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Summary 

In order to manipulate their environment, bacteria evolved a diverse set of secretion 

systems. Three of these were found to be able to inject their substrates directly into target 

cells, the type VI secretion system (T6SS) being the most recently discovered of these. The 

T6SS shares structural and functional homology with other contractile nanomachines such 

as the contractile phages. It is capable of delivering its substrates into both pro- and 

eukaryotes in a contact dependent manner and has become a major player in the field of 

microbial interactions. Recently, medium and high resolution structural data of T6SS 

subcomplexes and in situ structures provided detailed mechanistic insights into its 

functioning, further supported by live cell fluorescence microscopy of the assembly 

dynamics. Nonetheless, the role of some of the conserved core components is not yet fully 

understood even less so for the associated components. Moreover, despite its implication 

in numerous processes, the effector repertoire remains poorly characterized.  

In this thesis, both the effector repertoire and the functional contribution of selected T6SS 

components were characterized in Acinetobacter baylyi ADP1. We developed a new 

scarless chromosomal mutagenesis method for A. baylyi ADP1 and fluorescently labeled 

structural components of the T6SS using this method. Furthermore, we constructed 

in-frame deletions of selected T6SS components and evaluated their role by observing the 

T6SS dynamics, secretion capacity, target cell lysis and the ability to inhibit a competitor. 

The results of the fluorescence microscopy in combination with the sensitive lysis assay 

show that certain components, previously thought to be required for T6SS assembly, are in 

fact dispensable. Furthermore, we observed that most mutations which diminished the 

T6SS activity reduced the number of active T6SS structures but did not affect the sheath 

dynamics. This indicates, that these components are involved in a step preceding the 

contractile tail formation. Despite ongoing concerted efforts, we were so far unable to 

fluorescently label secreted components. 

We identified and characterized five cargo effectors and their corresponding immunity 

proteins. One of the effectors was disrupted by an insertion element and could be restored. 

All five effectors exhibited antibacterial activity and did not cross-react with non-cognate 

immunity proteins. The morphological changes of prey cells targeted by the effectors were 

observed by fluorescence microscopy of competition mixtures and allowed us to confirm 

the predicted peptidoglycan amidase activity of Tae1 and the phospholipase activity of 



    
 

Tle1. Although the bioinformatic predictions together with the observed morphological 

changes and the lysis phenotype of prey cells targeted by the remaining effectors hinted at 

the subcellular location of their respective targets, the targets themselves remain to be 

identified. Furthermore, we constructed an effector deficient strain which retained wild-

type T6SS activity and elicited the retaliatory attack of Pseudomonas aeruginosa, but failed 

to inhibit or lyse prey cells. Transcriptome data further indicated, that the damage inflicted 

by the effector deficient strain does not induce a stress response in the prey. 

Recently the T6SS was shown to be involved in the horizontal gene transfer of naturally 

competent Vibrio cholerae. Since A. baylyi ADP1 is known to be naturally competent, we 

tested whether its T6SS also contributes to horizontal gene transfer. Not only could we 

demonstrate that the T6SS facilitates the acquisition of DNA from prey cells, but also that 

lytic effectors are superior to non-lytic effectors suggesting that a lytic effector set may 

increase the ability to acquire DNA from a diverse range of bacteria. These findings provide 

further evidence that the T6SS mediated horizontal gene transfer may be a general 

characteristic of naturally competent bacteria bearing a T6SS. 

To better understand the role of the T6SS in shaping polymicrobial communities, we 

employed individual based modelling of interbacterial competition mixtures, the results of 

which we confirmed by performing the corresponding bacterial competition. We found that 

the contact dependent antagonistic interactions led to a segregation of the competitors 

minimizing their contact surface. Once segregated, the prey cells were able to survive or 

even outgrow the attack of a predator so long as the growth within the domain equaled or 

outweighed the killing on the surface of the domain. We further demonstrated that this 

critical domain size, beyond which the prey would survive, depends on the growth rate ratio 

of the competitors and the attack rate. Recently, others showed that this segregation of the 

competitors promotes the evolution of public goods. 
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I.1 Introduction 
The compartmentalization achieved by biological membranes, protein structures and other 

biomolecules forming cell envelopes, allows for reactions to take place in a confined space 

and thus under controllable conditions. All prokaryotes possess a cytoplasmic membrane 

whilst diderm bacteria (Gupta, 1998) additionally possess an outer membrane enclosing the 

periplasmic space. In order for membrane impermeable substances to enter or leave these 

compartments, a large number of translocation systems and channels have evolved. To date, 

nine secretion systems have been discovered (Desvaux et al., 2009; Lasica et al., 2017). In 

addition to translocating substrates across the own cell envelope, these may also be injected 

into target cells to manipulate them to the benefit of the injecting cell. So far, only three 

secretion systems are known to be able to inject their substrates into a target cell, which are 

the non-flagellar type III secretion system (T3SS) (Deng et al., 2017), the type IV secretion 

system (T4SS) (Christie et al., 2014) and the type VI secretion system (T6SS) (Alteri and 

Mobley, 2016). 

I.1.1 The non-flagellar type III secretion system 
Since its discovery in Yersinia in 1990 by the group of Guy Cornelis (Michiels et al., 1990), 

the T3SS has attracted significant attention due to its pivotal role in the virulence of 

devastating diseases such as plague (Plano and Schesser, 2013) and typhoid fever (Kaur 

and Jain, 2012). Nevertheless, the T3SS may also contribute to symbiotic interactions as 

shown for Rhizobium legume interactions (Fauvart and Michiels, 2008; Viprey et al., 1998). 

The T3SS likely evolved from the bacterial flagellum and shares both sequence and 

structural as well as functional homology with the flagellar system (Abby and Rocha, 

2012). It consists of three parts, a cytoplasmic complex, a large envelope spanning basal 

body and the extracellular needle or pilus, protruding from the basal body and carrying a 

tip complex at the end (Portaliou et al., 2016). Although the T3SSs of different bacteria 

have been visualized by electron microscopy, the cytoplasmic complex was usually lacking 

(Deng et al., 2017; Kubori et al., 1998). Recently, the in situ molecular architecture of the 

SPI-1 T3SS of Salmonella enterica was dissected using cryo-electron tomography by 

comparing the structures obtained with tagged components and from deletion mutants with 

those of the wild type. This yielded very detailed structural data of the cytoplasmic complex 

and of the remaining secretion system (Hu et al., 2017). In another study, the T3SS of 

Chlamydia could be observed in situ both in contact with the membrane of the eukaryotic 

host and in absence of the contact, providing an unprecedented view of the structural 



I. INTRODUCTION 

2 | P a g e  
 

rearrangements induced upon binding (Nans et al., 2015). After the needle contacts the 

target cell membrane, a translocation pore is established and the injection of effectors is 

triggered (Armentrout and Rietsch, 2016; Blocker et al., 1999; Cherradi et al., 2013; 

Guignot and Tran Van Nhieu, 2016; Murillo et al., 2016; Nans et al., 2015; Russo et al., 

2016; Veenendaal et al., 2007). The cytoplasmic complex is thought to constitute the 

sorting platform which recruits the substrates for secretion (Hu et al., 2015; Lara-Tejero et 

al., 2011; Makino et al., 2016). The substrates are then secreted in a partially unfolded state 

through the basal body and the narrow needle into the target cell (Dohlich et al., 2014; Fujii 

et al., 2012; Loquet et al., 2012; Radics et al., 2013). A fascinating insight into the effector 

translocation was gained through the observation of T3SS structures with trapped effectors 

by cryo-electron microscopy (Dohlich et al., 2014; Radics et al., 2013). While the unfolding 

of the substrate is mostly energized by ATP hydrolysis, the actual secretion seems to be 

powered by the proton motif force (Akeda and Galán, 2005; Erhardt et al., 2014; Lee and 

Rietsch, 2015; Wilharm et al., 2004). The secretion of the substrates and effectors is strictly 

hierarchical, both in time and sequence, especially because some of the effectors have 

antagonistic activities (Büttner, 2012; Mills et al., 2008). The effector repertoire is very 

diverse and each effector set is tailored to fulfill a specific function. Many effectors 

manipulate central cellular processes such as cytoskeletal dynamics, host immune 

responses and signal transduction pathways (Büttner, 2012, 2016; van der Heijden and 

Finlay, 2012; Raymond et al., 2013). It should be noted that some data suggest the existence 

of a two-step mechanism in which neither the translocon nor the effectors are directly 

incorporated into the target cell by the T3SS (Akopyan et al., 2011; Edgren et al., 2012).  

I.1.2 The type IV secretion system 
The T4SSs are a diverse family of secretion systems which can inject substrates into both 

eu- and prokaryotes. Moreover, their substrates are not restricted to proteins and may 

originate from either the cytoplasm or the periplasm (Gonzalez-Rivera et al., 2016; Locht 

et al., 2011; Pantoja et al., 2002). Apart from functioning as injection system, there are also 

T4SSs, which secrete DNA into the extracellular space as in Neisseria gonorrhoeae 

(Hamilton et al., 2005) or even take up DNA like in Helicobacter pylori (Hofreuter et al., 

2001). Similarly, effector proteins, such as pertussis toxin, may be secreted into the 

extracellular medium instead of being injected (Locht et al., 2011).  

In Gram-negative bacteria the T4SS consists of an envelope spanning complex and an 

extracellular pilus. Electron microscopy revealed, that the envelope spanning complex 
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consists of a large outer membrane complex which is connected to the inner membrane 

complex by a thin stalk, but it remains unclear from where in this structure the pilus 

emanates (Ghosal et al., 2017; Low et al., 2014; Redzej et al., 2017). Whether the pilus 

serves as a conduit or only as an attachment device is still under debate, although it has 

been demonstrated, that conjugation can take place without requiring direct cell contact 

(Babić et al., 2008; Shu et al., 2008; Trokter et al., 2014). The translocation and unfolding 

of substrates is powered by cytoplasmic ATPases (Christie et al., 2014). 

A well known class of T4SSs are the conjugation systems, which primarily inject single 

stranded DNA coupled to carrier proteins (Ilangovan et al., 2015; Lederberg and Tatum, 

1953). The transfer of mobile genetic elements (MGEs) and integrative and conjugative 

elements (ICEs) has significantly contributed to the spread of antibiotic resistances and 

pathogenicity islands (Juhas, 2015). Additionally, the T4SS can inject DNA into eukaryotes 

where it may be integrated into the chromosome. The integration is facilitated by the 

accompanying proteins. A prototypical example of this is Agrobacterium tumefaciens 

which induces tumorigenesis in plants by injecting and integrating oncogenic T-DNA 

(Pitzschke and Hirt, 2010). 

The diversity of the T4SSs is also reflected in its effector repertoire and may range from a 

single proteinaceous effector, exemplified by H. pylori which only injects the oncoprotein 

CagA (Backert et al., 2015), to over 300 different effectors injected by 

Legionella pneumophila in order to create a customized intracellular niche (So et al., 2015). 

However, T4SSs can also inject other substrates such as components of the peptidoglycan 

(Suarez et al., 2015; Viala et al., 2004). Recently the first T4SS which is able to kill bacteria 

by translocating toxic effectors was identified in Xanthomonas (Souza et al., 2015). 

Overall this functional plasticity likely makes the T4SS one of the most versatile 

macromolecular translocation systems. 

I.1.3 The type VI secretion system 
The T6SS is the most recently discovered injection system (Pukatzki et al., 2006). Prior to 

the discovery of the T6SS, phenotypes of mutants, now known to abolish T6SS activity, 

had been reported (Bladergroen et al., 2003; Enos-Berlage et al., 2005; Folkesson et al., 

2002; Nano et al., 2004; Parsons and Heffron, 2005; Potvin et al., 2003; Roest et al., 1997; 

Srinivasa Rao et al., 2004; Wang et al., 1998; Williams et al., 1996). These results and 

others derived from in vivo transcriptional profiling (Das et al., 2000; Golovliov et al., 
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1997) initiated an in silico analysis of what became known as IcmF associated homologous 

proteins (IAHP) (Das and Chaudhuri, 2003). With the discovery of the T6SS in a screen 

for Vibrio cholerae virulence factors of non-O1/O139 strains conferring resistance to 

unicellular eukaryote predation (Pukatzki et al., 2006) it was shown, that IAHP clusters 

encode T6SSs. Gene clusters encoding T6SSs are found in >25 % of sequenced Gram-

negative bacteria with a high prevalence among proteobacteria (Bingle et al., 2008; 

Shrivastava and Mande, 2008). Additionally, secretion systems related to the 

proteobacterial T6SS were discovered in Francisella (de Bruin et al., 2007), Bacteroidetes 

(Russell et al., 2014) and Amoebophilus asiaticus (Böck et al., 2017). Together these form 

four distinct phylogenetic groups, of which the proteobacterial group can further be 

subdivided into six subgroups (Barret et al., 2011, 2013; Boyer et al., 2009). Multiple 

T6SSs may be encoded on a genome, up to six were found in Burkholderia pseudomallei 

(Shalom et al., 2007), each of which can have a distinct role such as targeting bacteria or 

eukaryotes (Schwarz et al., 2010). 

IAHP were initially implicated to be involved in host association and interaction 

(Bladergroen et al., 2003; Das and Chaudhuri, 2003; Folkesson et al., 2002; Moore et al., 

2002; Srinivasa Rao et al., 2004). Early work on the T6SS supported this assumption 

(Brzuszkiewicz et al., 2006; Dudley et al., 2006; Mougous et al., 2006; Pukatzki et al., 

2006, 2007; Schell et al., 2007; Seshadri et al., 2006; Shalom et al., 2007; Zheng and Leung, 

2007). Shortly thereafter it had been recognized that T6SSs are not necessarily restricted to 

pathogenic or symbiotic species, although it was unknown, which role the T6SS may have 

in such cases (Bingle et al., 2008; Boyer et al., 2009; Persson et al., 2009). The discovery 

of the antibacterial activity of a T6SS in Pseudomonas aeruginosa opened a whole new 

perspective (Hood et al., 2010). Since then, the T6SS has been implicated to participate in 

a wide variety of processes, the most prominent of which remain to be pathogenicity 

(Hachani et al., 2016) and interbacterial competition (Alcoforado Diniz et al., 2015). 

I.1.4 Structure and function of the type VI secretion system 
The canonical proteobacterial T6SSs consist of 13 conserved components (type six 

secretion [Tss] components) and a variable number of accessory proteins (tss-associated 

gene [Tag] components) (Boyer et al., 2009; Lin et al., 2013; Shalom et al., 2007; Weber 

et al., 2016; Zheng and Leung, 2007; Zheng et al., 2011). It was found to share structural 

and functional homologies with contractile structures such as contractile bacteriophages 

(Leiman et al., 2009; Lossi et al., 2011, 2013; Pell et al., 2009; Pukatzki et al., 2007) or 
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R-type pyocins (Ge et al., 2015) as recently confirmed by solving the structure of the T6SS 

in contracted (Clemens et al., 2015; Kudryashev et al., 2015) and also in extended 

conformation (Chang et al., 2017; Wang et al., 2017) by cryo electron microscopy 

(cryo-EM) and cryo electron tomography (cryo-ET) respectively. The T6SS is thought to 

consist of three distinct subassemblies, the envelope spanning complex, the baseplate 

complex and the contractile tail (see Fig. I.1.1). 

I.1.4.1 The envelope spanning complex 

Results obtained by fluorescence microscopy suggest, that the assembly of a T6SS starts 

with the envelope spanning complex (Brunet et al., 2015; Durand et al., 2015; Gerc et al., 

Figure I.1.1: Model of the T6SS structure and dynamics 
(A)  First TssJ associates with TssM which recruits an enzyme to locally degrade the peptidoglycan. (B) The TssJM 
complex forms and associates with TssA and TssL. The baseplate comlex forms on the basis of the envelope 
spanning complex, possibly assisted by TssA, consisting of TssE, TssF, TssG, TssK and a VgrG trimer with a 
PAAR tip protein, both associated with their respective effectors. (C-D) This likely induces the co-polymerization 
of the inner Hcp tube and the contractile sheath, consisting of VipA-VipB heterodimers, in the extended state. The 
Hcp hexamers may also carry effectors. The subunits are added at the end distal to the baseplate during the co-
polymerization which is facilitated by TssA. (E) The sheath contracts propelling the inner tube and the spike 
complex with their associated effectors into the extracellular space or into the target cell. The contraction is 
envisioned to progress as a wave along the sheath starting from the baseplate. (F) The effectors are delivered to the 
cytoplasm and the periplasm of the target cell. (G) The contracted sheath is recycled in an ATP dependent manner 
by ClpV. Likely the Hcp subunits which were not ejected can be reused. (H) The fate of the membrane complex is 
not yet clear. Some evidence suggests that it may be reused. For a detailed explanation please see the main text. 
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2015; Zoued et al., 2016). First, the outer membrane protein TssJ (Aschtgen et al., 2008) 

associates with the inner membrane protein TssM, together spanning the envelope 

(Felisberto-Rodrigues et al., 2011; Zheng and Leung, 2007). Even though some TssM 

homologs bear a Walker A or B motif, the hydrolysis of ATP is only required in some 

species like A. tumefaciens (Ma et al., 2009b, 2012) and is dispensable in others like 

Edwardsiella tarda (Zheng and Leung, 2007). 

The usual peptidoglycan pores are too small to accommodate the entire envelope spanning 

complex, but recently an outer membrane bound lytic transglycosylase (Santin and 

Cascales, 2017) and a membrane bound L-alanyl-D-glutamic acid carboxypeptidase 

(Weber et al., 2016) were described to form the required pores by locally degrading the 

peptidoglycan. However, these enzymes are not universally conserved and are not 

necessarily encoded in the T6SS clusters (Santin and Cascales, 2017). 

The TssJM envelope spanning complex was shown to recruit TssA (Zoued et al., 2016). 

Thereafter or concomitantly TssL associates with the TssJMA complex (Aschtgen et al., 

2010a, 2010b, 2012; Durand et al., 2012, 2015; Ma et al., 2009b; Zheng and Leung, 2007; 

Zoued et al., 2016). The structure of the assembled TssJML envelope spanning complex 

has been solved with a resolution of 11.6 Å using negative stain EM, revealing a C5 

symmetric structure containing ten copies of each of the proteins (Durand et al., 2015). This 

complex may be anchored to the peptidoglycan either by a peptidoglycan binding domain 

carried by TssL, then referred to as evolved TssL (Ma et al., 2009b), or by an accessory 

component, which may also be membrane bound like TagL (Aschtgen et al., 2010b) or 

constitute a periplasmic protein like TagN (Aschtgen et al., 2010a). Even though it has been 

hypothesized, that the peptidoglycan binding domains anchor the T6SS to the cell wall in 

order to withstand the forces generated by the injection event, it should be noted, that there 

are species lacking a component with an obvious peptidoglycan binding domain like 

V. cholerae and E. tarda (Aschtgen et al., 2010a). Recently it has been demonstrated, that 

peptidoglycan is dispensable for T6SS activity in V. cholerae (Vettiger et al., 2017). 

I.1.4.2 The baseplate complex 

On the basis of the envelope spanning complex the baseplate complex forms, consisting of 

TssE (Basler et al., 2012; Kudryashev et al., 2015; Lossi et al., 2011; Zoued et al., 2016), 

TssF, TssG (Logger et al., 2016), TssK (Brunet et al., 2015; English et al., 2014; Zoued et 

al., 2013), VgrG (Brunet et al., 2015), and in some organisms also a TssA variant 
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(Planamente et al., 2016). VgrG was first to be recognized as a potential component of the 

baseplate due to its homology with the (gp27)3-(gp5)3 tail spike/hub complex of the T4 

phage. VgrGs form trimeric complexes, whose tips are further sharpened by a PAAR 

protein (Brunet et al., 2015; Hachani et al., 2011; Leiman et al., 2009; Pukatzki et al., 2007; 

Rigard et al., 2016; Shneider et al., 2013; Spínola-Amilibia et al., 2016; Sycheva et al.; 

Uchida et al., 2014). Furthermore, the VgrG trimers serve as polymerization base for the 

Hcp tube (Brunet et al., 2014; Lin et al., 2013). Shortly thereafter, TssE was proposed to 

constitute a component of the T6SS baseplate structure, because it shares significant 

homology with gp25, which forms a part of the T4 phage baseplate wedge, and because it 

could be co-purified with the contractile T6SS tail (Basler et al., 2012; Brackmann et al., 

2017a; Leiman et al., 2009; Lossi et al., 2011). Moreover, TssE was shown to interact with 

the cytoplasmic domain of TssL (Zoued et al., 2016). The baseplate protein forming most 

interactions is TssK, which was shown to form trimers and to interact with the cytoplasmic 

domains of TssL and TssM as well as TssA (English et al., 2014; Logger et al., 2016; 

Nguyen et al., 2017; Zoued et al., 2013). Additionally, it could be demonstrated, that TssK 

interacts with a subcomplex formed by TssF and TssG while these do not interact with 

TssK individually (Brunet et al., 2015; English et al., 2014). Moreover, TssK interacts with 

VipB and Hcp, which are part of the contractile tail structure (Zoued et al., 2013). As 

already mentioned, TssF and TssG are required to form a subcomplex in order to interact 

with TssK, which is also required for their interaction with VgrG (Brunet et al., 2015; 

English et al., 2014). Nevertheless, both TssF and TssG can form certain interactions 

independent of one another. Apart from TssG, TssF was demonstrated to interact with TssE 

and Hcp (Brunet et al., 2015). TssG on the other hand interacts with the cytoplasmic domain 

of TssM as well as TssE, VipB and Hcp (Brunet et al., 2015; Logger et al., 2016). On the 

basis of the T4 baseplate structure, TssF was recently found to share homology with gp6 

and TssG with gp7 (Brunet et al., 2015; Taylor et al., 2016). Furthermore, in accordance 

with this structural model, it was possible to purify a TssE-TssF2-TssG-TssK3 complex, 

which was proposed to constitute a baseplate wedge (English et al., 2014; Taylor et al., 

2016). Thereafter, the structure of the baseplate complex was solved at a resolution of 8.0 Å 

by cryo-EM, allowing for a more detailed model (Nazarov et al., 2018). According to the 

stoichiometry derived from the volume-to-mass ratio, the baseplate complex consists of six 

copies of TssE, TssF homo-dimers and TssG, which is likely connected to the membrane 

complex by six TssK homo-trimers, overall forming a C6 symmetric structure around the 

trimeric VgrG-PAAR complex (Nazarov et al., 2018). This is in agreement with the 
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previous model derived from the T4 baseplate structure (Nazarov et al., 2018; Taylor et al., 

2016). This structure also provides a cavity to accommodate multiple effectors decorating 

the spike complex of up to approx. 450 kDa (Nazarov et al., 2018). Moreover, the N-

terminal parts of the TssK trimer have been reported to form a structure similar to that of 

the receptor-binding protein (RBP) of siphophages, which binds to the remaining baseplate 

complex, while the C-terminus binds to the envelope spanning complex, strongly 

suggesting, that TssK evolved to connect the phage like baseplate complex to the envelope 

spanning complex (Nazarov et al., 2018; Nguyen et al., 2017). However, it is unclear how 

the C6 symmetric baseplate structure can bind to the C5 symmetric envelope spanning 

complex (Durand et al., 2015; Nazarov et al., 2018). 

A special role was attributed to TssA, which is thought to be involved in priming and 

possibly recruiting the components not only of the baseplate structure, but also the 

contractile tail, which will be addressed later on, and was shown to interact with the TssJM 

complex, TssE, TssK as well as VgrG, Hcp and VipB (English et al., 2014; Zoued et al., 

2016, 2017). TssA was described to form a homo-dodecamer with D6 symmetry, and 

although TssJLM-TssA complexes could be observed by negative-stain EM, it remains 

unclear, how the symmetry mismatch towards the C5 symmetric TssJLM complex is 

accounted for (Durand et al., 2015; Zoued et al., 2016, 2017).  

