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Abstract

Previous analysis of Epstein-Barr virus (EBV) persistent infection has involved biological and immunological studies to
identify and quantify infected cell populations and the immune response to them. This led to a biological model whereby
EBV infects and activates naive B-cells, which then transit through the germinal center to become resting memory B-cells
where the virus resides quiescently. Occasionally the virus reactivates from these memory cells to produce infectious virions.
Some of this virus infects new naive B-cells, completing a cycle of infection. What has been lacking is an understanding of
the dynamic interactions between these components and how their regulation by the immune response produces the
observed pattern of viral persistence. We have recently provided a mathematical analysis of a pathogen which, like EBV, has
a cycle of infected stages. In this paper we have developed biologically credible values for all of the parameters governing
this model and show that with these values, it successfully recapitulates persistent EBV infection with remarkable accuracy.
This includes correctly predicting the observed patterns of cytotoxic T-cell regulation (which and by how much each
infected population is regulated by the immune response) and the size of the infected germinal center and memory
populations. Furthermore, we find that viral quiescence in the memory compartment dictates the pattern of regulation but
is not required for persistence; it is the cycle of infection that explains persistence and provides the stability that allows EBV
to persist at extremely low levels. This shifts the focus away from a single infected stage, the memory B-cell, to the whole
cycle of infection. We conclude that the mathematical description of the biological model of EBV persistence provides a
sound basis for quantitative analysis of viral persistence and provides testable predictions about the nature of EBV-
associated diseases and how to curb or prevent them.
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Introduction

Epstein-Barr virus (EBV) is a herpesvirus that benignly infects

more than 95% of the world’s adult human population [1], but is

occasionally associated with certain tumors including 3 forms of

lymphoma [2]. One prominent feature of EBV is that it persists as

a lifelong low-level infection in the memory B-cells of healthy

carriers [3,4]. Our laboratory has measured the level of infection

in the peripheral blood memory B-cells of healthy carriers over the

course of decades ([5,6] and unpublished observations) and shown

that it remains stable. If there is a real decline (or expansion), it is

happening too slowly to detect. Persistent infection is also

associated with an active humoral and cellular immune response

by the host that is also stable over time [1,7]. We see this stability

as a balance between infection and the immune response which

returns to equilibrium when perturbed. Two biological models

have been proposed to account for this persistence: the germinal

center (GC) model [4,8] and the direct infection model [9,10].

The GC model proposes that EBV persists by exploiting normal

B-cell biology. This involves new latently infected B cells passing

through a series of differentiation stages, each employing a discrete

viral gene transcription program (Figure 1). Thus, EBV directly

infects naive B-cells, causing their activation into proliferating

latently infected Blasts. At this stage the virus expresses all nine

known latent proteins, a condition referred to as latency 3 or the

growth transcription program. These cells then move into the

germinal center (GC) to participate in the GC reaction. Here they

express a more restricted pattern of latent proteins referred to as

latency 2 or the default program. Eventually these cells leave as

latently infected memory B-cells that either only express the viral

genome tethering protein EBNA1 (known as the EBNA1 only

program or latency 1) or no viral proteins at all. The later state is

referred to as latency 0 or the latency program. The memory

compartment has been considered the site of long-term persistence

because the virus is quiescent [11], and therefore invisible to the

immune response. At any time a small subset of latently infected
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memory B-cells initiates lytic reactivation in association with

terminal differentiation signals [12,13]. Reactivation of the virus is

subdivided into three discrete phases; Immediate early when the

transcription factors initiating viral replication are expressed, Early

when the proteins involved in viral DNA replication are produced,

and Late when viral DNA and structural proteins are assembled

into virions [14]. Ultimately this leads to the release of infectious

virus that can either be shed or infect new naive B-cells, thus

completing the cycle. Each stage of this cycle has been

demonstrated experimentally [13,15,16] and, with the exception

of the memory compartment, is potentially regulated by the

immune response [7]. Thus, the GC model accounts for all the

latent and lytic stages of the virus and thereby provides an

explanation for the origin of EBV-associated lymphomas. For

example, Burkitt’s lymphoma and Hodgkin’s disease are believed

to descend from latently infected GC B-cells which have failed to

successfully differentiate into a resting memory state (for a detailed

discussion of this issue see [2]).

The second model, proposed by Rajewsky and coworkers

[9,10], holds that EBV directly infects memory B-cells. Although

proposed over 10 years ago, no evidence has subsequently been

evinced to explain the mechanism behind this model. Unlike the

GC model it does not account for the four well-defined

transcription programs/states of latent EBV infection, intermedi-

ate states between newly infected and persistently infected memory

B-cells have not been identified in vivo, the model does not

account for the origin of EBV-infected tumors and the basis for

viral reactivation remains unexplained. Furthermore, predictions

of the direct infection model were incorrect when tested

experimentally and instead supported the GC model. For

example, infected GC B-cells express the viral default transcription

program (latency 2) in vivo [16,17] (as predicted by the GC

model), not latency 3 (as predicted by the direct infection model

[18]), and in a transgenic mouse model one of the EBV latent

proteins expressed in the GC (LMP2a) was able to drive B-cells to

form GCs in the absence of antigen [19]. Thus, the direct infection

model remains ill-defined and unverified at the biological level,

and therefore difficult to test mathematically.

Like most biological models the GC model is descriptive and, as

such, is not quantitative. However, unlike the direct infection

model it is sufficiently detailed for mathematical testing and

analysis [20,21,22,23,24,25,26]. Mathematical approaches to

studying host-pathogen interactions have increased steadily in

the last four decades. (For entry into the corresponding body of

literature, we recommend [27,28,29,30,31]). Mathematical anal-

ysis can be rigorous (i.e., comprehensive, thorough and exact) and

a good model should be able to withstand such analysis. Thus, if a

biological model is not mathematically consistent, i.e., not capable

of being described mathematically, it cannot be correct. There-

fore, one test of the validity of a biological model is to see if it is

mathematically sound. If such a mathematical description can be

established, it provides a powerful quantitative tool for analyzing

the infection process. For the first time this would allow us to

quantitatively define the biological constraints on the behavior of

the virus, determine just how stable the persistent infection is, and

Figure 1. EBV biological model. A) Newly infected B-cell Blasts move into the follicle and enter the GC, where they continue to divide as EBV-
infected GC B-cells before exiting into the periphery as latently infected memory B-cells. A small subset of these are induced to undergo lytic
reactivation, progressing through the lytic stages Immediate early, Early and Late before finally bursting and releasing infectious virus that may be
amplified through infection of the epithelium (not detailed in the model) but ultimately culminate in the infection of new naive B-cells which become
Blasts, thus completing the cycle. Theoretically each stage has the capacity to generate a CTL response. The Blast, Immediate early and Early stages
are always regulated, while the GC and Late stages may not always be regulated [7,32,33]. Memory is never regulated under normal biological
conditions [4,8,11]. This model of EBV biology is used to generate the CPM framework presented in this paper. B) Infected populations as displayed as
circles whose area is proportional to their frequency within all tonsils (1:5:1.56102:104:104:0.56104, Late:Early:ImmEarly:Memory:GC:Blast). This graphic
highlights the very large range in the sizes of these populations.
doi:10.1371/journal.ppat.1003685.g001

Author Summary

Epstein-Barr virus (EBV) is a herpesvirus that establishes a
lifelong persistent infection in virtually all human beings.
This infection is a risk factor for the subsequent develop-
ment of certain tumors and possibly also autoimmune
diseases. In order to understand the origin of these
diseases, it is necessary to first understand how EBV
maintains persistent infection. We have used mathematical
analysis to study this question. We find that the charac-
teristic cycle of infected stages that EBV establishes in vivo
allows it to persist stably at extremely low levels. This
represents a consistent mathematical description of EBV
infection and allows us to describe what must change to
convert benign infection into pathogenic infection, as well
as what kind of efficacy drugs and vaccines must have in
order to be useful.

Re-evaluating the Model of EBV Persistence
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where and how aggressively interventions must be applied to

alleviate and/or prevent infection and disease. We have provided

such a detailed mathematical description of the GC model [21].

The current paper depends critically on this work where we

modeled the interactions between a host and a pathogen, such as

EBV, which transits a cycle of antigenically distinct stages. We

refer to this model as the cyclic pathogen model (CPM). The paper

describing CPM is highly technical and may not be accessible to

many working biologists, therefore a review of the relevant

material is presented in Boxes 1, 2 and 3.

The most interesting conclusion of CPM was that while for any

given set of parameter values there are many potential equilibrium

states, only one has non-negative populations (and is therefore

biologically meaningful) and is stable. We propose here that this

unique, biologically meaningful, stable fixed point corresponds to

long-term persistent infection by EBV. If correct, then the essential

features of a cyclic host-pathogen interaction like EBV’s can be

accurately represented mathematically, which in turn shows that

the biological model is mathematically consistent.

In our application of the CPM to the study of EBV, we assume

that persistent infection has reached a stable equilibrium. We also

assume that all the infected stages in the cycle possess some level of

antigenicity. Whether an immune response arises to a particular

infected stage depends in part on the number of cells at that stage. If

it is too high, the immune response will drive the number down to

the point where it is just sufficient to sustain the response.

