mosquitos, has not yet been described.

A solution for differentiating mixed transcription may come from deconvolution methods, which either infer the
stage proportion in samples or stage-specific transcriptome signatures. A large selection of different
deconvolution methods has been developed for the analysis of heterogeneous tissues, e.g. cancer tissues or
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hematopoietic cell, but these methods have rarely been applied to mixed stages of malaria parasites. The best
suited combination of normalisation and deconvolution methods for analysis of RNA sequencing (RNA-Seq)
data from mixed-stage samples of Plasmodium parasites was evaluated based on experimentally mixed highly
synchronised blood stages. Normalisation by count per million and deconvolution with a negative binomial
regression model followed by selection of genes with significant fold change resulted in the best agreement
with transcriptomes as observed in single stages. This strategy can easily be transferred to Plasmodium field
samples with known stage proportions. This analysis performed in cultured parasites of defined mixed stages
served as proof-of-concept and confirmed that identification of stage-specific genes is feasible also in field
samples, notably in species that cannot be cultivated, such as P. vivax.

NGS permits fundamentally new approaches to study Plasmodium parasites. This thesis presents a novel
marker and data analysis platform for highly sensitive P. falciparum genotyping. Furthermore, a best practice
workflow was identified to infer stage-specific gene expression from parasite infections consisting of mixed
developmental stages. This provides a crucial tool for the analysis of gene expression data generated from
Plasmodium field samples.
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Introduction

CHAPTER 1: INTRODUCTION

1.1 MALARIA

Malaria is a life-threatening infectious disease caused by Plasmodium parasites. Plasmodia are transmitted to
humans through bites of infected Anopheles mosquitoes. Today, no human should die from an infection with
Plasmodium, as an infection with Plasmodium parasites can be prevented and treated [1]. However, in 2016,
about 216 million cases of malaria resulting in an estimated 445,000 deaths were reported worldwide by the
World Health Organization (WHO) (Figure 1) [2]. Most deaths occur among children living in Africa [3]. Even
though mortality was reduced by half in the last 10 years (881,000 deaths in 2006 [4]), more has to be done
to reach zero mortality. To achieve this goal, further research into the epidemiology and biology of malaria
parasites is required.

>1 cases Certified malaria free since year 2000
Zero cases in 2016 [J No malaria
Zero cases (23 years) Not applicable

Figure 1: World map of indigenous cases of Plasmodium infection (source World Malaria Report 2017)

Human malaria exists since pre-historical times and the associated fever was already described in ancient
times in China, the Middle East, India and the Mediterranean area [5]. But the parasites causing this fever
were only discovered in the 19" century [5]. At the beginning of the 20" century first attempts to control malaria
were undertaken by minimising mosquito to human contacts to prevent transmission [5]. At the same time,
efforts were undertaken to decrease the mosquito breeding sites by draining marshes [6]. In the 1940s, with
the development of residual insecticides and synthetic anti-malarials further achievements in malaria control
were made [7,8]. Encouraged by this success, in 1955 the WHO formulated a plan for worldwide malaria
eradication (Global Malaria Eradication Programme, GMEP) [6,9], resulting in elimination of Plasmodium in
Europa and USA [6]. The GMEP was stopped in 1969 [6]. The emergence of mosquito resistance to
insecticides and parasite resistance to anti-malarials was one reason of the eradication campaign failure
[7,8,10]. Another reason was that little effect was achieved in some continental tropical countries of Asia, South
America and Africa [9]. The operational logistic was often too complex for countries with weak infrastructure
[9]. The subsequent weakening of the control efforts resulted in a resurge of malaria [6]. Since then, several
programs were launched and organisations founded to coordinate the control of malaria globally, e.g. the Roll
Back Malaria (RBM) partnership [9]. Global eradication of malaria was put back on the global agenda in 2007
when Bill and Melinda Gates announced not just to treat malaria or to control it, but to plan a long-term course
to eradication [11].
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Today, the main strategies to control malaria are to prevent transmission by indoor residual spraying (IRS),
insecticide-treated bed nets (ITNs), and rapid treatment of the patient. However, gametocytes, that represent
the human infective reservoir to mosquitoes, are only partially cleared by artemisinin combination therapy
(ACT) [12]. Only treatment with low-dose Primaquine (PQ) clears P. falciparum gametocytes [12,13]. In
addition, adults in endemic countries infected with Plasmodium are often asymptomatic and therefore
undiagnosed [14]. Currently it is unclear how much they contribute to the transmission from human to
mosquitoes, but infection of mosquitos feeding on asymptomatic individuals has been reported [15]. A vaccine
might be a key tool for malaria elimination. After decades of research, the first vaccine against P. falciparum
sporozoites RTS,S completed clinical trial phase Il and was approved by the European Medicines Agency in
2015. However, the efficacy of RTS,S for children between 5-17 months is only ~50% [16].

To reach malaria elimination, a better understanding of the epidemiology and molecular biology of the parasite
is needed. In the last decade, next-generation sequencing technology (NGS) has permitted fundamentally new
approaches to study biology, and it also has great potential to study infectious diseases. NGS approaches
applied to malaria parasites, however, yield unique challenges to data analysis. In this thesis, novel
approaches are presented to analyse NGS data from isolates containing mixed clones or mixed parasite life
stages.

1.1.1 Plasmodium species

Plasmodium parasites are Protozoa belonging to the phylum apicomplexa. They evolved over thousands of
years and are widespread in reptiles, birds and mammals [5]. All Plasmodium parasites need two hosts in their
life cycle, a dipteran insect host and a vertebrate host [5]. The sexual reproduction occurs always in the insect
host. Over 250 Plasmodium species are known to infect vertebrates [17]. More than one hundred of these are
transmitted by mosquitoes

Five Plasmodium species are known to cause malaria in humans: P. falciparum, P. vivax, P. malariae, P.
knowlesi, P. ovale (with subspecies P. ovale wallikeri and P. ovale curtisi) (Figure 2). Of these 6 species, P.
falciparum and P. vivax are by far the most prevalent ones. P. falciparum occurs worldwide and is the
predominant species in Africa. P. falciparum is almost exclusively responsible for malaria mortality (99% of
deaths) [2]. P. vivax predominates in Latin America, India and South East Asia, and threatens almost 40% of
the world’s population [18]. All human Plasmodium species are transmitted by the Anopheles mosquito [19].

The high mortality and morbidity of Malaria had selective pressure on the human genome. Several genetic
modification evolved that give a certain degree of protection against infection or severe malaria, like sickle cell
disease, thalassaemia, glucose-6-phosphate dehydrogenase (G6PD) deficiency and the absence of Duffy
antigens on red blood cells [20,21].

1.1.2 Life cycle of the human malaria parasites

Plasmodia have a complex life cycle (Figure 3) [19,22]. The first step of a human infection, the exo-erythrocytic
cycle (duration ~8 days), starts with the bite of an infected mosquito vector [23,24]. The mosquito injects
sporozoites into the dermis of the skin, where they transmigrate the dermal tissues to reach small blood vessels
and via circulating blood migrate to the liver. In the liver, sporozoites invade liver cells and develop into liver
trophozoites. The trophozoite develops further into a schizont, which consist of thousands of merozoites. Upon
infection of the liver with sporozoites, P. vivax, P. cynomolgi and P. ovale form additional dormant stages called
‘hypnozoites’ [19,25,26]. The hypnozoites cause clinical relapses weeks to months after the first infection.
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Figure 2: Maximum likelihood phylogenetic tree of Plasmodium genus. Silhouettes show host of the different
species. (image source Rutledge et al. 2017).

Erythrocytic cycle (duration ~48h), begin with release of the liver merozoites into the blood stream. In the blood
stream, the merozoites invade red blood cells (RBC), where they develop in ~32h into trophozoites [19,27].
The trophozoites develop further into schizonts, which contain 12-32 merozoites [19]. These merozoites are
then again released into the blood stream, and invade new RBCs.

Some of the merozoites develop in the RBC into male or female gametocytes. With the ingestion of
gametocytes during the blood meal by a female mosquito (2-5ul of blood [28]), the sexual cycle begins, called
sporogonic cycle. In the midgut of the mosquito the ingested female and male gametocytes develop into
macrogametes and 8 microgametes formed from the microgametocytes by exflagellation. After fertilization a
diploid zygote is formed which further develops in to an ookinete. The ookinete transmigrates the peritrophic
membrane and midgut epithelium. For about 2 weeks the parasite remains underneath the basal membrane
of the midgut and develops into an oocyst which contains thousands of sporozoites finally released into the
haemocoel of the mosquito [29]. Sporozoites migrate to the salivary glands and dozens or up to a few hundred
are injected into the dermis of the human skin when the mosquito takes a next blood meal.

Hypnozoites present a particular challenge to the control and elimination of P. vivax, as drugs against blood
stages do not target them, which results in frequent relapses. Hypnozoites can only be cleared with the drug
Primaquine (PQ). Treatment with PQ lasts for 14 days and can cause haemolysis in patients with G6PD
deficiency [30], which is prevalent across most of the malaria-endemic countries [31]. Development of new
drugs targeting the hypnozoite stage is therefore urgently needed.
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1.2 MOLECULAR EPIDEMIOLOGY OF MALARIA

1.2.1 Molecular Epidemiological Parameters

Identification of individual clones and monitoring them in the course of an infection is an important aspect of
epidemiological studies on parasite infection and transmission dynamics. Several parameters are used to
describe the dynamics of malaria infectious and to measure the outcome of interventions. Important molecular
epidemiological parameters for Plasmodium infections are multiplicity of infection (MOI), duration of infection,
and molecular force of infection (i,oFOI) [32].

Multiplicity of infection (MOI) is defined as the number of co-infecting parasite clones. Individuals in countries
with high transmission of Plasmodia are often infected with several clones concurrently [33,34] This
superinfection can be caused by multiple infective mosquito bites or by a single mosquito bite injecting multiple
genetically distinct parasite clones.

Molecular force of infection (moFOl) is defined as the number of genetically distinct new infections acquired
over time. It is a measure of exposure. It provides a robust measure of transmission as it differentiates between
persistent and new infections. Longitudinal studies are needed to determine ,,FOI.

Duration of infection for untreated Plasmodium infections is defined as the time from the first observation of a
parasite clone in the blood until clearance of this clone by the human immune system. The duration of infection
depends on the age, it was found to be longest in children of 5-9 years with a duration of ~180 days [35].

Parasitaemia is defined as the parasite load respective density in the blood. Parasite density is either
determined by light microscopy (LM) of Giemsa-stained blood smears (limit of detection ~100 parasites per pl
of blood), or by gPCR of single- or multi-copy genes (limit of detection ~3 parasite per pl of blood or lower)[36].
The parasite density in the blood of an infected individual is influenced by several factors [37]. For example,
the parasite load depends on: (i) the acquired immunity of the host with children often showing higher parasite
densities; (ii) the duration of an infection, with longer persisting infection showing lower parasite densities; and
(iii), for P. falciparum, the stage of the parasite within its 48 h cycle, as the mature blood stages are sequestered
in inner organs and therefore apparently absent in peripheral blood.

Duration of infection, nFOI, and MOI are all determined by genotyping individual clones and therefore depend
on the limit of detection of the assays to diagnose and genotype infections [38—40]. The duration of a clonal
infection and noFOI are difficult to determine if the density of individual parasite clones is around the limit of
detection, and they frequently escape detection. This imperfect detection must be distinguished from parasite
clearance and reinfection with a genetically indistinguishable clone as it biases the estimates of ,,FOI and
duration of infection. Modelling approaches are therefore used to estimate ,,FOI and duration of infection
[35,41,42].

1.2.2 Genotyping of Plasmodium parasites

Individual parasite clones are identified by genotyping. Genotyping is not only used to determine MOI, ,,FOI
or duration of infection, but also to study population structure or phenotypes like drug resistance. Depending
on the genotyping application, different marker sets are selected [43,44]. A single marker of high resolution is
often sufficient for epidemiological studies where individual clones need to be identified. For studying
phenotypes like drug resistance, markers covering all mutations (e.g. several SNPs within a gene, or several
genes) associated with resistance must be typed. In population genetics studies, multiple genome-wide
markers are required that are unlinked from each other and not under selection pressure. For recrudescence
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typing in anti-malarial drug efficacy trials the use of three unlinked markers with high resolution are
recommended by the WHO [45].

The first methods to genotype P. falciparum used amplification of the highly length-polymorphic merozoite
surface protein 2 (msp2) and subsequent sizing either by full length fragment or by restriction fragment length
polymorphism (RFLP) [46—49]. In 2006, PCR-RFLP was modified to capillary electrophoresis (CE). This
change increased resolution by using different fluorescent-labels for the FC27 and 3D7 allelic families [50,51].
CE simplified analysis by omitting the interpretation of the RFLP size pattern which was difficult to analyse,
especially when RFLP size patterns of multiple concurrent clones were superimposed. Currently, the
recommended marker and method for genotyping in drug trials is merozoite surface protein 1 (msp1), msp2
and glutamine rich protein (glurp) by CE [45].

Another genotyping method is typing of 24-42 SNPs (SNP barcode) that are distributed over the whole
genome. This multi-locus SNP-typing can determine genome-wide diversity and is suited for population
studies, as selected SNPs are unlinked to each other. Mutations of SNPs are determined by either High
Resolution Melting, Oligonucleotide Ligation or TagMan [52-54]. However, SNP-typing requires a lot of DNA
template, as each SNP is typed as an independent assay. Another difficulty is the haplotype inference in case
of multi-clone infections. The haplotypes of sample with mixed infection is difficult to resolve if the genotypes
are unlinked to each other (see Section 1.4.1).

Improvement in next generation sequencing technologies (lllumina, 454/Roche or lon Torrent) towards longer
sequence reads and lower sequencing cost per sample by multiplexing of samples permitted the use of
amplicon sequencing in epidemiological studies. Amplicon sequencing (Amp-Seq) genotyping has a higher
sensitivity, quantifies proportion of different variants and can detect low-abundant clones (minority clones) in
samples with multiple concurrent infections. However, the higher sensitivity of Amp-Seq comes at the cost of
calling false alleles caused by sequencing error or PCR artefacts. First Amp-Seq genotyping of P. falciparum
used the length polymorphic markers msp1 and msp2, as well as the SNP polymorphic region of
circumsporozoite protein (csp) [16,55,56].

In the past few years, whole genome sequencing (WGS) of single clone infections also became an option to
determine genotypes. However, the cost per sample is high and the sequence library preparation is too labour
intensive for large studies. For mixed clone infections, WGS is not feasible as the minority clone can only be
detected at very high sequence costs. For example, to detect a minority clone in a sample at a within-host
frequency of 1:500, at least 120Gb (25Mb genome size multiplied by 500-fold coverage) needs to be
sequenced. This corresponds to one lllumina NextSeq run with a sequence cost of approximately USD4000.

A recent study showed a bias in size polymorphic genotyping towards the shorter fragments in samples with
multiple concurrent infections [57]. The resulting underestimation of multiplicity of infection (MOI) urges the
search for new SNP polymorphic marker genes. Amp-Seq of SNP polymorphic markers might represent the
best alternative to genotype with size polymorphic markers. An earlier study claimed that Amp-Seq has a
higher sensitivity to detect minority clones compared to msp2-CE genotyping [55], but nothing is known about
the specificity of the method and how the higher sensitivity to detect minority clones impacts the molecular
epidemiological parameter MOI, ,,FOI and duration of infection. A comprehensive comparison of msp2-CE
genotyping and Amp-Seq genotyping with new markers was the topic of this thesis and can be found in more
detail in Chapters 2 and 3.
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1.3 GENOMICS AND TRANSCRIPTOMICS OF PLASMODIUM PARASITES

1.3.1 Genomics

The genome of the human Plasmodium species encodes ~5000 genes on 14 chromosomes in ~25Gb
nucleotides. Plasmodia also carry a mitochondrion and apicoplast genome [58]. First approaches to sequence
P. falciparum and P. vivax was made by Sanger sequencing of expressed sequence tags (ESTs) from cloned
cDNA fragments, leading to the discovery of more than 600 genes [59-62]. Later, whole chromosome shotgun
Sanger sequencing method was used to sequence the genome of P. falciparum [63]. In short, individual
chromosomes were separated, isolated and shared. The shared fragments were then cloned into yeast
artificial chromosomes (YAC) and Sanger sequenced. The sequences were first assembled by YAC and then
by chromosomes. The publication of P. falciparum genome enabled systematic analysis of the proteome and
showed that a large proportion of genes were devoted to immune evasion and host-parasite interactions. Since
then, the whole genome of all human malaria parasites were sequenced and published: P. vivax and P.
knowlesi in 2008 [64,65] and P. malariae and P. ovale in 2017 [26]. Also the closest related Plasmodium
species of P. falciparum and P. vivax were sequenced: the chimpanzee malaria parasites P. reichenowi and
the monkey malaria parasite P. cynomolgi [25,66] (Figure 1).

Comparative genomics between the different Plasmodium species gave insight into the evolutionary history
and showed that ~77% of the genes are orthologous and in conserved gene synteny [64]. Genes in synteny
indicate a conserved metabolome, as they belong to the metabolic pathways, housekeeping and membrane
transporter genes. Species-specific genes are located at syntenic break points and have mostly a host-parasite
interaction function. Of the human Plasmodium species, only P. falciparum is routinely cultured for gene
function studies. Comparative analysis of the genomes of other species can be used to identify group-specific
genes associated with traits like development of hypnozoite e.g. P. vivax, P. ovale and P. cynomolgi or the
ability to infect human and monkeys e.g. P. knowlesi, P. malariae and P. cynomolgi [67].

Efforts to describe the genetic variation P. falciparum and P. vivax were undertaken by the Malaria Genomic
Epidemiology Network (MalariaGEN, https://www.malariagen.net) in 2005. Today >3,000 genomes of P.
falciparum and >480 genomes of P. vivax are available from multiple publications [24,68—74], describing
>900,000 SNPs of P. falciparum and >300,000 SNPs of P. vivax. In addition to SNPs, microsatellite-length
polymorphisms, intragenic repeats and copy number variation add to the genetic diversity of Plasmodia. The
high genetic variation of Plasmodium parasites is required for the immune evasion mechanism, but also
represents adaptation to the human and mosquito host, or resulting from drug pressure [70,75].

1.3.2 Transcriptomics

The availability of the annotated whole genome sequences enables to study the whole transcriptome of P.
falciparum and P. vivax. The annotated genes were discovered by scanning the whole genome for open
reading frames (ORF) or by using EST sequences [63,64]. The first transcriptomes of the erythrocytic cycle of
P. falciparum and P. vivax using a DNA microarray platform were both published shortly after the whole
genome sequence [76—78]. Advances in high-throughput RNA sequencing (RNA-Seq) permitted the study of
the transcriptome without knowledge of the underlying genomic sequence [79]. RNA-Seq of the P. falciparum
and P. vivax transcriptomes improved the existing annotation for both species by identifying new genes, splice
sites and splice variants [78—80].

The complex life cycle of Plasmodia with two different hosts and three different cycles (exo-erythrocytic,
erythrocytic and sporogonic cycle) is transcriptionally and post-transcriptionally regulated [81,82]. Each stage
of the life cycle has a characteristic gene expression pattern [76,77,83,84]. The transcriptome of P. falciparum
shows a highly ordered cascade of gene expression over the parasite’s life cycle produced by transcriptional
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regulation [76]. The highly ordered expression permits functional annotation of genes with so far unknown
function by co-expression analysis, as genes with similar function are often co-expressed [77,85]. Furthermore,
Plasmodia also have stage specific copies of ribosomal RNA [63,86—88].

Comparative analysis between the transcriptomes of P. falciparum and P. vivax explained differences in the
biology of the two species [78]: For example, the genes for P. vivax immune evasion or red blood cell invasion
mechanism differed substantially from those in P. falciparum, because most of those genes are not in syntenic
order. This helps to explain why mature erythrocytic stages of P. vivax circulate in the peripheral blood,
whereas they are sequestered in P. falciparum, or why P. vivax infects only reticulocytes. Furthermore, RNA-
Seq of P. vivax also revealed unusually long 5' untranslated regions and multiple transcription start sites [80].

Currently, gene expression data exist for every developmental stage of Plasmodia except for the oocyst stage
in the mosquito. However, for none of the Plasmodium species the whole life cycle is covered (Table xy3).
Most of the available transcriptomics data in PlasmoDB (http://plasmodb.org [89]) are used to study the gene
regulation mechanism of P. falciparum erythrocytic cycle or specific phenotypes [90,91]. Basic research on P.
vivax is greatly hampered by a lack of continuous in vitro parasite culture. The available P. vivax transcriptome
data of the erythrocytic and sporogonic cycle (except sporozoite stage) originated from enriched and short-
term cultured field samples [78,92]. In view of the difficulties in culturing P. vivax, the published transcriptome
data may likely not fully represent the gene expression in the human host. For example, stress-related genes
might be overexpressed, while genes required to escape the human immune system or clearance in the spleen
might not be expressed. Moreover, the transcriptome data of P. vivax gametocytes and liver stages
(developing liver schizonts and hypnozoites) are still not available.

P. vivax hypnozoites are a major problem for elimination. Hypnozoites cause relapses weeks to months after
the initial infection and sustain transmission [93]. As a model organism to study P. vivax liver stages, the
monkey malaria parasite P. cynomolgi is studied. Recently, transcriptomes of the P. cynomolgi liver schizont
and hypnozoite were published [94,95]. Yet, the commitment to form hypnozoites is not understood, and may
already be determined in the sporozoite. During the course of this thesis contributions to the study of P. vivax
sporozoites transcriptome were made, which might yield novel drug targets. The manuscript of this additional
project is presented in Chapter 6.

A better understanding of the P. vivax gametocyte transcriptome is highly relevant, as its development differs
to the one of P. falciparum. P. vivax gametocytes develop much faster than P. falciparum gametocytes and
appear in the peripheral blood before clinical symptoms occur [19,22,96]. In contrast, gametocytes of P.
falciparum develop in 10-12 days sequestered in the bone marrow and start to circulate in the peripheral blood
as mature gametocytes only after clinical symptoms occur [22,37].

A challenge for the study of developmental stage-specific gene expression is the mixture of different stages
present in samples collected from patients. This is the case for clinical isolates of all species, e.g. when
gametocytes and asexual blood stages are present. The problem applies particularly to P. vivax, as the
absence of continuous in vitro culture prevents the study of isolated parasite stages. Methods to de-convolute
transcriptomes from mixes stages will be of great help to understand P. vivax gametocyte development.

During the course of this thesis, methods to infer stage-specific gene expression were assessed using RNA-
Seq data from experimentally mixed stages of highly synchronized P. falciparum culture (Chapter 4). In the
future, these methods will be applied to infer the P. vivax gametocyte transcriptome from field samples
containing a mixture of stages, which has been the far aim of this thesis.
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Table xy3: Overview of published microarray or RNAseq transcriptome data for the two most important human
malaria species, P. falciparum and P. vivax, as well as P. cynomolgi, which is closely related to P. vivax. NA,
no transcriptome available.

Development stage P. falciparum’ P. vivax P. cynomolgi
Exo-erythrocytic cycle: [97T
Trophozoite NA NA NA
Schizont NA NA [94,95]°
Hypnozoite - NA [94,95]°
Erythrocytic cycle: [98]* [97T
Merozoite (771 NA NA
Ring [76,77] [78]° [80]°
Trophozoite [76,77)° [78]° [80]°
Schizont [76,77]° [78]° [80]°
Gametocyte [771° [99]° NA
Female & male gametocyte [1005° NA
Sporogonic cycle: '
Macro & Microgamete [92]°
Zygote [92]°
Ookinete [92]
Oocyst
Sporozoites (mosquito saliva) [771° [101]° [92]°[101]° [97]

" Only a selection of available transcriptomes is shown. Selection criteria were initial publication or quality of
transcriptome data.

2 Microarray

® RNA sequencing

4 Single cell RNA sequencing
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1.4 OVERVIEW OF BIOINFORMATICS METHODS

In the last decade, next generation sequencing (NGS), also called high throughput sequencing or deep
sequencing, became widely applicable to field samples from molecular epidemiology studies. Performing NGS
on field samples is much more challenging than on samples from laboratory cultivated parasites and requires
more robust analysis methods. In case of Plasmodium field samples collected from patients the main
challenges for the laboratory work are that the amount of input material is limited and contaminated with host
DNA or RNA. For data analysis, the large biological variation between field samples is a challenge. Field
samples can contain complex mixtures of infecting clones or development stages. As a result, often no
biological replicates are feasible, because each patient harbours a unique parasite strain and a unique mixture
of stages. Most NGS analysis methods are not developed for complex field isolates and therefore need
adaptions to be applicable on such samples.

1.4.1 Haplotype inference and MOI estimation

SNP-based haplotype inference of a sample containing a single-clone infection is done by calling the
predominant SNPs in the sequence reads, thus identifying the haploid genome. SNPs of low frequency are
regarded as amplification or sequencing errors. Several software are available for SNP calling, e.g. samtools
or GATK framework [102,103]. However, SNP calling is much more complex in samples containing multi-clone
infections with unknown multiplicity. The situation resembles SNP calling in polyploid genomes where the
ploidy is unknown. In addition, the frequency of each clone in a multi-clone infection is unknown and can be
even less than 1%.

Most of the software for SNP calling and haplotype inference were developed for diploid genomes or require
prior knowledge of the ploidy, e.g. ReadBackedPhasing, HapCUT, HaplotypeCaller, HapCompass, BEAGLE,
IMPUTEZ2, SHAPEIT [103—110]. Such software cannot be used for multi-clonal infections with unknown ploidy.

The approach chosen to infer haplotypes in multi-clone infections depends on whether SNPs are linked or
unlinked by sequence reads. In Amp-Seq, multiple SNPs are linked usually by a single sequence read.
Haplotype inference in such data can be done by clustering of those sequence reads, e.g. SeekDeep, Swarm
[111-113]. The clustering combines similar sequence reads together that differ because of amplification or
sequencing errors. However, also sequence reads from closely related clones cluster together, if they differ in
only one SNP.

For data from WGS or SNP barcodes, where SNPs are unlinked or only partly overlapping by sequence reads,
the number of co-infecting clones needs to be estimated before haplotype inference can be performed. The
MOI estimation software use either (i) a sliding window to cluster reads that partly overlap locally, e.g. estMOI
[114] or (ii) estimate MOI directly from SNP frequencies without using any information about SNP linkage, e.g.
COIL, pfmix, THE REAL McCOIL [115-117].

Haplotype inference on partly linked SNPs of small genomes is performed by a sliding window or by extending
a smaller section of the genome where sequence reads have significant overlap and clustering of reads can
be applied, e.g. shorah, PredictHaplo, QuRe, ViSpA, HaploClique, HapCompass-Tumor [118-123]. On
unlinked SNPs, haplotype inference is performed by assembling SNPs sharing a similar proportion of reads
by using a Markov chain Monte Carlo (MCMC) approach, e.g. DEploid [124].

SeekDeep is currently the most commonly used method to analyse Amp-Seq genotyping data of Plasmodia.
However, SeekDeep can only be used on a cluster with a large working memory capacity. Swarm in contrast,
runs very efficiently on a standard personal computer. Both methods called false haplotypes when samples
with controlled mixture were analysed. In this thesis, an in-depth analysis of false haplotype calls was made
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and a new workflow put together for simple analysis of Amp-Seq genotyping data (Chapter 2). Furthermore,
the potential of using longitudinal Amp-Seq genotyping for multi-locus haplotype inference in complex
infections was explored (Chapter 3).

1.4.2 Differential expression and deconvolution of mixed transcriptomes

Differential expression (DE) analysis is used to study the difference in gene expression between phenotypes,
groups or cell stages. The most commonly used software for gene expression analysis by microarray is limma,
while for RNA-Seq data edgeR, DESeq and Cufflinks is often used [125-129]. The workflow of these software
is similar. They first normalise the gene expression data and then fit a linear model to get an estimate of the
variation in the data and the fold change between the different groups. The main difference between microarray
and RNA-Seq gene expression analysis is that microarray data are normally distributed, whereas RNA-Seq
data follow a negative binomial distribution. The software for RNA-Seq differ in their methods used to normalise
and estimate the variation in the data. RNA-Seq data also provides the possibility to study alternative splice
forms. Some isoforms might have different functions and are often expressed in different cell types. Following
software amongst others are used for gene expression analyses at the exon level: DEXSeq, edgeR or MISO
[126,130,131].

A single cell-type or developmental stage cannot always be isolated from biological samples, e.g. the
hematopoietic subsets in the human blood. In this case, the observed transcriptome represents a mixture of
cell-type specific transcriptomes. Several deconvolution methods have been developed either to infer the
relative cell-type fraction in the sample or to infer the different cell-type specific transcriptome signatures, e.g.
csSam, PERT, CIBERSORT, DeconRNASeq, DSection, xCell [132-141]. A comprehensive review of
deconvolution methods can be found in Mohammedi et al. 2017. In general, deconvolution methods make the
following assumptions[142]: (i) linearity, meaning that the observed mixed transcriptomes correspond to the
sum of individual transcriptome signatures weighted by the relative cell-type fractions; (ii) non-negativity,
meaning that neither the transcriptome signatures nor the relative cell-type fractions are negative; (iii) sum up
to one, meaning that the relative fractions of cell-types sum up to one; and (iv) similar cell quantity, that the
signature profiles and corresponding mixture must be normalised to ensure to represent gene expression level
of the same number of cells.

