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SUMMARY	

Malaria is a life-threatening infectious disease caused by Plasmodium parasites transmitted to humans through 
bites of infected Anopheles mosquitos. An estimated 445,000 people die every year by an infection with 
Plasmodium parasites, most of them children living in sub-Saharan Africa. As a result of increased malaria 
control, the mortality was greatly reduced in the last decades. To develop new tools for elimination and to 
evaluate the impact of control, a good understanding of the epidemiology and biology of malaria parasites is 
required. 

Studies of infection and transmission dynamics of Plasmodium parasites were greatly improved by 
distinguishing individual parasite clones and monitoring their infection dynamics over time. In regions with high 
transmission of Plasmodium parasites, individuals are often infected with several clones concurrently. 
Individual parasites clones can be identified by genotyping. The current standard method used for genotyping 
is amplification of highly length-polymorphic merozoite surface protein 2 (msp2) or other antigen genes 
followed by sizing of the amplicon by capillary electrophoresis (CE). The sensitivity to detect low-abundant 
clones (minority clones) of msp2-CE genotyping is however limited, resulting in an underestimation of 
multiplicity of infection (MOI). A shortfall of this genotyping method is that frequency of individual clones within 
a sample cannot be determined. This urges the search for new genotyping methods that rely on sequencing 
of genomic fragments with extensive single nucleotide polymorphism (SNP). 

Improvement in next generation sequencing (NGS) technologies permitted the use of amplicon sequencing 
(Amp-Seq) in epidemiological studies. Genotyping by amplicon sequencing has a higher sensitivity to detect 
minority clones, can quantify the frequency of each clone within a sample, and allows the use of SNP 
polymorphic markers. In the frame of this thesis, a new Amp-Seq genotyping assay was developed, including 
known SNP polymorphic markers, and novel marker ‘cpmp’, as well as a bioinformatic analysis workflow. This 
genotyping assay was applied on field samples from a longitudinal study conducted in Papua New Guinea. A 
comparison to msp2-CE genotyping confirmed the higher sensitivity to detect minority clones by Amp-Seq 
genotyping method and showed a significant underestimation of MOI by classical size polymorphic marker. 
However, no significant increase in molecular force of infection (molFOI), i.e. number of new infections per 
individual per year, was observed.  

Quantification of the frequency of individual clones in longitudinal samples permitted to infer multi-locus 
haplotypes. Multi-locus haplotypes increased discriminatory power of genotyping and robustly distinguished 
new infections from those detected in an individual earlier. For calculating the density of clones from multi-
clone infections the within-host clone frequency is multiplied by parasitaemia of this infection determined by 
quantitative PCR. Density of individual parasites clones in multi-clone infections over time is a new parameter 
for epidemiological studies. It will permit to study the dynamics, and thus fitness, of parasite clones exposed 
to within-host competition or to acquired natural immunity. 

NGS also gained great importance in gene expression studies of Plasmodium parasites in patient samples. 
Transcriptome studies are complicated by the mixture of different developmental stages present concurrently 
in samples collected from patients. Even in in vitro cultured samples after tight synchronisation or enrichment 
of a specific developmental stage, small fractions of other development stages are still found. This problem is 
of particular relevance for P. vivax, as the absence of continuous in vitro culture so far has hampered the study 
of isolated parasite stages. For example, the transcriptome of P. vivax gametocytes, one of the stages found 
in peripheral blood and infective to mosquitos, has not yet been described. 

A solution for differentiating mixed transcription may come from deconvolution methods, which either infer the 
stage proportion in samples or stage-specific transcriptome signatures. A large selection of different 
deconvolution methods has been developed for the analysis of heterogeneous tissues, e.g. cancer tissues or 
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hematopoietic cell, but these methods have rarely been applied to mixed stages of malaria parasites. The best 
suited combination of normalisation and deconvolution methods for analysis of RNA sequencing (RNA-Seq) 
data from mixed-stage samples of Plasmodium parasites was evaluated based on experimentally mixed highly 
synchronised blood stages. Normalisation by count per million and deconvolution with a negative binomial 
regression model followed by selection of genes with significant fold change resulted in the best agreement 
with transcriptomes as observed in single stages. This strategy can easily be transferred to Plasmodium field 
samples with known stage proportions. This analysis performed in cultured parasites of defined mixed stages 
served as proof-of-concept and confirmed that identification of stage-specific genes is feasible also in field 
samples, notably in species that cannot be cultivated, such as P. vivax. 

NGS permits fundamentally new approaches to study Plasmodium parasites. This thesis presents a novel 
marker and data analysis platform for highly sensitive P. falciparum genotyping. Furthermore, a best practice 
workflow was identified to infer stage-specific gene expression from parasite infections consisting of mixed 
developmental stages. This provides a crucial tool for the analysis of gene expression data generated from 
Plasmodium field samples. 
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CHAPTER	1: INTRODUCTION	

1.1 MALARIA	

Malaria is a life-threatening infectious disease caused by Plasmodium parasites. Plasmodia are transmitted to 
humans through bites of infected Anopheles mosquitoes. Today, no human should die from an infection with 
Plasmodium, as an infection with Plasmodium parasites can be prevented and treated [1]. However, in 2016, 
about 216 million cases of malaria resulting in an estimated 445,000 deaths were reported worldwide by the 
World Health Organization (WHO) (Figure 1) [2]. Most deaths occur among children living in Africa [3]. Even 
though mortality was reduced by half in the last 10 years (881,000 deaths in 2006 [4]), more has to be done 
to reach zero mortality. To achieve this goal, further research into the epidemiology and biology of malaria 
parasites is required. 

 
Figure 1: World map of indigenous cases of Plasmodium infection (source World Malaria Report 2017) 

Human malaria exists since pre-historical times and the associated fever was already described in ancient 
times in China, the Middle East, India and the Mediterranean area [5]. But the parasites causing this fever 
were only discovered in the 19th century [5]. At the beginning of the 20th century first attempts to control malaria 
were undertaken by minimising mosquito to human contacts to prevent transmission [5]. At the same time, 
efforts were undertaken to decrease the mosquito breeding sites by draining marshes [6]. In the 1940s, with 
the development of residual insecticides and synthetic anti-malarials further achievements in malaria control 
were made [7,8]. Encouraged by this success, in 1955 the WHO formulated a plan for worldwide malaria 
eradication (Global Malaria Eradication Programme, GMEP) [6,9], resulting in elimination of Plasmodium in 
Europa and USA [6]. The GMEP was stopped in 1969 [6]. The emergence of mosquito resistance to 
insecticides and parasite resistance to anti-malarials was one reason of the eradication campaign failure 
[7,8,10]. Another reason was that little effect was achieved in some continental tropical countries of Asia, South 
America and Africa [9]. The operational logistic was often too complex for countries with weak infrastructure 
[9]. The subsequent weakening of the control efforts resulted in a resurge of malaria [6]. Since then, several 
programs were launched and organisations founded to coordinate the control of malaria globally, e.g. the Roll 
Back Malaria (RBM) partnership [9]. Global eradication of malaria was put back on the global agenda in 2007 
when Bill and Melinda Gates announced not just to treat malaria or to control it, but to plan a long-term course 
to eradication [11].  

FIG. 1.1.

Countries and territories with indigenous cases in 2000 and their status by 2016 Countries with zero 
indigenous cases over at least the past 3 consecutive years are eligible to request certification of 
malaria free status from WHO. All countries in the WHO European Region reported zero indigenous 
cases in 2016. Kyrgyzstan and Sri Lanka were certified malaria free in 2016. Source: WHO database

TABLE 1.1.

GTS: Global targets for 2030 and milestones for 2020 and 2025 (1) 

Vision – A world free of malaria

Pillars

Pillar 1 Ensure universal access to malaria prevention, diagnosis and treatment

Pillar 2 Accelerate efforts towards elimination and attainment of malaria free status

Pillar 3 Transform malaria surveillance into a core intervention

Goals
Milestones Targets

2020 2025 2030

1. Reduce malaria mortality rates 
globally compared with 2015 At least 40% At least 75% At least 90%

2. Reduce malaria case incidence 
globally compared with 2015 At least 40% At least 75% At least 90%

3. Eliminate malaria from countries in 
which malaria was transmitted in 2015 At least 10 countries At least 20 countries At least 35 countries

4. Prevent re-establishment of malaria 
in all countries that are malaria free

Re-establishment 
prevented

Re-establishment 
prevented

Re-establishment 
prevented

GTS, Global technical strategy for malaria 2016–2030

■  ≥1 cases
■  Zero cases in 2016
■  Zero cases (≥3 years)

■  Certified malaria free since year 2000
■  No malaria
■  Not applicable

WORLD MALARIA REPORT 2017 3
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Today, the main strategies to control malaria are to prevent transmission by indoor residual spraying (IRS), 
insecticide-treated bed nets (ITNs), and rapid treatment of the patient. However, gametocytes, that represent 
the human infective reservoir to mosquitoes, are only partially cleared by artemisinin combination therapy 
(ACT) [12]. Only treatment with low-dose Primaquine (PQ) clears P. falciparum gametocytes [12,13]. In 
addition, adults in endemic countries infected with Plasmodium are often asymptomatic and therefore 
undiagnosed [14]. Currently it is unclear how much they contribute to the transmission from human to 
mosquitoes, but infection of mosquitos feeding on asymptomatic individuals has been reported [15]. A vaccine 
might be a key tool for malaria elimination. After decades of research, the first vaccine against P. falciparum 
sporozoites RTS,S completed clinical trial phase III and was approved by the European Medicines Agency in 
2015. However, the efficacy of RTS,S for children between 5-17 months is only ~50% [16]. 

To reach malaria elimination, a better understanding of the epidemiology and molecular biology of the parasite 
is needed. In the last decade, next-generation sequencing technology (NGS) has permitted fundamentally new 
approaches to study biology, and it also has great potential to study infectious diseases. NGS approaches 
applied to malaria parasites, however, yield unique challenges to data analysis. In this thesis, novel 
approaches are presented to analyse NGS data from isolates containing mixed clones or mixed parasite life 
stages. 

 

1.1.1 Plasmodium	species	

Plasmodium parasites are Protozoa belonging to the phylum apicomplexa. They evolved over thousands of 
years and are widespread in reptiles, birds and mammals [5]. All Plasmodium parasites need two hosts in their 
life cycle, a dipteran insect host and a vertebrate host [5]. The sexual reproduction occurs always in the insect 
host. Over 250 Plasmodium species are known to infect vertebrates [17]. More than one hundred of these are 
transmitted by mosquitoes  

Five Plasmodium species are known to cause malaria in humans: P. falciparum, P. vivax, P. malariae, P. 
knowlesi, P. ovale (with subspecies P. ovale wallikeri and P. ovale curtisi) (Figure 2). Of these 6 species, P. 
falciparum and P. vivax are by far the most prevalent ones. P. falciparum occurs worldwide and is the 
predominant species in Africa. P. falciparum is almost exclusively responsible for malaria mortality (99% of 
deaths) [2]. P. vivax predominates in Latin America, India and South East Asia, and threatens almost 40% of 
the world’s population [18]. All human Plasmodium species are transmitted by the Anopheles mosquito [19]. 

The high mortality and morbidity of Malaria had selective pressure on the human genome. Several genetic 
modification evolved that give a certain degree of protection against infection or severe malaria, like sickle cell 
disease, thalassaemia, glucose-6-phosphate dehydrogenase (G6PD) deficiency and the absence of Duffy 
antigens on red blood cells [20,21]. 

 

1.1.2 Life	cycle	of	the	human	malaria	parasites	

Plasmodia have a complex life cycle (Figure 3) [19,22]. The first step of a human infection, the exo-erythrocytic 
cycle (duration ~8 days), starts with the bite of an infected mosquito vector [23,24]. The mosquito injects 
sporozoites into the dermis of the skin, where they transmigrate the dermal tissues to reach small blood vessels 
and via circulating blood migrate to the liver. In the liver, sporozoites invade liver cells and develop into liver 
trophozoites. The trophozoite develops further into a schizont, which consist of thousands of merozoites. Upon 
infection of the liver with sporozoites, P. vivax, P. cynomolgi and P. ovale form additional dormant stages called 
‘hypnozoites’ [19,25,26]. The hypnozoites cause clinical relapses weeks to months after the first infection. 
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Figure 2: Maximum likelihood phylogenetic tree of Plasmodium genus. Silhouettes show host of the different 
species. (image source Rutledge et al. 2017).  

 

Erythrocytic cycle (duration ~48h), begin with release of the liver merozoites into the blood stream. In the blood 
stream, the merozoites invade red blood cells (RBC), where they develop in ~32h into trophozoites [19,27]. 
The trophozoites develop further into schizonts, which contain 12-32 merozoites [19]. These merozoites are 
then again released into the blood stream, and invade new RBCs.  

Some of the merozoites develop in the RBC into male or female gametocytes. With the ingestion of 
gametocytes during the blood meal by a female mosquito (2-5µl of blood [28]), the sexual cycle begins, called 
sporogonic cycle. In the midgut of the mosquito the ingested female and male gametocytes develop into 
macrogametes and 8 microgametes formed from the microgametocytes by exflagellation. After fertilization a 
diploid zygote is formed which further develops in to an ookinete. The ookinete transmigrates the peritrophic 
membrane and midgut epithelium. For about 2 weeks the parasite remains underneath the basal membrane 
of the midgut and develops into an oocyst which contains thousands of sporozoites finally released into the 
haemocoel of the mosquito [29]. Sporozoites migrate to the salivary glands and dozens or up to a few hundred 
are injected into the dermis of the human skin when the mosquito takes a next blood meal. 

Hypnozoites present a particular challenge to the control and elimination of P. vivax, as drugs against blood 
stages do not target them, which results in frequent relapses. Hypnozoites can only be cleared with the drug 
Primaquine (PQ). Treatment with PQ lasts for 14 days and can cause haemolysis in patients with G6PD 
deficiency [30], which is prevalent across most of the malaria-endemic countries [31]. Development of new 
drugs targeting the hypnozoite stage is therefore urgently needed.  
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Figure 3: Life cycle of Plasmodium vivax (image modified from CDC) 
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1.2 MOLECULAR	EPIDEMIOLOGY	OF	MALARIA		

1.2.1 Molecular	Epidemiological	Parameters	

Identification of individual clones and monitoring them in the course of an infection is an important aspect of 
epidemiological studies on parasite infection and transmission dynamics. Several parameters are used to 
describe the dynamics of malaria infectious and to measure the outcome of interventions. Important molecular 
epidemiological parameters for Plasmodium infections are multiplicity of infection (MOI), duration of infection, 
and molecular force of infection (molFOI) [32]. 

Multiplicity of infection (MOI) is defined as the number of co-infecting parasite clones. Individuals in countries 
with high transmission of Plasmodia are often infected with several clones concurrently [33,34] This 
superinfection can be caused by multiple infective mosquito bites or by a single mosquito bite injecting multiple 
genetically distinct parasite clones. 

Molecular force of infection (molFOI) is defined as the number of genetically distinct new infections acquired 
over time. It is a measure of exposure. It provides a robust measure of transmission as it differentiates between 
persistent and new infections. Longitudinal studies are needed to determine molFOI.  

Duration of infection for untreated Plasmodium infections is defined as the time from the first observation of a 
parasite clone in the blood until clearance of this clone by the human immune system. The duration of infection 
depends on the age, it was found to be longest in children of 5-9 years with a duration of ~180 days [35]. 

Parasitaemia is defined as the parasite load respective density in the blood. Parasite density is either 
determined by light microscopy (LM) of Giemsa-stained blood smears (limit of detection ~100 parasites per μl 
of blood), or by qPCR of single- or multi-copy genes (limit of detection ~3 parasite per μl of blood or lower)[36]. 
The parasite density in the blood of an infected individual is influenced by several factors [37]. For example, 
the parasite load depends on: (i) the acquired immunity of the host with children often showing higher parasite 
densities; (ii) the duration of an infection, with longer persisting infection showing lower parasite densities; and 
(iii), for P. falciparum, the stage of the parasite within its 48 h cycle, as the mature blood stages are sequestered 
in inner organs and therefore apparently absent in peripheral blood. 

Duration of infection, molFOI, and MOI are all determined by genotyping individual clones and therefore depend 
on the limit of detection of the assays to diagnose and genotype infections [38–40]. The duration of a clonal 
infection and molFOI are difficult to determine if the density of individual parasite clones is around the limit of 
detection, and they frequently escape detection. This imperfect detection must be distinguished from parasite 
clearance and reinfection with a genetically indistinguishable clone as it biases the estimates of molFOI and 
duration of infection. Modelling approaches are therefore used to estimate molFOI and duration of infection 
[35,41,42]. 

 

1.2.2 Genotyping	of	Plasmodium	parasites	

Individual parasite clones are identified by genotyping. Genotyping is not only used to determine MOI, molFOI 
or duration of infection, but also to study population structure or phenotypes like drug resistance. Depending 
on the genotyping application, different marker sets are selected [43,44]. A single marker of high resolution is 
often sufficient for epidemiological studies where individual clones need to be identified. For studying 
phenotypes like drug resistance, markers covering all mutations (e.g. several SNPs within a gene, or several 
genes) associated with resistance must be typed. In population genetics studies, multiple genome-wide 
markers are required that are unlinked from each other and not under selection pressure. For recrudescence 
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typing in anti-malarial drug efficacy trials the use of three unlinked markers with high resolution are 
recommended by the WHO [45]. 

The first methods to genotype P. falciparum used amplification of the highly length-polymorphic merozoite 
surface protein 2 (msp2) and subsequent sizing either by full length fragment or by restriction fragment length 
polymorphism (RFLP) [46–49]. In 2006, PCR-RFLP was modified to capillary electrophoresis (CE). This 
change increased resolution by using different fluorescent-labels for the FC27 and 3D7 allelic families [50,51]. 
CE simplified analysis by omitting the interpretation of the RFLP size pattern which was difficult to analyse, 
especially when RFLP size patterns of multiple concurrent clones were superimposed. Currently, the 
recommended marker and method for genotyping in drug trials is merozoite surface protein 1 (msp1), msp2 
and glutamine rich protein (glurp) by CE [45]. 

Another genotyping method is typing of 24-42 SNPs (SNP barcode) that are distributed over the whole 
genome. This multi-locus SNP-typing can determine genome-wide diversity and is suited for population 
studies, as selected SNPs are unlinked to each other. Mutations of SNPs are determined by either High 
Resolution Melting, Oligonucleotide Ligation or TaqMan [52–54]. However, SNP-typing requires a lot of DNA 
template, as each SNP is typed as an independent assay. Another difficulty is the haplotype inference in case 
of multi-clone infections. The haplotypes of sample with mixed infection is difficult to resolve if the genotypes 
are unlinked to each other (see Section 1.4.1). 

Improvement in next generation sequencing technologies (Illumina, 454/Roche or Ion Torrent) towards longer 
sequence reads and lower sequencing cost per sample by multiplexing of samples permitted the use of 
amplicon sequencing in epidemiological studies. Amplicon sequencing (Amp-Seq) genotyping has a higher 
sensitivity, quantifies proportion of different variants and can detect low-abundant clones (minority clones) in 
samples with multiple concurrent infections. However, the higher sensitivity of Amp-Seq comes at the cost of 
calling false alleles caused by sequencing error or PCR artefacts. First Amp-Seq genotyping of P. falciparum 
used the length polymorphic markers msp1 and msp2, as well as the SNP polymorphic region of 
circumsporozoite protein (csp) [16,55,56]. 

In the past few years, whole genome sequencing (WGS) of single clone infections also became an option to 
determine genotypes. However, the cost per sample is high and the sequence library preparation is too labour 
intensive for large studies. For mixed clone infections, WGS is not feasible as the minority clone can only be 
detected at very high sequence costs. For example, to detect a minority clone in a sample at a within-host 
frequency of 1:500, at least 120Gb (25Mb genome size multiplied by 500-fold coverage) needs to be 
sequenced. This corresponds to one Illumina NextSeq run with a sequence cost of approximately USD4000. 