Conversely, if the number is too low, the cells will fail to establish

or sustain an immune response. In this event there are two potential

outcomes. In one instance, the infected population rises until it

generates and is counterbalanced by an immune response. In this

case the stage is regulated by the immune response. Alternatively, if

the population is limited, for example by its rate of production from

the previous stage(s), it may already be at a steady state level and

therefore will not sustain an immune response. In this case the

population is not regulated by the immune response but by the rate

of follow-on from the previous stage. For any given set of

parameters, we use the term ‘‘pattern of regulation’’ as the final

outcome of which stages are regulated by the immune response

(regulated stages) and which are regulated as follow-on populations

(unregulated stages) for that particular set of parameters.

In this paper we have sought to test the hypothesis that the

unique biologically meaningful stable fixed point predicted by the

CPM corresponds for EBV to long-term persistent infection. To

achieve this, we challenged the model with the full range of

biologically plausible values for the model parameters and asked if

the observed regulation patterns are biologically valid.

Results
The unique stable fixed point of the CPM describes
persistent EBV infection

We wished to test the hypothesis that the unique stable fixed

point predicted by the CPM is a description of EBV infection. To

Box 1. The Model

For each infected stage, we model the following processes:
the rate at which it is lost to become (or produce) the next
stage; the gain in this production (e.g., the loss of one lytic
cell may produce many infected blasts); the net birth or
death rate of the stage; the net antigenicity of the stage, i.e.,
its efficacy in inducing CTL activation and proliferation; and
the killing efficiency of each stages’ cognate CTL population.
In addition, we assume that in the absence of antigen, CTL
populations decline at a rate that is common across all
stages. Each of these processes appears in the equations as a
rate governing change in either the population of infected
cells or the CTLs that recognize them. These parameters and
the equations are given in Box 2.
When a pathogen is introduced into a naı̈ve host, it makes
copies of itself. We use R0 to denote the average number of
fresh copies produced by each introduced copy. Clearly, to
establish infection, a pathogen must have R0.1.
We are interested in the fixed points of the system when the
pathogen is able to establish a stable persistent infection. As
a mathematical system, the CPM has 2n fixed points where n
is the number of infected stages, so the six-stage model of
EBV has 26 = 64 mathematical fixed points. Many of these are
non-biological; that is, they require a negative number of
CTLs. Given the long-term stability of EBV infection, we are
interested in stable equilibriums of the system.
What makes an equilibrium stable or unstable? To say that a
state is in equilibrium means that if a system is not subject to
disturbance, it will stay in that state. To say that an
equilibrium is stable means that if the system is disturbed
from that state, it will return to that state whereas when an
unstable equilibrium is perturbed, it does not return.
The perhaps surprising result of the CPM analysis is that for
any set of parameter values, i.e., controlling rates, the system
has exactly one stable equilibrium. The mathematics of this
equilibrium are described in Box 3. This equilibrium is

determined by four basic observations:

N If a stage comes under immune regulation, its set point at
equilibrium will be exactly the population size necessary to
provoke a sufficient CTL response to control the stage. At
this point CTL proliferation will exactly balance CTL
attrition.

N If a stage is not under immune regulation, its population
size is determined by the rate at which it is produced from
the previous stage and its average lifespan before
differentiating or dying. We call this its follow-on
population.

N If a stage is unregulated and its follow-on population is less
than it would be if it were regulated, it is insufficient to
support regulation by the immune response. Put another
way, the immune response at that stage is starved of
sufficient antigen and a CTL response cannot be sustained.

N If a stage is unregulated and its follow-on population is
greater than it would be if it were regulated, the system is
in an unstable state; it is like an ecosystem that is
susceptible to invasion by a new species. If a response to
this stage is introduced, it will expand and drive this stage
down to its regulated population size, thus shifting the
state of the entire system.

N The system achieves stability only once all CTL responses
that can be activated have been activated.

This characterization of the stable fixed point allows an
efficient computation which, when given a set of values for
the parameters, determines the stable fixed point. This gives
an effective way of testing our model and the values we
have estimated as biologically tenable. For each set of
values, we can compute the stable fixed point and pattern of
regulation.

Re-evaluating the Model of EBV Persistence
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achieve this, we have estimated the range of values for all the

parameters needed to compute this stable fixed point (for details

see Methods and Supplementary Table S1). Given a value for

each parameter, we can calculate the unique biologically

meaningful stable fixed point determined by that particular set

of parameters and ask if it is biologically valid. Specifically, we can

determine the pattern of regulation, i.e., which stages fall under

direct regulation by the immune response and which do not.

For EBV we have a six-stage model of infection (naive Blast, GC,

memory, Immediate early lytic, Early lytic and Late lytic) where

each stage may or may not be regulated by the immune response.

Therefore, there are in theory 26 = 64 possible combinations of

regulated and unregulated stages. In actual EBV infection, the

memory stage does not express CTL targets so presumably is never

regulated [4,8,11]. Analysis of responses to latent and lytic antigens

[7] reveals that CTL recognizing antigens expressed:

1. in the blast stage (latently infected naive B-cells expressing all

latent proteins) are always detected [32].

2. in the GC (LMP1 and LMP2a) are only detected in a subset of

individuals (,60%) [32].

3. in the Immediate early and Early stages of virus production are

always detected [33].

4. in the Late stages of virus production are only detected in a

subset of individuals (,28%) [33].

Therefore, of the 64 hypothetically possible patterns of

regulation, only 4 are biologically credible. In order of prevalence

they are:

1. Memory stage alone is not regulated - Blast, GC, Immediate

early, Early and Late lytic are regulated.

2. Memory plus GC stages are not regulated - Blast, Immediate

early, Early and Late lytic are regulated.

3. Memory plus Late lytic stages are not regulated - Blast, GC,

Immediate early and Early are regulated.

4. Memory plus GC plus Late lytic are not regulated - Blast,

Immediate early and Early are regulated.

Our model contains 25 parameters that affect the size of the

infected populations (for a detailed description and discussion see

Methods and Supplementary Table S1). We have identified the

biologically credible range of values for each of these parameters

Box 2. The Mathematics of the Model

We assume that the pathogen transits n distinct stages. We
then have 2n populations, the infected stages, S1,…,Sn and
cognate CTL populations T1,…,Tn. These interact via the 2n
equations, one pair for each value i = 1,…,n. These are
taken cyclically so that the stage ‘‘previous’’ to stage i = 1 is
stage i = n. Thus, for the purposes of numbering these
equations, we treat ‘‘1-1’’ as n.

d

dt
Si~ri{1fi{1Si{1{(aizfizpiTi)Si

d

dt
Ti~(ciSi{b)Ti

Here for each i,

N fi is the rate at which stage i is lost to become (or
produce) stage i+1.

N ri is the gain, and is equal to 1 except for the late lytic
stage.

N ai is the net death rate. If the stage proliferates, this
number is negative.

N pi is the killing efficiency for the CTLs at stage i and
encapsulates the likelihood of a CTL finding its target,
forming a stable conjugate, and the efficiency of killing.

N ci is the net antigenicity of stage i, that is, the efficiency
with which stage i maintains CTL activation and
provokes CTL proliferation.

N b is the rate of decay of the CTL response in the absence
of antigen.

Box 3. The Mathematics of Equilibrium

N At equilibrium we have

dSi

dt
~0:

dTi

dt
~0:

N A stage Si is regulated if Ti?0. If a stage is regulated, its
population is determined by its net antigenicity and the
decay rate of the T-cell response

Si~
b

ci

:

Since b is common across all stages, the relative sizes of
the regulated stages depends solely on their net
antigenicities (see also [44]).

N If a stage is unregulated, its population is determined by
the size of the previous stage and its follow-on constant.
This gives the follow-on population which is the product
of its rate of production times its average lifespan,

Si~Si{1
ri{1fi{1

aizfi

~Si{1Mi{1:

N If the follow-on population is less than b
ci

, it is insufficient
to support immune regulation. The immune response is
starved of sufficient stimulation (see also [44]).

N If an unregulated population is larger than b
ci

, this is
unstable. Introduction of a single CTL directed against
this stage will proliferate producing a new equilibrium in
which this stage is regulated and its population has been

reduced to
b

ci

.

N It may happen that whenever stage Si is regulated, the
follow-on population at stage Sj is insufficient to support
regulation. In this case we say that Si starves Sj.

N The pattern of regulation of the stable equilibrium is
determined as follows:

if a stage is not starved by any other stage, it will be
regulated.

if a stage is starved by some other stage, it will not be
regulated.