So far, deconvolution of P. falciparum blood stages has been performed only on microarray transcriptome data
[143]. Applying the same approach to RNA-Seq data does not give satisfactory results. One explanation for
this is that the similar cell quantity assumption is not valid for transcriptome data from Plasmodium blood
stages, as the parasite genome replicates during the erythrocytic cycle. Normalisation methods are used to
ensure that expression levels represent similar cell quantity. Evaluating normalization and deconvolution
methods for RNA-Seq data to infer stage specific transcriptomes from experimentally mixed Plasmodium blood
stages is one of the topics of this thesis and is presented in Chapter 4.
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1.5 AIM AND OBJECTIVES OF THIS THESIS

The overall aim of this thesis is two-fold: Firstly, to develop a novel protocol and analysis pipeline to infer
haplotypes of multi-clone infections from deep sequencing data and comparing these haplotypes to genotyping
data based on size polymorphism. Secondly, to evaluate normalisation and de-convolution methods to infer
stage-specific transcriptome signatures from experimental mixed stage samples of P. falciparum with known
stage composition as proof of concept for inferring the transcriptome of P. vivax gametocytes from field
samples.

Specific objectives include:

Objective 1: Development of a new Amp-Seq genotyping assay for multi-clone P. falciparum

a)
b)

c)

infections.

Screening P. falciparum genomes for highly polymorphic loci.
Identifying a novel marker suited for Amp-Seq.

Developing a highly multiplexed Amp-Seq genotyping assay, suited for large epidemiological studies.

Objective 2: Development of an analysis pipeline for Amp-Seq genotyping data of multi-clone P.

falciparum infections.

Developing a bioinformatics pipeline to analyse Amp-Seq genotyping data.

Evaluating the impact of amplification and sequence errors on genotype calling in experimental
mixtures.

Defining a detection limit and filtering criteria for genotype calling.

Objective 3: Comparative analysis of SNP-based and length-polymorphic-based genotyping method

in longitudinal samples from a cohort study in PNG.
Applying the developed Amp-Seq assay and analysis pipeline to archived field samples from a
longitudinal study comprising samples with multi-clone infections.

Comparison of the resolution, sensitivity, and specificity of Amp-Seq genotyping markers with that of
the length-polymorphic genotyping marker msp2.

Comparison of molecular parameters (MOI, oFOI) describing P. falciparum infection dynamics
obtained from Amp-Seq genotyping markers with those from length-polymorphic markers.

Exploring the limitation of multi-locus haplotype inference from Amp-Seq genotyping data.

Exploring the suitability of Amp-Seq to study clone dynamics and density of each clone in longitudinal
samples comprising multi-clone infections.

Objective 4: De-convolution of mixed stage transcriptome data.

a)

b)

Assessing stage purity of highly synchronised P. falciparum culture-derived parasites.

Differential expression analysis of highly synchronised P. falciparum samples.
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f)

Evaluating normalisation methods for RNA-Seq data from samples with varying total RNA levels.

Evaluating de-convolution methods to infer a stage-specific transcriptome from mixed stage
transcriptomes of known stage composition.

Evaluating de-convolution methods to estimate stage composition in mixed stage transcriptome data
from stage-specific transcriptome signatures.

Assessing the feasibility of inferring the transcriptome of P. vivax gametocytes from field samples
containing enriched gametocytes mixed with late blood stages.

Additional project: Preliminary analysis of the transcriptome and epigenome of P. vivax sporozoites.

Processing of RNA and chromatin immunoprecipitation (ChlP) sequencing data.
Exploring correlation between transcriptional activity and histone modifications.

Identifying transcriptionally silenced regions by histone modifications containing genes of the multi-
gene family Pv-fam.
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Background: Amplicon deep sequencing permits sensitive detection of minority clones and improves discriminatory
power for genotyping multi-clone Plasmodium falciparum infections. New amplicon sequencing and data analysis
protocols are needed for genotyping in epidemiological studies and drug efficacy trials of P. falciparum.

Methods: Targeted sequencing of molecular marker csp and novel marker comp was conducted in duplicate on
mixtures of parasite culture strains and 37 field samples. A protocol allowing to multiplex up to 384 samples in a single
sequencing run was applied. Software “HaplotypR" was developed for data analysis.

Results: Cpmp was highly diverse (He = 0.96) in contrast to csp (He = 0.57). Minority clones were robustly detected
if their frequency was >1%. False haplotype calls owing to sequencing errors were observed below that

threshold.

Conclusions: To reliably detect haplotypes at very low frequencies, experiments are best performed in duplicate and
should aim for coverage of >10'000 reads/amplicon. When compared to length polymorphic marker msp2, highly
multiplexed amplicon sequencing displayed greater sensitivity in detecting minority clones.

Keywords: Plasmodium falciparum, Malaria, Amplicon sequencing, SNP, Haplotype clustering, Multi-clone infections,
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Background

In infection biology of malaria as well as of many other
pathogens, detection of minority clones is a crucial task.
In areas of high malaria transmission, most infected
hosts harbour multiple clones of the same Plasmodium
species. To better understand the epidemiology and in-
fection dynamics of malaria, individual parasite clones
are tracked over time to measure the acquisition, elimin-
ation and persistence of individual clones in a human
host. The incidence of new clones per host serves as sur-
rogate measure for the exposure of an individual and for
the transmission intensity in a population [1].
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() BiolMed Central

Identification of new infections is also crucial in clinical
trials of antimalarial drugs, where persisting clones need
to be distinguished from new clones in post-treatment
samples from patients with recurrent parasitaemia [2, 3].
For such diverse applications, genotyping methods based
on length polymorphic markers had been applied for
decades, particularly by targeting microsatellite markers
or genes encoding parasite surface antigens such as
merozoite surface proteins 1 and 2 (mspl, msp2) [4, 5].
Despite their wide use in many malaria research
laboratories, length polymorphic markers have important
limitations. For example, microsatellite typing suffers from
frequent occurrence of stutter peaks, possibly resulting
from polymerase slippage on stretches of simple tandem
repeats. A cut-off requirement for a minimal peak height
(e.g. 33% of the predominant peak [6]) is required to

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http//creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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prevent scoring of artefact fragments. However, this cut-
off makes it impossible to detect minority clones falling
below the selected threshold. Another limitation of length
polymorphic marker, particularly the highly polymorphic
parasite surface antigens, consists in the usually large size
differences between alleles. Major size differences lead to
bias in amplification, preferring the shorter PCR frag-
ments in samples that concurrently contain multiple P.
falciparum infections [7].

Deep sequencing of short amplicons has the potential
to overcome some of the shortfalls of length poly-
morphic genotyping markers, in particular the influence
of fragment length of a marker on the detectability of
minority clones. Earlier studies used two different ap-
proaches for genotyping of P. falciparum and P. vivax by
amplicon deep sequencing: (i) Sequencing of the clas-
sical length polymorphic genotyping markers, such as P.
falciparum mspl and msp2 [8]. Alternatively, sequencing
targeted non-repetitive regions that harbour extensive
single nucleotide polymorphism (SNP), such as the P.
falciparum circumsporozoite protein (csp) or P. vivax
mspl [9-11]. The strength of these approaches is that all
SNPs within an amplicon are linked by a single sequence
read, leading directly to haplotype identification. (ii) Se-
quencing of multiple loci of genome-wide distribution,
whereby each locus comprises one SNP [12]. This latter
approach is particularly suited for population genetic in-
vestigations, as these loci are not linked. The downside
is that the haplotype of each infecting clone has to be re-
constructed, which is difficult or even impossible for
samples with a high number of co-infecting clones per
host [13]. Thus, genotyping of samples containing multi-
clone infections remains an unresolved challenge when
multiple genome-wide loci are targeted.

In previous studies, amplicon deep sequencing was per-
formed on two platforms, 454/Roche or Ion Torrent. In
the past these technologies have produced longer se-
quences than the 37 bp reads obtained by the Illumina
sequencing platform. Now Illumina MiSeq generates reads
of up to 600 bp length (Illumina, MiSeq Reagent Kit v3).
Sequencing error rates of 454/Roche and Ion Torrent
technologies were high, owing to insertion and deletion
(indel) errors occurring predominantly in homopolymeric
regions [14-16]. Illumina sequencing is less susceptible to
indel errors and has an overall smaller error rate [16].

The present report outlines a strategy and protocols for
identifying highly diverse markers for SNP-based genotyp-
ing of P. falciparum by amplicon sequencing. The primary
aim was to thoroughly assess the analytical sensitivity and
specificity of amplicon sequencing in detecting minority
clones. In epidemiological studies involving hundreds of
samples sequencing costs per sample are crucial. There-
fore we designed a highly multiplexed protocol, allowing
sequencing of up to 384 barcoded P. falciparum
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amplicons in a single Illumina MiSeq run. Because mul-
tiple concurrent P. falciparum clones may differ greatly in
density, sequencing analysis strategies need to identify
alleles of very low abundance. To distinguish true minor-
ity clones from sequencing errors, quality checks were
designed based on replicates of samples and integrated
into the sequence analysis pipeline. The newly created
data analysis software package was validated using experi-
mental mixtures of P. falciparum in vitro culture strains,
and tested on field samples.

Results

Marker selection

A protocol for deep sequencing and data analysis was devel-
oped for two molecular markers, namely the P. falciparum
csp gene (PF3D7_0304600) and gene PF3D7_0104100,
annotated in the malaria sequence database PlasmoDB as
“conserved Plasmodium membrane protein” (cpmp). Results
from these two markers were compared with classical length
polymorphic genotyping using the highly diverse marker
msp2. Sizes of msp2 fragments amplified for genotyping
range from 180 to 515 bp in PNG using published primers
(Additional file 1: Table S1). Marker csp has been used for
deep sequencing in the past [9] and the previously published
primers (Additional file 1: Table S1) were used. The csp
amplicon spans the T-cell epitope of the circumsporozoite
protein from nucleotide position 858 to 1186 of the 3D7
reference sequence.

The newly validated marker cpmp was identified by
calculating heterozygosity in 200 bp windows of 3411
genomic P. falciparum sequences from 23 countries
available from the MalariaGEN dataset [17]. Genes from
multi-gene families or regions of poor sequence align-
ments, often caused by length polymorphism of intragenic
tandem repeats, were excluded from the list of potential
markers. A 430 bp fragment of cpmp spanning nucleotide
positions 1895 to 2324 scored highest in expected hetero-
zygosity (H,) and was prioritized as candidate for a highly
diverse amplicon sequencing marker. H, in the worldwide
dataset was 0.93 for cpmp compared to 0.86 for csp
(Table 1, Additional file 1: Figure S1 and S2). Genomes
originating from Papua New Guinea (PNG) revealed 9
haplotypes in 22 genomes for cpmp and 3 haplotypes in
30 genomes for csp.

Assessment of sequence quality

Csp and cpmp amplicons from 37 field samples and 13
mixtures of P. falciparum culture strains HB3 and 3D7
were sequenced on Illumina MiSeq in paired-end mode.
A total of 5'810'566 paired raw sequences were re-
trieved. Of all reads, 326°302 mapped to the phiX refer-
ence sequence. 4'989'271 paired sequence reads were
successfully de-multiplexed to yield a set of amplicon se-
quences per individual sample. 4°411'214 reads could be
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Table 1 Diversity of markers comp and ¢sp based on 3411
genomes of the MalariaGen dataset

Marker  Ha No.of SNPs  Fragment size®  No. of Haplotypes
comp  0930°  20° 383° 82 of 980°°
csp 0857 40 287 77 of 1323°

*Expected heterozygosity

PFragment size without primer sequence

“Trimming of reads in the here presented experiments led to a reduction of
variation (Characteristics for a shorter comp fragment size of 310 bp:

He = 0.913, SNPs = 14 and number of haplotypes = 47)

%From 3411 genomes only genomes with non-ambiguous SNP calls in selected
region were used

assigned to individual amplicons. Median sequence
coverage over all sequenced samples was 1490 for
cpmp (1st and 3rd quartiles: [537, 2183]) and 731 for
csp (1st and 3rd quartiles: [524, 1092]). The discrep-
ancy in median sequence coverage was deliberate and
resulted from our pooling strategy to underrepresent
csp amplicons to prevent their predominance in the
sequencing library due to this amplicon’s shorter
length (Additional file 1).

The quality of the sequence run was assessed by inves-
tigating the sequencing error rate in sequence reads of
the spiked-in phiX control. The mean mismatch rate per
nucleotide of phiX control reads with respect to the
phiX174 genome was 5.2% (median 0.34%). The mis-
match rate increased towards the end of sequence reads,
up to 11% for forward reads and 54% for reverse reads
(Additional file 1: Figure S3). To censor regions of high
mismatch rates, forward and reverse sequence reads
were trimmed before any further analyses to a length of
240 and 170 nucleotides, respectively. After trimming,
the mean mismatch rate per nucleotide of phiX control
reads was 0.50%.

As further quality check, the sequencing error rate was
assessed in sequences of Linkers F and R (Additional file 1:
Figure S4). These linker sequences never get amplified but
are joined to the product in PCR, therefore any mismatch
detected in these stretches will derive from either sequen-
cing or initial primer synthesis. The average number of se-
quence mismatches in this part was 0.12% per sample per
nucleotide (Additional file 1: Table S2 and Figure S5). The
sequencing error rate also was assessed in regions corre-
sponding to the primers of each marker (Additional file 1:
Figure S4). Mismatches with respect to the known se-
quences of the PCR primers may derive from amplifica-
tion errors or from errors in sequencing or primer
synthesis during preparation of the sequencing library.
The average number of mismatches in the primer regions
was 0.28% for cpmp and 0.71% for csp per nucleotide per
sample (Additional file 1: Figure S6 and Table S2).

Finally, the sequencing error rate was assessed in ampli-
cons obtained from various mixtures of P. falciparum cul-
ture strains HB3 and 3D7. Potential sources of mismatches
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with respect to the reference sequence of strains 3D7 and
HB3 include amplification error, sequencing error and er-
rors due to de-multiplexing of samples [18]. The average
number of sequence mismatches after trimming to
lengths of 240 and 170 nucleotides respectively for
forward and reverse reads was 0.38% for cpmp and
0.46% for csp (Fig. 1, Additional file 1: Table S2). This
equates to 1-2 mismatches per read of 310 nucleotides.
On average 87.5% of reads for cpmp and 85.5% for csp
from mixtures of strains HB3 and 3D7 contained <2
mismatches per read with respect to the strains’ reference
sequences. Together the analyses of phiX and HB3/3D7
sequences indicated an intrinsic sequence error rate of
0.4-0.5%. The error rate of the linker sequence suggested
that one third of these errors were sequencing errors,
while two thirds were amplification errors.

Limit of detection assessed in serial dilutions of parasite
culture

To test the feasibility to also genotype blood samples of
low parasite density, serial dilutions of P. falciparum strain
3D7 over 5 orders of magnitude (5-50'000 parasites/pl)
were sequenced (Additional file 1: Table S3). The 3D7
haplotype was detected in all dilutions. However, se-
quence coverage for dilutions harbouring 5 and 50
parasites/pl was below 550 reads. This indicated that
the desired equimolar representation of amplicons was
not achieved by our pooling strategy (Additional file 1
Pooling of samples - Pool for PCR without visible product
on agarose gel). Our approach did not fully counterbal-
ance lower amounts of amplicon.

Assessment of minority clone detectability

Defined mixtures of P. falciparum strains HB3 and 3D7
were sequenced to assess the detectability of minority
clones under controlled conditions. The minority clone
was detected in all tested dilution ratios up to 1:3000
(Table 2, Additional file 1: Table S4 and S5). Reads com-
prising obvious PCR artefacts (indels and chimeras) were
detected in these mixtures up to a frequency of 0.48%
for marker cpmp and 6.2% for csp. Up to 8.4% of reads
for cpmp and 10.8% for csp were singletons or failed to
cluster with 3D7 or HB3 haplotypes. This proportion of
reads is therefore most likely an estimate of the cumula-
tive background noise of the methodology. These reads
fell below the default cut-off criteria (details below) and
were thus excluded.

Simulations by bootstrap resampling were applied to esti-
mate the probability to detect a minority clone at increasing
sequencing coverage and decreasing ratios of the minority
clone in a mixture of two strains. Resampling was repeated
1000 times and included only sequence data from mixtures
of strains that were sequenced at a coverage of >3000 reads.
At a coverage of 10°000 sampled reads the minority clone
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observed mismatch rate observed in all reads of one sample at the respective nucleotide position. Red data points: control samples (P. falciparum
culture strains); black data points: field samples; X-axis: nucleotide position in sequenced fragment; Y-axis: mismatch rate with respect to the reference
sequence (for control samples: sequences of strains 3D7 and HB3, for field samples, 3D7 sequence); dashed grey lines represent SNPs with a mismatch
rate of >0.5 in >1 sample; red dotted horizontal line indicates a mismatch rate of 0.5; solid black vertical line: position of concatenation of forward and

was robustly detected at ratios 1:1 to 1:1000 for cpmp and
up to 1:500 for csp (Fig. 2, Additional file 1: Figure S7 and
S$8). The cut-off set for haplotype positivity required that a
haplotype was detected >3 times and represented >0.1% of
all reads from the respective blood sample. More stringent
criteria to call a haplotype (ie. a higher minimum number
of reads) would require a higher coverage for the detection
of minority clones. Thus, more stringency in haplotype def-
inition on the one hand reduces sensitivity, but increases
specificity by eliminating false haplotypes attributable to
background noise (Additional file 1: Figure S7 and S8).

Specification of default cut-off settings in software HaplotypR
Cut-off values for the analysis of sequencing data were
defined to support removal of background noise caused

by sequencing and amplification errors. The following
values represent minimal stringency and can be adjusted
to higher stringency to increase specificity in the
HaplotypR pipeline:

(i) Cut-off settings for SNP calling were defined by a
population-based approach. A SNP was required to
be dominant (>50% of all reads) in >2 samples. A
single dominant occurrence of a SNP is likely caused
by amplification or sequencing error.

(i) Cut-off settings for haplotype calling required a
haplotype to be supported by 23 reads in 22 samples
(including independent replicates of the same
sample). Per haplotype a minimum of 3 reads are
needed to distinguish SNPs from sequencing errors,
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Table 2 Detectability of the minority clone in defined ratios of P. falciparum strains HB3 and 3D7

Ratios in mixtures cpmp csp Minimum

HB3:3D7 3D7° HB3® PCRartefacts Back-ground® Coverage 3D7° HB3® PCRartefacts Back-ground® Coverage Eig\;;‘lezg?yg;fR‘
% % % % % % % %

111 346 574 048 753 40,768 347 505 579 9.01 9009 6

1:10 756 164 040 7.59 13,037 761 100 563 8.08 3341 30

1:50 888 315 006 795 4953 827 288 623 8.16 14711 150

1:100 909 153 036 7.26 13311 835 225 541 8.88 11975 300

1:500 908 048 027 844 5649 840 046 476 108 3508 1500

1:1000 915 023 003 826 3039 857 022 509 9.02 1807 3000

1:1500 925 011 048 6.54 55,887 863 008 571 791 23619 4500

1:3000 925 009° 038 7.00 7417 850 004° 587 9.10 2318 9000

2 Percent of reads that cluster with 3D7 and HB3 reference sequences
© Singleton reads and reads that failed to cluster with 3D7 or HB3 haplotypes

¢ Theoretical minimum required coverage needed to detect minority clone by software HaplotypR with default cut-off values
9 Haplotypes considered as noise by software HaplotypR (default cut-off: >3 reads per haplotype and a minority clone detection limit of 1:1000)

because a consensus sequence cannot be determined
from 2 disparate reads alone. Random sequencing
and amplification errors would unlikely lead
repeatedly to a particular haplotype.

(iii)Cut-off settings for calling minority clones required
that a minority clone would represent at least 0.1%
of all reads of a sample, which corresponds to a
detection limit for minority clones of 1:1000. For the
current project, the cut-off was justified by the
results obtained from artificial mixtures of culture
strains, which defined the technical limit of
detection for a minority clone. This parameter may
be set to more stringent values.

Application of these three default cut-off values to
mixtures of culture strains had the effect that HaplotypR
missed the minority clone for both markers in the great-
est dilution ratio of the two strains tested (1:3000). For

marker csp the minority clone fell below the cut-off even
in the 1:1500 ratio (Table 2). No false-positive haplotypes
were called after applying default cut-off criteria, even in
samples with a very high coverage in the controlled mix-
tures (up to 55000 reads) and in simulations by boot-
strapping (up to 100°000 sampled reads) (Additional
file 1: Table S4 and S5).

Validation of SNP calling

The above criteria were validated on reads from culture
strains and primer sequences. The background sequen-
cing error rate at each individual nucleotide position was
measured to distinguish sequencing and amplification
errors from true SNPs. Mismatch rates of up to 22% was
measured in primer sequences (Additional file 1: Figure
$6), and 18% in amplicons from culture strains (Fig. 1,
Additional file 1: Table S2). None of these mismatches

CPMP csp
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Fig. 2 Simulation of minority clone detectability by bootstrapping for marker cpmp and csp. Cut-off for acceptance of a haplotype was a minimum
coverage per haplotype of 3 reads and a minority clone detection limit of 1:1000. Samples were drawn from reads of defined mixtures of P. falciparum
strain 3D7 and HB3. X-axis shows dilution ratios of strains 307 and HB3; Y-axis indicates the sampling size (number of draws from sequence reads) for
each mixture of strains. Sampling was repeated 1000 times to estimate mean minority clone detectability
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led to calling of a SNP after the above cut-off was
applied (i.e. >50% of reads in >2 samples).

Validation of amplicon sequencing in field samples

37 P. falciparum samples from PNG were genotyped by
amplicon sequencing. Dendrograms were produced for
each marker from raw sequencing reads (Fig. 3, Additional
file 1: Figure S9). Branch lengths in these dendrograms rep-
resent the number of SNPs that differ between any se-
quences compared. Branches with sequences belonging to
the same haplotype (defined as “clusters”) are labelled in
the same colour. Haplotype frequencies within each indi-
vidual sample were determined from the reads of the sam-
ple before applying cut-offs (Fig. 3, panel “Quantification”).
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When analysing the genetic diversity in field sample, hap-
lotypes were only counted as true haplotypes if both
replicates pass the haplotype calling cut-off. This more
stringent criterion was introduced to prevent erroneous
over-estimation of multiplicity due to false haplotypes.

All samples were genotyped for length polymorphic
marker msp2 using capillary electrophoresis (CE) for frag-
ment sizing. Msp2 genotyping was reproducible and con-
sistent between different laboratories (Fig. 3, Additional
file 1: Figure S9: left column). A mean multiplicity of in-
fection (MOI) of 2.2 was observed in 37 field samples ana-
lysed by msp2 genotyping and 25/37 (67.5%) of samples
harboured multiple clones (Fig. 4, Additional file 1: Table
S6). Mean MOI and H, were compared between the

p
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Fig. 3 Comparison of genotyping by length-polymorphic marker msp2 and amplicon sequencing of ¢comp and csp. Raw data from length-
polymorphism- and SNP-based genotyping for one P. falciparum-positive field sample. Left panel: Capillary electropherograms (CE) for
msp2 nested PCR products (duplicate experiments); X-axis: fragment length, Y-axis: peak heights (arbitrary intensity units); size standards: red/orange
peaks; 3D7-type msp2 genotypes: green peaks; FC27-type msp2 genotypes: blue peaks. Middle and right panel: Dendrograms derived from sequence
reads of marker cpmp (middle) and csp (right); coloured lines represent membership to a specific, colour-coded haplotype; Grey lines: sequence reads
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. J

41



Amp-Seq Genotyping: Marker, Assay and Analysis Pipeline

Lerch et al. BMC Genomics (2017) 18:864

genotyping methods (Table 3, Fig. 4, Additional file 1:
Table S6). The resolution of marker cpmp was slightly
higher than that of msp2 with 27 cpmp haplotypes
versus 25 msp2 alleles, H, of 0.96 versus 0.95 and a
higher mean MOI of 2.41 versus 2.19, respectively.
Overall the two methods agreed well, with good con-
cordance of MOI (Cohen’s Kappa 0.71, equal weights,
z = 6.64, p-value = 3.04e-11). Compared to msp2 the
discriminatory power of csp was substantially lower
with only 4 csp haplotypes found in 37 samples, H,
of 0.57 and mean MOI of 1.54. Concordance between
csp and msp2 MOI was poor (Cohen’s Kappa 0.38,
equal weights, z = 4.48, p-value = 7.61e-6).
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Reproducibility of amplicon sequencing in field samples

Csp and cpmp haplotypes obtained from 37 field samples
were compared between replicates to investigate reprodu-
cibility of the molecular and bioinformatic analyses. For
both replicates of the field samples the default cut-off cri-
teria for haplotype calling (23 reads and minority clone
detection limit of 1:1000) were applied. Concordance be-
tween replicates was very good with Cohen’s Kappa 0.84
(equal weights, z = 7.769, p-value = 7.99e-15) for cpmp
and 0.91 (equal weights, z = 6.466, p-value = 1.01e-10) for
csp. Comparison of replicates permitted to investigate the
amount of false haplotype calls. True haplotypes should
be detected in both replicates, unless the sequence depth
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Table 3 Summary of genotyping results from three molecular
markers analysed in 37 field samples

Marker He Mean  Number  Number Concordance of
MOI SNPs® Haplotypes  MOI
K
msp2 CE 0948 219 NA 25 Reference
cpmp 0957 241 45 27 0.71° (good)
csp 0574 154  10° 4 038 (poor)

2 With respect to the reference sequence of P. falciparum strain 3D7

b Cohen’s Kappa (2 raters, weights = equal): z = 6.64, p-value = 3.04e-11
€ 4/10 SNPs are fixed within these 37 field samples

9 Cohen’s Kappa (2 raters, weights = equal): z = 4.48, p-value = 7.61e-6

is not sufficient for detecting a minority clone in one of
the replicates. Cpmp minority clones that had a fre-
quency > 1.0% of all reads were consistently detected with
>3 reads in both replicates (Table 4, Additional file 1: Fig-
ure S10). For csp this was achieved for minority clones
with a frequency of >0.70%. 18 cpmp haplotypes were de-
tected with 23 reads in only one of the replicates. In three
instances one of the replicate did not pass the cut-off cri-
teria due to low coverage. For marker csp, 2 haplotypes
with 23 reads were detected in one replicate only. In sum-
mary, a comparison of replicates indicated 15 potentially
false haplotype calls for cpmp and 2 for csp. These calls
stem from reads with a frequency < 1%, Therefore, per-
forming replicates are essential to prevent erroneous over-
estimation of multiplicity due to false haplotypes.

An attempt was made to investigate the influence of
the number of PCR cycles performed during amplicon
library preparation on the generation of artefacts. This
was possible by using 25 and 15 cycles in the nested
PCR for replicate 1 and 2, respectively. Cycle number
had no influence on the proportion of singleton and
indel reads. However, the proportion of chimeric cpmp
reads was higher in replicate 1 using 25 cycles than in
replicate 2 using 15 cycles (0.63% versus 0.13%, Student’s

Page 8 of 13

t-Test P-value = 0.0221). No chimeric csp reads were
detected in the field samples (Table 5).

Discussion

This report presents the development of a new genotyp-
ing methodology for P. falciparum based on amplicon
deep sequencing. The search for new markers was
prompted by severe limitations of length polymorphic
markers, which represent the currently used standard
for genotyping malaria parasites. A strong bias towards
preferential amplification of shorter fragments in multi-
clone infections was observed, so that larger fragments
were lost even if only 5-fold underrepresented com-
pared to shorter fragments from the same sample [7].
This called for an alternative approach that relies on
haplotypes created from several SNPs rather than
length polymorphism. With respect to minority clone
detectability, amplicon sequencing overcame this
pitfall of length polymorphism methods and also per-
formed very well in field samples.

Amplicon sequencing showed an excellent resolution
when using the novel genotyping marker cpmp
(PF3D7_0104100). The strategy applied for down-
selecting highly diverse regions in the genome suggested
cpmp as the top candidate. Cpmp is most abundantly
expressed in sporozoite stages [19], but the function of
the encoded protein is unknown. The gene is under bal-
ancing selection with a Tajima’s D of 1.16 in Guinea and
1.05 in Gambia [20]. In this study, cpmp revealed a gen-
etic diversity similar to the length polymorphic region of
the widely-used marker msp2. 45 SNPs were observed in
the 37 field samples of this study, leading to the designa-
tion of 27 haplotypes for marker cpmp. With increasing
number of field samples processed, additional rare SNPs
and even more haplotypes are likely to be found. The di-
versity of cpmp was high also in the global MalariaGEN

Table 4 Concordance of haplotype calls in replicates of 37 field samples

comp csp Passed cut-off*

Haplotype frequency within sample = 1%

present in both replicates 87 57 yes

present in single replicate only 0 0 no
Haplotype frequency within sample < 1%

present in both replicates at > 3 reads® 2 0 yes

present in both replicates one = 3 reads® and one < 3 reads® 1€ 0 yes/no?

present in single replicate at 2 3 reads® 17¢ 2 yes/no"

present in both replicates at < 3 reads® 1 0 no

present in single replicate at < 3 reads® 10 5 no

Bold rows indicate haplotypes that did pass cut-off criteria in both replicates

2 Default cut-off criteria to accepted haplotype >3 reads and a minority clone detection limit of 1:1000

© Owing to default cut-off for haplotype call

€ Second replicate had too low coverage to detect >3 reads

9 Potential false haplotype calls as only one replicate passed cut-off criteria

¢ In 2 instances second replicate had too low coverage to detect minority clone
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Table 5 Mean proportion of singleton or chimeric reads and
indels detected in both field sample replicates

Marker  Replicate 1 Replicate 2
Singletons Indels Chimera Singletons Indels Chimera
% % % % % %
csp 1155 378° 000 1147 405° 000
pmp 976 0073° 0631° 9.74 0034° 0.130°

# Marker csp: Indels Replicate 1 versus 2; Student’s t-Test: t = ~1.336,

df = 71.052, p-value = 0.1858

b Marker cpmp: Indels Replicate 1 versus 2; Student’s t-Test: t = 1.3304,
df = 71.94, p-value = 0.1876

¢ Marker cpmp: Chimera Replicate 1 versus 2; Student's t-Test: t = 23552,
df = 55.4, p-value = 0.02208

dataset (H, = 0.93); its resolution as genotyping marker
in other geographic regions remains to be shown. In
contrast, marker csp, analysed in parallel to cpmp and
also used in earlier studies, showed a limited diversity
with only 4 haplotypes detected in 37 field samples. Earl-
ier studies reported similar low diversity for csp in re-
gions of Asia Pacific [21]. Thus, csp is not suited to
serve as a single genotyping marker in PNG. However,
the global diversity of csp according to the MalariaGEN
dataset seems to be high (H. = 0.86), and high diversity
has also been observed in African isolates [21].