A recent study showed a bias in size polymorphic genotyping towards the shorter fragments in samples with 
multiple concurrent infections [57]. The resulting underestimation of multiplicity of infection (MOI) urges the 
search for new SNP polymorphic marker genes. Amp-Seq of SNP polymorphic markers might represent the 
best alternative to genotype with size polymorphic markers. An earlier study claimed that Amp-Seq has a 
higher sensitivity to detect minority clones compared to msp2-CE genotyping [55], but nothing is known about 
the specificity of the method and how the higher sensitivity to detect minority clones impacts the molecular 
epidemiological parameter MOI, molFOI and duration of infection. A comprehensive comparison of msp2-CE 
genotyping and Amp-Seq genotyping with new markers was the topic of this thesis and can be found in more 
detail in Chapters 2 and 3.  
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1.3 GENOMICS	AND	TRANSCRIPTOMICS	OF	PLASMODIUM	PARASITES	

1.3.1 Genomics	

The genome of the human Plasmodium species encodes ~5000 genes on 14 chromosomes in ~25Gb 
nucleotides. Plasmodia also carry a mitochondrion and apicoplast genome [58]. First approaches to sequence 
P. falciparum and P. vivax was made by Sanger sequencing of expressed sequence tags (ESTs) from cloned 
cDNA fragments, leading to the discovery of more than 600 genes [59–62]. Later, whole chromosome shotgun 
Sanger sequencing method was used to sequence the genome of P. falciparum [63]. In short, individual 
chromosomes were separated, isolated and shared. The shared fragments were then cloned into yeast 
artificial chromosomes (YAC) and Sanger sequenced. The sequences were first assembled by YAC and then 
by chromosomes. The publication of P. falciparum genome enabled systematic analysis of the proteome and 
showed that a large proportion of genes were devoted to immune evasion and host-parasite interactions. Since 
then, the whole genome of all human malaria parasites were sequenced and published: P. vivax and P. 
knowlesi in 2008 [64,65] and P. malariae and P. ovale in 2017 [26]. Also the closest related Plasmodium 
species of P. falciparum and P. vivax were sequenced: the chimpanzee malaria parasites P. reichenowi and 
the monkey malaria parasite P. cynomolgi [25,66] (Figure 1).  

Comparative genomics between the different Plasmodium species gave insight into the evolutionary history 
and showed that ~77% of the genes are orthologous and in conserved gene synteny [64]. Genes in synteny 
indicate a conserved metabolome, as they belong to the metabolic pathways, housekeeping and membrane 
transporter genes. Species-specific genes are located at syntenic break points and have mostly a host-parasite 
interaction function. Of the human Plasmodium species, only P. falciparum is routinely cultured for gene 
function studies. Comparative analysis of the genomes of other species can be used to identify group-specific 
genes associated with traits like development of hypnozoite e.g. P. vivax, P. ovale and P. cynomolgi or the 
ability to infect human and monkeys e.g. P. knowlesi, P. malariae and P. cynomolgi [67]. 

Efforts to describe the genetic variation P. falciparum and P. vivax were undertaken by the Malaria Genomic 
Epidemiology Network (MalariaGEN, https://www.malariagen.net) in 2005. Today >3,000 genomes of P. 
falciparum and >480 genomes of P. vivax are available from multiple publications [24,68–74], describing 
>900,000 SNPs of P. falciparum and >300,000 SNPs of P. vivax. In addition to SNPs, microsatellite-length 
polymorphisms, intragenic repeats and copy number variation add to the genetic diversity of Plasmodia. The 
high genetic variation of Plasmodium parasites is required for the immune evasion mechanism, but also 
represents adaptation to the human and mosquito host, or resulting from drug pressure [70,75]. 

	

1.3.2 Transcriptomics	

The availability of the annotated whole genome sequences enables to study the whole transcriptome of P. 
falciparum and P. vivax. The annotated genes were discovered by scanning the whole genome for open 
reading frames (ORF) or by using EST sequences [63,64]. The first transcriptomes of the erythrocytic cycle of 
P. falciparum and P. vivax using a DNA microarray platform were both published shortly after the whole 
genome sequence [76–78]. Advances in high-throughput RNA sequencing (RNA-Seq) permitted the study of 
the transcriptome without knowledge of the underlying genomic sequence [79]. RNA-Seq of the P. falciparum 
and P. vivax transcriptomes improved the existing annotation for both species by identifying new genes, splice 
sites and splice variants [78–80]. 

The complex life cycle of Plasmodia with two different hosts and three different cycles (exo-erythrocytic, 
erythrocytic and sporogonic cycle) is transcriptionally and post-transcriptionally regulated [81,82]. Each stage 
of the life cycle has a characteristic gene expression pattern [76,77,83,84]. The transcriptome of P. falciparum 
shows a highly ordered cascade of gene expression over the parasite’s life cycle produced by transcriptional 
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regulation [76]. The highly ordered expression permits functional annotation of genes with so far unknown 
function by co-expression analysis, as genes with similar function are often co-expressed [77,85]. Furthermore, 
Plasmodia also have stage specific copies of ribosomal RNA [63,86–88]. 

Comparative analysis between the transcriptomes of P. falciparum and P. vivax explained differences in the 
biology of the two species [78]: For example, the genes for P. vivax immune evasion or red blood cell invasion 
mechanism differed substantially from those in P. falciparum, because most of those genes are not in syntenic 
order. This helps to explain why mature erythrocytic stages of P. vivax circulate in the peripheral blood, 
whereas they are sequestered in P. falciparum, or why P. vivax infects only reticulocytes. Furthermore, RNA-
Seq of P. vivax also revealed unusually long 5′ untranslated regions and multiple transcription start sites [80]. 

Currently, gene expression data exist for every developmental stage of Plasmodia except for the oocyst stage 
in the mosquito. However, for none of the Plasmodium species the whole life cycle is covered (Table xy3). 
Most of the available transcriptomics data in PlasmoDB (http://plasmodb.org [89]) are used to study the gene 
regulation mechanism of P. falciparum erythrocytic cycle or specific phenotypes [90,91]. Basic research on P. 
vivax is greatly hampered by a lack of continuous in vitro parasite culture. The available P. vivax transcriptome 
data of the erythrocytic and sporogonic cycle (except sporozoite stage) originated from enriched and short-
term cultured field samples [78,92]. In view of the difficulties in culturing P. vivax, the published transcriptome 
data may likely not fully represent the gene expression in the human host. For example, stress-related genes 
might be overexpressed, while genes required to escape the human immune system or clearance in the spleen 
might not be expressed. Moreover, the transcriptome data of P. vivax gametocytes and liver stages 
(developing liver schizonts and hypnozoites) are still not available. 

P. vivax hypnozoites are a major problem for elimination. Hypnozoites cause relapses weeks to months after 
the initial infection and sustain transmission [93]. As a model organism to study P. vivax liver stages, the 
monkey malaria parasite P. cynomolgi is studied. Recently, transcriptomes of the P. cynomolgi liver schizont 
and hypnozoite were published [94,95]. Yet, the commitment to form hypnozoites is not understood, and may 
already be determined in the sporozoite. During the course of this thesis contributions to the study of P. vivax 
sporozoites transcriptome were made, which might yield novel drug targets. The manuscript of this additional 
project is presented in Chapter 6. 

 

A better understanding of the P. vivax gametocyte transcriptome is highly relevant, as its development differs 
to the one of P. falciparum. P. vivax gametocytes develop much faster than P. falciparum gametocytes and 
appear in the peripheral blood before clinical symptoms occur [19,22,96]. In contrast, gametocytes of P. 
falciparum develop in 10-12 days sequestered in the bone marrow and start to circulate in the peripheral blood 
as mature gametocytes only after clinical symptoms occur [22,37].  

A challenge for the study of developmental stage-specific gene expression is the mixture of different stages 
present in samples collected from patients. This is the case for clinical isolates of all species, e.g. when 
gametocytes and asexual blood stages are present. The problem applies particularly to P. vivax, as the 
absence of continuous in vitro culture prevents the study of isolated parasite stages. Methods to de-convolute 
transcriptomes from mixes stages will be of great help to understand P. vivax gametocyte development. 

During the course of this thesis, methods to infer stage-specific gene expression were assessed using RNA-
Seq data from experimentally mixed stages of highly synchronized P. falciparum culture (Chapter 4). In the 
future, these methods will be applied to infer the P. vivax gametocyte transcriptome from field samples 
containing a mixture of stages, which has been the far aim of this thesis. 
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Table xy3: Overview of published microarray or RNAseq transcriptome data for the two most important human 
malaria species, P. falciparum and P. vivax, as well as P. cynomolgi, which is closely related to P. vivax. NA, 
no transcriptome available.  

Development stage P. falciparum1 P. vivax P. cynomolgi 
Exo-erythrocytic cycle:   [97]2 
 Trophozoite NA NA NA 
 Schizont NA NA [94,95]3 

 Hypnozoite - NA [94,95] 3 
Erythrocytic cycle: [98]4  [97]2 
 Merozoite [77]2 NA NA 
 Ring [76,77]2 [78]2 [80]3  
 Trophozoite [76,77]2 [78]2 [80]3  
 Schizont [76,77]2 [78]2 [80]3  
 Gametocyte [77]2 [99]2 NA  
 Female & male gametocyte  [100]3 NA  
Sporogonic cycle:    
 Macro & Microgamete  [92]2  
 Zygote  [92]2  
 Ookinete  [92]2  
 Oocyst    
 Sporozoites (mosquito saliva) [77]2 [101]3 [92]2 [101]3 [97]2 

1 Only a selection of available transcriptomes is shown. Selection criteria were initial publication or quality of 
transcriptome data. 
2 Microarray 
3 RNA sequencing  
4 Single cell RNA sequencing 
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1.4 OVERVIEW	OF	BIOINFORMATICS	METHODS	

In the last decade, next generation sequencing (NGS), also called high throughput sequencing or deep 
sequencing, became widely applicable to field samples from molecular epidemiology studies. Performing NGS 
on field samples is much more challenging than on samples from laboratory cultivated parasites and requires 
more robust analysis methods. In case of Plasmodium field samples collected from patients the main 
challenges for the laboratory work are that the amount of input material is limited and contaminated with host 
DNA or RNA. For data analysis, the large biological variation between field samples is a challenge. Field 
samples can contain complex mixtures of infecting clones or development stages. As a result, often no 
biological replicates are feasible, because each patient harbours a unique parasite strain and a unique mixture 
of stages. Most NGS analysis methods are not developed for complex field isolates and therefore need 
adaptions to be applicable on such samples.  

1.4.1 Haplotype	inference	and	MOI	estimation	

SNP-based haplotype inference of a sample containing a single-clone infection is done by calling the 
predominant SNPs in the sequence reads, thus identifying the haploid genome. SNPs of low frequency are 
regarded as amplification or sequencing errors. Several software are available for SNP calling, e.g. samtools 
or GATK framework [102,103]. However, SNP calling is much more complex in samples containing multi-clone 
infections with unknown multiplicity. The situation resembles SNP calling in polyploid genomes where the 
ploidy is unknown. In addition, the frequency of each clone in a multi-clone infection is unknown and can be 
even less than 1%. 

Most of the software for SNP calling and haplotype inference were developed for diploid genomes or require 
prior knowledge of the ploidy, e.g. ReadBackedPhasing, HapCUT, HaplotypeCaller, HapCompass, BEAGLE, 
IMPUTE2, SHAPEIT [103–110]. Such software cannot be used for multi-clonal infections with unknown ploidy. 

The approach chosen to infer haplotypes in multi-clone infections depends on whether SNPs are linked or 
unlinked by sequence reads. In Amp-Seq, multiple SNPs are linked usually by a single sequence read. 
Haplotype inference in such data can be done by clustering of those sequence reads, e.g. SeekDeep, Swarm 
[111–113]. The clustering combines similar sequence reads together that differ because of amplification or 
sequencing errors. However, also sequence reads from closely related clones cluster together, if they differ in 
only one SNP.  

For data from WGS or SNP barcodes, where SNPs are unlinked or only partly overlapping by sequence reads, 
the number of co-infecting clones needs to be estimated before haplotype inference can be performed. The 
MOI estimation software use either (i) a sliding window to cluster reads that partly overlap locally, e.g. estMOI 
[114] or (ii) estimate MOI directly from SNP frequencies without using any information about SNP linkage, e.g. 
COIL, pfmix, THE REAL McCOIL [115–117].  

Haplotype inference on partly linked SNPs of small genomes is performed by a sliding window or by extending 
a smaller section of the genome where sequence reads have significant overlap and clustering of reads can 
be applied, e.g. shorah, PredictHaplo, QuRe, ViSpA, HaploClique, HapCompass-Tumor [118–123]. On 
unlinked SNPs, haplotype inference is performed by assembling SNPs sharing a similar proportion of reads 
by using a Markov chain Monte Carlo (MCMC) approach, e.g. DEploid [124].  

 

SeekDeep is currently the most commonly used method to analyse Amp-Seq genotyping data of Plasmodia. 
However, SeekDeep can only be used on a cluster with a large working memory capacity. Swarm in contrast, 
runs very efficiently on a standard personal computer. Both methods called false haplotypes when samples 
with controlled mixture were analysed. In this thesis, an in-depth analysis of false haplotype calls was made 
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and a new workflow put together for simple analysis of Amp-Seq genotyping data (Chapter 2). Furthermore, 
the potential of using longitudinal Amp-Seq genotyping for multi-locus haplotype inference in complex 
infections was explored (Chapter 3). 

 

1.4.2 Differential	expression	and	deconvolution	of	mixed	transcriptomes	

Differential expression (DE) analysis is used to study the difference in gene expression between phenotypes, 
groups or cell stages. The most commonly used software for gene expression analysis by microarray is limma, 
while for RNA-Seq data edgeR, DESeq and Cufflinks is often used [125–129]. The workflow of these software 
is similar. They first normalise the gene expression data and then fit a linear model to get an estimate of the 
variation in the data and the fold change between the different groups. The main difference between microarray 
and RNA-Seq gene expression analysis is that microarray data are normally distributed, whereas RNA-Seq 
data follow a negative binomial distribution. The software for RNA-Seq differ in their methods used to normalise 
and estimate the variation in the data. RNA-Seq data also provides the possibility to study alternative splice 
forms. Some isoforms might have different functions and are often expressed in different cell types. Following 
software amongst others are used for gene expression analyses at the exon level: DEXSeq, edgeR or MISO 
[126,130,131]. 

A single cell-type or developmental stage cannot always be isolated from biological samples, e.g. the 
hematopoietic subsets in the human blood. In this case, the observed transcriptome represents a mixture of 
cell-type specific transcriptomes. Several deconvolution methods have been developed either to infer the 
relative cell-type fraction in the sample or to infer the different cell-type specific transcriptome signatures, e.g. 
csSam, PERT, CIBERSORT, DeconRNASeq, DSection, xCell [132–141]. A comprehensive review of 
deconvolution methods can be found in Mohammedi et al. 2017. In general, deconvolution methods make the 
following assumptions[142]: (i) linearity, meaning that the observed mixed transcriptomes correspond to the 
sum of individual transcriptome signatures weighted by the relative cell-type fractions; (ii) non-negativity, 
meaning that neither the transcriptome signatures nor the relative cell-type fractions are negative; (iii) sum up 
to one, meaning that the relative fractions of cell-types sum up to one; and (iv) similar cell quantity, that the 
signature profiles and corresponding mixture must be normalised to ensure to represent gene expression level 
of the same number of cells. 

 

So far, deconvolution of P. falciparum blood stages has been performed only on microarray transcriptome data 
[143]. Applying the same approach to RNA-Seq data does not give satisfactory results. One explanation for 
this is that the similar cell quantity assumption is not valid for transcriptome data from Plasmodium blood 
stages, as the parasite genome replicates during the erythrocytic cycle. Normalisation methods are used to 
ensure that expression levels represent similar cell quantity. Evaluating normalization and deconvolution 
methods for RNA-Seq data to infer stage specific transcriptomes from experimentally mixed Plasmodium blood 
stages is one of the topics of this thesis and is presented in Chapter 4. 
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1.5 AIM	AND	OBJECTIVES	OF	THIS	THESIS	

The overall aim of this thesis is two-fold: Firstly, to develop a novel protocol and analysis pipeline to infer 
haplotypes of multi-clone infections from deep sequencing data and comparing these haplotypes to genotyping 
data based on size polymorphism. Secondly, to evaluate normalisation and de-convolution methods to infer 
stage-specific transcriptome signatures from experimental mixed stage samples of P. falciparum with known 
stage composition as proof of concept for inferring the transcriptome of P. vivax gametocytes from field 
samples. 

Specific objectives include: 

Objective 1: Development of a new Amp-Seq genotyping assay for multi-clone P. falciparum 
infections. 

a) Screening P. falciparum genomes for highly polymorphic loci. 

b) Identifying a novel marker suited for Amp-Seq. 

c) Developing a highly multiplexed Amp-Seq genotyping assay, suited for large epidemiological studies. 

 

Objective 2: Development of an analysis pipeline for Amp-Seq genotyping data of multi-clone P. 
falciparum infections. 

a) Developing a bioinformatics pipeline to analyse Amp-Seq genotyping data. 

b) Evaluating the impact of amplification and sequence errors on genotype calling in experimental 
mixtures. 

c) Defining a detection limit and filtering criteria for genotype calling. 

 

Objective 3: Comparative analysis of SNP-based and length-polymorphic-based genotyping method 
in longitudinal samples from a cohort study in PNG. 

a) Applying the developed Amp-Seq assay and analysis pipeline to archived field samples from a 
longitudinal study comprising samples with multi-clone infections. 

b) Comparison of the resolution, sensitivity, and specificity of Amp-Seq genotyping markers with that of 
the length-polymorphic genotyping marker msp2. 

c) Comparison of molecular parameters (MOI, molFOI) describing P. falciparum infection dynamics 
obtained from Amp-Seq genotyping markers with those from length-polymorphic markers. 

d) Exploring the limitation of multi-locus haplotype inference from Amp-Seq genotyping data. 

e) Exploring the suitability of Amp-Seq to study clone dynamics and density of each clone in longitudinal 
samples comprising multi-clone infections.  

 

Objective 4: De-convolution of mixed stage transcriptome data. 

a) Assessing stage purity of highly synchronised P. falciparum culture-derived parasites. 

b) Differential expression analysis of highly synchronised P. falciparum samples. 
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c) Evaluating normalisation methods for RNA-Seq data from samples with varying total RNA levels. 

d) Evaluating de-convolution methods to infer a stage-specific transcriptome from mixed stage 
transcriptomes of known stage composition. 

e) Evaluating de-convolution methods to estimate stage composition in mixed stage transcriptome data 
from stage-specific transcriptome signatures. 

f) Assessing the feasibility of inferring the transcriptome of P. vivax gametocytes from field samples 
containing enriched gametocytes mixed with late blood stages. 

 

Additional project: Preliminary analysis of the transcriptome and epigenome of P. vivax sporozoites. 

a) Processing of RNA and chromatin immunoprecipitation (ChIP) sequencing data. 

b) Exploring correlation between transcriptional activity and histone modifications. 

c) Identifying transcriptionally silenced regions by histone modifications containing genes of the multi-
gene family Pv-fam. 
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Additional file 1 

 

Protocol: Sequencing library preparation 

Primary PCR 

Multiplexed primary PCR was performed in a total volume of 15µl including 2µl template DNA (1:2 diluted), 
250nM of each primary primer (GeneWorks Pty Ltd, Australia) and 7.5µl 2xKAPA HiFi HotStart Ready Mix. 
Cycling conditions were as follows: initial denaturation 95°C for 3 minutes followed by 25 cycles of 20 seconds 
denaturation at 98°C, 15 seconds annealing at 52°C and 45 seconds elongation at 72°C plus a final elongation 
of 2 minutes at 72°C. 

Nested PCR 

Marker-specific nested PCRs were performed in a total volume of 15µl including 1µl primary PCR product 
diluted 1:10 in dH2O, 250nM of the respective nested primer pair (GeneWorks) and 7.5µl 2x KAPA HiFi 
HotStart Ready Mix (KAPA Biosystems). Cycling conditions were as follows for replicate 1 or 2: initial 
denaturation 95°C for 3 minutes followed by 15 or 10 cycles of 20 seconds denaturation at 98°C, 15 seconds 
annealing at 55°C for marker cpmp or 56°C for marker csp and 45 seconds elongation at 72°C. After 15 or 10 
cycles the annealing temperature was increased to 62°C for further 10 or 5 cycles, respectively. Eventually a 
final elongation of 2 minutes at 72°C was performed. In total, 25 cycles were performed for replicate 1 and 15 
cycles for replicate 2. 

Pooling of amplicons per sample 

Nested PCR products were run on a 1.5% agarose gel for visual inspection of fragment size and quantity. DNA 
concentration of nested products was estimated in relation to size standard fragments (Solis BioDyne 100bp 
DNA Ladder). Cpmp and csp nested PCR products of each sample were pooled in equimolar concentrations. 
Visual estimation of DNA concentration was difficult as amplicons of marker csp and cpmp differed in length. 
To prevent predominance of csp amplicons in the sequencing library due its shorter length, csp amplicons 
were undervalued. This lead to a lower median read coverage for marker csp compared to cpmp. In case the 
amplification product was not visible in the agarose gel, equal volumes of both the nested cpmp and csp PCR 
products nevertheless were pooled. 

