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PROLOGUE 
What we see, feel and hear is tightly coupled to our actions. Consequently, our sensory input is often 

dominated by self-generated sensory feedback. For example, as we run forwards, the world around 

us appears to move backwards. How can we distinguish this backward visual motion caused by our 

own movement from the visual motion caused by an object that is moving relative to us? Any agent 

that interacts with the environment through motor actions—animal, human, or robot—faces the 

problem how to disentangle the sensory input caused by its own actions from the sensory input 

generated external world. 

Predictive processing theory of brain function 

Our brain has to infer the state of the environment from noisy and possibly ambiguous sensory input 

(Craik, 1943; Dayan et al., 1995; Knill and Pouget, 2004). Predictive processing is a framework of how 

our brain might perform this inference in a probabilistic manner. Predictive processing also 

constitutes an elegant theoretical framework in which the problem of self-generated sensory 

feedback can be addressed. According to predictive processing theories, the brain is a statistical 

machine that aims to generate predictions about the causes for its sensory input. To predict the 

incoming sensory input, the brain maintains an internal model of the world (Figure 1.1). The 

difference between the prediction and the sensory input—the prediction error—is then used to 

refine the internal model and to adapt the behavior (Clark, 2013; Friston et al., 2006; Mumford, 

1992). Internal models have also been proposed to play an important role in motor control, where 

internal models use the current state of the motor system and motor command to predict the next 

state of the motor system as well as the sensory consequences of the action (e.g. (Wolpert et al., 

1995)). Similarly, dopamine neurons signal the difference between actual and predicted reward 

(Schultz et al., 1997). In the example of self-generated visual flow caused by forward locomotion, 

predictions of visual flow input could be compared to actual visual flow input. In this manner, 

predictions suppress self-generated sensory input, but objects moving relative to us would cause 

large prediction errors and are therefore more salient and easier to detect.  

Hierarchical predictive processing 

Distinct algorithms have been proposed for the implementation of predictive processing (Spratling, 

2017). In a hierarchical predictive-processing model proposed by (Friston et al., 2006), feedback 

predictions based on prior knowledge are combined with feedforward sensory input in order to 

compute the most likely interpretation of sensory data (Figure 1.2). The model, which incorporates 

several levels, is hierarchical in the sense that the representations and the causal relations between 

them become more complex higher in the hierarchy (for example, elements in a low level might 
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represent small regions of visual space, while higher levels process larger regions). Specifically, the 

model consists of two distinct populations of units on every level: (1) State units, which combine 

feedforward input from lower levels, input from other state units on the same level, and input from 

error units. Their activity encodes the most likely cause for the feedforward input, which they send as 

a prediction of input to lower levels. (2) Error units, which compare the activity of the current level 

with a prediction from higher levels. The resulting prediction error is sent to higher areas, where state 

units alter their activity to minimize the prediction error. In this manner, prediction errors are 

iteratively minimized across all levels. Using this strategy, the predictive-processing model can infer 

the cause for the sensory input, i.e. the state of the environment that maximizes the posterior 

probability of the environmental states, given the current sensory input and past experience (for more 

details on the underlying mathematical framework, see (Friston, 2009, 2010; Friston et al., 2006). 

  

 

Figure 1.1. Motor output causes sensory feedback. In predictive processing, an internal model of the world generates a 
prediction of the expected sensory feedback based on the motor output. The prediction is then compared to the actual 
sensory input to compute a prediction error, or mismatch between the two.  

 

In predictive processing terms, perception consists of finding the state of the internal model that 

minimizes the current prediction errors across all hierarchies and therefore best explains the sensory 

input. Perceptual learning can also be regarded as a form of minimizing prediction errors. It can be 

viewed as adjusting or extending the structure of the internal model, also with the goal of minimizing 

prediction errors. Predictive processing can also be extended to incorporate action planning and 

motor output: Since prediction errors also depend on the sensory input, prediction errors can also be 

minimized by changing the sensory input and since sensory input is coupled to motor output, it can 

be changed by action. Prediction errors can therefore be minimized by acting on the environment and 
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thereby change the sensory input. This framework formalized by Friston and offers the very intriguing 

approach of a unifying theory of brain function (Clark, 2013; Friston, 2010). 

Figure 1.2. Schematic of the hierarchical predictive-processing model with three hierarchical layers. Input to the lowest 
level is generated by sensory systems. State units combine input from lower levels and the current level to infer and 
encode the causes and states of the environment. The error units combine top down input with input from the state units 
of the current level to calculate prediction errors between the state of the current level and a top-down prediction. In this 
scheme, feedforward signals encode prediction errors and feedback connections signal predictions. Prediction errors can 
be interpreted as input that still needs to be explained by the feedback predictions. By combining multiple feedforward 
error units, representations become more complex in higher levels. The state of the environment causing the sensory input 
is inferred by minimizing the prediction error across the hierarchical levels. 

 

Cortical activity explained by the principles of predictive processing  

Can predictive processing be used to understand cortical processing? Previous studies used predictive 

processing principles to explain neuronal activity in different cortical areas, including visual and 

auditory cortex. A computational, predictive-processing model with two hierarchical levels trained on 

natural images develops receptive fields similar to the receptive fields found in primary visual cortex 

(V1), including extra-classical receptive field effects, which were dependent on the predictive input 

from the higher level (Rao and Ballard, 1999). In auditory cortex, predictive processing principles can 

explain the large responses evoked by unexpected tones embedded in a series or familiar sounds, 

which simple habituation to the familiar stimulus can not account for (Garrido et al., 2009).  

Strong evidence that sensory cortical areas employ predictive-processing principles comes from 

experiments where self-generated sensory feedback is controlled and manipulated by the 

experimenter. In these studies, neural activity is recorded while the subject is engaged in a 

sensorimotor task. The sensory feedback is briefly perturbed to induce a mismatch between the 

behavior of the subject and the sensory feedback. Using this approach, neurons signaling mismatch, 

or prediction error, have been found in mouse V1 (Keller et al., 2012; Saleem et al., 2013; Zmarz and 
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Keller, 2016). Similar feedback mismatch responses have been observed in primary auditory cortex of 

primates (Eliades and Wang, 2008) and in primary auditory pallium of songbirds (Keller and Hahnloser, 

2008). These results are consistent with a predictive processing interpretation where sensory areas 

compare self-generated sensory input to a prediction based on motor output. 

Predictive processing postulates the existence of state units as well as error units and makes 

predictions about the functional properties of feedforward and feedback connections. Based on the 

anatomical properties of excitatory neurons in superficial layers, they are proposed to be error units 

that compare the activity of the state units that might be located in the deeper layers to feedback 

predictions (Bastos et al., 2012; Shipp, 2016). Consistent with this idea, mismatch neurons are found 

in layer 2/3 of mouse visual cortex (Keller et al., 2012; Zmarz and Keller, 2016). How the computations 

proposed in predictive processing map to the connectivity between cortical regions, and to the 

laminar organization of excitatory and inhibitory neurons, is still largely unclear. 

 

Predictive processing in mouse visual cortex 

In my thesis work, I addressed how predictive processing can further our understanding of how the 

brain deals with the complex and ever changing environment. In particular, I am interested how visual 

information is integrated with information about body movement and if this integration can be 

understood in a predictive processing framework. The visual cortex of the mouse is an excellent model 

to investigate visuomotor integration, as it allows precise control over the visual input as well as access 

to defined population of neurons for the recording and manipulation of activity.  

Feedforward and feedback inputs to V1 

V1 receives feedforward visual input from the lateral geniculate nucleus of the thalamus (LGN), which 

in turn receives input from different retinal ganglion cell types that extract distinct features from the 

visual scene (Dhande et al., 2015).  Feedback input to V1 mainly originate from higher visual cortical 

areas, in cats and primates, but also in the mouse (Wang and Burkhalter, 2007; Wang et al., 2012). 

While numerous studies investigated the role of feedback from higher visual areas onto visual 

processing in V1 in cats and primates, the role of feedback connections for processing in mouse V1 is 

less explored. Feedback projections are thought to be important for adapting or enhancing 

feedforward input via mechanisms like surround suppression, object binding, figure-ground 

segregation, attention, and visual awareness (Gilbert and Li, 2013; Zipser et al., 1996). Predictive 

processing provides a unifying framework to understand the role of feedback projections from higher 

visual areas for visual processing (Kanai et al., 2015; Spratling, 2010). V1 also receives prominent 

inputs from non-visual cortical areas. Activation of projections from anterior cingulate cortex (ACC) to 
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V1 modulates responses in V1 and improves performance on a visual discrimination task (Zhang et al., 

2014). Similarly, stimulation of axons from the auditory cortex sharpens the tuning in V1 neurons 

(Ibrahim et al., 2016). Whether these feedback connections can be understood as predictions of visual 

input, as proposed by the predictive processing framework, remains to be seen.  

One important question about feedback connections that has not been well explored is what kind of 

signal they provide to visual cortex. This is particularly interesting when investigating feedback 

projections to visual cortex from another sensory modality, like auditory cortex. In auditory cortex, 

neurons respond to sound and are organized tonotopically (Linden et al., 2003). How the dense 

projection from auditory cortex to visual cortex (Ibrahim et al., 2016), map to the retinotopic 

organization of visual cortex is not known. This coordinate transformation poses a central challenge 

for any projection conveying specific information. Interestingly, where the activity of V1 projecting 

axons was recorded, strong visual signals were recorded, both in axons from the retrosplenial cortex 

(Makino and Komiyama, 2015) as well as axons from ACC (Fiser et al., 2016). It will be interesting to 

see how inputs from higher areas are organized functionally, to what extent they represent 

information in a coordinate system that is similar to the retinotopic coordinate system of V1 and 

where the coordinate transfer is realized.  

In addition to feedforward and feedback input, V1 receives neuromodulatory input, thought to be 

regulating brain states, attention and arousal (Lee and Dan, 2012). How different neuromodulaotry 

input connections shape activity in visual cortex is not well understood. Activation of cholinergic axons 

in V1 improves behavioral performance in a visual discrimination task and enhances visual responses 

in mice (Pinto et al., 2013). Locomotion (Niell and Stryker, 2010), as well as general arousal (Vinck et 

al., 2015), have similar effects and lead to the release of acetycholine and noradrenaline in V1 (Reimer 

et al., 2016). Consequently, locomotion is thought to change the gain of visual responses by increasing 

cholinergic and noradrenergic input to V1 (Fu et al., 2014; Polack et al., 2013). The impact of other 

neuromodulators like dopamine and serotonin on visual processing has not been explored in mouse 

V1.  

Previous studies demonstrated that locomotion does not only modulate visual responses in V1, but 

can also drive activity, even in the absence of visual stimulation (Fu et al., 2014; Keller et al., 2012; 

Pakan et al., 2016; Saleem et al., 2013). Neurons in V1 encode locomotion speed and the difference—

or mismatch—between locomotion speed and visual speed (Keller et al., 2012; Saleem et al., 2013; 

Zmarz and Keller, 2016). These effects are difficult to reconcile with the idea of gain modulation by 

locomotion. Predictive processing offers an alternative framework in which locomotion induced 
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activity in V1 can be explained. The functional role of motor related activity in V1, as well as its origin, 

are the major themes of my thesis. 

Aim of this thesis 

My project is based on three fundamental experimental observations. (1) In mouse V1, locomotion 

drives activity and a subset of neurons signal mismatch between visual flow speed and running speed 

(Keller et al., 2012; Saleem et al., 2013). (2) Responses to visual input are dependent on the experience 

of visual stimuli during a critical period in development (Blakemore and Cooper, 1970; Hirsch and 

Spinelli, 1970; Hubel and Wiesel, 1970). (3) From classical work in experimental psychology, we know 

that visual input alone is not sufficient to establish visuomotor behavior (Hein and Held, 1967; Held 

and Hein, 1963). Predictive processing offers a framework in which these effects can be interpreted. 

The aim of this thesis was to further expand our understanding of visuomotor integration within the 

framework of predictive processing.  

In chapter 1, I demonstrate how visuomotor integration and mismatch responses depend on the 

coupling of visual feedback and locomotion during development. Additionally, I asked if the signatures 

of the core computation of predictive processing—the subtraction of sensory input and prediction—

can be found in the activity of genetically identified neurons in V1. This work was done in collaboration 

with Bo Wang. 

Chapter 2 then addresses the origin of prediction signals in V1. If mismatch responses in V1 are indeed 

the result of a comparison of the feedforward sensory input and the predictions thereof, where do 

these predictions originate? In hierarchical predictive-processing models, predictions are signaled by 

feedback connections from higher to lower levels. Consistent with this idea, in a project led by Marcus 

Leinweber, we found that prediction signals in V1 are delivered by feedback connections from a 

secondary motor area. 
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CHAPTER 1: VISUOMOTOR COUPLING SHAPES THE 

FUNCTIONAL DEVELOPMENT OF MOUSE VISUAL CORTEX 
This chapter is based on a paper that has been published in Cell (Attinger et al., 2017). The text and 

figures of this chapter correspond largely to the submitted manuscript, with minor adaptions to 

formatting and numbering to conform to the style of this thesis.  

Alexander Attinger*1,2, Bo Wang*1,2 & Georg B. Keller1,2,3 

 

* These authors contributed equally to this work. 
1Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, 

Switzerland 
2Faculty of Natural Sciences, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, 

Switzerland 
3Lead contact, corresponding author: georg.keller@fmi.ch  

 

Summary 

The emergence of sensory guided behavior depends on sensorimotor coupling during 

development. How sensorimotor experience shapes neural processing is unclear. Here we show 

that the coupling between motor output and visual feedback is necessary for the functional 

development of visual processing in layer 2/3 (L2/3) of primary visual cortex (V1) of the mouse. 

Using a virtual reality system, we reared mice in conditions of normal or random visuomotor 

coupling. We recorded the activity of identified excitatory and inhibitory L2/3 neurons in response 

to transient visuomotor mismatches in both groups of mice. Mismatch responses in excitatory 

neurons were strongly experience dependent and driven by a transient release from inhibition 

mediated by somatostatin-positive interneurons. These data are consistent with a model in which 

L2/3 of V1 computes a difference between an inhibitory visual input and an excitatory locomotion-

related input, where the balance between these two inputs is finely tuned by visuomotor 

experience.  
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Introduction 

Sensory feedback is inherently coupled to movement, and sensorimotor coupling is necessary for 

both the development (Hein and Held, 1967; Held and Hein, 1963) and the maintenance (Leonardo 

and Konishi, 1999; Nordeen and Nordeen, 1992) of sensory guided behaviors. In classical 

experiments, Held and Hein demonstrated that cats reared with normal visual experience but 

without visuomotor coupling fail to perform simple visually guided behaviors (Held and Hein, 1963). 

This behavioral impairment is restricted to the movements that are decoupled from sensory 

feedback during development (Hein and Held, 1967). Thus, sensory guided behaviors rely on a 

mechanism to integrate sensory input and motor output that is instructed by experience. It is still 

unclear what the neural circuits are that underlie this type of sensorimotor integration and how they 

are shaped by sensorimotor experience during development.  

Visual responses in primary visual cortex (V1) are known to depend on visual experience during 

development (Blakemore and Cooper, 1970; Hirsch and Spinelli, 1970; Hubel and Wiesel, 1970). In 

anesthetized or immobile animals, neural activity in V1 is known to closely reflect visual stimuli 

presented to the animal (Hubel and Wiesel, 1962; Niell and Stryker, 2008). Based on this, activity in 

V1 is classically interpreted in a representational framework (Marr, 1982), where neural responses 

are described in terms of receptive fields, and signal the presence of a specific visual stimulus in the 

environment. However, it is becoming increasingly clear that this interpretation of the function of 

visual cortex is incomplete. In monkeys freely moving their eyes, response patterns of neurons in V1 

give surprisingly poor reflections of what an animal is viewing (Livingstone et al., 1996). One possible 

cause for this are motor-related signals. Self-generated locomotion has been shown to modulate 

visual responses (Fu et al., 2014; Niell and Stryker, 2010; Polack et al., 2013), and to even drive 

activity in V1 independent of visual input (Keller et al., 2012; Saleem et al., 2013).  Thus, activity in 

V1 cannot be explained by visual input alone and is likely the result of an integration of sensory and 

motor-related signals. 

An alternate framework within which the activity in visual cortex can be explained is that of 

predictive coding. It posits that the brain continuously predicts sensory feedback based on an 

internal model of the environment (Friston, 2005; Gregory, 1980; Rao and Ballard, 1999; Wolpert et 

al., 1995). Evidence for this interpretation comes from the finding that a subset of neurons in V1 

selectively responds to a mismatch between predicted and actual visual feedback (Keller et al., 2012; 

Saleem et al., 2013). Similar feedback mismatch responses have also been described in primate 

primary auditory cortex (Eliades and Wang, 2008) and primary auditory pallium of songbirds (Keller 

and Hahnloser, 2008). If such feedback mismatch responses signal a deviation from a prediction that 
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is based on a learned relationship between motor output and sensory feedback, then they should 

depend on sensorimotor experience. 

To test this, we reared mice in a virtual reality system either under coupled or non-coupled (yoked) 

visuomotor conditions and subsequently probed neural activity in layer 2/3 of V1. We found that 

responses to a mismatch between actual and expected visual input only occurred in mice that 

experienced normal visuomotor coupling. Using a simple model, in which an excitatory neuron 

computes a difference between an inhibitory visual input and an excitatory prediction of visual 

input, we show that mismatch responses can be explained by a relief from visually driven inhibition. 

By recording the activity of genetically identified interneurons in visual cortex, we show that this 

visual inhibition is likely mediated by somatostatin (SST) interneurons. Finally, we show that normal 

visuomotor experience restores sensorimotor integration. Together, our data are consistent with a 

predictive-coding interpretation of the function of visual cortex, where the balance between feed-

forward and top-down input underlying the computation of visuomotor mismatch is finely tuned by 

visuomotor experience. In this way, visuomotor experience fundamentally shapes the functional 

development of visual processing in primary visual cortex. 

 

Figure 2.1. Mismatch responses in excitatory neurons depend on visuomotor experience. 

(A) Experimental timeline. Mice were dark-reared from birth. AAV injection and imaging window implantation occurred on 
postnatal day 30 (P30). From P32 to P42, mice had 6 training sessions in either coupled (coupled trained: CT), non-coupled 
(non-coupled trained: NT), or dark (dark trained: DT) conditions, followed by 2 to 5 imaging sessions beginning at P44 and 
spaced by 2 days. Some of the mice were put on a normal 12 h/12 h light/dark cycle after the second imaging session. (B) 
Schematic of the training setup. Mice were trained in pairs; visual flow (black arrows) on both training setups was coupled 
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to the locomotion of the CT mouse (blue arrows). The NT mouse was free to run but had no influence on the visual flow it 
was seeing. (C) Sample fluorescence traces (ΔF/F, black lines) of an excitatory neuron in a CT (left) and a NT (right) mouse, 
during a closed-loop (top traces) and an open-loop session (open-loop sessions consisted of a replay of the visual flow 
generated during the preceding closed-loop session, bottom traces). Vertical bars indicate mismatch (orange) and playback 
halt (green) events. Binarized visual flow (green) and running speed (purple) are indicated below the fluorescence traces. In 
CT mice, we found neurons that selectively respond to mismatch, whereas in NT mice, neurons that responded to 
mismatch also responded to corresponding playback halts in open-loop sessions. Note that all data presented in this and 
the following panels are from the first imaging day. (D) Average mismatch response (ΔF/F) of all neurons in CT mice (left, 9 
mice, 2259 neurons) and NT mice (right, 9 mice, 2104 neurons), sorted by amplitude of mismatch response. Black and grey 
shading to the right indicates significance of responses (grey: p ≥ 0.05, black: p < 0.05, Mann-Whitney-U test; see 
Experimental Procedures). Orange bar marks the duration of mismatch. In CT mice, the fraction of neurons with a 
significant mismatch response was larger than in NT mice (CT: 40% ± 5%; NT: 26% ± 5%, p = 0.03, Mann-Whitney-U test; 
see Experimental Procedures). (E) The average population response (ΔF/F) to mismatch (solid) was stronger in CT (blue) 
than in NT (red) mice. Population response to playback halt was negligible in CT mice, but was as large as the mismatch 
response in NT mice (dashed lines). Orange area indicates duration of mismatch; shading indicates s.e.m. The data in the 
different curves are compared bin-by-bin (100 ms bins) using a Student’s t test. Bins with a significant difference (p < 0.01) 
are marked by a black line above the curves; those without are marked as light gray (see Experimental Procedures). Each 
comparison is marked by a pair of line segments to the left, corresponding in color and line style to the data plotted, 
indicating which two curves are being compared. (F) Same as in (E), but for running onset in closed-loop sessions (solid 
lines) and playback onset in open-loop sessions (dashed lines, see Experimental Procedures). Shading indicates s.e.m. 

Results 

To experimentally control the visuomotor experience of mice, they were dark-reared from birth and 

only exposed to visual stimulation in 6 separate 2-hour training sessions spaced by 48 hours over the 

course of 12 days, starting on postnatal day 32 (Figure 2.1A). During these sessions each mouse was 

trained either in a coupled visuomotor condition (coupled trained: CT), in which the visual flow 

feedback was coupled to the locomotion of the mouse in a virtual environment, or in a non-coupled 

condition (non-coupled trained: NT) in which visual flow was independent of the mouse’s 

locomotion (Figure 2.1B). Mice were head-fixed on a spherical treadmill (Dombeck et al., 2007) 

surrounded by a toroidal screen that provided visual flow feedback in the form of full-field vertical 

gratings on the walls of a virtual corridor. To match the visual experience of both groups, mice were 

trained in pairs (one CT and one NT mouse) in two separate virtual environments such that the 

locomotion of the CT mouse was used to control the visual flow of both virtual environments. In this 

way, both CT and NT mice experienced identical visual flow. Both groups of mice were exposed to 

light only in this virtual reality environment during the 6 training sessions, every other day for 2 

hours, and were otherwise fully dark-reared. A third group of mice was reared and trained in 

complete darkness (dark trained, DT). After the 6 training sessions, we recorded neural activity in V1 

of all 3 groups of mice by two-photon imaging of a genetically encoded calcium indicator GCaMP5 

(Akerboom et al., 2012) or GCaMP6f (Chen et al., 2013) during different visual flow feedback 

conditions in 2 imaging sessions spaced by 2 days, starting on postnatal day 44. Subsequently, mice 

were exposed to a normal dark-light cycle and imaged for an additional 3 sessions, again spaced by 2 

days (Figure 2.1A). Imaging sessions for all groups of mice consisted of 1 or 2 repetitions of 

approximately 8 minutes of locomotion coupled to visual flow feedback (closed-loop session) and 2 

replays of the same visual flow patterns during an open-loop session to quantify visual responses. To 
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probe for feedback mismatch responses, we briefly halted visual flow for 1 second at random times 

during the closed-loop session (referred to as mismatch). Open-loop sessions consisted of a playback 

of the visual flow that the mouse had generated during the closed-loop session including brief visual 

flow halts, which we refer to as playback halts. Note that analysis of playback halts was restricted to 

times when the mouse was not running (see Experimental Procedures). Mice were free to run during 

the entire experiment, including open-loop sessions and did so spontaneously. In early sessions, 

mice that exhibited low locomotor activity were prompted to run using air-puffs to the neck. CT and 

NT mice exhibited similar locomotion behavior during both training and imaging sessions (Figures 

S2.1A and S2.1B). 