Implementing amplicon sequencing required parallel
development of a bioinformatics pipeline. A known prob-
lem in sequence analysis is the robust detection of minor-
ity clones from a background of experimentally induced
artefacts. We addressed this problem with the design of
HaplotypR, a software package dedicated to stepwise ana-
lyse of sequence reads for samples containing multiple
clones. The HaplotypR pipeline can be divided into three
steps: In the first step, this pipeline de-multiplexes and
clusters raw sequence reads to clusters of related se-
quences, so called “representative haplotypes”. This step
employs Swarm2 software, which expands pools of ampli-
cons (identical sequence reads) by iteratively joining other
pools of amplicons that are separated by a defined number
of mismatches (e.g. one substitution, insertion or deletion)
[22, 23]. This strategy permits unbiased clustering of se-
quence reads without the need to define a list of SNPs.
This enables capturing of previously unknown SNPs with-
out any adjustments to the pipeline. In the next step Hap-
lotypR checks all representative haplotypes for presence of
PCR artefacts (indels and chimeras), and labels and cen-
sors these. In the final step HaplotypR removes back-
ground noise by applying defined cut-offs and reports a
list of final haplotypes calls.

Validation of HaplotypR was made possible by reads
from serial dilutions of P. falciparum culture strain 3D7
and from controlled mixtures of strains HB3 and 3D7.
On those control samples the impact of amplification
and sequencing errors could be assessed. An increased
frequency of sequence mismatches relative to the 3D7
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reference sequence of up to 22% was observed at a few
specific genomic locations including the sequences of
amplified primers. To differentiate these sequencing
errors from true genotypes of rare minority clones,
we defined a SNP calling cut-off where a genotype
was required to be dominant (>50% of all reads) in at
least 2 samples. This cut-off is critical to distinguish
true positive genotypes that are rare in the population
from sequencing errors.

To prevent reporting of false haplotypes, HaplotypR
pipeline applies two types of cut-offs: firstly, a cut-off for
singleton exclusion, whereby a SNP or haplotype needed
to be supported by more than one sample. It is unlikely
that these cut-offs would remove true haplotypes, except
if the sample size was very small. In this case, it is rec-
ommended to amplify and sequence samples in dupli-
cate, as in this study. A true haplotype is expected to be
present in both replicates and thus will not get excluded.
Secondly, a cut-off for haplotype coverage was defined
requiring that a haplotype is supported by a user-defined
number of sequence reads. This flexible cut-off can be
selected for each marker. The coverage cut-off removes
false or weakly supported haplotypes and thus improves
specificity. On the other hand, the ability to detect mi-
nority clones (i.e. sensitivity) will be limited by a cut-off
based on coverage. Sequence reads from a minority
clone were detected in all ratios up to 1:3000 in the mix-
tures of strains HB3 and 3D7. However, due to high
background noise, false haplotypes with a frequency of
up to 0.01% were also detected, making the definition of
a cut-off to remove background noise obligatory.
Applying these default cut-offs in HaplotypR decreased
minority clone detectability from 1:3000 to 1:1000.

In an other publication a parasite density specific cut-
off was applied in addition to a default cut-off [24].

The potential of amplicon sequencing for genotyping
samples of very low parasitaemia was assessed in serial
dilutions of strain 3D7. Sequence reads were retrieved
from samples of a parasitaemia as low as 5 parasites/yl,
however coverage was below 100 reads for the lowest
level of parasitaemia. To reliably genotype samples span-
ning a wide range of parasitaemias, similar sequence
coverage (and thus unbiased normalization of input ma-
terial) for all samples is needed. The inexpensive strategy
used to adjust amplicon concentrations of individual
samples to equal levels prior to pooling for highly multi-
plexed sequencing still resulted in fluctuation in the se-
quence coverage, but a commercial DNA normalisation
kit may improve equimolar pooling of samples [25, 26].

All samples in this study were sequenced in 2 replicates.
This was done to assess the reproducibility of amplicon
sequencing method of genotyping very low abundant mi-
nority clones, and to investigate the effect of nested PCR
cycle number on artefacts. Analysing replicates of field
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samples revealed that haplotypes with a frequency of >1%
were consistently detected in both replicates. In contrast,
haplotypes with a frequency of <1% were frequently de-
tected only in a single replicate. If minority clones of <1%
frequency are to be reliably detected, amplifying and
sequencing two or more replicates for each sample would
be essential to call true haplotypes.

To detect minority clones with high sensitivity and
specificity, samples need to be sequenced at high cover-
age and in replicates. As sensitivity may be adjusted by
sequence coverage, choices have to be made in a trade-
off between sequencing costs and sensitivity. The spe-
cific genotyping application can guide this choice. For
example, in large scale field studies with many samples,
a high degree of multiplexing of samples at moderate se-
quence coverage may be chosen to keep sequencing cost
low. Furthermore, a less sensitive approach without per-
forming replicates may be sufficient when detection of
very rare minority clones is less of an issue. Another im-
portant application of genotyping of malaria parasites is
the example of “recrudescence typing” during in vivo
drug efficacy trials. To distinguish a new infection from
one present as a minority clone prior to drug adminis-
tration requires highest sensitivity and every clone must
be reliably detected. In such cases a sequencing ap-
proach with less multiplexing is desired to achieve high
coverage and maximal detection of minority clones.

The power of high sequencing coverage was shown for
example in a study assessing the subclonal diversity in car-
cinomas [27]. Minority variants with a frequency of 1:10°
000 were detected with a sequence depth of 100’000 reads
per sample. Our results reported from malaria field sam-
ples does not have sufficient sequence depth to achieve
such sensitivity, as median sequencing depth per sample
was 1°490 reads for cpmp and 731 reads for csp owing to
a high number of samples and of markers sequenced in
parallel. A total of 352 samples were multiplexed in a sin-
gle sequence run. Samples simultaneously processed but
not included in the present analysis served for an unre-
lated research question. According to our protocol for
PCR-based sequencing library preparation, costs per sam-
ple for Amp-Seq were twice that of msp2-CE genotyping
[5]. Thus, the approach applied by us is cost effective as it
permits parallel processing of several hundred samples, a
range typically encountered in population-wide studies.

Targeted amplicon sequencing is not only used for in-
vestigating genetic diversity of Plasmodium parasites, but
also widely applied in other fields, e.g. to study diversity of
other pathogens, diversity in eco-systems or sequence al-
teration caused by CRISPER/Cas9 [8-11, 24, 28-31]. For
pooling of multiple samples in one sequencing run, indi-
vidual samples are generally either labelled by ligating a
sequencing adapter that carries an index sequence [28] or
by amplification with the sequencing adapter carrying an
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index and linker sequence [29, 30]. Data analysis follows
two main strategies to retrieve haplotypes either by clus-
tering of the full sequence read [10, 22, 24] or by SNP call-
ing and optional haplotype inference [13, 28].

Conclusions

Short amplicon sequencing has the advantage that no
multi-locus haplotype reconstruction is needed, as all
SNPs are linked by a single paired-end read. This allows
the reliable analysis of samples of very high MOI, a pre-
requisite for genotyping in areas of high malaria endem-
icity. An additional strength of this method is that
previously undescribed or newly evolving haplotypes can
be captured without any adjustment of the typing meth-
odology or the HaplotypeR pipeline. The main limiting
factor for the detection of minority clones was the se-
quence depth per sample. The sequence coverage in the
present study was in the order of 1000 reads (median
number of reads for cpmp was 1490 and for csp 731).
This permitted detection of minority clones at a fre-
quency of >0.3% of the total parasite load. To robustly
detect minority clones at 0.1% frequency, a coverage of
10000 reads is recommended. In addition, experiments
should be performed in duplicate. The need to detect
such low-abundance clones depends on the specific re-
search question, which should guide experimental deci-
sion on number of samples and multiplexed amplicons
as well as on the desired sequence depth.

The specification of amplification and sequencing er-
rors presented here as well as the developed bioinfor-
matic tools to handle such complex analytical tasks are
relevant to all amplification-based genotyping methods
of multiple clones or quasi-species within a sample. The
newly developed pipeline can be used to analyse any
amplicon sequencing based genotyping data irrespective
of marker or organism.

Methods

Parasite genomic DNA

P. falciparum in vitro culture strains HB3 and 3D7
were mixed in 8 different proportions to generate
well defined control samples with known MOI and
well defined ratios of genomes. The ratios in these
HB3-3D7 mixtures ranged from 1:1 to 1:3°000. Five
additional control samples represented a dilution
series of strain 3D7 with parasite densities ranging
from 50°000 to 5 parasite/pl. Dilutions were prepared
in human gDNA to reconstitute the nucleic acid con-
centration of a human blood sample. Details of para-
site quantification were published previously [7].
Thirty-seven archived field samples from a cohort
study conducted in East Sepik Province, Papua New
Guinea (PNG) in 2008 were used to validate the
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performance of protocols for genotyping and data
analysis in natural P. falciparum infections [32].

Genotyping using length polymorphic marker msp2

For determination of mean MOI field samples were geno-
typed using the classical P. falciparum genotyping marker
msp2. Fluorescently labelled nested PCR products were
sized by CE on an automated sequencer and analysed using
GeneMapper software according to previously published
protocols [5]. Each DNA sample was genotyped twice in in-
dependent laboratories to assess reproducibility of clone
multiplicity (Fig. 3 and Additional file 1: Figure S9).

Amplicon deep sequencing marker selection and assay
development

3’411 genomes from 23 countries, published by the
Plasmodium  falciparum Community Project
(MalariaGEN), were screened to identify highly diverse
markers for SNP-based genotyping [17]. The P. falciparum
genomes were divided in 200 bp windows and H, was cal-
culated for each window as follows: H, = ”; [1-3_p7]
where # is the number of clones and p; the frequency of al-
lele i. Annotated genes (PlasmoDB v11.0) that overlapped
with windows of high heterozygosity were selected for fur-
ther evaluation. Genes belonging to gene families, such as
var, rifin, stevor and surf families, were excluded from the
list, as well as genes with high heterozygosity that is usually
caused by length polymorphism (Additional file 2).

Primers for marker cpmp were designed manually. Loca-
tion of primers was selected to flank a region of maximum
diversity (Additional file 1: Figure S1 and S2). Amplicon
sizes were limited to a maximum of 500 bp to conform to
possible read lengths of the Illumina MiSeq platform.
Quality control of primers was assessed with online tools
for secondary structure and primer dimer interaction
(https://www.thermofisher.com/us/en/home/brands/
thermo-scientific/molecular-biology/molecular-biology-
learning-center/molecular-biology-resource-library/
thermo-scientific-web-tools/multiple-primer-analy-
zer.html) [33]. Primer sequences are listed in Additional
file 1: Table S1 and H, values for amplicons are shown in
Additional file 1: Figure S1 and S2.

Sequencing library preparation

The sequencing library was generated by 3 rounds of
PCR with KAPA HiFi HotStart ReadyMix PCR Kit as de-
scribed earlier [30]. A first round of 25 cycles amplified
the gene of interest. A second marker-specific nested
PCR amplified the primary product with primers that
carried a 5° linker sequence. We compared different
cycle numbers for this second round: 25 cycles for repli-
cate 1 and 15 cycles for replicate 2. This comparison
was done to test for effects of cycle number on sequence
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diversity caused by imperfect polymerase fidelity [34].
To allow pooling and later de-multiplexing of amplicons,
a third and final amplification was performed using
primers binding to the F and R Linker sequence at the
3’ end, that introduced a sample-specific molecular bar-
code sequence plus the Illumina sequence adapter at the
5’ end. The relative positions of all these elements are
depicted in the schematic in Additional file 1: Figure S4.
A detailed PCR protocol containing primer sequences,
cycle conditions und pooling steps are described in
Additional file 1.

PCR products were purified with NucleoMag beads.
The expected fragment size of the sequencing library
was confirmed by Agilent 2200 Tapestation System.
DNA concentration of the sequencing library was quan-
tified by Qubit Fluorometer (Thermo Fisher Scientific).
Sequencing was performed on an Illumina MiSeq plat-
form in paired-end mode using Illumina MiSeq reagent
kit v2 (500-cycles) together with a Enterobacteria phage
PhiX control (Illumina, PhiXControl v3).

Bioinformatic analysis pipeline “HaplotypR”

Sequence reads were mapped with bowtie2 (parameter:
end-to-end and sensitive) [35] to the phiX174 genome
(Accession: J02482.1) for assessing the quality of the se-
quencing run and calculating sequencing error per nu-
cleotide position. Reads were then de-multiplexed to
separate individual samples and different genotyping
markers (Fig. 5). Primer sequences were truncated, the
sequence was trimmed according to the quality of the
phiX control sequence reads and paired reads were
fused together.

For analysis of control samples, fused reads were mapped
to the corresponding primers and P. falciparum reference
sequences of strains 3D7 and HB3 (Accession: AL844502.2,
AL844501.2, AB121018.1, AANS01000117.1). Rates of mis-
matches to primer and reference sequences were calculated
for each individual sample at each nucleotide position. A
SNP was defined as a nucleotide position with a > 50% mis-
match rate in the sequence reads from at least two
independent samples.

For prediction of haplotypes, fused reads were clustered
individually per sample with Swarm?2 software (parameters:
boundary = 3 and fastidious mode) [22, 23]. The centre of
each cluster represents the most abundant sequence of the
cluster and thus constitutes a predicted haplotype. The
cluster size represents the within-sample clone frequency
in the tested sample. Haplotypes with a cluster size of 1
were classified as singletons and considered background
noise. Haplotypes were checked for PCR artefacts such as
indels and chimeric reads. Indels are caused by polymerase
slippage which occurred primarily at stretches of homo-
polymers. Chimeric reads, caused by incomplete primer
extension and inhomologous re-annealing, were identified
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| De-multiplex by sample |

!

| De-multiplex by marker |

!

| Truncate primer sequence |

|

| Trim and join paired reads |

}

Call supported SNP:
» Calculate mismatch rate per base
» Select base with >50% mismatch rate as genotype
» Excludesingleton genotypes

!

Cluster reads per sample

!

Call supported haplotypes:
Exclude chimerareads
Excludeindel reads
Excludesingleton haplotypes
Cluster haplotypes by supported SNP

|

| Quantify haplotype |

!

| Finalize haplotypelist per sample |

YV VYV

Fig. 5 Bioinformatic analysis pipeline applied on highly multiplexed
deep sequencing data
.

with vsearch software (parameters: uchime_denovo mode,
mindiffs = 3, minh = 0.2) [36]. To distinguish chimera hap-
lotypes resulting from PCR artefacts from true recombined
haplotypes, a population-wide approach (combining all
samples of the entire study) is implemented in Haplo-
typR. A chimera was classified as such if a haplotype
was identified as chimera by vsearch at all instances
it occurred. On the other hand, if a chimera was de-
tected in only some of the samples, it was not classi-
fied as chimera, but as a true haplotype. However, in
such instances this haplotype was always flagged and
the outcome “true chimera” or “true haplotype” was
resolved by using replicates. This approach is justified,
as it is expected that a true recombinant haplotype
would be transmitted without its parent haplotypes.
The full analysis pipeline, named HaplotypR, was im-
plemented as R package and is illustrated in Figure 5
(https://github.com/lerch-a/HaplotypR.git).
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Estimated detectability of minority clones by sampling
Detectability of minority clones was estimated by
bootstrapping from the reads of the control samples
with defined HB3-3D7 strain ratios. Reads were ran-
domly sampled with replacement until the required
coverage was reached. These resampled set of reads
were processed in the same manner as the original
samples using HaplotypR. For resampling only se-
quence files from HB3-3D7 mixtures were used that
had a coverage of >3000 reads.

Additional files

Additional file 1: Supporting information. Supplementary text, figures
and tables. (DOCX 2111 kb)

Additional file 2: List of 200 bp H. windows of whole P. falciparum
genome. (XLSX 96 kb)

Additional file 3: List of haplotype calls. (XLSX 67 kb)
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Additional file 1

Protocol: Sequencing library preparation

Primary PCR

Multiplexed primary PCR was performed in a total volume of 15ul including 2ul template DNA (1:2 diluted),
250nM of each primary primer (GeneWorks Pty Ltd, Australia) and 7.5ul 2xKAPA HiFi HotStart Ready Mix.
Cycling conditions were as follows: initial denaturation 95°C for 3 minutes followed by 25 cycles of 20 seconds
denaturation at 98°C, 15 seconds annealing at 52°C and 45 seconds elongation at 72°C plus a final elongation
of 2 minutes at 72°C.

Nested PCR

Marker-specific nested PCRs were performed in a total volume of 15ul including 1ul primary PCR product
diluted 1:10 in dH,O, 250nM of the respective nested primer pair (GeneWorks) and 7.5ul 2x KAPA HiFi
HotStart Ready Mix (KAPA Biosystems). Cycling conditions were as follows for replicate 1 or 2: initial
denaturation 95°C for 3 minutes followed by 15 or 10 cycles of 20 seconds denaturation at 98°C, 15 seconds
annealing at 55°C for marker cpomp or 56°C for marker csp and 45 seconds elongation at 72°C. After 15 or 10
cycles the annealing temperature was increased to 62°C for further 10 or 5 cycles, respectively. Eventually a
final elongation of 2 minutes at 72°C was performed. In total, 25 cycles were performed for replicate 1 and 15
cycles for replicate 2.

Pooling of amplicons per sample

Nested PCR products were run on a 1.5% agarose gel for visual inspection of fragment size and quantity. DNA
concentration of nested products was estimated in relation to size standard fragments (Solis BioDyne 100bp
DNA Ladder). Comp and csp nested PCR products of each sample were pooled in equimolar concentrations.
Visual estimation of DNA concentration was difficult as amplicons of marker csp and cpmp differed in length.
To prevent predominance of csp amplicons in the sequencing library due its shorter length, csp amplicons
were undervalued. This lead to a lower median read coverage for marker csp compared to comp. In case the
amplification product was not visible in the agarose gel, equal volumes of both the nested comp and csp PCR
products nevertheless were pooled.

Sequencing library preparation PCR

PCRs for constructing the sequencing library were carried out in a total volume of 15ul and included 1pl pooled
nested products diluted 1:20, 250nM of each sequencing adapter primer and 7.5ul 2xKAPA HiFi HotStart
Ready Mix. Cycling conditions were as follows: initial denaturation 95°C for 3 minutes followed by 10 cycles of
20 seconds denaturation at 98°C, 15 seconds annealing at 65°C and 45 seconds elongation at 72°C plus a
final elongation of 2 minutes at 72°C.

Pooling of samples

DNA concentrations after these sequencing library PCRs were estimated on a 1.5% agarose gel. All
sequencing library PCR products were pooled in equimolar concentrations. This was achieved by pooling
equal volumes of all products showing similar band intensity complemented by a pool for PCRs without visible
products on agarose gel. These 5 pools were purified with 0.6 volumes of NucleoMag beads (size selection >
300bp) and quantified by Qubit Fluorometer (Thermo Fisher Scientific). Eventually all 5 pools were combined
to a final sequencing library by adjusting the volume used from each pool according to its DNA concentration
and number of samples combined in a pool.
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Sequence library cleanup and sequencing

The expected fragment sizes of the sequencing library were confirmed by Agilent 2200 Tapestation System.
The DNA concentration of the final sequencing library pool was quantified by Qubit Fluorometer (Thermo
Fisher Scientific). Sequencing was performed on an lllumina MiSeq platform in paired-end mode using MiSeq
reagent kit v3 (500-cycles) together with a Enterobacteria phage PhiX Control v3 (lllumina).
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Table S1: PCR Primer sequence for msp2 CE genotyping and sequence library preparation.

Primer for primary PCR

cpmp_prim_F CGATACAGGACATATAGA

cpmp_prim_R TTCAATAACATTTACTAGG

csp_prim_F ATCAAGGTAATGGACAAG

csp_prim_R ACTCAAACTAAGATGTGTTC

Primer for nested PCR

csp_F_Linker GTGACCTATGAACTCAGGAGTCAAATGACCCAAACCGAAATGT
csp_R_Linker CTGAGACTTGCACATCGCAGCGGAACAAGAAGGATAATACCA

cpmp_F_Linker GTGACCTATGAACTCAGGAGTCCATAAGTCATTAAAATTTATGGAT
cpmp_R_Linker CTGAGACTTGCACATCGCAGCCGTTACTATCAAGATCGTTAATATC

Primer for msp2 CE genotyping

msp2_S2_fw GAAGGTAATTAAAACATTGTC
msp2_S3_rev GAGGGATGTTGCTGCTCCACAG
msp2_S1-fw GCTTATAATATGAGTATAAGGAGAA
msp2_FC27-rev GCATTGCCAGAACTTGAA
msp2_3D7-rev CTGAAGAGGTACTGGTAGA

Primer for sequence library PCR (XXXXXX=barcode)

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG

Forward ATCTXXXXXXXXGTGACCTATGAACTCAGGAGTC
Reverce CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCT
TCCGATCTXXXXXXXXCTGAGACTTGCACATCGCAGC
Forward barcode Reverse barcode
Fwd_1 TAGATCGC Rev_1 TAAGGCGA
Fwd 2 CTCTCTAT Rev 2 CGTACTAG
Fwd_3 TATCCTCT Rev_3 AGGCAGAA
Fwd_4 AGAGTAGA Rev_4 TCCTGAGC
Fwd_5 GTAAGGAG Rev 5 GGACTCCT
Fwd_6 ACTGCATA Rev_6 TAGGCATG
Fwd_7 AAGGAGTA Rev_7 CTCTCTAC
Fwd_8 CTAAGCCT Rev_8 CAGAGAGG
Fwd_13 TGGTGGTA Rev_9 GCTACGCT
Fwd_14 TTCACGCA Rev_10 CGAGGCTG
Fwd_15 AGCACCTC Rev_11 AAGAGGCA
Fwd_16 CAAGGAGC Rev_12 GTAGAGGA
Fwd_17 ATTGGCTC Rev_13 ATGCCTAA
Fwd_18 CACCTTAC Rev_14 ACGCTCGA
Fwd_19 CTAAGGTC Rev_15 AGTCACTA
Fwd_20 GAACAGGC Rev_16 ATCCTGTA
Rev_17 CGCATACA
Rev_18 CTGGCATA
Rev_19 GATAGACA
Rev_20 GCTAACGA
Rev_21 GTGTTCTA
Rev_22 TCCGTCTA
Rev_23 CCTAATCC

Rev_24 GACAGTGC
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Table S2: Summary of mismatch rates for linker sequences, marker primers used in primary and
nested amplification and for amplicons’ of markers comp and csp generated from controlled mixtures
of two P. falciparum strains 3D7 and HB3

. Primers Amplicons
Linkers
% cpmp csp cpmp csp
% % % %
MIN 0.00 0.00 0.00 0.00 0.00
15T Qu. 0.00 0.00 0.03 0.06 0.07
MEDIAN 0.08 0.09 0.21 0.15 0.18
MEAN 0.12 0.28 0.71 0.38 0.46
3"0 qu. 0.19 0.20 0.42 0.35 0.43
MAX 1.93 10.92 22.01 15.76 18.13

' Mismatch rate was calculated relative to 3D7 and HB3 reference sequence.
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Table S6: Multiplicity of infection of 37 field sample measured by length polymorphic marker msp2 and SNP
polymorphic markers comp and csp.

MOl msp2 cpmp csp
n n n
1 12 10 19
2 14 14 16
3 5 6 2
4 4 2
5 2 5
Mean 2.2 2.5 1.5
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Figure S1: Genomic distribution of single nucleotide polymorphism in sequenced alleles of
P. falciparum gene PF3D7_0104100 (cpmp marker). The top panel represents alleles of global
origin (MalariaGEN P. falciparum Community Project, 2016). The bottom panel shows expected
heterozygosity values for sliding windows of 100bp across the entire gene. Red box highlights region
selected for amplification.
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Figure S2: Genomic distribution of single nucleotide polymorphism in sequenced alleles of
the P. falciparum circumsporozoite protein (csp). The top panel represents alleles of global origin
(MalariaGEN P. falciparum Community Project, 2016). The bottom panel shows expected
heterozygosity values for sliding windows of 100bp across the entire gene. Red box highlights region
selected for amplification.
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nucleotide position.
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Figure S4: Design of the amplicon sequencing library. Primary primers target the gene of
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linker sequences at their 5’ ends. The primers for the final round of amplification target the F and R
linker sequences. These primers carry sample-specific indices (barcodes) plus lllumina sequencing
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Figure S7: Simulation of the detectability of a minority clone (top panel) and of measured
multiplicity of infection (bottom panel) by bootstrapping for marker cpmp. Cut-off settings: no
cut-off (left panel); >3 read per haplotype (middle panel); minority clone detection limit of 1:1000
(right panel). Samples were drawn from reads of defined mixtures of P. falciparum strains 3D7 and
HB3. X-axis represents ratios of strains 3D7 and HB3. Y-axis indicates the sampling size (number
of draws from the sequence reads (coverage >3000) for each mixture of strains. Sampling was
repeated 1000 times to estimate the mean detectability of a minority clone.
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Figure S8: Simulation of the detectability of a minority clone (top panel) and of measured
multiplicity of infection (bottom panel) by bootstrapping for marker csp. Cut-off settings: no
cut-off (left panel); >3 read per haplotype (middle panel); 0.1% minority clone detection limit of 1:1000
(right panel). Samples were drawn from reads of defined mixtures of P. falciparum strains 3D7 and
HB3. X-axis represents dilution ratios of strains 3D7 and HB3. Y-axis indicates the sampling size
(number of draws from the sequence reads (coverage >3000) for each mixture of strains. Sampling
was repeated 1000 times to estimate the mean detectability of a minority clone.
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Figure S9: Comparison of genotyping by length-polymorphic marker msp2 and amplicon
sequencing of markers cpmp and csp exemplified
electropherograms (CE) and dendrograms represent the raw data of markers msp2-CE, cpomp and
csp (two top panels). Quantification of haplotypes and final multiplicity call (two bottom panels). Grey
shading indicates haplotypes and reads filtered out by cut-off settings (example discussed in detail

in results section, paragraph “Validation of amplicon sequencing in field samples”).

in 1 field sample.
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Figure S10: Reproducibility of amplicon sequencing in field samples. Haplotype calls that
passed default cut-off criteria were compared between replicates to investigate reproducibility. In
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in a single replicate. Inserts present frequency distributions below 1% at a higher resolution.
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ABSTRACT

Background

Longitudinal tracking of individual Plasmodium falciparum strains in multi-clonal infections is essential for
investigating infection dynamics of malaria. The traditional genotyping techniques did not permit tracking
changes in individual clone density during persistent natural infections. Amplicon deep sequencing (Amp-Seq)
offers a tool to address this knowledge gap.

Methods

The sensitivity of Amp-Seq for relative quantification of clones was investigated using three molecular markers,
ama1-D2, ama1-D3, and cpmp. Amp-Seq and length-polymorphism based genotyping were compared for
their performance in following minority clones in longitudinal samples from Papua New Guinea.

Results

Amp-Seq markers were superior to length-polymorphic marker msp2 in detecting minority clones (sensitivity
Amp-Seq: 95%, msp2: 85%). Multiplicity of infection (MOI) by Amp-Seq was 2.32 versus 1.73 for msp2. The
higher sensitivity had no effect on estimates of force of infection because missed minority clones were detected
in preceding or succeeding bleeds. Individual clone densities were tracked longitudinally by Amp-Seq despite
MOI>1, thus providing an additional parameter for investigating malaria infection dynamics.

Conclusion

Amp-Seq based genotyping of longitudinal samples improves detection of minority clones and estimates of
MOI. Amp-Seq permits tracking of clone density over time to study clone competition or the dynamics of
specific, i.e. resistance-associated genotypes.
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INTRODUCTION

Molecular-epidemiological parameters used to describe the infection dynamics of Plasmodium falciparum
include the number of co-infecting parasite clones (multiplicity of infection, MOI), the rate at which different
genotypes are acquired over time (molecular force of infection, nmqFOI) and duration of infection [1]. These
measures are based on monitoring the presence or absence of clones in cross-sectional or longitudinal
samples collected in regular intervals. In earlier studies individual parasite clones in multi-clonal field samples
were distinguished and tracked over time by genotyping the length-polymorphic marker merozoite surface
protein 2 (msp2) by capillary electrophoresis-based fragment sizing (CE) [2-4]. Yet, msp2-CE genotyping has
limited sensitivity for minority clone detection [3,5]. Alternative typing methods instead could perform better in
detecting minority clones, but might impact measures of MOI and ,,,FOI [6]. So far quantification of individual
clones within multi-clonal infections was not feasible, as this would have required highly complex allele-specific
quantitative PCR (qPCR).

SNP-based genotyping by deep amplicon sequencing (Amp-Seq) can detect low-abundant P. falciparum
clones at ratios of 1:1000 in mixed infections [7]. Most importantly, genotyping by Amp-Seq also quantifies
precisely the relative abundance of clones, as shown with artificial mixtures of clones [7—9]. From these ratios
the absolute density of each clone (i.e. a certain haplotype) within a multi-clone infection can be deduced if
the total parasitaemia of the sample was established by gPCR [9]. When analysing consecutive samples from
a given study participant, presence and fluctuations in density of clones can be tracked. We explore how
longitudinal information can be used to improve identification of minority clones with low densities around the
detection limit.

A previous study has estimated clonal density with Amp-Seq in multi-clone infections to estimate clearance
rates after antimalarial treatment [9]. We apply the same approach to track parasite clones longitudinally in
untreated natural infections. In addition, we increase the resolution of genotyping by combining sequence
information from several markers into multi-locus haplotypes.