Sequencing library preparation PCR 

PCRs for constructing the sequencing library were carried out in a total volume of 15µl and included 1µl pooled 
nested products diluted 1:20, 250nM of each sequencing adapter primer and 7.5µl 2xKAPA HiFi HotStart 
Ready Mix. Cycling conditions were as follows: initial denaturation 95°C for 3 minutes followed by 10 cycles of 
20 seconds denaturation at 98°C, 15 seconds annealing at 65°C and 45 seconds elongation at 72°C plus a 
final elongation of 2 minutes at 72°C. 

Pooling of samples 

DNA concentrations after these sequencing library PCRs were estimated on a 1.5% agarose gel. All 
sequencing library PCR products were pooled in equimolar concentrations. This was achieved by pooling 
equal volumes of all products showing similar band intensity complemented by a pool for PCRs without visible 
products on agarose gel. These 5 pools were purified with 0.6 volumes of NucleoMag beads (size selection > 
300bp) and quantified by Qubit Fluorometer (Thermo Fisher Scientific). Eventually all 5 pools were combined 
to a final sequencing library by adjusting the volume used from each pool according to its DNA concentration 
and number of samples combined in a pool. 
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Sequence library cleanup and sequencing 

The expected fragment sizes of the sequencing library were confirmed by Agilent 2200 Tapestation System. 
The DNA concentration of the final sequencing library pool was quantified by Qubit Fluorometer (Thermo 
Fisher Scientific). Sequencing was performed on an Illumina MiSeq platform in paired-end mode using MiSeq 
reagent kit v3 (500-cycles) together with a Enterobacteria phage PhiX Control v3 (Illumina). 
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Table S1: PCR Primer sequence for msp2 CE genotyping and sequence library preparation. 
Primer for primary PCR 
cpmp_prim_F CGATACAGGACATATAGA 
cpmp_prim_R TTCAATAACATTTACTAGG 
csp_prim_F ATCAAGGTAATGGACAAG 
csp_prim_R ACTCAAACTAAGATGTGTTC 
Primer for nested PCR 
csp_F_Linker GTGACCTATGAACTCAGGAGTCAAATGACCCAAACCGAAATGT 
csp_R_Linker CTGAGACTTGCACATCGCAGCGGAACAAGAAGGATAATACCA 
cpmp_F_Linker GTGACCTATGAACTCAGGAGTCCATAAGTCATTAAAATTTATGGAT 
cpmp_R_Linker CTGAGACTTGCACATCGCAGCCGTTACTATCAAGATCGTTAATATC 
Primer for msp2 CE genotyping 
msp2_S2_fw GAAGGTAATTAAAACATTGTC 
msp2_S3_rev GAGGGATGTTGCTGCTCCACAG 
msp2_S1-fw  GCTTATAATATGAGTATAAGGAGAA 
msp2_FC27-rev GCATTGCCAGAACTTGAA 
msp2_3D7-rev CTGAAGAGGTACTGGTAGA 
Primer for sequence library PCR (XXXXXX=barcode) 

Forward AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG
ATCTXXXXXXXXGTGACCTATGAACTCAGGAGTC 

Reverse CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCT
TCCGATCTXXXXXXXXCTGAGACTTGCACATCGCAGC 

Forward barcode  Reverse barcode 
Fwd_1 TAGATCGC Rev_1 TAAGGCGA 
Fwd_2 CTCTCTAT Rev_2 CGTACTAG 
Fwd_3 TATCCTCT Rev_3 AGGCAGAA 
Fwd_4 AGAGTAGA Rev_4 TCCTGAGC 
Fwd_5 GTAAGGAG Rev_5 GGACTCCT 
Fwd_6 ACTGCATA Rev_6 TAGGCATG 
Fwd_7 AAGGAGTA Rev_7 CTCTCTAC 
Fwd_8 CTAAGCCT Rev_8 CAGAGAGG 
Fwd_13 TGGTGGTA Rev_9 GCTACGCT 
Fwd_14 TTCACGCA Rev_10 CGAGGCTG 
Fwd_15 AGCACCTC Rev_11 AAGAGGCA 
Fwd_16 CAAGGAGC Rev_12 GTAGAGGA 
Fwd_17 ATTGGCTC Rev_13 ATGCCTAA 
Fwd_18 CACCTTAC Rev_14 ACGCTCGA 
Fwd_19 CTAAGGTC Rev_15 AGTCACTA 
Fwd_20 GAACAGGC Rev_16 ATCCTGTA 
  Rev_17 CGCATACA 
  Rev_18 CTGGCATA 
  Rev_19 GATAGACA 
  Rev_20 GCTAACGA 
  Rev_21 GTGTTCTA 
  Rev_22 TCCGTCTA 
  Rev_23 CCTAATCC 
  Rev_24 GACAGTGC 

 



Amp-Seq Genotyping: Marker, Assay and Analysis Pipeline 

52 

Table S2: Summary of mismatch rates for linker sequences, marker primers used in primary and 
nested amplification and for amplicons1 of markers cpmp and csp generated from controlled mixtures 
of two P. falciparum strains 3D7 and HB3 

 Linkers 
% 

Primers Amplicons 

 cpmp 
% 

csp 
% 

cpmp 
% 

csp 
% 

MIN 0.00 0.00 0.00 0.00 0.00 

1ST QU. 0.00 0.00 0.03 0.06 0.07 

MEDIAN 0.08 0.09 0.21 0.15 0.18 

MEAN 0.12 0.28 0.71 0.38 0.46 

3RD QU. 0.19 0.20 0.42 0.35 0.43 
MAX 1.93 10.92 22.01 15.76 18.13 

1 Mismatch rate was calculated relative to 3D7 and HB3 reference sequence. 
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Table S6: Multiplicity of infection of 37 field sample measured by length polymorphic marker msp2 and SNP 
polymorphic markers cpmp and csp. 

MOI msp2 
n 

cpmp 
n 

csp 
n 

1 12 10 19 
2 14 14 16 
3 5 6 2 
4 4 2  
5 2 5  

Mean 2.2 2.5 1.5 
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Figure S1: Genomic distribution of single nucleotide polymorphism in sequenced alleles of 
P. falciparum gene PF3D7_0104100 (cpmp marker). The top panel represents alleles of global 
origin (MalariaGEN P. falciparum Community Project, 2016). The bottom panel shows expected 
heterozygosity values for sliding windows of 100bp across the entire gene. Red box highlights region 
selected for amplification. 
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Figure S2: Genomic distribution of single nucleotide polymorphism in sequenced alleles of 
the P. falciparum circumsporozoite protein (csp). The top panel represents alleles of global origin 
(MalariaGEN P. falciparum Community Project, 2016). The bottom panel shows expected 
heterozygosity values for sliding windows of 100bp across the entire gene. Red box highlights region 
selected for amplification. 
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Figure S3: Average mismatch rate per nucleotide position in reads of spiked in control DNA 
phiX. X-axis: nucleotide position in phiX read. Y-axis: mismatch rate with respect to phiX reference 
sequence. Each data point represents the average mismatch rate of all phiX reads at a given 
nucleotide position. 

  



Amp-Seq Genotyping: Marker, Assay and Analysis Pipeline 

59 

 

Figure S4: Design of the amplicon sequencing library. Primary primers target the gene of 
interest. Primary PCR is followed by nested PCR using marker-specific primers that carry F and R 
linker sequences at their 5’ ends. The primers for the final round of amplification target the F and R 
linker sequences. These primers carry sample-specific indices (barcodes) plus Illumina sequencing 
adapter P5 and P7 at their 5’ ends. The line at the bottom indicates the sizes of the various elements.  
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Figure S5: Observed mismatch rate at each nucleotide position in forward and reverse reads 
of linker sequence. Data derived from all samples analysed. Each data point represents the mean 
mismatch rate of all reads from an individual sample. X-axis: nucleotides of forward and reverse 
linker (5’ to 3’). Y-axis: mismatch rate with respect to known linker sequence. 
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Figure S6: Mismatch rate per nucleotide position in forward and reverse primers of markers 
cpmp and csp. Data derived from all samples analysed. Each data point represents the mean 
observed mismatch rate of all reads from an individual sample. Red data points: control samples (P. 
falciparum culture strains); black data points: field samples; X-axis: nucleotides of forward and 
reverse primers (5’ to 3’); Y-axis: mismatch rate with respect to the known primer sequences.  
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Figure S7: Simulation of the detectability of a minority clone (top panel) and of measured 
multiplicity of infection (bottom panel) by bootstrapping for marker cpmp. Cut-off settings: no 
cut-off (left panel); ³3 read per haplotype (middle panel); minority clone detection limit of 1:1000 
(right panel). Samples were drawn from reads of defined mixtures of P. falciparum strains 3D7 and 
HB3. X-axis represents ratios of strains 3D7 and HB3. Y-axis indicates the sampling size (number 
of draws from the sequence reads (coverage >3000) for each mixture of strains. Sampling was 
repeated 1000 times to estimate the mean detectability of a minority clone. 
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Figure S8: Simulation of the detectability of a minority clone (top panel) and of measured 
multiplicity of infection (bottom panel) by bootstrapping for marker csp. Cut-off settings: no 
cut-off (left panel); ³3 read per haplotype (middle panel); 0.1% minority clone detection limit of 1:1000 
(right panel). Samples were drawn from reads of defined mixtures of P. falciparum strains 3D7 and 
HB3. X-axis represents dilution ratios of strains 3D7 and HB3. Y-axis indicates the sampling size 
(number of draws from the sequence reads (coverage >3000) for each mixture of strains. Sampling 
was repeated 1000 times to estimate the mean detectability of a minority clone. 
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Figure S9: Comparison of genotyping by length-polymorphic marker msp2 and amplicon 
sequencing of markers cpmp and csp exemplified in 1 field sample. Capillary 
electropherograms (CE) and dendrograms represent the raw data of markers msp2-CE, cpmp and 
csp (two top panels). Quantification of haplotypes and final multiplicity call (two bottom panels). Grey 
shading indicates haplotypes and reads filtered out by cut-off settings (example discussed in detail 
in results section, paragraph “Validation of amplicon sequencing in field samples”).  
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Figure S10: Reproducibility of amplicon sequencing in field samples. Haplotype calls that 
passed default cut-off criteria were compared between replicates to investigate reproducibility. In 
grey: number of haplotypes detected in both replicates, in red: number of haplotypes detected only 
in a single replicate. Inserts present frequency distributions below 1% at a higher resolution. 
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CHAPTER	3: AMP-SEQ	GENOTYPING:	LONGITUDINAL	
TRACKING	OF	COMPLEX	INFECTIONS	
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ABSTRACT	

Background 
Longitudinal tracking of individual Plasmodium falciparum strains in multi-clonal infections is essential for 
investigating infection dynamics of malaria. The traditional genotyping techniques did not permit tracking 
changes in individual clone density during persistent natural infections. Amplicon deep sequencing (Amp-Seq) 
offers a tool to address this knowledge gap. 

Methods 
The sensitivity of Amp-Seq for relative quantification of clones was investigated using three molecular markers, 
ama1-D2, ama1-D3, and cpmp. Amp-Seq and length-polymorphism based genotyping were compared for 
their performance in following minority clones in longitudinal samples from Papua New Guinea. 

Results 
Amp-Seq markers were superior to length-polymorphic marker msp2 in detecting minority clones (sensitivity 
Amp-Seq: 95%, msp2: 85%). Multiplicity of infection (MOI) by Amp-Seq was 2.32 versus 1.73 for msp2. The 
higher sensitivity had no effect on estimates of force of infection because missed minority clones were detected 
in preceding or succeeding bleeds. Individual clone densities were tracked longitudinally by Amp-Seq despite 
MOI>1, thus providing an additional parameter for investigating malaria infection dynamics.  

Conclusion 
Amp-Seq based genotyping of longitudinal samples improves detection of minority clones and estimates of 
MOI. Amp-Seq permits tracking of clone density over time to study clone competition or the dynamics of 
specific, i.e. resistance-associated genotypes.  
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INTRODUCTION	

Molecular-epidemiological parameters used to describe the infection dynamics of Plasmodium falciparum 
include the number of co-infecting parasite clones (multiplicity of infection, MOI), the rate at which different 
genotypes are acquired over time (molecular force of infection, molFOI) and duration of infection [1]. These 
measures are based on monitoring the presence or absence of clones in cross-sectional or longitudinal 
samples collected in regular intervals. In earlier studies individual parasite clones in multi-clonal field samples 
were distinguished and tracked over time by genotyping the length-polymorphic marker merozoite surface 
protein 2 (msp2) by capillary electrophoresis-based fragment sizing (CE) [2–4]. Yet, msp2-CE genotyping has 
limited sensitivity for minority clone detection [3,5]. Alternative typing methods instead could perform better in 
detecting minority clones, but might impact measures of MOI and molFOI [6]. So far quantification of individual 
clones within multi-clonal infections was not feasible, as this would have required highly complex allele-specific 
quantitative PCR (qPCR). 

SNP-based genotyping by deep amplicon sequencing (Amp-Seq) can detect low-abundant P. falciparum 
clones at ratios of 1:1000 in mixed infections [7]. Most importantly, genotyping by Amp-Seq also quantifies 
precisely the relative abundance of clones, as shown with artificial mixtures of clones [7–9]. From these ratios 
the absolute density of each clone (i.e. a certain haplotype) within a multi-clone infection can be deduced if 
the total parasitaemia of the sample was established by qPCR [9]. When analysing consecutive samples from 
a given study participant, presence and fluctuations in density of clones can be tracked. We explore how 
longitudinal information can be used to improve identification of minority clones with low densities around the 
detection limit.  

A previous study has estimated clonal density with Amp-Seq in multi-clone infections to estimate clearance 
rates after antimalarial treatment [9]. We apply the same approach to track parasite clones longitudinally in 
untreated natural infections. In addition, we increase the resolution of genotyping by combining sequence 
information from several markers into multi-locus haplotypes.  

 

METHODS	

Study design  

A subset of 153 archived P. falciparum genomic DNA samples from 33 children (mean 4.3 samples [min: 2, 
max: 11]) aged 1-5 years were available from an cohort study with blood sampling over 40 weeks (first 12 
weeks every fortnightly, then monthly) in Papua New Guinea (PNG) [10]. The two conditions for selection of 
children were: ≥2/14 bleeds PCR positive, and MOI>1 in at least one of the samples of each child. Ethical 
clearance was obtained from PNG Institute of Medical Research Institutional Review Board (IRB 07.20) and 
PNG Medical Advisory Committee (07.34). Informed written consent was obtained from all parents or 
guardians prior to recruitment of each child. 

 

Genotyping using length polymorphic marker msp2 

Samples were genotyped using the classical P. falciparum marker msp2 according to published protocols [11]. 
Fluorescently labelled nested PCR products were sized by CE on an automated sequencer and analysed 
using GeneMarker software. Fragments were accepted if the following cut-off criteria were met: peak height 
>500 intensity units and >10% of the height of the majority peak. Electropherograms were inspected visually 
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to exclude obvious stutter peaks. All DNA samples were genotyped in 2 independent laboratories to assess 
reproducibility of clone detection and measures of MOI. 

 

Marker selection for Amplicon deep sequencing 

Amp-Seq was performed on three amplicons located in two different P. falciparum marker genes, namely 
PF3D7_0104100, “conserved Plasmodium membrane protein” (cpmp), and PF3D7_1133400, “apical 
membrane antigen 1” (ama1) whose genetic diversity has been studied in great detail [12–14]. Previously 
published primers were used for marker cpmp [7]. For ama1 two amplicons of 479 and 516 bp were selected 
that span regions of maximum diversity, i.e. subdomains 2 and 3 of the ectodomain [15]. Primer sequences 
and exact amplicon positions are listed in Tables S1 and S2. 

 

Sequencing library preparation 

Sequencing libraries were generated by three rounds of PCR, according to previously published protocols [7]. 
After primary PCR, a 5’ linker sequence was added during nested PCR. Nested PCR products were subject 
to another PCR round with primers binding to the linker sequences and carrying Illumina sequence adapters 
plus an eight nucleotide long sample-specific molecular index to permit pooling of amplicons for sequencing 
and later de-multiplexing. The final sequence library was purified with NucleoMag beads prior to sequencing 
on an Illumina MiSeq platform in paired-end mode using Illumina MiSeq reagent kit v2 (500-cycles) together 
with Enterobacteria phage PhiX control (Illumina, PhiXControl v3). 

 

Sequence read analysis and haplotype calling 

Samples yielding a sequence coverage of <25 reads were excluded from the analysis. An overview of 
sequence read coverage for all Amp-Seq markers is given in Table S3. Sequence reads were analysed using 
software HaplotypR [7], (https://github.com/lerch-a/HaplotypR.git). To remove low quality sequences, reads 
were trimmed to 240bp for forward and 170bp for reverse reads. As reference sequence P. falciparum strain 
3D7 was used (PlasmoDB release 34, [16]). The term genotype refers to a single nucleotide polymorphism 
(SNP). Calling a SNP required a >50% mismatch rate in the sequence reads of this nucleotide position in at 
least two independent samples. A haplotype was defined as sequence variant of an entire amplicon. 
Haplotypes containing inserts or deletions (indels) were filtered out, as well as haplotypes resulting from 
chimeric reads or singleton reads. The number of reads of a given haplotype over all remaining reads of the 
same marker within a sample is denoted by the term “within-host haplotype frequency”. Cut-off criteria for 
haplotype calling were as follows: a minimum of 3 reads coverage per sample, a within-host haplotype 
frequency ≥0.1% and an occurrence of this haplotype in at least 2 samples. 

 

Multi-locus haplotype inference in longitudinal samples 

Amp-Seq quantifies the frequency of each haplotype within a sample, which permits to infer multi-locus 
haplotypes. A multi-locus haplotype was deduced in multiple rounds. In the first round, the multi-locus 
haplotype of the dominant clone of a sample was inferred by selecting each marker’s dominant haplotype 
(>54% within-host haplotype frequency, i.e. 50%+3.8% standard deviation in within-host haplotype frequency 
between replicates). After each round the identified dominant haplotype was ignored and in the following round 
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the dominant haplotype was identified among the remaining reads. If several haplotypes occurred in a sample 
at similar frequencies, it may be impossible to identify the dominant haplotype. This was resolved by analysing 
the change in within-host haplotype frequency between the observed and preceding or succeeding sample of 
the same host. An example of our approach to multi-locus haplotype inference is shown in detail the 
Supplemental Text S1. 

 

The final step of multi-locus haplotype inference addressed the problem of clones of a multiple infection that 
share by chance the same allele of one of the markers. As a consequence, the within-host frequency of a 
shared haplotype amounts to the sum of two or more independent clones carrying the same allele. In such 
cases multi-locus haplotypes were inferred by assigning the shared alleles to those haplotypes that summed 
up to the same proportion in the other two markers. Samples for which the multi-locus haplotype could not be 
established by this approach were considered unresolvable (Table S4). 

 

Reproducibility, sensitivity and false discovery rate 

Samples were analysed in duplicates with Amp-Seq markers and msp2-CE. Performing duplicates permitted 
to identify and exclude false-positive haplotypes and thus prevented erroneous over-estimation of MOI. Each 
haplotype was classified into one of four groups (example see FIG S1): (1) True-positive (TP) haplotype, i.e. 
it passed the haplotype calling cut-off in both replicates or in one replicate plus in the preceding or succeeding 
bleed; (2) False-positive (FP) haplotype, i.e. it passed the haplotype calling cut-off in only one replicate and 
was not detected in any of the preceding or succeeding samples of that individual; (3) False-negative (FNi) 
haplotype, i.e. it was detected in one or both replicates but did not pass the cut-off criteria at that occasion, 
whereas it was detected in the preceding or succeeding bleed as TP (at least once) or FN haplotype; (4) 
Background noise (all other cases). 

Additionally, false-negative (FNii) haplotypes were imputed for samples in which no sequence read was 
detected. These false-negative haplotypes were imputed only when (a) the haplotype was detected in the 
preceding as well as the succeeding bleed as a true-positive. Presence in only one of preceding or succeeding 
sample was not considered sufficient evidence for assuming a case of missed detection. For the Amp-Seq 
markers but not msp2-CE, false-negative haplotypes were also imputed when (b) data for the other two 
markers was present and the corresponding multi-locus haplotype was established in the preceding or 
succeeding sample.  

The sensitivity to detect parasite clones was estimated based on selected individuals who had not received 
antimalarial treatment during the timespan analysed and harboured at least one haplotype that was detected 
at 3 consecutive bleeds. Sensitivity was defined as the true positive rate of a genotyping method and was 
calculated as TP/(TP+FN). The risk to falsely assign a haplotype not present in the sample was measured as 
the “false discovery rate” (FDR), calculated as FP/(TP+FP). This rate represents the extent of false haplotype 
calls of a genotyping method. 