Mismatch responses in excitatory neurons depend on visuomotor experience 

To test if mismatch responses in layer 2/3 excitatory neurons in V1 depend on coupled sensorimotor 

experience, we expressed GCaMP5 in C57BL/6 mice (3 CT and 3 NT) and GCaMP6f in vGAT-Cre (Vong 

et al., 2011) x Ai14 (Madisen et al., 2010) mice (6 CT and 6 NT) using an AAV2/1-EF1α-GCaMP vector 

(see Experimental Procedures). In vGAT-Cre x Ai14 mice, inhibitory neurons express the red 

fluorescent protein tdTomato, which allowed us to restrict analysis to identified excitatory neurons. 

In these mice, we found that 96.8% ± 0.7% (mean ± s.e.m.) of GCaMP6f labelled neurons were 

excitatory (Figures S2.1C and S2.1D). Thus, for all following analysis we pooled putative excitatory 

neurons of the C57BL/6 mice and the identified excitatory neurons of the vGAT-Cre x Ai14 mice. In 

total we recorded from 2259 excitatory neurons in CT mice (996 putative excitatory and 1263 

identified excitatory neurons) and 2104 excitatory neurons in NT mice (764 putative excitatory and 

1340 identified excitatory neurons).  

We found that in CT mice, a considerable fraction of excitatory neurons responded to mismatch (865 

of 2259 neurons or 38.3%; Figures 2.1C and 2.1D) resulting in a large population mismatch response 

(Figure 2.1E). In CT mice, mismatch responses cannot be explained by visual input alone as there was 

no population response to playback halt (Figure 2.1C and 2.1E; note, mismatch and playback halt are 

identical visual stimuli). This is consistent with what we previously found in normally reared mice 

(Keller et al., 2012). In NT mice, the fraction of neurons that responded to mismatch was smaller 

(425 of 2104 neurons or 20.2%) and the population response to mismatch was weaker than in CT 

mice (Figure 2.1E and S2.1E). Interestingly, in NT mice the response to mismatch was of similar 

magnitude as the response to playback halt (Figure 2.1E) and individual neurons often responded to 

both mismatch and playback halt (Figures S2.1F and S2.1G). With increasing mismatch response, 

neurons in CT, but not NT, mice became increasingly selective for mismatch (Figure S2.1H). Thus, 

whereas in CT mice, mismatch responses were strongly dependent on motor-related inputs, 

mismatch responses in NT mice were only weakly modulated by motor-related signals. In both CT 
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and NT mice, the response reliability of mismatch responsive neurons increased with average 

amplitude of the mismatch response. On average mismatch neurons responded to 37.5% of 

mismatches in CT mice and to 33.8% in NT mice (Figure S2.1I). A subset of neurons responded with a 

decrease in activity to mismatch as well as playback halts (Figure 2.1D and S2.1J). This type of 

response possibly reflects a visual response driven by visual flow: upon cessation of the visual flow, 

these neurons decrease their response.  

The differences in mismatch responses between CT and NT mice could not be explained by 

differences in average visual or motor-related input to V1. Both the running-onset activity during the 

closed-loop session (referred to as running-onset response) as well as the visual flow onset 

responses during open-loop sessions (referred to as playback-onset response) were similar when 

comparing responses in CT and NT mice (Figure 2.1F). In dark trained mice, running-onset responses 

were normal, but mismatch and playback halt responses were smaller (Figure S2.2). This suggests 

that visual and motor-related inputs are maintained independently, and that visuomotor coupling is 

necessary for the development of normal integration of visual and motor-related inputs. 

Mismatch responses can be explained as a difference between an excitatory prediction and 

an inhibitory visual input 

Motor-related inputs have been shown to drive activity in mouse V1 (Keller et al., 2012; Saleem et 

al., 2013). One simple model to explain mismatch responses in a layer 2/3 excitatory neuron would 

be that such a neuron integrates an excitatory motor-related input, in this case a prediction of visual 

flow based on motor output, and an inhibitory input that conveys feed-forward visual flow input 

(Figure 2.2A). In this model, inhibitory and excitatory inputs are balanced when predictions match 

feed-forward input. At mismatch onset, a decrease in visual inhibition would then allow the 

excitatory motor-related input to activate the neuron. If this is correct, mismatch neurons should 

receive excitatory motor-related input and inhibitory visual input. To test this, we computed the 

correlation of the activity of each neuron with visual flow and with running speed during the open-

loop sessions. As running and visual flow are independent in open-loop sessions, the activity of a 

neuron that receives net inhibitory visual input and net excitatory motor-related input would have a 

negative correlation with visual flow and a positive correlation with running speed and vice versa. 

Plotting the distribution of the correlations of all neurons revealed that neurons with a strong 

mismatch response, had a negative correlation with visual flow and a positive correlation with 

running speed, on average (Figure 2.2B). When comparing the entire population of neurons, we 

found that in CT mice, neurons with a positive correlation with running speed tended to have a 

negative correlation with visual flow, whereas in NT mice neurons with a positive correlation with 

running speed tended to also have a positive correlation with visual flow.  We quantified this 
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interaction for every mouse as the angle (A) of the first principal component of the correlation 

scatter plot and found that, in CT mice, this angle was on average negative (-41° ± 10°, mean ± 

s.e.m.), whereas in NT mice it was on average positive (9° ± 13°, mean ± s.e.m.; Figures 2.2B and 

2.2C). This suggests that visuomotor coupling establishes a balance between inhibition and 

excitation, such that those layer 2/3 excitatory neurons that are strongly activated by running also 

are also strongly inhibited by visual flow.  

Figure 2.2. Mismatch responses can be explained as a difference between an excitatory motor-related input and an 
inhibitory visual input.  

(A) Circuit model in which an excitatory mismatch neuron (MM, grey) integrates excitatory motor-related input and 
inhibitory visual input relayed by a local inhibitory interneuron (orange) to compute the difference between predicted and 
actual visual flow. (B) Correlation coefficients between neural activity (ΔF/F) of layer 2/3 excitatory neurons with running 
speed and with visual flow in CT (left; 9 mice) and NT (right; 9 mice) mice during open-loop sessions. Each dot represents a 
single neuron (CT: 2259 neurons; NT: 2104 neurons). Dot color indicates the amplitude of the mismatch response. Black 
circles indicate the mean correlation values. The angle A indicated by the solid black line is the average angle between the 
first principle component of the distribution and the y-axis (see Experimental Procedures). Note that all data presented in 
this and the following panels are from the first imaging day. (C) Mean angle of the first principle component relative to the 
y-axis of the distribution of correlation coefficients as in (B) for CT (n = 9) and NT mice (n =9). Error bars indicate s.e.m., 
Mann-Whitney-U test, p = 0.04. (D) Spiking output of a simple conductance-based leaky integrate-and-fire neuron (cLIF) 
was convolved with a unitary calcium-kernel to simulate neuronal activity during closed-loop and open-loop sessions. 
Excitatory and inhibitory inputs were approximated by running speed (αR) and visual flow (βV), e.g. for scaling factors α > 0 
and β < 0, excitatory input is proportional to running speed and inhibitory input is proportional to visual flow. By varying α 
and β systematically, we calculated correlation maps with data from open-loop sessions. The scaling factors maximizing the 
correlation map were used to simulate activity during closed-loop sessions (Figure 2.2E). (E) Sample fluorescence (ΔF/F) 
traces of two neurons responding to mismatch from 2 mice during a closed-loop session (black traces) and the 
corresponding simulated traces (pink traces). Note that the simulation parameters are based on optimization during open-
loop sessions.  Running speed, visual flow and mismatch are labeled as in (Figure 1.1C). Also shown is the FEV: fraction of 
explained variance (see Experimental Procedures) for each example neuron. (F) Lower left: Distribution of the fraction of 
variance explained (2259 neurons), estimated as the squared correlation (R2) coefficient between model output and 
calcium activity during the closed-loop session. Top right: Average correlation map and average location of maxima (black 
crosses) for neurons with significant positive responses to mismatch, averaged over mice (9 mice, top 50% of significant 
neurons per mouse). 
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To test this model further, we implemented a conductance based leaky-integrate-and-fire (LIF) 

model (Salinas and Sejnowski, 2001) with 2 free parameters: A scaling factor for the running-related 

input (α) and a scaling factor for the visual input (β), which were used to modulate the excitatory 

and inhibitory conductances. The spiking output of the LIF model was convolved with a calcium 

kernel to generate a simulated calcium response (Figures 2.2D and 2.2E; see Experimental 

Procedures). Using data from open-loop sessions, we optimized the correlation between the model 

output and neural activity with a grid search over α and β for every excitatory neuron. We then 

predicted the activity of each excitatory neuron during the closed-loop session by using visual flow 

and running speed of that session as inputs to the LIF model optimized for the particular neuron 

(Figure 2.2E). We found that the average fraction of explained variance, estimated by a cross 

validation approach on the open-loop session data (see Experimental Procedures), was twice as 

large when using a model based on visual flow and running speed as when using a model based on 

just visual flow or just running speed (full model R2 = 0.06; just visual flow R2 = 0.02; just running 

speed R2 = 0.03; p < 0.01 for both comparisons, Mann-Whitney U test; Figure 2.2F). We then 

averaged the correlation maps generated by the grid search (see Experimental Procedures) for 

excitatory neurons with a significantly positive response to mismatch and found that activity of 

these neurons could be best approximated when the motor-related conductance is positive (α > 0) 

and the visual conductance is negative (β < 0) (Figure 2.2F). This shows that mismatch responses in 

excitatory neurons can be explained by a combination of an excitatory motor-related input and 

inhibition by visual flow. Consistent with a visually driven inhibition of mismatch neurons, mismatch 

responsive neurons exhibited a decrease of activity in response to the onset of visual flow in open-

loop conditions (Figures S2.3A – S2.3C).  

Somatostatin interneurons decrease activity during mismatch 

As most long-range inputs to V1 are excitatory, feed-forward visual inhibition would need to be 

relayed by local inhibitory neurons. These neurons would have to be strongly driven by visual flow 

and, as a consequence, decrease activity in response to a brief stop in visual flow during mismatch 

and playback halt. To probe the responses of different inhibitory neuron subtypes, we repeated the 

training and imaging protocol using 4 different Cre driver lines to selectively express GCaMP6f 

(AAV2/1-EF1α-DIO-GCaMP6f-WPRE) in somatostatin (SST) (Taniguchi et al., 2011), vasoactive 

intestinal polypeptide (VIP) (Taniguchi et al., 2011), parvalbumin (PV) (Hippenmeyer et al., 2005), or 

neuropeptide-Y (NPY) (Gong et al., 2007) interneurons. The SST-Cre, VIP-Cre and PV-Cre lines 

collectively target approximately 80% of interneurons in mouse V1 and the labelled populations are 

largely non-overlapping (Pfeffer et al., 2013).  
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Figure 2.3. SST interneurons are strongly driven by visual flow.  

Average correlation of neural activity with visual flow during open-loop sessions for excitatory neurons (average 
correlations: CT: 0.00, NT: -0.01) and SST (CT: 0.13, NT: 0.04), VIP (CT: -0.01, NT: -0.03), PV (CT: -0.01, NT: 0.00) and NPY 
(CT: 0.02, NT: 0.02) interneurons in CT and NT mice. Average correlation of activity with visual flow was highest for SST 
interneurons. Error bars indicates s.e.m. *: p < 0.05, **: p < 0.01, ***: p < 0.001, n.s., not significant, p ≥ 0.05, Student’s t 
test.  

We found SST interneurons exhibited a higher correlation with visual flow than other interneuron 

subtypes or excitatory neurons (Figure 2.3). Moreover, of the 4 interneuron subtypes, only SST 

interneurons responded, on average, with a drop in activity to a brief stop in visual flow both during 

mismatch and playback halt (Figure 2.4A). Notably, this decrease in average activity on visual flow 

halt was independent of visuomotor experience, as it was present in both CT (5 mice, 118 neurons) 

and NT mice (5 mice, 157 neurons), indicating that the visual input onto SST neurons is established 

independently of motor-related input. Locomotion strongly increased visual responses in SST 

interneurons (Figure 2.4B), but running-onset responses were almost completely absent in darkness 

(Figure S2.3D), consistent with a predominantly visual drive to SST interneurons. Overall, the 

responses of SST interneurons to mismatch were diverse (Figure S2.3E), indicating that SST 

expression does not mark one homogenous functional class of interneurons.  

The responses of VIP interneurons were independent of visuomotor experience. In both CT and NT 

mice, they responded with an increase of activity to mismatch but not to playback halt (Figure 2.4C; 

CT: 3 mice, 189 neurons; NT: 3 mice, 137 neurons). Given that VIP interneurons receive direct 

inhibitory input from SST interneurons (Pfeffer et al., 2013), mismatch responses may result from 

the combination of a running-related excitatory input to VIP interneurons (Fu et al., 2014) and a 

relief from SST interneuron mediated inhibition. Interestingly, running-related input to VIP 

interneurons was strongly experience dependent. VIP interneurons were only driven by running 

onset during closed-loop sessions in CT but not in NT mice (Figure 2.4D). Consistent with the strong 

reduction of running-onset responses in SST interneurons in darkness, a running-related input to VIP 

interneurons in NT mice was unmasked in darkness (Figure S2.3F). Taken together, our findings 

suggest that the inhibitory connection from SST interneurons onto VIP interneurons is stronger in 

absence of visuomotor experience.  
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Figure 2.4. Experience dependent visuomotor integration in inhibitory interneurons.  

(A) Average population responses to mismatch (solid line) and playback halt (dashed line) for SST interneurons from CT 
(blue, 5 mice, 118 neurons) and NT (red, 5 mice, 157 neurons) mice. For both CT and NT mice, SST interneurons responded 
with a decrease in activity to mismatch and playback halt. Orange area indicates duration of mismatch; shading indicates 
s.e.m. Note that all data presented in panels A-F are from the first imaging day. The data in the different curves are 
compared bin-by-bin (100 ms bins) using a Student’s t test. Bins with a significant difference (p < 0.01) are marked by a 
black line above the curves; those without are marked as light gray (see Experimental Procedures). Each of the four 
comparisons is marked by a pair of line segments to the right, corresponding in color and line style to the data plotted, 
indicating which two curves are being compared. (B) Same as in (A), but for running onset in closed-loop sessions (solid 
lines) and playback onset in open-loop sessions (dashed lines).  (C and D), Same as in (A and B), but for VIP interneurons 
(CT: 3 mice, 189 neurons; NT: 3 mice, 137 neurons). VIP interneurons responded with an increase in activity independent 
of experience but did not respond to playback halt. (E and F) Same as in (A and B) but for PV interneurons (CT: 5 mice, 498 
neurons; NT: 6 mice, 344 neurons). The mismatch response in PV interneurons was strongly experience dependent. 

  

Lastly, responses in both PV interneurons (CT: 5 mice, 498 neurons; NT: 6 mice, 344 neurons) and 

NPY interneurons (CT: 3 mice, 189 neurons; NT: 3 mice, 137 neurons) were behavioral state and 

visuomotor-experience dependent. These two interneuron subtypes were activated by mismatch in 

CT mice, but unresponsive to mismatch in NT mice and unresponsive to playback halt in both CT and 

NT mice (Figures 2.4E, S2.3G – S2.3I). This highly selective response to mismatch in CT mice could be 

a direct consequence of the stronger activation of the excitatory neuron population in CT mice in 

response to mismatch (Figure 2.1E). Either excitatory neurons recruit PV and NPY interneurons only 

above a given activity level or the calcium dynamics in PV and NPY interneurons are such that we are 

unable to measure activity changes below a given threshold. Note however, that such a simple 

measurement threshold cannot account for the observation that in CT mice the population response 
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of excitatory neurons to running onset is smaller than that to mismatch (Figures 2.1E, 2.1F), but the 

running-onset response of PV interneurons is larger than that to mismatch (Figures 2.4E, 2.4F). One 

potential consequence of a selective activation of PV interneurons in CT mice is that the PV 

activation could lead to a response normalization in excitatory neurons (Wilson et al., 2012) that 

narrows the population response to mismatch. Consistent with this, we found that the distribution 

of mismatch responses is narrower in CT mice (Figure S3J). This narrowing of the distribution of 

mismatch responses could function to make mismatch responses more selective to one particular 

type of mismatch. 

Figure 2.5. A drop in SST activity leads to a mismatch response in excitatory neurons.  

(A) Schematic of a model circuit describing the computation of mismatch responses in layer 2/3 of V1. Excitatory neurons 
and VIP interneurons receive excitatory motor-related input (purple arrow; dashed purple line depicts idealized running 
profile around a mismatch, indicated by orange shading). SST interneurons receive visual flow input (green arrow; dashed 
green line depicts idealized visual flow around a mismatch, indicated by orange shading). Blue lines next to neurons depict 
average mismatch responses of excitatory neurons (Figure 2.1E), SST (Figure 2.4A) and VIP (Figure 2.4C) interneurons from 
CT mice. During mismatch, visual flow is halted and the activity of SST interneurons decreases, thereby disinhibiting the 
apical dendrites of mismatch neurons and allowing the excitatory motor-related input to activate the neuron. VIP 
interneurons amplify this effect by further suppressing SST interneuron activity. (B) Predicted effects of pharmacogenetic 
manipulation of SST interneurons on excitatory neurons. Idealized activity profiles of excitatory motor-related activity 
(purple line) and SST interneuron activity for a short period of running during a closed-loop session including a mismatch 
(onset marked by vertical line). In normal conditions (top), SST interneuron activity balances the motor-related input and 
the mismatch response of excitatory neurons is maximal (mismatch-triggered difference between excitatory and inhibitory 
input, orange shading). Inhibition of SST interneurons (middle) should result in a smaller mismatch-induced difference in 
inhibition and therefore a smaller mismatch response as well as increased running-related activity. Excitation of SST 
interneurons (bottom) should also result in smaller mismatch responses due to an over-inhibition of excitatory neurons, 
but decreased running-related activity. (C) Mean running related activity before and 30 min after injection of DREADD 
activator CNO (5 mg/kg i.p.) in mice expressing an inhibitory (left; 829 neurons, *** p < 0.001, Wilcoxon signed-rank test) 
or an excitatory (right; 411 neurons, *** p < 0.001, Wilcoxon signed-rank test) DREADD in SST interneurons. (D) Average 
population mismatch responses of excitatory neurons before (green trace) and 30 min after (yellow trace) the injection of 
CNO in mice expressing an inhibitory DREADD in SST interneurons (4 mice, 829 neurons). Orange bar indicates duration of 
mismatch, shading indicates s.e.m. Statistical comparisons as in Figure 2.1E. (E), Same as in (D), but for mice expressing an 
excitatory DREADD in SST interneurons (2 mice, 411 neurons). 
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Our data indicate that layer 2/3 excitatory mismatch neurons and a subset of VIP interneurons 

receive excitatory, motor-related input, while a subset of SST interneurons is more strongly driven 

by visual flow. Consistent with the finding that SST interneurons receive strong input from 

surrounding excitatory neurons (Adesnik et al., 2012; Fino and Yuste, 2011; Jiang et al., 2015), we 

found that excitatory neurons whose activity correlates positively with visual flow (CT: 24% or 539 of 

2259 of neurons; NT: 24% or 513 of 2104 neurons) exhibit a decrease in activity on mismatch similar 

to SST interneurons (Figure S2.1J). Based on the connectivity motif of excitatory neurons, SST and 

VIP interneurons (Pfeffer et al., 2013; Pi et al., 2013), we propose a schematic model circuit to 

explain mismatch responses in layer 2/3 excitatory neurons (Figure 2.5A). SST interneurons target 

the apical dendrites of layer 2/3 excitatory neurons (Markram et al., 2004). A reduction of visual 

input onto SST interneurons during mismatch thus relieves the apical dendrite of inhibition, and 

would allow excitatory motor-related input to activate the neuron. Based on this model we predict 

that both SST interneuron activation and inhibition should lead to a decrease of the mismatch 

response in excitatory neurons, but should have opposing effects on running-related activity in 

excitatory neurons (Figure 2.5B). To test this, we pharmacogenetically manipulated the activity of 

SST interneurons using DREADDs (Armbruster et al., 2007). We injected either AAV-EF1α-DIO-

hM4D(Gi)-mCherry or AAV-EF1α-DIO-hM3D(Gq)-mCherry into V1 of normally reared SST-Cre mice. 

In addition, we unconditionally transfected neurons with GCaMP6f to record mismatch and running 

related activity in putative excitatory neurons. Note that in these experiments we cannot exclude 

the possibility that some of these putative excitatory neurons are non-SST interneurons. We found 

that DREADD inhibition of SST interneurons led to an increase in running-related activity in 

excitatory neurons, while DREADD activation of SST interneurons led to a decrease in running-

related activity (Figure 2.5C). In addition, both inhibition and activation of SST interneurons led to a 

decrease in the mismatch response of excitatory neurons (Figures 2.5D and 2.5E). These results are 

consistent with a model of mismatch computation in which mismatch responses in layer 2/3 neurons 

are the result of a relief of SST interneuron mediated inhibition. To test the effect of a transient 

manipulation of SST and VIP activity on mismatch responses we injected AAV-EF1α-GCaMP6f and 

either AAV-EF1α-DIO-ChrimsonR-tdTomato (Klapoetke et al., 2014) or AAV-CAG-FLEX-ArchT-

tdTomato (Han et al., 2011) into V1 of normally reared SST-Cre mice and VIP-Cre mice. We then 

identified putative excitatory mismatch neurons based on their responses to mismatch events in 

closed-loop sessions (in the following simply referred to as mismatch neurons) and measured the 

responses of these neurons to brief (1 s) activation or inhibition of SST or VIP interneurons (see 

Experimental Procedures). We found that activation of SST interneurons resulted in an inhibition of 

mismatch neurons that was strong enough to fully suppress mismatch responses in mismatch 
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neurons when SST interneurons were activated concurrently with a mismatch event (Figure 2.6A). 

