Photophysics and Photoredox Catalysis of a Homoleptic Re\(^{1}\) Tris(diisocyanide) Complex

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Inorganic Chemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>ic-2017-03258d.R1</td>
</tr>
<tr>
<td>Manuscript Type</td>
<td>Communication</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>12-Feb-2018</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Larsen, Christopher; University of Basel, Department of Chemistry Wenger, Oliver; University of Basel, Department of Chemistry</td>
</tr>
</tbody>
</table>
Photophysics and Photoredox Catalysis of a Homoleptic Re
Tris(diisocyanide) Complex

Christopher B. Larsen and Oliver S. Wenger*

Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel CH-4056, Switzerland

Supporting Information Placeholder

ABSTRACT: Herein is communicated a homoleptic Re
complex bearing three chelating diisocyanide ligands, and its
photophysical properties. The complex emits weakly from a
high energy MLCT excited state with an 8 ns lifetime in de-
areted CH$_2$CN at 22 °C, and is shown to act as an efficient
photoredox catalyst comparable to [Ir(ppy)$_2$] (ppy = 2-
phenylpyridine) in representative test reactions.

Photoredox catalysis is rapidly emerging as a useful meth-
ad for C-C bond formations.$^{3-4}$ These precious-metal complexes
are the prototypical photoredox catalysts and have played a
pivotal role in the development of photoredox catalysis as a
field.$^{3-4}$ Despite growing interest in organic and earth-
abundant metal complex photoredox catalysts,$^{5-8}$ d6 pre-
cious-metal complexes remain the first choice for many
photoredox transformations - with [Ru(bpy)$_3$]$^{2+}$ (bpy = 2,2-
bipyridine) and [Ir(ppy)$_2$] (ppy = 2-phenylpyridine) among
the most popular.$^{5-9}$ This largely stems from their ease of
synthesis, favourable photophysical properties, tunability,
and robustness.

Interestingly, despite significant attention having been
paid to the photoluminescence properties of [Re(CO)$_3$(α-
diimine)(X)] complexes ($\alpha = \text{Cl, Br, CN, SCN, py}$)$^{10-19}$ and
their performance in the catalytic photocatalysis of CO$_2$,$^{15,17-}
24$ Re3 complexes have been essentially unused as catalysts in
organic photoredox transformations.

d6 metal complexes typically exhibit photoluminescent
metal-to-ligand charge-transfer (MLCT) excited states.3 The
energies of these excited states are easily tunable through the
choice of metal and ligand design. A key feature of such
complexes is that in their emissive MLCT excited states they
are both better oxidants and reductants than in their elec-
tronic ground states. The magnitude by which the oxidation
potential of a complex is altered between ground and excited
state may be estimated using the Rehm-Weller equation:25

$$E_{1/2}(C^*/C^+) = E_{1/2}(C^*/C^+) - E_{\infty}$$

Where $E_{1/2}(C^*/C^+)$ and $E_{1/2}(C^*/C^+)$ are the ground- and exci-
ed-state oxidation potentials, respectively, and E_{∞} the
energy of the electronic origin for the excited state (the dif-
ference in energy between the 0^{th} vibrational levels of the
ground and excited states). With the goal of increasing the
reducing power of a catalyst, and therefore increasing its
substrate scope, the pertinent design principles are to com-
bine an easily oxidized metal (to decrease $E_{1/2}(C^*/C^+)$) with
difficult to reduce ligands (to increase E_{∞} for the MLCT
excited state). Using [Ru(bpy)$_3$]$^{2+}$ and [Ir(ppy)$_2$] as examples,
the metal-centred (Ru$^{2+}$ and Ir$^{3+}$, respectively) ground-state
oxidation potentials of these complexes are 1.29 and 0.77 V vs
SCE, respectively, and the ligand-based (bpy vs ppy, respec-
tively) reductions -1.33 and -2.19 V vs SCE, yielding E_{∞} values
of 2.10 and 2.50 eV, respectively.12 Inserting these values into
the Rehm-Weller equation, it is unsurprising that [Ir(ppy)$_2$]
is the more powerful photoreductant with $E_{1/2}(C^*/C^+)$ of -1.73
V vs SCE, compared to -0.81 V vs SCE for [Ru(bpy)$_3$]$^{2+}$.

Our recent investigations into photoluminescent earth-
abundant zero-valent d6 metal complexes have identified
chelating diisocyanides as promising ligands for the develop-
ment of strongly photoreducing complexes.$^{26-28}$ These
ligands are more difficult to reduce than bpy or ppy, and
their strong σ-donor character makes metal-based oxidations
more facile. In combination with their strong π-accepting
character, these attributes also increase the energy of deac-
tivating ligand-field states relative to desirable MLCT states.
Furthermore, the strong-field character of isocyanides is akin
to that of carbonyls,$^{29-30}$ stabilizing the low-valent Re31,32
Prior studies of Re3 complexes with monodentate isocyanide
ligands demonstrated that this compound class has very
promising photophysical properties,$^{33-35}$ but analogues with
chelating ligands seem to be unknown so far.