The reproducibility of clone detection in technical replicates (comprising all experiential procedures from PCR 
to sequence run) was calculated as !"#

"$%!"#
 , where n1 is the number of haplotypes detected in a single replicate 

and n2 the number of haplotypes detected in both replicates [17]. Only TP haplotypes were used to estimate 
reproducibility. 
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Epidemiological parameters: clone density, diversity, MOI and FOI  

The density of a parasite clone was calculated by multiplying within-host haplotype frequency by parasitaemia 
(measured by qPCR). Clone density is expressed as copies of target gene per microliter, quantified by qPCR 
targeting the 18S rRNA gene of P. falciparum [18]. The technical detection limit of qPCR was 0.4 copies/µl 
whole blood. 

Based on true positive haplotypes, the expected heterozygosity (He) and mean MOI were determined from 
baseline (or first bleed available) samples for each marker as described [7]. He was also estimated for 
combined markers in samples that had a resolvable multi-locus haplotype and that were separated by a 
treatment plus ³2 consecutive P. falciparum negative samples from the same child. 

molFOI was estimated on longitudinal sets of sample that had a complete set of replicates. Haplotypes were 
counted as new infection if a haplotype was (i) not present in the baseline sample but in a subsequent sample, 
(ii) not detected at ³2 consecutive preceding bleeds or (iii) not detected after antimalarial treatment plus after 
at least one negative sample. Time at risk was calculated as the timespan between baseline and last sampling, 
minus 14 days for each antimalarial treatment (to account for the prophylactic effect of treatment). 

An overview of sample selection criteria applied for different types of analyses is listed in Table S5. 

 

RESULTS	

Genetic	diversity	of	markers	

The discriminatory power of Amp-Seq markers cpmp, ama1-D2 and ama1-D3, as well as length-polymorphic 
marker msp2-CE was estimated in 33 baseline samples. The resolution was highest for amplicon marker cpmp 
(He=0.961) that distinguished 30 haplotypes and gave a mean MOI=2.45 (Table 1, MOI distribution by marker 
in FIG S2). The second-best resolution was obtained by marker msp2-CE (He=0.940) that distinguished 20 
haplotypes and measured a mean MOI=1.73. Haplotype and SNP frequencies of Amp-Seq markers are shown 
in FIG 1 and S2.  

Discriminatory power can be increased by combining multiple markers. Inference of multi-locus haplotypes 
was possible for 66 clones in 46 selected samples. Combining marker cpmp with either of the two ama1 
fragments yielded very high diversity (53 and 55 haplotypes, He=0.992 and 0.994 for cpmp/ama1-D2 and 
cpmp/ama1-D3) (Table 2 and FIG S3). Combining all 3 markers did not increase discriminatory power any 
further. 

 

Using	longitudinal	genotyping	data	to	increase	detectability	of	clones	

Imperfect detectability of parasite clones has been described previously in longitudinal genotyping studies 
[1,19–21]. Data from replicates and longitudinal samples can be used to make assumptions on missed clones. 
This permits imputing of missed haplotypes and thus improves the tracking of clonal infections within an 
individual over time. Two types of missed haplotypes respective false-negative haplotypes were distinguished: 
(FNi) haplotypes that were detected below the cut-off and (FNii) haplotypes that were not detected but imputed 
(Table 3). FIG 2 shows an example of different type of missed haplotypes for all Amp-Seq markers. 

The sensitivity to detect parasite clones was estimated for each genotyping marker by enumerating false-
negative haplotypes. Sensitivity was higher for the Amp-Seq markers than for msp2-CE (in decreasing order 



Amp-Seq Genotyping: Longitudinal Tracking of Complex Infections 

73 

96.5%, 95.0%, 93.9% and 85.1% for ama1-D2, cpmp, ama1-D3 and msp2-CE) (Table 4). For ≥57% of the 
identified false-negative haplotypes, reads were detected but fell below cut-off criteria (category (i) above). If 
such haplotypes were counted as positives by relaxing the cut-off criteria, sensitivity would increase to 99.1%, 
97.5% and 97.4% for Amp-Seq markers ama1-D2, cpmp and ama1-D3 (Table 4). 

The false discovery rate of haplotypes for Amp-Seq markers was in the range of 0.9-4.2% (Table 4). 
Reproducibility to detect parasite clones in technical replicates was greater for Amp-Seq markers than for 
marker msp2-CE (in decreasing order 0.95, 0.95, 0.94 and 0.91 for ama1-D3, cpmp, ama1-D2 and msp2-CE) 
(Table S6 and FIG S4).  

 

Determination	of	molFOI	by	different	molecular	markers	and	methods	

A higher sensitivity of the genotyping method does not necessary impact molFOI, i.e. new clones/year, 
because a missed minority clone could be detected at one of the successive bleeds. We investigated the 
number of new infections acquired during 40 weeks follow-up in 27 children from whom a complete data set 
was available (on average 4.3 samples per child [min: 2, max: 7]). Mean molFOI was 2.7, 2.7, 2.3 and 2.2 new 
infections per year for markers ama1-D3, cpmp, msp2-CE and ama1-D2 (negative binomial regression p-value 
for comparison of msp2-CE to ama1-D3, cpmp and ama1-D2: 0.596, 0.649 and 0.877) (FIG S5). Thus, no 
substantial difference in mean molFOI was found for the different molecular markers and different genotyping 
methods. 

 

Quantitative	dynamics	of	multiple	infecting	P.	falciparum	clones		

Densities of individual clones was calculated from the total parasitaemia by qPCR and the within-host 
haplotype frequency. Examples of individual clone density dynamics in children with multi-clone infections are 
shown for three Amp-Seq markers (FIG 3). The density of some clones remained constant over time, whereas 
other clones showed fluctuations in density over 3 orders of magnitude (FIG 3A and B). In some children the 
dominant clone remains dominant over the observation period (FIG 3A), whereas in others switch-over 
between minority clone and dominant clone was observed (FIG 3B). In highly complex field samples some 
clones might share the same haplotype of a given marker (FIG 3C). Such clones can only be differentiated 
and quantified if multiple markers are typed and at least one of the markers is not shared between concurrent 
clones. 

After artemisinin combination therapy, some of the parasite clones from multi-clone infections were cleared 14 
days after antimalarial treatment, whereas others were still detectable (FIG 3A, B and C). These persisting 
clones had decreased clone densities (<21 copies/µl) and likely represent remaining late gametocyte stages 
of cleared asexual infections [22]. Some new infections following antimalarial treatment (artesunate-
primaquine) showed a rapid increase in clone density within the first 14 days after re-infection of a host, 
followed by a slow decrease in clone density until clearance (FIG 3D), whereas in other infections clone density 
remained constant (FIG 3C). 

 

DISCUSSION	

While MOI and molFOI have been extensively described as epidemiological parameters, the ratio and density 
of individual clones within complex infections has not yet been investigated. This gap in knowledge was due 
to shortfalls of traditional length-polymorphic markers, where the length of a fragment greatly influences the 
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amplification efficiency in multi-clone infections with fragments competing in PCR and a strong bias favouring 
smaller fragments [5]. As a result, multi-locus haplotypes could not be inferred from traditional genotyping data 
in a reliable way. Such inference is required, for example, for phylogenetic or population genetic studies. In 
such studies, multiple-clone infections were usually excluded or only the predominant haplotype included 
[23,24]. With the possibility to establish multi-locus haplotypes from complex infections the discriminatory 
power will be greatly improved in future.  

Single Amp-Seq markers cpmp, ama1-D2, ama1-D3, and msp2-CE yielded similar resolution. Combining 
cpmp with either of the ama1 fragments increased further discriminatory power. The excellent performance of 
Amp-Seq marker cpmp had been demonstrated earlier [7]. Such increased resolution is of great practical value 
for PCR-correction in clinical drug efficacy trials, where new infections need to be reliably distinguished from 
those present in an individual earlier. Robust methods for this application are urgently needed.  

For infections with high multiplicity (MOI≥3), inference of multi-locus haplotypes remains challenging (example 
in FIG S6). Inference is straightforward if haplotypes occur at distinctive abundance in any of the longitudinal 
samples. If haplotypes are equally abundant in a sample and remain so over time, the multi-locus haplotype 
cannot be inferred. The same is true for complex patterns of shared haplotypes. In the present study, multi-
locus haplotypes up to MOI=3 were inferred. For higher multiplicity, sophisticated statistical methods like 
Markov chain Monte Carlo on longitudinal samples could be applied [25].  

Genotyping longitudinal samples in duplicates enabled an evidence-based approach to identify false-negative 
haplotypes. This permitted to estimate each marker’s sensitivity to detect minority clones. Amp-Seq genotyping 
with markers ama1-D2, ama1-D3 and cpmp missed less clones compared to msp2-CE genotyping (Amp-Seq 
in average 5.4% versus 14.9% msp2-CE). This difference is likely due to less stringent cut-off criteria for Amp-
Seq compared to msp2 genotyping. Minority clone detection by msp2-CE is limited by peak calling cut-off 
criteria, which are usually a fixed minimal signal intensity plus a minimum peak height of 10% (used in our 
study) or more of the dominant peak. Minority clones with an abundance of <10% of all amplified fragments 
will not pass these criteria. An increase of msp2-CE sensitivity would require a lower cut-off, which would lead 
to more false positive signals from either stutter peaks or background noise. In contrast, Amp-Seq allows to 
remove PCR artefacts before haplotype calling and thus can support a much lower cut-off of <1% [7]. 

In cohort studies where Amp-Seq genotyping is performed in successive follow up samples of the same 
patient, an even more relaxed definition of Amp-Seq cut-off criteria would be justifiable. In this scenario, the 
same evidence-based strategy of using successive samples can be used to recover minority haplotypes that 
were detected with read counts below the haplotype calling cut-offs. If recovery would be performed in this 
study, ≥57% of all false-negative haplotypes would be identified. Such recovery would increase detectability 
of parasite clones by Amp-Seq to >97%. In addition, multi-locus haplotypes could provide additional evidence 
for accurate recovery. 

The higher sensitivity of Amp-Seq to detect minority clones compared to msp2-CE substantially increased 
MOI, but did not affect mean molFOI. Any estimation of molFOI needs to account for temporary absence of 
clones from the peripheral blood caused by sequestration [1,19–21]. A clone that is temporarily undetectable 
owing to density fluctuations is likely observed at either the preceding or succeeding bleed. Therefore, a clone 
is usually only counted as new infection if it was not detected in ³2 consecutive blood samples. As a 
consequence, a clone missed at a single bleed will not necessarily lead to a decrease of molFOI. 

A clone that was intermittently missed at one bleed by msp2-CE was always detected by Amp-Seq. This 
observation supports the practice in earlier papers where intermittently missed clones were imputed [21]. 
Counting a recurrent haplotype as new infection after a single negative bleed would lead to an overestimation 
of molFOI [1,19–21]. The statistical power of this study was limited and a larger study is needed to fully explore 
the effect of the typing method used on estimates of MOI, molFOI, or even prevalence rates. 
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A major advantage of Amp-Seq over msp2-CE is that the density of an individual clone in multi-clone infections 
can be calculated. Quantifying the density of individual parasites clones over time permits to study dynamics, 
and thus fitness, of parasite clones exposed to within-host competition [26]. For example, the relative densities 
of new infections can be compared to clones already persisting in a host, and their densities in respect to 
extrinsic factors or clinical symptoms can be investigated.  

 

CONCLUSION	

Amplicon sequencing improves clone detectability compared to msp2-CE owing to its greater sensitivity for 
detection of minority clones. Our results confirm earlier assumptions on clone persistence with intermittent 
missed observation. This validates the imputation of false negatives to correct for imperfect detection of clones, 
a strategy also used in previous studies on clone dynamics. Using multi-locus haplotypes for genotyping 
permitted to identify robustly individual clones and improved differentiation between new and recurring clones. 
Construction of multi-locus haplotypes are of great value to compensate the effects of highly abundant 
haplotypes in the population. The option to quantify individual clones enables new approaches to investigate 
effects of parasite fitness or superinfection in multi-clone infections. 
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FIGURES	

 

FIG 1: Frequency of individual SNPs and haplotypes of three markers in 33 baseline samples from 
PNG. Minor allelic frequency (MAF) of each SNP (left) and frequency of haplotypes in these baseline samples 
(right). n, number of observations per haplotype shown for 2 most prevalent haplotypes. Total number of 
different haplotypes: 30 for cpmp, 15 for ama1-D2 and 22 for ama1-D3. (Frequency of haplotypes for markers 
msp2-CE given in FIG S2). 
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FIG 2: Within-host haplotype frequencies of Amp-Seq markers in longitudinal samples from one child. 
Inserted table lists within-host multi-locus haplotype frequencies in percent. Multi-locus haplotypes have the 
same colour-code in figures and table. Solid line represents persisting haplotypes above cut-off criteria (true-
positive haplotypes). Dashed line represents persisting haplotypes falling below cut-off criteria (false-negative 
haplotypes detected below cut-off criteria). Dotted line and question mark indicate a false-negative haplotype 
that was not detected (n.d.) but could be imputed based on the established multi-locus haplotypes from the 
preceding sample. Black dashed line represents cut-off criteria of the Amp-Seq genotyping method. 
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FIG 3: Dynamics of multi-clone infections in 4 children. Multi-marker haplotypes could be generated in 
panels A, B and C. Inference of multi-locus haplotypes was not possible for the child in panel D; here the 
dynamics of individual clones tracked by marker ama1-D2 are shown. Each colour represents a clone. 
individual markers represented by different shapes: cpmp (diamonds), ama1-D2 (circles) and ama1-D3 
(squares). Solid line connecting multi-locus haplotypes represents their median frequency. Grey dotted vertical 
lines represent sampling dates. Red dashed lines represent day of artemisinin combination therapy. Red dash-
dotted line represents end of radical cure (artesunate-primaquine) at baseline. 
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TABLES	

Table 1: Genotyping results of 4 molecular markers analysed in 33 baseline field samples.  

Marker He Mean MOI Number of 
clones1 

Number of 
haplotypes 

Number of 
SNPs2 

msp2 CE 0.940 1.73 3 57 20 n/a 
cpmp 0.961 2.45 3 81 30 48 
ama1-D2 0.928 2.27 3 75 15 17 
ama1-D3 0.939 2.24 3 74 22 11 

He, expected heterozygosity. 
MOI, multiplicity of infection. 
1 Sum of all haplotypes in all samples. 
2 With respect to the reference sequence of P. falciparum strain 3D7. 
3 Pairwise comparison using two-sided paired t-test with adjusted p-value by Holm: p-value=0.008 for ama1-
D2 vs msp2-CE, p-value=0.036 for ama1-D3 vs msp2-CE, and p-value=0.005 for cpmp vs msp2-CE. 
 
 
 
Table 2: Genotyping results of 3 molecular markers analysed in 47 independent field samples with 66 
different clones. He, expected heterozygosity. 

Marker He 
Number of 
Haplotypes 

cpmp 0.948 25 
ama1-D2 0.926 16 
ama1-D3 0.938 21 
cpmp + ama1-D2 0.992 53 
cpmp + ama1-D3 0.994 55 
cpmp + ama1-D2 + ama1-D3 0.994 55 
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Table 3: Numbers of missed haplotypes due to imperfect detection either at baseline, in any 
intermediate sample, or prior to haplotype clearance. Haplotypes from 48 longitudinal samples from 12 
children were classified into true-positive (TP) and false-negative haplotypes. Two types of false-negative 
haplotypes (missed clones) can be differentiated: (FNi) False-negative haplotypes detected but below cut-off 
criteria and (FNii) false-negative haplotypes not detected but imputed. 
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Table 4: Sensitivity and false discovery rate (FDR) of the genotyping method. Sensitivity and FDR was 
estimated based on persistent clones in 48 longitudinal samples from 12 individuals. Detectability of minority 
clone can be increased by including missed persistent haplotypes detected below the cut-off criteria. TP, true-
positive haplotypes. FNi, false-negative haplotypes detected, but below cut-off criteria. FNiiab, false-negative 
haplotypes with no read detected. 

1 Detected true-positive and false-negative haplotypes. 
2 Not imputed for msp2-CE as multi-locus haplotypes cannot be established. 
3 Length-polymorphic data generated in different laboratories do not provide replicates suited for determination 
of false-positive haplotype calls and estimation of FDR. 
4 Without haplotypes, that were imputed based on multi-locus haplotypes at the beginning or end of an 
infection. 
 

  

Marker TP FN FP Sensitivity FDR Detected 
Haplotypes1 

 n ni niia niib n TP/(TP+FNi+iiab) FP/(TP+FP) (TP+FNi)/(TP+
FNi+iiab) 

msp2-CE 86 10 5 n/a2 n/a3 0.8514 n/a3 0.950 
cpmp 115 4 2 1 5 0.943 0.042 0.975 
ama1-D2 109 3 0 1 1 0.965 0.009 0.991 
ama1-D3 108 4 2 1 3 0.939 0.027 0.974 
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SUPPLEMENTAL	FIGURES	

 

FIG S1: Schematic of haplotype classification. Examples show the classification of haplotypes in true-
positive (TP), false-negative (FN) and false-positive (FP), based on their detection either in duplicates or in the 
preceding or succeeding bleeds. 

 

 

 

FIG S2: Frequency distribution of multiplicity of infection by marker (left) and frequency of msp2-CE 
haplotypes (right) in 33 baseline samples. Marker msp2-CE identified 20 different haplotypes. (Frequency 
distribution of haplotypes of Amp-Seq markers given in FIG 1). 
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FIG S3: Haplotype frequencies by marker in 46 independent samples comprising 66 clones. For marker cpmp 
25 different alleles were identified, for ama1-D2 16 haplotypes and for ama1-D3 21 haplotypes. Top panel: 
haplotypes base on single markers; bottom panel: two-marker haplotypes. 
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FIG S4: Density of true-positive haplotypes detected in only one or both replicates. X-axis, haplotypes 
detected in 1 versus 2 replicates by Amp-Seq marker. Y-axis, haplotype density by qPCR measured as 18S 
rRNA gene copies per µl whole blood. Points represent individual haplotypes; colours represent individual 
markers. Black horizontal bar represents 5, 50 and 95-percentile. Wilcoxon rank sum test with continuity 
correction: W=1000 and p-value=2x10-9 for ama1-D2, W=700 and p-value=5x10-9 for ama1-D3, W=1000 and 
p-value=5x10-5 for cpmp. 
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FIG S5: Frequency distribution of molecular force of infection (molFOI) by marker. A total of 117 samples 
from 27 individuals (on average 4.3 samples per individual [min: 2, max: 7]) were used to estimate force of 
infection (FOI). 
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FIG S6: Within-host haplotype frequency of Amp-Seq markers in longitudinal samples from 1 child 
representing an unresolvable multi-locus haplotype. Inserted table lists within-host haplotype frequencies 
for all markers with a possible solution of partly established multi-locus haplotypes for the major haplotypes. 
Multi-locus haplotypes 1-3 match well in frequencies of individual haplotypes at day 0, 13 and 32. In contrast, 
multi-locus haplotype 4 does not match in frequencies of individual haplotypes at day 0. This could be 
explained by a complex shared haplotype situation with one or several clones detected only at day 0 and 13, 
e.g. haplotypes 5-10. Solid lines represent persisting haplotypes. 