METHODS

Study design

A subset of 153 archived P. falciparum genomic DNA samples from 33 children (mean 4.3 samples [min: 2,
max: 11]) aged 1-5 years were available from an cohort study with blood sampling over 40 weeks (first 12
weeks every fortnightly, then monthly) in Papua New Guinea (PNG) [10]. The two conditions for selection of
children were: 22/14 bleeds PCR positive, and MOI>1 in at least one of the samples of each child. Ethical
clearance was obtained from PNG Institute of Medical Research Institutional Review Board (IRB 07.20) and
PNG Medical Advisory Committee (07.34). Informed written consent was obtained from all parents or
guardians prior to recruitment of each child.

Genotyping using length polymorphic marker msp2

Samples were genotyped using the classical P. falciparum marker msp2 according to published protocols [11].
Fluorescently labelled nested PCR products were sized by CE on an automated sequencer and analysed
using GeneMarker software. Fragments were accepted if the following cut-off criteria were met: peak height
>500 intensity units and >10% of the height of the majority peak. Electropherograms were inspected visually
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to exclude obvious stutter peaks. All DNA samples were genotyped in 2 independent laboratories to assess
reproducibility of clone detection and measures of MOI.

Marker selection for Amplicon deep sequencing

Amp-Seq was performed on three amplicons located in two different P. falciparum marker genes, namely
PF3D7_0104100, “conserved Plasmodium membrane protein” (comp), and PF3D7_1133400, “apical
membrane antigen 1” (ama71) whose genetic diversity has been studied in great detail [12—14]. Previously
published primers were used for marker comp [7]. For ama1 two amplicons of 479 and 516 bp were selected
that span regions of maximum diversity, i.e. subdomains 2 and 3 of the ectodomain [15]. Primer sequences
and exact amplicon positions are listed in Tables S1 and S2.

Sequencing library preparation

Sequencing libraries were generated by three rounds of PCR, according to previously published protocols [7].
After primary PCR, a 5’ linker sequence was added during nested PCR. Nested PCR products were subject
to another PCR round with primers binding to the linker sequences and carrying lllumina sequence adapters
plus an eight nucleotide long sample-specific molecular index to permit pooling of amplicons for sequencing
and later de-multiplexing. The final sequence library was purified with NucleoMag beads prior to sequencing
on an lllumina MiSeq platform in paired-end mode using lllumina MiSeq reagent kit v2 (500-cycles) together
with Enterobacteria phage PhiX control (lllumina, PhiXControl v3).

Sequence read analysis and haplotype calling

Samples yielding a sequence coverage of <25 reads were excluded from the analysis. An overview of
sequence read coverage for all Amp-Seq markers is given in Table S3. Sequence reads were analysed using
software HaplotypR [7], (https://github.com/lerch-a/HaplotypR.git). To remove low quality sequences, reads
were trimmed to 240bp for forward and 170bp for reverse reads. As reference sequence P. falciparum strain
3D7 was used (PlasmoDB release 34, [16]). The term genotype refers to a single nucleotide polymorphism
(SNP). Calling a SNP required a >50% mismatch rate in the sequence reads of this nucleotide position in at
least two independent samples. A haplotype was defined as sequence variant of an entire amplicon.
Haplotypes containing inserts or deletions (indels) were filtered out, as well as haplotypes resulting from
chimeric reads or singleton reads. The number of reads of a given haplotype over all remaining reads of the
same marker within a sample is denoted by the term “within-host haplotype frequency”. Cut-off criteria for
haplotype calling were as follows: a minimum of 3 reads coverage per sample, a within-host haplotype
frequency 20.1% and an occurrence of this haplotype in at least 2 samples.

Multi-locus haplotype inference in longitudinal samples

Amp-Seq quantifies the frequency of each haplotype within a sample, which permits to infer multi-locus
haplotypes. A multi-locus haplotype was deduced in multiple rounds. In the first round, the multi-locus
haplotype of the dominant clone of a sample was inferred by selecting each marker's dominant haplotype
(>54% within-host haplotype frequency, i.e. 50%+3.8% standard deviation in within-host haplotype frequency
between replicates). After each round the identified dominant haplotype was ignored and in the following round
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the dominant haplotype was identified among the remaining reads. If several haplotypes occurred in a sample
at similar frequencies, it may be impossible to identify the dominant haplotype. This was resolved by analysing
the change in within-host haplotype frequency between the observed and preceding or succeeding sample of
the same host. An example of our approach to multi-locus haplotype inference is shown in detail the
Supplemental Text S1.

The final step of multi-locus haplotype inference addressed the problem of clones of a multiple infection that
share by chance the same allele of one of the markers. As a consequence, the within-host frequency of a
shared haplotype amounts to the sum of two or more independent clones carrying the same allele. In such
cases multi-locus haplotypes were inferred by assigning the shared alleles to those haplotypes that summed
up to the same proportion in the other two markers. Samples for which the multi-locus haplotype could not be
established by this approach were considered unresolvable (Table S4).

Reproducibility, sensitivity and false discovery rate

Samples were analysed in duplicates with Amp-Seq markers and msp2-CE. Performing duplicates permitted
to identify and exclude false-positive haplotypes and thus prevented erroneous over-estimation of MOI. Each
haplotype was classified into one of four groups (example see FIG S1): (1) True-positive (TP) haplotype, i.e.
it passed the haplotype calling cut-off in both replicates or in one replicate plus in the preceding or succeeding
bleed; (2) False-positive (FP) haplotype, i.e. it passed the haplotype calling cut-off in only one replicate and
was not detected in any of the preceding or succeeding samples of that individual; (3) False-negative (FN;)
haplotype, i.e. it was detected in one or both replicates but did not pass the cut-off criteria at that occasion,
whereas it was detected in the preceding or succeeding bleed as TP (at least once) or FN haplotype; (4)
Background noise (all other cases).

Additionally, false-negative (FN;) haplotypes were imputed for samples in which no sequence read was
detected. These false-negative haplotypes were imputed only when (a) the haplotype was detected in the
preceding as well as the succeeding bleed as a true-positive. Presence in only one of preceding or succeeding
sample was not considered sufficient evidence for assuming a case of missed detection. For the Amp-Seq
markers but not msp2-CE, false-negative haplotypes were also imputed when (b) data for the other two
markers was present and the corresponding multi-locus haplotype was established in the preceding or
succeeding sample.

The sensitivity to detect parasite clones was estimated based on selected individuals who had not received
antimalarial treatment during the timespan analysed and harboured at least one haplotype that was detected
at 3 consecutive bleeds. Sensitivity was defined as the true positive rate of a genotyping method and was
calculated as TP/(TP+FN). The risk to falsely assign a haplotype not present in the sample was measured as
the “false discovery rate” (FDR), calculated as FP/(TP+FP). This rate represents the extent of false haplotype
calls of a genotyping method.

The reproducibility of clone detection in technical replicates (comprising all experiential procedures from PCR
2n,

to sequence run) was calculated as where ny is the number of haplotypes detected in a single replicate

ni+2ny
and n, the number of haplotypes detected in both replicates [17]. Only TP haplotypes were used to estimate
reproducibility.
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Epidemiological parameters: clone density, diversity, MOl and FOI

The density of a parasite clone was calculated by multiplying within-host haplotype frequency by parasitaemia
(measured by gPCR). Clone density is expressed as copies of target gene per microliter, quantified by gPCR
targeting the 18S rRNA gene of P. falciparum [18]. The technical detection limit of gPCR was 0.4 copies/ul
whole blood.

Based on true positive haplotypes, the expected heterozygosity (He) and mean MOI were determined from
baseline (or first bleed available) samples for each marker as described [7]. He was also estimated for
combined markers in samples that had a resolvable multi-locus haplotype and that were separated by a
treatment plus >2 consecutive P. falciparum negative samples from the same child.

molF Ol was estimated on longitudinal sets of sample that had a complete set of replicates. Haplotypes were
counted as new infection if a haplotype was (i) not present in the baseline sample but in a subsequent sample,
(i) not detected at >2 consecutive preceding bleeds or (iii) not detected after antimalarial treatment plus after
at least one negative sample. Time at risk was calculated as the timespan between baseline and last sampling,
minus 14 days for each antimalarial treatment (to account for the prophylactic effect of treatment).

An overview of sample selection criteria applied for different types of analyses is listed in Table S5.

RESULTS

Genetic diversity of markers

The discriminatory power of Amp-Seq markers cpmp, ama1-D2 and ama1-D3, as well as length-polymorphic
marker msp2-CE was estimated in 33 baseline samples. The resolution was highest for amplicon marker comp
(He=0.961) that distinguished 30 haplotypes and gave a mean MOI=2.45 (Table 1, MOI distribution by marker
in FIG S2). The second-best resolution was obtained by marker msp2-CE (H.=0.940) that distinguished 20
haplotypes and measured a mean MOI=1.73. Haplotype and SNP frequencies of Amp-Seq markers are shown
in FIG 1 and S2.

Discriminatory power can be increased by combining multiple markers. Inference of multi-locus haplotypes
was possible for 66 clones in 46 selected samples. Combining marker comp with either of the two ama?
fragments yielded very high diversity (53 and 55 haplotypes, He=0.992 and 0.994 for comp/ama1-D2 and
cpmplama1-D3) (Table 2 and FIG S3). Combining all 3 markers did not increase discriminatory power any
further.

Using longitudinal genotyping data to increase detectability of clones

Imperfect detectability of parasite clones has been described previously in longitudinal genotyping studies
[1,19-21]. Data from replicates and longitudinal samples can be used to make assumptions on missed clones.
This permits imputing of missed haplotypes and thus improves the tracking of clonal infections within an
individual over time. Two types of missed haplotypes respective false-negative haplotypes were distinguished:
(FN;) haplotypes that were detected below the cut-off and (FN;) haplotypes that were not detected but imputed
(Table 3). FIG 2 shows an example of different type of missed haplotypes for all Amp-Seq markers.

The sensitivity to detect parasite clones was estimated for each genotyping marker by enumerating false-
negative haplotypes. Sensitivity was higher for the Amp-Seq markers than for msp2-CE (in decreasing order
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96.5%, 95.0%, 93.9% and 85.1% for ama1-D2, comp, ama1-D3 and msp2-CE) (Table 4). For 257% of the
identified false-negative haplotypes, reads were detected but fell below cut-off criteria (category (i) above). If
such haplotypes were counted as positives by relaxing the cut-off criteria, sensitivity would increase to 99.1%,
97.5% and 97.4% for Amp-Seq markers ama1-D2, comp and ama1-D3 (Table 4).

The false discovery rate of haplotypes for Amp-Seq markers was in the range of 0.9-4.2% (Table 4).
Reproducibility to detect parasite clones in technical replicates was greater for Amp-Seq markers than for
marker msp2-CE (in decreasing order 0.95, 0.95, 0.94 and 0.91 for ama1-D3, comp, ama1-D2 and msp2-CE)
(Table S6 and FIG S4).

Determination of ,FOI by different molecular markers and methods

A higher sensitivity of the genotyping method does not necessary impact molFOI, i.e. new clones/year,
because a missed minority clone could be detected at one of the successive bleeds. We investigated the
number of new infections acquired during 40 weeks follow-up in 27 children from whom a complete data set
was available (on average 4.3 samples per child [min: 2, max: 7]). Mean molFOl was 2.7, 2.7, 2.3 and 2.2 new
infections per year for markers ama1-D3, cpmp, msp2-CE and ama1-D2 (negative binomial regression p-value
for comparison of msp2-CE to ama1-D3, comp and ama1-D2: 0.596, 0.649 and 0.877) (FIG S5). Thus, no
substantial difference in mean noFOI was found for the different molecular markers and different genotyping
methods.

Quantitative dynamics of multiple infecting P. falciparum clones

Densities of individual clones was calculated from the total parasitaemia by qPCR and the within-host
haplotype frequency. Examples of individual clone density dynamics in children with multi-clone infections are
shown for three Amp-Seq markers (FIG 3). The density of some clones remained constant over time, whereas
other clones showed fluctuations in density over 3 orders of magnitude (FIG 3A and B). In some children the
dominant clone remains dominant over the observation period (FIG 3A), whereas in others switch-over
between minority clone and dominant clone was observed (FIG 3B). In highly complex field samples some
clones might share the same haplotype of a given marker (FIG 3C). Such clones can only be differentiated
and quantified if multiple markers are typed and at least one of the markers is not shared between concurrent
clones.

After artemisinin combination therapy, some of the parasite clones from multi-clone infections were cleared 14
days after antimalarial treatment, whereas others were still detectable (FIG 3A, B and C). These persisting
clones had decreased clone densities (<21 copies/ul) and likely represent remaining late gametocyte stages
of cleared asexual infections [22]. Some new infections following antimalarial treatment (artesunate-
primaquine) showed a rapid increase in clone density within the first 14 days after re-infection of a host,
followed by a slow decrease in clone density until clearance (FIG 3D), whereas in other infections clone density
remained constant (FIG 3C).

DISCUSSION

While MOI and ,,FOI have been extensively described as epidemiological parameters, the ratio and density
of individual clones within complex infections has not yet been investigated. This gap in knowledge was due
to shortfalls of traditional length-polymorphic markers, where the length of a fragment greatly influences the
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amplification efficiency in multi-clone infections with fragments competing in PCR and a strong bias favouring
smaller fragments [5]. As a result, multi-locus haplotypes could not be inferred from traditional genotyping data
in a reliable way. Such inference is required, for example, for phylogenetic or population genetic studies. In
such studies, multiple-clone infections were usually excluded or only the predominant haplotype included
[23,24]. With the possibility to establish multi-locus haplotypes from complex infections the discriminatory
power will be greatly improved in future.

Single Amp-Seq markers cpmp, ama1-D2, ama1-D3, and msp2-CE yielded similar resolution. Combining
cpmp with either of the ama1 fragments increased further discriminatory power. The excellent performance of
Amp-Seq marker comp had been demonstrated earlier [7]. Such increased resolution is of great practical value
for PCR-correction in clinical drug efficacy trials, where new infections need to be reliably distinguished from
those present in an individual earlier. Robust methods for this application are urgently needed.

For infections with high multiplicity (MOI=3), inference of multi-locus haplotypes remains challenging (example
in FIG S6). Inference is straightforward if haplotypes occur at distinctive abundance in any of the longitudinal
samples. If haplotypes are equally abundant in a sample and remain so over time, the multi-locus haplotype
cannot be inferred. The same is true for complex patterns of shared haplotypes. In the present study, multi-
locus haplotypes up to MOI=3 were inferred. For higher multiplicity, sophisticated statistical methods like
Markov chain Monte Carlo on longitudinal samples could be applied [25].

Genotyping longitudinal samples in duplicates enabled an evidence-based approach to identify false-negative
haplotypes. This permitted to estimate each marker’s sensitivity to detect minority clones. Amp-Seq genotyping
with markers ama1-D2, ama1-D3 and cpmp missed less clones compared to msp2-CE genotyping (Amp-Seq
in average 5.4% versus 14.9% msp2-CE). This difference is likely due to less stringent cut-off criteria for Amp-
Seq compared to msp2 genotyping. Minority clone detection by msp2-CE is limited by peak calling cut-off
criteria, which are usually a fixed minimal signal intensity plus a minimum peak height of 10% (used in our
study) or more of the dominant peak. Minority clones with an abundance of <10% of all amplified fragments
will not pass these criteria. An increase of msp2-CE sensitivity would require a lower cut-off, which would lead
to more false positive signals from either stutter peaks or background noise. In contrast, Amp-Seq allows to
remove PCR artefacts before haplotype calling and thus can support a much lower cut-off of <1% [7].

In cohort studies where Amp-Seq genotyping is performed in successive follow up samples of the same
patient, an even more relaxed definition of Amp-Seq cut-off criteria would be justifiable. In this scenario, the
same evidence-based strategy of using successive samples can be used to recover minority haplotypes that
were detected with read counts below the haplotype calling cut-offs. If recovery would be performed in this
study, 257% of all false-negative haplotypes would be identified. Such recovery would increase detectability
of parasite clones by Amp-Seq to >97%. In addition, multi-locus haplotypes could provide additional evidence
for accurate recovery.

The higher sensitivity of Amp-Seq to detect minority clones compared to msp2-CE substantially increased
MOI, but did not affect mean ,oFOI. Any estimation of ,,FOI needs to account for temporary absence of
clones from the peripheral blood caused by sequestration [1,19-21]. A clone that is temporarily undetectable
owing to density fluctuations is likely observed at either the preceding or succeeding bleed. Therefore, a clone
is usually only counted as new infection if it was not detected in >2 consecutive blood samples. As a
consequence, a clone missed at a single bleed will not necessarily lead to a decrease of mqFOL.

A clone that was intermittently missed at one bleed by msp2-CE was always detected by Amp-Seq. This
observation supports the practice in earlier papers where intermittently missed clones were imputed [21].
Counting a recurrent haplotype as new infection after a single negative bleed would lead to an overestimation
of maFOI [1,19-21]. The statistical power of this study was limited and a larger study is needed to fully explore
the effect of the typing method used on estimates of MOI, ,,FOI, or even prevalence rates.
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A major advantage of Amp-Seq over msp2-CE is that the density of an individual clone in multi-clone infections
can be calculated. Quantifying the density of individual parasites clones over time permits to study dynamics,
and thus fitness, of parasite clones exposed to within-host competition [26]. For example, the relative densities
of new infections can be compared to clones already persisting in a host, and their densities in respect to
extrinsic factors or clinical symptoms can be investigated.

CONCLUSION

Amplicon sequencing improves clone detectability compared to msp2-CE owing to its greater sensitivity for
detection of minority clones. Our results confirm earlier assumptions on clone persistence with intermittent
missed observation. This validates the imputation of false negatives to correct for imperfect detection of clones,
a strategy also used in previous studies on clone dynamics. Using multi-locus haplotypes for genotyping
permitted to identify robustly individual clones and improved differentiation between new and recurring clones.
Construction of multi-locus haplotypes are of great value to compensate the effects of highly abundant
haplotypes in the population. The option to quantify individual clones enables new approaches to investigate
effects of parasite fitness or superinfection in multi-clone infections.
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FIG 1: Frequency of individual SNPs and haplotypes of three markers in 33 baseline samples from
PNG. Minor allelic frequency (MAF) of each SNP (left) and frequency of haplotypes in these baseline samples
(right). n, number of observations per haplotype shown for 2 most prevalent haplotypes. Total number of
different haplotypes: 30 for comp, 15 for ama1-D2 and 22 for ama1-D3. (Frequency of haplotypes for markers
msp2-CE given in FIG S2).
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FIG 2: Within-host haplotype frequencies of Amp-Seq markers in longitudinal samples from one child.
Inserted table lists within-host multi-locus haplotype frequencies in percent. Multi-locus haplotypes have the
same colour-code in figures and table. Solid line represents persisting haplotypes above cut-off criteria (true-
positive haplotypes). Dashed line represents persisting haplotypes falling below cut-off criteria (false-negative
haplotypes detected below cut-off criteria). Dotted line and question mark indicate a false-negative haplotype
that was not detected (n.d.) but could be imputed based on the established multi-locus haplotypes from the
preceding sample. Black dashed line represents cut-off criteria of the Amp-Seq genotyping method.
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FIG 3: Dynamics of multi-clone infections in 4 children. Multi-marker haplotypes could be generated in
panels A, B and C. Inference of multi-locus haplotypes was not possible for the child in panel D; here the
dynamics of individual clones tracked by marker ama1-D2 are shown. Each colour represents a clone.
individual markers represented by different shapes: comp (diamonds), ama7-D2 (circles) and ama1-D3
(squares). Solid line connecting multi-locus haplotypes represents their median frequency. Grey dotted vertical
lines represent sampling dates. Red dashed lines represent day of artemisinin combination therapy. Red dash-
dotted line represents end of radical cure (artesunate-primaquine) at baseline.
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TABLES

Table 1: Genotyping results of 4 molecular markers analysed in 33 baseline field samples.

Number of Number of Number of
Marker He Mean MOI clones’ haplotypes SNPs?
msp2 CE 0.940 1.73° 57 20 n/a
cpmp 0.961 2.45° 81 30 48
ama1-D2 0.928 2.27° 75 15 17
ama1-D3 0.939 2.24° 74 22 11

He, expected heterozygosity.

MOI, multiplicity of infection.

' Sum of all haplotypes in all samples.

2 With respect to the reference sequence of P. falciparum strain 3D7.

® Pairwise comparison using two-sided paired t-test with adjusted p-value by Holm: p-value=0.008 for ama1-
D2 vs msp2-CE, p-value=0.036 for ama1-D3 vs msp2-CE, and p-value=0.005 for comp vs msp2-CE.

Table 2: Genotyping results of 3 molecular markers analysed in 47 independent field samples with 66
different clones. He, expected heterozygosity.

Number of
Marker He Haplotypes
cpmp 0.948 25
amai1-D2 0.926 16
ama1-D3 0.938 21
cpmp +amai1-D2 0.992 53
cpmp + amai-D3 0.994 55
cpmp +amai1-D2 + ama1-D3 0.994 55
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Table 3: Numbers of missed haplotypes due to imperfect detection either at baseline, in any
intermediate sample, or prior to haplotype clearance. Haplotypes from 48 longitudinal samples from 12
children were classified into true-positive (TP) and false-negative haplotypes. Two types of false-negative
haplotypes (missed clones) can be differentiated: (FN;) False-negative haplotypes detected but below cut-off
criteria and (FN;) false-negative haplotypes not detected but imputed.
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Table 4: Sensitivity and false discovery rate (FDR) of the genotyping method. Sensitivity and FDR was
estimated based on persistent clones in 48 longitudinal samples from 12 individuals. Detectability of minority
clone can be increased by including missed persistent haplotypes detected below the cut-off criteria. TP, true-

positive haplotypes. FN;, false-negative haplotypes detected, but below cut-off criteria. FN;p, false-negative
haplotypes with no read detected.

Marker TP FN FP Sensitivity FDR Detected
Haplotypes'
n n; Niia Niip n TP/(TP+FNi+iiab) FP/(TP+FP) (TP+FN|)/(TP+
I:Ni+iiab)
msp2-CE 86 10 5 n/a> n/a’ 0.851" n/a’ 0.950
cpmp 115 4 2 1 5 0.943 0.042 0.975
ama1-D2 109 3 0 1 1 0.965 0.009 0.991
ama1-D3 108 4 2 1 3 0.939 0.027 0.974

" Detected true-positive and false-negative haplotypes.
% Not imputed for msp2-CE as multi-locus haplotypes cannot be established.

3 Length-polymorphic data generated in different laboratories do not provide replicates suited for determination
of false-positive haplotype calls and estimation of FDR.

* Without haplotypes, that were imputed based on multi-locus haplotypes at the beginning or end of an
infection.
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FIG S1: Schematic of haplotype classification. Examples show the classification of haplotypes in true-
positive (TP), false-negative (FN) and false-positive (FP), based on their detection either in duplicates or in the

preceding or succeeding bleeds.
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FIG S2: Frequency distribution of multiplicity of infection by marker (left) and frequency of msp2-CE
haplotypes (right) in 33 baseline samples. Marker msp2-CE identified 20 different haplotypes. (Frequency
distribution of haplotypes of Amp-Seq markers given in FIG 1).
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FIG S3: Haplotype frequencies by marker in 46 independent samples comprising 66 clones. For marker comp
25 different alleles were identified, for ama7-D2 16 haplotypes and for ama1-D3 21 haplotypes. Top panel:
haplotypes base on single markers; bottom panel: two-marker haplotypes.
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FIG S4: Density of true-positive haplotypes detected in only one or both replicates. X-axis, haplotypes
detected in 1 versus 2 replicates by Amp-Seq marker. Y-axis, haplotype density by gqPCR measured as 18S
rRNA gene copies per pl whole blood. Points represent individual haplotypes; colours represent individual
markers. Black horizontal bar represents 5, 50 and 95-percentile. Wilcoxon rank sum test with continuity
correction: W=1000 and p-value=2x10"9 for ama1-D2, W=700 and p—value=5x10'9 for ama1-D3, W=1000 and
p-value=5x1 0 for cpmp.
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infection (FOI).
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Haplotype 1 65.9 63.3 64.4 11 1.5 1.8
Haplotype 2 0.1 0.2 96.6 96 95.6 20.3 21.6 16.1
Haplotype 3 0.2 0.4 1.6 1.5 1.5 47.3 41.6 47.2
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FIG S6: Within-host haplotype frequency of Amp-Seq markers in longitudinal samples from 1 child
representing an unresolvable multi-locus haplotype. Inserted table lists within-host haplotype frequencies
for all markers with a possible solution of partly established multi-locus haplotypes for the major haplotypes.
Multi-locus haplotypes 1-3 match well in frequencies of individual haplotypes at day 0, 13 and 32. In contrast,
multi-locus haplotype 4 does not match in frequencies of individual haplotypes at day 0. This could be
explained by a complex shared haplotype situation with one or several clones detected only at day 0 and 13,
e.g. haplotypes 5-10. Solid lines represent persisting haplotypes.
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FIG S7: Within-host haplotype frequencies of Amp-Seq markers in longitudinal samples from one child.
Multi-locus haplotypes have the same colour-code in figures. Solid line represents persisting haplotypes above
cut-off criteria (true-positive haplotypes). Dashed line represents persisting haplotypes falling below cut-off
criteria (false-negative haplotypes detected below cut-off criteria). Dotted line and question mark indicate a
false-negative haplotype that was not detected but could be imputed based on the established multi-locus

haplotypes from the preceding sample. Black dashed line represents cut-off criteria of the Amp-Seq genotyping
method.
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SUPPLEMENTAL TABLES

Table S1: PCR Primer sequence for Amp-Seq and msp2-CE genotyping and sequence library preparation.

Primer for primary PCR

cpmp_prim_F CGATACAGGACATATAGA

cpmp_prim_R TTCAATAACATTTACTAGG

Pfama1_F5 TGCGTATTATTATTGAGC

Pfama1_R613 GTGTTGTATGTGATGCTC

Primer for nested PCR

amal_D2_F_Linker GTGACCTATGAACTCAGGAGTCGGTCCTAGATATTGTAATAAAG
amal1_D2_R_Linker CTGAGACTTGCACATCGCAGCCATGTTGGTTTGACATTAAA
amal1_D3_F_Linker GTGACCTATGAACTCAGGAGTCTACTACTGCTTTGTCCCATC
amal1_D3_R_Linker CTGAGACTTGCACATCGCAGCTCAGGATCTAACATTTCATC
cpmp_F_Linker GTGACCTATGAACTCAGGAGTCCATAAGTCATTAAAATTTATGGAT
cpmp_R_Linker CTGAGACTTGCACATCGCAGCCGTTACTATCAAGATCGTTAATATC
Primer for msp2 CE genotyping

msp2_S2_fw GAAGGTAATTAAAACATTGTC

msp2_S3_rev GAGGGATGTTGCTGCTCCACAG

msp2_S1-fw GCTTATAATATGAGTATAAGGAGAA

msp2_FC27-rev GCATTGCCAGAACTTGAA

msp2_3D7-rev CTGAAGAGGTACTGGTAGA

Primer for sequence library PCR (XXXXXX=barcode)

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC

Forward TTCCGATCTXXXXXXXXGTGACCTATGAACTCAGGAGTC
Reverse CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCG
CTCTTCCGATCTXXXXXXXXCTGAGACTTGCACATCGCAGC
Forward barcode Reverse barcode
Fwd_1 TAGATCGC Rev_1 TAAGGCGA
Fwd 2 CTCTCTAT Rev_2 CGTACTAG
Fwd_3 TATCCTCT Rev_3 AGGCAGAA
Fwd_4 AGAGTAGA Rev_4 TCCTGAGC
Fwd_5 GTAAGGAG Rev 5 GGACTCCT
Fwd_6 ACTGCATA Rev_6 TAGGCATG
Fwd_7 AAGGAGTA Rev_7 CTCTCTAC
Fwd_8 CTAAGCCT Rev_8 CAGAGAGG
Fwd_13 TGGTGGTA Rev_9 GCTACGCT
Fwd_14 TTCACGCA Rev_10 CGAGGCTG
Fwd_15 AGCACCTC Rev_11 AAGAGGCA
Fwd_16 CAAGGAGC Rev_12 GTAGAGGA
Fwd_17 ATTGGCTC Rev_13 ATGCCTAA
Fwd_18 CACCTTAC Rev_14 ACGCTCGA
Fwd_19 CTAAGGTC Rev_15 AGTCACTA
Fwd_20 GAACAGGC Rev_16 ATCCTGTA
Rev_17 CGCATACA
Rev_18 CTGGCATA
Rev_19 GATAGACA
Rev_20 GCTAACGA
Rev_21 GTGTTCTA
Rev_22 TCCGTCTA
Rev_23 CCTAATCC
Rev_24 GACAGTGC
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Table S2: Location and size of the amplicons.
cpmp ama1-D2 ama1-D3

From 1895 775 1281
To 2324 1253 1796
Size 430 479 516

Table S3: Summery of sequence coverage (total read numbers) by Amp-Seq marker.
cpmp ama1-D2 ama1-D3

1st Qu. 247 2292 2997
Median 794 3386 4716
Mean 1117 3682 5189
3rd Qu. 1632 5143 6906
Max 6376 11570 34240

Table S4: Summary of multi-locus haplotype (MLH) inference based on longitudinal samples from 33 children.

Status of MLH inference Samples Multi-locus Single-locus haplotypes
haplotypes cpmp ama1-D2 ama1-D3
n n n n n
Full established MLH 78" 116" 116 103 103
Partly established MLH * 49 64 135 130 126
Unresolvable MLH ° 8 0 20 18 18
Incomplete datasets * 13 0 7 11 11
Total 140 180 258 ° 244° 240°

n number of samples or haplotypes.

' 45 out of 78 samples with fully established multi-locus haplotypes were single clone infections.

2 Samples were multi-locus haplotypes could be established for some but not for all clones of a sample.
3 Samples were no multi-locus haplotype could be established.

* Samples with missing genotyping results for any of the markers.