It should be noted however, that another protein, also termed TssA, sharing the N-terminal 

ImpA_N domain (PF06812), but differing in its C-terminal part, was proposed to constitute 

a component of the baseplate complex (Planamente et al., 2016). From here on, this protein 

will be referred to as TssA1, in the absence of which there was no detectable Hcp1, VgrG1a 

and Tse3 secretion (Planamente et al., 2016). Nevertheless, fluorescence microscopy 

revealed the formation of fluorescently labeled TssB1 foci, even in the absence of TssA1, 

suggesting that, although to a reduced extent, T6SS structures are still able to form 

(Planamente et al., 2016). TssA1 was shown to interact with the baseplate components 

TssF, TssK and VgrG as well as the contractile tail components VipA and Hcp (Planamente 

et al., 2016). Immunogold-labeling localized TssA1 at one of the contracted VipA-VipB 

sheath ends (Planamente et al., 2016). Furthermore, TssA1 was shown to interact with 

ClpV, possibly indicating, that TssA1 may be recycled by ClpV in a fashion similar to the 

contracted sheath (Planamente et al., 2016). 
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Finally, there is yet another TssA variant, termed TagA, also bearing the N-terminal 

ImpA_N domain, while the C-terminus contains a putative transmembrane domain and a 

VasL domain, the role of which remains to be elucidated (Zoued et al., 2017). 

Some of the above described protein interactions are not easily reconcilable with the 

putative localization and function derived from phage baseplate homologs (recently 

reviewed in (Brackmann et al., 2017b)). These interactions may be reminiscent of 

intermediate steps or transient complexes, forming throughout the assembly of the 

respective complexes. Yet, it should be kept in mind, that this conundrum may arise simply 

because the interactions were often determined by co-immunoprecipitation and bacterial 

two hybrid assays, which by themselves gave differing results for different fusion 

constructs. 

I.1.4.3 The contractile tail 

Once the baseplate structure has formed on the base of the envelope spanning complex, the 

contractile sheath assembles on it. The formation of the contractile tail complex is thought 

to progress as a co-polymerization of the inner Hcp tube with the contractile sheath in its 

extended conformation (Basler, 2015; Brunet et al., 2014). Hcp shares homology with gpV 

of the λ phage, which is not a contractile phage, and gp19 of the T4 phage, which forms the 

spike tube (Leiman et al., 2009; Mougous et al., 2006; Pell et al., 2009). Depending on the 

concentration, Hcp forms stable homo-hexameric rings in solution (Jobichen et al., 2010; 

Lim et al., 2015; Mougous et al., 2006; Ruiz et al., 2015; Silverman et al., 2013). The crystal 

packing gave differing results as to how the Hcp homo-hexameric subunits stack to form a 

tube (Douzi et al., 2014; Filippova et al.; Jobichen et al., 2010; Lim et al., 2015; Mougous 

et al., 2006; Osipiuk et al., 2011; Ruiz et al., 2015). By specifically introducing cysteines 

and crosslinking these by oxidation, polymeric Hcp tubes could be obtained, in which the 

homo-hexameric rings were stacked in a head to tail fashion (Ballister et al., 2008; Brunet 

et al., 2014; Douzi et al., 2014). Using engineered Hcp variants bearing cysteines, which 

allowed the discrimination between the different stacking modes, it could be demonstrated, 

that the head to tail stacking is likely the productive form, while other forms arise in absence 

of any of the baseplate proteins (Brunet et al., 2014, 2015). Based on the predictions, these 

structures would assemble by linear head to tail stacking of the Hcp homo-hexamers, 

leading to tubes lacking helicity (Brunet et al., 2014). As elaborated below, the surrounding 

contractile sheath, with which Hcp interacts, exhibits helicity, which would lead to a 

mismatch between the Hcp tube and the contractile sheath. Recent cryo-ET and cryo-EM 
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data of extended T6SS structures revealed, that in vivo Hcp tubes have the same helical 

parameters as the surrounding contractile sheath (Chang et al., 2017; Wang et al., 2017). 

The absence of higher polymers of Hcp homo-hexamers in solution and the low affinity of 

the Hcp homo-hexamers towards themselves suggest, that the Hcp tube is stabilized by the 

surrounding contractile sheath (Douzi et al., 2014). 

This contractile sheath is composed of hexamers of VipA-VipB heterodimers, forming a 

six stranded helical tube, the core of which shares structural homology with other 

contractile systems such as the T4 phage (Basler et al., 2012; Bönemann et al., 2009; Chang 

et al., 2017; Clemens et al., 2015; Kudryashev et al., 2015; Leiman et al., 2009; Lossi et 

al., 2013; Wang et al., 2017). Due to its homology with gp25, which forms part of the T4 

baseplate wedge, and recent structural data, TssE was proposed to form the base for the 

polymerization of the contractile sheath (Kudryashev et al., 2015). Although often 

described to be essential, more sensitive assays revealed, that secretion competent T6SS 

structures can form even in the absence of TssE, albeit with a much lower frequency (Basler 

et al., 2012; Brunet et al., 2015; Vettiger and Basler, 2016; Weber et al., 2016; Zheng et al., 

2011). The breakthrough observation of the assembly, contraction and disassembly of 

VipA-sfGFP fluorescently labeled contractile sheath in vivo provided first evidence for the 

inverted contractile phage mechanism; this was previously proposed based on structural 

homologies of T6SS components (Basler et al., 2012). Furthermore, the authors were able 

to observe two different conformations of the contractile tail by cryo-ET, one of which was 

narrower, longer and supposedly filled by the Hcp tube, the other was broader, shorter and 

apparently hollow (Basler et al., 2012). The long, narrow and filled form was proposed to 

represent the extended state, whereas the short, broad and empty form was proposed to 

represent the contracted state of the contractile tail (Basler et al., 2012). By now, both the 

contracted and extended contractile tail structures could be solved, providing clear evidence 

for the inverted contractile phage model (Chang et al., 2017; Clemens et al., 2015; Kube et 

al., 2014; Kudryashev et al., 2015; Wang et al., 2017). 

Using an elegant fluorescence recovery after photobleaching (FRAP) experiment it was 

recently demonstrated, that contractile sheath subunits are exclusively incorporated at the 

end distal to the baseplate (Vettiger et al., 2017). Furthermore, the authors provide 

convincing evidence that, at least in V. cholerae, there is no regulation of the contractile 

T6SS tail length, which can elongate up to several micrometers in spheroplasts, limited 

only by the cell size (Vettiger et al., 2017). Fluorescence microscopy revealed, that after 
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the recruitment of the baseplate complex, the TssA homo-dodecamer remains attached to 

the growing end of the contractile tail structure (Zoued et al., 2016). The authors postulate, 

that apart from its involvement in the formation of the baseplate, TssA primes and 

coordinates the polymerization of the contractile tail of the T6SS (Zoued et al., 2016). The 

central part of the TssA homo-dodecamer consists of head-to-head stacked homo-

hexamers, formed by the C-terminal parts of the TssA subunits. These hexamers consist of 

six triangular wedges which were hypothesized to allow Hcp passage upon rearrangement, 

further supported by the interaction of this domain with Hcp and VgrG (Zoued et al., 2016). 

Furthermore, in addition to the interaction of TssA with VipB, molecular docking of TssA 

to an extended and contracted sheath model suggested a higher binding affinity to the 

extended state, which the authors propose may indicate, that TssA stabilizes the extended 

conformation of the sheath retaining it in a metastable configuration (Zoued et al., 2016). 

The exact mechanism of the tail-subunit incorporation remains to be elucidated (Zoued et 

al., 2016, 2017). 

I.1.4.4 The sheath contraction 

What exactly triggers the contraction of the sheath is still unclear, however, in analogy to 

T4 phage tails, the contraction is envisioned to progress from the baseplate as a wave along 

the sheath (Basler, 2015; Leiman and Shneider, 2012; Moody, 1967, 1973; Wang et al., 

2017). This putative mechanism is further supported by a recent rational mutagenesis of 

the sheath components yielding noncontractile sheath (Brackmann et al., 2017a; Wang et 

al., 2017). Among other findings, these studies identified inter-strand and inter-ring linkers, 

which propagate the contraction in a ring to ring fashion, supporting the wave like 

contraction mechanism (Brackmann et al., 2017a; Wang et al., 2017). To date, the 

contraction event could not be time resolved, but was shown to progress with at least 

800 nm ms-1 and lead to a reduction in length of approx. 50 % (Basler et al., 2012; Vettiger 

et al., 2017). Furthermore, the contraction of a sheath ring results in a rotation of 5.8 ° of 

both the downstream sheath subunits as well as the coupled PAAR-VgrG-Hcp complex, 

surmounting in a counter clockwise rotational speed of at least 477,000 revolutions per 

minute (rpm), releasing the impressive total energy of approx. 44,000 kcal mol-1 (Wang et 

al., 2017). Among other things, the long sheath length has been hypothesized to be required 

in order to translocate large hydrophilic substrates by increasing the energy release, which 

is thought to be proportional to the sheath length (Vettiger et al., 2017). Even though the 

total energy release is likely proportional to the sheath length, I would assume, that the 
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force generated at any point in time should only be dependent on the contraction wave, 

because only the contracting sheath rings contribute to the force generation. Thus, I 

hypothesize, that the force generation is independent of the sheath length, if the sheath is 

significantly longer than the contraction wave and assuming that the friction generated by 

the longer sheath is negligible. Obviously, these assumptions will be violated at both 

extremes of sheath length. 

Hcp has been described to interact with VipA (Brunet et al., 2014), but the structural data 

of the extended T6SS tail suggests, that the interaction is actually fostered by an attachment 

α-helix of VipB similar to what has been observed for pyocins (Chang et al., 2017; Ge et 

al., 2015; Wang et al., 2017). During the contraction of a sheath ring, the interaction with 

Hcp is released, which indicates that, based on the contraction wave model, the Hcp tube 

is held by the remaining yet uncontracted sheath, thus conveying the translation of the 

PAAR-VgrG-Hcp complex, which may be assisted by the TssA cap complex (Wang et al., 

2017; Zoued et al., 2016). 

I.1.4.5 Recycling of the contracted sheath by ClpV 

Unlike Hcp, the contractile sheath subunits have the propensity to form higher order 

molecular aggregates when present at high concentration and in the absence of ClpV 

(Bönemann et al., 2009; Lossi et al., 2013). These aggregates resemble the structures 

formed by contracted T4 sheath or polysheath (Leiman et al., 2009). Interestingly, these 

aggregates could be disassembled by the AAA+ ATPase ClpV in an ATP dependent 

manner (Bönemann et al., 2009). Indeed, in vivo the contracted sheath is selectively 

disassembled by ClpV, which specifically interacts with VipB (Basler and Mekalanos, 

2012; Basler et al., 2012; Douzi et al., 2016; Kapitein et al., 2013; Kube et al., 2014; 

Pietrosiuk et al., 2011), in some cases assisted by TagJ, which in turn binds to VipA (Förster 

et al., 2014; Lossi et al., 2012). Interestingly, ClpV is neither essential for T6SS mediated 

killing nor for the formation of contractile T6SS structures, although both takes place to a 

greatly reduced extent in the absence of ClpV (Basler et al., 2012; Zheng et al., 2011). In 

Francisella novicida, which does not encode a homolog of ClpV, the related chaperone 

ClpB fulfils this function (Brodmann et al., 2017). The structures of both the extended and 

contracted T6SS sheath substantiate the prior hypothesis, that the specific disassembly of 

the contracted sheath is due to the steric inaccessibility of domain 3 bearing the ClpV 

binding site in the extended state, which is exposed upon contraction (Basler and 

Mekalanos, 2012; Chang et al., 2017; Kapitein et al., 2013; Kube et al., 2014; Kudryashev 
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et al., 2015; Wang et al., 2017). The disassembly of the contracted sheath was suggested to 

restore the high energy state of the VipA-VipB subunits, although the mechanistic details 

remain to be elucidated (Basler and Mekalanos, 2012; Basler et al., 2012; Douzi et al., 

2016; Kapitein et al., 2013; Kube et al., 2014; Pietrosiuk et al., 2011). 

I.1.4.6 Rearming the T6SS 

Due to the low stability of the Hcp tube in absence of the stabilizing sheath interactions, 

the ejected tube and the remaining tube exposed by the sheath recycling, will likely 

dissociate, and retained subunits may be reused (Douzi et al., 2014). The fate of the 

baseplate and membrane complex may vary depending on the species. In Escherichia coli 

it has been shown, that both the membrane complexes and the baseplates likely 

preassemble, and that they may be reused for multiple secretion events (Brunet et al., 2015; 

Durand et al., 2015). In Serratia marcescens TssL has been shown to form mobile foci, 

possibly suggesting the preassembly of partial envelope spanning complexes not yet 

associated with TssJ (Gerc et al., 2015). It remains unknown, how the localization or 

relocalization of the T6SS is achieved, considering, that the formation of the envelope 

spanning complex requires the local degradation of peptidoglycan, and that the complex 

may be anchored to the peptidoglycan, the formation of static reusable envelope spanning 

complexes is appealing (Aschtgen et al., 2010a; Brunet et al., 2015; Durand et al., 2015; 

Santin and Cascales, 2017; Weber et al., 2016), but likely not sufficient to explain the Tit-

for-tat T6SS dynamics of P. aeruginosa, which requires the precise and timely localization 

of the T6SS (Basler and Mekalanos, 2012; Basler et al., 2013). 

I.1.4.7 Posttranslational regulation of the T6SS  

Overall differing T6SS dynamics have been observed. In V. cholerae the T6SS was 

described to continuously fire indiscriminately at the surrounding (Basler et al., 2012). In 

stark contrast, the H1-T6SS in P. aeruginosa was shown to specifically launch retaliatory 

attacks (Basler et al., 2013). In order to achieve this, the assembly of the T6SS is localized 

to the site of an outer membrane damage (Basler and Mekalanos, 2012; Basler et al., 2013; 

Ho et al., 2013; Wilton et al., 2016). The localization and the posttranslational activation 

of the H1-T6SS was shown to depend on the TagQRST-PpkA-Fha1 signaling cascade 

(Basler et al., 2013; Casabona et al., 2013; Hsu et al., 2009; Mougous et al., 2007). 

TagQRST likely transduces the signal to the membrane bound serine-threonine kinase 

PpkA, which in turn phosphorylates Fha1 (Casabona et al., 2013; Hsu et al., 2009; Mougous 

et al., 2007). The phosphorylated Fha1 localizes and activates the H1-T6SS by a still 
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unknown mechanism (Mougous et al., 2007). Fha1 was shown to form a complex with 

ClpV also in the absence of PpkA, the role of which is unclear (Hsu et al., 2009). The 

phosphorylated Fha1 is then dephosphorylated by PppA, inactivating the T6SS (Mougous 

et al., 2007). Similar to the H1-T6SS in P. aeruginosa, the T6SS activation by Fha 

phosphorylation has also been observed in S. marcescens, in which the input signal seems 

to differ as it lacks the TagQRST components (Fritsch et al., 2013). In contrast, TssL is 

phosphorylated by PpkA in A. tumefaciens, which then activates the ATPase activity of 

TssM. Thereafter, Fha binds to the phosphorylated TssL, activating the T6SS (Lin et al., 

2014). In addition to the threonine phosphorylation pathway, the H1-T6SS in P. aeruginosa 

is independently posttranslationally regulated by TagF (Silverman et al., 2011). TagF is a 

repressor of the H1-T6SS, which inhibits the T6SS activity by an unknown mechanism 

(Silverman et al., 2011). The derepression of the T6SS in absence of TagF requires the 

presence of Fha1, but neither the threonine phosphorylation pathway nor the 

phosphorylation of Fha1 (Silverman et al., 2011). Thus it has been hypothesized, that 

different signals may either activate the H1-T6SS by the threonine phosphorylation 

pathway or the derepression via TagF (Silverman et al., 2011). Interestingly, TagF is also 

present in some species which lack both the threonine phosphorylation pathway and an 

identifiable homolog of Fha, like Acinetobacter baylyi (Weber et al., 2013), or only the 

threonine phosphorylation pathway (Silverman et al., 2011). Furthermore, TagF occurs as 

a TagF-PppA fusion in some strains (Silverman et al., 2011). Taken together there seems 

to exist a wide variety of posttranslational regulatory pathways likely adapted to the specific 

function of the respective T6SS. 

With regard to the subcellular localization of the T6SS it is intriguing, that a number of 

T6SS have been observed to exhibit preferential polar localization, all of which were 

described to be targeting eukaryotes (Brodmann et al., 2017; Schwarz et al., 2010, 2014; 

Wan et al., 2017).  

I.1.5 Type VI secretion system effectors 
As a consequence of the above described injection mechanism, the delivery of T6SS cargo 

or components is strictly contact dependent (Hood et al., 2010; Pukatzki et al., 2006). 

Recently, an elegant bacterial competition assay was used to elucidate the subcellular 

localization of T6SS components injected into diderm bacteria, revealing, that they may be 

injected into the cytoplasm of the target cells (Vettiger and Basler, 2016). The authors also 

demonstrated, that the injected T6SS components could be reused by isogenic sister cells 
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lacking secreted components (Vettiger and Basler, 2016). In order to simplify the following 

discussion, any secreted/injected cargo or component of the T6SS eliciting an effect in the 

target will be referred to as an effector. 

So far, the secreted components Hcp, VgrG and PAAR were solely treated as structural 

components of the T6SS. Due to the previous definition, these components may constitute 

effectors even in the absence of an identifiable catalytically active domain. For example, 

Hcp of Aeromonas hydrophila SSU inhibits the phagocytosis and induces the production 

of IL-10 and TGF-β by macrophages even without the need to be injected into the target 

cell (Suarez et al., 2010a). Additionally, it induces apoptosis when expressed in HeLa cells 

(Suarez et al., 2008). However, many T6SS effectors described to date constitute either 

extensions of the secreted structural components, then termed evolved effectors, or 

proteins, which bind noncovalently to the structural components, then termed cargo 

effectors (reviewed in (Alcoforado Diniz et al., 2015)). By now, both evolved and cargo 

effectors have been identified for each secreted T6SS component, making the T6SS an 

incredibly versatile delivery system. 

I.1.5.1 The T6SS as a versatile effector delivery system 
The first identified evolved effector was VgrG-1 of V. cholerae V52, which carries an actin 

crosslinking domain as a C-terminal extension (Pukatzki et al., 2007). Already in this paper, 

the authors identified a large number of VgrG homologs carrying C-terminal extensions 

with a predicted catalytic activity using a bioinformatic approach (Pukatzki et al., 2007). 

As mentioned before, VgrGs trimerize, forming a part of the spike complex (Hachani et al., 

2011; Leiman et al., 2009; Pukatzki et al., 2007; Spínola-Amilibia et al., 2016; Sycheva et 

al.; Uchida et al., 2014). Apart from homo-trimers, these may also form hetero-trimers and 

thereby possibly inject multiple different effectors at the same time (Brooks et al., 2013; 

Hachani et al., 2011; Pukatzki et al., 2006, 2007). In some cases at least one of the VgrGs 

must not carry a C-terminal extension, which may indicate, that there is a spacial constraint 

(Pukatzki et al., 2006, 2007). Alternatively, it may be a consequence of only a certain 

combination of VgrGs being able to form a trimer (Pukatzki et al., 2007; Zheng et al., 

2011). Interestingly, the C-terminal domain is not necessarily essential for the translocation 

and may be exchanged, further suggesting, that a new T6SS effector may be created by 

fusing a toxic domain to the C-terminus of a VgrG (Ho et al., 2017; Ma et al., 2009a). Apart 

from the evolved effector VgrGs, there are others that carry only a small C-terminal 

domain, which fosters noncovalent protein-protein interactions with a specific cargo 
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effector, usually found genetically linked to its VgrG (Bondage et al., 2016; Flaugnatti et 

al., 2016; Hachani et al., 2014). Similar to the evolved effector VgrGs, swapping the C-

terminal protein-protein interaction domains retargets the corresponding cargo effectors to 

the respective VgrGs (Bondage et al., 2016). Moreover, a specific effector adaptor may be 

required to facilitate the binding of an effector to its corresponding VgrG, which itself is 

not secreted (Bondage et al., 2016; Liang et al., 2015; Miyata et al., 2013; Unterweger et 

al., 2015). Furthermore, VgrGs carrying a catalytically active C-terminal extension may 

additionally bind other effectors noncovalently (Dong et al., 2013; Unterweger et al., 2015). 

The number of co-encoded VgrGs varies widely among the bacteria and may range from 1 

to 32, yielding an incredible combinatorial diversity (Ho et al., 2014). Unexpectedly, 

certain VgrGs, not carrying a C-terminal toxin domain, were found to be secreted 

independent of a T6SS, some of which are still able to induce target killing to a low level, 

suggesting the co-translocation of their cargo effector (Barker et al., 2009; Hachani et al., 

2011; Weber et al., 2013, 2016). Moreover, some VgrGs and T6SS effectors may also be 

translocated from the cytosol to the periplasm in a T6SS independent manner, which was 

hypothesized to allow effectors with a periplasmic target to be translocated to the periplasm 

when injected into the cytoplasm by the T6SS (Ho et al., 2017). 

As previously mentioned, the VgrG trimers are further sharpened by a PAAR protein 

(Rigard et al., 2016; Shneider et al., 2013). These PAAR proteins may carry N- or C-

terminal extensions or both, which may constitute toxin domains or domains facilitating 

protein-protein interactions (Bondage et al., 2016; Diniz and Coulthurst, 2015; Fritsch et 

al., 2013; Hachani et al., 2014; Ma et al., 2014; Rigard et al., 2016; Shneider et al., 2013; 

Whitney et al., 2014; Zhang et al., 2012). Similar to the specific VgrG-effector interaction, 

also the PAAR-VgrG interaction may be specific (Cianfanelli et al., 2016; Hachani et al., 

2014; Whitney et al., 2014), but there are also cases in which distinct PAAR bearing 

proteins bind to the same VgrG protein with different affinities (Cianfanelli et al., 2016). 

Again in analogy to the effectors, some PAAR proteins require a specific adapter protein 

in order to bind to the VgrG complex, albeit the adapter is not secreted (Bondage et al., 

2016; Cianfanelli et al., 2016; Diniz and Coulthurst, 2015; Whitney et al., 2015). 

The VgrG-PAAR spike complex, although possibly decorated with multiple toxins, only 

transports a rather small number of effectors upon its ejection. On the other hand, a large 

number of Hcp subunits is secreted/injected. Indeed, a variety of small effectors have been 

identified, which bind noncovalently to the lumen of the Hcp hexamers (Silverman et al., 



I. INTRODUCTION 

17 | P a g e  
 

2013; Zheng and Leung, 2007). Finally, Hcp proteins carrying a C-terminal toxin domain 

were also recently identified (Blondel et al., 2009; Ma et al., 2017). With an inner diameter 

of approx. 40 Å, the lumen of the Hcp tube is rather small  (Mougous et al., 2006) 

indicating, that the Hcp tube is likely not entirely composed of Hcp proteins carrying an 

effector domain. Indeed, two Hcp proteins, which do not carry a C-terminal extension, were 

found to be essential for the secretion of the evolved Hcp effector suggesting, that these 

form a hetero-hexamer (Ma et al., 2017). 

I.1.5.2 The diverse T6SS effector repertoire 
Although many phenotypes were attributed to the T6SS, only few of these were 

investigated to the level of individual secreted/injected effectors or its components, and 

even less have been characterized biochemically (Hachani et al., 2016). One way to group 

the effectors is by their targeted kingdom. As a consequence of their subcellular target, 

some effectors only target prokaryotes or eukaryotes, whereas others target components 

conserved in both pro- and eukaryotes constituting cross-kingdom effectors. As elaborated 

in the following sections, many effectors characterized to date target conserved subcellular 

components. Apart from toxic effectors, three T6SS substrates, involved in zinc (Wang et 

al., 2015), manganese (Si et al., 2017) and iron (Lin et al., 2017) acquisition, have recently 

been identified, further expanding the repertoire of the T6SS. 

The immense diversity of T6SS effectors is, at least in part, fostered by their modularity, 

which enables the reuse or adaptation of existing toxin domains. The effectors often belong 

to the group of polymorphic toxins, which consist of an N-terminal trafficking domain and 

an exchangeable C-terminal toxin domain (Jamet and Nassif, 2015; Zhang et al., 2012). I 

would however suggest to extend the definition of polymorphic toxins to any type of 

modular toxin, which consists of a trafficking domain, be it N- or C-terminal, and 

interchangeable toxin domains. A prominent group of polymorphic T6SS toxins is formed 

by the rearrangement hotspot (RHS) and YD repeat containing proteins, which carry highly 

variable C-terminal toxin domains (Koskiniemi et al., 2013; Zhang et al., 2012). The RHS 

domain was shown to form a large cage or shell like structure, consisting of β-sheets, which 

accommodates the toxic C-terminal domain (Busby et al., 2013). As detailed before, 

effectors may constitute extensions of secreted structural components, which are 

exchangeable within certain limits, thus also forming polymorphic toxins (Zhang et al., 

2012). Another group of polymorphic toxins is formed by the “marker for type six 

effectors” (MIX) motif, bearing effectors often found genetically linked to secreted T6SS 
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components (Salomon, 2016; Salomon et al., 2014). Furthermore, at least the cargo 

effectors, translocated by the VgrG/PAAR spike complex, often bind to protein-protein 

interaction domains carried by the structural components which, when exchanged, can 

retarget the corresponding effector (Bondage et al., 2016). This indicates, that the cargo 

effectors may also form a group of “indirect” polymorphic toxins. Apart from entirely 

different toxins, the coevolution of effectors and immunity proteins was shown to yield 

non-cross reactive, and thereby incompatible, effector-immunity subfamilies (Cardarelli et 

al., 2015; Unterweger et al., 2014). 