We have therefore prepared a homoleptic Re3
tris(diisocyanide) complex, [Re(L)$_3$]PF$_6$ (Scheme 1), with
the goal of developing a strong photoreductant, anticipating that
the chelating nature of the ligand would increase robustness
compared to Re3 complexes with monodentate arylisocyanide
ligands.37 The relevant photophysical properties of the com-
plex are presented, in combination with the photoredox
catalytic performance for two representative test reactions.

The Re3 complexation of L1 was achieved through adapta-
tion of the method of Wang et al.39 for the synthesis of
[Re(ppy)$_3$]PF$_6$ from [ReCl$_3$(THF)$_3$] to afford [Re(L)$_3$]PF$_6$ in
76% yield (Scheme 1). L1 and [ReCl$_3$(THF)$_3$] were prepared
according to literature procedures.36,37

Electronic absorption and emission spectra of [Re(L)$_3$]PF$_6$
in CH$_2$CN are presented in Figure 1, and in THF, CH$_2$Cl$_2$ and
CH$_3$CN in Figure S1. Both absorption and emission profiles exhibit only minor differences across this solvent range.

Scheme 1. Synthesis of [Re(L)$_1$]PF$_6$

(i) Na(Hg), THF, rt; (ii) AgPF_6, NH_2PF$_6$, THF, 76%.

The electronic absorption spectrum of [Re(L)$_1$]PF$_6$ in CH$_3$CN (blue trace) exhibits a maximum at 318 nm ($\epsilon = 34,000$ M$^{-1}$ cm$^{-1}$) not present in the ligand spectrum (dotted black trace), which tails past 400 nm and is assigned as MLCT in nature. Upon photoexcitation into this MLCT absorption feature ($\lambda_{ex} = 350$ nm) in de-aerated CH$_3$CN at 22 °C, photoluminescence is observed at ~480 nm (red trace in Fig. i) with a quantum yield of 0.6% and lifetime of 8 ns (inset in Fig. i). Photoluminescence is quenched in the presence of oxygen, and is therefore characterized as 3MLCT in nature. From the intersection of the absorption and photoluminescence spectra, a 3MLCT excited state energy of 2.96 eV is estimated.

The low quantum yield and short excited-state lifetime may be explained by thermal population of ligand-field excited states. These states are typically not readily accessible in [Re(CO)$_3$(α-dimine)(X)] complexes,$^{30-36}$ however, our complex has a higher energy 3MLCT state than [Re(CO)$_3$(α-dimine)(X)] complexes,30,36 and the isocyanide ligands destabilize ligand-field states to a lesser degree than carbonyls, resulting in thermally accessible ligand-field states. A previously studied homoleptic Re$_2$ hexakis(arylisocyanide) complex with monodentate ligands was non-emissive at room temperature due to thermal occupation of ligand-field states.40 Thus, the chelating ligand leads to markedly improved photophysical properties.

Electrochemical studies performed on [ReCl(CO)$_3$(N-N)] complexes typically exhibit an irreversible Re$^{3+}$/Re0 oxidation near the solvent limit,45 and for the [Re(2,6-dimethylphenylisocyanide)$_2$]$^+$ complex a potential of 1.08 V vs. SSCE was reported.46 [Re(L)$_1$]PF$_6$ exhibits such an oxidation at 1.36 V vs SCE in CH$_3$CN (Figure S3). In combination with the excited-state energy (see above), an estimated E_{exc}(C/C$^\circ$) of -1.60 V vs SCE can be obtained. [Re(L)$_1$]PF$_6$ is photostable in de-aerated CH$_3$CN, with its electronic absorption spectrum in deaerated CH$_3$CN remaining unchanged after irradiation at 405 nm (1 W) for 24 h (Figure S2a). This is an important finding in view of the known photolability of the [Re(2,6-dimethylphenylisocyanide)]$^+$ complex, which undergoes efficient ligand exchange in presence of halide anions.$^{45}

Many organic photoredox catalysts have excited-state lifetimes that are similarly short as that of [Re(L)$_1$]PF$_6$, which therefore seemed reasonable to perform photoredox catalysis experiments with this complex, particularly in view of its comparatively high reducing power and photostability.

![Figure 1. Electronic absorption (blue trace) and emission (red trace, $\lambda_{ex} = 350$ nm) spectra of [Re(L)$_1$]PF$_6$ recorded in de-aerated CH$_3$CN at 22 °C. Inset: Photoluminescence decay of [Re(L)$_1$]PF$_6$ recorded in de-aerated CH$_3$CN ($\lambda_{ex} = 405$ nm). *Stray excitation light. Black dotted trace represents ligand UV-Vis spectrum in CH$_3$CN.](image-url)