® Total number of parasite clones detected in 140 samples was 277.
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Table S5: Overview of sample selection criteria applied for different types of analyses.

Analysis Type Samples Children Selection Criteria
n n
Baseline H, and 33 33 Baseline (or first bleed available) sample.
MOI
Multi-locus He 46 33 Samples with a resolvable multi-locus haplotype that were

separated by a treatment plus >2 consecutive P. falciparum
negative samples from the same child.

molF Ol 117 27 Children with a complete set of replicates.

Sensitivity and 48 12 Children that did not received antimalarial treatment during
false discovery the timespan analysed and harboured at least one haplotype
rate that was detected at 3 consecutive bleeds.

Reproducibility 139 33 True-positive haplotypes.

Table S6: Reproducibility of true-positive haplotypes in technical replicates. Reproducibility only decreased
when clone densities fell below 1000 copies 18S rRNA gene per ul whole blood and/or within-host frequency
below 1% (FIG S5).

cpmp ama1-D2 ama1-D3
nq n2 q nq n; q ny ny q
25 235 0.949 28 228 0.942 23 226 0.952
Haplotype density (copies/ul)
>1000 7 148 0.977 2 146 0.993 2 142 0.993
100-1000 6 52 0.945 8 50 0.926 5 51 0.953
10-100 8 23 0.852 13 22 0.772 10 22 0.815
<10 4 12 0.857 5 10 0.800 6 11 0.786
Haplotype proportion within a sample (%)
>10 13 172 0.964 16 165 0.954 11 167 0.968
1-10 4 55 0.965 4 47 0.959 5 46 0.948
<1 8 8 0.667 8 16 0.800 7 13 0.788

ns number of clones detected only with one of the replicates.
n, number of clones detected with both replicates.
q detectability as descripted in Bretscher et al. 2010.
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SUPPLEMENTAL TEXT

Example of multi-locus haplotype inference

Below an example of P. falciparum infection dynamics is shown for one child in great detail to illustrate our
strategy for inferring a multi-locus haplotype that combines SNP data from three molecular markers ama1-D2,
ama1-D3, and cpmp. Within-host haplotype frequency data of the example is shown in Table S8 and
corresponding graphic illustration in FIG S7.
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FIG S7: Within-host haplotype frequencies of Amp-Seq markers in longitudinal samples from one child.
Multi-locus haplotypes have the same colour-code in figures. Solid line represents persisting haplotypes above
cut-off criteria (true-positive haplotypes). Dashed line represents persisting haplotypes falling below cut-off
criteria (false-negative haplotypes detected below cut-off criteria). Dotted line and question mark indicate a
false-negative haplotype that was not detected but could be imputed based on the established multi-locus
haplotypes from the preceding sample. Black dashed line represents cut-off criteria of the Amp-Seq genotyping
method.

Table S8: Within-host haplotype frequencies (WHHF) in percent of individual Amp-Seq markers observed in
longitudinal samples from one child. Haplotypes of individual markers (termed alleles) are sorted by WHHF of
day 0. Haplotypes 1-4 represent multi-loci haplotypes composed of one allele of each of the 3 markers.

Multi-locus Day 0 Day 13 Day 32
haplotype |ama71-D2 ama1-D3 cpmp |ama1-D2 ama1-D3 cpmp |ama1-D2 ama1-D3 cpmp
names % % % % % % % % %

Haplotype 1 48.5 44.0 48.0 944 92.6 94.3 0.13 0.06

Haplotype 2 40.2 415 414 2.61 3.29 2.62 6.77 7.42 7.10
Haplotype 3 11.3 11.6 10.6 0.53 0.73 0.56 93.1 92.5 92.9
Haplotype 4 - - - 2.71 2.83 2.49 0.12 0.07 0.04

93



Amp-Seq Genotyping: Longitudinal Tracking of Complex Infections

The inference of multi-marker haplotypes started with identification of alleles that belong to the dominant
parasite clone. A dominant Haplotype was defined by a within-host haplotype frequencies (WHHF) >54%.

Inference of multi-marker Haplotypes at Day 0

At Day 0 of this example, 2 different alleles per marker occurred at similar WHHF (listed by marker in
Supplemental Table S8. At Day 0 no dominant Haplotype was evident, therefore any increase or decrease of
in WHHF of these alleles at Day13 was interrogated: one allele of each of the 3 markers showed an increase
of approx. +46%, while the remaining 3 alleles of similar frequency revealed a decrease by approx. -38%.
Based on these recoded frequency changes we combined those alleles from each marker, which all increased
by approx. +46%, into multi-locus Haplotype 1 (FIG S7, Day 0 in red).

Alleles that constituted Haplotype 1 were not considered in next steps of inference. Additional multi-locus
haplotypes of Day 0 were inferred by combining the alleles of similar frequency which showed a decrease in
WHHF for all 3 markers of approx. -38%, thus defining multi-locus Haplotype 2 (FIG S7, Day 0 in green). For
the next steps of inference, all alleles associated with multi-locus Haplotypes 1 and 2 were no more
considered. The remaining alleles constituted multi-locus Haplotype 3 with ~11% WHHF for all markers (FIG
S7, Day 0 in blue).

Multi-marker Haplotypes at Day 13

The dominant alleles in all 3 markers of the Day 13 sample were consistent with multi-locus Haplotype 1
characterized by ~93% WHHF for all 3 markers (FIG S7, Day 13 in red). Again this multi-locus haplotype was
no more considered in the next steps of Day 13 haplotype inference. Next two multi-locus haplotypes with
similar WHHF were observed. In agreement with allele combinations found at Day 0, multi-locus Haplotype 2
was identified by an increase of these alleles at Day 32 of approx. +4% (FIG S7, Day 13 in green). After
excluding alleles constituent multi-locus Haplotypes 1 and 2 an additional new multi-locus Haplotype 4 with
similar WHHF as Haplotype 2 was found (FIG S7, Day 13 in light blue). The remaining alleles, all with
frequencies below 1%, corresponded to multi-locus Haplotype 3 (FIG S7, Day 13 in blue).

Multi-marker Haplotypes at Day 32

The dominant clone in the Day 32 sample corresponds to multi-locus Haplotype 3, characterized in this
sample by a steep increase of, ~93% WHHF for all markers (FIG S7, Day 32 in blue). Alleles of this dominant
clones are no more considered in the next step of inference. The dominant clone in this step corresponds to
Haplotype 2 with ~7% WHHF for all markers (FIG S7, Day 32 in green). In the next step all alleles of
Haplotypes 3 and 2 were no more considered. But no further multi-locus haplotypes could be established, as
WHHF of the remaining alleles were below the 0.1% WHHF cut-off criteria for some of the markers. However,
as the inferred multi-locus haplotypes of Day 0, 13 and 32 match for all samples and marker ama1-D2 showed
a WHHF above the cut-off criteria, the multi-locus Haplotypes 1 and 4 could be imputed (FIG S7, Day 32 in
light blue and red).
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CHAPTER 4: DECONVOLUTION OF MIXED-STAGE
TRANSCRIPTOMES
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ABSTRACT

Background

Study gene expression of Plasmodium parasites in field samples is of great importance, e.g. to understand
mechanism of drug resistance or in absence of a continuous in vitro culture system. Transcriptome studies of
field samples are complicated by the mixture of different developmental stages present concurrently in the
samples. Deconvolution methods permit to infer stage specific gene expression from mixed stage samples
with known stage proportions. However, fold increase of total RNA during intra-erythrocytic development cycle
complicates deconvolution of mixed stage samples.

Methods

Several deconvolution and normalisation methods were evaluated with experimental mixtures of highly
synchronised P. falciparum stages. Permutation testing was used to sub-select those genes which had fold
change large enough to still be identified as differentially expressed after deconvolution. Inferred significant
fold changes (p-value<0.05) were compared to fold changes as observed in stage-specific transcriptomes from
highly synchronised P. falciparum samples.

Results

Negative binomial regression together with normalisation by the total number of sequence reads showed best
agreement in up or down regulation: 96.8% of 239 genes with significant fold changes between ring and
trophozoite stage, 99.5% of 1318 genes between ring and schizont stage, and 99.5% of 3627 genes between
trophozoite and schizont stage. Significant fold-changes of gene expression identified by permutation testing
provided a robust selection criterion for genes which could be successfully deconvoluted.

Conclusion
The identified strategy for deconvolution of mixed-stage transcriptomes and identification significant fold
change after deconvolution can be transferred to field samples of any Plasmodium species with known stage
proportions.
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INTRODUCTION

The life cycle of Plasmodium falciparum is highly regulated and shows a cascading expression profile
(Bozdech et al. 2003; Le Roch et al. 2003). The study of stage-specific gene expression provides important
basic knowledge for malaria research, e.g. to understand mechanism of artemisinin drug resistance which
shows a decelerated development at young ring stage (Mok et al. 2015). Various time-course studies of the
intra-erythrocytic development cycle (IDC) exist for cultured P. falciparum strains, giving insights into the stage
specific transcriptomes (Bozdech et al. 2003; Le Roch et al. 2003; Otto et al. 2010; Bartfai et al. 2010; Kensche
et al. 2016). All time-course transcriptomes can be accessed by PlasmoDB (http://plasmodb.org) (Bahl et al.
2003). In contrast, transcriptome data for P. vivax IDC are very limited. Only one study of synchronised short-
term cultured blood stages samples exists from infected patients (Bozdech et al. 2008; Zhu et al. 2016). The
study of P. vivax stage specific gene expression is greatly hampered by a lack of continuous in vitro parasite
culture. Gene expression has to be studied from P. vivax positive blood samples collected in the field that
consist of a mixture of different developmental stages. Despite enrichment of a specific developmental stage
or after tight synchronisation, small fractions of other stages are found. The transcriptome of P. vivax
gametocytes, one of the stages found in peripheral blood, has not yet been described. Because P. vivax
transcriptome analysis must rely on deconvolution of mixed stages, robust approaches to tackle RNA
sequencing (RNA-Seq) data from mixed life stage are urgently needed.

Several approaches have been presented in the past to deconvolute observed mixed cell-type transcriptomes
measured by microarray or RNA-Seq (Table 1). These deconvolution methods infer either cell-type specific
transcriptomes based on known proportions of cell-types in the mixture, or cell-type proportions in the mixture
based on known cell-type specific transcriptomes, called signatures (Abbas et al. 2009; Erkkila et al. 2010;
Shen-Orr et al. 2010; Qiao et al. 2012; Gong et al. 2011; Gaujoux & Seoighe 2012; Zhong & Liu 2012; Gong
& Szustakowski 2013; Gaujoux & Seoighe 2013; Newman et al. 2015; Joice et al. 2013). All deconvolution
approaches assume similar cell quantity, meaning that the transcriptome of each individual stage within a
mixture originate from the similar number of cells. This assumption is not valid for gene expression data gained
from Plasmodium species, as the parasite genome replicates during the IDC. By completion of the IDC, the
parasite has reached the schizont stage with up to 32 merozoites. During the IDC the parasite undergoes
substantial increase in the amount of total RNA (Bartfai et al. 2010; Sims et al. 2009; Kensche et al. 2016).
Therefore, deconvolution methods cannot be applied without taking into account this increase in the total
amount of RNA.

Normalisation methods are used to adjust gene expression data for biological differences in RNA composition
between samples. Different methods are required for microarray or RNA-Seq data. Most common used
methods for RNA-Seq are based on Reads Per Kilobase per Million mapped reads (RPKM), Trimmed Mean
of M values (TMM), relative log expression (RLE), or Remove Unwanted Variation (RUV) (Dillies et al. 2013;
Mortazavi et al. 2008; Robinson & Oshlack 2010; Anders & Huber 2010; Risso et al. 2014). RPKM
normalisation only adjusts for difference in total read counts and gene length, whereas TMM, RLE, and RUV
normalisation also adjust for difference in RNA composition between the samples. TMM and RLE
normalisation make use of the assumption that the majority of genes are expressed at a constant level. Those
normalisation methods might not work for transcriptome data of Plasmodium species, as most genes have a
periodically fluctuating gene expression. Another possibility for normalisation is to use Biological Scaling
Normalization (BSN), which normalises by an experimentally measured parameter, the so called ‘scale’ (Aanes
et al. 2014).

An approach to deconvolute mixed transcriptomes of Plasmodium parasites field samples measured by
affymetrix microarray (ThermoFisher Scientific) was presented earlier (Joice et al. 2013). Applying this
approach to RNA-Seq data from experimentally mixed stage transcriptomes of P. falciparum did not provide
satisfying results. To determine if another deconvolution method is better suited for RNA-Seq data of
Plasmodium parasites field samples, several existing normalisation and deconvolution methods were
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evaluated with experimentally mixed-stage transcriptomes of P. falciparum. The specific aim of this work was
to infer stage-specific transcriptomes from samples composed of mixed-stages, by using stage counts
determined by light microscopy (LM) for all samples analysed. Solving this problem by using experimentally
mixed, highly synchronized stages of P. falciparum as a proof-of-concept forms the basis for the ultimate goal
of estimating the gametocyte transcriptome from enriched P. vivax field samples. As an additional step,
knowledge of the expression signature of all P. vivax parasite stages might permit to infer the composition of
P. vivax parasite stages from field samples with unknown stage composition based either on qRT-PCR or
RNA-Seq data.

MATERIALS AND METHODS

Extraction of viral/HIV RNA

Extracted viral RNA from a supernant of non-infectious HIV-1 virus (4x109 RNA copies/ml) was used as spike-
in control and was kindly provided by Department of Biomedicine, University of Basel. The non-infectious HIV-
1 virus originating from parental HIV-1 NL4-3 strain carries a large deletion in the env gene Viral RNA was
extracted using the QlAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
protocol.

Cultivation and synchronisation of P. falciparum HB3 cultures

Plasmodium falciparum strain HB3 was cultured in RPMI 1640 (Gibco life technologies), and 0.5% Albumax
(Invitrogen), 50mg Hypoxanthin, 26mM HEPES (Sigma) and 5% haematocrit according to standard
procedures (Trager & Jensen 1976).

Mixed stage HB3 Parasites (5-10%) were pre-synchronised 2 cycles before sample collection using two
sorbitol synchronisations 10h apart in cycle -2. Sorbitol synchronisations were performed as follows (Lambros
& Vanderberg 1979): The parasite culture was centrifuged for 5 min at 1900 rpm; The pellet (with a
concentration of 10" RBC/pl) was resuspended in 6 volumes of 5% sorbitol (Sigma) and incubated at 37°C for
5 min. After 5 min centrifugation at 1900 rpm the supernatant was removed. The pellet was resuspended in
culture medium. Parasites were expanded in cycle -1 to yield a parasitaemia of about 5%. At the end of cycle
(-1) late stage parasites (44h-48h) were percoll separated. (Radfar et al. 2009): Separated schizonts were
pooled and seeded in fresh dishes containing 1.5ml RBCs (10" RBC/ul) and 30ml fresh culture medium. These
plates were incubated for 4 h to allow re-invasion. To reduce double infections, the plates were placed on an
orbital shaker (200rpm) at 37°C. After 4h the cultures were pooled and synchronised using sorbitol
(synchronisation window 4h). The ring stage culture was equally split into 14 30ml dishes (5% haematocrit)
and incubated at 37°C. Per time-point two dishes of parasites culture were harvest 8h, 15h, 24h, 33h and 48h
after percoll separation. After centrifugation 1.2 ml of infected RBCs (107 RBC/ul) and 20pl of viral HIV RNA
were combined with 8ml Ribozol and frozen at -80°C.

Additionally, highly pure ring and schizont stage samples were produced to reduce the fraction of other stages
to a minimum. To remove mature stage parasites that could contaminate the sample of “pure ring stage”, two
dishes of highly synchronized 8h parasites culture were purified using a MACS CS magnetic column (Miltennyi
Biotec) with a flow resistor 22G (flow rate 3.5 ml/min) attached. The flow-thru (containing the non-magnetic
ring stages) was collected and centrifuged. 1.2 ml of the cell pellet was lysed in 8 ml Ribozol and frozen at -
80°C. For removal of potential ring stages (non-magnetic) that could contaminate the sample of “pure schizont
stages”, two dishes of the highly synchronized 48h parasites culture were additionally purified using a MACS
CS column with a flow resistor 21G (flow rate 4 ml/min) attached. The flow through was discarded and the
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column washed with 30ml culture medium. The column was removed from the magnet and the magnetic
schizonts were eluted with 20ml culture medium. The collected infected RBCs were centrifuged and
supplemented with 3ml packed uninfected RBCs to generate the same conditions during RNA extraction as
for other time-points. 1.2 ml of packed cells were added to 8ml Ribozol and frozen at -80°C.

RNA extraction from in vitro cultured P. falciparum strain HB3 and RNA quantification experiments

Total RNA was isolated and purified using Ribozol (Amresco) and RNeasy Kit (Qiagen) according to the
manufacturer’s protocol. Genomic DNA (gDNA) was removed by DNase digestion with Ambion DNase | Kit
(ThermoFisher). RNA samples were tested for gDNA contamination by two P. falciparum specific gPCR assays
that target 18S rRNA or varATS genes using a StepOne Plus Real-Time PCR System (Applied Biosystems)
(Hofmann et al. 2015). Total RNA concentration was measured on Nanodrop (Thermo Fisher). Concentration
of spiked-in HIV RNA, human gene g-globin, gene pfs25 and gene pfpk4 in the extracted RNA was quantified
in triplicate by qRT-PCR as described previously (Labhardt et al. 2016; Brancucci et al. 2014; Wampfler et al.
2013; Irenge et al. 2005). Composition of reaction mixes and thermocycler conditions in Table S1.

Experimental mixtures of synchronized developmental stages of P. falciparum strain HB3

To adjust for loss of RNA during the extraction process (due to different amounts of total RNA used in
extractions and possible saturation of extraction columns), the same amount of viral RNA was added into each
sample before RNA extraction, permitting to restore the original total RNA concentration for a comparison of
changes in RNA concentration between time-points. Sample 8h and 33h were diluted to restore the same
concentration of spiked-in HIV RNA as in sample 48h. Experimental mixtures were prepared according to
Table S2. Sample 8h represents ring (R) stages, sample 33h trophozoite (T) stages and sample 48h schizont
(S) stages.

Counts of P. falciparum development stages

Parasites of each developmental stage of P. falciparum were quantified by light microscopy on Giemsa stained
slides and FACS counting. Giemsa stained slides were prepared from a smear of 3-5ul of each P. falciparum
culture. The smear was air dried and fixed for 2 min in 100% methanol. After fixation slide was transferred to
a 10-15% Giemsa staining solution for 15-20 min. Slides were scanned with a Zeiss Axio Scan.Z1 Slide
Scanner (Carl Zeiss GmbH, Jena, Germany), with a 20x objective for Giemsa stained slides.

For FACS analysis, 50 pul of P. falciparum culture were spun and re-suspended in 100 yl SYBR Green | nucleic
acid gel stain (Sigma-Aldrich) diluted 1:5000 in parasite culture medium (PCM), incubated for 20-30 min at
37°C (in the dark) and washed 3 times in 1 ml PCM. 1.5 pl of stained cells were transferred to 1ml FACS flow,
vortexed and analysed by flow cytometer BD FACS Calibur (BD Biosciences). Cell Quest Pro Software was
used to determine parasitaemia and stage counts (Figure S1).

High throughput sequencing

RNA-seq libraries were prepared using the lllumina TrueSeq Stranded mRNA Library Preparation Kit. Libraries
were sequenced on a HiSeq 2500 125 cycle single read with added Illlumina PhiX Control. Sequence reads
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were mapped with tophat (Version 2, parameters: read-mismatches=4, read-edit-dist=4 min-intron-length=10,
max-intron-length=10000, max-multihits=1) to P. falciparum 3D7 reference sequence (PlasmoDB, release 11)
(Trapnell et al. 2009; Bahl et al. 2003). Raw read counts were extracted with htseg-count (parameters:
stranded=no type=gene idattr=gene_id mode=intersection-nonempty) using gene annotation (PlasmoDB,
release 11) (Anders et al. 2015; Bahl et al. 2003).

Normalisation of RNA-Seq and qRT-PCR data

Raw read counts were normalised with different methods. Normalisation by counts per million (CPM) was used
to represent the RPKM method. TMM and RLE normalisation was performed by using the R package edgeR
(Robinson et al. 2010). In short, TMM and RLE normalisation factors were calculated with the ‘calcNormFactor’
function and multiplied by total sequence library size. Using the function ‘cpm’ normalised read counts were
obtained from the adjusted library sizes. Normalisation with housekeeping gene pk4 (PF3D7_0628200)
annotated as “eukaryotic translation initiation factor 2-alpha kinase” was performed by dividing raw read count
by pk4 read count and multiplied by the mean pk4 read count of all samples. Finally, BSN normalisation was
performed as previously described (Aanes et al. 2014). In short, CPM normalised counts were multiplied by a
biological scaling factor and the mean library size. Three different biological scaling factor were used for BSN
normalisation in this study: the relative gene expression of housekeeping gene pk4 to spiked-in viral RNA,
both measured by qRT-PCR for BSNgj,, and TMM or RLE normalisation factors for BSNtyy or BSNg.e
respectively.

Gene expression of gene pfs25, pk4, and f-globin by qRT-PCR was normalised by calculating the gene
expression relative to the spiked-in viral RNA. To compare normalised gene expression by RNA-Seq and qRT-
PCR, fold change of genes pfs25, pk4, and f-globin was calculated by dividing gene expression of each
individual time-point by mean gene expression over all time-point samples of that gene. Fold changes were
compared by Spearman correlation.

Differential gene expression (DGE) analysis

The R package edgeR (Robinson et al. 2010) was used to identify differentially expressed genes in R, T and
S stages represented by the 8h, 33h and 48h time-course samples. Normalisation was performed with CPM,
TMM, PK4 and BSNg e methods. PK4 and BSNg_ e normalisation was not implemented in edgeR. Therefore,
PK4 and BSNg.e normalised read counts were used as input for DGE analysis and no further normalisation
was performed during DGE analysis. Dispersion of each gene (tagwise dispersion) was estimation based on
time-course and highly pure stage samples to account for missing replicates. R stage was represented by the
two samples, “highly pure ring stage” and “8h” samples, T stage by “24h” and “33h” samples, and S stage by
“highly pure schizonts stage” and “48h” samples. The model was fit with function gimFit and a design matrix
including an intercept, followed by a likelihood ratio test using function gImLRT. Genes with a significant
differential gene expression were identified with function decideTestsDGE.

Deconvolution of mixed-stage samples

Mixed-stage transcriptomes were deconvoluted into stage-specific signatures based on known stage
compositions of the samples. R Package CellMix (http://web.cbio.uct.ac.za/~renaud/CRAN/web/CellMix) was
used for csSam, csLsfit and csQprog deconvolution and function Im from R package stats for deconvolution
by linear regression. Deconvolution by negative binomial regression was performed with R package edgeR
with a design matrix containing the stage proportions of samples and estimated tagwise dispersion. Impact of
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fold increase of RNA in mixed stage samples was visually inspected by multidimensional scaling analysis with
function plotMDS from R package edgeR (Figure S2). Significance of gene expression fold changes was tested
by 400 permutations of the stage proportions of mixed-stage samples. P-values were estimated with permp
function of R package statmod (Phipson & Smyth 2010) and adjusted for multiple testing by calculating the
false discovery rate (FDR) with function ‘p.adjust’ of R package stats (Benajmini & Hochberg 1995). Significant
fold changes of deconvoluted Rgq, Test and Sgg; stage transcriptom with fold change >1 were compared to fold
changes of R, T and S stage samples by calculating the Pearson correlation factor R? and percentage of up
or down regulation agreement. Comparison was performed on log, transformed inferred stage-specific
transcriptomes with an added prior of 0.5 to avoid taking log of zero.

RESULTS

Fold increase in total RNA and parasite genomes during intra-erythrocytic development cycle

The amount of total RNA in P. falciparum parasites was reported to increase substantially during the intra-
erythrocytic development cycle (IDC) (Bartfai et al. 2010; Sims et al. 2009; Kensche et al. 2016). To estimate
fold increase in total RNA of a highly synchronised P. falciparum culture, equal amounts of viral RNA was
added to each sample before RNA extraction. After RNA extraction and purification, concentrations of the
extracted RNAs were adjusted based on the measured viral RNA concentration to restore the true RNA
concentration prior to losses of RNA during the extraction procedure. Total RNA concentration increased by
18-fold during IDC, respectively between 8h and 48h samples (Table 2).

Normalisation and differential gene expression (DGE) of time-course samples

Time course samples were used to evaluate different normalisation methods that best fitted the fold change
profile of genes pk4, pfs25, and human beta-globin measured by gqRT-PCR and adjusted according to spiked-
in viral RNA. BSNg;, normalisation correlated best to the fold change profile measured by qRT-PCR (spearman
correlation R% in decreasing order 0.96, 0.81, 0.65, 0.52 and 0.46 for BSNg;,, PK4, CPM, TMM and RLE) (Table
3, Figure 1 left panel). Normalisation by the empirically selected gene pk4 (PF3D7_0628200) achieved second
best correlation. Pk4 is known to be relative constantly expressed and had been used in an earlier publication
as a reference/housekeeping gene (Brancucci et al. 2014). CPM, TMM and RLE normalisation were not able
to adjust for fold increase of total RNA. The biological scaling factor (relative gene expression of pk4 to spiked-
in viral RNA, both measured by gRT-PCR) used for the BSNg;, normalisation cannot be used for mixed stage
field samples. As an alternative, TMM or RLE scaling factor can be used for the BSN normalisation (Aanes et
al. 2014). BSNg.e and BSNtyy correlated better to the fold change profile than TMM and RLE normalisation,
but less good than BSNg;, (spearman correlation R%in decreasing order 0.83 and 0.81 for BSNg ¢ and BSNtyy)
(Table 3, Figure 1 right panel).

Differentially expressed genes were identified by DGE analysis of the 8h, 33h and 48h samples representing
ring (R), trophozoite (T) and schizont (S) stages. The number of significant differential expressed genes
(FDR<0.05) depended on the normalisation method used and was higher for BSNg g and PK4 normalisation
than for CPM and TMM normalisation (Table 4).
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Evaluation of various deconvolution methods based on experimental mixtures

Experimental mixtures of highly synchronous cultures were used to determine the best suited normalisation
and deconvolution method for estimation of stage-specific signatures of gene expression from mixed-stage
samples with known proportion. Only genes showing a significant inferred fold change (p-value <0.05) and
with fold change >1 between ring and trophozoite stage (R-T), ring and schizont stage (R-S) or trophozoite
and schizont stage (T-S) were used for comparison of the normalisation and deconvolution methods (Table
5).

Deconvolution by csSam, csLsfit and csQprog resulted in almost identical inferred signatures (Figure S3).
Therefore, method csQprog was chosen as representative for those methods for further analysis, csQprog
includes a non-negative constraint of estimated gene expression signatures. Normalisation methods CPM,
PK4 and BSNg_e gave identical results when applied in combination with the deconvolution method csQProg
(Table 5, 6 and 7).

All normalisation and deconvolution methods yielded Pearson correlation of inferred and measured signatures
for genes with a significant fold change in the range of 0.78 and 0.95 for the ring stage signature, 0.89 and
0.99 for the trophozoite stage, and 0.72 and 0.95 for the schizont stage (Table 6). The choice of normalisation
method most affected the inferred ring and schizont signatures. The highest correlation coefficient for inferred
ring and schizont signatures was observed by the combination of methods PK4 and edgeR (Table 6). The
combination TMM-csQprog showed the lowest correlation coefficient for inferred schizont signatures. For
inferred ring signatures the combination BSNg e-glm seems least suitable.

Irrespective of deconvolution and normalization method, the comparison of inferred and measured fold
changes showed that Pearson correlation was highest for the T-S fold change (R2 between 0.91 and 0.93).
For inferring the R-T and R-S changes, no good correlation was obtained with deconvolution methods csQprog
and Im (R2 between 0.34 and 0.53 for R-T and between 0.10 and 0.62 for R-S) (Table 6). Deconvolution
method edgeR achieved the best agreement in up or down regulation for genes with a significant fold change
between R-T and R-S (R® between 0.85 and 0.87 for R-T and between 0.91 and 0.94 for R-S) (Table 6 and 7,
Figure 2). When deconvolution method edgeR was used, the choice of normalisation method had little impact
on results. However, normalisation with CPM and PK4 resulted in slightly higher agreements for all possible
fold changes.

DISCUSSION

Most of the methods available for deconvolution of samples of heterogeneous composition were developed
for gene expression data from microarray platforms and apply a linear model for deconvolution. Microarray
data measures gene expression as fluorescence intensity, whereas RNA-Seq data counts the reads observed
(Robinson et al. 2010). Therefore, an overdispersed Poisson model, e.g. negative binomial regression, is more
appropriate for RNA-Seq deconvolution. However, the linearity of the data is no longer maintained after log-
transformation conducted during the negative binomial regression (Zhong & Liu 2012). This dilemma could not
be circumvented and was not resolved in this study.

Deconvolution of the transcriptomes of mixed Plasmodium developmental stages is particularly challenging as
total RNA increases 18-fold during the 48 h blood stage cycle. An increase of total RNA is expected because
the intracellular parasite undergoes several rounds of mitosis and by the end of the cycle has replicated into
16 to 32 merozoites. Unfortunately, no additional material remained from this study that could be used for DNA
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extraction to precisely measure increase of genomes by qPCR. Therefore, it remains unclear whether the
increase of total RNA and was proportional to the growing number of genomes during the time course.

A change in total RNA, as the observed in this experiment, caused by very high expression of a number of
genes, may cause a bias in the measurement of gene expression. During RNA-Seq, samples are pooled at
equal molarity to achieve similar amount of total sequence reads for each sample. A large amount of
upregulated genes at one of the time-points could have consumed a substantial proportion of the total number
of sequenced reads and caused under-sampling of the remaining genes (Robinson & Oshlack 2010). In this
case the median gene expression might appear higher for time-course samples owing to their increased total
RNA, whereas low expressed genes might be missed. If this sampling artefact is not accounted for by
normalisation, some genes falsely might appear to be downregulated. On the other side, if the wrong
normalisation method is chosen, incorrect expression patterns can be generated.