Interestingly, the intra-species competition or self from non-self discrimination may be 

determined by differing sets of T6SS effectors as exemplified by V. cholerae (Borgeaud et 

al., 2015; Thomas et al., 2017; Unterweger et al., 2014), Bacteroides fragilis (Chatzidaki-

Livanis et al., 2016; Hecht et al., 2016; Russell et al., 2014; Wexler et al., 2016) and 

Proteus mirabilis (Alteri et al., 2013; Wenren et al., 2013). Different V. cholerae strains 

were found to harbor diverse effector sets, which leads to the competition of strains with 

incompatible sets and coexistence of strains with the same set (Unterweger et al., 2014). 

Strikingly, the toxigenic V. cholerae strains all carry compatible effector sets (Unterweger 

et al., 2014). Similarly, different B. fragilis strains compete by means of their effector set 

(Chatzidaki-Livanis et al., 2016; Hecht et al., 2016; Wexler et al., 2016). There are both 

symbiotic and enterotoxigenic B. fragilis strains, the latter cause acute diarrhea and are 

associated with inflammatory bowel disease as well as colon cancer (reviewed in (Brennan 

and Garrett, 2016)). A recent study found that certain nontoxigenic strains are able to utilize 

their T6SS to outcompete toxigenic strains in a C57BL/6J mouse model (Hecht et al., 

2016). This exciting result serves as a proof of principle to use symbiotic strains, capable 

of outcompeting the toxigenic strains, as a therapeutic strategy (Hecht et al., 2016). 

P. mirabilis is known to exhibit territorial behavior, and different incompatible strains do 

not mix when swarming, forming a macroscopically visible boundary known as Dienes line 

at their interface (Dienes, 1946). This was later shown to be a T6SS dependent phenotype 

and to rely on incompatible effector sets (Alteri et al., 2013; Wenren et al., 2013). 

I.1.5.3 Anti-eukaryotic effectors 
The first T6SS effector to have been characterized was VgrG-1 from V. cholerae, which 

carries a C-terminal actin crosslinking domain (Pukatzki et al., 2006, 2007), the injection 

of which is dependent on the phagocytosis of the bacterium (Ma et al., 2009a). The 

crosslinking of actin then prevents any further phagocytosis, protecting the remaining 
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bacteria (Ma et al., 2009a). In an infant mouse model, the fluid accumulation in the intestine 

was solely dependent on the actin crosslinking domain of VgrG-1 (Ma and Mekalanos, 

2010). Another VgrG, injected by A. hydrophila, was shown to carry a C-terminal 

vegetative insecticidal protein (VIP-2) domain, catalyzing the ADP ribosylation of actin, 

which disrupts the actin cytoskeleton and induces apoptosis in HeLa cells (Suarez et al., 

2010b). The cargo effector TecA, secreted by Burkholderia cenocepacia, inactivates the 

RhoA and Rac1 GTPases by deamidating a conserved asparagine in the switch-I region, 

thereby disrupting the actin cytoskeleton and inducing the caspase-1 inflammasome 

(Aubert et al., 2016). In an intranasal mouse model, the TecA deficient B. cenocepacia was 

no longer able to cause a lung inflammation (Aubert et al., 2016). However, the activation 

of the innate immune system by TecA protected mice against B. cenocepacia infection in 

a peritoneal infection model, whereas the mice succumbed the infection with the TecA 

deficient strain (Aubert et al., 2016). E. tarda on the other hand prevents the NLRP3 

inflammasome activation by injecting the cargo effector EvpP, which interferes with ASC 

oligomerization by suppressing the cytoplasmic Ca2+ increase, precluding the activation of 

the Ca2+-dependent c-Jun N-terminal kinase (Chen et al., 2017). 

Contrary to preventing phagocytosis, VgrG2b of P. aeruginosa PAO1 can induce its 

microtubule dependent uptake by nonphagocytic HeLa or Calu-3 cells (Sana et al., 2012, 

2015). The microtubule dependent uptake is facilitated by the interaction of the C-terminal 

domain of VgrG2b with the γ-tubulin ring complex, the mechanism of which remains to be 

elucidated (Sana et al., 2015). 

Once phagocytosed, bacteria are usually confronted with reactive oxygen species (ROS), 

which the recently discovered Mn-catalase KatN, secreted/injected by the T6SS of the 

enterohemorrhagic E. coli EDL933, detoxifies (Wan et al., 2017). The survival of the KatN 

deficient strain was significantly reduced in RAW264.7 macrophages, primary peritoneal 

macrophages, but not in the BALB/c mouse model (Wan et al., 2017). 

Yersinia pseudotuberculosis secretes YezP, a zinc binding protein, via its T6SS-4, which 

plays a crucial role in Zn2+ acquisition (Wang et al., 2015). The Zn2+ acquisition is in turn 

involved in the protection of the bacterium against oxidative stress, especially the formation 

of hydroxyl radicals (Wang et al., 2015). Consistent with this role, a YezP deficient strain 

is attenuated in its virulence towards C57BL/6 mice (Wang et al., 2015). Similarly, 

Burkholderia thailandensis secretes TseM, a Mn2+ binding protein, via its T6SS-4, which 

contributes to the Mn2+ scavenging and is also implicated in the resistance towards 
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oxidative stress (Si et al., 2017). It should be noted, that these metal scavenging pathways 

may also contribute to interbacterial competition. 

Burkholderia spp. secrete VgrG-5 via the T6SS-5, the C-terminal domain of which induces 

the membrane fusion of adjacent mammalian host cells, leading to the well known 

multinucleated giant cells (MNGC) phenotype (Schwarz et al., 2014). The lack of the 

C-terminal domain renders B. thailandensis avirulent in the aerosol infection C57BL/6 

mouse model (Schwarz et al., 2014). 

As mentioned before, also structural components, which do not carry an apparent catalytic 

domain, may elicit an effect in the target. Among these Hcp of A. hydrophila SSU has been 

shown to induce apoptosis in HeLa cells (Suarez et al., 2008) and inhibit the phagocytosis 

by macrophages (Suarez et al., 2010a), the mechanism of which remains unknown. Purified 

Hcp1 of E. coli K1 added to the growth medium of human brain microvascular endothelial 

cells induced the formation of actin stress fibers and apoptosis by caspase 8 (Zhou et al., 

2012). 

I.1.5.4 Anti-prokaryotic effectors 
Unlike anti-eukaryotic effectors, which cause no harm to the secreting bacterium, the anti-

prokaryotic and cross-kingdom effectors are always found co-encoded with their cognate 

immunity protein (Alcoforado Diniz et al., 2015).  

 
Figure I.1.2: Peptidoglycan targeting effectors 
The cleavage sites of biochemically characterize peptidoglycan targeting T6SS effectors are indicated by 
colored arrows. Please refer to the main text for additional details. 

A large family of anti-prokaryotic T6SS effectors is formed by the peptidoglycan amidases 

(Tae; see Fig. I.1.2), which is comprised of four distinct groups (Russell et al., 2012). Tae1, 

secreted by P. aeruginosa, belongs to group 1 and cleaves the 

γ-D-glutamyl-L-meso-diaminopimelic acid isopeptide bond in the donor peptide of the 

tetra-tetra peptide crosslinks and the non-crosslinked pentapeptide as well as both donor 
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and acceptor peptides of penta-tetra peptide crosslinks (Chou et al., 2012; Hood et al., 2010; 

Russell et al., 2011). Unlike Tae1, Tae2, which belongs to class 2, and is secreted by the 

T6SS-1 of B. thailandensis, cleaves the D,D-amide bond of the meso-diaminopimelic acid 

D-alanine crosslink (Russell et al., 2012). A representative peptidoglycan amidase of class 

3, Tae3ST of Salmonella Typhi, was demonstrated to have the same target as Tae2 (Russell 

et al., 2012). Tae4TM of Salmonella Typhimurium, a representative of class 4, was shown 

to hydrolyze the γ-D-glutamyl-L-meso-diaminopimelic acid isopeptide bond in the 

acceptor peptide and non-crosslinked tetrapeptides, unlike Tae1 (Russell et al., 2012). The 

biochemical characterization of two class 4 peptidoglycan amidase effectors from 

S. marcescens indicated that there is also functional diversity within the classes (English et 

al., 2012; Srikannathasan et al., 2013). While Ssp1 and Ssp2 both cleave the 

γ-D-glutamyl-L-meso-diaminopimelic acid isopeptide bond, Ssp2 only cleaves the 

acceptor peptide of the cross-linked tetrapeptides, whereas Ssp1 cleaves monomeric 

tripeptides, tetrapeptides, pentapeptides as well as both crosslinked forms of tetra-penta and 

tetra-tetra peptides of both acceptor and donor peptides (Srikannathasan et al., 2013). 

V. cholerae secretes the putative amidase TseH, which has been demonstrated to cleave 

peptidoglycan, but the precise target remains to be elucidated (Altindis et al., 2015). 

In addition to the amidases also a family of glycoside hydrolases (Tge; see Fig. I.1.2) targets 

the peptidoglycan, which is comprised of three groups (Whitney et al., 2013). The 

muramidase Tge1 of P. aeruginosa belongs to group 1 and hydrolyzes the β(1,4) bond 

between N-acetylmuramic acid and N-acetyl-D-glucosamine (Russell et al., 2011). Another 

effector, Tge2, of Pseudomonas protegens belonging to group 2, was shown to cleave 

peptidoglycan, but due to its similarity to N-acetylglucosaminidases its cleavage target 

remains to be elucidated (Whitney et al., 2013). Similarly, V. cholerae secretes VgrG-3, 

which carries a C-terminal glycoside hydrolase domain unrelated to the Tge family (Brooks 

et al., 2013; Dong et al., 2013; Yang et al., 2014). Interestingly, even though some of the 

peptidoglycan targeting enzymes are capable of cleaving the peptidoglycan of Gram-

positive bacteria, the survival of the Gram-positive bacteria was not affected in competition 

experiments (Chou et al., 2012; MacIntyre et al., 2010; Schwarz et al., 2010). 

Another class of anti-prokaryotic effectors are the DNAses. The RhsA and RhsB effectors 

secreted by Dickeya dadantii were the first T6SS DNAse effectors to be described 

(Koskiniemi et al., 2013). Both share a very similar N-terminal domain but carry differing 

C-terminal toxin domains (Koskiniemi et al., 2013). RhsA carries an NS_2 endonuclease 
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domain, whereas RhsB carries a HNH-endonuclease domain (Koskiniemi et al., 2013). 

S. marcescens also employs an RHS domain containing effector, Rhs2, which bears a 

C-terminal HNH-endonuclease domain (Diniz and Coulthurst, 2015). E. coli secretes 

Hcp-ET1, which bears a C-terminal HNH-nuclease domain or an Hcp carrying a Pyocin 

S3-Colicin-DNAse fusion domain (Ma et al., 2017). Alternatively, an Hcp, bearing only 

the Pyocin S3 domain, may be encoded together with a cargo Colicin-DNAase, both of 

which are secreted (Ma et al., 2017). Effectors belonging to a distinct superfamily of 

DNAses were identified in A. tumefaciens, which secretes Tde1 and Tde2, both of which 

carry a C-terminal toxin_43 DNAse domain (Ma et al., 2014; Zhang et al., 2012). DNAses 

could potentially also target eukaryotes, but those described to date were only implied in 

interbacterial competition. 

The T6SS effector Tse6, secreted by P. aeruginosa, is a glycohydrolase and targets the 

conserved coenzymes nicotinamide adenine dinucleotide (NAD+) and the related 

phosphorylated form NADP+, cleaving off the nicotinamide moiety (Whitney et al., 2014, 

2015). The depletion of NAD(P)+ leads to stasis of the targeted bacteria (Whitney et al., 

2014, 2015). Tse6 bears a PAAR domain surrounded by three putative transmembrane 

helices. Interestingly, Tse6 increasingly partitions to the membrane in absence of its 

specific VgrG and further requires binding to the elongation factor Tu in order to access 

the target cytoplasm, the mechanism of which is not yet understood (Whitney et al., 2015). 

Another effector, Tse2, secreted by P. aeruginosa was suggested to require NAD+ to elicit 

its toxic effect, although the mechanism remains unknown (Robb et al., 2016). When 

ectopically expressed, Tse2 induces stasis in both bacteria and eukaryotes, but it is 

seemingly only targeted to bacteria (Hood et al., 2010). In agreement with its putative 

NAD+ dependence, the target of Tse2 resides in the bacterial cytoplasm (Li et al., 2012). 

Although these are only anti-prokaryotic effectors, the interbacterial competition may 

affect the pathogenicity towards a eukaryotic host by outcompeting other bacteria, as 

demonstrated for V. cholerae, Salmonella Typhimurium and A. tumefaciens (Fu et al., 

2013; Ma et al., 2014; Sana et al., 2016). In contrast, certain symbiotic B. fragilis strains 

are capable of displacing related enterotoxigenic strains in a murine host by use of their 

T6SS (Hecht et al., 2016). 
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I.1.5.5 Cross-kingdom effectors 
A large family of cross-kingdom effectors is formed by the phospholipases, which may not 

only exert toxicity towards their target by disintegrating the membrane, but may also 

interfere with membrane associated signaling pathways like the phosphatidylinositol 

3-kinase (PI3K)/Akt signaling pathway (Jiang et al., 2014; Russell et al., 2013). The 

phospholipases are grouped into five classes of which the classes 1-4 bear a GXSXG 

catalytic motif, whereas members of class 5 carry a HXKXXXXD catalytic motif (Russell 

et al., 2013). Tle1 of B. thailandensis catalyzes the hydrolysis of the sn-2 ester bond of 

phospholipids, whereas Tle2 of V. cholerae targets the sn-1 ester bond, both of which carry 

the GXSXG catalytic motif and were shown to exert antibacterial activity (Dong et al., 

2013; Russell et al., 2013). Tle2 of V. cholerae also contributes to the resistance towards 

amoebae predation (Dong et al., 2013). Another member of the class 1 phospholipases, 

Tle1 from E. coli, hydrolyzes both the sn-1 and sn-2 ester bonds and exerts antibacterial 

activity but did not affect Caenorhabditis elegans (Flaugnatti et al., 2016). Tle1 from 

P. aeruginosa also hydrolyzes the sn-2 ester bond, whereas the activity on the sn-1 bond 

was not assessed (Hu et al., 2014). On the other hand, Tle5 of P. aeruginosa carries the 

HXKXXXXD catalytic motif and was demonstrated to constitute a PLD enzyme, 

hydrolyzing the phosphate ester bond of the polar head group preferentially targeting 

phosphatidylethanolamine (Russell et al., 2013). Surprisingly, also Tle5 exerted 

antibacterial activity, although PLD activity is usually associated with anti-eukaryotic 

effectors (Russell et al., 2013). Shortly thereafter, another T6SS associated class 5 

phospholipase, PldB, was identified in P. aeruginosa, which was also shown to exert 

antibacterial activity (Jiang et al., 2014). Interestingly, the phospholipases exhibited a 

higher antibacterial activity when targeted to the periplasm, which is in agreement with the 

periplasmic localization of the corresponding immunity proteins, the reason for which 

remains to be elucidated (Jiang et al., 2014; Russell et al., 2013). It was further 

demonstrated that, apart from their antibacterial activity, Tle5 and PldB can also directly 

interact with the Akt1 and Akt2 kinases and thereby promote phagocytosis in a PLD 

dependent way (Jiang et al., 2014; Sana et al., 2012). Unexpectedly, neither of the PLD 

phospholipases exerted toxicity towards HeLa cells (Jiang et al., 2014). Recently also an 

Hcp bearing a C-terminal phospholipase domain, belonging to class 1, has been identified 

(Ma et al., 2017). This phospholipase is secreted by E. coli and was demonstrated to 

contribute to interbacterial competition (Ma et al., 2017). 
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Another unrelated membrane targeting effector is VasX, which is secreted by V. cholerae 

and is required for its virulence towards Dictyostelium discoideum but also intoxicates 

bacteria (Dong et al., 2013; Miyata et al., 2011, 2013). VasX shares weak structural 

homology with pore-forming colicins, interacts with phosphatidic acid and 

phosphatidylinositol phosphates and was demonstrated to dissipate the inner membrane 

potential (Miyata et al., 2011, 2013; Zheng et al., 2011). Interestingly, VasX is only toxic 

when located in the periplasm, which is a feature shared with pore-forming colicins, thus 

VasX was proposed to be a colicin like effector (Espesset et al., 1994; Miyata et al., 2013). 

I.1.5.6 Immunity proteins 
As mentioned before, the anti-prokaryotic and cross-kingdom effectors are always found 

co-encoded with a corresponding immunity protein (Alcoforado Diniz et al., 2015). 

Interestingly, there may be more than one immunity protein encoded genetically linked to 

the corresponding effector, all of which may contribute to immunity (Flaugnatti et al., 2016; 

Jiang et al., 2014; Ma et al., 2017; Russell et al., 2012, 2013; Salomon et al., 2015; Weber 

et al., 2016; Zhang et al., 2012). These paralogs have been hypothesized to evolve faster 

due to the relaxed selective pressure and may confer immunity towards diverging effectors 

arising in the population (Kirchberger et al., 2017; Zhang et al., 2012). Similarly, entire 

effector-immunity pairs may be duplicated, possibly allowing for the divergence of each 

module (Russell et al., 2013). Additionally, orphan immunity proteins were also found, 

possibly conferring immunity against effectors utilized by competitors (English et al., 

2012; Kirchberger et al., 2017; Russell et al., 2012) as recently demonstrated for B. fragilis 

(Wexler et al., 2016). Interestingly, the immunity protein Tai3TY not only confers immunity 

towards its cognate effector Tae3TY but was also able to protect against Tae2BT, which 

belongs to a different class of the Tae effectors and originates from a different bacterium 

(Russell et al., 2012). Moreover, the immunity protein encoding genes may be regulated 

independently of the effector, such that the bacteria are always immune to their own attacks 

(Miyata et al., 2013). In P. mirabilis the co-evolution and divergence of an effector-

immunity pair contributes to the self from non-self discrimination (Cardarelli et al., 2015). 

Both the toxin IdsD and the antitoxin IdsE contain variable regions, and only the antitoxin 

carrying the variable region, that matches that of the toxin, can bind and thereby detoxify 

it (Cardarelli et al., 2015). Moreover, a strain may encode multiple IdsE variants, which 

cannot inactivate the toxin, suggesting that these orphan antitoxins confer resistance to IdsD 

proteins from other strains, thereby permitting colony mixing or invasion to take place 
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(Cardarelli et al., 2015). A similar observation was made for different subfamilies of 

effector-immunity pairs in V. cholerae (Unterweger et al., 2014). 

I.1.6 Acinetobacter baylyi ADP1 
The model organism used throughout most of this study is A. baylyi ADP1, a 

microencapsulated derivative of the soil isolate A. baylyi BD4 (Juni and Janik, 1969). This 

Gram-negative aerobic non-flagellated chemoheterotroph bacterium is closely related to 

the emerging opportunistic pathogens of the genus Acinetobacter (Barbe et al., 2004; Lee 

et al., 2017). Its natural competence renders it easily genetically amenable (Juni and Janik, 

1969; Metzgar et al., 2004). Furthermore, A. baylyi ADP1 encodes a single constitutively 

active antibacterial T6SS (Berardinis et al., 2008; Shneider et al., 2013; Weber et al., 2013, 

2016).  

While the work presented here was in progress, the essentiality of the T6SS components 

encoded in the core T6SS cluster was assessed by another group (Weber et al., 2016). The 

essentiality was asserted by subjecting insertion mutants to an Hcp secretion assay 

(Berardinis et al., 2008; Weber et al., 2016). As detailed in research article I, more sensitive 

assays and the use of marker less deletion mutants did not entirely confirm these results. 

Apart from the outer membrane protein TssJ, A. baylyi ADP1 encodes the complete set of 

conserved T6SS components all of which were found to be essential for Hcp secretion 

(Shneider et al., 2013; Weber et al., 2013, 2016). Interestingly, the putative peptidoglycan 

anchoring component TagN was shown to be dispensable for T6SS activity and the Hcp 

secretion even increased in its absence (Aschtgen et al., 2010a; Weber et al., 2016). 

Although demonstrated to be capable of outcompeting bacteria in a T6SS dependent 

manner, the effector repertoire of A. baylyi ADP1 remained uncharacterized (Shneider et 

al., 2013; Weber et al., 2013). 

As mentioned before, the T6SS of A. baylyi ADP1 is constitutively active under laboratory 

conditions (Shneider et al., 2013; Weber et al., 2013, 2016). This is despite the presence of 

TagF, which acts as a posttranslational repressor of the T6SS in P. aeruginosa, and the 

absence of an identifiable ortholog of Fha, which is essential for the derepression of the 

T6SS in P. aeruginosa (Silverman et al., 2011; Weber et al., 2016). Nevertheless, the TagF 

deficient strain was shown to secrete more Hcp (Weber et al., 2016). Interestingly, in 

multidrug resistant Acinetobacter baumannii the T6SS is often repressed under laboratory 

conditions (Repizo et al., 2015; Weber et al., 2013, 2015). Intriguingly, three of the clinical 
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A. baumannii isolates produced Hcp but did not secrete it, suggesting, that the T6SS is 

posttranslationally repressed in these strains (Repizo et al., 2015). Remarkably, other 

strains were shown to harbor a self-transmissible resistance plasmid encoding TetR-like 

transcriptional repressors of the T6SS (Weber et al., 2015). The loss of the plasmid 

derepresses the T6SS but coincides with the loss of the antibiotic resistance (Weber et al., 

2015). Furthermore, the ectopic expression of any of the two repressors could repress the 

T6SS in other Acinetobacter species including A. baylyi ADP1 (Weber et al., 2015). Based 

on these observations it has been hypothesized that, when co-infecting a host, the frequent 

loss of the plasmid promotes T6SS mediated interbacterial competition. Upon treatment 

with antibiotics both the competitors and the bacteria having lost the plasmid will be 

inhibited, but due to the inhibition of the competitors there is no need of utilizing the T6SS. 

This intricate strategy provides a benefit as long as the competing bacteria are susceptible 

to the antibiotics (Weber et al., 2015, 2017). 

As previously mentioned A. baylyi ADP1 is naturally competent (Juni and Janik, 1969). In 

V. cholerae the T6SS is part of the competence regulon, which is induced upon growth on 

chitinous surfaces (Borgeaud et al., 2015). When competed against a sensitive strain on 

such a surface, V. cholerae can lyse the competitors and thereafter take up the liberated 

DNA for subsequent homologous recombination (Borgeaud et al., 2015). A part of the 

enormous T6SS effector diversity of V. cholerae has been attributed to such horizontal gene 

transfer events (Borgeaud et al., 2015; Thomas et al., 2017; Unterweger et al., 2014). Unlike 

V. cholerae, A. baylyi ADP1 is competent throughout most of its growth (Palmen et al., 

1992, 1993). Thus, we reasoned, that naturally competent Acinetobacter may also employ 

their T6SS to acquire new genes from competitors. 
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I.2 Aims of this thesis 
The T6SS has become a major player in the field of microbial interactions. Although recent 

structural and functional studies rapidly advanced the understanding of the T6SS, the 

mechanistic role of some of the core components remain vaguely defined and the 

contributions of the associated components are even less well understood. Moreover, 

despite its implication in a wide variety of processes the effector repertoire of the T6SS is 

poorly characterized. 