Re-evaluating the Model of EBV Persistence
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(see Methods). Together, the combined ranges for these param-

eters can be thought of as generating a 25 dimensional parameter

space. This space consists of all the possible combinations for the

plausible values for our 25 parameters; we refer to this as the

‘‘parameter cube’’. We then tested the validity of our model by

sampling 10,000 random points in that cube (i.e., 10,000 randomly

chosen combinations of biologically tenable values for the 25

parameters) and computing the pattern of regulation at the stable

fixed point for each set of parameters. A simplistic version of this

approach for 2 instead of 25 parameters is shown in Figure 2. For

a typical run of 10,000 randomly selected parameter sets, the four

most prominent patterns of regulation we found are shown in

Figure 3A and B. In order of prevalence they were:

1. Memory stage alone is not regulated – 55.1%.

2. Memory plus GC stages are not regulated – 26.3%.

3. Memory plus Late lytic stages are not regulated – 7.9%.

4. Memory plus GC plus Late lytic are not regulated – 3.8%.

Thus a full 55.1% gave the most common pattern of regulation

seen biologically, i.e., where all stages are regulated by the immune

response except memory. Furthermore, of the 64 possible patterns

of regulation, the top four patterns were the 4 biologically credible

ones, and they accounted for essentially all of the random sample

of parameter sets (93.1%). Of the non-biological patterns, 6

accounted for the remaining 7% of predicted patterns and 54

patterns were never detected. We speculate that these biologically

implausible patterns of regulation arise because there may be

combinations of plausible values for the parameters that are not

consistent with each other.

Direct comparison of model predictions with CTL studies are

also informative. The model predicts that the Blast, Immediate

early and Early stages are almost always regulated (.95% of the

time), as is seen experimentally. Similarly the model predicts that

the GC is regulated 63% of the time which is very close to the 60%

predicted from CTL studies [32]. Taken together, these results

provide strong quantitative validation of the model. The case for

Late lytic is less convincing since the model predicts regulation

88% of the time, but CTL studies only report detection 28% of the

time [33]. Thus the model is qualitatively accurate (the Late lytic

stage is not always regulated), but either quantitatively imprecise in

this area or the biological data are not accurate. For example, it

has been suggested by the original authors that 28% is an

underestimate (Hislop, personal communication). Clarification of

this point experimentally will provide a test of the accuracy and

predictive power of the model.

The model’s prediction that the Late lytic stage is not always

regulated makes an important point in terms of understanding

how the model works. The model predicts that at equilibrium, the

size of a population regulated by the immune response is inversely

proportional to its net antigenicity. This is because the more

antigenic a population, the fewer cells it takes to stimulate a

controlling T-cell response. Based on the observed population sizes

of Immediate early (,50–500 cells), Early (,5–50 cells) and Late

(,2–10 cells) lytic populations in all of the tonsils at equilibrium

([13] and Supplementary Table S1), i.e., during persistent

infection, the model predicts that net antigenicity should increase

across the lytic stages, with the Late lytic population being the

strongest. Thus, it is noteworthy that published observations on

the avidity of CTLs to these stages demonstrates that Late CTLs

are indeed significantly more avid than Immediate early or Early

[33]. Since the Late stage has a higher antigenicity than any other

stage, a superficial analysis might predict that it should always be

regulated by the immune response. However, the CPM model

states that, no matter how antigenic a state is, if the size of the

population is below the level necessary to trigger an immune

response, it will only be regulated as a follow-on population, that is

to say the rate at which it is produced from the previous stage

combined with its average lifespan. The model predicts that in

about 12% of cases there will be insufficient Late lytic cells to

stimulate a detectable CTL response. This demonstrates that net

antigenicity alone does not predetermine which stages in the

model are regulated and which are not.

The role in EBV persistence of viral quiescence in the
memory compartment

One central premise of the biological model is that EBV can

persist because it resides quiescently in resting memory B-cells that

cannot be recognized by the immune response. The CPM makes a

different prediction, namely that even if the memory compartment

was antigenic the virus could persist. However, the structure of

persistence in terms of population numbers and responses would

be very different from what is seen biologically. An example is

shown in Figure 4. Here the same analysis was performed as in

Figure 3, but with the memory compartment being assigned a

much greater antigenicity. The picture that emerges is complex

(Figure 4A) and dominated by non-biological patterns of

regulation (Figure 4B). Perhaps the most striking outcome being

that in ,90% of the cases the Immediate early stage is no longer

regulated despite being strongly antigenic. Cleary this is a non-

biological result, since we know that biologically the Immediate

early stage is always under regulation [7], emphasizing again the

point that net antigenicity alone does not decide if a stage will be

regulated by the immune response.

This result produces a shift in our understanding of persistence

away from relying on the poorly antigenic nature of the memory

compartment towards the importance of the whole cyclic nature of

the infection. Expressed more generally, it is not the CTL response

(or lack thereof) to certain, specific stages that explains EBV

persistence. EBV could persist no matter the pattern of regulation.

Rather, it is the CTL response (or lack thereof) to certain, specific

stages that defines the way persistence looks.

Biological insights - The memory compartment
The model produces detailed predictions about the sizes and

flow rates through each stage for any given set of parameters (i.e.,

point in the parameter cube). A relatively simple way to

demonstrate this is with pie charts, where the left half shows the

flows into the population and the right half shows the flows out.

Since the system is stable, i.e., at equilibrium, the population size

for each stage is constant and the flows in must equal the flows out,

i.e., the size of the two halves of the pie chart must be the same.

Net gain can occur either from input from the previous stage or as

the end product of cell division, i.e., proliferation. Net loss can

occur via death, killing by CTLs, differentiation to the next stage

or as loss to cell division (for convenience we consider cell division

to be the consequence of loss of one cell and the appearance of two

new cells). The simplest case is the memory compartment, which

biologically is never regulated by the immune system. We have

proposed previously that the infected memory compartment is

regulated by normal memory B-cell homeostasis. In this case, we

assume that death and proliferation are exactly balanced,

producing the pie chart shown in Figure 5A where net input

from the GC stage effectively equals net output to the Immediate

early stage (see Methods for further discussion). We can also

calculate the predicted population size and the flow rate through

the stage (values shown in the figure come from a particular set of

typical parameters). In our analysis the memory population is

Re-evaluating the Model of EBV Persistence
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never regulated by the immune response, rather its level is

predicted by CPM to be a complex outcome of all the interactions

and rates throughout the model and, as such, an emergent

property of the whole model, i.e., not pre-programmed or

governed by specific model parameters. Currently, there is no

way to measure the actual flow rate through any given stage, but

we are able to measure the population sizes. To test how well the

range of values predicted by CPM compared to what is seen

biologically, we calculated the steady state size of the memory

compartment for each of the 10,000 randomly chosen parameter

sets. The result is plotted as a histogram in Figure 5B (green bars).

Superimposed upon it is a histogram of the actual number of EBV

infected memory B-cells in Waldeyer’s ring for 42 independent

tonsils from persistently infected individuals (purple bars). As may

be seen, the full range of CPM predicted values falls within the

actual range of biological measurements. Furthermore, the

predicted values have a similar log mean and log median value

(log mean: biological 4.48; CPM 4.36; log median: biological 4.65;

CPM 4.31; p-value = 0.079 using a two-sided, unpaired, two-

sample Mann-Whitney test). The major difference is that the

biological values have a somewhat wider range (std. dev. of log

values: biological 0.83; CPM 0.40). Since this distribution of values

for the size of the memory population is derived only as an

emergent property of the model, we conclude that the accuracy of

the predicted range serves as good validation both for the

theoretical underpinning of the CPM model and for the credibility

of our parameter set.

Biological insights - The GC compartment
We can apply a similar analysis to the GC compartment. We

have seen that CPM predicts, in good agreement with experi-

mental data [32], that the GC compartment is regulated

approximately 63% of the time. Pie charts for both regulated

and unregulated conditions are given in Figure 6A and B

respectively. These also reiterate the key features of the model.

Thus, in Figure 6A (the regulated condition), the rate at which

Figure 2. Diagrammatic representation of our test procedure for CPM. A) Here we describe the methodology for just 2 parameters, X and Y.
a and b represent the range of biologically tenable values for these two parameters. From this we can project a 2-dimensional parameter space that
consists only of all the biologically tenable combinations of the two parameters. We can then sample random points in this space (in this case 10). B)
Each point is a parameter set which consists of a single value for each of the two parameters (parameter values). These can then be used to
interrogate the model and predict outcomes. In our model there are actually 25 parameters generating a 25 dimensional parameter space (the
parameter cube) from which we randomly sampled 10,000 sets of parameters.
doi:10.1371/journal.ppat.1003685.g002
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infected GC B-cells are produced from the previous stage and by

proliferation is greater than the rate at which they are lost to the

next stage. Thus, the size of this stage will increase until it is above

the threshold for triggering an immune response. Above this

threshold the immune response will expand and drive the infected

population back down to the threshold level. So, at equilibrium a

regulated population will be at the threshold level where there are

just enough infected cells to drive the immune response and just a

sufficient number of T-cells to limit the population.

The size of the regulated population is a model assumption

because the level to which the immune response limits it is a direct

function of its net antigenicity which is given by the model

parameters ci and b in the equation Si~
b
ci

. However, if the

equilibrium population size is not sufficient to induce an immune

response, i.e., below the threshold, then for this unregulated

population the rate of production (from the previous stage and

proliferation) must equal the rate of loss (to the next stage); this is

the condition displayed in Figure 6B. As with the memory

compartment, the size of this GC population is emergent, i.e., a

complex outcome of all the interactions and rates throughout the

model - not governed by model parameters. As such, it provides a

vehicle to further test and validate the CPM. We can ask what the

range of these values is for the ,30% of our parameter sets that

produce an unregulated GC population and compare it to the 42

independent measurements we have made on biological samples.