Consistent with this, inhibition of SST neurons resulted in an activation of mismatch neurons and 

concurrent inhibition of SST interneurons with a mismatch event resulted in increased mismatch 

responses (Figure 2.6B). Conversely, activation of VIP interneurons resulted in an activation of 

mismatch neurons and an increase of the mismatch response when VIP interneurons were activated 

concurrently with a mismatch event (Figure 2.6C). Finally, inhibition of VIP interneurons resulted in 

an inhibition of mismatch neurons that was strong enough to suppress mismatch responses (Figure 

2.6D). Note that even though these effects were stronger for mismatch neurons than for putative 

excitatory neurons that did not respond to mismatch (Figure S2.4), it is very likely only a subset of 

SST and VIP interneurons that are part of the circuit involved in mismatch responses in excitatory 

neurons. In summary, these results are consistent with the classical cortical SST-VIP disinhibitory 

circuit (Pfeffer et al., 2013; Pi et al., 2013), and suggest that this circuit plays a central role in 

mismatch computation with mismatch neurons under inhibitory control of SST interneurons. Thus, 

the relief of SST-mediated visual inhibition combined with a top-down motor-related excitatory drive 

can account for visuomotor mismatch responses in layer 2/3 excitatory neurons.  

To test if both CT and NT mice learn to perform visuomotor tasks after exposure to visuomotor 

coupling, we repeated the training protocol with a separate cohort of mice. Instead of going through 

the imaging paradigm after coupled or non-coupled training, these mice were trained either to 

navigate a 2-dimensional (2D) virtual environment or to detect mismatch (see Experimental 

Procedures). Both CT and NT mice learned to perform the 2D virtual locomotion task over the course 

of 6 training sessions of 1 hour each (Figures S2.5A, S2.5B). Also, both CT and NT mice learned to 

report the occurrence of mismatch over the course of 3-5 training sessions of 1 hour each (Figure 

S2.5C). These findings suggest that visuomotor coupling rapidly establishes normal visuomotor 

processing even after prolonged absence of coupling in NT mice. 
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Figure 2.6. Mismatch neurons are inhibited by SST activation or VIP inhibition and activated by SST inhibition or VIP 
activation.  

(A) Left: Schematic of the experimental design. ChrimsonR was selectively expressed in SST interneurons and GCaMP6f in 
all neurons. We then locally activated SST interneurons through the imaging objective while imaging GCaMP6f activity in all 
neurons. Right: Response of putative excitatory mismatch-responsive neurons (165 neurons, 5 mice) to mismatch (green 
line), optogenetic activation of SST interneurons during running (purple line), and concurrent mismatch and optogenetic 
activation of SST interneurons (yellow line). Orange area indicates duration of mismatch and duration of optogenetic 
stimulation respectively, shading indicates s.e.m. Statistical comparisons as in Figure 2.1E, but for 67 ms bins. Upper line 
marks comparison of manipulation-only against baseline, lower line marks comparison of mismatch only against 
concurrent mismatch and optogenetic stimulation. (B) Left: As in (A), but expressing ArchT in SST interneurons. Right: 
Responses of mismatch neurons (236 neurons, 4 mice) as in (A), but for optogenetic inhibition of SST interneurons. (C) Left: 
As in (A), but expressing ChrimsonR in VIP interneurons. Right: Responses of mismatch neurons (114 neurons, 4 mice) as in 
(A), but for optogenetic activation of VIP interneurons. (D) Left: As in (A), but expressing ArchT in VIP interneurons. Right: 
Responses of mismatch neurons (107 neurons, 3 mice) as in (A), but for optogenetic inhibition of VIP interneurons. 

  

Normal visuomotor experience restores normal visuomotor integration in V1 

Given that both CT and NT mice learned to perform visuomotor tasks over the course of a few days, 

visuomotor coupling should rapidly restore normal visuomotor processing in V1. To quantify the 

change in neural processing in V1 with the exposure to visuomotor coupling, we measured mismatch 

responses in both CT and NT mice over the course of 8 days following restoration of visuomotor 

coupling (exposure to both open-loop and closed-loop conditions and normal visuomotor experience 

with the transfer to rearing in a normal light/dark cycle; Figure 2.1A). We found that mismatch 

responses of excitatory neurons in CT and NT mice equalized rapidly with normal visuomotor 

experience (Figures 2.7A – 2.7C). The population mismatch responses of SST and VIP interneurons 

remained stable throughout the course of the experiment for both CT and NT mice (Figures 2.7D 

and 2.7E). This is consistent with the idea that the mismatch response of VIP and SST interneurons 

developed independent of visuomotor coupling. Similar to excitatory neurons, mismatch responses 
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in PV and NPY interneurons equalized after restoration of normal visuomotor coupling (Figures 2.7F 

and S2.6A). Interestingly, we found not only an increase of mismatch responses in NT mice with 

exposure to closed-loop sessions and normal visuomotor experience, but also a decrease of 

mismatch responses in CT mice with exposure to open-loop sessions and normal visuomotor 

experience. Similarly, we found that for the distribution of visual flow and running speed 

correlations, the angle of the first principle component (Figures 2.2B and 2.2C) equalized and 

approached zero for both CT and NT mice (Figures 2.7G and S2.6B). To quantify the behavioral 

response to mismatch on a timescale similar to that of the equalization of neural dynamics, we 

measured pupil dilation in response to mismatch. Mice exhibited a small but measurable pupil 

dilation response with a delay of approximately 450 ms after the neural response to a mismatch 

(400 ms for CT, 500 ms for NT; see Experimental Procedures; Figure 2.7H). This pupil dilation 

response was larger in CT mice and may reflect a startle response. The pupil dilation response also 

equalized with restoration of normal visuomotor experience, with the same time course as neural 

activity (Figure 2.7I). Altogether, these results suggest that the artificial restriction of visuomotor 

coupling to only a subset of movements (forward locomotion and eye movements) leads to an 

overrepresentation of the visuomotor processing of these movements that needs to be unlearned 

for the restoration of normal visuomotor behavior. This is consistent with the finding that a lack of 

visuomotor coupling for a specific range of movements leads to behavioral impairments that are 

specific to those movements (Hein and Held, 1967).   

Discussion 

Here we have shown that the development of responses to a mismatch between predicted and 

actual visual feedback in mouse V1 critically depends on coupled visuomotor experience. These 

mismatch responses are thought to be the consequence of predictive coding strategies that involve 

a comparison of actual and predicted sensory feedback to compute a prediction error or feedback 

mismatch. In this framework, predictions of sensory feedback are based on an internal model of the 

environment. Deviations from predictions in the form of mismatch signals are then used to update 

the internal model (Bastos et al., 2012; Rao and Ballard, 1999). As a consequence, it is likely that 

predictions are systematically shaped by experience, and can adapt to changes in the coupling 

between motor output and sensory feedback.  

The mismatch responses we describe here could be the result of a weak excitatory visual response 

to the playback halt stimulus that is amplified by a running-related input. As mismatch is generated 

simply by halting visual flow, this would mean that the visual feature driving mismatch responses is 

either the negative acceleration of visual flow, or simply a stationary grating viewed while running. 
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However, any model for mismatch responses based on an excitatory visual drive fails to explain why 

mismatch responses scale linearly with the difference between running speed and visual flow speed 

in open-loop sessions (Zmarz and Keller, 2016). Additionally, a model for mismatch responses based 

on an excitatory visual input cannot explain why mismatch responses tend to decrease activity on 

playback onset (Figure S2.3A – S2.3C).  

Figure 2.7. Normal visuomotor experience restores normal visuomotor integration. 

(A) Average responses to mismatch (solid lines) and playback halt (dashed lines) of neurons with positive correlation of 
activity with running speed (running correlation greater than 0.05) and negative correlation of activity with visual flow 
(visual correlation smaller than -0.05) on the first imaging day (CT: 12% ± 2% of neurons per mouse, 9 mice; NT: 10% ± 3%, 
9 mice). Orange area indicates duration of mismatch, shading indicates s.e.m. Statistical comparison as in Figure 2.1E. (B) 
Same as (A), but for last imaging day (CT: 10% ± 2% of neurons per mouse, 8 mice; NT: 9% ± 1%, 7 mice). (C) Average 
responses to mismatch and playback halt (see Experimental Procedures) of excitatory neurons selected as in (A) as a 
function of imaging days for CT and NT mice. Mice were dark reared until the second imaging session (indicated by gray 
area). Error bars indicate s.e.m.  *: p < 0.05, **: p < 0.01, ***: p < 0.001, n.s., not significant, p ≥ 0.05, Mann-Whitney-U 
test. (D) Average population responses to mismatch of SST interneurons, as a function of imaging days for CT and NT mice 
(CT, 5 mice, 118 neurons; NT: 5 mice, 157 neurons). Statistical test as in (C). (E) As in (D) but for VIP interneurons (CT: 3 
mice, 189 neurons; NT: 3 mice, 137 neurons). (F) As in (D) but for PV interneurons (CT: 5 mice, 498 neurons; NT: 6 mice, 
344 neurons). (G) Mean angle of first principal component (as in Figures 2.2B and 2.2C; see Experimental Procedures) 
relative to the y-axis for CT and NT mice as a function of imaging days. Gray area indicates dark rearing, error bars indicate 
s.e.m. *: p < 0.05, **: p < 0.01, ***: p < 0.001, n.s., not significant, p ≥ 0.05, Mann-Whitney-U test. (H), Average pupil 
dilation in response to mismatch and playback halt for CT (25 mice) and NT mice (25 mice; see Experimental Procedures) 
on the first imaging day. Orange area indicates duration of mismatch, shading indicates s.e.m. Statistical comparisons as in 
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Figure 2.1E, but for p<0.05. (I), Average pupil dilation in response to mismatch and playback halt a function of imaging days 
for CT and NT mice. Gray area indicates dark rearing, error bars indicate s.e.m. *: p < 0.05, **: p < 0.01, ***: p < 0.001, 
Mann-Whitney-U test.  

Our results are consistent with a model in which sensorimotor mismatch signals are computed 

locally in layer 2/3 by a comparator circuit that is shaped by experience. In this circuit, inhibition by 

visual flow is balanced against an excitatory motor-related input in mismatch neurons. SST 

interneurons mediate the inhibition by visual flow, while mutual inhibition between VIP and SST 

interneurons (Pfeffer et al., 2013) acts to amplify the responses of SST interneurons. Even though 

the average response of SST interneurons to mismatch is a decrease in activity, this effect is carried 

by only a subset of SST interneurons. Moreover, although such a simplified model is sufficient to 

explain mismatch responses, the interactions between the different interneuron subtypes are in all 

likelihood much richer than schematically summarized here. PV interneurons, for example, could act 

to normalize the mismatch response in excitatory neurons (Hofer et al., 2011; Kerlin et al., 2010).  

Given that SST interneurons provide visual inhibition to excitatory mismatch neurons and that 

mismatch responses in SST interneurons do not depend on visuomotor experience (Figure 2.4A), it is 

likely that visuomotor experience predominantly modifies the synaptic inputs onto the excitatory 

neuron. In this way, a balance of excitation and inhibition is established, possibly via mechanisms 

similar to those resulting in the establishment of the balance between feed-forward excitation and 

inhibition mediated by PV interneurons (Xue et al., 2014). Note that the type of mismatch neuron we 

describe here balances an excitatory top-down input against an inhibition by visual flow and is active 

when there is less visual input than predicted. Conversely, if a neuron balances an inhibitory top-

down input against an excitatory feed-forward input, it would signal a visual input that is stronger 

than predicted. Such a neuron would have classic visual responses in a passively observing animal. 

Computationally these two circuits are symmetric and would merely signal different types of 

mismatch (Figure S2.7). 

We speculate that the framework of predictive coding can be used to describe cortical processing of 

sensory feedback for every movement that results in a predictable change of sensory input. We 

propose that the comparison of sensory input with a top-down prediction may be a general principle 

of cortical function, where predictions from higher areas are continuously compared to signals from 

lower areas, and mismatches between the two are used to refine these predictions (Clark, 2013; 

Friston, 2010). It is intriguing to speculate that impairments in this comparison may underlie cortical 

dysfunctions where the balance between predictions and sensory input is systematically perturbed 

(Frith et al., 2000; Sinha et al., 2014). 
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Supplementary Information 

Figure S2.1. Analysis of running behavior, tdTomato expression, and additional analysis of mismatch and playback halt 

responses. Related to Figure 2.1. 

(A) Fraction of time spent running increased during training period (left) for CT mice and NT mice and remained stable 
during imaging sessions (CT: 31 mice; NT: 30 mice). Error bars indicate s.e.m., gray shading indicates dark rearing. n.s., not 
significant, p ≥ 0.05, Student’s t test. 

(B) Same as in (A), but for average running speed. Average running speed increased during training (left) and remained 
stable during imaging sessions (right). Error bars indicate s.e.m., gray shading indicates dark rearing. 

(C) Two-photon image of layer 2/3 neurons in mouse V1. In vGAT-Cre x Ai14 mice, inhibitory interneurons express 
tdTomato and are shown in red. Expression of GCaMP6f (green) under the EF1α promoter resulted in 96.8% ± 0.7% (3321 
of 3438 in total,  mean ± s.e.m.) of GCaMP6f-positive neurons that were not tdTomato positive. The surprisingly small 
overlap between GCaMP6f and tdTomato expression may in part result from the selection bias of GCaMP6f-positive 
neurons towards active neurons. 
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(D) Number of GCaMP6f-expressing neurons and tdTomato-expressing neurons per field of view (375 µm x 300 µm; note 
that the example shown in (C) is not a full field of view; 7 mice). The ratio of GCaMP6f-expressing neurons to tdTomato-
expressing neurons is approximately 3.5 across mice. If labeling were complete, and assuming that roughly 20% of neurons 
in cortex are interneurons (Markram et al., 2004), one would predict a ratio of 4. 

(E) As in Figure 2.1E, but for individual mice. Average population response to mismatch in all CT (thin blue lines) and NT 
(thin red lines) mice. The mean response over all neurons of CT (NT) mice is the thick blue (red) line. 

(F) Scatter plot of average mismatch and playback halt responses for CT mice (left; 865 neurons, 25 outside axis limits and 
not shown) and NT mice (right; 425 neurons, 3 outside axis limits and not shown) in excitatory neurons with significant 
response to mismatch (see Experimental Procedures). 

(G) Correlation between mismatch responses and playback halt responses for neurons with significant response to 
mismatch was significantly different from 0 in NT mice (9 mice, Student’s t test, p = 0.001), but not in CT mice (9 mice, 
Student’s t test, n.s., p = 0.43, see Experimental Procedures). Error bars indicate s.e.m. 

(H) Mismatch selectivity measured as the absolute ratio of the mismatch response to the playback halt response as a 
function of the mismatch response, in CT (blue) and NT mice (red). With increasing mismatch response, mismatch neurons 
in CT, but not NT, mice become increasingly selective for mismatch versus playback halt. Data are represented as mean 
plus s.e.m. 

(I) Scatter plot for response reliability as a function of mismatch response for CT (blue; 865 neurons) and NT mice (red; 425 
neurons) in excitatory neurons with significant responses to mismatch. Response reliability was calculated for each neuron 
as the fraction of mismatch events with a significant response (see Experimental Procedures). Reliability was variable, but 
tended to increase with increasing mismatch responses.  

(J) Average responses to mismatch (solid lines) and playback halt (dashed lines) of neurons with positive correlation of 
activity with visual flow (correlation greater than 0.05) on the first imaging day (CT: 24% or 539 of 2259 of neurons, 9 mice; 
NT: 24% or 513 of 2104 neurons, 9 mice). Orange area indicates duration of mismatch, shading indicates s.e.m. Statistical 
comparison as in Figure 2.1E.  
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Figure S2.2. Population responses and correlation patterns in dark trained (DT) mice. Related to Figures 1 and 2. 

(A) Average population responses to mismatch (solid line) and playback halt (dashed line) for excitatory neurons in DT mice 
(6 mice, 1076 neurons). Shading indicates s.e.m. Statistical comparisons as in Figure 2.1E, but for 67 ms time bins. 

(B) Same as in (A), but for running onset in closed-loop session and playback onset in open-loop session. 

(C) As in Figure 2.2B, but for DT mice. Correlation coefficients between neural activity (ΔF/F) of layer 2/3 excitatory 
neurons with running speed or with visual flow during open-loop sessions in DT mice. Each dot represents a single neuron. 
The color of each point indicates the amplitude of the mismatch response. The black circle marks mean correlation values. 
The solid black line indicates the angle of the mean first principle component of the distribution (see Experimental 
Procedures).  

(D) Comparison of mismatch responses and playback halt responses of CT, NT and DT mice. *: p < 0.05, ***: p < 0.001, 
Student’s t test. 
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Figure S2.3. Additional analysis of responses of excitatory neurons and interneurons. Related to Figures 2 and 4. 

(A) Average activity decreases in response to playback onset in open-loop sessions for excitatory neurons with a significant 
positive response to mismatch (see Experimental Procedures; 1110 neurons, data from CT and NT mice were pooled for 
this panel and in (B) and (C)). Note that for this analysis all playback onset events were included, independent of the 
running behavior. Shading indicates s.e.m. Statistical comparisons to baseline as in Figure 2.1E. Gray bar indicates window 
for calculating responses in (B) and (C). 

(B) The suppressive effect of visual flow on the activity of neurons with a significant positive response to mismatch 
increases with the speed of the visual flow (MM+, solid line, 1110 neurons). Similarly, the excitatory effect of visual flow on 
neurons with a significant negative response to mismatch also increased with visual flow speed (MM-, dashed line, 208 
neurons). A visual flow speed of 36 cm/s corresponds to a temporal frequency of approximately 6 Hz in our virtual 
environment. Error bars indicate s.e.m. over events. n.s.: p> 0.05. *: p < 0.001, Student’s t test. 

(C) Average response to playback onset for the same neurons as in (B) for different running speeds. The inhibitory effect of 
visual flow is present in stationary mice and increases with increasing running speed. Note that the increase of the 
inhibitory effect with running speed is likely the consequence of an increase of baseline activity with locomotion. *: p < 
0.001, Student’s t test. 

(D) Running-onset responses in complete darkness for SST interneurons (CT: 5 mice, 118 neurons; 5 mice, 157 neurons) on 
first imaging day. Statistical comparisons as in Figure 2.1E. 

(E) Average mismatch response (ΔF/F) of SST interneurons in CT mice (left, 5 mice, 118 neurons) and NT mice (right, 5 
mice, 157 neurons), sorted by amplitude of mismatch response. Black and grey shading to the right indicates statistical 
significance of responses (grey: p ≥ 0.05, black: p < 0.05, Mann-Whitney-U test; see Experimental Procedures). Orange bar 
marks the duration of mismatch.    
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(F) Running-onset responses in complete darkness for VIP interneurons (CT: 3 mice, 189 neurons; NT: 3 mice, 137 neurons) 
on first imaging day. Statistical comparisons as in Figure 2.1E.  

(G) Average population responses to mismatch (solid line) and playback halt (dashed line) for NPY interneurons from CT (9 
mice, 456 neurons) and NT (7 mice, 445 neurons) mice on first imaging day. Orange area indicates duration of mismatch, 
shading indicates s.e.m. Statistical comparisons as in Figure 2.1E. 

(H) Same as in (E), but for running-onset responses in closed-loop sessions (solid lines) and playback onset in open-loop 
sessions (dashed lines) on first imaging day. Statistical comparison as in Figure 2.1E. 

(I) Same as in (F), but for running-onset responses in complete darkness on first imaging day. Statistical comparison as in 
Figure 2.1E. 

(J) Cumulative density plot of normalized mismatch responses of excitatory mismatch responsive neurons for CT (890 
neurons) and NT (428 neurons) mice on first imaging day. Note the response distribution of the NT neurons is wider than 
that for CT neurons (p < 0.01, Kolmogorov–Smirnov test). This indicates that the distribution of mismatch responses over 
neurons is sharpened in CT mice, potentially by the selective activation of PV interneurons (Figure 2.4E).   
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Figure S2.4. Effects of optogenetic stimulation on mismatch and non-mismatch neurons. Related to Figure 6. 

(A) Left: Average responses to mismatch of 20% of neurons with the largest, positive mismatch response (solid green line, 
165 neurons, 4 mice, the same neurons shown in Figure 2.6) and of 20% of neurons with no mismatch response (dashed 
green line, 165 neurons). Middle: Average response of the same mismatch responsive (solid purple line) and non-mismatch 
responsive neurons (dashed purple line) to optogenetic activation of SST interneurons. Right: Average response of 
mismatch responsive (solid yellow line) and non-mismatch responsive neurons (dashed yellow line) to concurrent 
optogenetic activation of SST interneurons and mismatch. Orange area indicates duration of mismatch and duration of 
optogenetic stimulation, shading indicates s.e.m. Statistical comparison as in Figure 2.1E, but for 67 ms time bins.  

(B) As in (A), but for optogenetic inhibition of SST interneurons (236 neurons in each group, 4 mice). 

(C) As in (A), but for optogenetic activation of VIP interneurons (114 neurons in each group, 4 mice). 

(D) As in (A), but for optogenetic inhibition of VIP interneurons (107 neurons in each group, 3 mice).  
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Figure S2.5. Both CT and NT mice learn to perform visuomotor tasks. Related to Figure 7. 

(A) In a two-dimensional (2D) virtual locomotion task, water restricted mice need to learn to control a freely rotating 
styrofoam ball in order to traverse a linear corridor and reach a reward zone (blue shaded area). The length of the corridor 
was automatically increased as performance increased to keep reward rate constant. Upper panel: Sample trajectories of a 
single mouse in the 2D virtual environment on day 1. Trajectories were random, however the tunnel was short 
(approximately 0.5 m) and mice obtained rewards by chance. Once a reward was obtained, the mouse was teleported back 
to the beginning of the tunnel after a brief timeout (2 s) to start the next trial. Lower panel: Sample trajectories of the 
same mouse as in upper panel, but on day 6 when the mouse had learned the task (tunnel length approximately 6 m). 

(B) Both CT (6 mice) and NT mice (4 mice) learned the 2D virtual locomotion task over the course of 6 training sessions (1 
h/day). Task performance was quantified as the fraction of time spent running towards the reward zone. There was a 
significant increase from training session 1 to training session 6 for CT and NT mice (Student’s t test). Shading indicates 
s.e.m. 