Our evaluation of different RNA-Seq normalisation methods showed that the commonly used methods, e.g.
TMM, RLE and CPM, were unable to adjust for the total RNA increase. These normalisation methods assume
that most genes are not differentially expressed. However, during the IDC of P. falciparum most genes are
differentially expressed. BSNg;, hormalisation uses a biological scaling factor that represent the differences in
RNA concentration between samples. BSNg, offered the best adjustment for total RNA increase. However,
BSNgi, normalisation cannot be used for field samples as spike-in of viral RNA is not possible. The second
best option was normalisation with housekeeping gene PK4. PK4 normalisation can always be applied to RNA-
Seq data. PK4 is a highly expressed housekeeping gene and has been used before to normalise gRT-PCR
gene expression data (Brancucci et al. 2014). Normalisation by only a single housekeeping gene carries the
risk of an unstable normalization. Multiple empirically selected housekeeping genes expressed at different
levels, followed by RUV-Seq normalisation, might be a better choice for normalisation (Risso et al. 2014), but
this approach depends on the availability of well validated empirically selected housekeeping genes.

Comparison of DGE analysis of R, T and S stages with different normalisation methods indicated that BSNg_g
or PK4 normalisation identified approximately 1.6-fold more genes showing significant differential gene
expression compared to normalisation by CPM or TMM (1814 or 1642, versus 1030 or 1019 significant genes).
In our study the number of genes with significant differential expression might have been underestimated for
all normalisation methods, because no biological replicates were available to estimate dispersion. Instead,
dispersion was estimated by combining the samples of pure stages with samples from time course
experiments. This approach to estimate dispersion likely overestimates dispersion and as a consequence
would reduce the number of genes showing significant differential expression.

One schizont parasite carries on average as much RNA as 18 ring stage parasites (Figure S2). As a
consequence, in mixed-stage samples, the 18-fold increase in total RNA resulted in a predominance of late
stage parasites in the observed mixed transcriptome. Additionally, increase in total RNA can lead to a non-
linear mixing of transcripts in the sample.

The comparison of normalisation and deconvolution with several methods showed that the combination of
edgeR and CPM are best suited to infer stage-specific transcriptomes. This combination showed highest
agreement between significant fold changes of inferred and measured stage-specific genes. The different
normalisation methods only weakly influenced the outcome of the deconvolution with edgeR. This result was
unexpected. The comparison of time-course samples to gene expression measured by qRT-PCR indicated
that the BSNg;, normalisation method best reflected gene expression of RNA-Seq data. An explanation for this
results could be that the log transformation of the observed transcriptomes (during negative binomial
regression of edgeR) reduces the effect of an 18-fold increase in total RNA. This would also explain why in
our analyses the normalisation method mattered when deconvolution was performed with method csQprog or
Im. Another explanation why edgeR performs better than csQprog or Im is that log transformation of RNA-Seq
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data leads to better homogeneity of variance, and consequently to a more accurate estimation of variance
during permutation testing.

Permutation testing allowed robust identification of successfully deconvoluted genes i.e. genes that were
indeed differentially expressed among stages. However, the 400 permutations performed in this study likely
were insufficient for the comparison of >5000 genes. This shortcoming became apparent after adjusting p-
values for multiple testing by calculating false discovery rate (FDR). Much fewer significant genes with
FDR<0.05 could be identified (Table S3). More permutations were not possible for the complex comparison of
five deconvolution methods and four normalisation methods. The number of permutation should be greatly
increased for future analysis when only one normalisation and deconvolution method combination is
performed. And consequently, only genes with a FDR<0.05 should be selected for identification of stage
specific genes.

CONCLUSION

By comparing observed stage specific transcriptomes of highly synchronized P. falciparum cultures to inferred
stage-specific transcriptomes of mixed-stages of the same samples, this study showed that deconvolution of
stage-specific transcriptomes is feasible. The 18-fold increase in total RNA between rings and schizonts
proofed to be a particular challenge for accurate deconvolution. Best approach for deconvolution of mixed
developmental stages of malaria parasites was deconvolution with method edgeR and CPM normalisation.
Genes with a fold-change large enough to be successfully deconvoluted could be identified by permutation
testing

This deconvolution approach can be transferred to field samples of any Plasmodium species with known stage
proportions. This proof-of-concept study paves the way for inferring gene expression of P. vivax gametocytes
from field samples, under the condition that the proportions of developmental stages of the parasite in the
sample is known.
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Table 1: Overview of deconvolution methods.

Method name Estimates Description/ Comments Reference
Signature Proportions
Isfit yes yes Least-squares Abbas 2009
qgprog yes yes Quadratic programming Gong 2010
DeconRNASeq no yes Quadratic programming Gong 2013
csSAM yes yes Shen-0rr2010
Im and gprog yes yes Method ‘Im’ for signature and Joice 2013
‘gprog’ for proportions
DSection yes (no) MCMC Erkkila2010
PERT no yes NNLS with LDA Qiao 2012
DSA yes' yes' Requires marker genes Zhong 20013
ssKL yes' yes' Requires marker genes Gaujoux 2011
ssFrobenius yes' yes' Requires marker genes Gaujoux 2011
deconf yes' yes' Alternating NNLS  Repsilber 2010
No longer running in R
TEMT yes no probabilistic model-based Li 2013
Supports mixture of two cell types
DeMix yes yes SW no longer accessible Ahn 2013
ISOpure no yes Use signature to estimate cancer Quon 2013
profile and cell-type composition
- no yes SW no longer accessible Clarker 2010
CIBERSORT no yes Robust linear regression and v-  Newman 2015
SVR
DCQ no yes Elastic net Altboum 2014
Digital Cell quantification
PSEA No implementation available. Uses Kuhn 2011
‘Im’ method
needs marker gene
ISOLATE no yes LDA Quon2009
Estimates cancer signature and
cell-type composition
xCell no yes Application developed specifically Aran 2017

for human gene expression can be
easily transferred to Plasmodium
species

NNLS Non-negative least squares

NNML Non-negative maximum likelihood model

LDA Latent Dirichlet Allocation
' Complete deconvolution
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Table 2: Total RNA concentration and fold increase over time course of extracted RNA from highly
synchronized P. falciparum cultures spiked with equal quantities of viral RNA. Ring (R), trophozoite (T), and
schizont (S) stage sample were used for experimental mixed stage transcriptomes.

Spiked-in Adjusted
Sample Total RNA viral RNA' total RNAZ Total RNA
ng/ul . fold increase
copies/ul ng/ul
R/ 8h 138 8.0x10° 42.9 1
15h 110.9 4.5x10° 60.9 1.4
24h 4457 8.2x10° 135.9 3.2
T/33h 645.1 4.1x10° 388.8 9.1
S /48h 801.4 2.5x10° 801.4 18.7

' Concentration of spiked-in viral RNA by gRT-PCR after RNA extraction.
2 Adjusted total RNA concentration to restore equal concentration spiked-in viral RNA in each sample.

Table 3: Comparison of normalisation methods between fold change of gene expression measured by qRT-
PCR and RNA-Seq for 3 genes at 5 time-points.

Normalisation Correlation Concordance
Method Spearman Cohn’s
rho Kappa (p-value)
CPM 0.65 0.42 (8.1x107%)
TMM 0.52 0.36 (0.024)
RLE 0.46 0.32 (0.044)
BSN&ip 0.96 0.78 (9.7x107)
PK4 0.81 0.55 (3.6x107%)
BSNrum 0.81 0.57 (2.7x10™)
BSNree 0.83 0.62 (8.9x107)
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Table 4: Comparison of different normalization methods for differential gene expression analysis of RNA-Seq
data.

Normalisation Differential Fold Change
Method expressed R-T? R-S° Ts*
genes '

Neig Nfc>1 Ntc<aq Nfc>1 Ntc<aq Nfc>1 Nfc<aq
CPM 1019 287 87 250 132 103 250
TMM 1030 211 121 101 337 151 229
PK4 1642 381 106 762 308 228 478
BSNgr.E 1814 356 121 822 353 314 621

5308 genes were included in this analysis.

% Fold change between ring and trophozoite stage.

® Fold change between ring and schizont stage.

* Fold change between trophozoite and schizont stage.

nsig Number of genes with a significant fold change (FDR<0.05).

ni>1 Number of genes with significant fold change and with fold change > 1 (up regulated).
Ni<.1 Number of genes with significant fold change and with fold change < -1 (down regulated).

Table 5: Number of genes with a significant fold change (p-value<0.05) after deconvolution and with fold
change >1 for 3 different deconvolution method methods.

- age 2 3 4
Deconvolution  Normalisation Slgnlflca1nt RT R-S TS
Method Method ge:t-as Nfc>1 Nsig Nfc>1 Nsig Nfc>1 Nsig
sig
CPM 3959 1110 1148 1036 1153 1336 3728
csQprog TMM 4197 778 873 1422 1697 1842 3924
PK4 3959 1110 1148 1036 1153 1336 3728
BSNgLe 3959 1110 1148 1036 1153 1336 3728
CPM 3720 1023 1044 1073 1138 1440 3566
Im TMM 3720 1023 1044 1073 1138 1440 3566
PK4 4079 511 769 943 1555 1608 3559
BSNgLe 3529 1107 1115 592 626 922 3322
CPM 4059 179 275 538 1397 1314 3769
edgeR TMM 4259 128 308 594 1869 1792 3932
PK4 4023 195 262 545 1109 1304 3733
BSNgLe 4071 180 288 534 1388 1319 3784

" Total of 5308 genes were included in the analysis.

% Fold change between ring and trophozoite stage.

® Fold change between ring and schizont stage.

* Fold change between trophozoite and schizont stage.

nsig Number of genes with a significant fold change (p-value<0.05) by permutation test.
ni-1 Number of genes with significant fold change and with fold change>1.
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Table 6: Pearson correlation of genes with significant fold change (p-value <0.05) after deconvolution and with
a fold change >1.

Deconvolution = Normalisation Signature Fold change
Method Method R T S R-T' R-S” T-S°
CPM 0.80 0.99 0.84 0.47 0.28 0.93
csQprog TMM 0.83 0.99 0.72 0.44 0.36 0.92
PK4 0.80 0.99 0.84 0.47 0.28 0.93
BSNg.e 0.80 0.99 0.84 0.47 0.28 0.93
CPM 0.82 0.99 0.76 0.46 0.26 0.92
Im TMM 0.82 0.99 0.76 0.46 0.26 0.92
PK4 0.82 0.99 0.80 0.53 0.62 0.93
BSNg.e 0.78 0.98 0.92 0.34 0.10 0.91
CPM 0.94 0.90 0.94 0.87 0.91 0.91
edgeR TMM 0.93 0.90 0.94 0.86 0.91 0.92
PK4 0.95 0.89 0.95 0.85 0.94 0.92
BSNg.e 0.94 0.90 0.94 0.87 0.92 0.91

" Fold change between ring and trophozoite stage.
% Fold change between ring and schizont stage.
® Fold change between trophozoite and schizont stage.

Table 7: Agreement among 3 analysis methods in up or down regulation of genes with significant fold change
(p-value <0.05) and with a fold change >1.

Deconvolution Normalisation R-T R-S*? T-S°

Method Method n % n % n %
CPM 686 61.4% 877 82.7% 3485 99.4%
csQprog TMM 664 84.3% 1234 82.9% 3538 99.7%
PK4 686 61.4% 877 82.7% 3485 99.4%
BSNge 686 61.4% 877 82.7% 3485 99.4%
CPM 644 62.8% 890 81.4% 3436 99.7%
Im TMM 738 71.9% 940 85.9% 3429 99.5%
PK4 470 84.2% 1120 88.6% 3348 99.6%
BSNge 559 50.3% 532 88.4% 3223 98.2%
CPM 239 96.8% 1318 99.5% 3527 99.5%
edgeR TMM 203 95.8% 1624 98.9% 3540 99.5%
PK4 226 96.6% 1032 99.5% 3493 99.5%
BSNge 251 96.5% 1307 99.5% 3535 99.4%

" Fold change between ring and trophozoite stage.
% Fold change between ring and schizont stage.
® Fold change between trophozoite and schizont stage.
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Figure 1: Effects of different normalisation methods on gene expression of pfs25, pk4 and beta-globin
measured by RNA-Seq in comparison to expression levels by qRT-PCR. For better overview, different
normalisation methods were split on left and right panels. CPM and BSNgj,, Normalisation are found on both
sides for better comparison. Top panels: gene expression in log, count per million. Other panels: fold change
relative to average gene expression.
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Figure 2: Inferred transcriptomes and fold changes by deconvolution method edgeR. Top panel, ring (R),
trophozoite (T) and schizont (S) stage gene expression in counts per million (cpm). Bottom panel, fold changes
between R and T (R-T), between R and S (R-S) and between T and S (R-S). X-axis, observed stage-specific
transcriptomes or fold changes of stage. Y-axis, inferred stage-specific transcriptomes or fold changes. Red
points represent genes with significant (p-value<0.05) signature or fold changes.
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SUPPLEMENTAL MATERIAL

Table S1: gPCR reaction mix and cycle conditions.
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Table S2: List of proportions used for experimental mixtures of ring, trophozoite, and schizont stage sample.

Sample Name Ring Trophozoite Schizont
stage sample stage sample stage sample
Ratio1 0.75 0.25 0.00
Ratio2 0.50 0.50 0.00
Ratio3 0.25 0.75 0.00
Ratio4 0.00 0.75 0.25
Ratio5 0.00 0.50 0.50
Ratio6 0.00 0.25 0.75
Ratio7 0.25 0.00 0.75
Ratio8 0.50 0.00 0.50
Ratio9 0.75 0.00 0.25
Ratio10 0.10 0.80 0.10
Ratio11 0.10 0.10 0.80
Ratio12 0.80 0.10 0.10

Table S3: Number of genes with a significant fold change (FDR1 <0.05) and with fold change >1.

ignificant -T? R-s* T-S°
Deconvolution Normalisation Slg:rll;:in RT S S
Method Method g Ne: Nic>1 Ngig Nic>1 Nsig Nfc>1 Ngig
sig
CPM 3564 0 0 259 268 1304 3503

csQprog TMM 3872 0 0 853 911 1797 3752
PK4 3564 0 0 259 268 1304 3503

BSNgLe 3564 0 0 259 268 1304 3503

CPM 3260 0 0 0 0 1388 3260

Im TMM 3260 0 0 0 0 1388 3260
PK4 3235 0 0 0 0 1543 3235

BSNgie 2159 0 0 0 0 765 2159

CPM 3604 0 0 0 0 1272 3604

edgeR TMM 3791 0 0 0 0 1744 3791
PK4 3557 0 0 0 0 1261 3557

BSNgie 3613 0 0 0 0 1272 3613

' False discovery ratio (FDR) calculated to adjust p-values for multiple testing.

% Total of 5308 genes were included in the analysis.

® Fold change between ring and trophozoite stage.

* Fold change between ring and schizont stage.

® Fold change between trophozoite and schizont stage.

Nsig Number of genes with a significant fold change (p-value<0.05) by permutation test.
ni-1 Number of genes with significant fold change and with fold change>1.
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Figure S1: FACS counts of SYBR green stained time course and highly pure stage samples. X-axis, log,

7 8 9 10 11 12 13
log, intensity

fluorescence intensity. Y-axis, side scatter. Colours shows density distribution with red as high and blue low

density.
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Figure S2: Multidimensional scaling plot showing predominance of late stage parasites and non-linear
mixing of stage-specific transcriptomes. X and Y-axis, distance in log; fold changes between gene
expression profiles. Pies showing stage proportions of a sample.
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Figure S3: Inferred transcriptomes by different deconvolution methods and CPM normalisation method. X-
axis, estimated coefficient of csLsfit deconvolution. Y-axis, estimated coefficient of method named in panel
header. R, estimated ring stage signature (left panel). T, estimated trophozoite stage signature (middle
panel). S, estimated schizont stage signature (right panel).
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General Discussion

CHAPTER 5: GENERAL DISCUSSION

The overall aim of this thesis was to develop tools for analysis of deep sequencing data from mixtures of P.
falciparum clones or stage-specific transcriptomes. In the first case, samples of individuals concurrently
infected with several different parasite clones were analysed. Individual parasite clones in these samples were
identified by Amp-Seq and subsequent clustering of sequence reads. The resulting within-host clone frequency
was then used to infer multi-locus haplotypes and to estimate density of the clones. Identification of individual
parasite clones are required for determination of molecular epidemiological parameters e.g. MOI, nm,FOI, and
duration of infection, which were then used to study the epidemiology of Plasmodium parasites. In the second
case, samples of experimentally mixed-stage transcriptomes were analysed to infer stage-specific
transcriptomes based on their known stage composition. Existing deconvolution and normalisation methods
were evaluated to find the best approach to analyse such data. Comparison to stage-specific transcriptomes
showed that genes with a significant fold change can be used to identify stage-specific genes in field samples.
This thesis provides proof-of-concept analysis for inferring P. vivax gametocyte-specific-genes in samples
enriched for mature stage parasites, but still containing different stages of asexual parasites.

This chapter discusses the overall findings and limitations of the analysis conducted, and gives directions for
future research.

5.1 GENOTYPING BY AMPLICON SEQUENCING

Amp-Seq of SNP polymorphic markers is increasingly used for genotyping. High multiplexing of samples for
sequencing enables the use Amp-Seq even for large epidemiological studies. Amp-Seq genotyping is superior
to genotyping of length-polymorphic markers by capillary electrophoresis, because of its increased sensitivity
to detect minority clones and quantification of concurrently infecting clones [1]. The higher sensitivity of Amp-
Seq genotyping resulted in a significant increase of mean MOI. However, no significant increase of mean
molF Ol could be determined in longitudinal samples. The sample size of this study was small, so it is possible
that the non-significant increase of moFOI could be due to insufficient power in statistical analysis. Alternatively,
molF Ol might be less prone to detectability of minority clones than MOI, as each clone might be at a relatively
high density at least once during an infection.

Duration of infection is a key epidemiological parameter. The impact of higher sensitivity to detect minority
clones on the duration of infection could not be studied in this thesis, because persisting infections with P.
falciparum were mostly cleared by treatment. The children in the cohort study were aged 1-5 years and
suffered regularly from clinical attacks of P. vivax or P. falciparum infections requiring treatment. Thus, natural
clearance of infections could not be studied. However, during analysis of longitudinal samples some parasite
clones were discovered earlier and/or for a longer period if more relaxed cut-off criteria were used (Chapter 3
Table 3). This observation might indicate an increased measured duration of infection when a more sensitive
method is used for genotyping. A study on individuals with higher levels of acquired immunity, and thus less
treatment, would be better suited to study the impact of higher sensitivity to detect minority clones on duration
of infection. An example of such a study was conducted in Navrongo, Northern Ghana, which includes
individuals of all ages [2]. Duration of infection and ,,FOI was already extensively studied in this cohort by
msp2-CE genotyping [2—6]. Re-analysis of the Navrongo study with Amp-Seq genotyping would show if a more
sensitive genotyping method impacts duration of infection.

Analysis of individual parasites clone density over time regardless of sample MOI allows investigation of
whether the duration of infection depends on parasite densities in the blood. For example, it could be that long-
lasting infections show a lower clone density during an infection compared to infections which are cleared
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within a week of appearance in the blood. It could also be that infections with the same, or similar clones as
observed in previous infections show lower clone density as compared to infections of unrelated clones.
Furthermore, patterns of clone density fluctuations over time could also be studied. For example, it is unknown
whether in multi-clone infections the density of each clone peaks at the beginning of the infection and slowly
decreases. Finally, fitness of individual parasite clones in the human host could be studied, i.e. the density of
clones of a specific genotype, or between-clone-competition in multi-clone infections. In summary, the ability
to measure individual clone density in multi-clonal infections opens the field for a new set of epidemiological
studies.

5.1.1 Comparative analysis of Amp-Seq and CE genotyping methods

When msp2-CE genotyping replaced msp2-RFLP genotyping, the authors found that genotyping by CE
increases resolution and avoids subjectivity in analysing the readout [7]. A similar statement is made today
about the replacement of CE with Amp-Seq. Amp-Seq promises advantages, like higher sensitivity and the
possibility of increased standardisation of data analysis, but comes with new challenges. CE genotyping of
microsatellites has the advantage that they are presumably not under selection pressure, and that the mutation
rate of indels caused by DNA polymerase slippages is 10-fold higher than of base pair substitution, which are
the origin of SNPs [8,9]. The main advantages of Amp-Seq genotyping lies in the higher sensitivity to detect
minority clones at low within-host clone frequencies. The high sensitivity of Amp-Seq (Chapter 2) was achieved
by removal of amplification artefacts, e.g. chimeric reads caused by incomplete primer extension and
inhomologous re-annealing, or indels caused by polymerase slippage at stretches of homo-polymers. The
specific removal of amplification artefacts permitted lower cut-off criteria for Amp-Seq genotyping than for CE
genotyping. Such a specific removal of amplification artefacts is not possible for msp2-CE genotyping and
consequently some minority clones were not detected, although were visible below the cut-off criteria in the
background noise of longitudinal samples.

For the first time, sensitivity and false-discovery rate (FDR) to detect parasite clones in longitudinal samples
could be estimated. Yet, the true composition of haplotypes within a field sample is unknown, because every
genotyping method has limited detectability to detect minority clones. The following two factors can affect the
estimates of sensitivity and FDR: (1) Additional missed false-negative haplotypes would lead to a lower
sensitivity and FDR than currently estimated. (2) A false-positive haplotype that should have been classified
as a true-positive would lead to a higher sensitivity and a lower FDR. For example, if a haplotype occurred
only at a single time-point in an individual and if one of the replicates failed or the haplotype was detected
below cut-off, then the haplotype would be classified as false-positive instead as true-positive. Such a situation
was found 6 times in the msp2-CE genotyping data of Chapter 3. Therefore, FDR was not estimated for msp2-
CE genotyping in Chapter 3. The FDR of msp2-CE would more likely estimate standardisation problems
between different laboratory than the specificity of the msp2-CE genotyping method.

5.1.2 Technical considerations for assay development

A recent publication (Kou et al. 2016) claims that the sensitivity and specificity of Amp-Seq genotyping can be
further improved by identifying ‘PCR duplicates’, i.e. amplified fragments which originate from the same
template. The Amp-Seq genotyping technique presented in this thesis cannot identify ‘PCR duplicates’. A
possibility to identify PCR duplicates is to integrate a molecular unique identifier (UID) consisting of a random
nucleotide sequence of ~8 bp between a linker and a marker specific primer sequence of both nested amplicon
primers [10] (Figure 1). Identification of ‘PCR duplicates’ permits calculation of consensus sequence of reads
sharing the same UID. Based on the consensus sequence of a UID, amplification and sequencing errors of
reads with the same UID can be identified and thus corrected.
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UID guarantees that in standard PCR application sequence reads with identical UID originate from the same
template. But it cannot be guaranteed that two different UID originated from different templates, because a
template DNA is amplified multiple times during subsequent amplification cycles. Consequently, two different
consensus sequences of different UIDs could still originate from the same template, if an amplification error
was introduced. Thus, incorrect interpretation of UIDs used in standard PCR application could lead to false
haplotype calls.

Another technique for Amp-Seq library preparation is the molecular inversion probes (MIP) techniques. MIPs
guarantees that every UID originates from an original template [11,12]. MIPs are single-stranded DNA
molecules consisting of a ~30 bp linker sequence flanked by ~20 bp target-specific sequence on both ends.
The target-specific sequence hybridises to the target region (~100 bp in length), followed by a gap-filling and
ligation step leading to a circularised DNA. The non-circularised fragments are then digested by exonucleases
and the circularised fragments amplified with primers containing sequencing adapter, sample barcode and
linker specific sequence at the 3’ end. However, capture efficiency of MIPs is limited and >40°000 templates
are required as input material for MIPs [13], which corresponds to a field sample with very high parasitaemia.
Thus, MIP technique is not suited for genotyping of Plasmodium field samples.

In order to benefit from UID for error correction, consensus sequences retrieved from at least three reads with
the same UID are required [14]. However, without MIP technique, the vast majority of sequence reads with
identical UID occur only once or twice and cannot be considered in the analysis. This in turn limits the sensitivity
to detect minority clones. Consequently, using UID for error correction does not necessary improve sensitivity
and specificity of Amp-Seq genotyping, because some amplification errors might not be identified. But, UID
can identify sequencing errors and would permit to use more error prone sequencing platforms for Amp-Seq
genotyping, e.g. MinlON (Oxford Nanopore Technologies). Furthermore, by using UID a lot can be learned
about the variation in the sequencing data caused by sequence and amplification errors. With the gained
knowledge, filtering of PCR artefacts and cut-off criteria for minority clone detection can likely be further
optimized.
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Figure 1: Design of Amp-Seq genotyping primers, including a molecular unique identifier (UID). Primary
primers target the gene of interest. Primary PCR is followed by nested PCR using marker-specific primers that
carry UID and linker sequences at their 5° ends. The primers for the final round of amplification target the F
and R linker sequences. These primers carry sample-specific indices (barcodes) plus lllumina sequencing
adapter P5 and P7 at their 5’ ends.
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The volume of a finger prick blood sample collected in the field is often limited to a maximum of 300-400 pl of
whole blood. For typing of multiple loci, individual PCR reactions with ~4 ul template are required depending
on the desired limit of detection. Therefore, multiplexing of several markers would be preferable. Multiplexing
of more than eight different amplicons was tested during the development of the Amp-Seq genotyping method.
However, optimizing the amplification reaction so that all amplicons were equally efficiently amplified was
difficult. Therefore, multiplexing was limited to three different amplicons per primary PCR. The main difficulties
for multiplexing were reduced amplification efficiency caused by dimer interactions, and unbalanced
amplification caused by different amplicon sizes. Amplification of longer amplicons was much less efficient. It
was impossible to completely prevent primer dimer interactions, because of the very low complexity of the
genome of P. falciparum (average GC content of coding regions is 23.7%)[15].

The challenges of multiplexing marker of different fragment length can partly be overcome by using digital
PCR platforms, such as the BioRad droplet digital PCR (ddPCR) system, or RainDance technology [16]. A
digital PCR platform divides the PCR reaction in thousands of micro-droplets before amplification, thus each
droplet represents a separate PCR reaction containing only a single template. This prevents or minimises
direct template competition and also reduces formation of chimeric reads that are caused by incomplete primer
extension and in-homologous re-annealing. Digital PCR platforms might also prevent the amplification bias for
shorter fragments of length-polymorphic marker msp2 [17].

The Amp-Seq library preparation protocol presented in this thesis, required an initial target enrichment by
primary PCR. When using digital PCR, this target enrichment might be unnecessary, since all amplified
fragments within a droplet come from the same template. It may even be possible to perform all three PCRs
of Amp-Seq library preparation, i.e. primary PCR, nested PCR and sequencing adapter attachment, in a single
digital PCR reaction. The concentration of target-specific primer could then be limited and thus primer dimer
interactions reduced, as the sequencing adapter would amplify the fragment as soon as the first fragments
carrying the linker sequence are present in the reaction (Chapter 2 Figure S4). Reducing the library preparation
to a single digital PCR reaction would also reduce cross-sample contamination and reduce potential false
positive haplotypes caused by carryover effects. However, the feasibility to perform Amp-Seq library
preparation in a single digital PCR reaction must be experimentally proven.

The developed Amp-Seq genotyping laboratory protocols have further optimisation potential. Firstly, the final
elongation step could be removed for all amplification steps. During final elongation, incompletely extended
primers are elongated, which leads to chimeric reads. Depending on the marker sequence it can be very
challenging to distinguish chimeric reads from true genotypes. Secondly, the equimolar pooling step is
labourious and error prone. The pooling step of the different markers and samples could be simplified by using
a procedure that captures only a limited amount of fragments, e.g. SequalPrep kit (Invitrogen) [18]. However,
samples with low parasitaemia may not contain enough fragments to reach saturation of the capturing method.
And thirdly, the final purification step could be modified by using magnetic baits carrying the P5 and P7
sequencing adapters (Chapter 2 Figure S4). This would improve the sequencing library quantification leading
to optimal loading and cluster formation on the sequencing flow cell, and in turn increase the amount of
sequencing output. Such sequencing adapter specific baits could also potentially be used as capturing method
for the equimolar pooling step, thus simplifying the protocol further.

5.1.3 Considerations for marker selection

The new SNP polymorphic marker PF3D7_0104100 (cpmp) was discovered by scanning the unfiltered SNP
list of WGS data from PNG that were part of the MalariaGEN project. The same scan was repeated on the
filtered SNP list from the global MalariaGEN dataset [19]. The expected heterozygosity of comp was lower in
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the filtered SNP list. The reason for this lower genetic diversity was that many SNPs were removed from the
list by the MalariaGEN filtering criteria, as the read coverage was not sufficient to pass the SNP filter criteria.
A closer look at the read alignments showed indeed, a lower coverage in the SNP polymorphic region of comp.
The decrease in sequence coverage of WGS data can be explained by too many mismatches to the reference
sequence genome, caused for example by length-polymorphism of microsatellite, or by too many SNPs in a
region similar to the size of a sequence read. It then depends on the used alignment parameter whether such
reads are mapped to the reference genome. Most of the SNPs that were filtered out by the MalariaGEN
analysis workflow were found to be true SNPs by the newly obtained Amp-Seq data. Less stringent criteria
used by MalariaGEN might result in too many SNPs being called e.g. from length-polymorphism region. As a
consequence of this observation, if decreased read coverage in the MalariaGEN data is observed for certain
genes from samples of a distinct geographical region, a further in-depth analysis should be done. It is possible
that SNPs were falsely excluded during filtering due to high local variation, i.e. too many SNPs compared to
the reference genome.