This thesis focuses on the characterization of both associated and selected core components 

of the T6SS in A. baylyi ADP1 with respect to their functional contributions, using a set of 

complementary methods. A. baylyi ADP1 was chosen as model organism because it 

encodes a single constitutively active antibacterial T6SS which had not been functionally 

characterized and it is closely related to the emerging opportunistic pathogens of the genus 

Acinetobacter. Since the T6SS effector repertoire of A. baylyi ADP1 is unknown these will 

be identified using a bioinformatic approach and characterized with regard to their 

antibacterial activity. The natural competence of A. baylyi ADP1 suggests that its T6SS 

may be involved in the horizontal gene transfer as demonstrated for V. cholerae. Therefore, 

the role of the T6SS and its effectors in the acquisition of genetic material from prey strains 

will be investigated. 

Apart from trying to decipher the mechanistic details of the T6SS also its impact on mixed 

bacterial populations is of interest. Using a modelling approach the influence of the T6SS 

on interbacterial competitions is to be investigated. The predictions of this model are further 

to be experimentally validated. 
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SUMMARY

Bacteria use type VI secretion systems (T6SSs) to
manipulate host cells during pathogenesis or to kill
competing bacteria, which, in some cases, increases
horizontal gene transfer. These functions largely
depend on T6SS regulation, dynamics, and the set
of effectors that the system delivers into the target
cells. Here, we show that Acinetobacter baylyi
ADP1 assembles a highly dynamic T6SS capable of
killing and lysing bacterial cells. T6SS function de-
pends on conserved T6SS components as well as
Acinetobacter-specific genes of unknown function.
Five different effectors, encoded next to VgrG or
PAAR proteins and their cognate immunity proteins,
cause distinct changes in the prey cells, resulting in
various degrees of their lysis. Prey lysis correlates
with the rate of DNA transfer from prey to predator,
suggesting that lytic effectors are required for effi-
cient T6SS-dependent horizontal gene transfer in
naturally competent bacteria.

INTRODUCTION

Bacteria secrete various substrates by specialized secretion

systems to manipulate their environment (Costa et al., 2015).

The type VI secretion system (T6SS) (Pukatzki et al., 2006)

gene clusters are found in more than 25% of all sequenced

Gram-negative bacteria, but mostly in the proteobacteria (Bingle

et al., 2008). Systems similar to the proteobacterial T6SS have

been discovered in Francisella (de Bruin et al., 2007; Clemens

et al., 2015), Bacteroidetes (Russell et al., 2014a), and more

recently in Amoebophilus asiaticus (Böck et al., 2017), overall

constituting four phylogenetically distinct subgroups.

The T6SS is composed of three distinct substructures: the

membrane complex, the baseplate, and the sheath-tube com-

plex (Basler et al., 2012; Chang et al., 2017). The envelope-span-

ningmembrane complex is usually composed of TssJ, TssL, and

TssM and anchors the T6SS to the cell envelope (Durand et al.,

2015). The baseplate is composed of TssE, TssF, TssG, TssK

(Brunet et al., 2015), and, in some organisms, a TssA variant (Pla-

namente et al., 2016). The baseplate serves as a platform for the

polymerization of the contractile sheath-tube complex and con-

nects it to the membrane complex. The contractile sheath, con-

sisting of VipA (TssB) and VipB (TssC), forms around the inner

tube, which is composed of Hcp (Clemens et al., 2015; Kudrya-

shev et al., 2015; Wang et al., 2017), by adding the sheath sub-

units at the end that is distal from the baseplate (Vettiger et al.,

2017). The initiation of the assembly and the polymerization

may require TssA (Zoued et al., 2016). Furthermore, a spike com-

plex is situated at the tip of the Hcp tube, which is composed of a

VgrG trimer (Pukatzki et al., 2007) and a PAAR protein (Shneider

et al., 2013). The contraction of the sheath is thought to propel the

Hcp tube with its associated spike complex into the extracellular

medium or the target cell (Basler et al., 2012; Vettiger and Basler,

2016; Wang et al., 2017). The contracted sheath is recycled in

an ATP-dependent manner by ClpV or ClpB (Basler and Mekala-

nos, 2012; Bönemann et al., 2009; Brodmann et al., 2017).

T6SSeffectorsmayconstituteextensionsof anyof thesecreted

components Hcp, VgrG, or PAAR (Pukatzki et al., 2007; Shneider

et al., 2013; Ma et al., 2017), or bind non-covalently to these, then

termed ‘‘cargo’’ effectors (Bondage et al., 2016; Hachani et al.,

2014; Shneider et al., 2013; Silverman et al., 2013). Some cargo

effectors require an adaptor/chaperone protein for secretion,

which arenot secreted themselves (Lianget al., 2015;Unterweger

et al., 2015). To prevent self-intoxication, anti-bacterial effectors

are accompanied by cognate immunity proteins, often encoded

in close proximity to the corresponding effector (Alcoforado Diniz

et al., 2015; Dong et al., 2013; Russell et al., 2014b).

Interestingly, the T6SS of Vibrio cholerae is part of the compe-

tence regulon, and therefore, killing of target cells may contribute

to horizontal gene transfer (Borgeaud et al., 2015).Acinetobacter

baylyi ADP1 is naturally competent throughout most of its growth

(Leong et al., 2017) and encodes a single constitutively active

antibacterial T6SS (Basler et al., 2013; Weber et al., 2013).

Recently, the combination of natural competence and T6SS-

mediated bacterial killing in A. baylyi was shown to contribute

to the transfer of a plasmid from target cells to the predator, sug-

gesting that this may play a role in the spread of antibiotic resis-

tance in the related A. baumannii strains (Cooper et al., 2017).

Here, we characterized the dynamics of the T6SS of A. baylyi

ADP1 using live-cell fluorescence microscopy and identified and

characterized five T6SS effectors and their cognate immunity

proteins. We could demonstrate that none of the effectors are

Cell Reports 21, 3927–3940, December 26, 2017 ª 2017 The Authors. 3927
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



II. RESULTS

34 | P a g e

2 μm

vi
pA

-s
fG

FP
cl

pV
-m

C
he

rry
2

Merge sfGFP mCherry2

Assembly Disassembly
0 s 2 s 4 s 6 s 8 s 10 s 12 s 14 s 16 s 18 s 24 s 30 s 36 s 42 s 48 s 54 s

0 s 2 s 4 s 6 s 8 s 10 s 12 s 14 s 16 s 18 s 24 s 30 s 36 s 42 s 48 s 54 s

0 s 2 s 4 s 6 s 8 s 10 s 12 s 14 s 16 s 18 s 24 s 30 s 36 s 42 s 48 s 54 s

M
er

ge
sf

G
FP

m
C

he
rry

2
M

er
ge

sfG
FP

m
C

h
M

er
ge

sfG
FP

m
C

h
M

er
ge

sfG
FP

m
C

h

A

B

C

1

2

3

0 s 54 s28 s

2

0 s 54 s28 s

3

0 s 54 s28 s

1
0.00 μm

1.63 μm

0.82 μm

Figure 1. The T6SS Sheath Forms Dynamic Structures in A. baylyi ADP1

(A) Large field of view of the parental A. baylyi ADP1 vipA-sfGFP clpV-mCherry2. The images show: the merge of phase contrast, GFP (in green), and mCherry

(in magenta) channels on the left, the GFP channel in the middle, and the mCherry channel on the right.

(B) Three examples of time-lapse imaging of T6SS assembly, contraction, and subsequent disassembly by ClpV. The first frame on the left shows a merge of

phase contrast, GFP (in green), andmCherry (in magenta) channels. The frames in the upper rows show fluorescence in the GFP channel (sheath), and the bottom

(legend continued on next page)
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required for T6SS assembly and that each kills the target cells

by a distinct mechanism. Moreover, we demonstrate that the ef-

ficiency of horizontal gene transfer, promoted by the T6SS-

mediated lysis of sensitive bacteria, depends on the mechanism

of target cell killing.

RESULTS

T6SS Activity in A. baylyi ADP1 Correlates with the
Formation of Dynamic Sheaths Disassembled by ClpV
To describe the dynamics of the T6SS assembly in ADP1, we first

constructed a vipA-sfGFP and clpV-mCherry2 strain, which then

served as a parental strain for in-frame deletion mutants unless

indicated otherwise (Figure S1A). Live-cell fluorescence micro-

scopy showed that T6SS sheath structures assembled in approx-

imately 15.0 ± 4.2 s (average ± SD, n = 60) and contracted shortly

thereafter. Usually, only a single assembling sheath could be

observed per cell at any given time. Occasionally, T6SS sheaths

polymerized across the whole cell and bent, presumably due to

colliding with the cell envelope. On contraction, ClpV-mCherry2

co-localized with the contracted sheath and disassembled it

within approximately 40.1 ± 13.4 s (n = 60; Figures 1B and 1C;

Movie S2). Importantly, the T6SS activity of the vipA-sfGFP/

clpV-mCherry2 strain was indistinguishable from that of the

wild-type strain in its ability to lyse or inhibit growth of Escherichia

coli aswell as secrete Hcp (Figures 2B and 2C), indicating that the

fluorescent protein tags have no influence on the T6SS function.

No Hcp could be detected in the supernatant of the DtssM

strain (Figure 2C) and neither the Dhcp nor the DtssM strains in-

hibited the growth of E. coli or induced its lysis (Figure 2B). More-

over, nodynamic sheath structuresweredetected in theDtssMor

Dhcp strains (Figure 2A), however, some static VipA-sfGFP foci

were observed in the DtssM strain. This was in contrast to the

DtssE strain, in which we found dynamic VipA-sfGFP foci associ-

ated with the cell periphery (Movie S1). Nonetheless, those are

unlikely to be functional assemblies, because we were unable

to detect Hcp in the supernatant of the DtssE strain, and the re-

covery and lysis of E. coli were indistinguishable from that of

theDtssM strain (Figures 2Band2C).Wecannot excludeapoten-

tial polar effect of the tssE deletion on the downstream-encoded

TssF andTssG,whichwere shown to be essential components of

T6SS (Brunet et al., 2015; Weber et al., 2016). Although TssE ho-

mology to gp25 of the T4 phage suggests its critical role in the as-

sembly and function of T6SS (Kudryashev et al., 2015; Taylor

et al., 2016), it was shown for V. cholerae that a DtssE strain re-

tains detectable T6SS activity (Vettiger and Basler, 2016).

TagN, TagF, ACIAD2693, and ACIAD2698 Are Largely
Dispensable for T6SS Activity
TagNwas proposed to be required for anchoring the T6SS to the

peptidoglycan (Aschtgen et al., 2010). In ADP1, the TagN homo-

log (ACIAD2682) is the only protein encoded in the core cluster

bearing a predicted peptidoglycan binding domain and a cleav-

able N-terminal signal sequence. Surprisingly, the DtagN strain

secreted Hcp and displayed only an intermediate phenotype

both in the quantitative competition assay and the lysis assay

(Figures 2B and 2C). Furthermore, it had fewer active T6SS

structures (Figure 2A; Movie S1). Peptidoglycan was shown to

be dispensable for the T6SS activity in V. cholerae (Vettiger

et al., 2017). However, V. cholerae seems to lack T6SS-associ-

ated peptidoglycan anchoring proteins (Aschtgen et al., 2010).

Very little is known about the Acinetobacter-specific T6SS

components ACIAD2693 and ACIAD2698. ACIAD2698 contains

a single predicted N-terminal transmembrane helix with the

C terminus being disordered and residing in the periplasm.

A similar analysis suggested that ACIAD2693 carries a cleavable

N-terminal signal sequence and an intrinsically unstructured

C-terminal region.

The DACIAD2698 strain was phenotypically indistinguishable

from the parental strain (Figures 2A–2C; Movie S1). On the other

hand, the DACIAD2693 strain secreted Hcp, but displayed an in-

termediate phenotype in the quantitative E. coli competition

assay (Figures 2B and 2C). Even though the E. coli inhibition

was significantly decreased in the absence of ACIAD2693, the

lysis of E. coli was indistinguishable from that induced by the

parental strain (Figure 2B). The decreased inhibition of E. coli is

in agreement with the reduction in the number of sheath assem-

blies per cell (Figure 2A). However, the dynamics of the individual

T6SS structures were unaltered (Movie S1). Even though

ACIAD2693 overlaps with the essential vipA, a polar effect is un-

likely the reason for the decreased T6SS activity since the VipA-

sfGFP fluorescence was comparable to that of the parental

strain (Figure 2A).

TagF was reported to act as a posttranslational repressor of

the H1-T6SS in Pseudomonas aeruginosa PAO1 (Silverman

et al., 2011). However, we observed no change in E. coli inhibi-

tion or frequency of T6SS sheath assembly in the DtagF strain.

Furthermore, both the lysis of E. coli and the Hcp secretion

were unaffected (Figures 2A–2C; Movie S1). This suggests that

TagF has a different function in A. baylyi ADP1 or that it does

not act as a repressor under the tested conditions.

TagX and ACIAD2685 Are Required for the Initiation of
the T6SS Sheath Assembly
The recently characterized L,D-endopeptidase TagX is thought

to be involved in forming a hole in the peptidoglycan, allowing

the assembly of the T6SS (Weber et al., 2016). Accordingly, we

were unable to detect Hcp in the supernatant of theDtagX strain,

and the E. coli inhibition was similar to that caused by the

DtssM strain (Figures 2B and 2C). Interestingly, the more sensi-

tive CPRG conversion assay indicated that the DtagX strain

is still capable of lysing E. coli, although to a much lesser extent

than the parental strain (Figure 2B), suggesting that the

T6SS is still partially active in the absence of TagX. This was

rows show fluorescence in the mCherry channel (ClpV). The arrows indicate the sites where new T6SS sheath structures are forming. The scale bars

represent 1 mm.

(C) Kymographs depicting the three examples of assembly, contraction, and subsequent disassembly of the T6SS sheath structures shown in (B). The line

for generating the kymogram was drawn along the long axis of the highlighted structure.

See also Movies S1 and S2.
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Figure 2. Characterization of Selected T6SS Components of A. baylyi ADP1

(A) Large fields of view of the indicated mutants of A. baylyi ADP1 showing the merge of phase contrast, GFP (for VipA-sfGFP in green), and mCherry (for ClpV-

mCherry2 in magenta) channels. A close up of the GFP channel of a selected region of interest is shown as an inset. The scale bars of the large fields of view

represent 2 mm and those of the insets represent 0.5 mm.

(B) The quantitative competition assaymeasuring recovery of the indicated strains after 4 hr of coincubation of E. coliwith the indicated aggressor strains is shown

on the left. The error bars indicate the SD, the long dashed lines indicate the mean value of the E. coli recovery, and the short dashed lines indicate themean value

of the aggressor recovery. n. s. = not significant; ***p < 0.001. Lysis assaysmeasuring CPRG conversion upon release of LacZ from E. coli cells incubated with the

indicated A. baylyi strains for the indicated time are shown on the right. The lysis assays were performed in biological triplicate and technical hexaplicate for all

competitions except for the parental and the DtssM strains for which biological and technical hexaplicates were performed.

(C) Hcp detected in the culture supernatant of the indicated strains after trichloroacetic acid (TCA) precipitation, separation by PAGE and subsequent staining

with Coomassie. Representative pictures of the endpoints of the lysis assays from (B) are shown for comparison.

See also Figures S1 and S4 as well as Movie S1.
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confirmed by fluorescence microscopy, which revealed a

strongly reduced frequency of T6SS sheath assembly initiation

(Figure 2A; Movie S1), indicating that TagX is dispensable for

the T6SS mode of action after the assembly is initiated by a

TagX-independent mechanism.

Bioinformatic analysis of ACIAD2685 suggested the presence

of two N-terminal transmembrane helices and that the N- and

C-termini are localized in the cytoplasm. The T6SS activity of

the DACIAD2685 strain was severely attenuated. There was no

detectable Hcp secretion and no inhibition of E. coli (Figures

2B and 2C). However, the more sensitive CPRG conversion

assay indicated that E. coli lysis was still occurring, albeit to a

severely reduced extent (Figure 2B). These results are in agree-

ment with the strongly reduced frequency of T6SS assembly

observed by fluorescence microscopy, similar to what had

been observed for the DtagX strain (Figure 2A; Movie S1).

TssM is encoded right downstream of ACIAD2685, therefore,

we cannot exclude a potential polar effect of the in-frame

deletion.

Five Identified T6SS Effectors Are Dispensable for T6SS
Dynamics and Hcp Secretion
The fact that T6SS effectors are often found encoded in an

operon with a secreted structural component and the cognate

immunity protein allowed us to identify five putative effectors

and their cognate immunity proteins in A. baylyi ADP1 (Fig-

ure S1B). An effector-deficient strain (DE), lacking all five identi-

fied effectors, was still able to secrete Hcp, and its T6SS activity

and dynamics, observed by fluorescence microscopy, were

unaffected (Figures 3B and 3C; Movie S1). However, we were

unable to detect a growth inhibition of E. coli or its lysis when

competed against the DE strain (Figure 3A). Moreover, no

E. coli permeabilization was detected by fluorescence micro-

scopy using SYTOX Blue as a cell permeability reporter

(Movie S3). This suggests that there is no remaining antibacterial

effector secreted by the DE strain, and that none of the effectors

are structural or functional components of the secretion system

itself.

To test if the T6SS in the DE strain is capable of inflicting dam-

age, we co-incubated the strain with both P. aeruginosa PAO1

and its DretS variant. Interestingly, both the wild-type and the

DretS strain inhibited the A. baylyi DE strain to the same level

as its parental strain. However, the inhibition of A. baylyi was

significantly reduced when the DtssM strain was co-incubated

with the P. aeruginosa wild-type or DretS strains (Figure 4).

This is consistent with previous observations (Basler et al.,

2013; Wilton et al., 2016) and suggests that the DE strain is likely

damaging at least the outer membrane of target cells and thus

induces retaliation by P. aeruginosa.

Figure 3. A. baylyi ADP1 deploys antibacterial T6SS effectors eliciting distinct lysis phenotypes

(A) Quantitative competition assay measuring recovery of the indicated strains after 4 h of coincubation of E. coliwith the indicated aggressor strains is shown on

the left. The error bars indicate the standard deviation, the long dashed lines indicate the means of the E. coli recovery and the short dashed lines indicate the

means of the aggressor recovery. Lysis assays measuring CPRG conversion upon release of LacZ from E. coli cells incubated with the indicated A. baylyi strains

for the indicated time is shown on the right. The lysis assays were performed in biological triplicate and in at least technical tetraplicate. n. s. = not significant;

* = p < 0.05; *** = p < 0.01.

(B) Representative image of effector deficient strain (DE vipA-sfGFP clpV-mCherry2) shows themerge of phase contrast, GFP (in green) andmCherry (inmagenta)

channels on the left; the GFP channel in the middle; and mCherry channel on the right. The scale bar is equivalent to 1 mm.

(C) Hcp detected in the culture supernatant of the indicated strains after TCA precipitation, separation by PAGE, and subsequent staining with Coomassie. For

comparison, representative images of the endpoints of the lysis assay from (A) are shown.

(D–H) Time-lapsemicroscopy of the competitions of the parental strain (D) and the tae1 (E), tse1 (F), tse2 (G), and tle1 (H) single effectorA. baylyiADP1 strains with

E. coli. The representative frames were chosen to illustrate the distinct lysis phenotypes elicited by the indicated effectors. The top rows show a merge of phase

contrast, GFP (for VipA-sfGFP in green), mCherry (for ClpV-mCherry2 in magenta), and SYTOX (in cyan) channels. The bottom rows show the increase in the

fluorescence of the cell-impermeable DNA stain SYTOX Blue on the loss of cell membrane integrity. The scale bars represent 1 mm. The arrows indicate the cells

that losemembrane integrity throughout the time lapse. Except for (F), the competitions were imaged every 30 s for 30min. For (F), the competitions were imaged

every 1 min for 1 hr.

See also Figures S1, S2, and S4 as well as Movies S1 and S3.
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Figure 4. The T6SS Effectors of A. baylyi ADP1 Are Dispensable for

Eliciting Retaliation from P. aeruginosa PAO1

Quantitative competition assays measuring recovery of the indicated A. baylyi

and P. aeruginosa strains upon 4 hr of coincubation. The dashed lines indicate

the means and the error bars indicate the SD. n. s. = not significant; *p < 0.05;

**p < 0.01; ***p < 0.001.

See also Figure S4.
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To investigate the role of the individual effectors, strains lacking

all but one of the effectors (single effector strains) were con-

structed. All five single effector strains secreted Hcp and dis-

played sheath dynamics similar to the parental strain (Figures

3C–3H; Movie S3). The strains were tested for their ability to lyse

or inhibit growth of E. coli (Figure 3A). To dissect the mode of ac-

tion of the individual effectors, we also incubated the strains with

E. coli and imaged the competition for 30 min to 1 h at 30�C on a

Luria-Bertani (LB) agarose pad containing SYTOXBlue as an indi-

cator for cell permeability (Figures 3D–3H;Movie S3). Since puta-

tive immunity proteins were identified in the vicinity of the effec-

tors, we constructed strains lacking the immunity-effector pairs

and tested their growth inhibition due to interactions with the cor-

responding single effector, the parental, the single effector dele-

tion, and the DtssM strains (Figures 5A–5E).

The Putative Metallopeptidase Tpe1 Is a T6SS Effector
and Tpi1 Is Its Cognate Immunity Protein
The smallest of the putative effectors, Tpe1 (ACIAD0053), is

encoded in an operon with two PAAR proteins (Figure S1B).

It is predicted to contain a zinc metallopeptidase active site,

PS00142 (Figure S1C). The single effector strain was unable to

significantly reduce the recovery of E. coli or induce its lysis (Fig-

ures 3A and 3C). Additionally, the imaging of the competition

with E. coli showed no increase in signal from the DNA-binding

dye SYTOX Blue, suggesting that no E. coli cell permeabilization

was occurring (Movie S3).

The protein encoded downstream of Tpe1, which we termed

Tpi1 (ACIAD0054), contains a predicted N-terminal transmem-

brane helix, and we hypothesized it to constitute the cognate

immunity protein to Tpe1 (Figure S1B). The competition of the

sensitive strain (lacking both Tpe1 and Tpi1) against the parental

and the single effector strains led to a significantly reduced re-

covery of the sensitive strain, whereas there was no such reduc-

tion when competed against the DtssM and the Dtpe1 strains

(Figure 5A). This indicates that Tpe1 is a T6SS effector and

Tpi1 is its corresponding immunity protein. The fact that no

E. coli inhibition or lysis was detected suggests that either

E. coli is resistant to the action of Tpe1 or that E. coli can outgrow

its effects without lysis.

Tae1 Is a Peptidoglycan-Targeting T6SS Effector and
Tai1 Is Its Cognate Immunity Protein
The remaining putative T6SS effectors are encoded down-

stream of VgrGs. Bioinformatic analysis of the sequence of

Tae1 (ACIAD0168) suggested that it is a peptidoglycan-hydro-

lyzing amidase, which has no clear homology to any of the

four currently known families (Russell et al., 2012). Tae1 con-

tains two predicted peptidoglycan-binding domains (LysM,

PF01476.19, and IPR002477), a D-alanyl-D-alanine carboxy-

peptidase zinc-binding domain (IPR009045) and a peptido-

glycan-hydrolyzing domain (hydrolase_2, PF07486.11; Fig-

ure S1C), suggesting that Tae1 cleaves the peptide crosslinks

of peptidoglycan. The single effector strain significantly reduced

the recovery of E. coli and induced its lysis to a level comparable

to that of the parental strain (Figures 3A and 3C). Imaging the

competition with E. coli revealed that lysing E. coli often round

up and burst (Figure 3E; Movie S3), which is consistent with
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Figure 5. There Is No Crosstalk between the Five T6SS Effectors and Their Cognate Immunity Proteins

(A–E) Quantitative competition assays measuring recovery of the sensitive strains and the specified mutants after 4 hr of coincubation. The error bars indicate the

SD, the long dashed lines indicate the mean recovery of the sensitive strains and the short dashed lines indicate the mean recovery of the aggressors. n. s. = not

significant; *p < 0.05; **p < 0.01; ***p < 0.001.

(A) Dtpe1-tpi1::rpsL’-kanR used as the sensitive strain.

(B) Dtae1-tai1::rpsL’-kanR used as the sensitive strain.

(C) Dtap1-tsi1b::rpsL’-kanR used as the sensitive strain.

(D) Dtse2 Dtsi2a-tsi2b::rpsL’-kanR used as the sensitive strain.

(E) Dtli1-tle1::rpsL’-kanR used as the sensitive strain.
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the prediction that Tae1 encodes a peptidoglycan-targeting

effector.