Our initial approach was to try and match the excited-state oxidation potential of the complex with the reduction potential of a known substrate of interest. To this end, we chose the dimerization of benzyl bromide ($E^\circ_{\text{red}} = -1.3$ V vs SCE) as a test reaction (Table 1).44 Reactions were performed in flame-sealed NMR tubes containing the substrate (0.1 M), catalyst (1 mol%) and N,N-diisopropylethylamine (DIPEA, 4 mol eq.) as a sacrificial electron donor in de-aerated CD$_3$Cl$_2$. Over the course of 20 h under 405 nm (1 W) irradiation at room temperature, [Re(L)$_1$]PF$_6$ completely converted the substrate, with 81% dimerizing to afford dibenzyl and 19% presumably abstracting an H-atom from trace water present in the solvent to afford toluene. Catalyst-based photoluminescence was still observable after consumption of the substrate with no obvious loss of intensity, indicating that the catalyst is stable over long reaction times. As a control experiment, [Ru(bpy)$_3$]([PF$_6$])$_3$ (E_{red}(C/C$^\circ$) = -0.72 V vs SCE) converted only 49% of the substrate under 455 nm irradiation for the same duration at room temperature, yielding dibenzyl and toluene in 45% and 4% yields, respectively. The different excitation source was used to better coincide with the absorption maximum of the [Ru(bpy)$_3$]([PF$_6$])$_3$ MLCT absorption band. No reaction occurred in the absence of either catalyst or light.

Encouraged by the catalytic performance of [Re(L)$_1$]PF$_6$ in this test reaction, we chose to explore the scope of the complex for more challenging catalytic photoreductive transformations. Given an E_{red}(C/C$^\circ$) of -1.60 V vs SCE for [Re(L)$_1$]PF$_6$, the reduction of iodobenzene ($E^\circ_{\text{red}} = -1.6$ V vs SCE in DMSO)45 to benzene was chosen as a demanding transformation (Table 2). Reactions were once again performed in flame-sealed NMR tubes with de-aerated solvent, using conditions modified from Nguyen et al. for [Ir(ppy)$_3$] (Table 2).46
Table 1. Benzyl bromide dimerization.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Irradiation Wave-length / nm</th>
<th>Benzyl Bromide Consumption / %</th>
<th>Dibenzyl Formation / %</th>
<th>Toluene Formation / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Re(L\textsubscript{1})\textsubscript{3}]PF\textsubscript{6}</td>
<td>405</td>
<td>100</td>
<td>81</td>
<td>19</td>
</tr>
<tr>
<td>[Ru(bpy)\textsubscript{3}]PF\textsubscript{6}</td>
<td>455</td>
<td>49</td>
<td>45</td>
<td>4</td>
</tr>
</tbody>
</table>

Conditions: 20 h continuous irradiation in vacuum flame-sealed NMR tubes. Conversions obtained from 1H NMR integrals. See the Supporting Information for details.

Table 2. Reduction of halobenzenes.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>X</th>
<th>Conversion / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Re(L\textsubscript{1})\textsubscript{3}]PF\textsubscript{6}</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>[Ir(ppy)\textsubscript{3}]</td>
<td>1</td>
<td>100a</td>
</tr>
<tr>
<td>[Re(L\textsubscript{1})\textsubscript{3}]PF\textsubscript{6}</td>
<td>Br</td>
<td>22</td>
</tr>
<tr>
<td>[Ir(ppy)\textsubscript{3}]</td>
<td>Br</td>
<td>18</td>
</tr>
</tbody>
</table>

Conditions: 20 h continuous irradiation in vacuum flame-sealed NMR tubes. Conversions obtained from 1H NMR integrals. a Obtained from Nguyen et al.46 See the Supporting Information for details.

In conclusion, we have herein communicated a new homoleptic Re3 tris(diisocyanide) complex with a high energy 3MLCT excited state that can be exploited for photoredox catalysis. The low photoluminescence quantum yield and the comparatively short excited state lifetime presumably arise from thermal population of ligand field excited states.40 Previously investigated Re3 complexes with monodentate arylisocyanide ligands were not emissive in solution at room temperature and seemed to undergo more rapid photodecomposition,40, 44 hence chelating isocyanide ligands lead to much improved photophysical properties and greater chemical robustness, in analogy to what we recently found for Cr3 and Mo3 complexes.26, 28 The Re3 tris(diisocyanide) complex catalyses representative photoredox transformations with similar efficiencies to the popular [Ir(ppy)\textsubscript{3}]3+ catalyst.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures, variable solvent UV-Vis and emission spectra, UV-Vis photostability experiment, cyclic voltammetry and photoredox catalysis NMR experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

Email: oliver.wenger@unibas.ch

Funding Sources

Financial support by the Swiss National Science Foundation through grant number 200021_156063/1 is gratefully acknowledged.

ACKNOWLEDGMENT

C. B. L. acknowledges a Swiss Government Excellence Postdoctoral Scholarship for Foreign Scholars. The authors thank Dr. L. A. Büldt and Dr. X. Guo for insightful discussion.

REFERENCES

A homoleptic Re\(^{I}\) complex bearing chelating diisocyanide ligands and exhibiting a weakly photoluminescent high-energy \(^{3}\)MLCT excited state is studied and exploited for photoredox catalysis.