During the analysis of the Amp-Seq data, additional criteria became obvious for future marker selection. The
genetic diversity of marker comp was only slightly higher than that of marker ama7-D2 and ama1-D3, but
marker comp contains many more SNPs (17, 11, and 48 SNPs, respectively). Many SNPs of marker comp
were in close proximity, and thus were linked within a genotype, i.e. they showed a high linkage disequilibrium
(LD). Those SNPs do not add information towards genetic diversity, but they increase the genetic distance
between the haplotypes, leading to more robustness for haplotype calling in the presence of sequencing and
amplification errors. In addition, chimera haplotypes can be easier identified in the presence of more SNPs. If
those SNPs are equally distributed over the whole length of the amplicon, the probability of a resulting identical
chimera haplotype in repeatedly genotyped samples is very low. Both characteristics were not given for the
ama1 markers, and as a result the identification of chimera haplotypes was much more difficult and often less
conclusive for both ama?1 markers than for marker comp.

5.1.4 Considerations for haplotype calling

The decision to choose the swarm software for haplotype clustering instead of SeekDeep was mainly based
on computational performance [20,21]. The runtime to cluster haplotypes with swarm software was much
shorter than with SeekDeep. Furthermore, the clustering with swarm can be carried out on a personal
computer, whereas a computer cluster with large working memory is needed for SeekDeep. It must be noted
that SeekDeep was tested for data analysis in August 2015, before SeekDeep was published, and that in the
meantime the performance of SeekDeep may have improved. A systematic comparison of clustering results
of both methods was not carried out, because of the slow computational performance of SeekDeep. SeekDeep
and swarm software use similar clustering approach and it is unlikely that the resulting haplotype clusters differ
much between the methods.

Recently, the new method DEploid was published [22]. DEploid infers haplotypes from unlinked SNPs rather
than by clustering of sequence reads. A preliminary analysis of our Amp-Seq genotyping data with DEploid
showed that DEploid cannot always correctly infer a minority clone at a within-host haplotype frequency <1%
in defined mixtures of P. falciparum strains HB3 and 3D7 (own unpublished data). Furthermore, DEploid cannot
always infer haplotypes in samples with high MOI. However, DEploid detected two closely related clones
correctly, whereas clustering by swarm could not differentiate the two clones based on a single marker.
DEploid infers multi-locus haplotypes, which is not yet integrated in HaplotypeR. A systematic comparison of
HaplotypeR and DEploid is still outstanding. The high quality strain mixtures used in this thesis would be ideally
suited for such comparison.

The algorithm used in Chapter 3 to infer multi-locus haplotypes based on longitudinal field samples performed
similar as DEploid without using longitudinal samples. It is therefore likely, that by using a combinatorial
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approach of linked and unlinked SNP information, as well as longitudinal sample information, the challenge of
very complex clone mixture and low abundancy of minority clones could be overcome. Firstly, single locus
haplotypes could be inferred by using the same approach as DEploid (unlinked SNP), by limiting the
combinatorial search space to the sequence reads. Secondly, the inferred local haplotypes and within-host
haplotype frequency can be used to infer the multi-locus haplotype by using the same approach as DEploid.
Finally, local haplotype inferred from preceding or following bleeds can be included to define the final haplotype
set.

5.2 DECONVOLUTION OF MIXED STAGE TRANSCRIPTOMES

Knowledge of the gene expression profiles and their regulation is very important for basic malaria research. It
helps in identifying new drug targets, as well as understanding drug resistance mechanisms [23]. Stage-
specific marker genes can be used to monitor changes in stage composition during IDC, for example after
drug treatment. However, the study of gene expression in field samples is complicated by the presence of
mixtures of different parasite stages in the human blood. Even in cultured parasites after tight synchronisation
or enrichment of a specific stage, small fractions of other stages are found. In the past, many different
deconvolution methods were developed for heterogeneous human samples [24]. Most of those methods infer
the stage composition rather than stage-specific transcriptomes. Evaluation of a subset of methods with
experimental mixed P. falciparum stages showed that analysis of such heterogeneous transcriptomes can be
very challenging, especially when an increase in total RNA takes place simultaneously.

One deconvolution method was specifically developed to infer P. falciparum stage-specific transcriptomes and
stage composition from field samples [25]. It was developed based on gene expression data from the affymetrix
microarray platform. Application of this methodology to RNA-Seq data of experimentally mixed transcriptomes
showed that neither inferred stage-specific transcriptomes (deconvolution method ‘Im’ in Chapter 4), nor
inferred stage composition (deconvolution method ‘qprog’) agreed to stage-specific transcriptomes or mixture
ratios used for experimentally mixed transcriptomes.

Measurements of gene expression by microarray and RNA-Seq differ in two important aspects. Firstly,
microarray platforms measure abundance of RNA by hybridisation to gene specific probes. Each hybridisation
represents an independent process, thus measurements of individual genes are not influenced by abundance
of RNA from other genes. In contrast, in RNA-Seq, fragments of all genes are sequenced. Thus, sampling of
each gene depends on the relative abundance of RNA in the sample, and thus on expression levels of other
genes. Therefore, RNA-Seq is more prone to bias of changes in RNA composition between different samples.
Secondly, microarray platforms measure continuous fluorescence intensity, whereas by RNA-Seq, read count
is observed [26]. Therefore, the resulting different distribution of the data requires different statistical models.

In the present study, estimating stage-specific signatures by CPM normalisation and deconvolution with a
negative binomial regression model (method used by edgeR), followed by selection of genes with a significant
fold change (as measured by permutation tests) showed the best agreement to stage-specific transcriptomes
(Chapter 4 Figure 2). In contrast to other deconvolution methods, normalisation was less important for
deconvolution with edgeR. An explanation for observation could be that the log transformation of the mixed-
stage transcriptomes (during negative binomial regression of edgeR) reduces the effect of the 18-fold increase
in total RNA

Initial attempts to infer stage composition of experimental mixed-stage samples based on known stage-specific
signatures were unsuccessful so far. Both tested deconvolution methods, Cibersort and qprog, overestimated
the proportion of schizonts in the sample. However, if the estimated stage compositions were additionally
adjusted by the fold increase in total RNA, then agreement to original stage compositions was much better.
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This preliminary result holds the promise that if fold increase in total RNA can be included into a new method
for deconvolution, it may be feasible to estimate stage compositions from RNA-Seq data.

An evaluation of different normalisation and deconvolution methods was performed to provide a proof of
concept for the intended application of inferring the P. vivax gametocyte transcriptome after enrichment of
gametocytes from patient samples. Currently the transcriptome of P. vivax gametocytes is largely unknown.
Existing knowledge about P. vivax gametocytes was gained through orthologous genes that are present in P.
falciparum and P. vivax, e.g. pvs25 and pvs28. However, gametocytogenesis of P. falciparum and P. vivax
differ [27,28], and gametocyte-specific genes only found in the genome of P. vivax cannot be identified by
comparative analysis of P. falciparum and P. vivax. Thus, the transcriptome needs to be inferred from
gametocyte enriched field samples with known stage composition.

During the course of this thesis, initial attempts to infer the transcriptome of P. vivax gametocytes by
deconvolution with edgeR were made (these preliminary data were not presented in results section). No
significant differentially expressed genes could be identified. An explanation for this failure is that the parasite
stage compositions determined by light microscopy might not be correct. In contrast to P. falciparum, where
gametocytes show a characteristic shape, P. vivax gametocyte and trophozoite look similar (Figure 2). Stage
compositions of the same sample by two different expert microscopists showed disagreement in gametocyte
and trophozoite counts (unpublished data). Stage count of asexual and sexual parasites could be facilitated
by indirect fluorescent antibody labelling of a known gametocyte-specific protein, such as the sexual stage
antigen s16 [29,30]. However, this assay would only differentiate between gametocytes and asexual parasites,
allowing deconvolution to infer genes that are up or down regulated in gametocyte only, but would not permit
inferring of ring-, trophozoite- or schizont-specific genes.

Differential gene expression analysis of stage-specific transcriptomes from highly synchronized P. falciparum
cultures showed that known schizont-specific genes were also upregulated in ring stage transcriptome. This
upregulation can be explained by a fraction of schizont stage parasites, which was also found in the highly
synchronised ring stage sample (Chapter 4 Figure S1). This gene upregulation was no longer observed in our
data after additional purification of the synchronised ring stage sample, yielding a sample of highly pure ring
stages. The same observation was made with known ring stage-specific genes, which were upregulated in the
highly synchronised schizont stage sample. But, the upregulation caused by contaminating ring stage
parasites was smaller than the upregulation caused by contaminating schizont stage parasites. The different
influence of contaminating stages can be explained by the 18-fold increase in total RNA during the
development from ring to schizont stages.

Single cell RNA sequencing (scRNA-Seq) platforms offer another solution to the problem of stage-
heterogeneity in field isolates, e.g. Fluidigm C1, DropSeq, 10x Chromium and single cell FACS sorting. scRNA-
Seq characterizes a defined single cell, rather than an average of the gene expression of individual cells as in
RNA-Seq. Recently, the first scRNA-Seq transcriptome of the erythrocytic cycle of P. falciparum was published
showing the dynamics of stage development in cultured parasites [31]. However, scRNA-Seq comes with new
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Figure 2: lllustration of trophozoite and gametocyte of P. falciparum and P. vivax (image source Coatney et
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challenges. For example, only transcripts of few genes at low coverage are sequenced per cell, showing only
the ‘tip of the iceberg’ of gene expression in a cell. Additionally, scRNA-Seq is prone to sampling artefacts, as
amplification of reverse transcribed RNA is required to achieve sufficient material for sequencing. And finally,
analysis of scRNA data is complicated by a lot of missing data. Future studies will show how far scRNA-seq
can resolve difficulties encountered with mixed parasite stages.

5.3 CONCLUSIONS

Next generation sequencing (NGS) permits fundamentally novel approaches to study Plasmodium parasites
and will continue to shape malaria research. The unique challenges of Plasmodium parasite field samples for
NGS data analysis require specifically developed tools, in particular for data analysis. This thesis provides
solutions for genotyping and analysing P. falciparum samples containing a mixture of parasite clones, as well
as a new highly sensitive Amp-Seq genotyping assay, including a novel, highly diverse marker, comp.
Furthermore, this thesis provides a strategy on how to best infer stage-specific gene expression from samples
containing a mixtures of Plasmodium parasite developmental stages.

Amp-Seq genotyping permits quantification of individual genotypes within a human host and thus to study
individual parasite clone densities. This novel molecular epidemiological parameter opens new possibilities to
study malaria epidemiology and might help to answer open questions about parasite fitness. For example,
parasite densities might help to explain the difference between short and long duration of infection [2].
Furthermore, fitness of individual parasite genotypes could be studied when resources are limited due to
superinfection or when natural immunity is acquired.

Deconvolution of mixed-stage field samples into stage-specific transcriptomes is a crucial method to analyse
gene expression data from field samples. Field isolates are the main source of material for RNA-Seq
experiments if no in vitro culture system is available, e.g. in the case of P. vivax, or when the interaction of the
parasite with a clinical phenotype of the host is of interest. So far, the study of stage-specific gene expression
of parasites carrying a specific phenotype, e.g. artemisinin resistance, in field samples was greatly hampered
by the mixture of development stages [23]. Deconvolution permits analysis of stage-specific gene expression
of isolates containing mixed stages, when the proportions of parasite developmental stages in the sample is
known, e.g. through stage counts by microscopy.

This thesis shows that malaria epidemiology can greatly benefit from next generation sequencing technologies.
Further development of sequencing technology will simplify laboratory procedures, as well as data analysis. It
might be expected that sequencing of field samples will be as common in future as performing a PCR is today.
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APPENDIX

During the course of this PhD additional contribution to a project has been made:

Integrated transcriptomic, proteomic and epigenomic analysis of Plasmodium vivax salivary-gland sporozoites
Vivax Sporozoites Consortium

— Manuscript is published in bioRxiv Jun 7, 2017, DOI: https://doi.org/10.1101/145250 —
— Manuscript is submitted to Journal of PLOS Neglected Tropical Diseases —
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Abstract

Background: Plasmodium vivax is the key obstacle to malaria elimination in Asia and Latin
America, largely attributed to its ability to form resilient ‘hypnozoites’ (sleeper-cells) in the
host liver that escape treatment and cause relapsing infections. The decision to form
hypnozoite is made early in the liver infection and may already be set in sporozoites prior to
invasion. To better understand these early stages of infection, and the potential mechanisms
through which the development may be pre-programmed, we undertook a comprehensive
transcriptomic, proteomic and histone epigenetic characterization of P. vivax sporozoites.

Results: Our study highlights the loading of the salivary-gland sporozoite with proteins
required for cell traversal and invasion and transcripts for infection of and development
within hepatocytes. We characterise histone epigenetic modifications in the P. vivax
sporozoite and explore their role in regulating transcription. This work shows a close
correlation between H3K9ac marks and transcriptional activity, with H3K4me3 and
H3K9me3 appearing to act as general markers of euchromatin and heterochromatin
respectively. We also identify the remarkable transcriptional silence in the (sub)telomeres and
discuss potential roles of AP2 transcription factors, specifically ApiAP2-SP and L in
regulating this stage.

Conclusions: Collectively, these data indicate the sporozoite as a tightly programmed stage
primed to infect the human host and identifies key targets to be further explored in liver stage
models.

Background

Malaria is among the most significant infectious diseases impacting humans globally, with
3.3 billion people at risk of infection, 381 million suspected clinical cases and up to ~660,000
deaths attributed to malaria globally in 2014 [1]. Two major parasite species contribute to the
vast majority of human malaria, Plasmodium falciparum and P. vivax. Historically, P.
falciparum has attracted the majority of global attention, due to its higher contribution to
morbidity and mortality. However, P. vivax is broadly distributed, more pathogenic than
previously thought, and is recognised as the key obstacle to malaria elimination in the Asia-
Pacific and Americas [2]. Unlike P. falciparum, P. vivax can establish long-lasting ‘sleeper-
cells’ (= hypnozoites) in the host liver that emerge weeks, months or years after the primary
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infection (= relapsing malaria) [3]. Primaquine is the only approved drug that prevents
relapse. However, the short half-life, long dosage regimens and incompatibility of primaquine
with glucose-6-phosphate-dehydrogenase deficiency (which requires pre-screening of
recipients [4]) makes it unsuitable for widespread use. As a consequence, P. vivax is
overtaking P. falciparum as the primary cause of malaria in a number of co-endemic regions
[5]. Developing new tools to diagnose, treat and/or prevent hypnozoite infections is
considered one of the highest priorities in the malaria elimination research agenda [6].

When Plasmodium sporozoites are deposited by an infected mosquito, they likely
traverse the skin cells, enter the blood-stream and are trafficked to the host liver, as has been
shown in rodent malaria parasites [7]. Upon reaching the liver, sporozoites traverse Kupffer
and endothelial cells to reach the parenchyma, moving through several hepatocytes before
invading a final hepatocyte suitable for liver stage development [7, 8]. Within hepatocytes,
these parasites replicate, and undergo further development and differentiation to produce tens
of thousands of merozoites that emerge from the liver and infect red blood cells. However, P.
vivax sporozoites are able to commit to two distinct developmental fates within the
hepatocyte: they either immediately continue development as replicating schizonts and
establish a blood infection, or delay replication and persist as hypnozoites. Regulation of this
major development fate decision is not understood and this represents a key gap in current
knowledge of P. vivax biology and control.

The sporozoites’ journey from skin deposition to hepatocytes takes less than a few
minutes [9]. It has been hypothesized that P. vivax sporozoites exist within an inoculum as
replicating ‘tachysporozoites’ and relapsing ‘bradysporozoites [10] and that these
subpopulations may have distinct a developmental fate as schizont or hypnozoites, thus
contributing to their relapse phenotype [10-12]. This observation is supported by the stability
of different hypnozoite phenotypes in P. vivax infections of liver-chimeric mouse models
[13]. Sporozoites prepare for mammalian host infection while still residing in the mosquito
salivary glands. Studies using rodent malaria parasites have identified genes [14], that are
transcribed in sporozoites but translationally repressed (i.e., present as transcript but un- or
under-represented as protein), via RNA-binding proteins [15], and ready for just-in-time
translation after the parasites infection of the mammalian host [13, 16]. Translational
repression (i.e., the blocking of translation of present and retained transcripts) and other
mechanisms of epigenetic control may contribute to the P. vivax sporozoite fate decision and
hypnozoite formation, persistence and activation. Supporting this hypothesis, histone
methyltransferase inhibitors stimulate increased activation of Plasmodium cynomolgi
hypnozoites in macaque hepatocytes [17, 18]. Epigenetic control of stage development is
further evidenced in Plasmodium through chromatin structure controlling expression of
PfAP2-G, a specific transcription factor that, in turn, regulates gametocyte (dimorphic sexual
stages) development in blood-stages [19]. It is well documented that P. vivax hypnozoite
activation patterns stratify with climate and geography [11] and recent modelling suggests
transmission potential selects for hypnozoite phenotype [20]. Clearly the ability for P. vivax
to dynamically regulate hypnozoite formation and relapse phenotypes in response to high or
low transmission periods in different climate conditions would confer a significant
evolutionary advantage.

Unfortunately, despite recent advances [21] current approaches for in vitro P. vivax
culture do not support routine maintenance in the laboratory and tools to directly perturb gene
function are not established. This renders studies on P. vivax, particularly its sporozoites and
liver stages, exceedingly difficult. Although in-vitro liver stage assays and humanised mouse
models are being developed [13], they cannot yet support ‘omics analysis of P. vivax liver
stage dormancy. Recent characterization [22] of liver-stage (hypnozoites and schizonts) of P.
cynomolgi (a related and relapsing parasite in macaques) provides valuable insight, but
investigations in P. vivax directly are clearly needed. The systems analysis of P. vivax
sporozoites that reside in the mosquito salivary glands and are poised for transmission and
liver infection offer a key opportunity to gain insight into P. vivax infection. To date, such
characterization of Plasmodium vivax sporozoites is limited [23], and only one recent study,
of P. falciparum [24], has undertaken exploration of epigenetic regulation in sporozoites of
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any Plasmodium species. Here, we present a detailed characterization of the P. vivax
sporozoite transcriptome, proteome and epigenome and use these data to better understand
this key infective stage and the role of sporozoite programming in invasion and infection of
the human host, and development within the host liver.

Results and Discussion

We quantified transcript abundance for 5,714 P. vivax genes (4,991 with a mean transcript per
million (TPM) count > 1.0) at a mean estimated abundance of 175.1 TPM (Additional File 1:
Figure S1 and Additional File 2: Table S1) for P. vivax sporozoites isolated from Anopheles
dirus salivary glands using the recently completed P. vivax P01 assembly and gene models
(see methods). For ease of reference, where one-to-one orthologs are established between the
P01 and previous P. vivax (Sall) reference, we use the Sall gene names in text (both the P01
and Sall gene names are provided for all genes in the supplementary information). Mosquito
infections were generated by membrane feeding of blood samples taken from P. vivax
infected patients in western Thailand (n = 9). Among the most highly transcribed genes in the
infectious sporozoite stage are csp (circumsporozoite protein), five etramps (early transcribed
membrane proteins), including uis3 (up-regulated in infective sporozoites), uis4 and Isap-1
(liver stage associated protein 1), a variety of genes involved in cell transversal and initiation
of invasion, including celtos (cell traversal protein for ookinetes and sporozoites), gest
(gamete egress and sporozoite traversal protein), spect! (sporozoite protein essential for cell
traversal) and siap-!/ (sporozoite invasion associated protein), and genes associated with
translational repression (albal, alba4 and Puf2). Collectively, these genes account for >1/3™
of all transcription in the sporozoite. We found moderate agreement (R*> = 0.35; Additional
File 1: Figure S2) between our RNA-seq data and previous microarray data for P. vivax
sporozoites [23]. Improved transcript detection and quantitation is expected with the
improved technical resolution of RNA-seq over microarray. Supporting this, we find higher
correlation between RNA-seq data from P. vivax and P. falciparum (single replicate
sequenced herein for comparative purposes) sporozoite datasets (R* = 0.42), compared to
either species relative to published microarray data (Additional File 1: Figure S2). Although
microarray supports the high transcription in sporozoites of genes such as uis4, csp, celtos and
several other etramps, 27% and 16% of the most abundant 1% of transcribed genes in our
sporozoite RNA-seq data are absent from the top decile or quartile respectively in the existing
P. vivax sporozoite microarray data [23]. Among these are genes involved in early
invasion/hepatocyte development, such as Isap-1, celtos, gest and siap-1, or translational
repression (e.g., alba-1 and alba-4); orthologs of these genes are also in the top percentile of
transcripts in RNA-seq (see [24] and Additional File 2: Table S2) and (see [25] and
Additional File 2: Table S3) and previous microarray data [26, 27] for P. falciparum and P.
yoelii sporozoites respectively, suggesting many are indeed more abundant than previously
characterized.

Transcription in P. vivax relative to other plasmodia

To gain insight into species-specific aspects of the P. vivax transcriptome, we qualitatively
compared these data with available data from P. falciparum and P. yoelii sporozoites (single
replicate only) for 4,220 and 4,067 single-copy orthologs (SCO) (transcribed at > 1 TPM in P.
vivax infectious sporozoites) shared with P. falciparum (Additional File 2: Table S3) and with
both P. falciparum and P. yoelli (Additional File 2: Table S4) respectively. Genes highly
transcribed in salivary-gland sporozoites of all three species include celtos, gest, trap, siapl,
spectl and puf2. There are 696 P. vivax genes shared as orthologs between P. vivax P01 and
P. vivax Sall lacking a defined SCO in P. falciparum or P. yoelli transcribed at a mean of > 1
TPM in P. vivax salivary-gland sporozoites (Additional File 2: Table S5). Prominent among
these are vir (n=25) and Pv-fam (41 fam-e, 16 fam-b, 14 fam-a, 8 fam-d and 3 fam-h) genes,
as well as, hypothetical proteins or proteins of unknown function (n=212) and, interestingly, a
number of ‘merozoite surface protein’ 3 and 7 homologs (n=5 of each). Both msp3 and msp7
have undergone significant expansion in P. vivax relative to P. falciparum and P. yoelii [28]
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and may have repurposed functions in sporozoites. In addition, there are 69 P. vivax P01
genes lacking a defined ortholog in P. vivax Sall, P. falciparum or P. yoelli transcribed at > 1
TPM in infectious P. vivax sporozoites; most of which are Plasmodium interspersed repeat
(PIR) genes [28] found in telomeric regions of the PO1 assembly and likely absent from the
Sall assembly but present in the Sall genome.

P. vivax sporozoite transcriptional enrichment

To comprehensively identify sporozoite enriched transcripts, we compared the P. vivax
sporozoite transcriptome (Additional File 2: Table S6) to RNA-seq data for P. vivax blood-
stages [29] (the only other RNA-seq data presently available for P. vivax; Fig. 1 and
Additional File 1: Figures S3-5). We identified 1,672 up (Additional File 2: Table S7) and
1,958 down-regulated (Additional File 2: Table S8) transcripts (FDR < 0.05; minimum 2-fold
change in Counts per Million (CPM)) and next explored patterns among these differentially
transcribed genes (DTGs) by protein family (Fig. 1C and Additional File 2: Table S9) and
Gene Ontology (GO) classifications (Additional File 2: Table S10). RNA recognition motifs
(RRM-1 and RRM-6) and helicase domains (Helicase-C and DEAD box helicases) are over-
represented (p-value <0.05) among sporozoite-enriched transcripts, consistent with
translational repression through ribonucleoprotein (RNP) granules [30]. Transcripts encoding
nucleic acid binding domains, such as bromodomains (PF00439; which can also bind lysine-
acetylated proteins), zinc fingers (PF13923) and EF hand domains (PF13499) are also
enriched in sporozoites. Included among these proteins are a putative ApiAP2 transcription
factor (PVX 083040) and a homologue of the Drosophila zinc-binding protein ‘Yippee’
(PVX_099695). Thrombospondin-1 like repeats (TSR: PF00090) and von Willebrand factor
type A domains (PF00092) are enriched in sporozoites as well. In sporozoites, P. falciparum
genes enriched in TSR domains are important in invasion of the mosquito salivary gland (e.g.,
trap) and secretory vesicles released by sporozoites upon entering the vertebrate host (e.g.,
csp) [31]. By comparison, genes up-regulated in blood-stages are enriched for vir gene
domains (PF09687 and PF05796), Tryptophan-Threonine-rich Plasmodium antigens
(PF12319; which are associated with merozoites [32]), markers of cell-division
(PF02493),[33] protein production/degradation (PF00112, PF10584, PF00152, PF09688 and
PF00227) and ATP metabolism (PF08238 and PF12774). 47 of the 343 transcripts unique to
P. vivax sporozoites relative to P. falciparum or P. yoelii are enriched in sporozoites
compared to P. vivax blood stages. Nine of these are in the top decile of transcription, and
include a Pv-fam-e (PVX 089880), a Pf-fam-b homolog (PVX 001710) and 7 proteins of
unknown function. A further nine have an ortholog in P. cynomolgi (which also forms
hypnozoites) but not the closely related P. knowlesi (which does not form hypnozoites) and
include ‘msp7’-like (PVX 082685, PVX 082650 and PVX 082670) and ‘msp3’-like
(PVX _097705) and Pv-fam-e genes (PVX 001100, PVX 089860 and PVX 089810), a
serine-threonine protein kinase (PVX 081395) and a RecQl helicase homolog
(PVX _099345). Notably, the P. cynomolgi ortholog of PVX 081395, PCYB_ 021650, is
transcriptionally enriched in hypnozoites relative to replicating schizonts [22], indicating a
target of significant interest when considering hypnozoite formation and/or biology.

Translational repression machinery

In Plasmodium, translational repression regulates key life-cycle transitions coinciding with
switching between the mosquito and the mammalian host (either as sporozoites or
gametocytes) [30]. For example, although wuis4 is the most abundant transcript in the
infectious sporozoite ([23, 27]; Additional File 2: Table S1), UIS4 is translationally repressed
in this stage [15] and only expressed after hepatocyte invasion [34]. In sporozoites, it is
thought that PUF2 binds to mRNA transcripts and prevents their translation [25], and SAP1
stabilises the repressed transcripts and prevents their degradation [34]. Consistent with this,
Puf2 and SAPI are among the more abundant P. vivax transcripts enriched in the sporozoite
relative to blood-stages. Indeed, Puf2 is among the top percentile of transcripts in infectious
sporozoites. However, our data implicate other genes, many already known to be involved in
translational repression in other Plasmodium stages and other protists [30], that may act in P.

131



Appendix

vivax sporozoites. Notable among these are alba-2 and alba-4, both of which are among the
top 2% of genes transcribed in sporozoites and ~14 to 20-fold more highly transcribed in
sporozoites relative to blood-stages. In addition, P. vivax sporozoites are enriched for genes
encoding RRM-6 RNA helicase domains. Intriguing among these genes are HoMu (homolog
of Musashi) and ptbp (polypyrimidine tract binding protein). Musashi is a master regulator of
eukaryotic stem cell differentiation through translational repression [35] and HoMu localizes
with DOZI and CITH in Plasmodium gametocytes [36]. PTBP is linked to mRNA stability,
splice regulation and translational initiation [37] and may perform a complementary role to
SAPI.

Translational repression in P. vivax sporozoites

More than 700 genes have been identified as being translationally repressed in Plasmodium
berghei (‘rodent malaria’) gametocytes based on DOZI pulldowns [38]. In contrast,
translationally repressed genes have not been characterized in sporozoites in a comprehensive
way. As a step in addressing this, we analysed the P. vivax sporozoite proteome (Additional
File 1: Figure S6 and Additional File 2: Table S11) by mass spectrometry and identified
peptide signals for 2,640 proteins. Among the most highly expressed proteins in sporozoites
were those associated with the apical complex (AMA1, GAMA, RON12, RON3, RONSY),
motility / cell traversal (MYOSIN A, PLP1, TRAP, SIAP1, GEST, SPECT1, CELTOS) and
the inner membrane complex (ISP1/3, IMCla, e, g, h, m and k), which has a key role in
motility and invasion [39]. We identified 2,402 P. vivax genes transcribed in the sporozoite
(TPKM > 1) for which no protein expression was detected. In considering genes that may be
translational repressed (i.e., transcribed but not translated) in the P. vivax sporozoite, we
confine our observations to those transcripts representing the top decile of transcript
abundance to ensure their lack of detection as proteins was not due to limitations in the
detection sensitivity of the proteomic dataset. Notably, ~1/3™ of transcripts in the top decile
of transcriptional abundance (n = 173 of 558) in P. vivax sporozoites were not detectable as
peptides in multiple replicates (Additional File 2: Table S12). Of these 173 putatively
repressed transcripts, 156 and 154 have orthologs in P. falciparum and P. yoelii respectively,
with 89 and 118 of these also not detected as proteins in P. falciparum and P. yoelii salivary-
gland sporozoites [40] despite being identified as transcribed in these stages (see [24, 25];
Additional File 2: Tables S2-4). In addition, a number of genes (e.g., uis4) are expressed in
infectious P. vivax sporozoites at levels many fold lower than their transcription might
indicate (bottom quartile of protein expression, compared with top decile of transcript
abundance). While each putatively repressed transcript will require validation, this system
level approach is supported by immunofluorescent imaging (Additional File 1: Figure S7) of
UIS4 and LISP1 (one known and one proposed here as translationally repressed in P. vivax
sporozoites) relative to TRAP and BiP (which are both transcribed and expressed as protein in
the P. vivax sporozoite; Additional File 2: Table S12).