  

ama1-D2 ama1-D3 cpmp

Days

H
ap

lo
ty

p 
Fr

eq
ue

nc
y 

(%
)

●

●

●

●

●
●

●

●

●
●
●

0.1

1

10

100

0 13 26

ama134 229

Days

H
ap

lo
ty

p 
Fr

eq
ue

nc
y 

(%
)

0.1

1

10

100

0 13 26

ama156 229

Days

H
ap

lo
ty

p 
Fr

eq
ue

nc
y 

(%
)

0.1

1

10

100

0 13 26

cpmp 229

Multi-locus Day 0 Day 13 Day 32
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names % % % % % % % % %
Haplotype 1 65.9 63.3 64.4 1.1 1.5 1.8
Haplotype 2 0.1 0.2 96.6 96 95.6 20.3 21.6 16.1
Haplotype 3 0.2 0.4 1.6 1.5 1.5 47.3 41.6 47.2
Haplotype 4 8.4 21.4 0.6 0.6 1 32.4 36.8 34.6
Haplotype 5 22.4
Haplotype 6 11.5
Haplotype 7 11.5 0.3
Haplotype 8 13.4
Haplotype 9 2.0

Haplotype 10 13.9
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FIG S7: Within-host haplotype frequencies of Amp-Seq markers in longitudinal samples from one child. 
Multi-locus haplotypes have the same colour-code in figures. Solid line represents persisting haplotypes above 
cut-off criteria (true-positive haplotypes). Dashed line represents persisting haplotypes falling below cut-off 
criteria (false-negative haplotypes detected below cut-off criteria). Dotted line and question mark indicate a 
false-negative haplotype that was not detected but could be imputed based on the established multi-locus 
haplotypes from the preceding sample. Black dashed line represents cut-off criteria of the Amp-Seq genotyping 
method. 
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SUPPLEMENTAL	TABLES	

Table S1: PCR Primer sequence for Amp-Seq and msp2-CE genotyping and sequence library preparation. 
Primer for primary PCR 
cpmp_prim_F CGATACAGGACATATAGA 
cpmp_prim_R TTCAATAACATTTACTAGG 
Pfama1_F5 TGCGTATTATTATTGAGC 
Pfama1_R613 GTGTTGTATGTGATGCTC 
Primer for nested PCR 
ama1_D2_F_Linker GTGACCTATGAACTCAGGAGTCGGTCCTAGATATTGTAATAAAG 
ama1_D2_R_Linker CTGAGACTTGCACATCGCAGCCATGTTGGTTTGACATTAAA 
ama1_D3_F_Linker GTGACCTATGAACTCAGGAGTCTACTACTGCTTTGTCCCATC 
ama1_D3_R_Linker CTGAGACTTGCACATCGCAGCTCAGGATCTAACATTTCATC 
cpmp_F_Linker GTGACCTATGAACTCAGGAGTCCATAAGTCATTAAAATTTATGGAT 
cpmp_R_Linker CTGAGACTTGCACATCGCAGCCGTTACTATCAAGATCGTTAATATC 
Primer for msp2 CE genotyping 
msp2_S2_fw GAAGGTAATTAAAACATTGTC 
msp2_S3_rev GAGGGATGTTGCTGCTCCACAG 
msp2_S1-fw  GCTTATAATATGAGTATAAGGAGAA 
msp2_FC27-rev GCATTGCCAGAACTTGAA 
msp2_3D7-rev CTGAAGAGGTACTGGTAGA 
Primer for sequence library PCR (XXXXXX=barcode) 

Forward AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC
TTCCGATCTXXXXXXXXGTGACCTATGAACTCAGGAGTC 

Reverse CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCG
CTCTTCCGATCTXXXXXXXXCTGAGACTTGCACATCGCAGC 

Forward barcode  Reverse barcode 
Fwd_1 TAGATCGC Rev_1 TAAGGCGA 
Fwd_2 CTCTCTAT Rev_2 CGTACTAG 
Fwd_3 TATCCTCT Rev_3 AGGCAGAA 
Fwd_4 AGAGTAGA Rev_4 TCCTGAGC 
Fwd_5 GTAAGGAG Rev_5 GGACTCCT 
Fwd_6 ACTGCATA Rev_6 TAGGCATG 
Fwd_7 AAGGAGTA Rev_7 CTCTCTAC 
Fwd_8 CTAAGCCT Rev_8 CAGAGAGG 
Fwd_13 TGGTGGTA Rev_9 GCTACGCT 
Fwd_14 TTCACGCA Rev_10 CGAGGCTG 
Fwd_15 AGCACCTC Rev_11 AAGAGGCA 
Fwd_16 CAAGGAGC Rev_12 GTAGAGGA 
Fwd_17 ATTGGCTC Rev_13 ATGCCTAA 
Fwd_18 CACCTTAC Rev_14 ACGCTCGA 
Fwd_19 CTAAGGTC Rev_15 AGTCACTA 
Fwd_20 GAACAGGC Rev_16 ATCCTGTA 
  Rev_17 CGCATACA 
  Rev_18 CTGGCATA 
  Rev_19 GATAGACA 
  Rev_20 GCTAACGA 
  Rev_21 GTGTTCTA 
  Rev_22 TCCGTCTA 
  Rev_23 CCTAATCC 
  Rev_24 GACAGTGC 
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Table S2: Location and size of the amplicons.	
 cpmp ama1-D2 ama1-D3 

From 1895 775 1281 
To 2324 1253 1796 
Size 430 479 516 

 

 

Table S3: Summery of sequence coverage (total read numbers) by Amp-Seq marker.	
 cpmp ama1-D2 ama1-D3 
1st Qu. 247 2292 2997 

Median 794 3386 4716 
Mean 1117 3682 5189 

3rd Qu. 1632 5143 6906 

Max 6376 11570 34240 
 

 

Table S4: Summary of multi-locus haplotype (MLH) inference based on longitudinal samples from 33 children.	
Status of MLH inference Samples 

 
n 

Multi-locus 
haplotypes 

n 

 Single-locus haplotypes  
 cpmp  

n 
ama1-D2  

n 
ama1-D3  

n 
Full established MLH  78 1 116 1  116 103 103 
Partly established MLH 2 49 64  135 130 126 
Unresolvable MLH 3 8 0  20 18 18 
Incomplete datasets 4 13 0  7 11 11 
Total 140 180  258 5 244 5 240 5 

n number of samples or haplotypes. 
1 45 out of 78 samples with fully established multi-locus haplotypes were single clone infections. 
2 Samples were multi-locus haplotypes could be established for some but not for all clones of a sample. 
3 Samples were no multi-locus haplotype could be established. 
4 Samples with missing genotyping results for any of the markers. 
5 Total number of parasite clones detected in 140 samples was 277. 
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Table S5: Overview of sample selection criteria applied for different types of analyses. 
Analysis Type Samples 

n 
Children 

n 
Selection Criteria 

Baseline He and 
MOI  

33 33 Baseline (or first bleed available) sample. 

Multi-locus He  46 33 Samples with a resolvable multi-locus haplotype that were 
separated by a treatment plus ³2 consecutive P. falciparum 
negative samples from the same child. 

molFOI 117 27 Children with a complete set of replicates. 

Sensitivity and 
false discovery 
rate 

48 12 Children that did not received antimalarial treatment during 
the timespan analysed and harboured at least one haplotype 
that was detected at 3 consecutive bleeds. 

Reproducibility 139 33 True-positive haplotypes. 
 

 

Table S6: Reproducibility of true-positive haplotypes in technical replicates. Reproducibility only decreased 
when clone densities fell below 1000 copies 18S rRNA gene per µl whole blood and/or within-host frequency 
below 1% (FIG S5).  

 cpmp ama1-D2 ama1-D3 
 n1 n2 q n1 n2 q n1 n2 q 

 25 235 0.949 28 228 0.942 23 226 0.952 
Haplotype density (copies/µl) 

>1000 7 148 0.977 2 146 0.993 2 142 0.993 
100-1000 6 52 0.945 8 50 0.926 5 51 0.953 

10-100 8 23 0.852 13 22 0.772 10 22 0.815 
<10 4 12 0.857 5 10 0.800 6 11 0.786 

Haplotype proportion within a sample (%) 
>10 13 172 0.964 16 165 0.954 11 167 0.968 
1-10 4 55 0.965 4 47 0.959 5 46 0.948 
<1 8 8 0.667 8 16 0.800 7 13 0.788 

n1 number of clones detected only with one of the replicates. 
n2 number of clones detected with both replicates. 
q detectability as descripted in Bretscher et al. 2010. 
  



Amp-Seq Genotyping: Longitudinal Tracking of Complex Infections 

93 

SUPPLEMENTAL	TEXT	

Example	of	multi-locus	haplotype	inference	

Below an example of P. falciparum infection dynamics is shown for one child in great detail to illustrate our 
strategy for inferring a multi-locus haplotype that combines SNP data from three molecular markers ama1-D2, 
ama1-D3, and cpmp. Within-host haplotype frequency data of the example is shown in Table S8 and 
corresponding graphic illustration in FIG S7. 

 

FIG S7: Within-host haplotype frequencies of Amp-Seq markers in longitudinal samples from one child. 
Multi-locus haplotypes have the same colour-code in figures. Solid line represents persisting haplotypes above 
cut-off criteria (true-positive haplotypes). Dashed line represents persisting haplotypes falling below cut-off 
criteria (false-negative haplotypes detected below cut-off criteria). Dotted line and question mark indicate a 
false-negative haplotype that was not detected but could be imputed based on the established multi-locus 
haplotypes from the preceding sample. Black dashed line represents cut-off criteria of the Amp-Seq genotyping 
method. 

 

Table S8: Within-host haplotype frequencies (WHHF) in percent of individual Amp-Seq markers observed in 
longitudinal samples from one child. Haplotypes of individual markers (termed alleles) are sorted by WHHF of 
day 0. Haplotypes 1-4 represent multi-loci haplotypes composed of one allele of each of the 3 markers. 

Multi-locus  Day 0 Day 13 Day 32 
haplotype ama1-D2 ama1-D3 cpmp ama1-D2 ama1-D3 cpmp ama1-D2 ama1-D3 cpmp 

names % % % % % % % % % 
Haplotype 1 48.5 44.0 48.0 94.4 92.6 94.3 0.13 0.06  
Haplotype 2 40.2 41.5 41.4 2.61 3.29 2.62 6.77 7.42 7.10 
Haplotype 3 11.3 11.6 10.6 0.53 0.73 0.56 93.1 92.5 92.9 
Haplotype 4 - - - 2.71 2.83 2.49 0.12 0.07 0.04 
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The inference of multi-marker haplotypes started with identification of alleles that belong to the dominant 
parasite clone. A dominant Haplotype was defined by a within-host haplotype frequencies (WHHF) >54%.  

 

Inference of multi-marker Haplotypes at Day 0 

At Day 0 of this example, 2 different alleles per marker occurred at similar WHHF (listed by marker in 
Supplemental Table S8. At Day 0 no dominant Haplotype was evident, therefore any increase or decrease of 
in WHHF of these alleles at Day13 was interrogated: one allele of each of the 3 markers showed an increase 
of approx. +46%, while the remaining 3 alleles of similar frequency revealed a decrease by approx. -38%. 
Based on these recoded frequency changes we combined those alleles from each marker, which all increased 
by approx. +46%, into multi-locus Haplotype 1 (FIG S7, Day 0 in red). 

Alleles that constituted Haplotype 1 were not considered in next steps of inference. Additional multi-locus 
haplotypes of Day 0 were inferred by combining the alleles of similar frequency which showed a decrease in 
WHHF for all 3 markers of approx. -38%, thus defining multi-locus Haplotype 2 (FIG S7, Day 0 in green). For 
the next steps of inference, all alleles associated with multi-locus Haplotypes 1 and 2 were no more 
considered. The remaining alleles constituted multi-locus Haplotype 3 with ~11% WHHF for all markers (FIG 
S7, Day 0 in blue). 

 

Multi-marker Haplotypes at Day 13 

The dominant alleles in all 3 markers of the Day 13 sample were consistent with multi-locus Haplotype 1 
characterized by ~93% WHHF for all 3 markers (FIG S7, Day 13 in red). Again this multi-locus haplotype was 
no more considered in the next steps of Day 13 haplotype inference. Next two multi-locus haplotypes with 
similar WHHF were observed. In agreement with allele combinations found at Day 0, multi-locus Haplotype 2 
was identified by an increase of these alleles at Day 32 of approx. +4% (FIG S7, Day 13 in green). After 
excluding alleles constituent multi-locus Haplotypes 1 and 2 an additional new multi-locus Haplotype 4 with 
similar WHHF as Haplotype 2 was found (FIG S7, Day 13 in light blue). The remaining alleles, all with 
frequencies below 1%, corresponded to multi-locus Haplotype 3 (FIG S7, Day 13 in blue). 

 

Multi-marker Haplotypes at Day 32 

The dominant clone in the Day 32 sample corresponds to multi-locus Haplotype 3, characterized in this 
sample by a steep increase of, ~93% WHHF for all markers (FIG S7, Day 32 in blue). Alleles of this dominant 
clones are no more considered in the next step of inference. The dominant clone in this step corresponds to 
Haplotype 2 with ~7% WHHF for all markers (FIG S7, Day 32 in green). In the next step all alleles of 
Haplotypes 3 and 2 were no more considered. But no further multi-locus haplotypes could be established, as 
WHHF of the remaining alleles were below the 0.1% WHHF cut-off criteria for some of the markers. However, 
as the inferred multi-locus haplotypes of Day 0, 13 and 32 match for all samples and marker ama1-D2 showed 
a WHHF above the cut-off criteria, the multi-locus Haplotypes 1 and 4 could be imputed (FIG S7, Day 32 in 
light blue and red). 
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CHAPTER	4: DECONVOLUTION	OF	MIXED-STAGE	
TRANSCRIPTOMES	
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ABSTRACT	

Background 
Study gene expression of Plasmodium parasites in field samples is of great importance, e.g. to understand 
mechanism of drug resistance or in absence of a continuous in vitro culture system. Transcriptome studies of 
field samples are complicated by the mixture of different developmental stages present concurrently in the 
samples. Deconvolution methods permit to infer stage specific gene expression from mixed stage samples 
with known stage proportions. However, fold increase of total RNA during intra-erythrocytic development cycle 
complicates deconvolution of mixed stage samples.  

Methods 
Several deconvolution and normalisation methods were evaluated with experimental mixtures of highly 
synchronised P. falciparum stages. Permutation testing was used to sub-select those genes which had fold 
change large enough to still be identified as differentially expressed after deconvolution. Inferred significant 
fold changes (p-value<0.05) were compared to fold changes as observed in stage-specific transcriptomes from 
highly synchronised P. falciparum samples. 

Results 
Negative binomial regression together with normalisation by the total number of sequence reads showed best 
agreement in up or down regulation: 96.8% of 239 genes with significant fold changes between ring and 
trophozoite stage, 99.5% of 1318 genes between ring and schizont stage, and 99.5% of 3627 genes between 
trophozoite and schizont stage. Significant fold-changes of gene expression identified by permutation testing 
provided a robust selection criterion for genes which could be successfully deconvoluted. 

Conclusion 
The identified strategy for deconvolution of mixed-stage transcriptomes and identification significant fold 
change after deconvolution can be transferred to field samples of any Plasmodium species with known stage 
proportions. 
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INTRODUCTION	

The life cycle of Plasmodium falciparum is highly regulated and shows a cascading expression profile 
(Bozdech et al. 2003; Le Roch et al. 2003). The study of stage-specific gene expression provides important 
basic knowledge for malaria research, e.g. to understand mechanism of artemisinin drug resistance which 
shows a decelerated development at young ring stage (Mok et al. 2015). Various time-course studies of the 
intra-erythrocytic development cycle (IDC) exist for cultured P. falciparum strains, giving insights into the stage 
specific transcriptomes (Bozdech et al. 2003; Le Roch et al. 2003; Otto et al. 2010; Bártfai et al. 2010; Kensche 
et al. 2016). All time-course transcriptomes can be accessed by PlasmoDB (http://plasmodb.org) (Bahl et al. 
2003). In contrast, transcriptome data for P. vivax IDC are very limited. Only one study of synchronised short-
term cultured blood stages samples exists from infected patients (Bozdech et al. 2008; Zhu et al. 2016). The 
study of P. vivax stage specific gene expression is greatly hampered by a lack of continuous in vitro parasite 
culture. Gene expression has to be studied from P. vivax positive blood samples collected in the field that 
consist of a mixture of different developmental stages. Despite enrichment of a specific developmental stage 
or after tight synchronisation, small fractions of other stages are found. The transcriptome of P. vivax 
gametocytes, one of the stages found in peripheral blood, has not yet been described. Because P. vivax 
transcriptome analysis must rely on deconvolution of mixed stages, robust approaches to tackle RNA 
sequencing (RNA-Seq) data from mixed life stage are urgently needed. 

Several approaches have been presented in the past to deconvolute observed mixed cell-type transcriptomes 
measured by microarray or RNA-Seq (Table 1). These deconvolution methods infer either cell-type specific 
transcriptomes based on known proportions of cell-types in the mixture, or cell-type proportions in the mixture 
based on known cell-type specific transcriptomes, called signatures (Abbas et al. 2009; Erkkilä et al. 2010; 
Shen-Orr et al. 2010; Qiao et al. 2012; Gong et al. 2011; Gaujoux & Seoighe 2012; Zhong & Liu 2012; Gong 
& Szustakowski 2013; Gaujoux & Seoighe 2013; Newman et al. 2015; Joice et al. 2013). All deconvolution 
approaches assume similar cell quantity, meaning that the transcriptome of each individual stage within a 
mixture originate from the similar number of cells. This assumption is not valid for gene expression data gained 
from Plasmodium species, as the parasite genome replicates during the IDC. By completion of the IDC, the 
parasite has reached the schizont stage with up to 32 merozoites. During the IDC the parasite undergoes 
substantial increase in the amount of total RNA (Bártfai et al. 2010; Sims et al. 2009; Kensche et al. 2016). 
Therefore, deconvolution methods cannot be applied without taking into account this increase in the total 
amount of RNA. 

Normalisation methods are used to adjust gene expression data for biological differences in RNA composition 
between samples. Different methods are required for microarray or RNA-Seq data. Most common used 
methods for RNA-Seq are based on Reads Per Kilobase per Million mapped reads (RPKM), Trimmed Mean 
of M values (TMM), relative log expression (RLE), or Remove Unwanted Variation (RUV) (Dillies et al. 2013; 
Mortazavi et al. 2008; Robinson & Oshlack 2010; Anders & Huber 2010; Risso et al. 2014). RPKM 
normalisation only adjusts for difference in total read counts and gene length, whereas TMM, RLE, and RUV 
normalisation also adjust for difference in RNA composition between the samples. TMM and RLE 
normalisation make use of the assumption that the majority of genes are expressed at a constant level. Those 
normalisation methods might not work for transcriptome data of Plasmodium species, as most genes have a 
periodically fluctuating gene expression. Another possibility for normalisation is to use Biological Scaling 
Normalization (BSN), which normalises by an experimentally measured parameter, the so called ‘scale’ (Aanes 
et al. 2014).  

An approach to deconvolute mixed transcriptomes of Plasmodium parasites field samples measured by 
affymetrix microarray (ThermoFisher Scientific) was presented earlier (Joice et al. 2013). Applying this 
approach to RNA-Seq data from experimentally mixed stage transcriptomes of P. falciparum did not provide 
satisfying results. To determine if another deconvolution method is better suited for RNA-Seq data of 
Plasmodium parasites field samples, several existing normalisation and deconvolution methods were 
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evaluated with experimentally mixed-stage transcriptomes of P. falciparum. The specific aim of this work was 
to infer stage-specific transcriptomes from samples composed of mixed-stages, by using stage counts 
determined by light microscopy (LM) for all samples analysed. Solving this problem by using experimentally 
mixed, highly synchronized stages of P. falciparum as a proof-of-concept forms the basis for the ultimate goal 
of estimating the gametocyte transcriptome from enriched P. vivax field samples. As an additional step, 
knowledge of the expression signature of all P. vivax parasite stages might permit to infer the composition of 
P. vivax parasite stages from field samples with unknown stage composition based either on qRT-PCR or 
RNA-Seq data. 

 

MATERIALS	AND	METHODS	

Extraction	of	viral/HIV	RNA	

Extracted viral RNA from a supernant of non-infectious HIV-1 virus (4´109 RNA copies/ml) was used as spike-
in control and was kindly provided by Department of Biomedicine, University of Basel. The non-infectious HIV-
1 virus originating from parental HIV-1 NL4-3 strain carries a large deletion in the env gene Viral RNA was 
extracted using the QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 
protocol.  

 

Cultivation	and	synchronisation	of	P.	falciparum	HB3	cultures	

Plasmodium falciparum strain HB3 was cultured in RPMI 1640 (Gibco life technologies), and 0.5% Albumax 
(Invitrogen), 50mg Hypoxanthin, 25mM HEPES (Sigma) and 5% haematocrit according to standard 
procedures (Trager & Jensen 1976). 