(C) In a mismatch detection task, mismatch is followed by a water reward (100 ms delay after end of mismatch). Behavior is 
quantified as the latency to the first lick relative to the water reward (see Experimental Procedures). Mice were water 
restricted and habituated to licking from the water spout prior to testing. In the first training sessions, mice only licked 
after reward delivery. Over the course of 3 to 5 training sessions (1 h per day), both NT (n = 2) and CT (n = 3) mice started 
to lick during mismatch, before the reward was delivered. Orange area indicates mismatch. Shown is the mean time to the 
first lick as a function of the fraction of rewards obtained throughout training. To assess learning, we compared the 
distribution of the lick times of the first training session to the last training session for each mouse (sided Mann-Whitney-U 
test, p-values indicated adjacent to learning curve).  
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Figure S2.6. Normal visuomotor experience equalizes mismatch responses in NPY interneurons and correlation patterns in 
excitatory neurons. Related to Figure 7. 

(A) Mismatch responses of NPY interneurons averaged over a 1 s window (see Experimental Procedures) as a function of 
imaging days for CT and (9 mice, 456 neurons) and NT (7 mice, 445 neurons). Mice were dark reared until the second 
imaging session (indicated by gray area). Error bars indicate s.e.m. *: p < 0.05, **: p < 0.01, ***: p < 0.001, Mann-Whitney-
U test. 

(B) Correlation coefficients between neural activity (ΔF/F) and running speed or visual flow in CT (left) and NT (right) mice 
during open-loop sessions on imaging day 5. Each dot represents a single neuron (CT: 8 mice, 2213 neurons; NT:  7 mice, 
1686 neurons). Dot color indicates the neuron’s mismatch response. Black circles indicate mean correlations. Solid black 
lines indicate mean angle of first principle component of the distributions for each mouse (see Experimental Procedures).  
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Figure S2.7. Layer 2/3 comparator circuits. Related to Figure 5. 

In the cortical hierarchy, inputs to a layer 2/3 neuron can be divided into four different functional types: feed-forward 
excitatory, feed-forward inhibitory, top-down excitatory, top-down inhibitory. In this simplified model we will ignore 
neuromodulatory inputs for the moment. Here we use the terms feed-forward and top-down to denote the functional type 
and not necessarily the anatomical origin of the signal. Visual inputs to a layer 2/3 neuron in mouse V1 could either 
originate directly in dorsal lateral geniculate nucleus, or layer 4 neurons, or could be relayed by other layer 2/3 neurons. 
We propose that through visuomotor learning a balance between excitatory and inhibitory inputs is established in three 
different categories. Either top-down excitatory input is balanced against feed-forward inhibitory input to form a mismatch 
signal (category I), or feed-forward excitatory input is balanced against top-down inhibitory input (category II), or feed-
forward and top-down excitation are combined (category III).  In this model mismatch corresponds to a negative prediction 
error that signals occurrences of less visual input than expected. Visual inputs of category II correspond to a positive 
prediction error signaling more visual input than expected. Lastly, there is a population of neurons that appears to combine 
excitatory motor-related and visual input (category III). This particular population of neurons is prominent in NT mice 
(Figure 2.2B). One could speculate that either this is the default or naïve state of neurons in V1 before sensorimotor 
experience, or it is correlated with running speed and visual flow merely because it is comparing a top-down prediction of a 
movement whose frequency increases during locomotion. It is conceivable that a top-down prediction could for example 
be generated for visual feedback from eye movements. As the frequency of eye movements increases during running 
(Keller et al., 2012), the frequency of eye-movement related prediction errors would increase during visual flow and during 
running. Hence such an eye-movement prediction error neuron would appear running and visual flow correlated. Similar 
arguments can be made for most movements that are not predictable simply by running speed, but whose frequency 
systematically increases during running. This is not an easily solvable problem as we typically do not have experimental 
access to predictions of sensory feedback based on internal models. Here we have used locomotion as a proxy for a 
prediction of visual flow and thereby artificially reduced predictions to one dimension (forward locomotion). A more 
complete description of the behavior and the dynamics of the top-down inputs to V1 would have to be measured 
simultaneously to make a more informed estimate of the specific form of top-down predictions.   

Note that in the absence of a top-down prediction (e.g. in experiments on anaesthetized or immobile animals passively 
viewing moving stimuli) neurons in both categories II and III will appear to be purely visually driven.    
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Methods 

Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Georg Keller (georg.keller@fmi.ch). 

Experimental Model and Subject Details 

The data for Figures 2.1-2.4 and 2.7 were collected from a total of 61 mice. Experiments were 

started with surgery on P30. We used males and females of six different mouse lines: C57BL/6J mice 

(n = 6), vGAT-Cre x Ai14 tdTomato mice (n = 12), PV-Cre (Pvalbtm1(cre)Arbr) (Hippenmeyer et al., 2005) 

(n = 11), SST-Cre (Ssttm2.1(cre)Zjh) (Taniguchi et al., 2011) (n = 10), VIP-Cre (Viptm1(cre)Zjh) (Taniguchi et al., 

2011) (n = 6) and NPY-Cre (NpyRH26Gsat/Mmucd) (Gerfen et al., 2013) (n = 16). The data for Figure S2.2 

were collected from 6 C57BL/6J mice and experiments started at P30. The data for Figure 2.5 were 

collected from a total of 6 SST-Cre mice, 7-16 weeks of age at the start of the experiment. The neural 

activity data for Figure 2.6 were collected from 9 SST-Cre mice and 7 VIP-Cre mice 7-16 weeks of age 

at the start of the experiment. The behavioral data for Figure S5 were collected from 15 C57BL/6J 

mice, experiments were started on P30. For all experiments, mice were group housed throughout 

and both female and male mice were used. Unless stated otherwise, mice were housed in a 12h 

light/12h dark cycle. All animal procedures were approved by and carried out in accordance with 

guidelines of the Veterinary Department of the Canton Basel-Stadt, Switzerland. 

Method Details 

Surgery. Mice were briefly anesthetized with isoflurane and then received a subcutaneous injection 

of a Fentanyl (0.05 mg/kg; Actavis), Midazolam (5.0 mg/kg; Dormicum, Roche) and Medetomidine 

(0.5 mg/kg; Domitor, Orion) mixture. A 4 mm craniotomy was made over the right V1, centered on 

2.5 mm lateral and 1 mm anterior of lambda. We labelled neurons with a calcium indicator by 

injecting an AAV2/1 vector (see section “Viral constructs” below for details) into right monocular V1, 

centered on 2.5 mm lateral and 0.5 mm anterior of lambda (3-4 injections per mouse, approx. 100-

150 nl per injection). A 4 mm circular cover glass was glued in place using gel superglue (Ultra Gel, 

Pattex). The remaining exposed surface of the skull was scored with a needle to increase adhesion 

with glue and dental cement, and covered with Histoacryl (B. Braun). A titanium head bar was fixed 

to the skull using dental cement (Paladur, Heraeus Kulzer) (Leinweber et al., 2014). Mice were 

returned to their home cage after anesthesia was antagonized by an intraperitoneal injection of a 

Flumazenil (0.5 mg/kg; Anexate, Roche) and Atipamezole (2.5 mg/kg; Antisedan, Orion Pharma) 

mixture. 

mailto:georg.keller@fmi.ch
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DREADD and optogenetic experiments. We used 7 to 16 weeks old male and female SST-Cre mice 

(for DREADD and optogenetic experiments) and VIP-Cre mice (for optogenetic experiments) that 

were reared in normal conditions. Craniotomy, virus injection, and headbar fixation was performed 

as described above. Mice were habituated to the setup, and imaging experiments started 2 weeks 

post surgery.  

Viral constructs. We used AAV2/1-EF1α-GCaMP5 (titer: 3.4 * 1011 GC/ml) for wild-type, EF1α-

CGaMP6f (titer: 5.6 * 1011 - 4.4 * 1012   GC/ml) for vGAT-Cre x Ai14, pharmacogenetic, and 

optogenetic experiments, and EF1α-DIO-GCaMP6f (titer: 3.0 * 1011 - 7.8 x 1011 GC/ml) for inhibitory 

interneuron marker lines. To manipulate neural activity pharmacogenetically, we injected AAV2/1-

EF1α-DIO-hM4D(Gi)-mCherry (titer: 7.0 * 1011 GC/ml) or AAV2/1-EF1α-DIO-hM3D(Gq)-mCherry 

(titer: 3.4 * 1011 GC/ml). For optogenetic manipulations of SST and VIP interneuron activity, we 

injected AAV2/1-EF1α-DIO-ChrimsonR-tdTomato (titer: 2.2 * 1011 GC/ml) or AAV1-CAG-FLEX-ArchT-

tdTomato (titer: 3.1 * 1012 GC/ml). 

We initially attempted to label Cre-positive interneurons by means of a floxed RFP virus (AAV2/1-

EF1α-DIO-tdTomato) and bulk label all neurons with an unconditional GCaMP6f (AAV2/1- EF1α-

GCaMP6f) to concurrently record the activity of the selected interneuron type and all other neurons. 

However, for reasons unclear to us, this led to a very low co-labeling yield and signals in 

interneurons were often contaminated by the much stronger signals in surrounding excitatory 

neurons. We speculate that the reason for this may be that the promoter used (EF1α) to drive the 

GCaMP6f expression is stronger in excitatory neurons than interneurons.  

Virtual reality environment setup. The setup is based on the design of Dombeck and colleagues 

(Dombeck et al., 2007). Briefly, mice were head-fixed and free to run on an air-supported spherical 

treadmill. Rotation of the ball was restricted around the vertical axis with a pin. The virtual reality 

environment was projected onto a toroidal screen covering approximately 240 degrees horizontally 

and 100 degrees vertically of the mouse’s visual field using a projector (Samsung SP-F10M) 

synchronized to the resonant scanner of the two-photon microscope. The virtual environment 

consisted of an infinite corridor with walls patterned with vertical sinusoidal gratings with a spatial 

frequency of approximately 0.04 cycles per degree (Leinweber et al., 2014). 

Two-photon imaging. Functional two-photon calcium imaging was performed using 2 custom-built 

two-photon microscopes (Leinweber et al., 2014). Illumination source was a tunable femtosecond 

laser (Insight, Spectra Physics; Coherent Chameleon) tuned to 990 nm. Emission light was band-pass 

filtered using a 525/50 filter for GCaMP and a 607/70 filter for tdTomato/mCherry (Semrock) and 

detected using a GaAsP photomultiplier (H7422, Hamamatsu). Photomultiplier signals were 
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amplified (DHPCA-100, Femto), digitized (NI5772, National Instruments) at 800 MHz, and band-pass 

filtered around 80 MHz using a digital Fourier-transform filter implemented in custom-written 

software on an FPGA (NI5772, National Instruments). The scanning system of the microscopes was 

based either on a 12 kHz or an 8 kHz resonant scanner (Cambridge Technology). Images were 

acquired at a resolution of 750 x 400 pixels (60 Hz / 40 Hz frame rate, respectively), and a piezo-

electric linear actuator (P-726, Physik Instrumente) was used to move the objective (Nikon 16x, 0.8 

NA) in steps of 15 µm between frames to acquire images at 4 different depths. This resulted in an 

effective frame rate of 15 Hz or 10 Hz, respectively. The field of view was 375 µm x 300 µm. 

Simultaneous two-photon imaging and optogenetic stimulations.  ChrimsonR or ArchT stimulation 

and functional imaging of GCaMP6f-expressing neurons was done by using a modified Thorlabs B-

Scope with a 12 kHz resonance scanner (Cambridge Technology) for line scanning. Illumination 

source for the optogenetic stimulation was a fast LED (UHP-T-595, Prizmatix) with a wavelength of 

595 nm and which allowed fast TTL triggered operation. For spectral filtering we used a dichroic 

mirror (ZT775sp-2p, Chroma) to combine the two-photon laser and stimulation light. A second long-

pass dichroic mirror (F38-555SG, Semrock) was used to split the GFP emission from both illumination 

light sources. Light leak from the 595 nm stimulation LED was reduced by synchronizing the LED light 

output to the turnaround times of the resonant scanner (during which imaging data were not 

acquired). Lastly, amplified PMT signals were digitally bandpass filtered at 80 MHz to reduce the 

effect of ringing in the amplifier. This allowed for near stimulation-artifact free synchronous imaging 

and optogenetic stimulation.  

Experimental design. Mice were kept in the dark for an additional 2 days following surgery, after 

which they were introduced to the virtual reality environment. Mice were briefly anesthetized with 

isoflurane in the dark and then head-fixed on the setup. CT and NT mice were trained in pairs. The 

visual flow projected onto both screens was coupled to the locomotion of the CT mouse (Figure 

2.1B). For dark training, mice were head-fixed and trained on the setup in complete darkness. All 

mice were free to run on the ball throughout training. In total, all CT, NT, and DT mice underwent 6 

training sessions of 2 hours every other day (Figure 2.1A). 

The first imaging experiment was performed 2 days after the last training session. The design of the 

imaging experiments was as previously described (Keller et al., 2012). Typically, an imaging 

experiment consisted of 1 closed-loop session and 2 open-loop sessions. In closed-loop sessions, the 

visual flow was coupled to the locomotion of the mouse, and was randomly perturbed with brief (1 

s) halts (mismatch; one perturbation every 15 seconds on average). In open-loop sessions, the visual 

flow generated in the closed-loop session (including perturbations, here referred to as playback halt) 
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was replayed to the mouse independent of its locomotion. For some mice, open-loop sessions were 

followed by a dark session, where the virtual reality and all other light sources in the room were 

turned off. Each closed-loop, open-loop or dark session lasted 500 s. To minimize the effect of 

altered visuomotor experience (non-coupled experience in open-loop sessions for CT mice, and vice 

versa), we controlled the visual stimuli between imaging sessions so as to be the same as they were 

experienced in the training sessions, such that CT mice experienced closed-loop conditions (no 

perturbations) and NT and DT mice experienced open-loop conditions. Mice were kept in darkness 

between training and imaging sessions until after the second imaging session at which point they 

were transferred to in a normal 12 h/12 h light/dark cycle (Figure 2.1A). Note that DT mice were 

only imaged on time points 1 and 2. 

At the end of each experiment intrinsic optical imaging was performed as described previously 

(Zmarz and Keller, 2016) to verify that the retinotopic location of recording sites corresponded to a 

part of the visual field covered by the toroidal screen. 

Mismatch detection paradigm and 2D virtual locomotion task. Mice were dark-reared from birth 

and trained as either CT or NT, as described above. After the last training session, mice were water 

restricted. Throughout these experiments mice received water in the training paradigms. We 

monitored body weight of the mice and water was supplemented if body weight dropped below 

80% of initial weight. Mice were first habituated to the setup and the lick spout in 2 sessions of 1 h 

each. Experiments started 2 days after the last training session. For the mismatch detection 

paradigm, we put the mice into the same virtual reality environment as described above in a closed-

loop configuration including visual perturbations (mismatch) as described above. A droplet (approx. 

10 µl) of sucrose solution (15% in water) was delivered 100 ms after a mismatch via a metal spout 

placed in front of the mouse’s snout. As mice learned the task, we observed anticipatory licking, 

which manifested as mice starting to lick during the 1 s mismatch, prior to reward delivery. A single 

experiment consisted of a 1 h closed-loop session during which the mice received approximately 100 

rewards for a total of approximately 1 ml of sucrose solution. To assess learning for each mouse, the 

distribution of lick response times from the first training day was compared to the distribution of lick 

response times to the last training day using a Mann-Whitney-U test. 

For the 2D virtual locomotion task, mice learned to navigate a virtual tunnel to a reward area. Mice 

had to learn to control heading in the virtual tunnel by rotation of the ball (rotation of the ball 

around the vertical axis was not restricted). Upon reaching the reward area, mice received a droplet 

(approx. 10 µl) of sucrose solution (15% in water) via a lick spout. After a brief timeout (2 s), the 

position of the mouse in the virtual reality was reset to the starting location. The virtual tunnel was 
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kept very short initially and the tunnel length was increased progressively as mice learned the task, 

such that the average number of rewards received per minute was held approximately constant (at 

1.3 rewards per min). The behavior was quantified as the amount of time the mice spent running in 

the direction of the reward area (± 36° from reward-area direction) normalized by the total time 

spent running.  To quantify learning, the fraction of time spent running towards the target during 

training session 1 was compared to the fraction of time spent running towards the target on the last 

session for each mouse using a Student’s t test. 

Quantification and Statistical Analysis 

Extraction of neuronal activity. Calcium imaging data were processed as previously described (Keller 

et al., 2012) and all data analysis was done in MATLAB (MathWorks). Briefly, raw images were full-

frame registered to correct for brain motion. Neurons were manually selected based on mean and 

maximum fluorescence images. Raw fluorescence traces were corrected for slow drift in 

fluorescence using an 8th-percentile filtering with a 15 s window (Dombeck et al., 2007). ΔF/F traces 

were calculated as mean fluorescence in a selected region of every imaging frame and subsequently 

subtracted and normalized by the median fluorescence. 

Data analysis. The details of the statistical analysis are noted in the figure legends. We did not test 

the distribution of the data for normality. To quantify average response traces, we first calculated 

the average event-triggered fluorescence trace for each neuron. The responses of all neurons were 

then averaged and the baseline (mean ΔF/F in a 0.5 s window pre event onset) was subtracted. To 

quantify the significance of the difference of two average calcium responses as a function of time, 

we performed a separate Student’s t test for every bin of the calcium trace (10 Hz or 15 Hz) and 

marked bins as significantly different for p < 0.01. For visual clarity, we removed isolated significant 

bins, such that a significant bin was only marked if at least one of the two neighboring bins was also 

significant.  

To calculate the average response of each neuron to mismatch or playback halt, we first calculated 

the difference between the average event-triggered response and the average response to 1000 

randomly triggered events to generate a random-corrected trace. Average responses to mismatch 

and playback halt were then calculated as the mean fluorescence of the random-corrected average 

in a response window minus the mean fluorescence in a baseline window for each neuron (the 

response window for mismatch, playback halt, running onset and playback onset was +500 ms to 

+1500 ms, and the baseline subtraction window was -1000 ms to 0 ms). To determine the 

significance of a neuron’s response, we calculated individual neuron responses to each mismatch 

event as described above and compared this distribution to the distribution generated by 1000 
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randomly triggered events. Significance was determined with a two sided Mann-Whitney-U test (p < 

0.05). For mismatch and random events to be included in the analysis, mice had to be running above 

threshold (10-2 cm/s) before and after event onset (from -600 ms to + 1100 ms).  In addition, for 

playback halt events to be included, mice had to be stationary during the playback halt (no running 

from -600 ms to +1100 ms). For running onset, mice had to be stationary for at least 600 ms prior to 

the running onset and continue running for 1100 ms above threshold following the onset. Similarly, 

for playback onset (quantified only during open-loop sessions) there had to be no visual flow for 600 

ms prior to visual flow onset, followed by continuous visual flow above threshold for at least 1100 

ms after onset, mice had to be stationary during this time. 

To determine correlation between mismatch responses and playback halt responses (Figures S2.1F 

and S2.1G), we calculated Pearson’s linear correlation coefficients for each mouse between the 

vector containing the mismatch responses of all neurons and the vector containing the playback halt 

responses for each neuron. 

To calculate the response to playback onset as a function of visual flow speed and running speed 

(Figures S2.3B and S2.3C), we calculated the response to each playback onset for each neuron as the 

mean fluorescence in a response window minus the mean fluorescence in a baseline window (the 

response window was +1000 ms to +3000 ms, and the baseline window was -1000 ms to 0 ms). All 

playback onset events were used, irrespective of the running behavior. The same response window 

was also used to determine the visual flow speed and the running speed. For Figure S2.3B, The data 

were then split into different bins according to the visual flow speed. For each bin, both visual flow 

speed and playback onset response were then averaged. To estimate the baseline response 

(response to stationary grating), we calculated the response as described above, but for periods of 

no visual flow (stationary grating from a -2000 ms to +3000 ms). For Figure S2.3C, the data were split 

and averaged into different bins according to running speed.  

We calculated Pearson’s linear correlation coefficients to determine the correlation between 

individual neural activity and visual flow or running speed during the open-loop sessions. To 

minimize the influence of running-induced z-motion on the correlation coefficients, we calculated a 

threshold for each neuron (3.72 * standard deviation of the lower half of the fluorescence 

distribution) (Keller et al., 2012) and set all activity below this threshold to 1 (note that for ΔF/F, 

baseline is at 1). To calculate the average correlations over days (Figure 2.3), we first calculated the 

average correlations per day and then averaged these across all imaging time points. 

To calculate the principal component of the correlation distributions, we used the standard 

implementation available in MATLAB. We calculated the principal component for each imaging 
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region separately. To calculate the average angle, we averaged the vector sum of the normalized 

principle components of all imaging regions.  

We calculated the average traces for the optogenetic experiments (Figures 2.6, S2.4), as described 

above. To further reduce the stimulation artefact after filtering, we used the following approach. 

The remaining stimulation artifact was approximated as a box function and subtracted from the 

average stimulation response of each neuron. The amplitude of the box function was estimated as 

the average of the of the absolute difference between the calcium signal on frame n-1 and n, and m 

and m+1, where the stimulation light was switched on between frame n-1 and n and switched off 

between m and m+1. On average this signal was 0.8% dF/F and much smaller than the typical neural 

response (Figure 2.6 and S2.4). 

Average running speed during training and imaging sessions was calculated as the mean speed while 

the mouse was running above threshold (10-2 cm/s). Fraction of time running during training and 

imaging sessions was calculated as the fraction of time running speed was above threshold (10-2 

cm/s) over total session duration. Note that during imaging sessions, fraction of time spent running 

and average running speed were calculated on the combined closed-loop and open-loop sessions. 