Development within the host hepatocyte

Following cell traversal and hepatocyte invasion, P. vivax sporozoites establish their
intracellular niche, which includes modification of the parasitophorous vacuole membrane
(PVM) and the parasite then proceeds to replicate as a liver stage. UIS3 and UIS4 are resident
PVM-proteins and are the best characterized proteins under translational repression by
Puf2/SAP1 in infectious sporozoites [41], both of which are essential for liver stage
development [14]. In the present study, uis4 represents 18.8% of transcripts but just 0.06% of
proteins in the sporozoites. Similarly, uis3 is the 7" most abundant transcript in sporozoites,
but represented only by a single peptide count in one proteomic replicate. In addition to uis3
and wuis4, genes involved in liver stage development and under apparent translational
repression in the P. vivax sporozoites include Isap! (liver stage associated protein 1), zipco
(ZIP domain-containing protein), several other etramps (PVX 118680, PVX 003565,
PVX 088870 and PVX 086915), pv! (parasitophorous vacuole protein 1) and lisp/ and lisp2
(PVX_085550 and PVX 000975). The lisp! gene is an intriguing find, and may have an
altered role in P. vivax liver stages (Additional File 1: Figure S7). In P. berghei, lispl is
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essential for rupture of the PVM during liver stage development allowing release of the
merozoite into the host blood stream. Pv-lispl is ~350-fold and ~1,350-fold more highly
transcribed in P. vivax sporozoites compared to sporozoites of either P. falciparum or P.
yoelli (see Additional File 2: Table S4). Also notable among translationally repressed genes in
sporozoites is a putative ‘Yippee’ homolog (PVX_ 099695). Yippee is a DNA-binding protein
that, in humans (YPEL3), suppresses cell growth [42]. Its specific function in Plasmodium,
either in parasite development or on the host interactions, is not yet known. However, that
Yippee-like proteins suppress cell growth/division and appear to be regulated through histone
acetylation [43] is intriguing in the context of a potential role in P. vivax hypnozoite
developmental arrest.

The P. vivax ortholog (PVP01 1016100; no corresponding ortholog is identified in
the P. vivax Sall assembly) of the P. cynomolgi AP2 transcription factor, PCYB_102390,
which was recently designated AP2-Q (i.e., ‘quiescent’) due to its enriched transcription in P.
cynomolgi hypnozoites [22], is also detectable as transcripts but not proteins in P. vivax
sporozoites. This may support a specific role for this transcription factor in hypnozoites.
However, as Pv-AP2-Q is transcribed at an abundance (~50 TPM) at or below which ~>50%
of P. vivax genes are detectable as transcripts but not as proteins, the lack of detected AP2-Q
protein could as likely result from the detection sensitivity of the proteomics data-set as from
translation repression. Furthermore, while AP2-Q is proposed in P. cynomolgi as a possible
hypnozoite marker in part due to its presence in P. cynomolgi, P. vivax and P. ovale (all of
which generate hypnozoites) and reported absence from other Plasmodium species [22].
However, orthologs of this gene are also identified in PlasmoDB for several non-hypnozoite
producing Plasmodium species, such as P. knowlesi, P. gallinaceum and P. inui, raising
questions in regard to its function in these parasite species.

Lastly, while Plasmodium species lack a classical Golgi body, some genes (e.g., golgi
reassembly stacking protein) functioning in protein transport between the Golgi body and the
endoplasmic reticulum have been repurposed for vesicular transport and protein secretion
during invasion [44]. Noting this, several homologs of genes associated with cycling of
proteins between the Golgi body and the ER in other eukaryotes, including COPI-associated
protein (PVX _100850), a putative STF2 (PVX 116780) and Gotl (PVX_090050) appear
under translational repression in P. vivax sporozoites. Interestingly, in liver cells, the
membrane of the parasitophorous vacuole, in which Plasmodium resides, often associates
with the host cell ER and Golgi apparatus and may exploit this association to hijack host
secretory pathways [45]. This may represent a key mechanism underpinning development in
hepatocytes meriting further study.

Apoptosis-inhibition

Also notable among genes apparently translationally repressed in sporozoites are two putative
Bax1l (Bcl-2 associated X protein) inhibitors (PVX 117470 and PVX 101315). Baxl
dimerizes with Bcl-2 to promote intrinsic apoptosis, leading to destruction of the
mitochondrial membrane, caspase release and cell death. Bax1 inhibitor is a component of the
cell stress response to prevent Bax1 from prematurely triggering cell death. When Bax1 is
blocked, Bcl-2 switches from a cell-death to a pro-survival/anti-apoptotic role [46].
Intriguingly, specific suppression of mitochondrial-induced apoptosis has been demonstrated
in liver-cells infected with P. yoelii [47] and this anti-apoptotic signal is blocked by Bcl-2
family inhibitors [48]. Orthologs of both P. vivax encoded Bax1 inhibitors are found in all
Plasmodium species, suggesting a conserved function across the genus. Nonetheless, it is
attractive to contemplate a potential role for these genes in promoting survival of host
hepatocytes following the initial parasite invasion. Notably, the P. cynomolgy orthology of
PVX 101315, PCYB_ 147290, is ~2-fold enriched in transcript abundance in schizonts
compared to hypnozoites, which may indicate a role in repressing hepatocyte cell death
during parasite replication rather than extending its life-span during parasite dormancy. This
is to be explored.

Potential binding motif for Pv-Puf2
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Research in Toxoplasma gondii, has identified a repetitive UGU motif in coding regions of
translationally repressed genes bound by 7g-Puf2 [49] and, presumably, mediating repression.
A similar UGU motif has been identified in the 3’UTR of P. falciparum transcripts (e.g.,
pfs25 and pfs28) and shown to bind PfPUF2 leading to their translational repression [50]. The
binding motif for Pv-PUF2 has not been described. We found one motif (AGAT[TAC]G;
Additional File 1: Figure S8) over-represented in coding regions of putatively repressed
sporozoite transcripts relative to similarly highly transcribed but also translated genes e-value:
1.9¢”). We note the complementarity between AGAT and UGUA, however no over-
represented motifs were detected in the 3’UTRs of these genes. Intriguingly, translational
repression of uis4 in P. berghei does not require the UTR [15]. It may be that the location of
the Puf2-binding motif is somewhat flexible in Plasmodium and other apicomplexan
species. We also identified a similarly over-represented motif ([GT]CGTC[CT]) within
500bp upstream of putatively repressed genes (p-value: 2.2e-9). It is possible this motif is a
binding site for an as yet unattributed transcription factor co-ordinating genes destined for
translational repression in the sporozoite. This motif is comparable to the [AG]JC[AG]TGC
motif identified for Pf~AP2-Sp [24], a transcription factor that is required for sporozoite
development in P. berghei [51], and transcriptionally enriched in P. falciparum [24] and P.
vivax (Additional File 2: Table S7) sporozoites relative to oocysts or blood stages
respectively.

Histone modifications in P. vivax sporozoites

No epigenetic data are currently available for any P. vivax life-cycle stage. Studies of P.
falciparum blood-stages have identified the importance of histone modifications as a primary
epigenetic regulator [52, 53] and characterized key markers of heterochromatin (H3K9me®)
and euchromatin/transcriptional activation (H3K4me® and H3K9ac). Recently, these marks
have been explored with the maturation of P. falciparum sporozoites in the mosquito [24].
Here, we characterize these marks in P. vivax sporozoites and assess their relationship to
transcript abundance. Clearly this is of particular interest as a potential mechanism for
dynamic regulation of sporozoite development in human hepatocytes. We identified 1,506,
1,999 and 5,262 ChIP-seq peaks stably represented in multiple P. vivax sporozoite replicates
and associated with H3K9me®, H3K9ac and H3K4me® histone marks respectively (Fig. 2).
Peak width, spacing and stability differed with histone mark type (Additional File 1: Figures
S9 and S10). H3K4me® peaks were significantly broader (mean width: 1,985 bp) than H3K9
peaks, and covered the greatest breadth of the genome; 36.0% of all bases were stably
associated with H3K4me® marks. This mark was also most stable among replicates, with just
~16% of bases associated with an H3K4me® not supported by more than one biological
replicate. By comparison H3K9me® marks were narrowest (mean width: 796 bp) and least
stable, with 46% of bases associated with this mark supported by just one replicate.
Consistent with observations in P. falciparum H3K9me® ‘heterochromatin’ marks primarily
clustered in telomeric and subtelometric regionsv (Additional File 1: Figure S11). In contrast,
the ‘euchromatin’ / transcriptionally open histone marks, H3K4me® and H3K9ac clustered
around genic regions and did not overlap with regions under H3K9me® suppression. Both
H3K9me® and H3K4me® marks were reasonably uniformly distributed (mean peak spacing
~500bp for each) within their respective regions of the genome. In contrast, H3K9ac peaks
were spaced farther apart (mean: ~2kb), but also with a greater variability in spacing (likely
reflecting their association with promoter regions [54]). The instability of H3K9me®’ may
reflect its use in Plasmodium for regulating variegated expression of contingency genes from
multigene families whose members have overlapping and redundant functions [55] and confer
phenotypic plasticity [56].

Genes under histone regulation

We explored an association between these histone marks and the transcriptional behaviour of
protein coding genes (Fig. 2 and Additional File 2: Tables S13-17). 485 coding genes stably
intersected with an H3K9me’ mark; all are located near the ends of the chromosomal
scaffolds (i.e., are (sub)telomeric). On average, these genes are transcribed at ~30 fold lower
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levels (mean <3 TPKMs) than genes not stably intersected by H3K9me® marks. These data
clearly support the function of this mark in transcriptional silencing. This is largely consistent
with observations in P. falciparum sporozoites [24], however, we observe no instances of
genes that are stably marked by H3K9me® and moderately or highly transcribed regardless.
Whether this relates to differences in epigenetic control between the species is not clear. We
note that (sub)telomeric genes are overall transcriptionally silent in P. vivax sporozoites
relative to blood-stages (Fig. 2a and 2b and Additional File 2: Tables S18-20). Consistent
with observations in P. falciparum [52], the bulk of these genes include complex protein
families, such as vir and Pv-fam genes, which function primarily in blood-stages. Also
notable among the genes are several reticulocyte-binding proteins, including RBP2, 2a, 2b
and 2c. Strikingly, we find no exceptions to this trend in our data, indicating the
(sub)telomeres are remarkably transcriptionally silent in the sporozoite stage. By comparison,
H3K4me® marks are stably associated with the Transcription Start Site (TSS) and/or 5> UTRs
of 3,677 genes. We also identified 1,284 coding genes stably associated with an H3K9ac
mark within 1kb or the TSS, with 179 of these genes stably marked also by H3K4me®. The
average transcription of these genes is 116, 180 and 199 TPKMs respectively (39, 60 and 66-
fold higher than H3K9me® marked genes). These data su?port the role of these marks in
transcriptional activation, the lower abundance of H3K4me™ marker, compared with H3K9ac
or H3K9ac and H3K4me® marked genes suggest these marks work synergistically and that
H3K09ac is possibly the better single mark indicator of transcriptional activity in P. vivax. This
is consistent with recent observations in P. falciparum sporozoites [24].

Interestingly, H3K9ac-marked genes ranged in transcriptional activity from the most
abundantly transcribed genes to many in the lower 50% and even lowest decile of
transcription. This suggests more contributes to transcriptional activation in P. vivax than,
simply, gene accessibility through chromatin regulation. Specific activation by a transcription
factor (e.g., ApiAP2s [57]) is the most obvious candidate. To explore this, we compared
upstream regions (within 1kb of the TSS or up to the 3’ end of the next gene upstream,
whichever was less) of highly (top 10%) and lowly (bottom 10%) transcribed H3K9ac
marked genes for over-represented sequence motifs that might coincide with known ApiAP2
transcription factor binding sites [58]. We identified these based on the location of the nearest
stable H3K9ac peak relative to the transcription start site for each gene (Additional File 1:
Figure S12). In most instances, these peaks were within 100bp of the TSS and, consistent
with data from P. falciparum [54], P. vivax promoters appear to be no more than a few
hundred to a maximum of 1000 bp upstream of the TSS. Exploring these regions, we
identified two over-represented motifs: TGTACMA (e-value 2.7¢) and ATATTTH (e-value
3.3¢”) (Fig. 2D). TGTAC is consistent with the known binding site for P~AP2-G, which
regulates sexual differentiation in gametocytes [59], but its P. vivax ortholog (PVX 123760)
is neither highly transcribed nor expressed in sporozoites. It may be that some genes encoding
this domain are active in both sporozoites and gametocytes, but regulated by different
mechanisms in each stage. Alternatively, this motif may represent a binding site for another,
as yet uncharacterized transcription factor (e.g., PVX 083040). ATATTTH is similar to the
binding motif for Pf~AP2-L (AATTTCC), a transcription factor that is important for liver
stage development in P. berghei [60]. In contrast to AP2-G, Pv-AP2-L (PVX 081180) is in
the top 10% of transcription and expression in P. vivax sporozoites and enriched relative to
blood-stages. In P. vivax sporozoites, the ATATTTH motif is associated with a number of
highly transcribed genes, including lisp/ and uis2-4, known to be regulated by AP2-L in P.
berghei [60] as well as many of the most highly transcribed, H3K9ac marked genes, including
two etramps (PVX_086815 and PVX 088870), several RNA-binding proteins, including
Puf2, ddx5 and a dead-box helicase (PVX 123240), as well as one of the putative bax/
inhibitors (PVX 101315). Interestingly, a number of highly transcribed and translationally
repressed genes associated with the ATATTTH motif, including uis4, siap2 and pvi, are not
stably marked by H3K9ac in all replicates (i.e., there is significant variation in the placement
of the H3K9ac peak or their presence/absence among replicates for these genes). It may be
that additional histone modifications, for example H3K27me or H2 or H4 modifications, are
involved in regulating transcription of these genes. Certainly H2A.Z, which is present in P.
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falciparum, and controls temperature responses in plants [61] is intriguing as a potential mark
regulating sporozoite fate in P. vivax considering the association between hypnozoite
activation rate and climate [11].

Conclusions

We provide the first comprehensive study of the transcriptome, proteome and epigenome of
infectious Plasmodium vivax sporozoites and the only study to integrate ‘omics investigation
of the sporozoite of any Plasmodium species. These data support the proposal that the
sporozoite is a highly-programmed stage that is primed for invasion of and development in
the host hepatocyte. Translational repression clearly plays a major role in shaping this stage,
with many of the genes proposed here as being under translational repression are involved in
hepatocyte infection and early liver-stage development. We highlight a major role for RNA-
binding proteins, including PUF2, ALBA2/4 and, intriguingly, ‘Homologue of Musashi’
(HoMu). Noting that HoMu uses translational repression to regulate, in Drosophila, stem cell,
and, in Plasmodium, gametocyte differentiation, it is intriguing to contemplate its potential
role in setting liver-stage developmental fate. Identifying the sporozoite transcripts regulated
by HoMu and other RNA binding proteins should be a key priority. As should in-depth
comparative analysis using similar approaches of differences between/among relapsing and
non-relapsing Plasmodium species, as well as, P. vivax field isolates with distinct, hypnozoite
phenotypes. Our study provides a key foundation for understanding the early stages of
hepatocyte infection and the developmental switch between liver trophozoite and hypnozoite
formation. Importantly, it is a major first step in rationally prioritizing targets underpinning
liver-stage differentiation for functional evaluation in humanized mouse and simian models
for relapsing Plasmodium species and identifying novel avenues to understand and eradicate
liver-stage infections.

Methods

Material collection, isolation and preparation

Nine field isolates (PvSpz-Thai 1 to 9), representing symptomatic blood-stage malaria
infections were collected as venous blood (20 mL) from patients presenting at malaria clinics
in Tak and Ubon Ratchatani provinces in Thailand. Each isolate was used to establish,
infections in Anopheles dirus colonized at Mahidol University (Bangkok) by membrane
feeding [13], after14-16 days post blood feeding, ~3-15 million sporozoites were harvested
per field isolate from the salivary glands of up to 1,000 of these mosquitoes as per [62] and
shipped in preservative (trizol (RNA/DNA) or 1% paraformaldehyde (DNA for ChiP-seq)) to
the Walter and Eliza Hall Institute (WEHI).

Transcriptomics sequencing and differential analysis
Upon arrival at WEHI, messenger RNAs were purified from an aliquot (~0.5-1 million
sporozoites) of each P. vivax field isolate as per [29] and subjected to RNA-seq on Illumina
NextSeq using TruSeq library construction chemistry as per the manufacturer’s instructions.
Raw reads for each RNA-seq replicate are available through the Sequence Read Archive
(XXX-XXX). Sequencing adaptors were removed and low quality reads trimmed and filtered
using Trimmomatic v. 0.36 [63]. To remove host contaminants, processed reads were aligned,
as single-end reads, to the Anopholes dirus wrari2 genome (VectorBase version W1) using
Bowtie2[64] (--very-sensitive preset). All non-host reads were then aligned to the manually
curated transcripts of the P. vivax P01 genome
(http://www.genedb.org/Homepage/PvivaxP01) using RSEM [65] (pertinent settings: --
bowtie2 --bowtie2-sensitivity-level very sensitive --calc-ci --ci-memory 10240 --estimate-
rspd --paired-end). Transcript abundance for each gene in each replicate was calculated by
RSEM as raw count, posterior mean estimate expected counts (pme-EC) and transcripts per
million (TPM).

Transcriptional abundance in P. vivax sporozoites was compared qualitatively (by
ranked abundance) with previously published microarray data for P. vivax salivary-gland
sporozoites [23]. As a further quality control, these RNA-seq data were compared also with
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previously published microarray data for P. falciparum salivary-gland sporozoites [26], as
well as RNA-seq data from salivary-gland sporozoites generated here for P. falciparum
(single replicate generated from P. falciparum 3D7 lab cultures isolated from Anopholes
stephensi and processed as above) and previously published for P. yoelii [25]. RNA-seq data
from these additional Plasmodium species were (re)analysed from raw reads and
transcriptional abundance for each species was determined (raw counts and pme-EC and TPM
data) as described above using gene models current as of 04-10-2016 (PlasmoDB release
v29). Interspecific transcriptional behaviour was qualitatively compared by relative ranked
abundance in each species using TPM data for single copy orthologs (SCOs; defined in
PlasmoDB) only, shared between P. vivax and P. faliciparum or shared among P. vivax, P.
falciparum and P. yoelii.

To define sporozoite-enriched transcripts, we remapped raw reads representing early
(18-24 hours post-infection (HPI)), mid (30-40 HPI) and late (42-46 HPI) P. vivax blood-
stage infections recently published by Zhu et al [29] to the P. vivax P01 transcripts using
RSEM as above. All replicate data was assessed for mapping metrics, transcript saturation
and other standard QC metrics using QualiMap v 2.1.3 [66]. Differential transcription
between P. vivax salivary-gland sporozoites and mixed blood-stages [29] was assessed using
pme-EC data in EdgeR [67] (differential transcription cut-off: > 2-fold change in counts per
million (CPM) and a False Discovery Rate (FDR) < 0.05). Pearson Chi squared tests were
used to detect over-represented Pfam domains and Gene Ontology (GO) terms among
differentially transcribed genes in sporozoites (Bonferroni-corrected p < 0.05), based on gene
annotations in PlasmoDB (release v29).

Proteomic sequencing and quantitative analysis

Aliquots of ~107 salivary-gland sporozoites were generated from PvSpz-Thail and PvSpz-
Thai6 isolates, purified on an Accudenz gradient per [62] and shipped on dry ice (protein) to
the Center for Infectious Disease Research (CIDR). These cells were lysed in 2x Sample
Buffer and their proteins separated by SDS-PAGE per [40]. For the whole proteome analysis,
each gel was run out 52 mm and cut into 27-29 fractions using a grid cutter (Gel Company,
San Francisco, CA). Pooled peptides in each gel fraction were reduced in dithiothreitol /
ammonium bicarbonate, and digested for 4.5 hours at 36 °C in 6.25 ng/mL trypsin under
vortex at 700 RPM. The supernatant was recovered and peptides were extracted by incubating
the gel in 2% (v/v) acetonitrile/1% (v/v) formic acid. Supernatant after three extractions was
combined with the digest supernatant, evaporated to dryness in a rotary vacuum, and
reconstituted in HPLC loading buffer consisting of 2% (v/v) acetonitrile/0.2% (v/v)
trifluoroacetic acid. Nanoflow liquid chromatography (nanoLC) was performed using an
Agilent 1100 nano pump with electronically controlled split flow or a Proxeon Easy nLC.
Peptides were separated on a column with an integrated fritted tip (360 pm outer diameter
(0.D.), 75 pm inner diameter (I.D.), 15 um LD. tip; New Objective) packed in-house with a
20 cm bed of C18 (Dr. Maisch ReproSil-Pur C18-AQ, 120 A, 3 um; Ammerbuch-Entringen,
Germany). Tandem mass spectrometry (MS/MS) was performed with an LTQ Velos Pro-
Orbitrap Elite (Thermo Fisher Scientific). Two nanoLC-MS technical replicates were
performed for each fraction, with roughly half the available sample injected for each
replicate. The mass spectrometry data generated for this manuscript, along with the search
parameters, analysis parameters and protein databases can be downloaded from PeptideAtlas
(www.peptideatlas.org) using the identifier #####.

Mass spectrometer output files were converted to .mZML format using MSConvert
version 2.2.0 (whole proteome data) or 3.0.5533 (surface-labeled data) [68] and searched with
X!Tandem [69] version 2013.06.15.1 JACKHAMMER and Comet version 2015.02 rev.0.[70]
MS/MS data were analyzed using the Trans-Proteomic Pipeline[71] version 4.8.0 PHILAE.
Peptide spectrum matches (PSM) generated by each search engine were analyzed separately
with PeptideProphet [72] and combined in iProphet.[73] Protein identifications were inferred
with ProteinProphet [74]. In the case that multiple proteins were inferred at equal confidence
by a set of peptides, the inference was counted as a single identification and all relevant
protein IDs were listed. Only proteins with ProteinProphet probabilities corresponding to a
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model-estimated false discovery rate (FDR) less than 1.0 % were reported. Spectra were
searched against a protein sequence database comprised of P. vivax P01 (version 29,
www.plasmodb.org), An. stephensi SDA 500 (version 1.3, www.vectorbase.org), and a
modified version of the common Repository of Adventitious Proteins (version 2012.01.01,
www.thegpm.org/cRAP) with the Sigma Universal Standard Proteins removed and the LC
calibration standard peptide [Glu-1] fibrinopeptide B appended. Label-free proteomics
methods based on spectral counts (SpC) were used to identify proteins that were significantly
more abundant in labeled samples compared to unlabeled controls. The SpC for a given
protein in a given biological replicate was taken as the number of PSM used by
ProteinProphet to make the protein inference. All SpC values were increased by one in order
to give all proteins non-zero SpC values for log-transformation [75]. The spectral abundance
factor (SAF) for a given protein was calculated as the quotient of the SpC and the protein's
length and natural log-transformed to In(SAF) [76]. For a more detailed description of the
proteome data collection process and analysis please refer to manuscript by Swearingen et al
(submitted).

To identify genes likely under translational repression in the P. vivax sporozoite, we
examined these data for genes that were highly transcribed (top 10 percentile) but for which
we could find no evidence of protein expression in any sporozoite replicate. In addition, we
conducted abundance ranked comparisons between the mean transcriptional abundance of
each P. vivax gene in sporozoites (see above) and the mean quantitative abundance of its
protein in our expressional data. Genes were sorted on the differential between their relative
transcription and relative expression ranking to identify highly transcribed genes with
substantially lower expression relative to their transcriptional abundance.

Salivary-gland sporozoite and liver-stage immunofluorescence assays (IFAs)

IFAs were performed as per [13]. Liver stages were obtained from 10um formalin fixed
paraffin embedded day 7 liver stages generated previously [13] from FRG knockout huHep
mice;[13] these were deparaffinized prior to staining. Fresh salivary-gland sporozoites were
fixed in acetone per [13]. All cells were incubated twice for 3 minutes in Xylene, then 100%
Ethanol, and finally once for 3 minutes each in 95%, 70%, and 50% Ethanol. The cells were
rinsed in DI water and permeabilized immediately in 1XTBS, containing Triton X-100 and
30% hydrogen peroxide. The cells were blocked in 5% milk in 1XTBS. The hepatocytes were
stained overnight with a rabbit polyclonal LISP1 antibody (A), a rabbit polyclonal UIS4
antibody (B), and a rabbit polyclonal BIP antibody (C) in blocking buffer. The cells were
washed with 1XTBS and the primary antibodies were detected with goat anti-rabbit Alexa
Fluor 488 antibody (Life Technologies). The cells were washed in 1XTBS. The hepatocytes
were rinsed in KMNO4 and washed in 1XTBS. The cells were incubated in DAPI for 5
minutes.

Histone ChIP sequencing and analysis

Aliquots of 2 — 6 million freshly isolated sporozoites were fixed with 1% paraformaldehyde
for 10 min at 37°C and the reaction subsequently quenched by adding glycine to a final
concentration of 125 mM. After three washes with PBS, sporozoite pellets were stored at -
80°C and shipped to Australia. Nuclei were released from the sporozoites by dounce
homogenization in lysis buffer (10 mM Hepes pH 7.9, 10 mM KCI, 0.1 mM EDTA, 0.1 mM
EDTA, 1 mM DTT, 1x EDTA-free protease inhibitor cocktail (Roche), 0.25% NP40). Nuclei
were pelleted by centrifugation at 21,000 g for 10 min at 4°C and resuspended in SDS lysis
buffer (1% SDS, 10 mM EDTA, 50 mM Tris pH 8.1, 1x EDTA-free protease inhibitor
cocktail). Chromatin was sheared into 200—1000 bp fragments by sonication for 16 cycles in
30 sec intervals (on/off, high setting) using a Bioruptor (Diagenode) and diluted 1:10 in ChIP
dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris pH 8.1, 150
mM NaCl). Chromatin was precleared for 1 hour with protein A/G sepharose (4FastFlow, GE
Healthcare) equilibrated in 0.1% BSA in ChIP dilution buffer. Chromatin from 3 x 10° nuclei
was taken aside as input material. Chromatin from approximately 3 x 10° sporozoite nuclei
was used for each ChIP. ChIP was carried out over night at 4°C with 5 pg of antibody
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(H3K9me3 (Active Motif), H3K4me3 (Abcam), H3K9ac (Upstate), H4K16ac (Abcam)) and
10 pl each of equilibrated protein A and G sepharose beads (4FastFlow, GE Healthcare).
After washes in low-salt, high-salt, LiCl, and TE buffers (EZ-ChIP Kit, Millipore),
precipitated complexes were eluted in 1% SDS, 0.1 M NaHCO; Cross-linking of the immune
complexes and input material was reversed for 6 hours at 45°C after addition of 500 mM
NaCl and 20 pg/ml of proteinase K (NEB). DNA was purified using the MinElute® PCR
purification kit (Qiagen) and paired-end sequenced on Illumina NextSeq using TruSeq library
construction chemistry as per the manufacturer’s instructions. Raw reads for each ChIP-seq
replicate are available through the Sequence Read Archive (XXX-XXX).

Fastq files were checked for quality using fastqc
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and adapter sequences were
trimmed using cutadapt [77]. Paired end reads were mapped to the P. vivax POl strain
genome annotation using Bowtie2 [64]. The alignment files were converted to Bam format,
sorted and indexed using Samtools [78]. ChIP peaks were called relative to input using
MACS2[79] in paired end mode with a q value less than or equal to 0.01. Peaks and peak
summits were converted to sorted BED files. Bedtools intersect[80] was used to identify
genes that intersected H3K9me3 peaks and Bedtools closest was used to identify genes that
were closest to and downstream of H3K9ac and H3K4me3 peak summits.

Sequence motif analysis

Conserved sequence motifs were identified using the program DREME [81]. Only genes in
the top decile of transcription showing no evidence of protein expression in multiple salivary-
gland sporozoite replicates were considered as putatively translationally repressed (n = 170).
We queried coding regions and regions upstream of the transcriptional start site (TSS) for
each gene, defined by Zhu et al [29] and/or predicted here from all RNA-seq data using the
Tuxedo suite [82], for enriched sequence motifs in comparison to 170 genes found to be in
the top decile of both transcriptional and expressional abundance in the same sporozoite
replicates. In searching for motifs associated with highly transcribed genes with stable
H3K9ac marks within 1kb of the TSS (or up to the 3’ end of the next gene upstream), we
compared H3K9ac marked genes in the top decile of transcription to the same number of
H3K9ac marked genes in the bottom decile of transcription. In both instances, an e-value
threshold of 0.05 was considered the minimum threshold for statistical significance.
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Figures

Fig. 1 Differential transcription between Plasmodium vivax salivary-gland sporozoites
and blood-stages. a BCV plot showing separation between blood-stage (black) and
salivary-gland sporozoite (red) biological replicates. b Volcano plot of distribution of
fold-changes (FC) in transcription between blood-stages and salivary-gland sporozoites
relative to statistical significance threshold (False Discovery Rate (FDR) < 0.05). Positive
FC represents enriched transcription in the sporozoite stage. ¢ Mirror plot showing
pFam domains statistically significantly (FDR < 0.05) over-represented in salivary-gland
sporozoite enriched (red) or blood-stage enriched (black) transcripts. Scale bar
truncated for presentation. * - 55 PRESAN domains are in this dataset. ** - 99 Vir
domains are in this dataset.
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Fig. 2 Histone epigenetics relative to transcriptional behaviour in salivary-gland
sporozoites. a Representative H3K9me3, H3K4me3 and H3K9ac ChIP-seq data (grey)
from a representative chromosome (P. vivax P01 Chr5) relative to mRNA transcription
in salivary-gland sporozoites (black) and blood-stages (black). Small numbers to top left
of each row show data range. b Salivary-gland sporozoite transcription relative to
nearest stable histone epigenetic marks. Numbers at the top of the figure represent total
genes included in each category. Numbers within in box plot represent mean
transcription in transcripts per million (TPM). ¢ Sequence motifs enriched within 1kb
upstream of the Transcription Start Site of highly transcribed (top 10%) relative to
lowly transcribed genes associated with H3K9ac marks in salivary-gland sporozoites. d
Relative transcription of (sub)telomeric genes in P. vivax salivary-gland sporozoites and
blood-stages categorized by gene sets enriched in blood-stages (blue), salivary
sporzoites (red) or not stage enriched (grey). Numbers in each box show mean
transcription in TPM.
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