Mixed stage HB3 Parasites (5-10%) were pre-synchronised 2 cycles before sample collection using two 
sorbitol synchronisations 10h apart in cycle -2. Sorbitol synchronisations were performed as follows (Lambros 
& Vanderberg 1979): The parasite culture was centrifuged for 5 min at 1900 rpm; The pellet (with a 
concentration of 107 RBC/µl) was resuspended in 6 volumes of 5% sorbitol (Sigma) and incubated at 37°C for 
5 min. After 5 min centrifugation at 1900 rpm the supernatant was removed. The pellet was resuspended in 
culture medium. Parasites were expanded in cycle -1 to yield a parasitaemia of about 5%. At the end of cycle 
(-1) late stage parasites (44h-48h) were percoll separated. (Radfar et al. 2009): Separated schizonts were 
pooled and seeded in fresh dishes containing 1.5ml RBCs (107 RBC/µl) and 30ml fresh culture medium. These 
plates were incubated for 4 h to allow re-invasion. To reduce double infections, the plates were placed on an 
orbital shaker (200rpm) at 37°C. After 4h the cultures were pooled and synchronised using sorbitol 
(synchronisation window 4h). The ring stage culture was equally split into 14 30ml dishes (5% haematocrit) 
and incubated at 37°C. Per time-point two dishes of parasites culture were harvest 8h, 15h, 24h, 33h and 48h 
after percoll separation. After centrifugation 1.2 ml of infected RBCs (107 RBC/µl) and 20µl of viral HIV RNA 
were combined with 8ml Ribozol and frozen at -80°C. 

Additionally, highly pure ring and schizont stage samples were produced to reduce the fraction of other stages 
to a minimum. To remove mature stage parasites that could contaminate the sample of “pure ring stage”, two 
dishes of highly synchronized 8h parasites culture were purified using a MACS CS magnetic column (Miltennyi 
Biotec) with a flow resistor 22G (flow rate 3.5 ml/min) attached. The flow-thru (containing the non-magnetic 
ring stages) was collected and centrifuged. 1.2 ml of the cell pellet was lysed in 8 ml Ribozol and frozen at -
80°C. For removal of potential ring stages (non-magnetic) that could contaminate the sample of “pure schizont 
stages”, two dishes of the highly synchronized 48h parasites culture were additionally purified using a MACS 
CS column with a flow resistor 21G (flow rate 4 ml/min) attached. The flow through was discarded and the 



Deconvolution of Mixed-Stage Transcriptomes 

99 

column washed with 30ml culture medium. The column was removed from the magnet and the magnetic 
schizonts were eluted with 20ml culture medium. The collected infected RBCs were centrifuged and 
supplemented with 3ml packed uninfected RBCs to generate the same conditions during RNA extraction as 
for other time-points. 1.2 ml of packed cells were added to 8ml Ribozol and frozen at -80°C.  

 

RNA	extraction	from	in	vitro	cultured	P.	falciparum	strain	HB3	and	RNA	quantification	experiments		

Total RNA was isolated and purified using Ribozol (Amresco) and RNeasy Kit (Qiagen) according to the 
manufacturer’s protocol. Genomic DNA (gDNA) was removed by DNase digestion with Ambion DNase I Kit 
(ThermoFisher). RNA samples were tested for gDNA contamination by two P. falciparum specific qPCR assays 
that target 18S rRNA or varATS genes using a StepOne Plus Real-Time PCR System (Applied Biosystems) 
(Hofmann et al. 2015). Total RNA concentration was measured on Nanodrop (Thermo Fisher). Concentration 
of spiked-in HIV RNA, human gene b-globin, gene pfs25 and gene pfpk4 in the extracted RNA was quantified 
in triplicate by qRT-PCR as described previously (Labhardt et al. 2016; Brancucci et al. 2014; Wampfler et al. 
2013; Irenge et al. 2005). Composition of reaction mixes and thermocycler conditions in Table S1. 

 

Experimental	mixtures	of	synchronized	developmental	stages	of	P.	falciparum	strain	HB3	

To adjust for loss of RNA during the extraction process (due to different amounts of total RNA used in 
extractions and possible saturation of extraction columns), the same amount of viral RNA was added into each 
sample before RNA extraction, permitting to restore the original total RNA concentration for a comparison of 
changes in RNA concentration between time-points. Sample 8h and 33h were diluted to restore the same 
concentration of spiked-in HIV RNA as in sample 48h. Experimental mixtures were prepared according to 
Table S2. Sample 8h represents ring (R) stages, sample 33h trophozoite (T) stages and sample 48h schizont 
(S) stages. 

 

Counts	of	P.	falciparum	development	stages		

Parasites of each developmental stage of P. falciparum were quantified by light microscopy on Giemsa stained 
slides and FACS counting. Giemsa stained slides were prepared from a smear of 3-5μl of each P. falciparum 
culture. The smear was air dried and fixed for 2 min in 100% methanol. After fixation slide was transferred to 
a 10-15% Giemsa staining solution for 15-20 min. Slides were scanned with a Zeiss Axio Scan.Z1 Slide 
Scanner (Carl Zeiss GmbH, Jena, Germany), with a 20x objective for Giemsa stained slides. 

 

For FACS analysis, 50 µl of P. falciparum culture were spun and re-suspended in 100 µl SYBR Green I nucleic 
acid gel stain (Sigma-Aldrich) diluted 1:5000 in parasite culture medium (PCM), incubated for 20-30 min at 
37°C (in the dark) and washed 3 times in 1 ml PCM. 1.5 µl of stained cells were transferred to 1ml FACS flow, 
vortexed and analysed by flow cytometer BD FACS Calibur (BD Biosciences). Cell Quest Pro Software was 
used to determine parasitaemia and stage counts (Figure S1). 

 

High	throughput	sequencing	

RNA-seq libraries were prepared using the Illumina TrueSeq Stranded mRNA Library Preparation Kit. Libraries 
were sequenced on a HiSeq 2500 125 cycle single read with added Illumina PhiX Control. Sequence reads 
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were mapped with tophat (Version 2, parameters: read-mismatches=4, read-edit-dist=4 min-intron-length=10, 
max-intron-length=10000, max-multihits=1) to P. falciparum 3D7 reference sequence (PlasmoDB, release 11) 
(Trapnell et al. 2009; Bahl et al. 2003). Raw read counts were extracted with htseq-count (parameters: 
stranded=no type=gene idattr=gene_id mode=intersection-nonempty) using gene annotation (PlasmoDB, 
release 11) (Anders et al. 2015; Bahl et al. 2003). 

 

Normalisation	of	RNA-Seq	and	qRT-PCR	data	

Raw read counts were normalised with different methods. Normalisation by counts per million (CPM) was used 
to represent the RPKM method. TMM and RLE normalisation was performed by using the R package edgeR 
(Robinson et al. 2010). In short, TMM and RLE normalisation factors were calculated with the ‘calcNormFactor’ 
function and multiplied by total sequence library size. Using the function ‘cpm’ normalised read counts were 
obtained from the adjusted library sizes. Normalisation with housekeeping gene pk4 (PF3D7_0628200) 
annotated as “eukaryotic translation initiation factor 2-alpha kinase” was performed by dividing raw read count 
by pk4 read count and multiplied by the mean pk4 read count of all samples. Finally, BSN normalisation was 
performed as previously described (Aanes et al. 2014). In short, CPM normalised counts were multiplied by a 
biological scaling factor and the mean library size. Three different biological scaling factor were used for BSN 
normalisation in this study: the relative gene expression of housekeeping gene pk4 to spiked-in viral RNA, 
both measured by qRT-PCR for BSNBio, and TMM or RLE normalisation factors for BSNTMM or BSNRLE 
respectively.  

Gene expression of gene pfs25, pk4, and b-globin by qRT-PCR was normalised by calculating the gene 
expression relative to the spiked-in viral RNA. To compare normalised gene expression by RNA-Seq and qRT-
PCR, fold change of genes pfs25, pk4, and b-globin was calculated by dividing gene expression of each 
individual time-point by mean gene expression over all time-point samples of that gene. Fold changes were 
compared by Spearman correlation. 

 

Differential	gene	expression	(DGE)	analysis	

The R package edgeR (Robinson et al. 2010) was used to identify differentially expressed genes in R, T and 
S stages represented by the 8h, 33h and 48h time-course samples. Normalisation was performed with CPM, 
TMM, PK4 and BSNRLE methods. PK4 and BSNRLE normalisation was not implemented in edgeR. Therefore, 
PK4 and BSNRLE normalised read counts were used as input for DGE analysis and no further normalisation 
was performed during DGE analysis. Dispersion of each gene (tagwise dispersion) was estimation based on 
time-course and highly pure stage samples to account for missing replicates. R stage was represented by the 
two samples, “highly pure ring stage” and “8h” samples, T stage by “24h” and “33h” samples, and S stage by 
“highly pure schizonts stage” and “48h” samples. The model was fit with function glmFit and a design matrix 
including an intercept, followed by a likelihood ratio test using function glmLRT. Genes with a significant 
differential gene expression were identified with function decideTestsDGE. 

 

Deconvolution	of	mixed-stage	samples	

Mixed-stage transcriptomes were deconvoluted into stage-specific signatures based on known stage 
compositions of the samples. R Package CellMix (http://web.cbio.uct.ac.za/~renaud/CRAN/web/CellMix) was 
used for csSam, csLsfit and csQprog deconvolution and function lm from R package stats for deconvolution 
by linear regression. Deconvolution by negative binomial regression was performed with R package edgeR 
with a design matrix containing the stage proportions of samples and estimated tagwise dispersion. Impact of 
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fold increase of RNA in mixed stage samples was visually inspected by multidimensional scaling analysis with 
function plotMDS from R package edgeR (Figure S2). Significance of gene expression fold changes was tested 
by 400 permutations of the stage proportions of mixed-stage samples. P-values were estimated with permp 
function of R package statmod (Phipson & Smyth 2010) and adjusted for multiple testing by calculating the 
false discovery rate (FDR) with function ‘p.adjust’ of R package stats (Benajmini & Hochberg 1995). Significant 
fold changes of deconvoluted REst, TEst and SEst stage transcriptom with fold change >1 were compared to fold 
changes of R, T and S stage samples by calculating the Pearson correlation factor R2 and percentage of up 
or down regulation agreement. Comparison was performed on log2 transformed inferred stage-specific 
transcriptomes with an added prior of 0.5 to avoid taking log of zero. 

 

RESULTS	

Fold	increase	in	total	RNA	and	parasite	genomes	during	intra-erythrocytic	development	cycle	

The amount of total RNA in P. falciparum parasites was reported to increase substantially during the intra-
erythrocytic development cycle (IDC) (Bártfai et al. 2010; Sims et al. 2009; Kensche et al. 2016). To estimate 
fold increase in total RNA of a highly synchronised P. falciparum culture, equal amounts of viral RNA was 
added to each sample before RNA extraction. After RNA extraction and purification, concentrations of the 
extracted RNAs were adjusted based on the measured viral RNA concentration to restore the true RNA 
concentration prior to losses of RNA during the extraction procedure. Total RNA concentration increased by 
18-fold during IDC, respectively between 8h and 48h samples (Table 2). 

 

Normalisation	and	differential	gene	expression	(DGE)	of	time-course	samples	

Time course samples were used to evaluate different normalisation methods that best fitted the fold change 
profile of genes pk4, pfs25, and human beta-globin measured by qRT-PCR and adjusted according to spiked-
in viral RNA. BSNBio normalisation correlated best to the fold change profile measured by qRT-PCR (spearman 
correlation R2 in decreasing order 0.96, 0.81, 0.65, 0.52 and 0.46 for BSNBio, PK4, CPM, TMM and RLE) (Table 
3, Figure 1 left panel). Normalisation by the empirically selected gene pk4 (PF3D7_0628200) achieved second 
best correlation. Pk4 is known to be relative constantly expressed and had been used in an earlier publication 
as a reference/housekeeping gene (Brancucci et al. 2014). CPM, TMM and RLE normalisation were not able 
to adjust for fold increase of total RNA. The biological scaling factor (relative gene expression of pk4 to spiked-
in viral RNA, both measured by qRT-PCR) used for the BSNBio normalisation cannot be used for mixed stage 
field samples. As an alternative, TMM or RLE scaling factor can be used for the BSN normalisation (Aanes et 
al. 2014). BSNRLE and BSNTMM correlated better to the fold change profile than TMM and RLE normalisation, 
but less good than BSNBio (spearman correlation R2 in decreasing order 0.83 and 0.81 for BSNRLE and BSNTMM) 
(Table 3, Figure 1 right panel).  

Differentially expressed genes were identified by DGE analysis of the 8h, 33h and 48h samples representing 
ring (R), trophozoite (T) and schizont (S) stages. The number of significant differential expressed genes 
(FDR<0.05) depended on the normalisation method used and was higher for BSNRLE and PK4 normalisation 
than for CPM and TMM normalisation (Table 4). 
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Evaluation	of	various	deconvolution	methods	based	on	experimental	mixtures	

Experimental mixtures of highly synchronous cultures were used to determine the best suited normalisation 
and deconvolution method for estimation of stage-specific signatures of gene expression from mixed-stage 
samples with known proportion. Only genes showing a significant inferred fold change (p-value <0.05) and 
with fold change >1 between ring and trophozoite stage (R-T), ring and schizont stage (R-S) or trophozoite 
and schizont stage (T-S) were used for comparison of the normalisation and deconvolution methods (Table 
5).  

 

Deconvolution by csSam, csLsfit and csQprog resulted in almost identical inferred signatures (Figure S3). 
Therefore, method csQprog was chosen as representative for those methods for further analysis, csQprog 
includes a non-negative constraint of estimated gene expression signatures. Normalisation methods CPM, 
PK4 and BSNRLE gave identical results when applied in combination with the deconvolution method csQProg 
(Table 5, 6 and 7). 

All normalisation and deconvolution methods yielded Pearson correlation of inferred and measured signatures 
for genes with a significant fold change in the range of 0.78 and 0.95 for the ring stage signature, 0.89 and 
0.99 for the trophozoite stage, and 0.72 and 0.95 for the schizont stage (Table 6). The choice of normalisation 
method most affected the inferred ring and schizont signatures. The highest correlation coefficient for inferred 
ring and schizont signatures was observed by the combination of methods PK4 and edgeR (Table 6). The 
combination TMM-csQprog showed the lowest correlation coefficient for inferred schizont signatures. For 
inferred ring signatures the combination BSNRLE-glm seems least suitable.  

Irrespective of deconvolution and normalization method, the comparison of inferred and measured fold 
changes showed that Pearson correlation was highest for the T-S fold change (R2 between 0.91 and 0.93). 
For inferring the R-T and R-S changes, no good correlation was obtained with deconvolution methods csQprog 
and lm (R2 between 0.34 and 0.53 for R-T and between 0.10 and 0.62 for R-S) (Table 6). Deconvolution 
method edgeR achieved the best agreement in up or down regulation for genes with a significant fold change 
between R-T and R-S (R2 between 0.85 and 0.87 for R-T and between 0.91 and 0.94 for R-S) (Table 6 and 7, 
Figure 2). When deconvolution method edgeR was used, the choice of normalisation method had little impact 
on results. However, normalisation with CPM and PK4 resulted in slightly higher agreements for all possible 
fold changes.  

 

DISCUSSION	

Most of the methods available for deconvolution of samples of heterogeneous composition were developed 
for gene expression data from microarray platforms and apply a linear model for deconvolution. Microarray 
data measures gene expression as fluorescence intensity, whereas RNA-Seq data counts the reads observed 
(Robinson et al. 2010). Therefore, an overdispersed Poisson model, e.g. negative binomial regression, is more 
appropriate for RNA-Seq deconvolution. However, the linearity of the data is no longer maintained after log-
transformation conducted during the negative binomial regression (Zhong & Liu 2012). This dilemma could not 
be circumvented and was not resolved in this study. 

Deconvolution of the transcriptomes of mixed Plasmodium developmental stages is particularly challenging as 
total RNA increases 18-fold during the 48 h blood stage cycle. An increase of total RNA is expected because 
the intracellular parasite undergoes several rounds of mitosis and by the end of the cycle has replicated into 
16 to 32 merozoites. Unfortunately, no additional material remained from this study that could be used for DNA 
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extraction to precisely measure increase of genomes by qPCR. Therefore, it remains unclear whether the 
increase of total RNA and was proportional to the growing number of genomes during the time course. 

A change in total RNA, as the observed in this experiment, caused by very high expression of a number of 
genes, may cause a bias in the measurement of gene expression. During RNA-Seq, samples are pooled at 
equal molarity to achieve similar amount of total sequence reads for each sample. A large amount of 
upregulated genes at one of the time-points could have consumed a substantial proportion of the total number 
of sequenced reads and caused under-sampling of the remaining genes (Robinson & Oshlack 2010). In this 
case the median gene expression might appear higher for time-course samples owing to their increased total 
RNA, whereas low expressed genes might be missed. If this sampling artefact is not accounted for by 
normalisation, some genes falsely might appear to be downregulated. On the other side, if the wrong 
normalisation method is chosen, incorrect expression patterns can be generated.  

Our evaluation of different RNA-Seq normalisation methods showed that the commonly used methods, e.g. 
TMM, RLE and CPM, were unable to adjust for the total RNA increase. These normalisation methods assume 
that most genes are not differentially expressed. However, during the IDC of P. falciparum most genes are 
differentially expressed. BSNBio normalisation uses a biological scaling factor that represent the differences in 
RNA concentration between samples. BSNBio offered the best adjustment for total RNA increase. However, 
BSNBio normalisation cannot be used for field samples as spike-in of viral RNA is not possible. The second 
best option was normalisation with housekeeping gene PK4. PK4 normalisation can always be applied to RNA-
Seq data. PK4 is a highly expressed housekeeping gene and has been used before to normalise qRT-PCR 
gene expression data (Brancucci et al. 2014). Normalisation by only a single housekeeping gene carries the 
risk of an unstable normalization. Multiple empirically selected housekeeping genes expressed at different 
levels, followed by RUV-Seq normalisation, might be a better choice for normalisation (Risso et al. 2014), but 
this approach depends on the availability of well validated empirically selected housekeeping genes. 

Comparison of DGE analysis of R, T and S stages with different normalisation methods indicated that BSNRLE 
or PK4 normalisation identified approximately 1.6-fold more genes showing significant differential gene 
expression compared to normalisation by CPM or TMM (1814 or 1642, versus 1030 or 1019 significant genes). 
In our study the number of genes with significant differential expression might have been underestimated for 
all normalisation methods, because no biological replicates were available to estimate dispersion. Instead, 
dispersion was estimated by combining the samples of pure stages with samples from time course 
experiments. This approach to estimate dispersion likely overestimates dispersion and as a consequence 
would reduce the number of genes showing significant differential expression. 

One schizont parasite carries on average as much RNA as 18 ring stage parasites (Figure S2). As a 
consequence, in mixed-stage samples, the 18-fold increase in total RNA resulted in a predominance of late 
stage parasites in the observed mixed transcriptome. Additionally, increase in total RNA can lead to a non-
linear mixing of transcripts in the sample. 

The comparison of normalisation and deconvolution with several methods showed that the combination of 
edgeR and CPM are best suited to infer stage-specific transcriptomes. This combination showed highest 
agreement between significant fold changes of inferred and measured stage-specific genes. The different 
normalisation methods only weakly influenced the outcome of the deconvolution with edgeR. This result was 
unexpected. The comparison of time-course samples to gene expression measured by qRT-PCR indicated 
that the BSNBio normalisation method best reflected gene expression of RNA-Seq data. An explanation for this 
results could be that the log transformation of the observed transcriptomes (during negative binomial 
regression of edgeR) reduces the effect of an 18-fold increase in total RNA. This would also explain why in 
our analyses the normalisation method mattered when deconvolution was performed with method csQprog or 
lm. Another explanation why edgeR performs better than csQprog or lm is that log transformation of RNA-Seq 
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data leads to better homogeneity of variance, and consequently to a more accurate estimation of variance 
during permutation testing.  

Permutation testing allowed robust identification of successfully deconvoluted genes i.e. genes that were 
indeed differentially expressed among stages. However, the 400 permutations performed in this study likely 
were insufficient for the comparison of >5000 genes. This shortcoming became apparent after adjusting p-
values for multiple testing by calculating false discovery rate (FDR). Much fewer significant genes with 
FDR<0.05 could be identified (Table S3). More permutations were not possible for the complex comparison of 
five deconvolution methods and four normalisation methods. The number of permutation should be greatly 
increased for future analysis when only one normalisation and deconvolution method combination is 
performed. And consequently, only genes with a FDR<0.05 should be selected for identification of stage 
specific genes. 