Modified leaky integrate-and-fire neuron model. The model consists of a modified conductance 

based leaky integrate-and-fire neuron (cLIF) where inhibitory and excitatory conductances are linear 

combinations of running speed and visual flow speed. Parameters were adapted from (London et al., 

2008; Salinas and Sejnowski, 2001). The membrane voltage was updated according to: 

𝑉𝑉𝑖𝑖 = 𝑉𝑉𝑖𝑖−1 −
𝑑𝑑𝑑𝑑
𝜏𝜏𝑀𝑀

∗ [(𝑉𝑉𝑖𝑖−1 − 𝐸𝐸𝐿𝐿) +  𝑔𝑔𝑒𝑒𝑒𝑒 ∗ (𝑉𝑉𝑖𝑖−1 − 𝐸𝐸𝑒𝑒𝑒𝑒) +  𝑔𝑔𝑖𝑖𝑖𝑖 ∗ (𝑉𝑉𝑖𝑖−1 − 𝐸𝐸𝑖𝑖𝑖𝑖)] 

where 𝑑𝑑𝑑𝑑 = 1 ms, 𝜏𝜏𝑀𝑀 = 15 ms,𝐸𝐸𝐿𝐿 = −59 mV,𝐸𝐸𝑒𝑒𝑒𝑒 = 0 mV and 𝐸𝐸𝑖𝑖𝑖𝑖 = −78 mV. When the voltage 

crossed the threshold (-40 mV), it was reset to 𝑉𝑉𝑅𝑅 = −48 mV. The refractory period was 6 ms. The 

excitatory and inhibitory conductances were updated according to: 

𝑔𝑔𝑒𝑒𝑒𝑒,𝑖𝑖 = 𝑔𝑔𝑒𝑒𝑒𝑒,𝑖𝑖−1 ∗ �1 −
𝑑𝑑𝑑𝑑
𝜏𝜏𝑒𝑒𝑒𝑒

� + 𝑋𝑋𝑒𝑒𝑒𝑒,𝑖𝑖 ∗ ∆𝑔𝑔𝑒𝑒𝑒𝑒 

𝑔𝑔𝑖𝑖𝑖𝑖,𝑖𝑖 = 𝑔𝑔𝑖𝑖𝑖𝑖,𝑖𝑖−1 ∗ �1 −
𝑑𝑑𝑑𝑑
𝜏𝜏𝑖𝑖𝑖𝑖

� + 𝑋𝑋𝑖𝑖𝑖𝑖,𝑖𝑖 ∗ ∆𝑔𝑔𝑖𝑖𝑖𝑖 

where 𝜏𝜏𝑒𝑒𝑒𝑒,𝑖𝑖𝑖𝑖 = 5 ms, ∆𝑔𝑔𝑒𝑒𝑒𝑒 = 0.05 and ∆𝑔𝑔𝑖𝑖𝑖𝑖 = 0.08. Finally, to update the conductances, input X 

was calculated based on running speed R and visual flow V with scaling factors 𝛼𝛼,𝛽𝛽: 

𝑋𝑋𝑒𝑒𝑒𝑒 = [𝛼𝛼𝛼𝛼]+ +  [𝛽𝛽𝛽𝛽]+,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 [𝑥𝑥]+ =  0, 𝑖𝑖𝑖𝑖 𝑥𝑥 ≤ 0 𝑎𝑎𝑎𝑎𝑎𝑎 [𝑥𝑥]+ = 𝑥𝑥, 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0  

  𝑋𝑋𝑖𝑖𝑖𝑖 = |[𝛼𝛼𝛼𝛼]−| +  |[𝛽𝛽𝛽𝛽]−| ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 [𝑥𝑥]− = 0, 𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 𝑎𝑎𝑎𝑎𝑎𝑎 [𝑥𝑥]− = 𝑥𝑥, 𝑖𝑖𝑓𝑓 𝑥𝑥 < 0 
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Raw visual flow V and running speed R signals were normalized with the 95th percentile and 

upsampled to match the sampling frequency of the model (1 kHz). 

To generate a simulated fluorescence signal F, we convolved the binary spike train S with a calcium 

kernel K: 

𝐹𝐹(𝑖𝑖) = 𝐾𝐾(𝑖𝑖) ∗ 𝑆𝑆,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐾𝐾(𝑖𝑖) = 𝑎𝑎 ∗ 𝑒𝑒−𝜏𝜏∗𝑖𝑖  

The parameters were adjusted to the calcium indicator used and are based on estimates of 

published data (Chen et al., 2013) (for GCaMP5: a = 0.05, τ = 1.5 s; for GCaMP6f: a = 0.08, τ = 1 s) and 

the resulting trace F was downsampled to match the imaging frequency. 

To predict neural activity of excitatory neurons during closed-loop sessions (Figure 2.2E), we trained 

the model on all available open-loop session data. We chose a correlation-based approach to find 

optimal values for α and β for every neuron. To maximize the correlation between simulated activity 

and neural activity, we employed a grid search approach. Neural activity was simulated over a wide 

range of combinations of the parameters α and β. We then calculated the correlation coefficient 

(Pearson’s linear correlation) between simulations and the activity of a neuron, resulting in 

correlation maps (Figures 2.2D and 2.2F) characteristic for each neuron. The values of α and β 

resulting in maximal correlation were chosen to simulate activity during closed-loop sessions. To 

calculate average parameters α and β for the top 50% of excitatory mismatch neurons per mouse 

(Figure 2.2F), the vector vj = (βj,αj) was transformed into polar coordinates and the mean was then 

calculated as: 

𝑚𝑚� =
1
𝑁𝑁
�𝑧𝑧𝑗𝑗

𝑁𝑁

𝑗𝑗=1

,   𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑧𝑧𝑗𝑗 =  𝑟𝑟𝑗𝑗 ∗ 𝑒𝑒𝑖𝑖∗𝜗𝜗𝑗𝑗  

To estimate the fraction of explained variance (FEV) (Figure 2.2F), we used a cross validation 

approach. α and β were optimized as above, but using only 80% of the available open-loop session 

data. Optimal α and β were then used to predict the remaining 20% of the open-loop session. This 

was repeated 1000 times using randomly selected subsamples for training and testing. The FEV was 

estimated as the average squared correlation coefficient between prediction and actual neural 

activity. To estimate the FEV based on running speed only, β was held constant (β = 0), and similarly 

for simulations based on visual flow only, α was held constant (α = 0). All simulations were 

performed in MATLAB using custom-written code. 

Pupil dilation. Images of the left eye, contralateral to the craniotomy, were recorded with a CMOS 

camera at 30 Hz (DMKBUC03, Imaging Source). Pupil position was computed offline by smoothing 
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and thresholding the images and fitting a circle to the pupil. Data containing eye blinks were 

excluded from analysis. To extract mismatch induced pupil diameter changes, we computed the 

difference between the average dilation triggered on mismatch and the average dilation triggered 

on 1000 randomly chosen onsets. Average responses to mismatch was calculated as the difference 

between the amplitude averaged over a window pre (-100 ms to 0 ms) and post (+500 ms to +1500 

ms) mismatch on the random-subtracted traces. To quantify significant difference as a function of 

time, we used the same bin-by-bin comparison described for calcium responses above, but with 

black bars indicating p < 0.05. 

To determine neural response times, we calculated the time point of significant deviation between 

mismatch response traces of neurons with significant response to mismatch and randomly triggered 

traces (see above). For each neuron, we compared the fluorescence distributions of mismatch 

responses to random responses for each frame after the event onset (from 0 ms to +1500 ms). The 

response time was then taken as the first frame where the two distributions were significantly 

different (Mann-Whitney-U test, p < 0.05). The response time was only scored if the response 

distributions at 0 ms were not different and the responses diverged within the time window. This 

was the case for all excitatory neurons with significant response to mismatch. Pupil response times 

were calculated similarly. 
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CHAPTER 2: A SENSORIMOTOR CIRCUIT IN MOUSE CORTEX FOR 

VISUAL FLOW PREDICTIONS 
 

This chapter is based on a paper that has been published in Neuron (Leinweber et al., 2017). The text 

and figures of this chapter correspond largely to the submitted manuscript, with minor adaptions to 

formatting and numbering to conform to the style of this thesis.  

Marcus Leinweber1, Daniel R. Ward1, Jan M. Sobczak1,2, Alexander Attinger1,3 & Georg B. Keller1,3,4 

1Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland 
2Current address: Brain Research Institute, University of Zurich, Zurich, Switzerland 
3Faculty of Natural Sciences, University of Basel, Basel, Switzerland 
4Lead contact: georg.keller@fmi.ch  

 

Summary 

Cortex is organized as a hierarchical processing structure. Feedback from higher levels of the 

hierarchy, known as top-down signals, have been shown to be involved in attentional and 

contextual modulation of sensory responses. Here we argue that top-down input to primary visual 

cortex (V1) from A24b and adjacent secondary motor cortex (M2) signals a prediction of visual 

flow based on motor output. A24b/M2 sends a dense and topographically organized projection to 

V1 that targets most neurons in layer 2/3. By imaging the activity of A24b/M2 axons in V1 of mice 

learning to navigate a 2D virtual environment we found that their activity was strongly correlated 

with locomotion and resulting visual flow feedback in an experience-dependent manner. When 

mice were trained to navigate a left-right inverted virtual environment, correlations of neural 

activity with behavior reversed to match visual flow. These findings are consistent with a 

predictive coding interpretation of visual processing. 

 

Introduction 

Visual processing in cortex is often described as a feedforward hierarchy of increasingly complex 

representations that functions to extract objects from visual input (Felleman and Van Essen, 1991; 

Marr, 1982; Riesenhuber and Poggio, 1999). In this framework top-down, or feedback, signals are 

thought to modulate visual responses based on visual representations in higher levels of the 

hierarchy. This modulation can be driven by attention (Roelfsema et al., 1998; Zhang et al., 2014), 

mailto:georg.keller@fmi.ch
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context (Fiser et al., 2016; Zipser et al., 1996), or expectations (Gilbert and Li, 2013; Gilbert and 

Sigman, 2007). A mechanistic interpretation of these top-down signals is predictive coding (Rao and 

Ballard, 1999; Spratling, 2010). This theory postulates that a prediction of the component features 

based on visual representations in higher levels of the hierarchy is sent to lower levels, where it is 

compared to feedforward signals to compute mismatch between the two. Predictions are computed 

based on an internal model of the environment that is updated by mismatches fed forward from 

lower levels of the hierarchy. Predictive coding is a central idea in a whole family of theories of brain 

function (Barlow, 1994; Clark, 2013; Friston, 2010; Hawkins and Blakeslee, 2004; Wolpert et al., 

1995).  

Evidence for predictive coding in primary visual cortex (V1) has come mainly from its ability to 

explain non-classical visual response properties of V1 neurons (Grosof et al., 1993; Rao and Ballard, 

1999; Spratling, 2010). One of the central problems with testing the hypothesis of predictive coding 

is that predictions are difficult to constrain experimentally. Typically, this is attempted using learned 

associations between behavior and sensory feedback. For example, sensory feedback couples in a 

predictable way to motor output. Hence, the experimental assumption is that signals generated 

during movement that are fed back to sensory areas should constitute an experience-dependent 

prediction of sensory feedback. This is referred to as an efference copy in the theory of internal 

models (Blakemore et al., 2000; von Holst and Mittelstaedt, 1950; Jordan and Rumelhart, 1992). 

Using paradigms of sensorimotor coupling, it has indeed been demonstrated that layer 2/3 of 

sensory cortices signals a mismatch between predicted and actual sensory feedback (Eliades and 

Wang, 2008; Keller et al., 2012). The source of the motor-related prediction necessary to generate 

these mismatch signals is still unknown. 

Locomotion is sufficient to drive activity in mouse V1 (Keller et al., 2012; Saleem et al., 2013) and has 

been shown to modulate visually evoked activity (Niell and Stryker, 2010). Two hypotheses for the 

function of these motor-related signals are a gain modulation of visual responses (Ayaz et al., 2013; 

Fu et al., 2014; Niell and Stryker, 2010), and a prediction of visual flow based on motor output (Keller 

et al., 2012). Gain modulation of visual responses could be mediated by a low-dimensional signal 

such as a neuromodulatory input. A prediction of visual flow, on the other hand, would require a 

dense long-range excitatory input capable of conveying a high-resolution signal. Compatible with the 

idea of gain modulation, both cholinergic (Fu et al., 2014) and noradrenergic (Polack et al., 2013) 

inputs to V1 have been described. These neuromodulatory inputs drive locomotion-related gain 

changes in V1. However, the idea of neuromodulatory gain modulation during movement, acting 

through a disinhibitory circuit (Fu et al., 2014), cannot account for locomotion-driven activity in the 



48 
 

complete absence of visual input (Keller et al., 2012; Pakan et al., 2016; Saleem et al., 2013) or the 

context dependence of gain modulation (Pakan et al., 2016).  

Here, we hypothesize that top-down projections to V1 carry a prediction of visual input based on 

motor output. The motor command for a left turn, for example, would lead to a prediction of full-

field visual flow to the right. Generating a prediction of visual flow would thus require a 

transformation of the motor command to a signal in visual coordinates. In the framework of internal 

models, this transformation from motor coordinates (which muscles are activated) to sensory 

coordinates (how does the visual stimulus change) is referred to as a forward model (Wolpert et al., 

1995). Anatomically, this could be implemented in different ways. A motor-related brain area could 

send an efference copy of the motor command to visual cortex in motor coordinates and the 

connectivity between axons from the motor-related area and visual neurons could acts as the 

forward model transforming the signal to visual coordinates. Alternatively, the motor command 

could be transformed to visual coordinates in upstream areas and sent to visual cortex in visual 

coordinates. These two possibilities can be disambiguated by recording from axons of motor-related 

areas in visual cortex.  

We sought to identify top-down inputs to V1 that could convey a prediction of visual flow based on 

motor output. One candidate area is the anterior cingulate cortex (ACC) (Miller and Vogt, 1984; Vogt 

and Miller, 1983; Zhang et al., 2014, 2016), which is bidirectionally connected with the adjacent 

secondary motor cortex (Vogt and Miller, 1983). Stimulation of ACC in rats causes head and eye 

movements (Sinnamon and Galer, 1984) and recent work demonstrates that the input from ACC to 

V1 has a role in attentional modulation of visual responses (Zhang et al., 2014) and experience-

dependent spatial predictions (Fiser et al., 2016). 

If the ACC input to V1 conveys a prediction of visual flow based on the mouse’s movements, it 

should be characterized by a few defining features. First, the projection should have a bandwidth 

comparable to that of the feedforward visual input, measured either as the number of afferent 

neurons or as the fraction of V1 neurons targeted. Second, it should convey motor-related activity to 

V1, such that an inactivation of the input results in a decrease in motor-related activity in V1 

neurons. Consequently, visuomotor mismatch signals in V1, which result from a comparison of an 

excitatory motor-related input and an inhibitory visual input (Attinger et al., 2017; Zmarz and Keller, 

2016), should also decrease upon inactivation. Third, activity of this projection should depend on 

visuomotor experience and adapt to changes in visuomotor coupling as the mouse learns to control 

visual feedback in a novel environment. Lastly, artificial stimulation of the projection should result in 

illusory visual flow.  
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In the work we present here, we identify A24b, a subdivision of ACC, and an adjacent part of 

secondary motor cortex (M2), as one origin of a motor-related input to V1, and revisit the question 

of the function of this top-down projection. We suggest that one component of this top-down input 

is a prediction of visual flow based on the motor output of the mouse, consistent with the idea that 

internal models govern the processing of sensory input. 

Figure 3.1. A24b/M2 is one of the main inputs to V1 and primarily targets layer 2/3 and 6 excitatory neurons as well as PV 
interneurons.  

(A) Top: Injection scheme for monosynaptic input mapping experiments using rabies virus. Vertical dashed lines indicate 
position of coronal sections in (A) and (D). Bottom: Coronal section (lambda -0.25 mm) through an injection site in V1. AAV 
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positive cells are labeled in red and rabies positive cells are labeled in green, NeuN staining in blue. (B) Top: Magnification 
of the injection site shown in (A). Left: Cells infected by the rabies virus express GFP and appear green. Middle: Cells 
infected by the AAV virus were identified by staining against the 2A linker peptide and appear red. Right: Overlay of the 
green and the red channels. Cells that appear yellow have been infected by both the AAV and the rabies virus and are 
putative starter cells. Bottom: Magnification of the area indicated by the white rectangle. (C) Number of cells labeled in 
different brain regions by rabies tracing from V1 (3 mice). Brain regions were identified using a mouse brain atlas (Franklin 
and Paxinos, 2012). Note, A24b/M2 is one of the largest inputs to V1, with twice as many cells labeled as in the 
dorsolateral geniculate nucleus (dLGN), the main source of thalamic input to V1. Here and in the following panels, error 
bars indicate SEM. (D) Example of a coronal section through A24b/M2 (bregma +0.50 mm) with cells labeled by rabies 
tracing from V1. (E) Example images of A24b/M2 showing cells labeled by rabies tracing restricted to different starter cell 
populations in V1. PV: parvalbumin positive interneurons, VIP: vasoactive intestinal peptide positive interneurons, SST: 
somatostatin positive interneurons, CR: calretinin positive interneurons, Wfs1: expression mainly in layer 2/3, Scnn1a: 
expression mainly in layer 4, Rbp4: expression mainly in layer 5, Ntsr1: expression mainly in layer 6. (F) Average number of 
labeled cells in A24b/M2 normalized by the number of starter cells in V1 for each Cre-line.  

 

Results 

A24b/M2 is one of the main inputs to V1 and mainly targets layer 2/3 and layer 6 excitatory 

neurons and PV interneurons. 

To survey all afferents to V1 and identify potential motor-related input, we used transsynaptic rabies 

tracing (Wickersham et al., 2007). We injected an adeno-associated virus (AAV; AAV2/1-Ef1a-

TVA950-T2A-CVS11G) into V1 to express the rabies virus G protein and the TVA receptor in V1 

neurons. Monosynaptic rabies tracing was initiated using an EnvA-coated SADΔG rabies virus (Figure 

3.1A). The AAV vector was injected into V1 two days prior to the injection of the rabies virus at the 

same location. As the Ef1a promoter used in the AAV virus tends to bias expression to layer 2/3 and 

layer 5 excitatory neurons (Attinger et al., 2017), tracing was likely also biased to presynaptic input 

to those neurons. Five days after the rabies virus injection, mice were sacrificed and their brains 

were sectioned and immunohistologically processed (see Experimental Procedures). We found an 

average of 2179 ± 877 (mean ± std) labeled starter cells per mouse throughout all layers of V1 

(Figure 3.1B), and 30437 ± 6112 presynaptic cells throughout the entire brain (3 mice). Presynaptic 

cells were mapped onto brain regions as defined by a mouse brain atlas (Franklin and Paxinos, 2012) 

(Figure 3.1C). We found the largest fraction of presynaptic cells in primary (7723 ± 2124 cells, or 

25%) and secondary visual areas (V2L, V2ML, and V2MM, 6177 ± 1444 cells, or 20%), followed by 

retrosplenial (4304 ± 1055 cells, or 14%) and auditory cortex (2212 ± 694 cells, or 7%). The largest 

input from a motor-related area came from a region of cortex that was composed of A24b (1748 ± 

501 cells, or 6%), a sub-region of the anterior cingulate cortex (ACC) approximately corresponding to 

the dorsal part of ACC in a region just anterior of bregma (0 mm to +1 mm) (Vogt and Paxinos, 2014), 

and the medial part of M2 directly adjacent to A24b (Figure 3.1D). Using a boundary between A24b 

and M2 as defined in the Franklin and Paxinos mouse brain atlas (Franklin and Paxinos, 2012), 57% 

(1001 of 1748) of the neurons were in A24b, and 43% (747 of 1748) of the rabies positive neurons 

were in M2. As we find no evidence of a separation between the population of neurons in A24b and 
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the subset of neurons in the immediately adjacent medial part of M2, we refer to this region of 

cortex that projects to V1 as A24b/M2. Most of the presynaptically labeled cells in A24b/M2 were 

located in layer 5 (Figures 3.1D and S3.1A,B). All further analysis was focused on A24b/M2 as a 

potential source of motor-related input to V1.  

To identify the target cell types of the projection from A24b/M2 to V1, we performed a series of cell-

type specific rabies tracing experiments by restricting the expression of the TVA receptor and G 

protein to genetically defined populations of neurons. We injected AAV2/1-Ef1a-DIO-TVA950-T2A-

CVS11G and EnvA-coated SADΔG into V1 of mice expressing Cre in different subpopulations of 

inhibitory neurons (parvalbumin (PV), vasoactive intestinal peptide (VIP), somatostatin (SST), or 

calretinin (CR)) or excitatory neurons predominantly in layer 2/3 (Wfs1-Cre), layer 4 (Scnn1a-Cre), 

layer 5 (Rbp4-Cre) or layer 6 (Ntsr1-Cre). We found that all tested neuron types in V1 receive input 

from A24b/M2 (Figure 3.1E,F). The largest fraction of presynaptically labeled cells in A24b/M2 was 

found when tracing from layer 2/3 and layer 6 excitatory neurons and PV interneurons.  

Axonal input from A24b/M2 to V1 is dense and maintains topography. 

To quantify the innervation pattern of A24b/M2 axons in V1 we labeled axons from A24b/M2 with a 

red fluorescent protein by injecting AAV2/1-Ef1a-tdTomato in A24b/M2 (Figure 3.2A). A24b/M2 

axons densely innervate layer 1 and layer 6 of V1 (Figure 3.2B-D). To test if there is a topographic 

structure to the projection, we injected two AAVs expressing either eGFP or tdTomato 500 µm apart 

into A24b/M2, either separated along the anterior-posterior (Figure 3.2E) or the medio-lateral axis 

(Figure S3.1C-E). We found that posterior A24b/M2 projects to medial V1 and anterior A24b/M2 

projects to lateral V1. Conversely, medial A24b/M2 projects to anterior V1 and lateral A24b/M2 

projects to posterior V1. Thus, the projection from A24b/M2 to V1 maintains topography.  
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Figure 3.2. Axonal input from A24b/M2 to V1 is dense and maintains topography.  