The gene downstream of tae1 encodes a protein we termed

Tai1 (ACIAD0169), which carries a predicted cleavable N-termi-

nal signal sequence, suggesting that Tai1 is the cognate immu-

nity protein of Tae1. When the Dtae1/Dtai1 strain was competed

with the parental strain or the Tae1 single effector strain, the re-

covery of the Dtae1/Dtai1 strain was significantly reduced. This

was fully dependent on T6SS activity and presence of tae1, since

the recovery was restored when competed against the Dtae1

and the DtssM strains (Figure 5B). This indicates that Tae1 is a

peptidoglycan-targeting T6SS effector and that Tai1 is the

cognate immunity protein.

The Restored Tse1 Is a T6SS Effector and Tsi1a or Tsi1b
Are Its Cognate Immunity Proteins
Downstream of VgrG2 (ACIAD1788), a protein we termed Tap1

(ACIAD1789) is encoded that shows weak homology to the

DUF4123 domain found in T6SS effector chaperones (TECs),

also referred to as adaptor proteins (Liang et al., 2015; Unter-

weger et al., 2015). The downstream gene terminates at a copy

of the insertion element IS1236, suggesting that the original

gene was disrupted by IS1236 (Figure S1B). Indeed, a BLAST

search of the N-terminal fragment Tse1’ (ACIAD1790) in the Uni-

Parc (The UniProt Consortium, 2017) database yielded longer

proteins in various Acinetobacter strains, which were in the

genomic neighborhood of VgrG and Tap1 homologs and whose

N-terminal regions were similar to Tse1’.

We removed the insertion sequence (IS) element and restored

the full-length Tse1 based on the multiple sequence alignment

with the homologous effectors (ACIAD1790–1794 fusion; Figures

S1B and S2). The full-length Tse1 is predicted to carry four C-ter-

minal transmembrane helices and had a low-qualitymatch for the

short-chain dehydrogenase/reductase active site (PS00061; Fig-

ure S1C). The single effector strain significantly reduced the re-

covery of E. coli and led to intermediate lysis of E. coli in the

CPRG conversion assay (Figures 3A and 3C). The competition

microscopy showed that, in some cases, lysis proceeded similar

to what had been observed for Tae1, where E. coli rounded up

and then burst, whereas in other cases, E. coli shrinks slightly

and lyses (Figure 3F; Movie S3). Both processes take longer

compared with the lysis induced by the other effectors.

Two putative immunity proteins sharing 82% sequence iden-

tity are encoded downstream of Tse1, which we termed Tsi1a

(ACIAD1795) andTsi1b (ACIAD1796; FigureS1B). ATse1ortholog

was only found in Burkholderia cenocepacia (excluding Acineto-

bacter), and immunity protein duplications were restricted to Aci-

netobacter, ranging from one to three copies (Figure S3A). Both

Tsi1a and Tsi1b are predicted to contain four transmembrane

helices. The sensitive strain (lacking both Tsi1a and Tsi1b) was in-

hibitedby the single effector strain carrying the restoredTse1 (Fig-

ure 5C). However, no inhibition was observed when competed

against theDtssM strain or theDtse1’ strain aswell as the parental

straincontaining the ISelement.When tssMwasdeleted in thesin-

gle Tse1 effector strain, no reduction in recovery of the sensitive

strain could be detected (Figure 5C). This confirms that Tse1 is

secreted in a T6SS-dependent manner and that Tsi1a, Tsi1b, or

both are the cognate immunity proteins.

Tse2 Is a T6SS Effector and Tsi2a or Tsi2b Are Its
Cognate Immunity Proteins
Tse2 (ACIAD3114) is a homolog of the recently described

Tse3AB (ACX60_11695) in A. baumannii ATCC 17978, which

was found to be an antibacterial effector, but its mechanism

of action remained unknown (Weber et al., 2016). The single

effector strain significantly reduced the recovery of E. coli, how-

ever, lysis, indicated by the CPRG conversion assay, was

delayed compared with the other single effector strains (Fig-

ure 3A). Interestingly, E. coli only slowly gained SYTOX Blue

signal during its interaction with the Tse2 single effector strain,

and the signal remained low. This is in contrast to what we

observed when E. coli was lysed by other effectors (Figure 3G;

Movie S3). The slow increase in SYTOX Blue signal suggests

that Tse2 leads to a low-level permeabilization of E. coli, which

is consistent with the delayed conversion of CPRG by LacZ and

suggests that the cell envelope remains largely impermeable to

CPRG and LacZ.

The two putative immunity proteins Tsi2a (ACIAD3112) and

Tsi2b (ACIAD3113), encoded in the opposite direction down-

stream of the effector (Figure S1B), are predicted to contain

a cleavable N-terminal signal sequence, indicating that they

are periplasmically localized and suggesting that the sub-

cellular target of Tse2 is accessible from the periplasm. The

recovery of the Dtsi2a/Dtsi2b/Dtse2-sensitive strain was signif-

icantly reduced after incubation with the parental or the single

effector strain, but unchanged when incubated with the DtssM

or Dtse2 strains (Figure 5D). These data indicate that Tse2 is

a T6SS effector and that Tsi2a, Tsi2b, or both confer immunity

toward Tse2.

A manual inspection of gene ortholog neighborhoods of tse2

revealed the presence of Tse2 homologs mostly in g-proteobac-

teria, but also in a- and b-proteobacteria. Multiple copies of the

immunity proteins, up to five consecutive ones in Klebsiella

pneumonia W14 and Photorhabdus luminescens subsp. lumi-

nescensDSM3368, were a common feature in g-proteobacteria,

but only two duplications were observed for b-proteobacteria,

and none were observed for a-proteobacteria (Figure S3B).

Immunity protein duplications seem to be common, and all

may contribute to immunity (Jiang et al., 2014; Russell et al.,

2013; Zhang et al., 2012). These evolved paralogs were specu-

lated to provide immunity against diverged corresponding effec-

tors arising in the population (Kirchberger et al., 2017; Zhang

et al., 2012).

The Phospholipase Tle1 Is a T6SS Effector and Tli1 Is Its
Cognate Immunity Protein
Tle1 (ACIAD3425)was predicted to be aphospholipase belonging

to family 4 of T6SS-associated phospholipases (Russell et al.,

2013). It matches an alpha/beta-hydrolase fold (Gene3D

3.40.50.1820) and the abhydrolase_5 domain (PF12695.5; Fig-

ure S1C). The Tle1 single effector strain significantly reduced the

recovery of E. coli and led to intermediate lysis of E. coli in the

CPRG conversion assay (Figures 3A and 3C). Surprisingly, when

the Tle1 single effector strain was co-incubated with E. coli, the

E. coli cells first shrank without an increase of SYTOX Blue signal

and then reinflated, coinciding with their permeabilization (Fig-

ure 3H; Movie S3).
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The putative immunity protein is co-encoded in the same

operon upstream of tle1, which we termed Tli1 (ACIAD3426).

Tli1 carries a predicted cleavable N-terminal signal sequence

as is common for the cognate phospholipase immunity proteins

(Russell et al., 2013). The recovery of the sensitive strain was

significantly reducedwhen competed against the parental or sin-

gle effector strain. The recovery was restored when competed

against the DtssM or the Dtle1 strains (Figure 5E). These results

confirm that Tle1 is a T6SS effector and that Tli1 is its cognate

immunity protein.

The T6SS-Mediated Lysis of Prey Contributes to
Horizontal Gene Transfer
T6SS-mediated killing of prey cells by the naturally competent

A. baylyi ADP1 can liberate the DNA of the prey and thereby pro-

mote horizontal gene transfer (Cooper et al., 2017). We specu-

lated that effectors causing the release of cellular content, like

Tae1 and Tle1, should cause a higher transformation rate

than those not directly leading to lysis, like Tse2. To test this hy-

pothesis, we competed a spectinomycin-resistant, T6SS-active

A. baylyi ADP1 derivative (T6SS+) against the Tle1- and the Tse2-

sensitive strains (Figures 6A and 6B). The sensitive strains carry

the kanamycin resistance cassette, disrupting the immunity pro-

tein-encoding genes. Successful transfer of DNA can thus be

monitored by selecting for spectinomycin and kanamycin dou-

ble-resistant strains.

To account for DNA transfer independent of T6SS-medi-

ated killing, a T6SS-deficient, spectinomycin-resistant strain

(T6SS�) was used as a control strain. To exclude possible dif-

ferences in uptake and integration of the counter-selectable

cassettes from the Tle1- and Tse2-sensitive strains, we trans-

formed the T6SS+ strain with equal amounts of the genomic

DNA of both sensitive strains and enumerated the resulting

double-resistant mutants. The number of transformants ob-

tained with the genomic DNA was not significantly different,

indicating that both cassettes incorporate with similar effi-

ciency (Figure 6A).

When we incubated the T6SS+ strain with the Tle1- and Tse2-

sensitive strains, we observed reduced recoveries of the sensi-

tive strains comparable with those obtained during our previous

assays (compare Figures 5D and 5E with Figure 6B). In addition,

similar to the observations made for the competition with E. coli,

the lipase effector Tle1 induced lysis of the non-immune A. baylyi

strain (vipA-sfGFP clpV-mCherry2 Dtli1-tle1) as documented by

the leakage of DNA out of cells, the decrease in contrast of the

bacterial cytosol, and the rapid accumulation of SYTOX Blue

signal (Figures 6C). On the other hand, the Tse2-effector-medi-

ated killing resulted in a high level of inhibition of the non-immune

A. baylyi strain (vipA-sfGFP clpV-mCherry2 Dtse2 Dtsi2a-tsi2b;

Figure 6B), however, no clear cell lysis was observed, and the

cells accumulated SYTOX Blue rather slowly (Figure 6D). Impor-

tantly, the competition of the T6SS+ strain with the Tle1-sensitive

strain produced significantly more double-resistant mutants

than the competition of the T6SS+ strain with the Tse2-sensitive

strain or the T6SS-independent transfer (Figure 6A). Overall,

these data suggest that the mechanisms of killing and lysis of

target cells have major implications for DNA release and thus

efficiency of horizontal gene transfer.

DISCUSSION

Imaging of A. baylyi ADP1 T6SS sheath dynamics and the use of

a sensitive target cell lysis assay allowed us to identify Acineto-

bacter-specific T6SS components, which are required for effi-

cient initiation of sheath assembly (Table 1). We predicted and

characterized five distinct effectors and their immunity proteins

and show that the mechanism of target cell killing influences

the efficiency of gene acquisition from prey cells.

We show that a markerless in-frame deletion of ACIAD2693

only has a partial effect on the T6SS function, and in many as-

says, the deletion strain displayed a phenotype similar to that

of the wild-type A. baylyi (Figures 2A–2C; Movie S1). A likely

explanation for the discrepancy with the previous results is a po-

tential polar effect on the downstream vipA (tssB) gene resulting

from generating insertion mutants using a Tdk-KanR cassette

(Weber et al., 2016).

ACIAD2685 and TagXwere proposed to be essential for T6SS-

mediated Hcp secretion (Weber et al., 2016). Interestingly, we

show that the strains lacking ACIAD2685 or TagX occasionally

assemble sheath structures that display dynamics similar to

that of the parental strain (Figure 2A; Movie S1). Importantly,

the prey cell lysis assay shows that those assemblies are func-

tional, which suggests that ACIAD2685 and TagX influence the

frequency of T6SS sheath assembly rather than the function of

the individual T6SS structures (Figure 2B). This is consistent

with the fact that TagX is an L,D-endopeptidase cleaving the

peptide crosslinks of the peptidoglycan, which was proposed

to form holes in the peptidoglycan to allow assembly of the

T6SS (Weber et al., 2016). Similarly, the lytic transglycosylase

MltE was recently shown to be recruited by the TssM of the

Sci-1 in E. coli EAEC 17-2 to fulfil the same purpose (Santin

and Cascales, 2017). Therefore, the low number of T6SS assem-

blies detected in the DtagX strain may be due to the formation of

holes in the peptidoglycan during its remodeling or aging.

Although the phenotype of the DACIAD2685 strain is similar to

that of the DtagX strain, the lack of conserved domains prevents

predicting its function.

We identified five T6SS effectors and their corresponding im-

munity proteins in A. baylyi ADP1, a putative metallopeptidase

(Tpe1), a peptidoglycan-hydrolyzing amidase (Tae1), a phospho-

lipase (Tle1), and two effectors (Tse1, and Tse2) representing

new classes of effectors for which no enzymatic activity could

be predicted or deduced from the lysis phenotype. Interestingly,

the A. baylyi strain lacking all five effectors (DE) was unable

to inhibit E. coli or induce cell membrane leakage (Figures 3A

and 3C; Movie S3). This is despite the fact that the DE strain

assembles dynamic T6SSs secreting wild-type levels of Hcp

(Figures 3B and 3C;Movie S1). TheDE strain also provokes retal-

iation by P. aeruginosa (Figure 4) since it is killed as well as the

wild-type A. baylyi strain. This suggests that the retaliation

from P. aeruginosa is independent of effector delivery and is

rather a response to membrane perturbations as indicated pre-

viously (Basler et al., 2013; Ho et al., 2013; Wilton et al., 2016).

Interestingly, this also means that mere puncturing of the target

cell membrane is insufficient for killing or lysis of target cells

and that the delivery of effector proteins is required. This is

consistent with observations that even multiple puncturing of
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diderm bacteria with an atomic force microscopy (AFM) tip does

not affect their viability, which was explained by the ‘‘self-heal-

ing’’ capabilities of the cell envelope after AFM tip removal

(Suo et al., 2009). On the other hand, R-type pyocins, which

are structurally and mechanistically related to the T6SS, insert

a tube into the target cell envelope, which results in ion leakage

and cell killing (Ge et al., 2015; Michel-Briand and Baysse, 2002).

This therefore suggests that the T6SS tube is likely unstable, and

after delivery to the target cell, the Hcp tube dissociates, allowing

the membranes to reseal.

All of the identified T6SS effectors (except Tpe1) were capable

of significantly inhibiting or lysing E. coli (Figures 3A and 3C).

Similarly, other bacteria carrying antibacterial effectors were

often shown to deploymore than one antibacterial effector (Alco-

forado Diniz et al., 2015). For example, V. cholerae has been

demonstrated to utilize effector sets for intraspecific competi-

tion, where strains with incompatible combinations of effectors

and immunity proteins will intoxicate one another (Unterweger

et al., 2014). Interestingly, the T6SS of V. cholerae is involved

in horizontal gene transfer (Borgeaud et al., 2015), and

V. cholerae was also shown to be capable of acquiring new

effector-immunity pairs or of exchanging old ones while retaining

the corresponding immunity protein (Kirchberger et al., 2017;

Unterweger et al., 2014). Similarly, the T6SS of the naturally

competent A. baylyi ADP1was recently shown to promote trans-

fer of a plasmid from prey to predator (Cooper et al., 2017). The

related A. baumannii strains, while not generally naturally

competent under laboratory conditions, carry similar genes

required to uptake DNA and kill target cells. It is therefore

tempting to speculate that the T6SS-mediated killing of target

cells by A. baumannii could be contributing to the highly efficient

spread of drug resistance genes (Cooper et al., 2017), especially
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Figure 6. The Level of Horizontal Gene Transfer Depends on the Mechanism of Prey Cell Killing

(A) The level of DNA transfer between the indicated strains was tested by enumerating the clones having acquired a resistance cassette after 4 hr of coincubation.

The control transformations of the T6SS+ strain with genomic DNA are labeled as Dtli1-tle1::rpsL’-kanR and Dtse2 Dtsi2a-2b::rpsL’-kanR.

(B) Quantitative competition assay measuring the recovery of the indicated strains coincubated as in (A). The dashed lines indicate the means and the error bars

indicate the SD. n. s. = not significant; *p < 0.05; **p < 0.01; *** p < 0.001.

(C and D) Time-lapse microscopy illustrating the distinct lysis phenotypes of the Dtli1-tle1 (C) and the Dtse2 Dtsi2a-2b (D) sensitive strains (vipA-sfGFP clpV-

mcherry2 background) incubated with unlabeled wild-type A. baylyi ADP1. The top rows show a merge of phase contrast, GFP (green), mCherry (magenta), and

SYTOX (cyan) channels. The bottom rows show the increase in the fluorescence of the cell-impermeable DNA stain SYTOX Blue upon the loss of cell membrane

integrity. The mixtures were imaged every 30 s for 1 hr. The scale bars represent 1 mm.
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if competence and T6SSwould be co-regulated as in V. cholerae

(Borgeaud et al., 2015). However, it is also important to mention

that many organisms, including Acinetobacter and Vibrio,

may secrete DNases in a T6SS-dependent and -independent

manner, which could decrease the rate of horizontal gene

transfer.

Overall, potentially all bacteria that encode an anti-bacterial

T6SS and DNA uptake machinery could use their T6SS to

acquire new genes. In addition to Vibrio and Acinetobacter,

this could be relevant for Campylobacter, Pseudomonas,

Agrobacterium, and Ralstonia. Members of these genera were

predicted to harbor a T6SS (Li et al., 2015) and to be naturally

competent (reviewed in Johnston et al., 2014). The targeted

lysis and acquisition of genes from bacteria occupying a

certain environmental niche may provide an advantage to the

T6SS-positive bacteria since the target bacteria likely carry

genes that evolved to enhance survival in the niche (Veening

and Blokesch, 2017). Importantly, the rate of horizontal gene

transfer mediated by T6SSs will vary for each prey-predator

pair, because the frequency of DNA acquisition depends on

the mode of target cell killing (Figure 6). This suggests that

for efficient DNA acquisition from various prey cells, a diverse

set of lytic effectors delivered by the predator may be benefi-

cial, as certain prey cells may be immune to some of those

effectors.

EXPERIMENTAL PROCEDURES

Bioinformatic analyses were carried out as described in the Supplemental

Experimental Procedures.

Culturing of the Bacterial Strains

The strains were grown shaking at 200 rpm and 30�C or 37�C in LB broth or

on LB agar (LA) plates (1.3% [w/v] agar). The media were supplemented

with the appropriate antibiotics. For E. coli MG1655 GmR, 15 mg/mL genta-

micin was added, for A. baylyi ADP1 rpsL-K88R derivatives, 50 mg/mL

streptomycin was added, and for A. baylyi ADP1 strains carrying the posi-

tive/negative selection cassette, 50 mg/mL kanamycin was added. The

strains carrying a spectinomycin resistance cassette were grown in the

presence of 300 mg/mL spectinomycin. P. aeruginosa PAO1 was first grown

on an LA plate overnight, and then an LB overnight culture supplemented

with 20 mg/mL irgasan was started from the plate. The strains used in this

study are listed in Table S1.

Construction of the Positive/Negative Selection Cassette

A positive/negative selection cassette was constructed based on the reces-

sive streptomycin resistance conferred by the genomic rpsL-K88R mutation

(Lederberg, 1951). The positive/negative selection cassette used in this study

consists of a synthetic gene encoding the native RpsL of A. baylyi ADP1 (IDT)

under the control of the native PrpsL and the aph(30)-Ia conferring kanamycin

resistance under the control of the Pbla from the pRSFDuet-1 (Novagen). The

cassette was assembled using overlap extension PCR. The synthetic gene en-

coding the native RpsL ofA. baylyi ADP1was designed such that most codons

were exchanged by non-identical synonymous codons to avoid recombination

with the genomic rpsL-K88R allele. This cassette was inserted into vipA

and sequenced. Whenever the cassette was needed, it was amplified from

the genomic DNA of this initial strain. The full sequence of the cassette is

in Data S1.

Generation of Chromosomal A. baylyi ADP1 Mutants

A. baylyi ADP1 mutants were generated based on the methods described

earlier (Metzgar et al., 2004) with the modifications outlined below. The ho-

mologous flanking regions were typically chosen to be between 500 and

800 bp in length. Primers were derived from the A. baylyi ADP1 genomic

DNA sequence (NC_005966.1 obtained from NCBI). To transform DNA to

A. baylyi, an overnight culture was washed with LB and diluted 1:50 or

1:20 into fresh LB. The culture was then regrown for 5 hr or 2 hr and

45 min, respectively, shaking at 30�C and 200 rpm. Thereafter, a few micro-

liters of the agarose gel-purified DNA fragment bearing the desired mutation

were added to the culture, which was kept shaking at 30�C and 200 rpm

for R1 hr. Subsequently, cells from a 1-mL culture were plated on an LA

plate supplemented with the appropriate antibiotic. When selecting for the

loss of the counter-selectable cassette, 100 mg/ml streptomycin was used.

The efficiency of the negative selection was routinely over 90%. After re-

streaking for single colonies, the success of the mutagenesis was assessed

by colony PCR and subsequent sequencing. For mutants in which the target

gene was disrupted by the insertion of the counter-selectable cassette, addi-

tional mutations in the disrupted gene were tolerated. PCRs for sequencing,

cloning, and construction of deletion cassettes were either performed with

the Q5 High-Fidelity DNA Polymerase (NEB) or with Herculase II (Agilent).

Colony PCRs were performed with Taq DNA Polymerase (Sigma-Aldrich)

or Q5 High-Fidelity DNA Polymerase. The mutations generated in this study

are listed in Table S2.

Quantitative Competition Assays

The quantitative competition assays were performed in biological triplicates

starting from three separate overnight cultures of the predator and prey

strains. The vipA-sfGFP- and clpV-mCherry2-labeled parental strain served

as the positive control, and the derived DtssM strain served as the negative

control. After overnight cultivation, the cultures were washed once with LB

to remove the antibiotic. Thereafter, the A. baylyi ADP1 strains were diluted

1:20, the E. coli MG1655 GentR was diluted 1:100, P. aeruginosa PAO1 was

Table 1. Summary of Knockout Phenotypes

Deletion

Competitor

Inhibition Hcp Dynamics Lysis Previously Observed Phenotypes

tssE 0 0 +/0 0 approximately 1,000-fold less active in V. cholerae with no detectable

competitor CFU reduction, but residual prey lysis (Vettiger and Basler, 2016)

tagF +++ +++ +++ +++ increased Hcp secretion in P. aeruginosa (Silverman et al., 2011) and

B. cenocepacia (Aubert et al., 2015)

tagN ++ +++ ++ ++ this study and Weber et al., 2016

tagX 0 0 + + this study and Weber et al., 2016

ACIAD2685 0 0 + ++ this study and Weber et al., 2016

ACIAD2693 ++ ++ ++ +++ this study and Weber et al., 2016

ACIAD2698 +++ +++ +++ +++ this study and Weber et al., 2016

The phenotypes are given as qualitative values: +++, similar to wild-type; ++, attenuated; +, detectable; 0, not detectable.
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diluted 1:40, and P. aeruginosa PAO1 DretSwas diluted 1:20 in 3 mL fresh LB.

These cultures were incubated shaking at 200 rpm and 30�C for approximately

2 hr 40 min to reach an optical density at 600 nm (OD600nm) of 0.6–1.4 and then

pelleted at 20,000 3 g for 2 min. The pellets were resuspended in fresh LB to

reach an OD600nm of approximately 10. The predator and prey strains were

mixed at a ratio of 1:1, and 5 mL of the mixtures were spotted on a pre-dried

LA plate. The spots were allowed to dry, and then the competition was carried

out at 30�C for 4 hr. Thereafter, the spots were excised from the plate, and the

bacteria were resuspended in 0.5 mL LB. These suspensions were 73 serially

diluted 1:10 with LB, and 5 mL of each sample was spotted on both a prey- and

a predator-selective plate. For streptomycin-resistant A. baylyi ADP1 deriva-

tives, 100 mg/mL streptomycin was used. For the other strains, the usual

antibiotic concentrations were used. These plates were incubated at room

temperature (RT) or 30�C until colonies were visible. For the comparisons,

one-way ANOVA (a = 0.05) with a subsequent Tukey post hoc test was per-

formed using OriginPro 2016G.

Horizontal Gene Transfer Assay

The horizontal gene transfer assay was carried out as described for the quan-

titative competition assay, except that the serial dilutions of the recovered

bacteria were spotted on three LA plates supplemented with 300 mg/mL spec-

tinomycin, 50 mg/mL kanamycin, and both 300 mg/mL spectinomycin and

50 mg/mL kanamycin. For the control transformations, 203 ng of the prey strain

genomic DNA was added to the concentrated predator instead of the concen-

trated prey strains. Thereafter, the assay was carried out as described for

testing horizontal gene transfer between two strains.