Since we know that failure to be regulated by the immune

response arises if a population does not achieve a large enough

size, we would predict that the range of sizes for unregulated GC

populations should reside at the lower end of the range of

measured values. The result is shown in Figure 6C. The purple

histogram shows the distribution of actual measured values and

the green histogram shows the values predicted by CPM for the

parameter sets where the GC compartment is unregulated by the

immune response. As predicted, the values from CPM lie within

those measured biologically, but at the lower end of the range.

Once again this provides validation both for the model and the

parameter set we have chosen to test it. Since most of the

biologically measured values are larger than those predicted for

unregulated GC populations, this model states that these must be

regulated levels, i.e., in the majority of individuals the infected

population of GC B-cells is regulated by the immune response.

Biological insights - The Blast compartment
The simplest model for reinfection is that each bursting B-cell

releases infectious virions that infect adjacent B-cells. Since the

avidity of EBV for its receptor on B-cells is so high, it is unlikely

that the virus from each lytic cell would travel beyond the first

layer of surrounding B-cells, i.e., infection of approximately 20 B-

cells, to become Blasts. An example of the net gains and losses to

the Blast stage based on this scenario is shown in Figure 7A. In this

case, approximately 10 cells undergo lytic reactivation per day

resulting in ,200 freshly infected cells, a vanishingly small

contribution compared to the approximately 12,500 daughter cells

produced daily by proliferation. In order to balance the two sides

(i.e., at steady state), it is necessary to invoke that approximately

200 Blasts are killed per day. Since we know from the literature

that there are approximately 4.6e6 to 1.4e8 CTLs in Waldeyer’s

ring directed against the Blast stage (see Supplemental Table 1),

we can estimate the average time between kills for these CTLs to

be between 60 and 380 years. (It is worth noting here that B-cells

in lymph nodes are moving rapidly [34], therefore the number of

B-cells that a lytic B-cell could come into contact with may be

higher than 20. Given the burst size for a B-cell of ,104 virions,

the number of infected cells could be 10-fold higher; however that

does not significantly affect the conclusions here). Under this

scenario, therefore, almost the entire CTL population would never

see its target again after resolution of the initial acute phase. This is

not consistent with published information that ,10% of CTLs in

tonsils against the Blast stage express activation markers [35]. To

sustain this response, therefore, requires amplification of the virus

beyond those produced by lytic B-cells. We have previously

presented biological and modeling data to support the idea that

EBV must replicate in epithelial cells to account for the levels of

virus shedding we observe in saliva [5]. Figure 7B shows the pie

chart where we assume that each bursting B-cell infects epithelial

cells, which in turn release virus that infects ,10,000 B-cells. Here,

flow in is dominated by infection and flow out by CTL killing,

which is close to 100,000 cells per day. Under this scenario a CTL

Figure 3. Biologically plausible immune patterns of regulation. Out of 10,000 randomly chosen parameter sets from the physiologically
tenable parameter space, for this particular run, 93.1% produced biologically plausible patterns (described in the insert). A. Columns represent the
total fraction of patterns for which each stage was regulated. B. The patterns of regulation ordered by frequency of occurrence. Note the four highest
are the biologically plausible patterns and the highest is the most likely to occur biologically.
doi:10.1371/journal.ppat.1003685.g003
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encounters a target every 46 days to approximately 3.8 years. The

lower end of this estimate seems a credible time frame for sustaining

the response. It is worth noting that it is well within the capabilities of

the 7.7e8 macrophages of Waldeyer’s ring (this lab and [36]) to deal

with a daily death toll of this size. Figure 7C shows the predicted

mean time between killings for CTLs specific for Blasts in

Waldeyer’s ring plotted against a wide range of amplification factors.

We conclude that amplification of EBV, possibly through

epithelial infection, is necessary to account for the observed

biology of the CTL population.

Parameters and outcomes
One concern is that the patterns of regulation described above

are somehow intrinsic properties of the model and not dependent

on the biological validity of the value ranges we have estimated for

the parameters. We have performed several control computational

tests to address this. First, we took the values for each parameter

and randomly scrambled them between the different stages. For

each parameter, there are 6 values, one for each stage. Scrambling

these values produces 6! = 720 possible permutations for each

parameter. This was performed for each of the four parameters: r,

f, a and c. Each randomized value for a given parameter is then in

turn grouped with randomized values for the other three

parameters. Since there are in total 4 parameters with 720

permutations each, there are 7204 (,2.7e11) possible permuta-

tions of this type. We randomly selected 1000 of these

permutations, constructed a parameter cube for each, and

sampled each as before. Of the 1000, 13 had a percentage of

sampled points with a biologically plausible pattern greater than or

equal to that obtained with the unscrambled values (red line in

Figure 8A). This gives an empirical p-value of 0.013 and allows us

to reject the null hypothesis that randomly chosen parameter

estimates would perform as well.

A further concern is that the patterns of regulation we observe

are driven by the values we have derived for the net antigenicities,

ci. To address this, we have performed a permutation test in which

all parameters, except ci, are permuted as above. Holding the net

antigenicities constant and permuting the other parameters

degrades performance over 96% of the time (Figure 8B). This

gives an empirical p-value of 0.033 allowing us to reject the

hypothesis that the observed patterns of regulation were deter-

mined by the values for net antigenicity. We also examined the

degradation in performance when only a single parameter is

permuted. Since there are six stages, there are 6!~720, including

the permutation which leaves everything in place. The fraction of

the time a permutation performed at the same level or better than

the unpermutted cube for r, f, a and c respectively were 0.149,

0.0875, 0.25 and 0.00278. In summary, although c is the most

critical parameter, it is not sufficient to account for the observed

patterns of regulation.

The ranges of our parameter values were chosen to be as

biologically accurate as possible. If this and the model are correct

then we should predict that performance will rapidly degrade if we

arbitrarily extend the value ranges. To test this, the ranges were

increased by up to 100-fold and the fraction of biologically

plausible outcomes measured. As may be seen in Figure 8C, the

actual set of parameters used was very close to optimal in terms of

producing biologically credible patterns; this success quickly falls

off within 0.2 logs. This is good evidence for the specificity of the

model since it only works optimally at, or close to, a biologically

tenable range of values for the parameters and conversely validates

the quality of our parameter values.

How robust is the non-regulation of memory?
Latently infected memory B-cells produce a single viral protein

only when undergoing cell division, which takes place perhaps

Figure 4. Testing the consequences of an immunologically invisible memory stage. A) The same analysis was performed as in Figure 3,
with the exception that the memory compartment was allowed to be antigenic. The most frequent patterns of regulation seen are shown in the
insert. B) The same analysis as A, but showing only the fraction where the four biologically plausible patterns of regulation were seen.
doi:10.1371/journal.ppat.1003685.g004
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Figure 5. Analysis of the memory compartment. A) The size of the infected memory compartment and flow rates through this stage is shown
graphically as a pie chart. The left half shows gains by the population and the right half shows the losses. Since the system is at equilibrium, the
population size is constant and the gains must equal the losses, i.e., the size of the two halves of the pie chart must be the same. B) To test how well
the range of values predicted for the memory compartment by CPM compared to what is seen biologically, we calculated the predicted steady state
size of the memory compartment for 10,000 randomly chosen parameter sets (green bars) and compared this to the actual number of EBV infected
memory B-cells in Waldeyer’s ring for 42 independent tonsils from persistently infected individuals (purple bars). The predicted values have a similar
mean and median value as compared to the experimental data (log mean: biological 4.48; CPM 4.36; log median: biological 4.65; CPM 4.31; p-
value = 0.079 using a two-sided, unpaired, two-sample Mann-Whitney test).
doi:10.1371/journal.ppat.1003685.g005

Figure 6. Analysis of the GC compartment. A). The size of the infected-GC compartment and flow rates through this stage in an example where
the infected-GC population is regulated by CTLs is shown graphically as a pie chart. The left half shows gains by the population and the right half
shows the losses. Since the system is at equilibrium, the population size for each stage is constant and the gains must equal the losses, i.e., the size of
the two halves of the pie chart must be the same. Gain can occur either from input from the previous stage or as the end product of cell division, i.e.,
proliferation. Losses can occur via death, killing by CTLs, differentiation to the next stage or as input into cell division (it is simplest to consider cell
division to be the consequence of loss of one cell and the appearance of two new cells). B) The same analysis as A, however for an example where the
infected-GC population is not regulated by CTLs. C) The predicted size of the infected-GC population is shown for the cases in which it is not
regulated by the immune response (3,193 out of 10,000 random trials; green bars). In purple, we have plotted the experimentally measured size of
the infected-GC population from 42 independent tonsils from persistently infected individuals.
doi:10.1371/journal.ppat.1003685.g006
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once every 30 days. Furthermore, this protein is produced in low

quantities and is poorly presented, if at all [37,38,39]. Conse-

quently, these cells are thought to be weakly antigenic. One

advantage of a mathematical model is that it can provide

quantitative answers to biological questions. In this case, we can

ask how weakly antigenic does the memory compartment have to

be relative to the other stages in order to produce the biologically

expected pattern of regulation?

We took the 10,000 random points in the parameter cube that

we sampled for Figure 3 where none showed regulation of the

memory stage, and for each of these we computed how much the

value for memory net antigenicity cmemory would have to increase

before the stage became regulated. We found that memory

remained unregulated if it is at least two orders of magnitude less

antigenic than the other stages.