 

CONCLUSION	

By comparing observed stage specific transcriptomes of highly synchronized P. falciparum cultures to inferred 
stage-specific transcriptomes of mixed-stages of the same samples, this study showed that deconvolution of 
stage-specific transcriptomes is feasible. The 18-fold increase in total RNA between rings and schizonts 
proofed to be a particular challenge for accurate deconvolution. Best approach for deconvolution of mixed 
developmental stages of malaria parasites was deconvolution with method edgeR and CPM normalisation. 
Genes with a fold-change large enough to be successfully deconvoluted could be identified by permutation 
testing 

This deconvolution approach can be transferred to field samples of any Plasmodium species with known stage 
proportions. This proof-of-concept study paves the way for inferring gene expression of P. vivax gametocytes 
from field samples, under the condition that the proportions of developmental stages of the parasite in the 
sample is known.  
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Table 1: Overview of deconvolution methods. 
Method name Estimates Description/ Comments Reference 

Signature Proportions   
lsfit yes yes Least-squares Abbas 2009 
qprog yes yes Quadratic programming Gong 2010 
DeconRNASeq no yes Quadratic programming Gong 2013 
csSAM yes yes  Shen-Orr2010 
lm and qprog yes yes Method ‘lm’ for signature and 

‘qprog’ for proportions 
Joice 2013 

DSection yes (no) MCMC Erkkila2010 
PERT no yes NNLS with LDA Qiao 2012 
DSA yes1 yes1 Requires marker genes Zhong 20013 
ssKL yes1 yes1 Requires marker genes Gaujoux 2011 
ssFrobenius yes1 yes1 Requires marker genes Gaujoux 2011 
deconf yes1 yes1 Alternating NNLS 

No longer running in R 
Repsilber 2010 

TEMT yes no probabilistic model-based 
Supports mixture of two cell types 

Li 2013 

DeMix yes yes SW no longer accessible Ahn 2013 
ISOpure no yes Use signature to estimate cancer 

profile and cell-type composition 
Quon 2013 

- no yes SW no longer accessible Clarker 2010 
CIBERSORT no yes Robust linear regression and n-

SVR 
Newman 2015 

DCQ no yes Elastic net 
Digital Cell quantification 

Altboum 2014 

PSEA   No implementation available. Uses 
‘lm’ method 
needs marker gene 

Kuhn 2011 

ISOLATE no yes LDA  
Estimates cancer signature and 
cell-type composition 

Quon2009 

xCell no yes Application developed specifically 
for human gene expression can be 
easily transferred to Plasmodium 
species 

Aran 2017 

NNLS Non-negative least squares 
NNML Non-negative maximum likelihood model 
LDA Latent Dirichlet Allocation 
1 Complete deconvolution 
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Table 2: Total RNA concentration and fold increase over time course of extracted RNA from highly 
synchronized P. falciparum cultures spiked with equal quantities of viral RNA. Ring (R), trophozoite (T), and 
schizont (S) stage sample were used for experimental mixed stage transcriptomes. 

Sample Total RNA 
ng/µl 

Spiked-in  
viral RNA1 
copies/µl 

Adjusted  
total RNA2 

ng/µl 

Total RNA  
fold increase 

R / 8h 138 8.0´105 42.9 1 

15h 110.9 4.5´105 60.9 1.4 

24h 445.7 8.2´105 135.9 3.2 

T / 33h 645.1 4.1´105 388.8 9.1 

S / 48h 801.4 2.5´105 801.4 18.7 
1 Concentration of spiked-in viral RNA by qRT-PCR after RNA extraction. 
2 Adjusted total RNA concentration to restore equal concentration spiked-in viral RNA in each sample. 
 

 

 

Table 3: Comparison of normalisation methods between fold change of gene expression measured by qRT-
PCR and RNA-Seq for 3 genes at 5 time-points. 

Normalisation 
Method 

Correlation 
Spearman 

rho 

Concordance  
Cohn’s  

Kappa (p-value) 
CPM 0.65 0.42 (8.1´10-3) 
TMM 0.52 0.36 (0.024) 
RLE 0.46 0.32 (0.044) 

BSNBio 0.96 0.78 (9.7´10-7) 
PK4 0.81 0.55 (3.6´10-3) 

BSNTMM 0.81 0.57 (2.7´10-4) 
BSNRLE 0.83 0.62 (8.9´10-5) 

 

 



Deconvolution of Mixed-Stage Transcriptomes 

107 

 

Table 4: Comparison of different normalization methods for differential gene expression analysis of RNA-Seq 
data. 

Normalisation 
Method 

Differential 
expressed 

genes 1 
nsig 

Fold Change 
R-T 2 R-S 3 T-S 4 

nfc>1 nfc<-1 nfc>1 nfc<-1 nfc>1 nfc<-1 

CPM 1019 287 87 250 132 103 250 
TMM 1030 211 121 101 337 151 229 
PK4 1642 381 106 762 308 228 478 

BSNRLE 1814 356 121 822 353 314 621 
1 5308 genes were included in this analysis. 
2 Fold change between ring and trophozoite stage. 
3 Fold change between ring and schizont stage. 
4 Fold change between trophozoite and schizont stage. 
nsig Number of genes with a significant fold change (FDR<0.05). 
nfc>1 Number of genes with significant fold change and with fold change > 1 (up regulated). 
nfc<-1 Number of genes with significant fold change and with fold change < -1 (down regulated). 
 

 

 

Table 5: Number of genes with a significant fold change (p-value<0.05) after deconvolution and with fold 
change >1 for 3 different deconvolution method methods. 

Deconvolution 
Method 

Normalisation 
Method 

Significant 
genes 1 

nsig 

R-T 2 R-S 3 T-S 4 

nfc>1 nsig nfc>1 nsig nfc>1 nsig 

csQprog 

CPM 3959 1110 1148 1036 1153 1336 3728 
TMM 4197 778 873 1422 1697 1842 3924 
PK4 3959 1110 1148 1036 1153 1336 3728 

BSNRLE 3959 1110 1148 1036 1153 1336 3728 

lm 

CPM 3720 1023 1044 1073 1138 1440 3566 
TMM 3720 1023 1044 1073 1138 1440 3566 
PK4 4079 511 769 943 1555 1608 3559 

BSNRLE 3529 1107 1115 592 626 922 3322 

edgeR 

CPM 4059 179 275 538 1397 1314 3769 
TMM 4259 128 308 594 1869 1792 3932 
PK4 4023 195 262 545 1109 1304 3733 

BSNRLE 4071 180 288 534 1388 1319 3784 
1 Total of 5308 genes were included in the analysis. 
2 Fold change between ring and trophozoite stage. 
3 Fold change between ring and schizont stage. 
4 Fold change between trophozoite and schizont stage. 
nsig Number of genes with a significant fold change (p-value<0.05) by permutation test. 
nfc>1 Number of genes with significant fold change and with fold change>1. 
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Table 6: Pearson correlation of genes with significant fold change (p-value <0.05) after deconvolution and with 
a fold change >1. 

Deconvolution 
Method 

Normalisation 
Method 

Signature Fold change 
R T S R-T 1 R-S 2 T-S 3 

csQprog 
 

CPM 0.80 0.99 0.84 0.47 0.28 0.93 
TMM 0.83 0.99 0.72 0.44 0.36 0.92 
PK4 0.80 0.99 0.84 0.47 0.28 0.93 

BSNRLE 0.80 0.99 0.84 0.47 0.28 0.93 

lm 
 

CPM 0.82 0.99 0.76 0.46 0.26 0.92 
TMM 0.82 0.99 0.76 0.46 0.26 0.92 
PK4 0.82 0.99 0.80 0.53 0.62 0.93 

BSNRLE 0.78 0.98 0.92 0.34 0.10 0.91 

edgeR 
 

CPM 0.94 0.90 0.94 0.87 0.91 0.91 
TMM 0.93 0.90 0.94 0.86 0.91 0.92 
PK4 0.95 0.89 0.95 0.85 0.94 0.92 

BSNRLE 0.94 0.90 0.94 0.87 0.92 0.91 
1 Fold change between ring and trophozoite stage. 
2 Fold change between ring and schizont stage. 
3 Fold change between trophozoite and schizont stage. 
 

 

 

Table 7: Agreement among 3 analysis methods in up or down regulation of genes with significant fold change 
(p-value <0.05) and with a fold change >1. 

Deconvolution 
Method 

Normalisation 
Method 

R-T 1 R-S 2 T-S 3 
n % n % n % 

csQprog 

CPM 686 61.4% 877 82.7% 3485 99.4% 
TMM 664 84.3% 1234 82.9% 3538 99.7% 
PK4 686 61.4% 877 82.7% 3485 99.4% 

BSNRLE 686 61.4% 877 82.7% 3485 99.4% 

lm 

CPM 644 62.8% 890 81.4% 3436 99.7% 
TMM 738 71.9% 940 85.9% 3429 99.5% 
PK4 470 84.2% 1120 88.6% 3348 99.6% 

BSNRLE 559 50.3% 532 88.4% 3223 98.2% 

edgeR 

CPM 239 96.8% 1318 99.5% 3527 99.5% 
TMM 203 95.8% 1624 98.9% 3540 99.5% 
PK4 226 96.6% 1032 99.5% 3493 99.5% 

BSNRLE 251 96.5% 1307 99.5% 3535 99.4% 
1 Fold change between ring and trophozoite stage. 
2 Fold change between ring and schizont stage. 
3 Fold change between trophozoite and schizont stage. 

  



Deconvolution of Mixed-Stage Transcriptomes 

109 

 

 

Figure 1: Effects of different normalisation methods on gene expression of pfs25, pk4 and beta-globin 
measured by RNA-Seq in comparison to expression levels by qRT-PCR. For better overview, different 
normalisation methods were split on left and right panels. CPM and BSNBio Normalisation are found on both 
sides for better comparison. Top panels: gene expression in log2 count per million. Other panels: fold change 
relative to average gene expression.  

10 15 20 25 30 35 40 45

−6

−4

−2

0

2

Hours post invasion 

lo
g2

 fo
ld

 c
ha

ng
e

qPCR
TMM
RLE
BSNBIO
CPM
PK4

10 15 20 25 30 35 40 45

−6

−4

−2

0

2

Hours post invasion 

lo
g2

 fo
ld

 c
ha

ng
e

qPCR
TMM
RLE
BSNBIO
CPM
PK4

10 15 20 25 30 35 40 45

−6

−4

−2

0

2

Hours post invasion 

lo
g2

 fo
ld

 c
ha

ng
e

qPCR
TMM
RLE
BSNBIO
CPM
PK4

10 15 20 25 30 35 40 45

−6

−4

−2

0

2

Hours post invasion 

lo
g2

 fo
ld

 c
ha

ng
e

qPCR
BSNTMM
BSNRLE
CPM

10 15 20 25 30 35 40 45

−6

−4

−2

0

2

Hours post invasion 

lo
g2

 fo
ld

 c
ha

ng
e

qPCR
BSNTMM
BSNRLE
CPM

10 15 20 25 30 35 40 45

−6

−4

−2

0

2

Hours post invasion 

lo
g2

 fo
ld

 c
ha

ng
e

qPCR
BSNTMM
BSNRLE
CPM

10 15 20 25 30 35 40 45

0

2

4

6

8

10

12

Hours post invasion 

lo
g2

 g
en

e 
ex

pr
es

sio
n

TMM RLE BSNBIO CPM PK4

10 15 20 25 30 35 40 45

0

2

4

6

8

10

12

Hours post invasion 

lo
g2

 g
en

e 
ex

pr
es

sio
n

BSNTMM BSNRLE BSNBIO CPM

pfs25 beta−globin pk4



Deconvolution of Mixed-Stage Transcriptomes 

110 

 

Figure 2: Inferred transcriptomes and fold changes by deconvolution method edgeR. Top panel, ring (R), 
trophozoite (T) and schizont (S) stage gene expression in counts per million (cpm). Bottom panel, fold changes 
between R and T (R-T), between R and S (R-S) and between T and S (R-S). X-axis, observed stage-specific 
transcriptomes or fold changes of stage. Y-axis, inferred stage-specific transcriptomes or fold changes. Red 
points represent genes with significant (p-value<0.05) signature or fold changes. 
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SUPPLEMENTAL	MATERIAL	

Table S1: qPCR reaction mix and cycle conditions. 
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Table S2: List of proportions used for experimental mixtures of ring, trophozoite, and schizont stage sample. 

Sample Name Ring  
stage sample 

Trophozoite 
stage sample 

Schizont  
stage sample 

Ratio1 0.75 0.25 0.00 
Ratio2 0.50 0.50 0.00 
Ratio3 0.25 0.75 0.00 
Ratio4 0.00 0.75 0.25 
Ratio5 0.00 0.50 0.50 
Ratio6 0.00 0.25 0.75 
Ratio7 0.25 0.00 0.75 

Ratio8 0.50 0.00 0.50 
Ratio9 0.75 0.00 0.25 
Ratio10 0.10 0.80 0.10 
Ratio11 0.10 0.10 0.80 
Ratio12 0.80 0.10 0.10 

 

 

Table S3: Number of genes with a significant fold change (FDR1 <0.05) and with fold change >1. 

Deconvolution 
Method 

Normalisation 
Method 

Significant 
genes 2 

nsig 

R-T 3 R-S 4 T-S 5 

nfc>1 nsig nfc>1 nsig nfc>1 nsig 

csQprog 

CPM 3564 0 0 259 268 1304 3503 
TMM 3872 0 0 853 911 1797 3752 
PK4 3564 0 0 259 268 1304 3503 

BSNRLE 3564 0 0 259 268 1304 3503 

lm 

CPM 3260 0 0 0 0 1388 3260 
TMM 3260 0 0 0 0 1388 3260 
PK4 3235 0 0 0 0 1543 3235 

BSNRLE 2159 0 0 0 0 765 2159 

edgeR 

CPM 3604 0 0 0 0 1272 3604 
TMM 3791 0 0 0 0 1744 3791 
PK4 3557 0 0 0 0 1261 3557 

BSNRLE 3613 0 0 0 0 1272 3613 
1 False discovery ratio (FDR) calculated to adjust p-values for multiple testing. 
2 Total of 5308 genes were included in the analysis. 
3 Fold change between ring and trophozoite stage. 
4 Fold change between ring and schizont stage. 
5 Fold change between trophozoite and schizont stage. 
nsig Number of genes with a significant fold change (p-value<0.05) by permutation test. 
nfc>1 Number of genes with significant fold change and with fold change>1. 
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Figure S1: FACS counts of SYBR green stained time course and highly pure stage samples. X-axis, log2 
fluorescence intensity. Y-axis, side scatter. Colours shows density distribution with red as high and blue low 
density. 
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Figure S2: Multidimensional scaling plot showing predominance of late stage parasites and non-linear 
mixing of stage-specific transcriptomes. X and Y-axis, distance in log2 fold changes between gene 
expression profiles. Pies showing stage proportions of a sample. 
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Figure S3: Inferred transcriptomes by different deconvolution methods and CPM normalisation method. X-
axis, estimated coefficient of csLsfit deconvolution. Y-axis, estimated coefficient of method named in panel 
header. R, estimated ring stage signature (left panel). T, estimated trophozoite stage signature (middle 
panel). S, estimated schizont stage signature (right panel).
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CHAPTER	5: GENERAL	DISCUSSION	

The overall aim of this thesis was to develop tools for analysis of deep sequencing data from mixtures of P. 
falciparum clones or stage-specific transcriptomes. In the first case, samples of individuals concurrently 
infected with several different parasite clones were analysed. Individual parasite clones in these samples were 
identified by Amp-Seq and subsequent clustering of sequence reads. The resulting within-host clone frequency 
was then used to infer multi-locus haplotypes and to estimate density of the clones. Identification of individual 
parasite clones are required for determination of molecular epidemiological parameters e.g. MOI, molFOI, and 
duration of infection, which were then used to study the epidemiology of Plasmodium parasites. In the second 
case, samples of experimentally mixed-stage transcriptomes were analysed to infer stage-specific 
transcriptomes based on their known stage composition. Existing deconvolution and normalisation methods 
were evaluated to find the best approach to analyse such data. Comparison to stage-specific transcriptomes 
showed that genes with a significant fold change can be used to identify stage-specific genes in field samples. 
This thesis provides proof-of-concept analysis for inferring P. vivax gametocyte-specific-genes in samples 
enriched for mature stage parasites, but still containing different stages of asexual parasites. 

This chapter discusses the overall findings and limitations of the analysis conducted, and gives directions for 
future research. 

 

5.1 GENOTYPING	BY	AMPLICON	SEQUENCING	

Amp-Seq of SNP polymorphic markers is increasingly used for genotyping. High multiplexing of samples for 
sequencing enables the use Amp-Seq even for large epidemiological studies. Amp-Seq genotyping is superior 
to genotyping of length-polymorphic markers by capillary electrophoresis, because of its increased sensitivity 
to detect minority clones and quantification of concurrently infecting clones [1]. The higher sensitivity of Amp-
Seq genotyping resulted in a significant increase of mean MOI. However, no significant increase of mean 
molFOI could be determined in longitudinal samples. The sample size of this study was small, so it is possible 
that the non-significant increase of molFOI could be due to insufficient power in statistical analysis. Alternatively, 
molFOI might be less prone to detectability of minority clones than MOI, as each clone might be at a relatively 
high density at least once during an infection.  

Duration of infection is a key epidemiological parameter. The impact of higher sensitivity to detect minority 
clones on the duration of infection could not be studied in this thesis, because persisting infections with P. 
falciparum were mostly cleared by treatment. The children in the cohort study were aged 1-5 years and 
suffered regularly from clinical attacks of P. vivax or P. falciparum infections requiring treatment. Thus, natural 
clearance of infections could not be studied. However, during analysis of longitudinal samples some parasite 
clones were discovered earlier and/or for a longer period if more relaxed cut-off criteria were used (Chapter 3 
Table 3). This observation might indicate an increased measured duration of infection when a more sensitive 
method is used for genotyping. A study on individuals with higher levels of acquired immunity, and thus less 
treatment, would be better suited to study the impact of higher sensitivity to detect minority clones on duration 
of infection. An example of such a study was conducted in Navrongo, Northern Ghana, which includes 
individuals of all ages [2]. Duration of infection and molFOI was already extensively studied in this cohort by 
msp2-CE genotyping [2–6]. Re-analysis of the Navrongo study with Amp-Seq genotyping would show if a more 
sensitive genotyping method impacts duration of infection. 

Analysis of individual parasites clone density over time regardless of sample MOI allows investigation of 
whether the duration of infection depends on parasite densities in the blood. For example, it could be that long-
lasting infections show a lower clone density during an infection compared to infections which are cleared 
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within a week of appearance in the blood. It could also be that infections with the same, or similar clones as 
observed in previous infections show lower clone density as compared to infections of unrelated clones. 
Furthermore, patterns of clone density fluctuations over time could also be studied. For example, it is unknown 
whether in multi-clone infections the density of each clone peaks at the beginning of the infection and slowly 
decreases. Finally, fitness of individual parasite clones in the human host could be studied, i.e. the density of 
clones of a specific genotype, or between-clone-competition in multi-clone infections. In summary, the ability 
to measure individual clone density in multi-clonal infections opens the field for a new set of epidemiological 
studies. 

 

5.1.1 Comparative	analysis	of	Amp-Seq	and	CE	genotyping	methods	

When msp2-CE genotyping replaced msp2-RFLP genotyping, the authors found that genotyping by CE 
increases resolution and avoids subjectivity in analysing the readout [7]. A similar statement is made today 
about the replacement of CE with Amp-Seq. Amp-Seq promises advantages, like higher sensitivity and the 
possibility of increased standardisation of data analysis, but comes with new challenges. CE genotyping of 
microsatellites has the advantage that they are presumably not under selection pressure, and that the mutation 
rate of indels caused by DNA polymerase slippages is 10-fold higher than of base pair substitution, which are 
the origin of SNPs [8,9]. The main advantages of Amp-Seq genotyping lies in the higher sensitivity to detect 
minority clones at low within-host clone frequencies. The high sensitivity of Amp-Seq (Chapter 2) was achieved 
by removal of amplification artefacts, e.g. chimeric reads caused by incomplete primer extension and 
inhomologous re-annealing, or indels caused by polymerase slippage at stretches of homo-polymers. The 
specific removal of amplification artefacts permitted lower cut-off criteria for Amp-Seq genotyping than for CE 
genotyping. Such a specific removal of amplification artefacts is not possible for msp2-CE genotyping and 
consequently some minority clones were not detected, although were visible below the cut-off criteria in the 
background noise of longitudinal samples. 

For the first time, sensitivity and false-discovery rate (FDR) to detect parasite clones in longitudinal samples 
could be estimated. Yet, the true composition of haplotypes within a field sample is unknown, because every 
genotyping method has limited detectability to detect minority clones. The following two factors can affect the 
estimates of sensitivity and FDR: (1) Additional missed false-negative haplotypes would lead to a lower 
sensitivity and FDR than currently estimated. (2) A false-positive haplotype that should have been classified 
as a true-positive would lead to a higher sensitivity and a lower FDR. For example, if a haplotype occurred 
only at a single time-point in an individual and if one of the replicates failed or the haplotype was detected 
below cut-off, then the haplotype would be classified as false-positive instead as true-positive. Such a situation 
was found 6 times in the msp2-CE genotyping data of Chapter 3. Therefore, FDR was not estimated for msp2-
CE genotyping in Chapter 3. The FDR of msp2-CE would more likely estimate standardisation problems 
between different laboratory than the specificity of the msp2-CE genotyping method.  