Hcp Secretion Assay

For the Hcp secretion assay the A. baylyi ADP1 derivatives were regrown as

described for the quantitative competition assay. Thereafter, 1 mL of the cul-

tures were centrifuged for 1 min at 10,000 3 g and 4�C. A total of 100 mL ice-

cold 100% trichloroacetic acid (w/v; Sigma-Aldrich) was added to 900 mL of

the supernatants, incubated on ice for 10 min with intermittent vortexing and

then centrifuged for 5 min at 14,000 3 g and 4�C. The pellets were washed

with ice-cold acetone, dried at RT, and then resuspended in 20 mL 13NuPAGE

LDS sample buffer (Thermo Fisher Scientific); 2.22 mL 1 M dithiothreitol was

added and then incubated at 70�C for 10min. Three-quarters of these samples

were loaded onto NuPAGE 4%–12% Bis-Tris 1.0-mm, 12-well protein gels

(Thermo Fisher Scientific), which were run inMES buffer (Thermo Fisher Scien-

tific) for 35 min at 200 V. The gels were stained with InstantBlue Coomassie

protein stain (Expedeon) overnight and then destained with distilled water.

The assay was performed in biological duplicate. The whole gels are shown

in Figure S4.

Lysis Assay

The lysis assay isbasedon thechromogenic hydrolysis of the cell-impermeable

b-galactosidase substrate chlorophenol red-b-D-galactopyranoside (CPRG;

Sigma-Aldrich) (Vettiger and Basler, 2016) upon lysis of E. coliMG1655 GentR.

The assay was carried out similarly to the quantitative competition assay

described above, except that E. coli was regrown in the presence of 100 mM

isopropyl-b-D-thiogalactoside (IPTG) to pre-induce the b-galactosidase. After

pelleting, the E. coli pellet was resuspended in LB supplemented with 100 mM

IPTG. Only 3 mL of the competition mixtures were spotted on 150 mL LA

supplemented with 100 mM IPTG and 20 mg/mL CPRG in a flat-bottom

96-well plate in hexaplicate, leaving out the outer most wells. The spots were

allowed to dry. Thereafter, the plate was incubated at 30�C without a lid in an

Epoch 2 plate reader (BioTek) for 4 hr while measuring the absorption

at 572 nm every 10 min. When the measurement was finished, a picture of a

representative plate was taken. The SDs of the biological triplicates were

calculated from the averages of the technical hexaplicates except where noted

otherwise.

Fluorescence Microscopy

For imaging the T6SS dynamics of theA. baylyi ADP1mutants and the compe-

tition microscopy, the strains were regrown, concentrated, and mixed, when

appropriate, as described for the quantitative competition assay. The concen-

trated culture or mixture was spotted on a thin pad of 1% (w/v) agarose in LB,

covered with a glass coverslip, and imaged. For the competition microscopy,

the pad was supplemented with 0.5 mM SYTOX Blue Nucleic Acid Stain

(Thermo Fisher Scientific). The microscopic imaging was performed at least

in biological duplicate.

The following setup was used for microscopy: a Nikon Ti-E inverted motor-

ized microscope with Perfect Focus System and Plan Apo 1003 Oil Ph3 DM

(NA, 1.4) objective lens, SPECTRA X light engine (Lumencor) and ET-ECFP

(Chroma #49001), ET-GFP (Chroma #49002), and ET-mCherry (Chroma

#49008) filter set. A pco.edge 4.2 (PCO, Germany) scientific complementary

metal-oxide-semiconductor (sCMOS) camera (pixel size, 65 nm) and VisiView

software (Visitron Systems, Germany) were used to record the images. The

power output of the SPECTRA X light engine was set to 20% for all excitation

wavelengths. The sfGFP and SYTOX Blue images were acquired with 100-ms

exposure, whereas the mCherry2 images were acquired with 200-ms expo-

sure. A climate chamber mounted around the stage and a heating collar

around the objective were used to perform the imaging at 30�C and 95% rela-

tive humidity (R. H.). The obtained images were post-processed with Fiji

(Schindelin et al., 2012) and custom software based on StackReg (Thévenaz

et al., 1998). The contrast settings were adjusted such that the whole display

range was used for the bright field channel (0–65535). For the other channels,

the minimal value was set as the lower bound, and the upper bound was set to

allow 5% of the pixels to saturate. The same contrast settings were used for

each frame of a time lapse.

Statistical Analysis

The number of biological replicates is indicated for each experiment. When

measuring the colony forming units (CFUs) per milliliter, first the decadic loga-

rithm was taken, and then the averages and SDs were calculated from the

transformed values. For the comparisons, one-way ANOVA (a = 0.05) with a

Tukey post hoc test was performed using OriginPro 2016G. For the CPRG

assays, the averages and the SDs of the biological replicates were calculated

from the averages of the technical replicates.
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loux, A. (2016). TssA forms a gp6-like ring attached to the type VI secretion

sheath. EMBO J. 35, 1613–1627.

Pukatzki, S., Ma, A.T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W.C.,

Heidelberg, J.F., andMekalanos, J.J. (2006). Identification of a conserved bac-

terial protein secretion system in Vibrio cholerae using the Dictyostelium host

model system. Proc. Natl. Acad. Sci. USA 103, 1528–1533.

Pukatzki, S., Ma, A.T., Revel, A.T., Sturtevant, D., and Mekalanos, J.J. (2007).

Type VI secretion system translocates a phage tail spike-like protein into target

cells where it cross-links actin. Proc. Natl. Acad. Sci. USA 104, 15508–15513.

Russell, A.B., Singh, P., Brittnacher, M., Bui, N.K., Hood, R.D., Carl, M.A., Ag-

nello, D.M., Schwarz, S., Goodlett, D.R., Vollmer, W., and Mougous, J.D.

(2012). A widespread bacterial type VI secretion effector superfamily identified

using a heuristic approach. Cell Host Microbe 11, 538–549.

Russell, A.B., LeRoux, M., Hathazi, K., Agnello, D.M., Ishikawa, T., Wiggins,

P.A., Wai, S.N., and Mougous, J.D. (2013). Diverse type VI secretion phospho-

lipases are functionally plastic antibacterial effectors. Nature 496, 508–512.

Russell, A.B., Wexler, A.G., Harding, B.N., Whitney, J.C., Bohn, A.J., Goo,

Y.A., Tran, B.Q., Barry, N.A., Zheng, H., Peterson, S.B., et al. (2014a). A type

VI secretion-related pathway in Bacteroidetesmediates interbacterial antago-

nism. Cell Host Microbe 16, 227–236.

Cell Reports 21, 3927–3940, December 26, 2017 3939



II. RESULTS

46 | P a g e

Russell, A.B., Peterson, S.B., and Mougous, J.D. (2014b). Type VI secretion

system effectors: poisons with a purpose. Nat. Rev. Microbiol. 12, 137–148.

Santin, Y.G., and Cascales, E. (2017). Domestication of a housekeeping trans-

glycosylase for assembly of a Type VI secretion system. EMBO Rep. 18,

138–149.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M.,

Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al.

(2012). Fiji: an open-source platform for biological-image analysis. Nat.

Methods 9, 676–682.

Shneider, M.M., Buth, S.A., Ho, B.T., Basler, M., Mekalanos, J.J., and Leiman,

P.G. (2013). PAAR-repeat proteins sharpen and diversify the type VI secretion

system spike. Nature 500, 350–353.

Silverman, J.M., Austin, L.S., Hsu, F., Hicks, K.G., Hood, R.D., and Mougous,

J.D. (2011). Separate inputs modulate phosphorylation-dependent and -inde-

pendent type VI secretion activation. Mol. Microbiol. 82, 1277–1290.

Silverman, J.M., Agnello, D.M., Zheng, H., Andrews, B.T., Li, M., Catalano,

C.E., Gonen, T., and Mougous, J.D. (2013). Haemolysin coregulated protein

is an exported receptor and chaperone of type VI secretion substrates. Mol.

Cell 51, 584–593.

Suo, Z., Avci, R., Deliorman, M., Yang, X., and Pascual, D.W. (2009). Bacteria

survive multiple puncturings of their cell walls. Langmuir 25, 4588–4594.

Taylor, N.M.I., Prokhorov, N.S., Guerrero-Ferreira, R.C., Shneider, M.M.,

Browning, C., Goldie, K.N., Stahlberg, H., and Leiman, P.G. (2016). Structure

of the T4 baseplate and its function in triggering sheath contraction. Nature

533, 346–352.

The UniProt Consortium (2017). UniProt: the universal protein knowledgebase.

Nucleic Acids Res. 45 (D1), D158–D169.
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Figure S1. T6SS core and effector loci of A. baylyi ADP1 and the predicted conserved domains of the effectors, 
Related to Figure 2, Figure 3, Figure 5 and Table 1
(A) Core T6SS locus of A. baylyi ADP1. The T6SS components under investigation in this study are depicted in orange, 
vipA, tagged with sfGFP, and clpV, tagged with mCherry2, are depicted in green and red respectively. The remaining 
components are depicted in blue. (B) The effector loci of A. baylyi ADP1 are drawn to scale. Structural tip components are 
depicted in purple and blue, the effectors are depicted in red, the immunity protein encoding genes are depicted in green, 
the T6SS effector chaperone encoding gene is depicted in orange and T6SS unrelated genes are depicted in gray. (C) The 
predicted conserved domains, catalytic residues and patterns of the T6SS effectors are indicated. Tse2 is omitted because 
there were no matches to any conserved elements. The predictions were carried out as described in the supplemental 
experimental procedures.
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Figure S2. Restoration of Tse1, Related to Figure 3 and Figure 4
A copy of the insertion element IS1236 was removed to restore Tse1 based on the alignment with the indicated proteins. 
The arrow indicates the site where Tse1’ and Tse1’’ were fused genetically. 
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Figure S3. Duplications of immunity protein encoding genes are a common feature, Related to Figure 5
(A) Depicted are selected loci encoding an ortholog (min. 30 % identity at the DNA level) of Tse1. (B) Selected loci 
encoding a Tse2 ortholog (min. 30 % identity at the DNA level). Genes encoding a structural spike component are 
depicted in blue, those encoding a putative T6SS effector chaperone are depicted in orange, the effectors and their 
orthologs are depicted in red, the genes encoding a putative immunity protein are depicted in green and unrelated genes 
are depicted in gray.
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Figure S4. Hcp secretion of the Acinetobacter baylyi ADP1 T6SS mutants, Related to Figure 2 and Figure 3
Hcp secretion of the indicated T6SS mutants of A. baylyi ADP1 visualized by coomassie staining of TCA precipitated 
culture supernatants separated on NuPAGE® 4-12% Bis-Tris 1.0 mm protein gels (representative images). The SeeBlue® 
Plus2 pre-stained protein ladder (10 μl) was used as marker.

single effector strains

Hcp
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Supplemental Movie Legends 

Movie S1. T6SS dynamics of the core locus mutants, Related to Figure 1, Figure 2 and Figure 3 
The indicated mutants were imaged at 30 °C and 95 % R. H. on an LB 1 % (w/v) agarose pad for 5 min every 5 sec. 
Two examples are given for each mutant. Time is given as minutes : seconds. As mentioned in the methods, the 
contrast settings were adjusted separately for each timelapse, but within each timelapse the same settings were used. 

 

Movie S2. The T6SS of the parental strain is highly dynamic, Related to Figure 1 
The parental strain, in which VipA and ClpV were tagged with sfGFP and mCherry2 respectively, was imaged at 
30 °C and 95 % R. H. on an LB 1 % (w/v) agarose pad for 2 min every 2 sec. Twenty examples of extension 
contraction and disassembly cycles are shown. Time is given as minutes : seconds. As pointed out in the methods, 
the contrast settings were adjusted separately for each timelapse, but within each timelapse the same settings were 
used. 

 

Movie S3. The effectors are not required for T6SS activity and each effector elicits a distinct lysis phenotype 
of E. coli, Related to Figure 3 
The indicated mutants were competed with E. coli at a ratio of 1:1 on an LB 1 % (w/v) agarose pad, while imaging at 
30 °C and 95 % R. H. for 30 min every 30 s or, in case of the ΔE strain, the tpe1 single effector strain, the tse1 single 
effector strain and the ΔtssM strain, for 1 h every 1 min. The pad was supplemented with the cell impermeable DNA 
stain SYTOX® Blue (0.5 μM) as indicator for loss of membrane integrity. Four examples are shown for each 
competition. Time is given as hours : minutes : seconds. As pointed out in the methods, the contrast settings were 
adjusted separately for each timelapse, but within each timelapse the same settings were used.  
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Table S1: Bacterial strains used in this study, Related to Experimental Procedures 

Bacterial 
strains 

Genotype Reference 

Acinetobacter baylyi ADP1 (ATCC 33305) derivatives 
T6SS+ Δpaar1-paar2::Pbla-aadA (Shneider et al., 2013) 
T6SS- Δ2’644’572-2’653’574::Pbla-aadA (Basler et al., 2013) 
WT rpsL-K88R (Basler et al., 2013) 
Parental WT vipA-sfGFP clpV-mCherry2 This study 
 Parental ΔtagN This study 
 Parental ΔtagF This study 
 Parental ΔtssM This study 
 Parental ΔACIAD2685 This study 
 Parental ΔtssE This study 
 Parental Δhcp This study 
 Parental ΔACIAD2693 This study 
 Parental ΔACIAD2698 This study 
 Parental ΔtagX This study 
 Parental Δtae1 Δtse1’ Δtse2 Δtle1 This study 
 Parental Δtpe1 Δtse1’ Δtse2 Δtle1 This study 
 Parental Δtpe1 Δtae1 Δtse2 Δtle1 Δ(ACIAD1791-ACIAD1792) This study 
 Parental ΔtssM Δtpe1 Δtae1 Δtse2 Δtle1 Δ(ACIAD1791-ACIAD1792) This study 
 Parental Δtpe1 Δtae1 Δtse1’ Δtle1 This study 
 Parental Δtpe1 Δtae1 Δtse1’ Δtse2 This study 
 Parental Δtpe1 Δtae1 Δtse1’ Δtse2 Δtle1 This study 
 Parental Δtpe1-tpi1::PrpsL-rpsL’-Pbla-aph(3')-Ia This study 
 Parental Δtae1-tai1::PrpsL-rpsL’-Pbla-aph(3')-Ia This study 
 Parental Δtap1-tsi1b::PrpsL-rpsL’-Pbla-aph(3')-Ia This study 
 Parental Δtse2 Δtsi2a-tsi2b::PrpsL-rpsL’-Pbla-aph(3')-Ia This study 
 Parental Δtli1-tle1::PrpsL-rpsL’-Pbla-aph(3')-Ia This study 
 Parental Δtpe1 This study 
 Parental Δtae1 This study 
 Parental Δtse1’ This study 
 Parental Δtse2 This study 
 Parental Δtle1 This study 
Escherichia coli MG1655 GmR 
 GmR (Basler et al., 2013) 
Pseudomonas aeruginosa PAO1 
WT  (Basler et al., 2013) 
 WT ΔretS (Basler et al., 2013) 
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Table S2: Clean- and insertion deletion mutants, Related to Experimental Procedures  
The vertical bar indicates the fusion site after the in-frame deletion of the target gene. The genes disrupted by 
insertion of a selectable cassette are given as (base before insertion)|(base after insertion) where the numbering is in 
accordance with the A. baylyi ADP1 genome (accession number NC_005966.1). 

Mutation Peptide scar 
vipA-sfGFP 2’648’597 …KLSAEVDHE|AAAGG|sfGFP|KLSAEVDHE 
clpV-mCherry2 2’652’785 …TIKETEA|AAAGGG|mCherry2|TIKETEA 
ΔtagN MKTRHATQLKLC|RKNRRIEFEVL 
ΔtagF MQQINTTPLYYG|LKLFRQTFLDE 
ΔtssM MYTILGYLWQYI|AVTTPPPVGER 
ΔACIAD2685 MLFADRSRSMIKKIISVLVLV|ISEIEQEEEAA 
ΔtssE MNLDHLYPFGFR|TTQQYVISAQT 
Δhcp MKDIYVQFRGKY|SLSNNTASYAA 
ΔACIAD2693 MRKSIVFSAILV|KSSTNPFESLK 
ΔACIAD2698 MAQEKPTSLRIL|IVNTPKPTEAQ 
ΔtagX MFKALLPQSKQK|AEGQLTANAAS 
Δtpe1 MGLNIIENNLDK|IYEEKISEVIK 
Δtae1 MNKKSLVTIQLL|KIVLPKNFKGI 
Δtse1’ MTDNNVAEKYRYDRCETCERLGSF|KDVNEEFANEWNKKSFLGMVDSFSDKLKLIL

DSIVDNKSL 
Δtse2 MNKYNVLEYSIIFYDQRNKELANVRYSLVFFPVSGGKETFTHVTNEKGRTKPIRL|

ILAPFEQDELNPTMHQA 
Δtle1 MANKTIAQTGSATS|TQVKRSVLYSIVKIIKENNIQPKFR 
Δtpe1-tpi1::PrpsL-rpsL’-
Pbla- aph(3')-Ia 

56’107|56’780 

Δtae1-tai1::PrpsL-rpsL’-
Pbla- aph(3')-Ia 

170’297|172’958 

Δtap1-tsi1b::PrpsL-rpsL’-
Pbla- aph(3')-Ia 

1’797’681|1’804’585 

Δtsi2a-tsi2b::PrpsL-rpsL’-
Pbla- aph(3')-Ia 

3’038’344(+TAA)|3’040’350 

Δtli1-tle1::PrpsL-rpsL’- 
Pbla- aph(3')-Ia 

3’339’677|3’342’316 
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Supplemental Experimental Procedures 

Bioinformatics 
Bioinformatic analyses of the proteins of interest were performed using CD-Search (Marchler-Bauer and Bryant, 
2004; Marchler-Bauer et al., 2011, 2015, 2017), CCTOP (Dobson et al., 2015), HHpred (Alva et al., 2016; Söding et 
al., 2005), HMMER (Finn et al., 2015), InterProScan (Finn et al., 2017; Jones et al., 2014), Phobius (Käll et al., 
2004, 2007), Phyre2 (Kelley et al., 2015), PRED-TAT (Bagos et al., 2010), ScanProsite (de Castro et al., 2006; 
Sigrist et al., 2013), SignalP 4.1 (Petersen et al., 2011) and SWISS-MODEL (Arnold et al., 2006; Biasini et al., 2014; 
Guex et al., 2009; Kiefer et al., 2009). Synteny analyses were carried out using IMG/M (Markowitz et al., 2012). 
Sequence alignments were performed with T-Coffee (Notredame et al., 2000). The taxonomic distributions of 
proteins of interest were obtained by running at most three rounds of jackhammer (Finn et al., 2015) using 
UniProtKB as source database (The UniProt Consortium, 2017) and inspecting the taxonomic distribution of the 
matches. Alignments were visualized using Jalview (Waterhouse et al., 2009). 
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The figures in this research article will be referenced by prepending the chapter and 

section number to the figure number, e. g. Fig. II.1.1 for figure 1. 

Supplemental Information: 

The supplemental data file S1 may be found in the appendix page 142. The supplemental 

movies may be found at https://doi.org/10.1016/j.celrep.2017.12.020. 
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II.2 Additional results related to research article I 
II.2.1 Transcriptional profiling of prey cells by RNA sequencing 
To gain further insight into the potential subcellular targets of the individual T6SS effectors 

the transcriptome of both the predator and the prey were analyzed by RNA sequencing. A 

similar approach previously demonstrated the generation of ROS by lethal attacks 

including those of the T6SS (Dong et al., 2015).  

In this study the single effector A. baylyi ADP1 derivatives, described in research article I, 

were competed against E. coli MG1655 GentR which served as prey. Unlike the previous 

approach in which the entire RNA was extracted from the competition mixture (Dong et 

al., 2015), here, only the RNA of bacteria which could be recovered from the competition 

was extracted. Initially, the competitions were carried out as described for the previous 

study (Dong et al., 2015). However, the recovery of the prey strain was reduced to such an 

extent, that the ratio between the RNA of the prey and that of the aggressor would be too 

low for sequencing. Furthermore, it was noticed that the recovery of bacteria from the 

nitrocellulose filters was severely reduced when the prey was lysed during the competition. 

To reduce the lysis, the competitions were carried out at 30 °C for 30 min and only a 1:1 

ratio instead of a 10:1 ratio of aggressor to prey. Nevertheless, the recovery of the prey was 

still too low for the Tae1 single effector strain, but the time of the competition could not be 

shortened below 30 min in order to obtain a discernable transcriptional response. Therefore, 

the Tae1 single effector strain was excluded from the analysis. Furthermore, since the Tpe1 

single effector strain did not reduce the recovery of the prey it was also omitted. 

Finally, the procedure was carried out as follows: The prey and predator strains were 

regrown and concentrated to an OD600nm of approx. 10 as described for the bacterial 

competition assay in research article I. The concentrated cultures were mixed in a 1:1 ratio 

and spotted on 0.22 µm nitrocellulose filters on predried LA plates. The competitions were 

incubated at 30 °C for 30 min. Thereafter, the bacteria were resuspended in 1.5 ml ice cold 

LB of which 100 µl were used to measure the OD600nm and 1 ml was pelleted. The pellet 

was washed once with LB and then the RNA was extracted using the Direct-zol™ RNA 

isolation kit (Zymo Research). The prey to predator ratio was determined from the residual 

bacterial suspension by serial dilution and CFU plating as described in research article I. 

The RNA concentration and quality were assessed by agarose gel electrophoresis and 

spectrophotometric measurement of the quality parameters. Thereafter, the samples were 
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submitted to the quantitative genomics facility for ribosomal RNA depletion (Illumina 

Ribo-Zero rRNA Removal Kit) and sequencing library preparation (Illumina TruSeq 

Stranded mRNA Library Kit). The libraries were sequenced on an Illumina NextSeq 500 

with a read length of 150 to increase the number of unambiguously mapping reads for both 

the aggressor and the prey. 

The results are still preliminary and only one biological replicate has been sequenced so 

far. The RINe quality scores obtained by the sequencing facility indicated a poor integrity 

of the RNA obtained from the single effector strain competitions, but a high RNA quality 

for the control competitions with a T6SS deficient strain and the effector deficient strain. 

Nevertheless, the sequencing results were of good quality, as assessed with FastQC 

(Andrews, 2010), but it should be kept in mind that the results may be biased by the 

degraded RNA fragments (Wang et al., 2016). The data were analyzed using SPARTA 

(Johnson et al., 2016) and edgeR (Robinson et al., 2010). To perform the pathway 

enrichment analysis without replicates the dispersion was set to 0.04 as suggested by the 

author (Robinson et al., 2010). 