Discussion

The studies presented here suggest a shift in our understanding

of EBV persistence. The mechanism of EBV infection is well

understood to involve a cycle of infected stages, but until now it

was believed that EBV persists solely because it resides in resting

memory B-cells that cannot be recognized by the immune

response. Previously, we were able to describe this cycle of

infection in terms of a set of differential equations (the cyclic

pathogen model or CPM) and show that the solution of these

equations at steady state produced one and only one solution that

was stable and biologically possible [21]. Put simply, the CPM

shows how the rates governing such processes as proliferation,

death and differentiation of infected B-cells,, amplification of the

virus, and proliferation, loss and killing efficiency of the immune

response collectively determine a stable set point for the

coexistence of the host and the pathogen. In doing so, it gives us

the key to understanding the sizes of infected populations and

which fall under CTL regulation. We proposed that the stable set

point described by the CPM represented persistent infection. In

this paper we have now validated this assertion.

The CPM shifts the focus of persistence from the immunological

invisibility of the memory compartment to the cycle of infected

stages. The form that persistence takes is a function of the

properties of all the infected stages in the cycle and the immune

responses to them. Thus the model predicts that for EBV,

persistence is possible even with a strongly antigenic infected

memory compartment, however the model only works correctly in

predicting the whole biologically observed pattern of regulation if

the memory compartment has very low antigenicity. So:

1. If you change the antigenicity of the memory compartment so

that it is regulated the overall pattern of regulation becomes

non-biological. Specifically, we see that the Immediate early

stage is frequently not regulated. This is important validation

for the model because biologically this stage is always regulated

and as such it was assigned a high value for antigenicity in the

model. This demonstrates once more that whether or not a

stage is regulated is not a function of its assigned antigenicity

but rather a consequence of the complex interactions of all the

components of the model.

2. You can achieve regulation of the memory compartment even

at low antigenicity if you manipulate other parameters, e.g., for

the GC, but this requires those parameters to be at biologically

untenable values (not shown).

Thus, the biologically correct low antigenicity of the memory

compartment and the correct pattern of regulation are integrally

linked. The model says you can’t have one without the other.

It is important to stress that our analysis to date does not address

how acute infection resolves into persistence, nor the role of

stochasticity in these dynamics (see Box 4). In this paper we have

studied the application of the CPM to the equilibrium state of

normal chronic EBV infection and showed that it is capable of

recapitulating important structural features of this infection. The

CPM contains simplifications that make it mathematically

tractable. Perhaps the most prominent of these is the simplification

of CTL dynamics and the omission of humoral and innate

Figure 7. Analysis of the Blast compartment. A and B) Flow rates for the Blast stage are shown using the amplification factors of 20 (A) and
10,000 (B). C) The predicted mean time between killing for CTLs specific for Blasts in Waldeyer’s ring is plotted against a wide range of amplification
factors. The green line represents our high estimate for this CTL population, while the blue line is the low estimate.
doi:10.1371/journal.ppat.1003685.g007
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immune response. In addition, the parameters of this model (ri, fi,

ai, ci and b) likely exhibit different values in the acute and chronic

phases. Thus, while preliminary studies of the dynamics of the

CPM show broad correspondence to our limited knowledge of

acute EBV dynamics, detailed validation of a model of acute EBV

dynamics is outside the scope of the current study. To highlight

these issues we have given them a more detailed treatment in Box

4 where we have provided details on the simplifications and

limitations of the model and some relevant preliminary studies.

Given the issues listed in Box 4 one may ask the question ‘‘how can

we be sure that the mathematics of CPM is the ‘correct’ model of

EBV?’’. However, this is the wrong question. Quoting the famous

words of George Box, ‘‘Essentially, all models are wrong, but some

are useful’’ [40]. The better question to ask therefore is, ‘‘is the

CPM model of EBV persistence useful?’’. The evidence presented

in this paper shows that the model is very useful. Although it has

25 parameters and 64 possible patterns of regulation, the top four

patterns predicted were the 4 biologically credible ones. Further-

more, the ranking of the four agreed exactly with what is observed

biologically and accounted for essentially all of the parameter sets

(93.1%). Non-biological patterns were effectively not seen. Given

that no parameter(s) forces this outcome, the chances of obtaining

this result with an ‘‘incorrect’’ model are vanishingly small.

Additionally, the model accurately predicted the actual sizes of the

unregulated memory and GC compartments, a striking result

given that the actual range in sizes of the six populations covers

more than 4 logs (see Figure 1B). Lastly, when parameter values

were scrambled or manipulated so they were outside the biological

range or even when a non-biological value was assigned to the

antigenicity of a single population (i.e., intentionally making the

model ‘‘incorrect’’), the outcomes rapidly and dramatically

became non-biological. Taken together, these results reinforce

the conclusion that it is not credible that we could have fallen upon

this result as a fortuitous outcome of an ‘‘incorrect’’ model. The

Figure 8. Validation of CPM. A) A permutation test was performed 1000 times where the values for the parameters were randomly scrambled. For
details see text. The histogram shows the number of examples where different fractions of biologically plausible patterns of regulation were seen.
Note that only 13 scrambled parameter sets had an equal or higher level of biologically plausible patterns of regulation as compared to the
biologically plausible parameter set (p-value of 0.013). B) A permutation test was performed 1000 times in which all parameters are permuted (as in
A), with the exception of the values for ci. Note that only 33 scrambled parameter sets (holding ci constant) had an equal or higher level of
biologically plausible patterns of regulation as compared to the unscrambled sets (p-value of 0.033), allowing us to reject the hypothesis that the
observed patterns of regulation were determined by the values for net antigenicity. C) The range of values for each parameter was increased by up to
100-fold above what was biologically plausible and the fraction of biologically plausible patterns measured. The fraction of the parameter space
which produces plausible patterns quickly falls off, demonstrating that the default set of parameters was very close to optimal.
doi:10.1371/journal.ppat.1003685.g008
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final test of the utility for a model is if it provides significant new

insights and CPM indeed achieves this in providing a new and

completely biologically consistent explanation for persistence, i.e.,

its dependence on the cycle of infection. The main conclusion of

our mathematical analysis is the understanding that if a pathogen

has a cycle of infection that is regulated by the immune response, it

then has the possibility to use this cycle to establish an extremely

stable persistent infection. As such, EBV might be unique because

it relies on the biology of the B-cell which provides the platform for

the cyclic behavior, i.e., the virus is simply exploiting the normal

cycle of B-cell activation, memory, reactivation and differentiation.

This is not to say that a cycle of infection is the only way for a

pathogen to persist, nor even that it’s a better way, simply that it is

an evolutionary niche that EBV has occupied because of the

nature of the cell type it infects - the B lymphocyte. The

mathematics then tells us that this is sufficient to sustain a stable

persistent infection, i.e., a cycle of infection is sufficient but by no

means essential for persistence. It will be interesting to see if other

pathogens are able to exploit this behavior or if it is unique to

EBV.

The persistence engendered by the cycle of infection provides

the possibility for lifelong infection with the potential for

continuous horizontal spread. However, this stability also confers

another crucial advantage, namely it allows the pathogen to persist

at extremely low levels where stochastic variation, that might

occasionally drive a single infected population to extinction, can be

tolerated. Thus for an acutely infecting virus, once the immune

system clears the infected target population, the infection stops.

However, in the case of a cyclic behavior, if any infected stage is

temporality cleared, it can be repopulated by the cycle. This ability

allows EBV to persist at extremely low levels (,1 infected cells/

250 ml of blood in some individuals [41]), thus minimizing any

deleterious impact on the host on whose survival the virus depends

for lifelong persistence. The result is that EBV is a highly, if not the

most, successful human pathogen infecting .95% of the human

race for life. It is important to stress that the stability we

demonstrate is not an assumption of the model, nor do we need to

‘‘fine tune’’ our parameter set to achieve it; stability is a purely

emergent property. Thus, the GC model is not only experimen-

tally validated, but also mathematically consistent, and therefore

sufficient to produce stable persistent infection.

Predictions and new biological insights
For the first time we have a detailed, mathematically consistent

model of EBV persistence. The advantage of such a model is that

it now allows us to make quantitatively precise predictions about

infection, i.e., observe the extent to which the mathematics

constrains the biological possibilities. In the results section we have

presented such arguments with respect to the size and antigenicity

of the memory compartment, whether or not infected GC B-cells

come under immune regulation and the possible role of viral

amplification in epithelium between the Late lytic and Blast stages.

From a practical stand point the model can also be used to make

predictions about interventions and how effective they must be to

alleviate or prevent EBV infection and associated diseases, and

what their probability of success might be. Generally speaking,

CPM predicts that it will be extremely difficult to clear EBV

infection once established. This is because it is the complete cycle

of infection, not any one stage, which is important for persistence.

Consequently, any treatment regimen must reduce the value of R0

(the net amplification achieved by one circuit of the cycle) to less

than 1. The value of R0 depends critically on the amplification

factor at the Late lytic stage which is likely to lie in the range

,104–106. This means that persistent infection is not only robust

with respect to random variations in populations as we have

discussed, it is also robust with respect to large changes in the

parameter values, e.g., those induced by the administration of an

anti-viral or vaccine. In order to eliminate EBV infection, such

treatment would have to reduce viral production by a factor of 104

or greater. This will be a difficult task given the complicated PK/

PD issues involved in administering antivirals and the inability of

anti-herpesviral drugs to dramatically reduce EBV production for

a sustained period of time [42,43].