	

5.1.2 Technical	considerations	for	assay	development	

A recent publication (Kou et al. 2016) claims that the sensitivity and specificity of Amp-Seq genotyping can be 
further improved by identifying ‘PCR duplicates’, i.e. amplified fragments which originate from the same 
template. The Amp-Seq genotyping technique presented in this thesis cannot identify ‘PCR duplicates’. A 
possibility to identify PCR duplicates is to integrate a molecular unique identifier (UID) consisting of a random 
nucleotide sequence of ~8 bp between a linker and a marker specific primer sequence of both nested amplicon 
primers [10] (Figure 1). Identification of ‘PCR duplicates’ permits calculation of consensus sequence of reads 
sharing the same UID. Based on the consensus sequence of a UID, amplification and sequencing errors of 
reads with the same UID can be identified and thus corrected. 
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UID guarantees that in standard PCR application sequence reads with identical UID originate from the same 
template. But it cannot be guaranteed that two different UID originated from different templates, because a 
template DNA is amplified multiple times during subsequent amplification cycles. Consequently, two different 
consensus sequences of different UIDs could still originate from the same template, if an amplification error 
was introduced. Thus, incorrect interpretation of UIDs used in standard PCR application could lead to false 
haplotype calls. 

Another technique for Amp-Seq library preparation is the molecular inversion probes (MIP) techniques. MIPs 
guarantees that every UID originates from an original template [11,12]. MIPs are single-stranded DNA 
molecules consisting of a ~30 bp linker sequence flanked by ~20 bp target-specific sequence on both ends. 
The target-specific sequence hybridises to the target region (~100 bp in length), followed by a gap-filling and 
ligation step leading to a circularised DNA. The non-circularised fragments are then digested by exonucleases 
and the circularised fragments amplified with primers containing sequencing adapter, sample barcode and 
linker specific sequence at the 3’ end. However, capture efficiency of MIPs is limited and >40’000 templates 
are required as input material for MIPs [13], which corresponds to a field sample with very high parasitaemia. 
Thus, MIP technique is not suited for genotyping of Plasmodium field samples. 

In order to benefit from UID for error correction, consensus sequences retrieved from at least three reads with 
the same UID are required [14]. However, without MIP technique, the vast majority of sequence reads with 
identical UID occur only once or twice and cannot be considered in the analysis. This in turn limits the sensitivity 
to detect minority clones. Consequently, using UID for error correction does not necessary improve sensitivity 
and specificity of Amp-Seq genotyping, because some amplification errors might not be identified. But, UID 
can identify sequencing errors and would permit to use more error prone sequencing platforms for Amp-Seq 
genotyping, e.g. MinION (Oxford Nanopore Technologies). Furthermore, by using UID a lot can be learned 
about the variation in the sequencing data caused by sequence and amplification errors. With the gained 
knowledge, filtering of PCR artefacts and cut-off criteria for minority clone detection can likely be further 
optimized.  

 

 
Figure 1: Design of Amp-Seq genotyping primers, including a molecular unique identifier (UID). Primary 
primers target the gene of interest. Primary PCR is followed by nested PCR using marker-specific primers that 
carry UID and linker sequences at their 5’ ends. The primers for the final round of amplification target the F 
and R linker sequences. These primers carry sample-specific indices (barcodes) plus Illumina sequencing 
adapter P5 and P7 at their 5’ ends. 
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The volume of a finger prick blood sample collected in the field is often limited to a maximum of 300-400 µl of 
whole blood. For typing of multiple loci, individual PCR reactions with ~4 µl template are required depending 
on the desired limit of detection. Therefore, multiplexing of several markers would be preferable. Multiplexing 
of more than eight different amplicons was tested during the development of the Amp-Seq genotyping method. 
However, optimizing the amplification reaction so that all amplicons were equally efficiently amplified was 
difficult. Therefore, multiplexing was limited to three different amplicons per primary PCR. The main difficulties 
for multiplexing were reduced amplification efficiency caused by dimer interactions, and unbalanced 
amplification caused by different amplicon sizes. Amplification of longer amplicons was much less efficient. It 
was impossible to completely prevent primer dimer interactions, because of the very low complexity of the 
genome of P. falciparum (average GC content of coding regions is 23.7%)[15]. 

The challenges of multiplexing marker of different fragment length can partly be overcome by using digital 
PCR platforms, such as the BioRad droplet digital PCR (ddPCR) system, or RainDance technology [16]. A 
digital PCR platform divides the PCR reaction in thousands of micro-droplets before amplification, thus each 
droplet represents a separate PCR reaction containing only a single template. This prevents or minimises 
direct template competition and also reduces formation of chimeric reads that are caused by incomplete primer 
extension and in-homologous re-annealing. Digital PCR platforms might also prevent the amplification bias for 
shorter fragments of length-polymorphic marker msp2 [17]. 

The Amp-Seq library preparation protocol presented in this thesis, required an initial target enrichment by 
primary PCR. When using digital PCR, this target enrichment might be unnecessary, since all amplified 
fragments within a droplet come from the same template. It may even be possible to perform all three PCRs 
of Amp-Seq library preparation, i.e. primary PCR, nested PCR and sequencing adapter attachment, in a single 
digital PCR reaction. The concentration of target-specific primer could then be limited and thus primer dimer 
interactions reduced, as the sequencing adapter would amplify the fragment as soon as the first fragments 
carrying the linker sequence are present in the reaction (Chapter 2 Figure S4). Reducing the library preparation 
to a single digital PCR reaction would also reduce cross-sample contamination and reduce potential false 
positive haplotypes caused by carryover effects. However, the feasibility to perform Amp-Seq library 
preparation in a single digital PCR reaction must be experimentally proven. 

 

The developed Amp-Seq genotyping laboratory protocols have further optimisation potential. Firstly, the final 
elongation step could be removed for all amplification steps. During final elongation, incompletely extended 
primers are elongated, which leads to chimeric reads. Depending on the marker sequence it can be very 
challenging to distinguish chimeric reads from true genotypes. Secondly, the equimolar pooling step is 
labourious and error prone. The pooling step of the different markers and samples could be simplified by using 
a procedure that captures only a limited amount of fragments, e.g. SequalPrep kit (Invitrogen) [18]. However, 
samples with low parasitaemia may not contain enough fragments to reach saturation of the capturing method. 
And thirdly, the final purification step could be modified by using magnetic baits carrying the P5 and P7 
sequencing adapters (Chapter 2 Figure S4). This would improve the sequencing library quantification leading 
to optimal loading and cluster formation on the sequencing flow cell, and in turn increase the amount of 
sequencing output. Such sequencing adapter specific baits could also potentially be used as capturing method 
for the equimolar pooling step, thus simplifying the protocol further. 

	

5.1.3 Considerations	for	marker	selection	

The new SNP polymorphic marker PF3D7_0104100 (cpmp) was discovered by scanning the unfiltered SNP 
list of WGS data from PNG that were part of the MalariaGEN project. The same scan was repeated on the 
filtered SNP list from the global MalariaGEN dataset [19]. The expected heterozygosity of cpmp was lower in 
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the filtered SNP list. The reason for this lower genetic diversity was that many SNPs were removed from the 
list by the MalariaGEN filtering criteria, as the read coverage was not sufficient to pass the SNP filter criteria. 
A closer look at the read alignments showed indeed, a lower coverage in the SNP polymorphic region of cpmp. 
The decrease in sequence coverage of WGS data can be explained by too many mismatches to the reference 
sequence genome, caused for example by length-polymorphism of microsatellite, or by too many SNPs in a 
region similar to the size of a sequence read. It then depends on the used alignment parameter whether such 
reads are mapped to the reference genome. Most of the SNPs that were filtered out by the MalariaGEN 
analysis workflow were found to be true SNPs by the newly obtained Amp-Seq data. Less stringent criteria 
used by MalariaGEN might result in too many SNPs being called e.g. from length-polymorphism region. As a 
consequence of this observation, if decreased read coverage in the MalariaGEN data is observed for certain 
genes from samples of a distinct geographical region, a further in-depth analysis should be done. It is possible 
that SNPs were falsely excluded during filtering due to high local variation, i.e. too many SNPs compared to 
the reference genome. 

During the analysis of the Amp-Seq data, additional criteria became obvious for future marker selection. The 
genetic diversity of marker cpmp was only slightly higher than that of marker ama1-D2 and ama1-D3, but 
marker cpmp contains many more SNPs (17, 11, and 48 SNPs, respectively). Many SNPs of marker cpmp 
were in close proximity, and thus were linked within a genotype, i.e. they showed a high linkage disequilibrium 
(LD). Those SNPs do not add information towards genetic diversity, but they increase the genetic distance 
between the haplotypes, leading to more robustness for haplotype calling in the presence of sequencing and 
amplification errors. In addition, chimera haplotypes can be easier identified in the presence of more SNPs. If 
those SNPs are equally distributed over the whole length of the amplicon, the probability of a resulting identical 
chimera haplotype in repeatedly genotyped samples is very low. Both characteristics were not given for the 
ama1 markers, and as a result the identification of chimera haplotypes was much more difficult and often less 
conclusive for both ama1 markers than for marker cpmp. 

 

5.1.4 Considerations	for	haplotype	calling	

The decision to choose the swarm software for haplotype clustering instead of SeekDeep was mainly based 
on computational performance [20,21]. The runtime to cluster haplotypes with swarm software was much 
shorter than with SeekDeep. Furthermore, the clustering with swarm can be carried out on a personal 
computer, whereas a computer cluster with large working memory is needed for SeekDeep. It must be noted 
that SeekDeep was tested for data analysis in August 2015, before SeekDeep was published, and that in the 
meantime the performance of SeekDeep may have improved. A systematic comparison of clustering results 
of both methods was not carried out, because of the slow computational performance of SeekDeep. SeekDeep 
and swarm software use similar clustering approach and it is unlikely that the resulting haplotype clusters differ 
much between the methods. 

Recently, the new method DEploid was published [22]. DEploid infers haplotypes from unlinked SNPs rather 
than by clustering of sequence reads. A preliminary analysis of our Amp-Seq genotyping data with DEploid 
showed that DEploid cannot always correctly infer a minority clone at a within-host haplotype frequency <1% 
in defined mixtures of P. falciparum strains HB3 and 3D7 (own unpublished data). Furthermore, DEploid cannot 
always infer haplotypes in samples with high MOI. However, DEploid detected two closely related clones 
correctly, whereas clustering by swarm could not differentiate the two clones based on a single marker. 
DEploid infers multi-locus haplotypes, which is not yet integrated in HaplotypeR. A systematic comparison of 
HaplotypeR and DEploid is still outstanding. The high quality strain mixtures used in this thesis would be ideally 
suited for such comparison. 

The algorithm used in Chapter 3 to infer multi-locus haplotypes based on longitudinal field samples performed 
similar as DEploid without using longitudinal samples. It is therefore likely, that by using a combinatorial 
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approach of linked and unlinked SNP information, as well as longitudinal sample information, the challenge of 
very complex clone mixture and low abundancy of minority clones could be overcome. Firstly, single locus 
haplotypes could be inferred by using the same approach as DEploid (unlinked SNP), by limiting the 
combinatorial search space to the sequence reads. Secondly, the inferred local haplotypes and within-host 
haplotype frequency can be used to infer the multi-locus haplotype by using the same approach as DEploid. 
Finally, local haplotype inferred from preceding or following bleeds can be included to define the final haplotype 
set. 

 

5.2 DECONVOLUTION	OF	MIXED	STAGE	TRANSCRIPTOMES	

Knowledge of the gene expression profiles and their regulation is very important for basic malaria research. It 
helps in identifying new drug targets, as well as understanding drug resistance mechanisms [23]. Stage-
specific marker genes can be used to monitor changes in stage composition during IDC, for example after 
drug treatment. However, the study of gene expression in field samples is complicated by the presence of 
mixtures of different parasite stages in the human blood. Even in cultured parasites after tight synchronisation 
or enrichment of a specific stage, small fractions of other stages are found. In the past, many different 
deconvolution methods were developed for heterogeneous human samples [24]. Most of those methods infer 
the stage composition rather than stage-specific transcriptomes. Evaluation of a subset of methods with 
experimental mixed P. falciparum stages showed that analysis of such heterogeneous transcriptomes can be 
very challenging, especially when an increase in total RNA takes place simultaneously. 

One deconvolution method was specifically developed to infer P. falciparum stage-specific transcriptomes and 
stage composition from field samples [25]. It was developed based on gene expression data from the affymetrix 
microarray platform. Application of this methodology to RNA-Seq data of experimentally mixed transcriptomes 
showed that neither inferred stage-specific transcriptomes (deconvolution method ‘lm’ in Chapter 4), nor 
inferred stage composition (deconvolution method ‘qprog’) agreed to stage-specific transcriptomes or mixture 
ratios used for experimentally mixed transcriptomes. 

Measurements of gene expression by microarray and RNA-Seq differ in two important aspects. Firstly, 
microarray platforms measure abundance of RNA by hybridisation to gene specific probes. Each hybridisation 
represents an independent process, thus measurements of individual genes are not influenced by abundance 
of RNA from other genes. In contrast, in RNA-Seq, fragments of all genes are sequenced. Thus, sampling of 
each gene depends on the relative abundance of RNA in the sample, and thus on expression levels of other 
genes. Therefore, RNA-Seq is more prone to bias of changes in RNA composition between different samples. 
Secondly, microarray platforms measure continuous fluorescence intensity, whereas by RNA-Seq, read count 
is observed [26]. Therefore, the resulting different distribution of the data requires different statistical models. 

In the present study, estimating stage-specific signatures by CPM normalisation and deconvolution with a 
negative binomial regression model (method used by edgeR), followed by selection of genes with a significant 
fold change (as measured by permutation tests) showed the best agreement to stage-specific transcriptomes 
(Chapter 4 Figure 2). In contrast to other deconvolution methods, normalisation was less important for 
deconvolution with edgeR. An explanation for observation could be that the log transformation of the mixed-
stage transcriptomes (during negative binomial regression of edgeR) reduces the effect of the 18-fold increase 
in total RNA 

Initial attempts to infer stage composition of experimental mixed-stage samples based on known stage-specific 
signatures were unsuccessful so far. Both tested deconvolution methods, Cibersort and qprog, overestimated 
the proportion of schizonts in the sample. However, if the estimated stage compositions were additionally 
adjusted by the fold increase in total RNA, then agreement to original stage compositions was much better. 
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This preliminary result holds the promise that if fold increase in total RNA can be included into a new method 
for deconvolution, it may be feasible to estimate stage compositions from RNA-Seq data. 

An evaluation of different normalisation and deconvolution methods was performed to provide a proof of 
concept for the intended application of inferring the P. vivax gametocyte transcriptome after enrichment of 
gametocytes from patient samples. Currently the transcriptome of P. vivax gametocytes is largely unknown. 
Existing knowledge about P. vivax gametocytes was gained through orthologous genes that are present in P. 
falciparum and P. vivax, e.g. pvs25 and pvs28. However, gametocytogenesis of P. falciparum and P. vivax 
differ [27,28], and gametocyte-specific genes only found in the genome of P. vivax cannot be identified by 
comparative analysis of P. falciparum and P. vivax. Thus, the transcriptome needs to be inferred from 
gametocyte enriched field samples with known stage composition. 

During the course of this thesis, initial attempts to infer the transcriptome of P. vivax gametocytes by 
deconvolution with edgeR were made (these preliminary data were not presented in results section). No 
significant differentially expressed genes could be identified. An explanation for this failure is that the parasite 
stage compositions determined by light microscopy might not be correct. In contrast to P. falciparum, where 
gametocytes show a characteristic shape, P. vivax gametocyte and trophozoite look similar (Figure 2). Stage 
compositions of the same sample by two different expert microscopists showed disagreement in gametocyte 
and trophozoite counts (unpublished data). Stage count of asexual and sexual parasites could be facilitated 
by indirect fluorescent antibody labelling of a known gametocyte-specific protein, such as the sexual stage 
antigen s16 [29,30]. However, this assay would only differentiate between gametocytes and asexual parasites, 
allowing deconvolution to infer genes that are up or down regulated in gametocyte only, but would not permit 
inferring of ring-, trophozoite- or schizont-specific genes. 

Differential gene expression analysis of stage-specific transcriptomes from highly synchronized P. falciparum 
cultures showed that known schizont-specific genes were also upregulated in ring stage transcriptome. This 
upregulation can be explained by a fraction of schizont stage parasites, which was also found in the highly 
synchronised ring stage sample (Chapter 4 Figure S1). This gene upregulation was no longer observed in our 
data after additional purification of the synchronised ring stage sample, yielding a sample of highly pure ring 
stages. The same observation was made with known ring stage-specific genes, which were upregulated in the 
highly synchronised schizont stage sample. But, the upregulation caused by contaminating ring stage 
parasites was smaller than the upregulation caused by contaminating schizont stage parasites. The different 
influence of contaminating stages can be explained by the 18-fold increase in total RNA during the 
development from ring to schizont stages. 

Single cell RNA sequencing (scRNA-Seq) platforms offer another solution to the problem of stage-
heterogeneity in field isolates, e.g. Fluidigm C1, DropSeq, 10x Chromium and single cell FACS sorting. scRNA-
Seq characterizes a defined single cell, rather than an average of the gene expression of individual cells as in 
RNA-Seq. Recently, the first scRNA-Seq transcriptome of the erythrocytic cycle of P. falciparum was published 
showing the dynamics of stage development in cultured parasites [31]. However, scRNA-Seq comes with new 

 
Figure 2: Illustration of trophozoite and gametocyte of P. falciparum and P. vivax (image source Coatney et 
al. 1971). 
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challenges. For example, only transcripts of few genes at low coverage are sequenced per cell, showing only 
the ‘tip of the iceberg’ of gene expression in a cell. Additionally, scRNA-Seq is prone to sampling artefacts, as 
amplification of reverse transcribed RNA is required to achieve sufficient material for sequencing. And finally, 
analysis of scRNA data is complicated by a lot of missing data. Future studies will show how far scRNA-seq 
can resolve difficulties encountered with mixed parasite stages. 

 

5.3 CONCLUSIONS	

Next generation sequencing (NGS) permits fundamentally novel approaches to study Plasmodium parasites 
and will continue to shape malaria research. The unique challenges of Plasmodium parasite field samples for 
NGS data analysis require specifically developed tools, in particular for data analysis. This thesis provides 
solutions for genotyping and analysing P. falciparum samples containing a mixture of parasite clones, as well 
as a new highly sensitive Amp-Seq genotyping assay, including a novel, highly diverse marker, cpmp. 
Furthermore, this thesis provides a strategy on how to best infer stage-specific gene expression from samples 
containing a mixtures of Plasmodium parasite developmental stages. 

Amp-Seq genotyping permits quantification of individual genotypes within a human host and thus to study 
individual parasite clone densities. This novel molecular epidemiological parameter opens new possibilities to 
study malaria epidemiology and might help to answer open questions about parasite fitness. For example, 
parasite densities might help to explain the difference between short and long duration of infection [2]. 
Furthermore, fitness of individual parasite genotypes could be studied when resources are limited due to 
superinfection or when natural immunity is acquired. 

Deconvolution of mixed-stage field samples into stage-specific transcriptomes is a crucial method to analyse 
gene expression data from field samples. Field isolates are the main source of material for RNA-Seq 
experiments if no in vitro culture system is available, e.g. in the case of P. vivax, or when the interaction of the 
parasite with a clinical phenotype of the host is of interest. So far, the study of stage-specific gene expression 
of parasites carrying a specific phenotype, e.g. artemisinin resistance, in field samples was greatly hampered 
by the mixture of development stages [23]. Deconvolution permits analysis of stage-specific gene expression 
of isolates containing mixed stages, when the proportions of parasite developmental stages in the sample is 
known, e.g. through stage counts by microscopy.  

This thesis shows that malaria epidemiology can greatly benefit from next generation sequencing technologies. 
Further development of sequencing technology will simplify laboratory procedures, as well as data analysis. It 
might be expected that sequencing of field samples will be as common in future as performing a PCR is today. 
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APPENDIX	

During the course of this PhD additional contribution to a project has been made: 

Integrated transcriptomic, proteomic and epigenomic analysis of Plasmodium vivax salivary-gland sporozoites 
Vivax Sporozoites Consortium 
 

– Manuscript is published in bioRxiv Jun 7, 2017, DOI: https://doi.org/10.1101/145250 – 
– Manuscript is submitted to Journal of PLOS Neglected Tropical Diseases – 
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