Interestingly, no differentially expressed genes were found when comparing the 

transcriptomes of the prey competed against the T6SS deficient and the effector deficient 

predators. Unexpectedly, this indicates that puncturing by the T6SS does not even increase 

the stress sensed by the prey. The previously reported strong induction of the oxidative 

stress regulon was not evident from the data obtained with the single effector strains (Dong 

et al., 2015). This might be explained by the different competition conditions and by the 

different RNA isolation strategies. A multidimensional scaling plot revealed that the 

transcriptomes of the prey are more similar when targeted by Tse2 or Tle1, whereas they 

differ when targeted by Tse1. Further studies are needed to confirm these results and to 

elucidate which roles these pathways play (compare Table II.2.1 with Table II.2.2 and 

Table II.2.3). Additionally, the sequencing also yielded the transcriptomes of the aggressors 

which remain to be analyzed. 
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Table II.2.1: KEGG pathway enrichment analysis for the Tse1 single effector strain competition 
The P-values were omitted due to the lack of replicates. N denotes the number of genes in the pathway, Up 
the number of upregulated and down the number of downregulated genes. 
Pathways upregulated KEGG N Up Down 
Ribosome eco03010 69 23 7 
Bacterial chemotaxis eco02030 18 9 5 
Two-component system eco02020 127 33 26 
Polyketide sugar unit biosynthesis eco00523 6 4 1 
Lipopolysaccharide biosynthesis eco00540 31 11 3 
Pathways downregulated KEGG N Up Down 
Metabolic pathways eco01100 637 73 187 
ABC transporters eco02010 149 14 58 
Oxidative phosphorylation eco00190 42 7 24 
Biosynthesis of secondary metabolites eco01110 290 30 95 
Aminoacyl-tRNA biosynthesis eco00970 98 6 40 

 
Table II.2.2: KEGG pathway enrichment analysis for the Tse2 single effector strain competition 
The P-values were omitted due to the lack of replicates. N denotes the number of genes in the pathway, Up 
the number of upregulated and down the number of downregulated genes. 
Pathways upregulated KEGG N Up Down 
Aminoacyl-tRNA biosynthesis eco00970 98 41 1 
Bacterial chemotaxis eco02030 18 10 5 
Nitrogen metabolism eco00910 18 8 1 
Two-component system eco02020 127 25 15 
Taurine and hypotaurine metabolism eco00430 5 3 0 
Pathways downregulated KEGG N Up Down 
Microbial metabolism in diverse environments eco01120 203 25 61 
Galactose metabolism eco00052 28 0 16 
Biosynthesis of antibiotics eco01130 200 12 56 
ABC transporters eco02010 149 10 45 
Carbon metabolism eco01200 104 9 34 

 
Table II.2.3: KEGG pathway enrichment analysis for the Tle1 single effector strain competition 
The P-values were omitted due to the lack of replicates. N denotes the number of genes in the pathway, Up 
the number of upregulated and down the number of downregulated genes. 
Pathways upregulated KEGG N Up Down 
Histidine metabolism eco00340 8 6 0 
Two-component system eco02020 127 23 11 
Biosynthesis of amino acids eco01230 115 21 5 
Arginine biosynthesis eco00220 16 7 1 
Biosynthesis of secondary metabolites eco01110 290 35 26 
Pathways downregulated KEGG N Up Down 
Galactose metabolism eco00052 28 0 12 
Flagellar assembly eco02040 29 0 12 
Biosynthesis of siderophore group nonribosomal peptides eco01053 7 0 6 
Phosphotransferase system (PTS) eco02060 30 0 11 
Phenylalanine metabolism eco00360 13 1 6 
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II.2.2 Labeling of secreted T6SS components 
Although both the sheath dynamics as well as various baseplate and envelope spanning 

complex components were visualized by fluorescence microscopy, a direct imaging of the 

secretion of the inner tube, the spike complex or any other secreted substrate could not yet 

be achieved  (Basler and Mekalanos, 2012; Basler et al., 2012; Brunet et al., 2015; Durand 

et al., 2015; Gerc et al., 2015; Zoued et al., 2016). Recently, the reuse or recycling of 

effectors and secreted structural components by sister cells was demonstrated for various 

T6SS active species (Vettiger and Basler, 2016). These results indicate, that at least some 

of the injections reach the cytoplasm. However, imaging the mode of secretion and 

injection may reveal additional subtleties. 

Fluorescently labeling the secreted T6SS components is a demanding task. The low number 

of spike components secreted in a contraction event would render them challenging to 

detect by fluorescence microscopy. Because of the large assemblies formed by Hcp it poses 

the most promising target for labeling. Nevertheless, the spacial restrictions imposed by the 

dimensions of the lumen of the Hcp tube need to be considered. The inner diameter of the 

Hcp tube is approx. 40 Å (Mougous et al., 2006) and there may be constrictions in the 

cavity of the Hcp tube (Brackmann et al.; Wang et al., 2017). 

II.2.2.1 Using fluorescent- and conditional fluorescent proteins to label Hcp 
As mentioned in the introduction, Hcp proteins bearing C-terminal extensions were 

recently identified in E. coli. These rely on Hcp proteins which lack C-terminal extensions 

for their secretion, likely by forming hetero-hexamers or even sparsely labeled tubes to 

accommodate the spacial constraints (Blondel et al., 2009; Ma et al., 2017). Similarly, the 

expression of labeled Hcp derivatives on top of the unlabeled Hcp background was 

proposed to exert a similar function. Indeed, there is a report in which a β-lactamase labeled 

Hcp expressed in the wild-type background could be secreted by the T6SS (Zhou et al., 

2012). 

Prior experiments using complete and sub saturated labeling of Hcp with msfGFP did not 

result in visible labeling of the Hcp tube when it is formed at all (unpublished data from 

Prof. Basler). Dr. Schneider then used the smaller fluorescence-activating and absorption-

shifting tag (Y-FAST), which is 125 amino acids in length, in combination with HMBR 

(Plamont et al., 2016; 2016), in the synthesis of which I assisted, which also did not yield 

visibly labeled structures. Another experiment performed by Dr. Schneider using CreiLOV 
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(Mukherjee et al., 2015), which forms a smaller fluorophore of only 119 amino acids, also 

failed to produce visible structures. 

II.2.2.2 Using bioorthogonal labeling strategies to visualize Hcp  
To reduce the size of the fluorophore even further while maintaining high quantum yield, 

bioorthogonal labeling was considered. The major challenges with this approach are the 

cell permeability of the dye, the biocompatibility of the reaction and the chemoselectivity 

as well as the reaction rate. In this case the biocompatibility is especially crucial, because 

the T6SS structures need to remain dynamic and thus the cell must remain viable at least 

for a short period of time.  

In recent years the demand for such methods has increased steadily and a vast number of 

systems have been developed which may be grouped into ligand binding and self-labeling 

enzymatic domains (Schneider and Basler, 2016), self-labeling or affinity oligopeptide tags 

(Lotze et al., 2016), enzymatically labeled oligopeptide tags and the introduction of 

bioorthogonal reactive groups by incorporation of unnatural amino acids (Chen and Wu, 

2016; L. Oliveira et al., 2017; Nikić and Lemke, 2015). These tags may either form 

covalent bonds with the labeling reagents or they may be bound with high affinity (Chen 

and Wu, 2016). The labeling by unnatural amino acids can further be subdivided in site 

specific and global incorporation. The site specific incorporation is usually achieved by 

genetic code expansion such as stop codon suppression and less commonly by quadruplet 

codon suppression or sense codon reassignment (Dumas et al., 2015). The global labeling 

on the other hand may be achieved by the incorporation of an amino acid analogon by the 

native translation machinery such as L-azidohomoalanine (Dumas et al., 2015; Kiick et al., 

2002).  

The polypeptide tags were excluded due to their size, since Y-FAST and CreiLOV did not 

yield visibly labeled structures. The use of unnatural amino acids greatly extends the 

available labeling chemistry, moreover, the site specific incorporation allows for precise 

engineering of the protein. The small size of self-labeling oligopeptide tags and the ease of 

their incorporation also seemed a viable option. As elaborated below we thus chose to 

proceed with these options. 

II.2.2.2.1 Site specific unnatural amino acid labeling of Hcp 
Currently, the highest reaction rate and chemoselectivity are yielded by the recently 

introduced strain-promoted inverse electron demand Diels-Alder cycloaddition 
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(SPIEDAC) (the interested reader is referred to the following reviews (Cserép et al., 2015; 

Lang and Chin, 2014; Mayer and Lang, 2017)). Initially, 1,2,4,5-Tetrazines were observed 

to react with unsaturated compounds in an inverse electron demand Diels-Alder 

cycloaddition (IEDDA) forming dihydropyridazines which can further isomerize or oxidize 

to the aromatic pyridazine (Carboni and Lindsey, 1959). In fact, the reaction comprises a 

Diels-Alder cycloaddition followed by a retro Diels-Alder elimination of molecular 

nitrogen making the reaction irreversible under physiological conditions. The enhanced 

reactivity of ring-strained dienophiles was noticed during a kinetic study (Thalhammer et 

al., 1990) and was later applied in a bioorthogonal labeling reaction (Blackman et al., 2008). 

The following generation of asymmetric 3-(p-Benzylamino)-1,2,4,5-tetrazine derivatives, 

which remain stable in aqueous solution (Devaraj et al., 2009), have the additional benefit 

of being able to act as an intramolecular FRET or PET acceptor for the coupled fluorophore,  

thus acting as a fluorogenic probe when reacting with strained alkenes (Devaraj et al., 

2010). The 1,2,4,5-Tetrazines may however also react with strained alkynes such as 

exo-Bicyclo[6.1.0]non-4-yn-9-ylmethanol (BCN) directly yielding the corresponding 

pyridazine (see Figure II.2.1) which also significantly changes the spectral properties of the 

tetrazine moiety (Chen et al., 2012; Lang et al., 2012). Furthermore, using BCN avoids the 

possible isomerization of strained alkenes to their much less reactive cis-form (Lang et al., 

2012; Taylor et al., 2011). 
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Figure II.2.1: SPIEDAC coupling of a 1,2,4,5-tetrazine derivative with Nε-BCN-L-lysine 

Due to the commercial availability of the reactants and the advantages mentioned above 

the labeling strategy employing Nε-BCN-L-lysine as dienophile in combination with the 

3-(p-Benzylamino)-1,2,4,5-tetrazine diene was chosen (Lang et al., 2012). The 

Nε-BCN-L-lysine is site specifically incorporated into the target protein by amber stop 

codon suppression. This is achieved by the orthogonal pair of the evolved pyrrolysyl-tRNA 

synthetase (BCNRS) and the tRNACUA from Methanosarcina barkeri (Lang et al., 2012).  
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Figure II.2.2: Incorporation of Nε-BCN-L-lysine and subsequent staining with Tetrazine-5-TAMRA 
Here, Tetrazine-5-TAMRA stands for 3-(p-Benzylamino)-1,2,4,5-tetrazine-5-carboxytetramethylrhodamine 
(from Jena Bioscience GmbH). Briefly, the strain carrying the labeling plasmids was regrown in the presence 
of 70 µg/ml ampicillin and 12.5 µg/ml tetracycline in 5 ml LB shaking at 37 °C and 200 rpm to an OD600nm 
of approx. 0.4. Then, the culture was split into two cultures, à 2 ml and 2 mM Nε-BCN-L-lysine from an 
80 mM stock dissolved in 0.1 M NaOH(aq) (Nikić et al., 2014) were added to one of the cultures whereas the 
equivalent amount of 0.1 M NaOH(aq) were added to the control culture (Nε-BCN-L-lysine was acquired from 
SiChem). Additionally, 0.2 % arabinose were added to each culture, which were then incubated shaking at 
37 °C and 200 rpm for another 1 h 30 min. The cultures were pelleted by centrifuging 2 min at 8000 x g. The 
pellets were washed three times with 1 ml 10 % DMSO in LB to remove the Nε-BCN-L-lysine. Thereafter, 
the pellets were resuspended in 100 µl PBS and 40 µM Tetrazine-5-TAMRA were added (from a 2 mM stock 
solution in DMSO). The reactions were incubated 10 min at 37 °C. Subsequently the cells were pelleted by 
centrifugation and the pellets were washed four times for 5 min with 10 % DMSO in LB to remove the 
remaining Tetrazine-5-TAMRA. The pellets were resuspended in 50 µl PBS and subjected to microscopy on 
1 % agarose PBS pads. The same contrast settings were applied to the images of the sample and the control 
without the Nε-BCN-L-lysine for comparison. 
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The cell permeable TAMRA was selected as tetrazine coupled fluorophore (Murrey et al., 

2015), because acetate esters of fluorescein, although cell permeable, are non-fluorescent 

until the esters are hydrolyzed by ubiquitous esterases, the product of which is membrane 

impermeable and thus accumulates over time (Rotman and Papermaster, 1966). It should 

be noted that although this reaction was described to be specific (Lang et al., 2012), a 

significant amount of off target labeling may occur when the TAMRA-tetrazine-conjugate 

is used at concentrations above 2 µM (Murrey et al., 2015). 

Initial trials using this labeling strategy in E. coli DH10β confirmed the successful 

incorporation of the Nε-BCN-L-lysine into a C-terminally His6-tagged sfGFP variant 

bearing a TAG stop codon at position 150 resulting in green fluorescence (see Figure 

II.2.2). However, it turned out, that some cells retained unspecifically bound dye 

independent of the supplementation with Nε-BCN-L-lysine, increasing the overall 

fluorescence to an extent, that the specific labeling was only visible as background. To 

remove the excess dye, a harsher washing protocol was adapted using 5 % DMSO with 

0.2 % Pluronic F-127 (from Sigma-Aldrich) in PBS for ten washes (Plass et al., 2012). 

Nonetheless, even this excessive washing protocol was not sufficient to remove the 

unspecifically bound dye (data not shown). Similar complications were recently reported 

elsewhere (Kipper et al., 2017). Longer washing protocols are not feasible for labeling 

secreted T6SS components, because of the cytotoxicity of the wash buffer and the potential 

continuous secretion of labeled components. Nevertheless, it was tried to transfer the 

labeling plasmids into V. cholerae 2740-80 in close collaboration with Dr. Schneider. I 

constructed the plasmid derivatives and Dr. Schneider transformed them to 

V. cholerae 2740-80. The original psfGFP150TAGpylT-His6 only yielded a low 

transformation rate and I suspected, that the tetracycline resistance, conferred by the 

plasmid, was not sufficient, thus I constructed derivatives conferring kanamycin, 

gentamycin and spectinomycin resistance. The plasmid bearing the kanamycin resistance 

cassette proved most useful. Strains harboring both required labeling plasmids had a severe 

growth defect and could not be revived from cryogenic cultures. The supplementation with 

Nε-BCN-L-lysine, to avoid the accumulation of uncharged tRNACUA or the repression by 

adding 1 % glucose, did not alleviate the growth defect. Similar results were achieved when 

I transferred the tRNACUA to pBAD24 and the BCNRS to pBAD33. 
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II.2.2.2.2  Using the tetracysteine tag to label Hcp  
The small self-labeling oligopeptide tags were considered as an alternative labeling strategy 

of which the tetracysteine tag was chosen, because it was previously used in bacteria to 

monitor the secretion of T3SS substrates (Enninga et al., 2005; VanEngelenburg and 

Palmer, 2008). Again, the procedures were carried out in close collaboration with 

Dr. Schneider for whom I constructed or designed the tagged constructs, unless noted 

otherwise, who then transformed them to V. cholerae and performed the staining and the 

microscopy. 

The specifically designed cooperative tetracysteine hairpin binder is known to react with 

the membrane permeable  4’,5’-bis(1,3,2-Dithiarsolan-2-yl)fluorescein (FlAsH-EDT2) in a 

fluorogenic reaction (Griffin et al., 1998). The binding modality of an optimized 

dodecapeptide (FLNCCPGCCMEP) (Martin et al., 2005) with 4,6-Diarsaneylresorufin 

(ReAsH), another fluorogenic hairpin binder, has been solved by NMR (Madani et al., 

2009). The fluorogenicity is attributed to the rotamer-restricted fluorescence of the aryl-

fluorophore with regard to the As-aryl substituents (Walker et al., 2016). The reaction is 

reversible and displaces the 1,2-Ethanedithiol (EDT) antidote. Furthermore, the off-target 

binding is tunable by administering EDT or 2,3-Dimercaptopropane-1-ol (British anti-

Lewisite [BAL]) during the washing procedure (Adams et al., 2002; Albert Griffin et al., 

2000; Griffin et al., 1998). 

Based on the in situ structure of the Hcp tube in V. cholerae (Wang et al., 2017), both N- 

and C-terminal tetracysteine tags were designed. The structure indicated that only the N-

terminus would point into the lumen of the Hcp-tube, but prior experiments with C-terminal 

His6-tagged Hcp suggested that the tag did not interfere with the tube assembly. Both the 

affinity optimized dodecapeptide FLNCCPGCCMEP (Martin et al., 2005) and the smallest 

binding hexapeptide CCPGCC (Griffin et al., 1998) were chosen for the experiments. 

Previous results from Prof. Basler indicated, that a direct fusion of the dodecapeptide to the 

N- or C-terminus of Hcp would not complement (unpublished), therefore a GGGGS linker 

was used for N-terminal fusions and an AAAGG linker was used for C-terminal fusions. 

Only the C-terminal hexapeptide tag construct was able to restore T6SS activity in an Hcp 

deficient strain. Upon adding the FlAsH-EDT2-reagent, the Hcp aggregated and the T6SS 

activity seized (data not shown). 
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Figure II.2.3: β-sheet tetracysteine constructs forming FlAsH binding sites in the lumen of the Hcp 
tube 
Depicted is the lumen of a Hcp hexamer modeled by Dr. Wang. The residues, which were exchanged to 
cysteines, are indicated on the turquoise subunit. The conformations of the cysteines were modeled using 
UCSF Chimera (Pettersen et al., 2004) together with the dynameomics rotamer library (Scouras and Daggett, 
2011) and are for illustrative purposes only. The distances between the residues are measured from their Cα-
atoms. Mutants with the following combinations of β-sheet cysteine exchanges were constructed and tested: 
β-sheet 1 with β-sheet 2, β-sheet 2 with β-sheet 4 and β-sheet 3 with β-sheet 4. 

Since most of the Hcp-protein is made up of antiparallel-β-sheets, another labeling strategy 

based on the incorporation of cysteines into β-sheet-structures with the appropriate spacing 

and facing the same side to yield a FlAsH binding site was chosen (Krishnan and Gierasch, 

2008). Four antiparallel-β-sheets face the lumen of the Hcp-tube. Thus, all three possible 

combinations were constructed (see Figure II.2.3). I designed the mutations and 

Dr. Schneider constructed and tested the mutants. None of the β-sheet-tetracysteine Hcp 

derivatives restored the T6SS dynamics in an Hcp deficient strain. 

There are two potentially accessible loops in Hcp facing the lumen of the tube. Thus, I 

helped Dr. Schneider to design constructs bearing the tetracysteine tag in these loops. 

Dr. Schneider constructed the mutants and tested them. Unfortunately, the loops did not 

allow the cysteines to face in the same direction, reducing the chance to bind FlAsH (see 

Figure II.2.4), nonetheless the flexibility of the loops may allow for sufficient 

rearrangement. Furthermore, the loops may participate in the stacking of the Hcp hexamers 

which may be distorted when the loops adopt the engineered hairpin conformation.  
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Figure II.2.4: Incorporation of the tetracysteine tag into luminal loops of Hcp 
Depicted is the lumen of a Hcp stack modeled by Dr. Wang. The loops, which were modified to bear the 
tetracysteine tag, are indicated for the turquoise subunit. The conformations of the cysteines were modeled 
using UCSF Chimera (Pettersen et al., 2004) together with the dynameomics rotamer library (Scouras and 
Daggett, 2011) and are for illustrative purposes only. The loop mutants were constructed separately. The 
following residues were exchanged in loop I: P54C, Q55C, S56P, Q58C, P59C. For loop II the 
following residues were exchanged: Q131C, D132C, A134G, K135C, S136C. 

Both loop mutants did not restore T6SS activity in a Hcp deficient strain. Dr. Schneider 

then constructed and tested a C-terminal tetracysteine tagged Hcp in P. aeruginosa PAO1 

and two loop mutants bearing a tetracysteine tag, however none of them complemented. 

II.2.2.2.3  Using fluorescent noncanonical amino acid tagging to label Hcp  
The previous labeling strategies all aimed to site specifically label Hcp. However, 

alternatively the entire proteome may be labeled. Then, employing the previously described 

reuse of injected T6SS components (Vettiger and Basler, 2016), the labeled components 

may be injected into unlabeled cells which can use the injected components to assemble 

T6SSs of their own. Since the unlabeled cells are devoid of any background signal the 

newly assembled structures should be visible. 

Such global labeling may be achieved by using the bioorthogonal noncanonical amino acid 

tagging (BONCAT) (Dieterich et al., 2006) or fluorescent noncanonical amino acid tagging 

(FUNCAT) (Dieterich et al., 2010) strategies. The advantage of FUNCAT is the use of 

naturally incorporated noncanonical amino acids, alleviating the need for genetic code 

expansion or stop codon suppression (Hatzenpichler et al., 2014; Kiick et al., 2002). The 
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original FUNCAT strategy used the copper catalyzed click reaction (Rostovtsev et al., 

2002; Tornøe et al., 2002) to label either incorporated L-azidohomoalanine (AHA) or 

L-homopropargylglycine (HPG) (Dieterich et al., 2010). The cytotoxicity of the Cu(I) 

catalyst would be preventive for our use, yet employing strained cycloalkynes circumvents 

the need of a catalyst for the 1,3-dipolar Huisgen cycloaddition termed strain-promoted 

azide-alkyne cycloaddition (SPAAC) (Agard et al., 2004; Blomquist and Liu, 1953). A 

number of such strained alkynes were developed (Dommerholt et al., 2016) of which 

mostly the dibenzoannulated cyclooctynes are commercially available. As usual, reactivity 

has to be balanced against stability and selectivity, therefore mostly the medium reactive 

but stable dibenzoazacyclooctyne (DIBAC) (Debets et al., 2010) and the less reactive 

dibenzocyclooctanol (DIBO) (Ning et al., 2008) fluorophore conjugates are commercially 

available. Additionally, the even less reactive BCN (Dommerholt et al., 2010) derivatives 

are available which may also be used in the SPIEDAC reaction (Chen et al., 2012). Various 

bioorthogonal in vivo labeling strategies were recently evaluated in a systematic study in 

eukaryotes, highlighting that, apart from reactivity and selectivity, also the cell 

permeability of the conjugates plays a crucial role (Murrey et al., 2015). Hence using the 

less reactive, but also less hydrophobic, BCN-fluorophore conjugates may be beneficial 

compared to the more reactive and hydrophobic DIBO or DIBAC conjugates. Apart from 

the reactive groups, the choice of the conjugated fluorophore also significantly affects the 

cell permeability. Many of the commercially available dyes do not disclose the actual 

chemical compound and were only tested with eukaryotes. This encumbers the choice of 

the conjugate. Both TAMRA and Cy3 were considered as cell permeable dyes based on 

recent reports (Kipper et al., 2017; Murrey et al., 2015) and their commercial availability 

as conjugates. Although commonly used to increase hydrophilicity, and consequently water 

solubility, without introducing charges, a PEG linker between the reactive group and the 

fluorophore may also decrease cell permeability (Kipper et al., 2017), therefore both 

TAMRA-PEG4-DBCO (Hatzenpichler et al., 2014) and TAMRA-DIBO were chosen as 

conjugates. Additionally, Cy3-DBCO was selected (see Figure II.2.5). These fluorophore 

conjugates are too hydrophobic to wash them out of the membrane; therefore, it is unlikely 

that labeled Hcp structures can be observed in the stained donor strain. 

The naturally incorporated AHA is a surrogate for L-methionine and is activated at a rate 

of approx. 390-1 compared to that of L-methionine (Kiick et al., 2002). Therefore, the 

substitution of L-methionine by AHA will not be complete when performed in a 
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L-methionine prototrophic strain. In all three of the T6SS model organisms 

A. baylyi ADP1, P. aeruginosa PAO1 and V. cholerae 2740-80, commonly used in the 

group, none of the naturally occurring L-methionines is pointing into the lumen of the Hcp 

hexamer. Consequently, the azide moiety will likely be inaccessible for the labeling 

reagent. Therefore, an Hcp2Vc-K69M mutant was constructed for V. cholerae 2740-80 and 

an HcpADP1-L61M mutant was constructed for A. baylyi ADP1. These residues are located 

in one of the inner central β-sheets and point into the lumen of the Hcp hexamer. 
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Figure II.2.5: Strained cycloalkyne-fluorophore conjugates used for SPAAC labeling 

Neidhardt’s rich defined methionine free medium with either glucose or glycerol as carbon 

source was chosen for the labeling (Neidhardt et al., 1974). Preliminary experiments with 

A. baylyi ADP1 did not yield a stable growth. The Hcp deficient V. cholerae 2740-80 

carrying pBAD24-Hcp2-K69M grew with glycerol as a carbon source. However, there was 

no significant T6SS activity after the completion of the labeling procedure. 

II.2.2.2.4  Summary and outlook for the Hcp labeling 
Extensive attempts were made to label Hcp in vivo in collaboration with Dr. Schneider and 

Dr. Wang. The tags either did not yield enough signal to distinguish them from the 

background or disrupted the assembly of the Hcp tube. The bioorthogonal labeling, using 

unnatural amino acids, is promising due to the small size and the high photostability of 
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organic fluorophores. However, this may require the adaptation of the tRNACUA/pyrrolysyl-

tRNA synthetase pair to the selected model organism or the choice of a different model 

organism. Furthermore, the subsequent staining procedure has to be revised in order to 

reduce the amount of unspecifically bound dye. Alternatively, fluorogenic substrates with 

a higher turn-on-ratio could be employed, alleviating the need to remove excess dye 

(Carlson et al., 2013; Devaraj et al., 2010; Ji et al., 2017; Knorr et al., 2016; L. Oliveira et 

al., 2017; Meimetis et al., 2014; Shang et al., 2017; Vázquez et al., 2017; Wieczorek et al., 

2014, 2017; Wu et al., 2014a, 2014b). To date, the dye-conjugate with the highest turn-on-

ratio of 11,000 x, in the class of SPIEDAC reactions, is HELIOS 388Me (Meimetis et al., 

2014). 