One consequence of CPM that may not be self-evident to a

biologist is that if an infected stage is being regulated by a CTL

response, then the level of that stage is controlled solely by its

antigenicity and the decay rate of the CTL response - and nothing

else (see also [44]). There are several consequences of this. For

example:

1. Burkitt’s lymphoma and Hodgkin’s disease are believed to

descend from latently infected GC B-cells which have failed to

successfully differentiate into a resting memory state [2]. If

correct, then decreasing the infected GC population should

reduce the risk of these diseases. The CPM predicts that if the

GC stage is under CTL regulation, then there are two ways to

decrease the number of infected GC B-cells. The first is to

increase their net antigenicity, i.e., the ability to stimulate a

CTL response, and the second by reducing the production

and/or dwell time of the infected GC B-cells. However, an

important and again not intuitive insight from CPM is that the

later will only take effect when the supply of infected GC B-

cells is reduced below that which is required to stimulate a T-

cell response. As a consequence, we can estimate from CPM

that any reduction in the level of infected GC B-cells requires a

3-fold steeper decrease in production/dwell time, e.g., a 2-fold

decrease in infected GC B-cells requires a 6-fold reduction in

production/dwell time.

2. We have observed that the level of infected GC B-cells in

tonsils from patients with malaria is increased 50-fold over that

in normal tonsils (unpublished observations). Two established

consequences of malarial infection are that it can activate B-

cells [45] and is immunosuppressive for T-cells [46]. While one

might assume a priori that either of these phenomena could

affect the level of infected GC B-cells, the CPM states

unequivocally that the increase in the GC population is due

solely to the immunosuppression of T-cells; that is, there is a

lower net effective antigenicity of GC B-cells in the presence of

malaria. Furthermore, if this is a general immunosuppression,

CPM predicts that there will also be a 50-fold increase in all the

regulated stages, Blast, Immediate early, Early and possibly

Late lytic.

A generalization of our analysis is that if a pathogen can

establish a cycle of infection, it has the potential to become

persistent. This can be true of any virus. For example, an acutely

infecting virus like influenza can be thought of as having a very

simple cycle, i.e., infectious virus cycling through infected cells and

back to virus. Why doesn’t influenza establish a persistent

infection? The answer is twofold. First, when potent neutralizing

antibodies arise they effectively break the cycle of infection by

removing all infectious virus. This break is permanent because the

antibody response persists long after the antigen is cleared.

Second, the virus does not have multiple infected stages that can

re-establish the cycle when it is interrupted by the immune

response. In the case of EBV, potent neutralizing antibodies arise

but are apparently unable to effectively clear all of the virus. We

know this because despite the presence of potent neutralizing
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Box 4. Simplifications and Limitations of the Model

There are three major areas of simplification in the equations
of the CPM. These involve the description of the T-cell
response, application to acute infection (dynamics) and the
consequences of stochasticity.

1) The T-cell response.

1) The CPM uses a simplified term for activation of T-cells by
antigen: dTi

dt
~(ciSi{b)Ti , i.e., the proliferation rate of

each CTL population is simply proportional to the size of
its cognate infected population and the amount of
antigen, and therefore not saturable.

1) We have been able to extend the theoretical conclusions
of this model in a mathematical analysis where we
consider a very general form of this equation
dTi

dt
~(Qi(Si){b)Ti . This is referred to as the non-linear

cyclic pathogen model. It allows the proliferation rate to
be any increasing function of antigen, including the case
where the response becomes saturated. We find that CPM
can be extended to these very general classes of dose-
response curve for CTL activation that more closely
resemble biology. Specifically, for any parameter values,
there is still a unique stable fixed point, with the exception
that under sufficient immune suppression there is the
possibility of cancer-like runaway growth. Thus, the
conclusions of this paper remain robust in the face of
added complexity to the model. This work is detailed in
[52]. However, to apply this more general model to the
specifics of EBV would require data characterizing the
functions which correspond to in vivo proliferation rates
for the different CTL populations. To the best of our
knowledge, such data are not available at this time. As to
the specifics of which stages are regulated, there is no way
to derive the shapes of the functions in the non-linear
case from currently available data except by saying that at
the equilibrium point that we observe they work out to
have the same net antigenicities for the regulated stages,
thus the same pattern of regulation is observed.

1) We have also treated each stage as having a single,
unique CTL response. In reality stages have CTL responses
to multiple antigens and shared antigens across stages.
Modeling this sort of ‘‘antigenic cross-talk’’ will require
insights into new systems of differential equations.

1) The CPM also encapsulates the immune response to each
stage into a single CTL population. The real T-cell
response is considerably more complex. Furthermore,
we only consider the CD8/CTL response; we do not take
CD4 T-cells into account, nor do we include a humoral or
innate response. We also do not include discrete CTL sub-
populations such as effector, central memory and effector
memory, all of which have different life-spans and
activation requirements [49,50,51], or the role of APCs.
The biological relationship between these compartments
is not understood in detail at this time and modeling
these factors will require a significant increase in
biological understanding and model complexity.

1) Nevertheless, despite these caveats the CPM accurately
predicts biologically accurate regulation profiles .90% of

the time when credible parameter values are used,
accurately predicts infected population sizes and de-
grades rapidly when parameter values become non-
biologic. This suggests that our simplifications of CTL
activity have encapsulated sufficient of the properties of
CTL to produce useful outputs.

2) Acute dynamics.

2) In this paper, we have limited our study of CPM to
defining the steady state of persistent chronic infection;
we have not used the mathematical model to address the
dynamics of acute infection. The primary reason for this is
the dearth of biological information for informing
parameter estimates. Even more crucial is that we have
no data on the course of infection over the first ,5 weeks.
Clinical/biological studies are only initiated when patients
become sick and we have shown that at this point the
infection is resolving [53]. It is unknown if there is a single
peak of infection or multiple oscillations before resolution.
We do know that once the infection begins to resolve it
does not show large oscillation in the level of infection but
takes at least one year to reach a steady state [53].

2) We have performed some preliminary simulations to look
at acute dynamics and find that the CPM appears sound
resolving acute infection with dynamics that broadly
resemble what is known biologically. Using biologically
credible parameters, the model proceeds from initial
infection to the stable fixed point in approximately 1–2
years without showing large, continuing oscillations
(preliminary observations, not shown).

2) In the CPM, the biological processes are modeled using
the constant coefficients ri, fi, ai, ci and pi, and we expect
that some of these processes will have different rates in
the acute phase and may even vary throughout acute
infection. For example, fmemory is probably higher in the
acute phase. In contrast, chronic EBV persistence appears
to be a system in equilibrium, allowing us to treat these
rates as constant. As a consequence, we consider the
present work to be validation of the model only for the
chronic phase and expect that accurate dynamical
modeling will require further elaboration of the model.

3) Stochasticity in acute infection.

3) For the same reasons discussed in 2) we believe it is
premature to study the effects of stochasticity in the acute
phase as we do not know how these play out in vivo, i.e.,
whether fluctuations in parameter values can lead to
extinction during acute infection. Specifically, it is
unknown whether exposure to EBV consistently leads to
persistent infection or fails at some rate, i.e., multiple
infection events are required for successful establishment.
Thus,we do not know what the expected outcome is for
the model. Preliminary simulations show broad concor-
dance with the limited data available (see above).

3) Stochasticity in persistent infection.

3) We know that once persistent infection is established it is
extremely stable and lasts for life, i.e., there are no
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antibody in the serum, infectious virus can readily be isolated from

the saliva, and newly infected naive B-cells are routinely present in

the tonsils of healthy carriers of the virus. We have attributed

EBV’s ability to establish persistent infection to the existence of a

cycle of infective stages. We can in turn attribute the existence of

that cycle to the failure of antibody to provide a sterilizing

response.

Why it is not possible to produce a sterilizing level of

neutralizing antibody to EBV is unclear, but is crucial in allowing

the cycle of infection to proceed. In our model we have

encapsulated the steps between lytic infection and blasts because

this is an area where we are still lacking detailed information about

the intervening steps. We do not know if the virus effectively avoids

neutralization because of compartmentalization of infection and

serum antibodies, or because virus transmission is through cell-to-

cell contact, for example. As we have argued above and previously

[5], it seems inevitable that infectious virus is amplified in the

epithelium on the way to infecting new naive B-cells. A

complicating but very interesting issue that arises is the possible

role of epithelial cells in abrogating the sterilizing effect of

neutralizing antibody. It is known that antibody that neutralizes B-

cell infection actually favors epithelial cell infection [47], thus

giving a positive feedback loop in response to neutralizing

antibody (for modeling of this effect see [24]).