(A) Top: Injection scheme to label A24b/M2 axons in V1. Dashed lines indicate the locations of the coronal sections shown 
below and in (B). Bottom: Wide-field fluorescence image of a coronal section at the location of the injection site. (B) 
Coronal section showing A24b/M2 axons in V1 and adjacent structures. A24b/M2 axons mainly innervate layer 1, 5 and 6 in 
V1. Box indicates magnified view shown in (C). Top inset: Wide-field fluorescence image of a coronal section of the whole 
brain at the location indicated in (A) (lambda +0.40 mm). A24b/M2 axons shown in red innervate V1, retrosplenial cortex 
and subcortical structures. Bottom inset: Fluorescent labelling density as a function of depth from the surface of cortex in 
V1 (averaged over data from 7 mice, shading indicates SEM). (C) Maximum intensity projection of confocal images of the 
region marked in (B) showing dense innervation of V1 by A24b/M2 axons. Boxes correspond to the magnified views shown 
in (D). (D) Confocal images of axons in layer 1 (1), layer 2/3 (2) and layer 6 (3). (E) Left: Injection scheme for dual color AAV 
topographic mapping. An AAV2/1-Ef1a-eGFP and an AAV2/1-Ef1a-tdTomato were injected separately, spaced by 
approximately 500 µm along the anterior-posterior axis in A24b/M2. Dashed line indicates position of the coronal section 
shown on the right. Middle: Wide-field fluorescence image of the brain three weeks post injection. Right: Pattern of 
labeling of A24b/M2 axons in V1. Anterior A24b/M2 (in red) projects to lateral V1 and posterior A24b/M2 (in green) 
projects to medial V1. (F) Left: Injection scheme for CRACM. An AAV2/1-Ef1a-CatCh-eGFP was injected into A24b/M2. 
Dashed line indicates position of coronal slices used for patch-clamp recordings. Middle: Example stimulation responses of 
a layer 2/3 neuron to stimulation of layer 1 axons (gray: single trials, red: average). Right: Recording scheme. Neurons were 
patched in different layers of V1 while axons were stimulated either in layer 1 or layer 6. (G) Fraction of neurons with a 
significant response to A24b/M2 axon stimulation for each cortical layer, stimulated either in layer 1 or layer 6. Numbers 
above bars indicate the number of neurons with a significant response out of the total number of neurons recorded.  
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To quantify the fraction of neurons in different layers of V1 that receive direct input from A24b/M2, 

we used channelrhodopsin-2-assisted circuit mapping (CRACM) (Petreanu et al., 2007). We 

expressed channelrhodopsin-2 in A24b/M2 neurons by injecting an AAV2/1-Ef1a-CatCh-eGFP into 

A24b/M2 and sacrificed mice 21 days later for slice recording experiments (see Experimental 

Procedures). We performed voltage-clamp recordings from neurons throughout all layers of V1 and 

recorded excitatory postsynaptic currents (EPSCs) in response to optical stimulation of A24b/M2 

axons in either layer 1 or layer 6 (Figure 3.2F). To ensure that the evoked EPSCs were monosynaptic, 

the stimulation intensity was set far below the threshold necessary to trigger action potentials in V1 

neurons in current-clamp recordings (see Experimental Procedures). Depending on the site of 

stimulation we found evoked responses in most neurons of layer 1 (29 of 34, or 85 %), layer 2/3 (35 

of 48, or 73 %) and layer 6 (22 of 30, or 73 %; Figure 3.2G). Only a small fraction of layer 5 neurons 

(2/26, or 8%) and no layer 4 neurons (0/19, or less than 5%) exhibited A24b/M2 axon photo-

stimulation evoked responses. On average the response latencies of the EPSCs were short (6.74 ± 

3.27 ms, mean ± std), consistent with a monosynaptic input (Figure S3.1F-H) (Petreanu et al., 2007). 

Thus, consistent with rabies tracing experiments, we found that A24b/M2 input mainly targets layers 

1, 2/3 and 6, and directly innervates many of the neurons in these layers. 

A24b/M2 axons convey motor-related signals to V1. 

Activity in mouse V1 has been shown to reflect visual (Niell and Stryker, 2008), motor-related (Keller 

et al., 2012; Saleem et al., 2013), and visuomotor-mismatch signals (Keller et al., 2012; Saleem et al., 

2013). To quantify a potential contribution of A24b/M2 input to these signals in V1, we transfected 

cells in A24b/M2 with an AAV2/1-Ef1a-GCaMP6f (Chen et al., 2013) and imaged activity of A24b/M2 

axons in V1 (6007 axons in 10 mice) of head-fixed mice running on a spherical treadmill surrounded 

by a toroidal screen that provided visual flow feedback (Figure 3.3A) (Dombeck et al., 2007). Mice 

were exposed to either closed-loop conditions, in which visual flow feedback was coupled to 

locomotion and brief halts of visual flow were used to probe for mismatch responses, open-loop 

conditions, in which visual flow was presented independent of locomotion, or dark conditions (see 

Experimental Procedures). We found that the population of A24b/M2 axons exhibited strong motor-

related activity that preceded running onsets by several hundred milliseconds (approximately 900 

ms; see Experimental Procedures; Figure 3.3B). This anticipatory activity was stronger and started 

earlier than the anticipatory activity observed in layer 2/3 of visual cortex. To test whether the 

increased anticipatory activity was the result of a shift in the onset of activity in all axons or the 

result of the broadening of the distribution of onset times across the population of axons, we 

analyzed the distribution of the time differences between activity onset and running onset in the 

A24b/M2 axons and layer 2/3 V1 neurons. Although a substantial fraction of A24b/M2 axons (30%, 
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508 of 1,675) had activity onsets that preceded running onset, the average latency to activity onset 

followed the running onset (0.28 ± 0.13 s post running onset, 10 mice, mean ± SEM), but preceded 

the average latency to response in layer 2/3 V1 neurons (0.43 ± 0.06 s post running onset, 8 mice, 

mean ± SEM). However, the main effect contributing to the stronger anticipatory activity in 

A24b/M2 axons was a broader distribution of activity-onset times (FWHM of the distribution of 

A24b/M2 axon response times: 1.08 ± 0.18 s; FWHM of the distribution of layer 2/3 V1 neuron 

response times: 0.52 ± 0.16 s; Figure S3.2A). Consistent with the idea that this motor-related activity 

is not just the consequence of a brain state change, we found that the amplitude of the motor-

related activity in the A24b/M2 axons increased with increasing running speed (Figure S3.2B). In 

addition to motor-related signals, we also found responses to visual stimulation in open-loop 

conditions in A24b/M2 axons that occurred with a delay of approximately 1000 ms after visual flow 

onset. We found no evidence of a correlation between the strength of an axon’s response to visual 

flow onset and the strength of the axon’s motor-related response (Figure S3.2C). Finally, we 

quantified the response of A24b/M2 axons to visuomotor mismatch, which results in strong 

mismatch responses in layer 2/3 neurons of V1 (Keller et al., 2012), and did not find any change in 

activity induced by mismatch (Figure 3.3B). 

To test if motor-related activity in A24b/M2 axons depends on visual input prior to running onset, 

we analyzed activity in four different conditions: (1) running onset in the closed-loop condition, (2) 

running onset in the open-loop condition without visual flow preceding the running onset, (3) 

running onset in the open-loop condition with visual flow preceding running onset, and (4) running 

onset in darkness (Figure 3.3C, see Figure S3.2D for the same data before matching running speeds). 

We found that activity in A24b/M2 axons immediately following running onset depended strongly 

on visual flow preceding the running onset. Activity was highest when the mouse was seeing a static 

grating prior to the onset of running (conditions 1 and 2), and lower when the mouse either saw an 

already moving grating (condition 3) or nothing (darkness; condition 4) prior to running onset. The 

suppressive effect of visual flow was most pronounced when visual flow occurred in a 3 second 

window preceding running onset (Figure S3.2E). Consistent with a modulation of A24b/M2 

responses by visual flow, A24b/M2 axons exhibited a marked decrease in activity when we switched 

to darkness while the mouse was running (Figure S3.2F,G). Hence, the motor-related activity in 

A24b/M2 axons is suppressed by either a lack of visual input or by visual flow preceding running 

onset.  

To test if A24b/M2 axons specifically target neurons in layer 2/3 of V1 that exhibit strong motor-

related activity we developed an in vivo version of CRACM (ivCRACM). We injected an AAV2/1-hSyn-

ChrimsonR-tdTomato into A24b/M2 and an AAV2/1-Ef1a-GCaMP6f into V1 (Figure 3.3D). To identify 
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neurons driven by activity in A24b/M2 axons, we stimulated A24b/M2 axons locally in V1 and 

measured the calcium responses of layer 2/3 neurons (see Experimental Procedures). We identified 

82 of 648 (or 13%) neurons that responded significantly to the local stimulation of A24b/M2 axons 

(Figure 3.3E, and Figure S3.3A,B). Note that with this method we likely only identify those neurons 

in V1 that receive the strongest A24b/M2 input and not all neurons that are connected. Consistent 

with the idea that motor-related activity in A24b/M2 axons drives motor-related activity in V1, 

stimulation responsive neurons also exhibited stronger motor-related activity than neurons that did 

not respond to A24b/M2 axon stimulation (Figure 3.3F). This was not simply the consequence of 

these neurons being more active than non-responsive neurons (Figure S3.3C). We also verified that 

the stimulation responses were absent in V1 neurons of control mice that did not express ChrimsonR 

in A24b/M2 axons under otherwise identical conditions (Figure S3.3D). This demonstrates that 

A24b/M2 input best activates neurons in V1 with the highest running-onset activity.  

Figure 3.3. A24b/M2 axons convey motor-related signals to V1. 

(A) Top: Schematic of axonal labeling and imaging. We injected an AAV expressing GCaMP6f in A24b/M2 and recorded the 
activity of A24b/M2 axons in V1. Bottom: Example two-photon image of A24b/M2 axons in V1. (B) Average population 
response of A24b/M2 axons (6007 axons, 100 imaging sites, 10 mice) in V1 to running onset (black line), visual flow onset 
(green line), mismatch onset (orange line) and triggered on random times (gray). Here and in the following panels, shading 
indicates SEM. (C) Average population response of A24b/M2 axons in V1 to running onset during a closed-loop session 
(black line), during an open-loop session without visual flow prior to running onset (dark gray line) and with visual flow 
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prior to running onset (light gray line), and during darkness (dotted black line). The visual stimulus preceding running onset 
strongly influences running onset activity in A24b/M2 axons (closed-loop versus open-loop with visual flow: p = 1*10-4, and 
versus dark: p = 2*10-6; open-loop without visual flow versus open-loop with visual flow: p = 4*10-8, and versus dark: p = 
2*10-10; Student’s t test, solid horizontal lines indicate testing window). (D) Top: Schematic of simultaneous axonal 
stimulation and imaging. We expressed ChrimsonR-tdTomato in A24b/M2 neurons and stimulated the A24b/M2 axons in 
V1 while recording GCaMP6f activity of layer 2/3 neurons in V1. Bottom: Example two-photon image of A24b/M2 axons 
expressing ChrimsonR (shown in red) and layer 2/3 neurons expressing GCaMP6f (shown in green) in V1. (E) We stimulated 
A24b/M2 axons in V1 of behaving mice while simultaneously recording the responses of V1 neurons. 82 of 648 neurons (or 
13%) in V1 exhibited significant responses to the stimulation of A24b/M2 axons (purple line). Stimulation duration is 
indicated by the orange bar (1 s, 20 Hz, 50% duty cycle). (F) Running onset response of neurons selected in (E) that were 
strongly activated by A24b/M2 axon stimulation (purple line) and neurons that were not activated by A24b/M2 axon 
stimulation (black line; p = 3*10-5, Student’s t test, solid horizontal lines indicate testing window). (G) Top: Schematic of 
A24b/M2 silencing during V1 imaging. We injected muscimol in A24b/M2 while recording GCaMP6f activity of layer 2/3 
neurons in V1. Bottom: Example two-photon image of neurons in layer 2/3 of V1 expressing GCaMP6f. (H) Average 
population response of running onset responsive neurons (50 % most running onset responsive neurons selected on 
preceding time points; 1934 of 3868 neurons; see Experimental procedures) in V1 to running onset before (baseline; solid 
line), during (muscimol; dotted), and after (recovery; dashed) inactivation of A24b/M2 (baseline versus muscimol: p = 5*10-

9; recovery versus muscimol: p = 3*10-10; Student’s t test, solid horizontal lines indicate testing window). (I) Average 
population response of mismatch responsive neurons (50 % most mismatch responsive neurons selected on preceding 
time points; 1934 of 3868 neurons; see Experimental procedures) in V1 to mismatch before (baseline; solid line), during 
(muscimol; dotted), and after (recovery; dashed) inactivation of A24b/M2 (baseline versus muscimol: p = 1*10-10 ; recovery 
versus muscimol: p = 1*10-9; Student’s t test, solid horizontal lines indicate testing window). Gray shading indicates the 
duration of feedback mismatch. 

To test if A24b/M2 suppression affects motor-related signals in V1, we inactivated A24b/M2 in a 

separate set of mice, while recording neural activity in V1. We expressed GCaMP6f in V1 and 

recorded running onset and mismatch responses one day before, immediately after and one day 

after muscimol injection into A24b/M2 (Figure 3.3G). We found that both running onset responses 

(Figure 3.3H) and mismatch responses (Figure 3.3I) were significantly decreased in responsive 

neurons during inactivation of A24b/M2 (see Experimental Procedures). This inactivation experiment 

has two confounds. First, inactivating A24b/M2 led to changes in motor behavior. On average, mice 

decreased average running speed during A24b/M2 inactivation (Figure S3.2H). To correct for a 

possible bias of differences in running speed, average running speed was matched across conditions 

by subsampling individual running onset and mismatch trials (see Experimental Procedures; Figure 

S3.2I, J). Second, the inactivation volume likely only encompassed a fraction of the total A24b/M2 

volume. Thus, the true effect size of a complete A24b/M2 inactivation is likely larger than the effects 

we report here. To rule out the possibility that the decrease is in running onset responses and 

mismatch responses is the result of an acute off-target effect (Otchy et al., 2015), we also performed 

chronic lesions of A24b/M2 using ibotenic acid injections into A24b/M2. Consistent with the acute 

inactivation, both motor-related activity and mismatch responses were reduced following a chronic 

lesion of A24b/M2 (Figure S3.2K, L). 

A24b/M2 input to V1 correlates with expected visual feedback given a motor output. 

To test if activity in A24b/M2 axons correlates with specific motor behaviors, we trained mice to 

navigate to the end of a 2D virtual tunnel and simultaneously recorded the activity of ipsilateral 

A24b/M2 axons in either the left or right monocular V1 (Figure 3.4A; left V1: 153 sites, 34533 axons; 
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right V1: 55 sites, 7476 axons). On average we found that 22 % ± 1.4 % (mean ± SEM) of axons 

exhibited activity that was task-related (as defined by correlation with locomotion or rotation, see 

Experimental Procedures). These axons were then classified as either correlating with left turns or 

with right turns based on the correlation of their activity with the mouse’s movement trajectory in 

the virtual environment (see Experimental Procedures). In left monocular V1, we found a bias for 

axons whose activity correlated with left turns (Figure 3.4B; left hemisphere: fraction 0.60 vs 0.40 ± 

0.02, p = 4*10-13, Mann-Whitney U test, 60% ± 5% of axons). Conversely, in right monocular V1 we 

found a bias for axons whose activity correlated with right turns (Figure 3.4B; right hemisphere: 0.36 

vs 0.64 ± 0.04, p = 2*10-5, Mann-Whitney U test, 58% ± 10% of axons). There are two possible 

interpretations of these observations. One is that A24b/M2 axons innervating a particular part of V1 

are activated more strongly by the movements that increase visual flow in the corresponding area of 

visual space. The other is that this hemispheric bias is a consequence of a general bias of neural 

activity to the laterality of the movement, which has been described in motor cortex (Li et al., 2015) 

and the striatum (Cui et al., 2013). To distinguish between these alternatives, we tested if this bias in 

activity of A24b/M2 axons depends on visuomotor experience. We trained a different group of mice 

to perform navigation in left-right inverted virtual reality until they reached a certain performance 

criterion (up to 10 sessions, 1 session per day, see Experimental Procedures). Mice learned to 

perform this task despite left-right inversion, albeit slower than under normal conditions (Figure 

S3.4A). We recorded activity of A24b/M2 axons in right monocular V1 on the first and on the last 

training day. On the first day, we found a bias for axons whose activity correlated with ipsiversive 

turns, similar to the bias observed in mice trained in the non-inverted environment (Figure 3.4C). 

However, after mice learned to navigate the left-right inverted virtual environment, we found an 

inverse bias of the activity of A24b/M2 axons; most of the task-related axons in right V1 correlated 

best with a contraversive turn, which under left-right inversion maximizes visual flow in the left 

visual field. This shift in preference for contraversive turns was larger in mice with higher 

performance in the left-right inverted environment (Figure 3.4D). To test whether the shift in 

preference was specific to the navigation task in which visual feedback is coupled to the mouse’s 

movement, or is simply a reversal in the preference of the motor-related or the visually-driven 

activity, we exposed a subset of the mice to both a no-visual flow condition and to an independent 

visual flow condition before and after training. In the no-visual flow condition, the walls of the 

corridor in the virtual environment were uniformly gray but the mouse was free to run on the 

spherical treadmill. When measured in the absence of visual flow coupled to the movement of the 

mouse, we found no reversal of the preference in either mice trained under normal conditions or 

under left-right inverted conditions (Figure 3.4E). Similarly, when measured in the independent 
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visual flow condition, which consisted of the mouse watching a playback of visual flow, the 

preference of A24b/M2 axons for either ipsi- or contraversive visual flow equalized but did not 

revert in mice trained under left-right inverted conditions and was unchanged in mice trained under 

normal conditions after training (Figure S3.4B). Hence, the reversal of preference is strongest in 

conditions in which visual flow is coupled to movement. In sum, activity in A24b/M2 axons in a 

particular retinotopic location in V1 is dynamically adapted to changes in visuomotor coupling with 

learning in such a way that A24b/M2 axons are activated most strongly by movements that 

maximize visual flow in the corresponding part of the visual space.  

Figure 3.4. A24b/M2 input correlates with the expected visual feedback given a motor output. 

(A) Top left: Schematic of the virtual reality setup used to test mice in a 2D navigation task while imaging GCaMP6f labeled 
A24b/M2 axons in V1. Top right: Five example trajectories of a mouse from the first training session on day 1. Bottom: Five 
example trajectories of a mouse from the last training session on day 7. Length of the tunnel is not shown to scale, the 
length/width ratio on day 1 was 5, and on day 7 it was 22. Length of the tunnel was increased as the mouse’s performance 
increased. (B) Fractions of axons that correlate best with a turn to the left or a turn to the right in either left or right 
monocular V1 (22% ± 1.4% mean ± SEM of axons per recording site correlated with behavior, only these axons were 
included in the analysis shown here and in (C); left V1: p = 4*10-13, 16 sites in 8 mice; right V1: p = 3*10-5, 40 sites in 9 mice; 
Mann-Whitney U test). Note that activity in A24b/M2 axons in either hemisphere correlated best with the turn that 
maximizes visual flow in the corresponding retinotopic location. Activity was recorded during the last training session. Here 
and in the following panel, error bars indicate SEM, and in the schematic below, the red arrow indicates the turning 
behavior of the mouse, the blue arrows indicate the direction and magnitude of the resulting visual flow, and the green 
region marks the hemispheric location of V1 recordings. (C) For mice trained with normal visual flow, activity in A24b/M2 
axons in right V1 correlated best with right turns across learning (first day: p = 9*10-13, 47 sites in 9 mice; last day: p = 2*10-
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10 , 37 sites in 6 mice; Mann-Whitney U test). In mice trained in a left-right inverted virtual reality, activity in most A24b/M2 
axons in right V1 initially correlated best with right turns, but after learning activity in most A24b/M2 axons correlated best 
with left turns (first day: p = 1*10-10, 39 sites in 9 mice; last day: p = 0.002, 23 sites in 5 mice; Mann-Whitney U test). Note 
that left turns maximize visual flow on the left of the mouse in the left-right inverted virtual reality. (D)  Learning related 
changes in the A24b/M2 axon turning preference as a function of behavioral performance. For both groups of mice 
(normal trained and left-right inverted trained) the difference between the fraction of axons best correlated with 
ipsiversive turns and the fraction of axons best correlated with contraversive turns (defined as the turning preference) was 
positive (more axons best correlated with ipsiversive turns) on the first day of training (green dots). This turning preference 
became increasingly negative (more axons best correlated with contraversive turns) with improved behavioral 
performance (last day, magenta dots) for mice trained in left-right inverted virtual reality, but not for normally trained 
mice. Each pair of dots corresponds to one mouse. Shaded ovals mark mean and SEM across mice. The grey line is a linear 
fit to the data (Deming regression), and the shading marks the 95% confidence interval of the fit. (E) For both groups of 
mice (normal trained and left-right inverted trained), activity in A24b/M2 axons in right V1 correlated best with right turns 
after training in the absence of visual flow (normal trained animals: p = 4*10-4, 11 sites in 3 mice; left-right inverted 
animals: p = 0.002, 16 sites in 4 mice; Mann-Whitney U test).  

Finally, to test if artificial activation of A24b/M2 axons in V1 could affect the behavior of the mouse 

we expressed channelrhodopsin-2 in A24b/M2 by injecting an AAV2/1-Ef1a-CatCh-eGFP into both 

left and right A24b/M2, and trained mice to navigate the virtual tunnel. On the seventh day of 

training we briefly stimulated axons (3 s at 25 Hz, see Experimental Procedures) in left, right, or both 

left and right monocular V1 as mice were navigating to the end of the tunnel. To control for 

unspecific effects of the stimulation on behavior we compared the stimulation of left or right V1 to a 

bilateral stimulation of both left and right V1, as A24b/M2 axon stimulation always led to a marked 

decrease in running speed (Figure S3.4C,D). In response to stimulation of A24b/M2 axons in left V1, 

mice turned to the right. Vice versa, in response to the stimulation of A24b/M2 axons in right V1, 

mice turned to the left (Figure 3.5). In summary, artificial activation of A24b/M2 axons in either left 

or right monocular V1 resulted in a behavioral response consistent with the bias in their activity we 

observed during voluntary turning behavior (Figure 3.4). 

Discussion 

Cortical function can be described in a representation framework that is based on the notion of the 

feature detector (Barlow, 1953; Marr, 1982) or in a predictive processing framework (Clark, 2013; 

Friston, 2005; Hawkins and Blakeslee, 2004). The predictive processing framework postulates that 

feedforward sensory signals are compared against a top-down prediction of sensory feedback to 

detect prediction errors. Evidence for the predictive processing framework has come amongst other 

things from the discovery of sensorimotor mismatch signals in sensory areas of cortex (Attinger et 

al., 2017; Eliades and Wang, 2008; Keller and Hahnloser, 2008; Keller et al., 2012; Zmarz and Keller, 

2016) that could constitute prediction errors. Mismatch signals in mouse visual cortex are the result 

of a comparison of an excitatory motor-related prediction and an inhibitory visual input (Attinger et 

al., 2017). A missing piece of the puzzle has been evidence for top-down predictions of sensory input 

given a movement. We now show that A24b/M2 provides a strong and dense projection to V1, 

which conveys motor-related signals that depend on the mouse’s visuomotor experience. We 
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suggest that these signals constitute a prediction of visual flow that is linked to the mouse’s 

movement, consistent with an interpretation of the function of visual cortex in a predictive coding 

framework. This is detailed in the following: 

1. A motor-based prediction of visual flow in V1 requires an anatomical basis in the form of 

either a direct or an indirect projection from a motor-related area of the brain. We found 

that one of the largest inputs to V1 originates in A24b/M2 (Figure 3.1C), a motor-related 

area of cortex (Sinnamon and Galer, 1984). 

2. Visuomotor mismatch signals have been reported in layer 2/3 neurons of V1 (Keller et al., 

2012; Saleem et al., 2013). These mismatch signals can be explained by a difference between 

an excitatory prediction of visual flow and an inhibitory visual signal (Attinger et al., 2017; 

Zmarz and Keller, 2016). We found that layer 2/3 excitatory neurons are one of the main 

targets of the projection from A24b/M2 (Figure 3.1E,F). 