It seems, therefore, that modeling has produced several

compelling reasons to believe that epithelial infection plays a

central role in persistence. It will be important to better

understand the exact relationship between the route(s) taken by

infectious virus between B-cells and epithelium, since it relates

directly to the pathways by which EBV must enter the tonsil

lymphoepithelium during initial acute infection. The level of

infected memory B-cells in the peripheral blood of healthy carriers

is stable ([5,6] and unpublished observations). There is no

detectable decline (or expansion). By comparison levels of shed

virus in saliva are extremely variable (by up to 4 logs) [5]. If the

levels in saliva truly reflected infectious virus for naive B-cells, then

we would expect to see a large variation in the ratio of infected

Blasts to GC to memory B-cells, with the variation in the level of

infection dampening down as the virus traverses the infected stages

into memory. However, we see no evidence of this in our analysis

of a large numbers of tonsil samples [41]. This suggests that the

rate of new infection is relatively constant and independent of the

wild fluctuations of virus shedding in saliva.

The validation that we have offered in this paper makes a strong

case that the CPM is able to capture the gross features of the

architecture of persistent EBV infection, and gives a first

principled quantitative explanation of how this architecture

produces persistent infection. It will be important now to extend

this work to the dynamics of acute infection and more detailed

description of the biology, particularly of the immune response to

EBV.

Methods

Parameter values
For CPM, we assume that all of the significant biology for EBV

occurs in the lymphoid tissue of Waldeyer’s ring. Therefore all

CPM parameter values are for the entire Waldeyer’s ring. We

have not attempted to include the peripheral blood, which

contains relatively few infected cells, nor the peripheral lymphoid

tissue where the level of infection is markedly lower [41]. We

assume, but have not tested, that the dynamics of infection in

Waldeyer’s ring are representative of the whole body. We have

also omitted the naive B-cells that the virus infects because, based

on our own calculations on the number of naive B-cells in

Waldeyer’s ring (,5e9, see Supplemental Table S1), the supply of

new naive target cells is not a limiting factor. That is, EBV infects

at most ,1e6 naive B-cells out of a total of ,5e9, and given the

fact that immature B-cells can replenish and effectively buffer the

naive compartment [48], we do not expect such a relatively small

amount of new infection to significantly reduce naive B-cell

numbers.

We only consider the CD8/CTL response; we do not take CD4

T-cells into account, nor do we include a humoral or innate

response. Furthermore, we do not include discrete CTL sub-

populations such as effector, central memory and effector memory,

all of which have different life-spans and activation requirements

[49,50,51]. We also do not include any model of CTL exhaustion

after chronic stimulation nor of EBV-induced inhibition of antigen

processing/presentation, i.e., the known decrease in presentation

of lytic antigens from Immediate early.Early..Late [33]. This

effect is encapsulated into net antigenicity.

Traditionally, there are two methods by which the values for the

parameters in a mathematical model may be determined. In the

first method, one searches for values that give an outcome for the

model that most closely approximates what is seen biologically. In

essence this is empirical fitting. The second method attempts to

directly or indirectly measure the individual parameters experi-

mentally. This typically produces a range of observed values due to

technical limitations and variation that is a natural property of the

biological system itself for any given human population. In this

work we have followed the second approach. We have used our

own laboratory’s work together with an extensive search of the

currently available literature for experiments that either directly

measure the parameters we are interested in or allow for an

indirect calculation. A complete list of parameter values is given in

naturally occurring perturbations that drive it to extinc-
tion. Biologically, it is possible that stochastic fluctuations
could result in the temporary ablation of one or more
infected stages. This is likely for the Early lytic and Late
lytic stages since these have extremely low numbers of
cells at equilibrium (see Figure 1B). However, we can ask
why ablation of one stage does not propagate to the next
and thence to the entire cycle. This reflects the ability of
all the infected stages to act as a reservoir for the other
stages thus assuring persistence, i.e., the cycle of infection
is the cause of persistence.

3) We have not undertaken extensive studies of the results of

introducing stochastic effects into this model. Preliminary
studies show that the fixed point is robust with respect to
stochastic effects with perturbations largely damping out
over the course of 3–6 months (data not shown).

In sum, we believe the fact that CPM works well as a model
of chronic EBV infection validates the use of these
simplifying assumptions (see the discussion for a detailed
consideration of this issue). Each of these simplifications
presents a possible direction for future elaboration of the
model. However, any addition of further complexity will have
to be done in such a way that the model performs at least as
well, if not better, than CPM.
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Supplementary Table S1. This includes discussion of their origin

(together with references) and any potential limitations.

The parameter rlate lytic encapsulates all of the processes that go

on between the burst of a Late lytic cell and the production of new

naive Blasts. This includes free virus, the role played by infected

epithelium, and the humoral response against free virions. Analysis

of this parameter, its size and the implications for viral replication

are considered in the results section.

The parameter ci or ‘‘net antigenicity’’ encapsulates an overall

efficiency of promoting stage-specific CTL activation and prolif-

eration. Because it encapsulates so many biological processes, it is

difficult to obtain a single laboratory measurement for it.

However, as the model makes clear, the size of a regulated stage

is determined by net antigenicity together with the death rate for

CTLs; a regulated stage stabilizes at exactly the level where the

antigenic population provokes just enough activation and prolif-

eration of CTL to balance losses. Consequently, for regulated

stages, we have derived a value for ‘‘net antigenicity’’ from the size

of the infected population and our estimate of the CTL decay rate.

It is worth noting that the ranking of these derived values for the

lytic stages agrees with the published ranking based on avidity of

peptide binding [33].

The parameter space/cube
To investigate if the model exhibits the observed regulation

patterns when biologically credible values are assigned to the

parameters, we developed a parameter cube as follows. The

parameters of the CPM are listed in Box 2. Parameters ri, fi, ai, ci

and pi have stage-specific values, that is, the model requires a value

for each of these at each of the six stages. The parameter b

describes the decay rate for a CTL population in the absence of

antigen which we assume is not stage specific and therefore has a

single value which is applied to all stages. Thus, the model has 31

distinct parameters. At equilibrium the value of the parameter pi

only affects the size of the CTL populations, not the infected

populations (see Box 3). Therefore, the pattern of regulation is

determined by the 25 remaining parameters ri, fi, ai, ci and b.

We are able to assign precise values for 8 of the 25 parameters. ri
gives the gain in proceeding from one stage to the next and thus is

equal to 1 for all stages except Late lytic. ai gives the difference

between the death and proliferation rates at stage i. Since the

memory B-cell compartment is stable, we assume aMemory = 0, i.e.,

the birth and death rate are equal. Further, the net antigenicity of

the memory compartment is vanishingly low. Because of this, there

was no need to work with a range of values for this parameter. We

have therefore assigned a single value which we justify below. We

have also assigned alate lytic = 0 under the assumption that once

initiated, the Late lytic process always ends in death. This leaves

17 parameters for which we cannot determine the exact values.

We have defined the ranges of these parameters using values from

the literature and unpublished results from this laboratory (see

Supplementary Table S1). Collectively, these fixed values and

defined ranges define our concept of biologically credible values.

We are thus concerned with 24 stage-specific parameters, 8 of

which are assigned fixed values and 16 of which are allowed to

vary over fixed ranges, plus b. This set of values can be thought of

as a 25-dimensional space; we refer to this as the parameter cube.

Choosing a biologically credible value for each of the parameters is

the same thing as choosing a single point in this parameter cube.

We are thus able to probe the behavior of the model when

confronted with biologically credible parameter values by choosing

random points from this cube and running the model using each of

these randomly chosen points.

Supporting Information

Table S1 CPM parameters. This table lists and discusses

relevant biological and model parameters used in the CPM.

Experimental references are cited where applicable.

(DOC)

Acknowledgments

We would like to thank Dr. Mario S. Mommer from the Simulation and

Optimization group at the Interdisciplinary Center for Scientific

Computing (IWR) of the University of Heidelberg for his help performing

numerical simulations used for model validation.

Author Contributions

Conceived and designed the experiments: JBH EDE DATL MS.

Performed the experiments: JBH EDE MS. Analyzed the data: JBH

EDE DATL MS. Contributed reagents/materials/analysis tools: EDE MS.

Wrote the paper: JBH EDE DATL MS.

References

1. Rickinson AB, Kieff E (2007) Epstein-Barr Virus. In: Knipe DM, Howley PM,

editors. Virology. 5th ed. ed. New York: Lippincott Williams and Wilkins. pp.
2655–2700.

2. Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein-Barr virus and
the origins of associated lymphomas. N Engl J Med 350: 1328–1337.

3. Thorley-Lawson D (2005) EBV persistence and latent infection in vivo. In: ES
R, editor. Epstein-Barr Virus. 1st ed. Norfolk, England: Caister Academic Press.

pp. 309–349.

4. Thorley-Lawson DA, Allday MJ (2008) The curious case of the tumour virus: 50

years of Burkitt’s lymphoma. Nat Rev Microbiol 6: 913–924.

5. Hadinoto V, Shapiro M, Sun CC, Thorley-Lawson DA (2009) The dynamics of
EBV shedding implicate a central role for epithelial cells in amplifying viral

output. PLoS Pathog 5: e1000496.

6. Khan G, Miyashita EM, Yang B, Babcock GJ, Thorley-Lawson DA (1996) Is

EBV persistence in vivo a model for B cell homeostasis? Immunity 5: 173–179.

7. Hislop AD, Taylor GS, Sauce D, Rickinson AB (2007) Cellular responses to viral

infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol 25:
587–617.

8. Thorley-Lawson DA (2001) Epstein-Barr virus: exploiting the immune system.

Nat Rev Immunol 1: 75–82.

9. Kurth J, Hansmann ML, Rajewsky K, Kuppers R (2003) Epstein-Barr virus-

infected B cells expanding in germinal centers of infectious mononucleosis
patients do not participate in the germinal center reaction. Proc Natl Acad

Sci U S A 100: 4730–4735.

10. Kurth J, Spieker T, Wustrow J, Strickler GJ, Hansmann LM, et al. (2000) EBV-

infected B cells in infectious mononucleosis: viral strategies for spreading in the B

cell compartment and establishing latency. Immunity 13: 485–495.

11. Hochberg D, Middeldorp JM, Catalina M, Sullivan JL, Luzuriaga K, et al. (2004)

Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in divid-
ing latently infected memory cells in vivo. Proc Natl Acad Sci U S A 101: 239–244.

12. Kraus RJ, Mirocha SJ, Stephany HM, Puchalski JR, Mertz JE (2001)
Identification of a novel element involved in regulation of the lytic switch

BZLF1 gene promoter of Epstein-Barr virus. J Virol 75: 867–877.

13. Laichalk LL, Thorley-Lawson DA (2005) Terminal differentiation into plasma

cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79: 1296–

1307.

14. Kieff E, Rickinson AB (2007) Epstein-Barr Virus and Its Replication. In: Knipe

DM, Howley PM, editors. Fields Virology. 5th ed. Philadelphia: Lippincott
Williams & Wilkins. pp. 2603–2654.

15. Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA (1998) EBV persistence
in memory B cells in vivo. Immunity 9: 395–404.

16. Babcock GJ, Hochberg D, Thorley-Lawson AD (2000) The expression pattern
of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation

stage of the infected B cell. Immunity 13: 497–506.

17. Roughan JE, Thorley-Lawson DA (2009) The intersection of Epstein-Barr virus

with the germinal center. J Virol 83: 3968–3976.

18. Siemer D, Kurth J, Lang S, Lehnerdt G, Stanelle J, et al. (2008) EBV
transformation overrides gene expression patterns of B cell differentiation stages.

Mol Immunol 45: 3133–3141.

19. Casola S, Otipoby KL, Alimzhanov M, Humme S, Uyttersprot N, et al. (2004) B

cell receptor signal strength determines B cell fate. Nat Immunol 5: 317–327.

20. Castiglione F, Duca K, Jarrah A, Laubenbacher R, Hochberg D, et al. (2007)

Simulating Epstein-Barr virus infection with C-ImmSim. Bioinformatics 23:

1371–1377.

Re-evaluating the Model of EBV Persistence

PLOS Pathogens | www.plospathogens.org 15 October 2013 | Volume 9 | Issue 10 | e1003685



21. Delgado-Eckert E, Shapiro M (2011) A model of host response to a multi-stage

pathogen. J Math Biol 63: 201–227.
22. Duca KA, Shapiro M, Delgado-Eckert E, Hadinoto V, Jarrah AS, et al. (2007) A

virtual look at Epstein-Barr virus infection: biological interpretations. PLoS

Pathog 3: 1388–1400.
23. Huynh G, Rong L (2012) Modeling the dynamics of virus shedding into the

saliva of Epstein-Barr virus positive individuals. J Theor Biol 310C: 105–114.
24. Huynh GT, Adler FR (2011) Alternating host cell tropism shapes the persistence,

evolution and coexistence of epstein-barr virus infections in human. Bull Math

Biol 73: 1754–1773.
25. Huynh GT, Adler FR (2011) Mathematical modelling the age dependence of

Epstein-Barr virus associated infectious mononucleosis. Math Med Biol
29(3):245–61.

26. Shapiro M, Duca KA, Lee K, Delgado-Eckert E, Hawkins J, et al. (2008) A
virtual look at Epstein-Barr virus infection: simulation mechanism. J Theor Biol

252: 633–648.

27. Asquith B, Bangham CR (2003) An introduction to lymphocyte and viral
dynamics: the power and limitations of mathematical analysis. Proc Biol Sci 270:

1651–1657.
28. Nowak MA, May RM (2000) Virus dynamics : mathematical principles of immu-

nology and virology. Oxford ; New York: Oxford University Press. xii, 237 p. p.

29. Perelson AS (2002) Modelling viral and immune system dynamics. Nat Rev
Immunol 2: 28–36.

30. Perelson AS, Nelson PW (1999) Mathematical Analysis of HIV-1 Dynamics in
Vivo. SIAM Rev 41: 3–44.

31. Wodarz D (2007) Killer cell dynamics: mathematical and computational
approaches to immunology. New York, NY: Springer. xiii, 220 p. p.

32. Murray RJ, Kurilla MG, Brooks JM, Thomas WA, Rowe M, et al. (1992)

Identification of target antigens for the human cytotoxic T cell response to
Epstein-Barr virus (EBV): implications for the immune control of EBV-positive

malignancies. J Exp Med 176: 157–168.
33. Pudney VA, Leese AM, Rickinson AB, Hislop AD (2005) CD8+ immunodomi-

nance among Epstein-Barr virus lytic cycle antigens directly reflects the efficiency

of antigen presentation in lytically infected cells. J Exp Med 201: 349–360.
34. Allen CD, Okada T, Cyster JG (2007) Germinal-center organization and cellular

dynamics. Immunity 27: 190–202.
35. Hislop AD, Kuo M, Drake-Lee AB, Akbar AN, Bergler W, et al. (2005) Tonsillar

homing of Epstein-Barr virus-specific CD8+ T cells and the virus-host balance.
J Clin Invest 115: 2546–2555.

36. Boyaka PN, Wright PF, Marinaro M, Kiyono H, Johnson JE, et al. (2000)

Human nasopharyngeal-associated lymphoreticular tissues. Functional analysis
of subepithelial and intraepithelial B and T cells from adenoids and tonsils.

Am J Pathol 157: 2023–2035.
37. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, et al.

(1995) Inhibition of antigen processing by the internal repeat region of the

Epstein-Barr virus nuclear antigen-1. Nature 375: 685–688.

38. Apcher S, Daskalogianni C, Manoury B, Fahraeus R (2010) Epstein Barr virus-

encoded EBNA1 interference with MHC class I antigen presentation reveals a

close correlation between mRNA translation initiation and antigen presentation.

PLoS Pathog 6: e1001151.

39. Yin Y, Manoury B, Fahraeus R (2003) Self-inhibition of synthesis and antigen

presentation by Epstein-Barr virus-encoded EBNA1. Science 301: 1371–1374.

40. Box GEP, Draper NR (1987). Empirical Model Building and Response Surfaces.

ew York, NY: John Wiley &Sons.

41. Laichalk LL, Hochberg D, Babcock GJ, Freeman RB, Thorley-Lawson DA

(2002) The dispersal of mucosal memory B cells: evidence from persistent EBV

infection. Immunity 16: 745–754.

42. Vezina HE, Balfour HH, Jr., Weller DR, Anderson BJ, Brundage RC (2010)

Valacyclovir pharmacokinetics and exploratory pharmacodynamics in young

adults with Epstein-Barr virus infectious mononucleosis. J Clin Pharmacol 50:

734–742.

43. Gershburg E, Pagano JS (2005) Epstein-Barr virus infections: prospects for

treatment. J Antimicrob Chemother 56: 277–281.

44. Nowak MA, Bangham CR (1996) Population dynamics of immune responses to

persistent viruses. Science 272: 74–79.

45. Donati D, Zhang LP, Chene A, Chen Q, Flick K, et al. (2004) Identification of a

polyclonal B-cell activator in Plasmodium falciparum. Infect Immun 72: 5412–

5418.

46. Moormann AM, Chelimo K, Sumba PO, Tisch DJ, Rochford R, et al. (2007)

Exposure to holoendemic malaria results in suppression of Epstein-Barr virus-

specific T cell immunosurveillance in Kenyan children. J Infect Dis 195: 799–

808.

47. Turk SM, Jiang R, Chesnokova LS, Hutt-Fletcher LM (2006) Antibodies to

gp350/220 enhance the ability of Epstein-Barr virus to infect epithelial cells.

J Virol 80: 9628–9633.

48. MacLennan IC (1998) B-cell receptor regulation of peripheral B cells. Curr

Opin Immunol 10: 220–225.

49. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector

memory T cell subsets: function, generation, and maintenance. Annu Rev

Immunol 22: 745–763.

50. Surh CD, Sprent J (2008) Homeostasis of naive and memory T cells. Immunity

29: 848–862.

51. Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B (2000)

Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat

Immunol 1: 47–53.

52. Shapiro M, Delgado-Eckert E (2013) Saturation effects on T-cell activation in a

model of a multi-stage pathogen. BIOMAT 2012: International Symposium on

Mathematical and Computational Biology: World Scientific.

53. Hadinoto V, Shapiro M, Greenough TC, Sullivan JL, Luzuriaga K, et al. (2008)

On the dynamics of acute EBV infection and the pathogenesis of infectious

mononucleosis. Blood 111: 1420–1427.

Re-evaluating the Model of EBV Persistence

PLOS Pathogens | www.plospathogens.org 16 October 2013 | Volume 9 | Issue 10 | e1003685