3. Movements lead to visual feedback that systematically changes with retinotopic location. 

Moving head or eye to the left leads to full field visual flow to the right. Moving forward, 

however leads to radially symmetric visual flow of opposite direction in the left and right 

visual field. Thus to simplify wiring one would expect a certain amount of conservation of 

topography in the process of a conversion from a myotopic coordinate system to a 

retinotopic coordinate system. We find that the projection from A24b/M2 to V1 coarsely 

maintains topography (Figure 3.2E).  

4. To convey a prediction of visual input, the bandwidth of the projection would need to be 

roughly equivalent to the feedforward visual input from the dorsolateral geniculate nucleus 

(dLGN). The number of neurons in A24b/M2 providing input to V1 was roughly twice as large 

as that in dLGN (Figure 3.1C). In addition we found that the projection from A24b/M2 to V1 

is dense in that it targets more than 75% of all neurons in layer 1, 2/3 and 6 (Figure 3.2F,G).  

5. Motor-related predictions of visual input should occur mainly during movements that elicit 

visual feedback, and should not be activated by visuomotor mismatch. We found that 

A24b/M2 axons in V1 are strongly activated during locomotion and that activity precedes 

the onset of locomotion but remain silent during mismatch (Figure 3.3B).  

6. The amplitude of the predictive signal should correlate with the magnitude of the predicted 

change in visual flow given the current visual stimulus. We found that running onset activity 

in A24b/M2 axons was significantly reduced if the running onset occurred either during 

darkness or during open-loop conditions with visual flow preceding running onset (Figure 

3.3C). In both cases, the predicted change in visual flow resulting from a running onset is 
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lower, either due to a lack of visual information, or due to ongoing visual flow prior to the 

running onset. 

7. An inhibition of an excitatory predictive signal should result in a reduction of both motor-

related activity and mismatch signals in V1 neurons that respond strongly to running or 

mismatch. We found that inhibition of A24b/M2 reduces both motor-related and mismatch 

signals in running and mismatch responsive V1 neurons (Figure 3.3H,I). 

8. If predictions are transmitted in visual coordinates, they should be stronger in a given 

retinotopic location in V1 for behaviors that maximize visual flow in the corresponding part 

of the visual field. We found that activity in A24b/M2 axons in monocular V1 correlated 

better with ipsiversive turns, which maximize visual flow in the contralateral visual field 

(Figure 3.4B). 

9. A key premise of predictive coding theories is that predictions are continuously updated 

based on prediction errors. Thus, if there are changes in the way visual feedback is coupled 

to motor output, predictions of visual feedback should adapt to reflect the new form of 

visuomotor coupling. We found that in mice trained in left-right inverted visual 

environment, activity of A24b/M2 axons in right V1 correlated better with left turns, 

consistent with the fact that in this left-right inverted virtual environment, left turns 

maximize visual flow in the left visual field. (Figure 3.4C). This change was larger in mice that 

had a higher performance in left-right inverted navigation (Figure 3.4D), and was smaller for 

both correlation with running and visual flow separately (Figure 3.4E, and Figure S3.4B). 

10. Artificial stimulation of a projection that conveys a prediction of visual flow in a particular 

retinotopic location in V1 should result in illusory visual flow in the corresponding part of the 

visual field. We found that stimulating A24b/M2 axons in either right or left monocular V1 

resulted in a corrective behavior of the mouse consistent with an adaptation to an illusory 

visual flow (Figure 3.5C). 

While many of the individual findings have alternate interpretations, the interpretation of the signals 

as a prediction of visual flow provides a unified explanation of all our findings. Other explanations 

likely raise more questions than they answer. For example, the finding that stimulation of A24b/M2 

axons results in a turning behavior, could be explained by assuming that activity in A24b/M2 directly 

drives movement. However, this would not explain why neurons in A24b/M2 that directly drive 

movement would send collaterals to V1. Another concern with the interpretation of the signals as 

predictions of visual feedback may stem from the fact that activity in A24b/M2 axons in V1 is not 

absent in darkness. Here one should consider that V1 layer 2/3 neurons also exhibit motor-related 

activity in complete darkness (Keller et al., 2012; Saleem et al., 2013) that is persistent even under 
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complete retinal lesions (Keck et al., 2013). This motor-related activity cannot, strictly speaking, be 

explained in either the representation framework or the predictive processing framework. In 

complete absence of visual input, there is no visually driven activity and movement does not result 

in a predictable visual flow. However, in low light conditions, visual processing may systematically 

rely on predictions with decreasing strength of visual signals and complete darkness may be a 

singularity for which the system has not evolved to produce optimal predictions.  

Figure 3.5: Artificial stimulation of A24b/M2 axons in monocular V1 causes turning behavior. 

(A) Schematic of the virtual reality setup used for stimulation experiments. (B) Schematic top-down view of a mouse brain 
and the virtual reality screen illustrating the retinotopic mapping of the virtual reality onto V1, as well as the topographic 
mapping of axons from A24b/M2 to V1. Blue circles indicate areas stimulated with laser. Arrows indicate the direction of 
visual flow generated during forward locomotion. (C) Average turning velocity (7 mice) induced by stimulation of A24b/M2 
axons in left (red) or right (blue) V1. Stimulation of the A24b/M2 axons in right (left) monocular V1 in mice navigating 
towards a target resulted in turning to the left (right). Shading indicates SEM. Blue bar indicates stimulation period. 

The projection from A24b/M2 to V1 fulfills all the criteria to be a top-down signal that conveys a 

motor-related prediction of visual flow in visual coordinates. Nevertheless, it is likely that the same 

projection also has other functions. For example, it has been shown to be involved in surround 

suppression of visual responses (Zhang et al., 2014), and we have recently shown that it also conveys 

a prediction of visual input based on spatial location of the mouse (Fiser et al., 2016). Moreover, 

given that there are also delayed visual responses in A24b/M2 axons in V1 (Figure 3B), our data are 

consistent with a model in which A24b/M2 conveys a general prediction of visual input given recent 

experience. It is also likely that A24b/M2 is not the only source of predictive input to V1. Similar 

predictions could be conveyed by all top-down inputs to V1. Inputs from secondary visual areas, for 

example, can be described in a predictive coding framework with respect to higher level visual 

features (Rao and Ballard, 1999). We speculate that top-down input could in general be interpreted 

as a prediction of feedforward input. In this way, input to V1 from auditory cortex, for example, 

would provide a prediction of visual input given a learned association between a sound and a visual 

stimulus, while input from retrosplenial cortex, known to be activated by vestibular signals (Rancz et 

al., 2015), might provide a prediction of visual input based on a head or body rotation. Consistent 
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with this we find that A24b/M2 inactivation and lesion only result in a partial reduction of motor-

related and mismatch signals in V1. Note that in the framework of predictive coding, also classically 

visual phenomena like attention and adaptation would find a mechanistic interpretation (Feldman 

and Friston, 2010; Keller et al., 2017). 

It is unclear how these findings of a projection from A24b/M2 to V1 extend to primate anatomy. 

A24b is likely homologous to primate A24b (Vogt and Paxinos, 2014; Vogt et al., 1987), but a 

connection from A24b to V1 similar to the one described in rodents (Miller and Vogt, 1984; Vogt and 

Miller, 1983) has not been described in primates (Vogt et al., 1979). However, using classical neural 

tracing methods, the projection from ACC to V1 in rats was estimated to be much weaker (Miller and 

Vogt, 1984; Vogt and Miller, 1983) than what we have found using rabies tracing in the mouse. This 

means that either classical tracing underestimates long-range cortical projections, or that 

communication between ACC and visual cortex occurs primarily indirectly in rats and primates. In 

the human cortex, there is some evidence of functional connectivity between ACC and primary and 

secondary visual cortices (Zhou et al., 2016).  

Predictive coding is a theoretical framework that describes the function of sensory processing in 

general, and visual cortex in particular. Evidence for predictive coding has mainly come from 

theoretical considerations (Rao and Ballard, 1999; Spratling, 2010) and the discovery of mismatch 

signals in primary sensory areas of cortex and avian pallium (Eliades and Wang, 2008; Fiser et al., 

2016; Keller and Hahnloser, 2008; Keller et al., 2012). One of the key pieces of evidence lacking for a 

description of cortical function in a framework of predictive coding is predictive top-down input. We 

have demonstrated here that the input from A24b/M2 to V1 fulfills all the criteria necessary to be 

interpreted as a prediction of visual flow given a motor output. Our data are consistent with a theory 

of predictive coding where the function of cortex is to generate and maintain an internal model of 

the world (Craik, 1943) by continuously updating and comparing this model to actual sensory input. 
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Supplementary Information 

 

Figure S3.1. Supplementary anatomy and electrophysiology of the A24b/M2 to V1 projection.  

(A) Coronal sections through A24b/M2 in two mice (C57BL/6J). Cells labeled by rabies tracing from V1 in A24b/M2 (as in 
Figure 3.1D) are shown in green. Area borders and cortical layers are indicated by dashed red lines. (B) Most 
presynaptically labeled cells were located in layer 5 of A24b/M2. Distribution of rabies positive cells in A24b/M2 sorted by 
layer (5 mice; error bars indicate SEM). (C) Injections of an AAV2/1-Ef1a-eGFP into lateral (0.7 mm lateral from midline) 
A24b/M2 and an AAV-Ef1a-tdTomato into medial (0.1 mm lateral from midline) A24b/M2. (D) Sagittal section (2.4mm 
lateral from midline) showing axonal projections in V1 of the two injections shown in (C). (E) Schematic of the mapping of 
the A24b/M2 projection to V1. Medial (lateral) A24b/M2 projects to anterior (posterior) V1, and anterior (posterior) 
A24b/M2 projects to lateral (medial) V1. Note, the exact path of the projection is illustrative only. Axons from A24b/M2 to 
V1 descend into the white matter below A24b/M2, traverse parallel to the midline in the posterior direction and then 
traverse lateral towards V1 where they ascend again into the gray matter. (F) Amplitudes of EPSCs induced by stimulation 
of A24b/M2 axons in neurons with a significant stimulation response (Figure 3.2G), by layer and stimulation site. Crosses 
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show data of single neurons; circles indicate mean. Note that analysis in this and the following panels only included 
neurons that exhibited significant stimulation responses. L1: p = 0.012; L2/3: p = 0.209; L6: p = 0.130, Mann-Whitney U 
test. (G) EPSC rise times were measured as the time from 20% to 80% of peak response. Crosses and circles as in (F). L1: p = 
0.072; L2/3: p = 0.400; L6: p = 0.192, Mann-Whitney U test. (H) Latency to 20% rise from start of stimulation. Crosses and 
circles as in (F). L1: p = 6.41*10-5; L 2/3: p = 2.6*10-5; L6: p = 0.025, Mann-Whitney U test. 
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Figure S3.2. Suppressive effect of visual flow and running speed variability compensation.  

(A) Distributions of the onset of activity relative to running onset in A24b/M2 axons in V1 (left) and layer 2/3 neurons in V1 
(right). Red line is a sum-of-two-Gaussians fit to the distribution. Red dot and horizontal line indicate the mean peak of the 
fit and SEM (A24b/M2 axons: 0.28 s ± 0.13 s, V1 neurons: 0.43 s ± 0.06 s). (B) The average response in A24b/M2 axons to 
running onset in closed-loop conditions increases with increasing running speed. Gray line is a linear fit to the data, not 
including the zero bin. Axis on top of the panel indicates the visual flow speed (as temporal frequency of the grating) 
corresponding to the running speed. Error bars indicate SEM. (C) Scatter plot of the average running onset response in 
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darkness against the average visual flow onset response in open-loop for all A24b/M2 axons. We found no evidence of a 
correlation between the running onset response and the visual onset response of A24b/M2 axons in V1 (Pearson 
correlation, R = -0.017 ± 0.023, mean ± SEM, 10 mice). (D) Same as Figure 3.3C. Running onset responses are larger in 
closed-loop and open-loop conditions without visual flow than dark or open-loop with visual flow conditions also without 
running speed running speed correction in a window from 0.5 s to 2 s post running onset for the data shown in Figure 3.3C. 
Shading indicates SEM. (E) Reduction of running onset response (measured in the window from 2 s to 4 s after running 
onset, gray shading) as a function of visual flow at a given time (see STAR Methods). The strongest inhibition of running 
onset activity results from visual flow immediately preceding running onset (approx. -3 s to 0 s). Shading indicates the 95% 
confidence interval. (F) Average activity in A24b/M2 axons in V1 after an onset of darkness (at 0 s). Note, activity decreases 
and rebounds after lights are turned on again (at 2 s). Gray shading indicates period of darkness. (G) As in (F), but for 
running speed. Note, there is a decrease in running speed concurrent with the drop in activity, however, this likely does not 
fully account for the darkness induced reduction in activity as the rebound of activity in A24b/M2 axons after lights on is 
not accompanied by a concurrent increase in running speed. (H) Average running speed as a function of the number of 
days relative to the muscimol inactivation of A24b/M2. Muscimol inactivation of A24b/M2 results in a reduction in average 
running speed on the day of the injection. (I) Same as Figure 3.3H. Average population responses to running onsets before, 
during and after muscimol injection in A24b/M2 for data without running speed matching. The decrease and recovery of 
activity following muscimol injections matches the results for running speed matched data (Figure 3.3H). (J) Same as Figure 
3.3I. Average population responses to feedback mismatch before, during and after muscimol injection in A24b/M2 for data 
without running speed matching. The decrease and recovery of activity following muscimol injections matches the results 
for running speed matched data (Figure 3.3I). Gray shading indicates the duration of the feedback mismatch. (K) Ibotenic 
acid lesion of A24b/M2 reduces average population response of running onset responsive neurons (50 % most running 
onset responsive neurons selected on preceding time points; 921 of 1842 neurons; see STAR Methods) in V1. Shown are 
running onset responses before (baseline; solid line), and after (lesion; dotted) inactivation of A24b/M2 (p = 5*10-10; 
Student’s t test). (L) Ibotenic acid lesion of A24b/M2 reduces average population response of mismatch responsive neurons 
(50 % most mismatch responsive neurons selected on preceding time points; 921 of 1842 neurons; see STAR Methods) in 
V1. Shown are mismatch responses before (baseline; solid line), and after (lesion; dotted) inactivation of A24b/M2 (p = 
2*10-4, Student’s t test). Gray shading indicates the duration of the feedback mismatch. 
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Figure S3.3. In vivo channelrhodopsin-2-assisted circuit mapping (ivCRACM). 

(A) Left: Example two color two-photon image showing A24b/M2 axons labeled with ChrimsonR-tdTomato (red) and layer 
2/3 neurons labeled with GCaMP6f (green) at the boundary of layer 1 and layer 2/3. Right: Pixel-wise correlation of 
GCaMP6f activity with stimulation of A24b/M2 axons. The two neurons marked on the left exhibited a strong positive 
correlation with the stimulation of A24b/M2 axons. (B) Example responses to the stimulation of A24b/M2 axons of the two 
neurons shown in (A). Orange bar indicates the duration of the stimulation. (C) Average activity of neurons that correlated 
with axonal stimulation (82 neurons; see STAR Methods) is lower than for neurons that did not correlate with axonal 
stimulation (566 neurons; p = 0.0016, Student’s t test). Error bars indicate SEM. (D) Average population response of V1 
neurons to stimulation of A24b/M2 axons (purple line; 648 neurons). In animals that did not express ChrimsonR in 
A24b/M2 axons, there was no stimulation response (black line; 1493 neurons). The stimulation induced decrease in activity 
is likely a visual response to the stimulation light, as it was also present when using a stimulation LED placed outside of the 
craniotomy and light path of the microscope (LED outside; dotted black line. Shading indicates SEM. 
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Figure S3.4. Learning curves for normal and left-right inverted trained mice and running speed decrease after stimulation 
of A24b/M2 axons in V1. 

(A) Mice trained to navigate to the end of a virtual tunnel in a left-right inverted task (red line; 9 mice) matched the 
performance but learned slower than mice trained in a normal virtual environment (blue line; 9 mice). Performance is 
measured as the fraction of distance travelled towards the target normalized by the total distance travelled (A random 
walk, this results in a performance of 0, while movement in a straight line towards the target results in a performance of 1) 
*p < 0.05, one-sample Student’s t test. Error bars indicate SEM. (B) Visual flow generated in the preceding closed-loop 
session was replayed to the mouse on the first and last day of training. For both groups of mice (normal trained and left-
right inverted trained), activity in A24b/M2 axons in right V1 correlated best with the playback of the visual flow of right 
turns before training. After training the difference in preference was unchanged for normally trained mice but was no 
longer present for left-right inverted trained mice (normal trained mice, first day: p = 5*10-8, 24 sites in 5 mice, last day: p = 
7*10-6, 16 sites in 3 mice; left-right inverted animals, first day: p = 2*10-8, 21 sites in 6 mice; last day: p = 0.70, 15 sites in 4 
mice; Mann-Whitney U test). (C) Running speed is reduced upon stimulation of channelrhodopsin-expressing A24b/M2 
axons in both right and left monocular V1. Blue bar indicates the duration of the stimulation. Shading indicates SEM. (D) 
Reduction of running speed is also apparent when stimulating A24b/M2 axons in both right and left monocular V1 or sham 
stimulation (cranial windows are covered with black tape). Thus, a part of this reduction in running speed is likely due to a 
combination of a startle response to the noise of the galvanometer changing position and a subtle change in lighting. The 
laser is always on and moved between the cranial windows and a blank position on the head bar located between the left 
and right cranial window. Error bars indicate SEM.  
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Methods 

Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Georg Keller (georg.keller@fmi.ch). 

Experimental Model and Subject Details 

Animals and surgery. Rabies tracing experiments (Figure 3.1) were performed on males and females 

of nine different mouse lines: C57BL/6J mice (n = 5), PV-Cre (Pvalbtm1(cre)Arbr ; n = 3) mice, VIP-Cre 

(Viptm1(cre)Zjh, n = 3), SST-Cre (CRtm1(cre)Zjh ; n = 4), CR-Cre (n = 3), Wfs1-Cre mice (Wfs1-Tg2-CreERT2; n 

= 3), Scnn1a-Cre (n = 4), 3 Rbp4-Cre (Rbp4KL100Gsat/Mmucd; n = 3), Ntsr1-Cre (Ntsr1GN220Gsat/Mmucd; n = 4). 

All mice used were between 71 and 370 days old. For all other experiments a total of 88 female 

C57BL/6J mice were used, 8-10 weeks old at the start of the experiment. All experiments were 

performed on healthy mice which were not used for prior procedures. Mice were group-housed in a 

vivarium (light/dark cycle: 12/12 hours). Female adult mice were mainly used to reduce aggression 

and dominance during group housing. All animal procedures were approved by and carried out in 

accordance with guidelines of the Veterinary Department of the Canton Basel-Stadt, Switzerland. 

Method Details 

Surgery. For all surgical procedures mice were anesthetized using a mix of fentanyl (0.05 mg/kg), 

medetomidine (0.5 mg/kg) and midazolam (5 mg/kg). Cranial windows were implanted as previously 

described (Keller et al., 2012; Leinweber et al., 2014). 

Rabies tracing (Figure 3.1 and Figure S3.1). To initiate monosynaptic rabies tracing, either AAV2/1-

Ef1a-TVA950-T2A-CVS11G or AAV2/1-Ef1a-DIO-TVA950-T2A-CVS11G (titer 2-4*1011 GC/ml) was 

injected into V1 of C57BL/6J mice or of mice of different Cre lines, respectively, through a small 

craniotomy. Following the injection, the craniotomy was sealed with cyanoacrylate and the skin 

sutured. After 2-4 days the seal was removed and an EnvA-coated, glycoprotein-G deleted GCaMP6s 

rabies virus (referred to as EnvA-SADΔG-GCaMP6s, titer 1.5*109 TU/ml, FACS titered (Wertz et al., 

2015; Wickersham et al., 2010)) was injected at the same location. For Wfs1-Cre mice, Cre 

expression was induced by intraperitoneal injection of 100 µl tamoxifen (20mg/ml in saline) twice 

within a 24-48 h interval 4 days after the AAV injection. Mice were sacrificed for histological staining 

5-6 days after injection of the rabies virus. Mice were transcardially perfused for 10 min with 

phosphate buffered saline (PBS), followed by 10 min of perfusion with a solution of 4% 

paraformaldehyde (PFA) in PBS. Brains were then isolated and post-fixed for 24h in 4% PFA in PBS. 

The PFA solution was then exchanged for 30% sucrose in PBS, in which brains were immersed until 

they sank. Afterwards, the brains were transferred to embedding medium (Tissue-Tek), frozen on 

mailto:georg.keller@fmi.ch
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dry ice and stored at -80°C before they were sectioned into 80 µm coronal sections using a cryostat. 

Brain sections were placed in well-plates separately and kept free-floating in PBS. Each section was 

triple immunostained for rabies derived GFP (Abcam 13970), peptide linker 2A expressed by the AAV 

(Millipore #ABS31) and a neuron-specific nuclear protein NeuN (Millipore MAB377). The conjugated 

fluorescent labels of secondary antibodies were Alexa Fluor 488 (Jackson Immuno #703-545-155), 

Alexa Fluor 568 (ThermoFisher #A10042) and Alexa Fluor 647 (ThermoFisher #A31571), respectively. 

Stained sections were subsequently mounted on microscope slides and imaged using the ZEISS Axio 

Scan.Z1 slide scanner with 10x magnification. These images were then used to manually count the 

starter cells and rabies labeled cells throughout the brain. All the brain areas were defined as in 

(Franklin and Paxinos, 2012). 

AAV tracing (Figure 3.2A-E and Figure S3.1C-E). A small craniotomy was made over A24b (centered 

on 0.3 mm lateral and 0.5 anterior of bregma) and AAV2/1-Ef1a-tdTomato-WPRE (titer 2.4 1011 

GC/ml) and AAV2/1-Ef1a-eGFP-WPRE (titer 2.2 x 1011 GC/ml) were injected around bregma 

separated by 0.5 mm either along the anterior-posterior axis or the medio-lateral axis. The 

craniotomy was sealed with cyanoacrylate and the skin sutured. Three weeks later mice were 

sacrificed and perfused. Brain sections (80 µm) were cut on a cryostat and mounted on microscope 

slides and imaged using the ZEISS Axio Scan.Z1 slide scanner with 10x magnification (Figure 3.2B,C), 

or with a confocal microscope (Figure 3.2D). 

CRACM (Figure 3.2F,G and Figure S3.1F-H). Adult (P90 – P150) C57BL/6J mice received AAV2/1-Ef1a-

CatCh-eGFP (titer 2.3*1011 GC/ml) injections into the right A24b. After 3 - 5 weeks, mice were 

anesthetized with isoflurane and sacrificed. The brain was removed and coronal slices from right V1 

prepared in ice-cold slicing solution (in mM: 87 NaCl, 2.5 KCl, 7 MgCl2, 1.25 NaH2PO4, 25 NaHCO3, 

25 glucose, 75 sucrose, bubbled with 95% O2/5% CO2). 300 µm thick slices were cut using a 

Campden Instruments 700 SMZ vibrating microtome. Slices were stored in ACSF (in mM: 125 NaCl, 

2.5 KCl, 2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, and 25 glucose, pH 7.3, equilibrated with 

5%CO2/ 95%O2) for 30 minutes at 35°C followed by up to 6 hours at room temperature until use. To 

quantify synaptic input from A24b to V1, whole-cell patch-clamp recordings were made from 

neurons in the visual cortex at room temperature (22 - 24°C). The intracellular solution contained (in 

mM): 120 potassium gluconate, 5 mM NaCl, 2 MgCl2, 0.1 CaCl2, 10 HEPES, 1.1 EGTA, 4 magnesium 

ATP, 0.4 disodium GTP, 15 sodium phosphocreatine and 0.1% Biocytin (pH 7.3 with KOH; 290 

mOsm). The borders of the cortical layers were identified by cortical depth, neuron morphology, and 

the current responses of excitatory neurons. Layer 1 was identified by its low cell density. In early 

experiments identification of layer 4 and layer 5 was facilitated with the use of Rbp4-Cre mice 

injected with an AAV2/1-Ef1a-DIO-eGFP in V1.  
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A24b axons were activated selectively in layer 1 or layer 6 under a 60x 0.9 NA Olympus water 

immersion objective with 2 ms pulses from a blue LED at a power of 0.42 mW. Stimulation intensity 

was far below the threshold to trigger action potentials in postsynaptic neurons; the threshold for 

eliciting postsynaptic spikes was consistently above 4.0 mW. Postsynaptic responses were recorded 

at a holding potential of -70 mV. To determine the source of inputs, the area of stimulation centered 

on the region above or below the neuron in layer 1 and layer 6. No responses were observed when 

the stimulation was centered directly adjacent to layer 1 outside of cortex. In untransfected control 

mice LED stimulation did not evoke responses at stimulation intensities of 4.0 mW. All recordings 

were acquired and analyzed with IgorPro (WaveMetrics) using NeuroMatic. 

Axonal imaging (Figure 3.3A-C, Figure 3.4 and Figure S3.2A-G). A craniotomy was made over V1 and 

sealed with a 4 mm cover slip as previously described (Leinweber et al., 2014). Additionally, a small 

craniotomy was made over A24b (ipsilaterally, 0.3 mm lateral of bregma) and AAV2/1-Ef1a-

GCaMP6f-WPRE (titer 1.0 x 1011- 1.8 x 1012 GC/ml) was injected before the region was sealed with 

cyanoacrylate. A titanium head bar was fixed to the skull with dental cement. Prior to axon imaging, 

V1 was mapped with intrinsic signal imaging, as previously described (Wertz et al., 2015). Four 

weeks post injection, calcium signals in A24b axons were imaged using a modified Thorlabs B-Scope, 

as previously described (Leinweber et al., 2014). Illumination source was a pulsed infrared laser 

(Coherent Vision S) tuned to a wavelength of 990 nm. We used an 8 kHz resonance scanner 

(Cambridge Technology) for line scanning, which enabled frame rates of 40 Hz at 400 x 750 pixel 

resolution. In addition, we used a piezo actuator (P-726 PIFOC, Physik Instrumente) to move the 

objective (Nikon 16x, 0.8 NA) in steps of 15 µm between frames to acquire images at 4 different 

depths, thus reducing the effective frame rate to 10 Hz. 

The behavioral virtual reality setup was as previously described (Leinweber et al., 2014). Briefly, 

head-fixed mice were free to run on an air-supported polystyrene ball. The rotation of the ball was 

restricted to the forward and backward directions using a pin, and was coupled to linear 

displacement in the virtual environment projected onto a toroidal screen surrounding the mouse. 

The screen covered a visual field of approximately 240 degrees horizontally and 100 degrees 

vertically. The virtual environment presented on the screen was a virtual tunnel with walls consisting 

of continuous vertical sinusoidal gratings. Mice were first exposed to a closed-loop condition, during 

which motion of the grating was coupled to the mouse’s locomotion on the ball, and then exposed 

to an open-loop condition during which the visual flow of a previous closed-loop session was 

replayed to the mouse. The open-loop condition was followed by a dark session where all light 

sources including the virtual reality were turned off. To measure responses of A24b/M2 axons to the 

onset of darkness, all light sources were turned off for period of 2 s in a closed-loop session, in a 
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subset of experiments. Additionally, visual feedback was perturbed during closed-loop conditions by 

stopping the gratings for a brief period (1 s) at random times, as described previously (Keller et al., 

2012).  

In vivo channelrhodopsin-2-assisted circuit mapping (ivCRACM) (Figure 3.3D-F and Figure S3.3). 

Viral injections and surgery were performed as described for the axon imaging with the exception 

that an AAV2/1-hSyn-ChrimsonR-tdTomato-WPRE (titer 3.0 x 1012 GC/ml) was injected into A24b and 

AAV2/1-Ef1a-GCaMP6f-WPRE (titer 1.0 x 1011 GC/ml) into V1. ChrimsonR stimulation and functional 

imaging of GCaMP6f expressing neurons was done by using a modified Thorlabs B-Scope. 

Illumination source for two-photon imaging was a pulsed infrared laser (Spectra physics) tuned to a 

wavelength of 990 nm. We used a 12 kHz resonance scanner (Cambridge Technology) for line 

scanning, which enabled frame rates of 60 Hz at 400 x 750 pixel resolution. In addition, we used a 

piezo actuator (Physik Instrumente) to move the objective (Nikon 16x, 0.8 NA) in steps of 15 µm 

between frames to acquire images at 4 different depths, thus reducing the effective frame rate to 15 

Hz. Illumination source for ChrimsonR stimulation was a fast LED (UHP-T-595, Prizmatix) with a 

wavelength of 595 nm, which allowed for fast TTL triggered operation. Stimulation lasted for 1 s (20 

Hz; 50% duty cycle) with an average power of 15 mW at random times during a closed-loop 

condition. For spectral filtering we used a dichroic mirror (ZT775sp-2p, Chroma) to combine the two-

photon laser and stimulation light. A second long-pass dichroic mirror (F38-555SG, Semrock) was 

used to split the GFP emission from both illumination light sources. Light leak from the 595 nm 

stimulation LED was reduced by synchronizing the LED light output to the turnaround times of the 

resonant scanner (during which imaging data were not acquired). Lastly, amplified PMT signals were 

digitally bandpass filtered at 80 MHz to reduce the effect of ringing. Two-photon imaging of activity 

was otherwise performed as previously described (Leinweber et al., 2014).  

Muscimol or ibotenic acid silencing of A24b (Figure 3.3G-I and Figure S3.2H-L). Viral injections and 

surgery were performed as described above for axon imaging with the exception that AAV2/1-Ef1a-

GCaMP6f-WPRE (titer 2.9 x 1012 GC/ml) was injected into V1. At the time of cranial window implant a 

small craniotomy over A24b was made and sealed with cyanoacrylate to allow for injections of 

muscimol or ibotenic acid preceding imaging without further need for surgery. Muscimol (at a 

concentration of 5 g/l) or ibotenic acid (13.5 g/l) was injected 15 min, or 24h for ibotenic acid, prior 

to imaging at a volume of 50-100 nl at a depth of 500 µm. 

Virtual reality and navigation task (Figure 3.4, Figure 3.5 and Figure S3.4). Viral injections and 

surgery were performed as described above for axonal imaging. For training, mice were initially 

placed into a virtual environment with an infinite tunnel (identical to the one used for axonal 
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imaging) for two training session on two consecutive days to allow the mice to get accustomed to 

the setup and virtual environment. Rotation of the spherical treadmill was restricted to forward and 

backward rotation using a pin. During subsequent training, rotation of the ball was no longer 

restricted and mice were free to rotate in the virtual environment in addition to moving forward and 

backward. The virtual reality consisted of a tunnel with a reward zone located at one end. The walls 

of the tunnel were textured with white circles on a black background in the first half of the tunnel 

and sinusoidal vertical stripes in the second half. Reaching the reward zone triggered a 5 s timeout 

during which the mouse could lick from a water spout for reward. After the timeout, the virtual 

environment was reset to the beginning of the tunnel to start the next trial. As the mouse’s 

performance in the task improved, the length of the tunnel was gradually increased to keep the 

rewards per hour at an approximately constant level of 100, throughout training. Mice were water 

restricted for the duration of the experimental series and were supplemented with water during 

early training sessions if they received less than 1 ml of total water reward. The weight of all mice 

was monitored daily to ensure that body weight would not drop below 80% of starting weight. A 

subset of mice were also exposed to an open-loop session on the first and last day of training. In the 

independent visual flow condition we replayed the visual flow generated by the same mouse in a 

preceding closed-loop session. In the no-visual flow condition, the reward location was still present 

in the virtual environment, but the walls of the environment were all uniformly gray. 

For A24b axon stimulation experiments (Figure 3.5), viral injections and surgeries were performed as 

described above for axonal imaging with the exception that an AAV2/1-Ef1a-CatCh-eGFP (titer 

2.3*1011 GC/ml) was injected into A24b of both hemispheres. Cranial windows were implanted over 

V1 of each hemisphere. Mice were trained and performed the same 2D navigation task as in Figure 

3.4. A blue laser (473 nm) was directed either at monocular V1 or a blanking position using a pair of 

galvanometric mirrors. The stimulation (3 s, 25 Hz, 50% duty cycle) occurred once per traversal with 

a probability of 0.7 and at a random positions in the tunnel (located in a region between 20% and 

70% of the length of the tunnel). A CCD camera was used to calibrate and select stimulation 

locations using custom-written software. Laser power was adjusted to 16 mW/mm2 at the surface of 

the brain.  

Quantification and Statistical Analysis 

Data analysis. All imaging data were corrected for lateral brain motion using custom-written 

software. Regions of interest were automatically selected using a combination of independent 

component analysis and image segmentation as previously described (Mukamel et al., 2009). 

Fluorescence traces were calculated as the mean pixel value in each region of interest per frame and 
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were median-normalized to calculate ΔF/F. ΔF/F traces were filtered as previously described 

(Dombeck et al., 2007). The details of the statistical analysis are noted in the figure legends. We did 

not test the distribution of the data for normality. 

Figure 3.2. The axon density profile was determined by calculating the mean fluorescence profile 

along the dorsal-ventral axis in V1 (lambda +0.4 mm). Individual traces were median normalized. 

Figure 3.3. For stimulus-triggered fluorescence changes (onset responses, Figure 3.3, Figure S3.2-

3.3), fluorescence traces were mean-subtracted in a window preceding the stimulus onset (running 

onset: -1900 ms to -1500 ms; mismatch, visual flow or random: -500 ms to -100 ms). To correct for 

differences in running speed between the different conditions, individual trials were subsampled to 

match the distribution of running speeds across the conditions. Subsampling was performed by 

removing trials with the highest and lowest running speed iteratively until the distributions had 

matching means. Onset response latencies were determined by finding the onset of a persistent, 

significant deviation from baseline (p < 0.01, paired Student’s t test, for at least 1 s). Significance 

testing (Student’s t test) was done in a window of 1 s centered on the peak of the distributions. To 

compare the distribution of running onset responses in A24/M2 axons and V1 neurons, we 

quantified the time to response as the time difference between the onset of the activity (more than 

2 standard deviations above baseline for at least 1 s following this time) and the running onset. Each 

distribution of time differences was fitted with a two-term Gaussian model (Figure S3.2A). To 

quantify how visual flow influences running-related activity, we calculated a linear regression of the 

mean activity (in a window from 2 s to 4 s after running onset, averaged over all axons per imaging 

site) versus the average visual flow speed in a 1 s window that was varied between -10 s and 10 s. 

For each time step, we then calculated the average slope of the regression curves (averaged across 

imaging site) (Figure S3.2E). For the ivCRACM experiments, cells were considered to be driven by the 

stimulus light if the correlation between activity and stimulus was higher than 0.05. For the 

muscimol silencing experiments, the 50% of neurons most responsive to either running onset or 

mismatch were selected on two separate imaging time points preceding the baseline time point. 

Onset responses were then computed for these neurons for pre-muscimol (baseline, time point -1), 

muscimol inactivation of A24b (time point 0) and recovery (time point+1). 

Figure 4. The activity A(t) of each axon was correlated with different linear combinations of forward 

velocity v(t) and rotation r(t): α*v(t) + β* r(t), where α = sin(θ), β = cos(θ). The interaction angle θ 

was varied from 0° to 180° in steps of 6°. For each axon an optimum interaction angle was 

determined, and axons were considered task-correlated if the correlation coefficient at optimum θ 

was higher than 0.005. Axons were classified as left (right) turning for an interaction angle between 



76 
 

6° and 66° (114° and 174°). Running forward (θ = 90°) and rotating without forward motion (θ = 0°, 

180°) were excluded as they result in visual flow equal in magnitude in the left and right visual field. 

Learning was quantified as change in efficiency of moving towards the target. This was measured as 

the distance travelled towards the target normalized by the total distance travelled. Using this 

measure a random walk results in a performance of 0, movement in a straight line towards the 

target results in a score of 1. 

Figure 3.5. To control for any unspecific effect of the stimulation on running speed, the stimulation 

effect of either left or right stimulation was normalized by subtracting the effect of bilateral 

stimulation.  
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EPILOGUE 
We constantly make conscious predictions on multiple time scales, from predicting if it is safe to 

cross the street in front of an approaching car to predicting the questions in an upcoming exam. To 

achieve this, we employ internal models that capture regularities and relations of the external world 

and use them to make predictions about the future. Besides these more conscious forms of 

predictions, it is widely accepted that our brain also employs internal models for motor control 

(Körding and Wolpert, 2004; Wolpert et al., 1995) that are implemented in the cerebellum (e.g. (Ito, 

2008; Wolpert et al., 1998) and motor cortex (e.g. (Stavisky et al., 2017)). To what extent internal 

models shape sensory processing is less clear. In the framework of predictive processing, internal 

models are distributed across all hierarchical levels of cortical processing and shape sensory 

processing already at the earliest cortical level in the respective modality (i.e. the primary sensory 

cortical areas) (Clark, 2013; Friston, 2005). My thesis work supports this view by showing that 

predictive processing can be used as a framework to explain visuomotor integration in the primary 

visual cortex (V1) of the mouse.  

 

Visuomotor experience shapes predictive processing in visual cortex  

In Chapter 1, I show that the coupling of sensory and motor experience during development shapes 

information processing in mouse V1. In particular, the neuronal response to a mismatch between 

locomotion and the resulting visual feedback depends on the mouse’s experience of visual feedback 

coupled to locomotion during development (Figure 2.1). I show that neurons strongly responding to 

mismatch between locomotion and visual feedback (mismatch neurons) balance excitatory motor-

related input against visual inhibition (Figure 2.2). By recording from genetically identified neuronal 

subpopulations, I uncovered that the inhibitory visual input onto mismatch neurons is mediated by 

somatostatin-positive interneurons (Figure 2.4). I then confirmed the central role of somatostatin-

positive interneurons in this microcircuit by pharmacogenetic and optogenetic circuit manipulations 

(Figure 2.5, Figure 2.6). Finally, I demonstrate that normal visuomotor experience rapidly restores 

normal visual processing (Figure 2.7). These findings are consistent with the idea of predictive 

processing, where feedforward visual input is compared to a prediction that is based on an internal 

model, already in V1. Importantly, the internal model that generates the predictions of visual flow is 

based on a learned relationship between locomotion and visual flow (Figure 4.1). These results show 

that learned relationships between sensory input and motor output could shape our perception 

already at the earliest level. 
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Interestingly, our data also contains hints about predictions of visual input that are based on the 

structure of the visual input. We found that in mice that did not experience the coupling of visual 

feedback to locomotion, mismatch and playback-halt responses are very similar (Figure 2.1, Figure 

S2.1). This puzzling finding gives way for some intriguing speculations. During training, NT mice 

received visual flow input that was generated by other mice, and therefore not random. This means 

that the visual flow was inherently structured and predictable. The sudden halts that are 

characteristic for both mismatch and playback halt violate the statistics of the previously 

experienced visual flow. Mismatch and playback halt responses could therefore signal an error 

between the visual flow input and a prediction of visual flow that is based on the experience of 

visual flow input changing relatively smoothly. Such a prediction of visual input based on the 

statistics of the visual scene might originate in secondary visual areas. In coupled trained mice, we 

found only very few neurons that respond to playback halt (Figure S2.1). In these mice running 

speed was a perfect predictor of visual flow, predictions based on the statistics of visual flow might 

therefore be less pronounced. 

The circuit model for the computation of mismatch proposes a motor-related input to V1 (Chapter 1, 

Figure 4.1). Based on the predictive coding framework, we assume that this motor-related input is a 

prediction of visual flow based on running speed that is relayed to V1 via feedback connections. 

Another possibility is that V1 receives excitatory input that signals running speed (and not a 

prediction of visual flow), and mismatch neurons compare running speed to visual speed. The 

experiments in Chapter 1 were not designed to disambiguate the two. Whether a motor-related 

input to V1 carries a prediction of visual flow and where it originates in the cortex was addressed in 

Chapter 2. 
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Figure 4.1 A sensorimotor circuit for visuomotor integration. Excitatory neurons in visual cortex integrate an excitatory 
motor related prediction of visual flow with actual visual flow input that is relayed by SST interneurons to compute 
mismatch between the two (Chapter 1). The motor related prediction of visual flow originates from the higher motor areas 
A24b and M2 (Chapter 2), possibly from layer 5 neurons. Mismatch responses depend on the experience of visual flow 
coupled to locomotion during development (Chapter 1), indicating that the internal model forming the visual-flow 
prediction is shaped by experience during development, but also in adult mice, as learning a task with novel visuomotor 
coupling changes the input from A24b/M2 to V1 (Chapter 2). 

Motor-based prediction of visual flow from A24b to V1 

By exhaustively mapping monosynaptic input to V1 with rabies virus, we find that mouse A24b, a 

higher motor area, sends a dense topographically organized input to V1 (Figure 3.1). By imaging the 

activity of axons from A24b in V1 and manipulating A24b activity, we find that they carry motor 

related signals that drive motor and mismatch signals in V1 (Figure 3.3). Importantly, this motor 

related input from A24b to V1 is shaped by experience, as training to navigate a left-right inverted 

world reverses A24b visuomotor coding (Figure 3.4). This is to me the strongest support for the idea 

that these connections send an actual prediction of visual flow. Thus, V1 receives a dense feedback 

input from a higher motor area that conveys a prediction of visual flow to V1. Such a predictive 

feedback input is an essential element in the description of cortical function in the theoretical 

framework of predictive coding. 
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The insights presented in both chapters complement each other and, together with additional 

recent work in the lab (Fiser et al., 2016; Zmarz and Keller, 2016), helped us to gain a mechanistic 

and comprehensive understanding of visuomotor integration in the visual cortex of the mouse. 

Together, our results suggest that motor-based predictions of visual flow, as well as predictions 

based on spatial location, are generated in A24b and sent to V1. There, excitatory neurons in L2/3 

combine these predictions of visual input with the actual visual input that is relayed by 

somatostatin-positive interneurons (Figure 4.1). Importantly, these mismatch neurons have 

receptive fields resembling classical receptive fields (Zmarz and Keller 2016). The predictive 

processing framework therefore directly extends the more classic way of describing sensory 

processing in terms of receptive fields.  

Outlook 

While the puzzle pieces of a predictive processing framework of visuomotor integration are coming 

together, open questions about the computations and their implementation remain. In ongoing 

projects, I try to address a few of the questions that follow from the work presented in Chapter 1 

and 2.  

The proposed circuit model computes a negative prediction error, i.e. it is active when there is less 

sensory input than predicted. The computation of positive prediction error, that would signal more 

sensory input than expected, could be implemented with a circuit where a neuron combines 

excitatory sensory input with a prediction that is relayed by a local interneuron. To investigate this 

hypothesis, I am exposing mice to a virtual reality environment where we introduce different types 

of perturbations. This will allow me to investigate responses to different types of visuomotor 

perturbations, for example when there is suddenly more visual flow than expected.  

Moreover, in addition to perturbations affecting the whole visual field, I am also using local 

perturbations where only small parts of the visual field are perturbed. In addition to visuomotor 

mismatch (i.e. violation of prediction based on locomotion), these perturbations also induce visual 

mismatch (i.e. violation of prediction based on adjacent regions in the visual world). This will allow 

me to investigate if and how different internal models might interact.  

All of the data presented in this thesis was recorded from superficial layers of the visual cortex. The 

role of deep cortical layers in visuomotor integration of V1 is still unclear. By recording the activity of 

layer 5 neurons, I hope to get a better understanding of their role in visual processing and 

visuomotor integration. Circuit models for predictive processing localize state units based on 

projection patterns partially in superficial, but mainly in lower layers of cortex (Bastos et al., 2012; 

Shipp, 2016). Consistent with this hypothesis, preliminary data from experiments in layer 5 of V1 
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suggests that visuomotor mismatch events evoke only weak responses in neurons of layer 5, in 

contrast to the strong mismatch responses of layer 2/3 neurons. To explore the role of layer 5 

neurons in visuomotor integration, I plan to characterize their activity more thoroughly and to 

perturb their activity by optogenetic activation and inhibition to see how activity manipulation of 

layer 5 neurons affects the activity of SST interneurons and excitatory mismatch neurons in layer 

2/3. 

Final remarks 

The predictive processing framework offers a unifying framework to understand and explore brain 

function in general. It is an intriguing idea that the comparison between sensory input and a 

prediction based on internal models constitutes a generic computation of cortical processing. In the 

past decade, experimental evidence supporting this idea has accumulated. In the predictive 

processing framework, core symptoms of psychiatric diseases like schizophrenia can be understood 

as a disbalance between the weights of the sensory input and the predictions based on internal 

models. The effects of psychotic and antipsychotic drugs could be understood by affecting this 

balance, and delusions and hallucinations could be explained by dysfunctional, overactive 

predictions (Clark, 2013).  Thus, a mechanistic and comprehensive understanding of predictive 

processing in the cortex could potentially open up novel ways for the understanding and treatment 

of psychiatric disorders.  
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