Recently, electroporation was established to deliver ex vivo labeled biomolecules into 

microorganisms (Aigrain et al., 2015; Crawford et al., 2013; Paolo et al., 2016; Sustarsic et 

al., 2014). This would allow to produce Hcp in a different organism which can tolerate the 

labeling plasmids, label the purified Hcp and electroporate it into the target organism. This 

would also alleviate the need to remove unspecifically bound dye and permit a broader 

range of fluorophores and labeling chemistry to be used. 

The FUNCAT strategy also seems promising. Different methionine free growth media may 

yield better growth and optimizing the staining procedure may help to reduce the negative 

effects on the T6SS activity. Nevertheless, it may be challenging to obtain long T6SS 

structures because of the low quantity of injected components (Vettiger and Basler, 2016). 

Due to the high photostability and quantum yields of the organic fluorophores it may be 

possible to inject the labeled Hcp into cells which themselves express low quantities of 

Hcp, thereby generating sparsely labeled Hcp tubes which may still be visible. 
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II.3 Utility Software Developed for Image Registration 
A common preprocessing step in the image analysis of time lapse microscopy data is the 

alignment or registration of the image stack. The frequent use of such microscopy 

techniques throughout this thesis resulted in a significant amount of computation time 

required to perform the image registration. An additional limitation was that the registration 

program used could not be executed in parallel and that each dimension had to be aligned 

separately. This incited the improvement of the registration program. 

II.3.1 Introduction 
The image registration software which had been used was the ImageJ (Schneider et al., 

2012) plugin StackReg, which in turn is based on TurboReg (Thévenaz et al., 1998). The 

plugin is widely used and is considered stable and fast although somewhat inconvenient for 

multidimensional stacks, because each dimension needs to be aligned separately. Aligning 

the dimensions separately not only increases the computational load, but may also lead to 

disparities between the alignments of different dimensions. Because StackReg saves each 

frame as a temporary image file with a hardcoded name and then passes it as a parameter 

to TurboReg, the StackReg instances must not be run in parallel, otherwise the instances 

will overwrite the temporary images of the other instance leading to unpredictable behavior. 

Some of these shortcomings were addressed in derived projects like PoorMan3Dreg 

(Liebling, 2010), HyperStackReg (Sharma, 2015), MultiStackRegistration (Busse and 

Miura, 2016) and TimeLapseReg (Sahdev et al., 2017). However, these projects still rely 

on the proven TurboReg base (Thévenaz et al., 1998).  

The multiresolution subpixel precision registration algorithm, described by Thévenaz et al., 

1998, employs affine transformations and an isotropic intensity scaling factor to minimize 

the mean square intensity difference (ε2) between the reference dataset and the alignment 

target. The datasets may be two- or three-dimensional, but the algorithm can be generalized 

to support datasets of any dimension. During the alignment the data are represented as 

interpolating symmetric cubic uniform B-splines to allow for resampling (Unser et al., 

1993a), spatial differentiation and interpolation (efficient implementations described and 

reviewed in (Unser et al., 1993b, 1993c)). Furthermore, Thévenaz et al., 1998 describe a 

modified Marquardt-Levenberg optimization algorithm (ML*) which reduces the 

computational burden by calculating the gradient of ε2 about a fixed point in the parameter 

space (Δp = 0). Additionally, the use of image pyramids regularizes the optimization 

problem and reduces the number of iterations required at high resolution, decreasing the 
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computational cost and increasing the stability of the alignment. Using only a subset of the 

affine transformations, especially restricting them to the homomorphic case or the rigid 

body transformations, significantly reduces the degrees of freedom. 

II.3.2 Implementation of a parallel stack registration program 
Since the registration algorithm was already highly optimized, only its implementation was 

considered for optimization. The implementation should allow to run multiple instances in 

parallel and the transformations derived from one dimension should be propagated to the 

other dimensions to reduce the computational cost and avoid alignment disparities between 

the dimensions. Because volumetric data were seldomly acquired in the group of 

Prof. Basler, the three-dimensional case was not considered, also avoiding the potential 

Gimbal lock resulting from the use of Euler angles to describe the rotations. Furthermore, 

the transformations were restricted to the homomorphic case because of the inherent 

properties of widefield microscopy. In TurboReg the algorithm had been implemented 

serially, apart from the conversion to the B-spline coefficients and the construction of the 

image pyramid. Because many of the steps are independent or separable it was proposed, 

that a parallel implementation should provide a performance benefit.  

For the following discussion it should be noted, that the licenses of TurboReg and StackReg 

prohibit creating and distributing derivative works. Therefore, permission was obtained 

from the authors to create and use derivative works within the scope of this thesis. 

In recent years the parallelization has extended beyond the central processing unit (CPU) 

to the General Purpose Computation on Graphics Processing Units (GPGPU) increasing 

the number of parallel tasks dramatically. However, there are a number of important 

constraints when using GPUs among which are memory access coalescing, the single 

instruction multiple thread (SIMT) synchronous stepping of a processing element (PE) and 

the avoidance of execution- or data access divergence resulting from the previous two 

constraints. Taking these constraints into account usually requires specifically designing 

the implementation for this purpose and thus a direct execution of the serial implementation 

would often result in a reduced performance. Parallelization was considered using a bottom 

up approach starting from the pixel level independence. To implement the parallelized 

versions OpenCL™ C was chosen, because it is an open standard not bound to a single 

hardware manufacturer and supports heterogenous computing (Stone et al., 2010). 
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As a first step the images have to be converted into the B-spline coefficients (direct B-

spline transform). Using the z-transform, Unser et al., 1991 described how to efficiently 

perform this task by successively applying linear causal and anticausal infinite impulse 

response filters (IIR) (Unser et al., 1991). Indeed, an implementation of these recursive 

linear filters has been written for the GPU in CUDA® (Ruijters and Thévenaz, 2012). Their 

implementation however only leverages the row and column independence to introduce 

parallelism which can be sufficient to hide latencies for large images, but an even higher 

parallelism may be achieved by combining the filters and applying these on blocks as 

recently proposed (Maximo, 2016; Nehab et al., 2011). This not only increases the amount 

of parallelism but also enables a more efficient use of the faster shared local memory. It 

should be noted however, that Unser et al., 1991 also presented and alternative sum 

decomposition of the z-transformed filter allowing the recursive linear causal and 

anticausal filters to be applied independently and then to employ a successive finite impulse 

response filter (FIR) to combine the results (Unser et al., 1991). This allows to increase the 

parallelism, but incurs more memory access and requires three times as much memory to 

hold the intermediate results. Because the pyramids are only constructed once for each 

image and the most costly part of the calculation is the iterative ML* optimization, the 

implementation proposed here was based on the column and row parallel implementation 

(Ruijters and Thévenaz, 2012). 

In the next step the image-, coefficient- and derivative-pyramids are constructed, which 

involves the successive application of a set of filters (see Figure II.3.1) (Unser et al., 1991, 

1993a). These filters can be grouped into IIR filters, with column and row independence, 

and separable FIR filters, with pixel level independence, yielding the highest possible 

degree of parallelism. As mentioned before, the algorithm may be generalized to any 

number of dimensions. From the transfer functions of the applied filters it becomes evident, 

that each dataset dimension is independent (Unser et al., 1993b), hence the row and column 

independence of the IIR filters and the implicit separability of the FIR filters (see Figure 

II.3.1). Furthermore, the IIR filters can perform their operations in-place, whereas the FIR 

filters constitute out-of-place modifiers, requiring an additional buffer to hold the result.  
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Impulse 
response 

Transfer function Type Poles 

𝑏𝑏3(𝑘𝑘) 
1
6

(𝑧𝑧 + 4 + 𝑧𝑧−1) FIR - 

𝑏𝑏7(𝑘𝑘) 
1

5040
(2416 + 1191[𝑧𝑧 + 𝑧𝑧−1] + 120[𝑧𝑧2 + 𝑧𝑧−2] + 𝑧𝑧3 + 𝑧𝑧−3) FIR - 

𝑢𝑢23(𝑘𝑘) 
1
8

(𝑧𝑧2 + 4𝑧𝑧 + 6 + 4𝑧𝑧−1 + 𝑧𝑧−2) FIR - 

∆(𝑘𝑘) 
1
2

(𝑧𝑧 − 𝑧𝑧−1) FIR - 

(𝑏𝑏3)−1(𝑘𝑘) 
6

𝑧𝑧 + 4 + 𝑧𝑧−1
 IIR 𝑧𝑧1 = √3 − 2 

(𝑏𝑏7)−1(𝑘𝑘) 
5040

2416 + 1191[𝑧𝑧 + 𝑧𝑧−1] + 120[𝑧𝑧2 + 𝑧𝑧−2] + 𝑧𝑧3 + 𝑧𝑧−3
 IIR 

𝑧𝑧1 = −0.53528
𝑧𝑧2 = −0.12256
𝑧𝑧3 = −0.00914

 

Figure II.3.1: Filter cascade for image-, coefficient- and derivative-pyramid construction 
The filter subscript used in the block diagram indicates the image dimension to which the filter is applied. 
The I stands for the input image. In the table ∀𝑘𝑘 ∈ ℤ and only the poles satisfying |𝑧𝑧𝑖𝑖| < 1, 𝑖𝑖 = 1, … , ⌊𝑛𝑛/2⌋, 
with 𝑛𝑛 being the degree of the B-spline, are given. 

The amount of memory available on a graphics card is more limited than that accessible to 

the CPU, but because transferring data over the bus is expensive, the entire procedure 

should be carried out using only GPU resident memory. Therefore, efficiently reusing the 

GPU resident buffers is crucial. 
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Next, the registration is performed based on the constructed pyramids. The procedure 

consists of applying the ML* algorithm to minimize ε2 by adjusting the transformation 

parameters for each resolution level. The parameters are scaled up between the resolution 

levels. The implementation in TurboReg uses an affine transformation matrix derived from 

landmarks to describe the transformation (Thévenaz et al., 1998). This circumvents the 

need to invert the affine matrix, the equivalent of which may be obtained by deriving the 

affine matrix from the inverted set of landmarks. However, the use of landmarks is 

unnecessary and by explicitly employing the transformation parameters both the affine 

transformation matrix and the corresponding inverse transformation matrix may be 

constructed at any time. Moreover, using the transformation parameters for combining 

transformations avoids the need for orthonormalization of the matrices resulting from 

matrix multiplication which will become important later. The calculation of the difference 

between the reference and the target is pixel level independent. To avoid actually 

transforming the target an inversely transformed orthonormal base, which was 

implemented by using an inversely transformed normalized subpixel access vector, was 

employed in TurboReg (Thévenaz et al., 1998). The same concept was used in the 

implementation presented here. Furthermore, even though the difference can be calculated 

independently for each pixel, calculating the sum yielding ε2 would require global 

synchronization, which is not available in OpenCL™. Additionally, this would serialize 

the calculation. The same is true for the parallel calculation of the gradient and the hessian 

matrix required by the ML* algorithm. This parallel reduction problem is common and an 

elegant solution using a cascaded parallel tree sum reduction in combination with a 

sequential reduction was proposed by Dr. Harris in 2007 taking Brent’s theorem into 

account. The proposed algorithm was adapted such that the block sizes are not required to 

be powers of two. 

The alignment of an image to its reference can be performed independent of the remaining 

images and can thus be parallelized. However, especially during time-lapse microscopy of 

fast growing bacteria or when aligning Z-sections, frames taken at a late timepoint or at a 

great Z-distance may not share significant similarity with the reference anymore. The 

global transformation of a distant frame to its reference may be decomposed into the 

transformations of each preceding frame. The alignment of each frame to its preceding 

frame is also independent resulting in a local transformation. Therefore, the local 

transformations can be calculated in parallel first, then the local transformations have to be 
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combined to yield the global transformations and finally the global transformations may be 

applied independently. Such an algorithm had already been implemented in StackReg 

(Thévenaz et al., 1998), but the local transformations were represented in form of affine 

matrices, which were multiplied to yield the global transformations. From a mathematical 

point of view this allows any type of affine transformations to be combined using the same 

method, however this procedure is not necessarily numerically stable, possibly requiring a 

computationally intensive orthonormalization of the resulting matrix. As mentioned before, 

I chose to explicitly employ the transformation parameters, allowing a trivial combination 

of the transformations from which an orthonormal transformation may then be derived. 

Yet, this requires specifically implementing the combination of the transformations for 

each type of transformation. 

Although the independent alignment of the images is a deterministic process, the number 

of iterations required to perform an alignment cannot be determined in advance. 

Consequently, equally splitting the dataset may result in an unequal distribution of 

computational load and thus idling computational units. To avoid this problem a work 

stealing scheduler was used instead (Blumofe and Leiserson, 1999). 

As mentioned before, the use of image pyramids has the benefit of reducing the number of 

iterations at high resolution. Similarly, the computation speed can be significantly 

increased by using single precision floating point numbers instead of double precision 

floating point numbers. Not only is the computation itself faster, but also the memory 

access, due to the smaller size. Most cameras used for scientific imaging have a bit depth 

of no more than 24 bit, therefore such an image may be represented as single precision 

floating point numbers without a severe loss of information. Thus, I propose to use a hybrid 

precision model where the pyramids are constructed using single precision floating point 

numbers. The alignment is carried out at single precision and the resulting parameters are 

used as optimal initial parameters for a final round of optimization at double precision. 

Furthermore, taking the maximum attainable precision of  single precision floating point 

numbers into account, the initialization of the causal coefficient used during the direct B-

spline transform may be simplified as previously suggested (Ruijters and Thévenaz, 2012). 

To increase the parallelism even more, the implementation was also adapted for the CPU 

such that both the CPU and the GPU could run in parallel. 
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II.3.3 Performance comparison 
To simplify its use, the new registration program was implemented as an ImageJ plugin 

(Schneider et al., 2012). A test dataset comprised of 60 timepoints and 4 channels each 

2048 by 2048 pixels with a bit depth of 16 bit was obtained using time-lapse microscopy 

and was used to compare the performance of the implementations. Two different computer 

systems were used for the comparison, one with an Intel® Xeon® CPU E3-1270 v5 

processor and an NVIDIA Quadro K2200 graphics card, referred to as C1, the other with 

an Intel® Core™ i7-6700K processor and an NVIDIA GeForce® GTX 1080 founders 

edition graphics card, referred to as C2.  

 
Figure II.3.2: Performance comparison of the different parallel registration implementations 
The error bars indicate the standard deviation of 10 runs. 

The average performance gain of the hybrid precision implementation on the single channel 

image stack was 8.9 fold on C2 and 5.2 fold on C1. Additionally, an implementation using 

only single precision floating point values yielded an overall 25.6 fold performance gain 

on C2 which may be beneficial if high accuracy is less of a concern. For the four channel 

image an additional performance gain of 19.5 fold was achieved by the propagation of the 

transformations to the remaining channels. Furthermore, the implementation presented here 

enables the user to export the transformations. As an example, these may be used to 

inversely transform regions of interest defined in the aligned stack to obtain non-

interpolated pixel values from the untransformed images. 

Taken together a new parallel registration implementation was presented which utilizes 

both the GPU and the CPU yielding significant performance improvements. 
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Established Microbial Colonies Can Survive
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Abstract
Type VI secretion (T6S) is a cell-to-cell injection system that can be used as a microbial

weapon. T6S kills vulnerable cells, and is present in close to 25% of sequenced Gram-neg-

ative bacteria. To examine the ecological role of T6S among bacteria, we competed self-

immune T6S+ cells and T6S-sensitive cells in simulated range expansions. As killing takes

place only at the interface between sensitive and T6S+ strains, while growth takes place

everywhere, sufficiently large domains of sensitive cells can achieve net growth in the face

of attack. Indeed T6S-sensitive cells can often outgrow their T6S+ competitors. We vali-

dated these findings through in vivo competition experiments between T6S+ Vibrio cholerae
and T6S-sensitive Escherichia coli. We found that E. coli can survive and even dominate so

long as they have an adequate opportunity to form microcolonies at the outset of the compe-

tition. Finally, in simulated competitions between two equivalent and mutually sensitive

T6S+ strains, the more numerous strain has an advantage that increases with the T6S

attack rate. We conclude that sufficiently large domains of T6S-sensitive individuals can

survive attack and potentially outcompete self-immune T6S+ bacteria.

Author Summary

Type VI secretion (T6S) is a cell-to-cell injection system that can be used as a microbial
weapon. T6S kills vulnerable cells, and is present in a significant fraction of bacteria. Given
the tactical advantage conferred by T6S, the system’s lack of universality suggests limits to
its effectiveness relative to its costs. In our study, we use theory and experiments to identify
the limits of T6S as a cell-to-cell weapon. We find that cell birth inside an existing colony
can offset cell death due to T6S killing at the colony’s edge, helping sufficiently large
(“established”) groups of sensitive cells to survive. T6S has been extensively studied
because of its implications in both disease and inter-microbial competition. The present
study is the first to identify the practical limits of T6S as a killing mechanism.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004520 October 20, 2015 1 / 16
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Introduction
Microbes employ a staggering range of extracellular tools to engineer their immediate environ-
ment [1–6]. Very often, that environment is defined by the multitude of other cells in close
proximity. These neighbors pose both a threat and an opportunity, and represent an important
target for manipulation [7–10].

The Type VI secretion system (T6SS) is a mechanism for direct cell-to-cell manipulation
through the translocation of effector proteins. The T6SS consists of a helical sheath, surround-
ing an inner tube with associated effectors, and a baseplate attached to the bacterial cell wall
(Fig 1a) [11, 12]. The T6SS is functionally close to the contractile phage tail, with which it
shares evolutionary origins [13–17]. When triggered, the sheath contracts rapidly, pushing the
effector through a specialized pore and into a neighboring cell [18–22].

Specialized T6SSs can directly damage both prokaryotic and eukaryotic target cells through
the translocation of toxic proteins directly into the target cell. T6SSs are observed to cause
death via numerous mechanisms in both bacteria and eukaryotes (Fig 1b; S1 Video) [13, 18,
23–28]. In fact, many species have developed multiple, specialized T6SSs [26]; for example,
Burkholderia thailandensis has five separate T6SSs, which allow it to attack both prokaryotic
and eukaryotic cells [29]. T6SSs are present in approximately 25% of the Gram-negative
genomes studied by Boyer and colleagues [30]. Antibacterial T6SSs appear to be found with
cognate immunity proteins in every case [26]. Given this tactical advantage, one might expect
T6S to be even more widespread. The lack of universality of the T6SS suggests that there are
limits to its utility relative to its costs.

To address the question of T6S’s utility, we focused on the case of cell-to-cell killing between
bacteria. We explored this scenario through the use of individual-based models (IBMs; also
called “agent-based models”). IBMs simulate the behavior of many, possibly different individu-
als each of which obeys rules that dictate the individual’s behavior as a function of its immedi-
ate environment. IBMs are a common tool in ecology, and have been widely used in the study
of spatially explicit biological processes. Examples at the multicellular scale include the evolu-
tion of cancer, the spread of disease, and the dispersal of plants [31–38]; IBMs are also used to

Fig 1. Function andmechanism of the T6S system. (a) The T6S system consists of a contractile outer
sheath (purple), an inner tube (yellow), a membrane complex and baseplate (grey) and spike proteins
(green). The contractile sheath pushes the inner tube through the baseplate and membrane complex,
causing the tube to penetrate the target cell. (b) Competition between V. cholerae str. 2740–80 (sheath
labeled with GFP) and E. coliMG1655 (unlabeled). Arrow shows E. coli cells that undergo lysis. Panels are
taken two minutes apart; scale bar 1 μm.

doi:10.1371/journal.pcbi.1004520.g001

Established Microbial Colonies Can Survive Type VI Secretion Assault

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004520 October 20, 2015 2 / 16

Competing Interests: The authors have declared
that no competing interests exist.



II. RESULTS

84 | P a g e

study dynamics at the subcellular scale [39]. More generally, IBMs have been used to address a
wide range of questions concerning cooperation and conflict, of which T6S strategy can be
viewed as an example [40–45].

In this study, we develop a series of IBMs. The first competes self-immune T6S+ and sensi-
tive individuals in a range expansion, analogous to a surface colony (2D) or a biofilm (3D). We
find that cell growth from the inside of a sufficiently large (or “established”) domain can offset
cell death at the interface between a T6S-sensitive strain and a self-immune T6S attacker. Con-
sequently, given a sufficiently large domain, T6S-sensitive strains can survive T6S attack. The
sensitive strain does not require a growth advantage to survive; in fact, the sensitive strain can
resist elimination even with a slower growth rate. Given even a small growth advantage, the
T6S-sensitive strain can outcompete a self-immune T6S+ competitor. In a variant on the origi-
nal model, we also find that moderate nutrient limitation has a negligible effect on competition
outcomes.

We validated these findings through in vivo competition experiments between T6S+ Vibrio
cholerae and T6S-sensitive Escherichia coli. In these 2D plate assays, E. coli can form microcolo-
nies that survive, provided the initial local density of V. cholerae is not too high. Along similar
lines, simulated competitions between mutually sensitive T6S+ strains (strains that are self-
immune but sensitive to one another) reveal that the initially more numerous strain benefits
most from higher attack rates. We conclude with a discussion of the ecological impact of
T6SSs.

Materials and Methods

Competition experiments
Escherichia coliMG1655 GentR (LacZ+) was competed against Vibrio cholerae str. 2740–80
(LacZ-), similarly to what was described previously [19]. E. coli and V. cholerae were each
grown from frozen stocks in Luria-Bertani broth (LB), supplemented with the appropriate anti-
biotic, shaking overnight at 37°C and 200 rpm. The cells were washed twice with LB before
being diluted to an OD600nm of 0.5. To confirm that the initial number of viable cells were com-
parable among the competition assays, the colony forming units (CFUs) were determined by
serially diluting the washed and diluted V. cholerae and E. coli cultures 10-fold in 96-well plates
in triplicate. Thereafter, 5 μL of each dilution were spotted on an LB agar plate (LA).

For the competition assays, the cultures were mixed in a 1:1 ratio, which was then serially
diluted 3-fold in a 96-well plate. For selected dilutions 5 μL were spotted on a LA/IPTG 100
μM/X-Gal 40 μg/mL plate in duplicate. The competition plates were incubated at 37°C over-
night. To determine the E. coli to V. cholerae ratios resulting from the competition assays, the
CFUs of both strains were determined for each spot. This was achieved by excising the spots
from the competition assay plates and resuspendig the bacteria in 1 mL LB by vigorously vor-
texing for at least 15 sec. These suspensions were serially diluted 10-fold in 96-well plates and
5 μL of each dilution were spotted on LA plates supplemented with the appropriate antibiotic.
The CFU plates where either incubated at 37°C overnight or at lower temperatures until colo-
nies were visible. Images of the plates were taken on a white light transilluminator. Timelapse
movies of the competition assay were obtained by preparing the competition assay plates and
the pre-competition CFU plates as described before, except that the competition mixtures were
only spotted once. The competition assay plate was incubated at 37°C on a white light transillu-
minator while taking an image every 10 min over 24 h using a Nikon D5200. The contrast,
brightness and white balance of the images were adjusted using Adobe Photoshop CS5. The
same settings were applied to all timelapse images. Thereafter the images were further pro-
cessed and converted to a video using Fiji [46].

Established Microbial Colonies Can Survive Type VI Secretion Assault

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004520 October 20, 2015 3 / 16



II. RESULTS

84 | P a g e

II. RESULTS

85 | P a g e

The growth rate determination was carried out under the same conditions as the killing
assay. The same cultures (OD600nm = 0.5) were individually spotted on LA plates and incubated
at 37°C. Every hour the CFU was determined from a spot of each strain, as described for the
endpoint killing assay. The growth rate was then derived from the parameters of the fit of an
exponential curve. For the E. coliMG1655 GentR overnight cultures and selective CFU plates
the growth medium was supplemented with 15 μg /mL Gentamicin, whereas for V. cholerae
str. 2740–80 50 μg /mL Streptomycin was added.

Imaging of a competition between E. coli and V. cholerae VipA-msfGFP strains was per-
formed under conditions similar to those used previously for imaging of T6SS activity in V.
cholerae [17]. Strains were grown to OD600nm � 1 and mixed at a 1:1 ratio on an LB 1% agarose
pad. Imaging started after 10–20 min and was performed at 37°C for the indicated number of
frames and at the indicated frame rate.

Simulations
Computer models were implemented using Nanoverse 0.x, a prototype of our freely available
individual-based modeling platform [47]. In Nanoverse, individual agents (e.g. cells) occupy
spaces on a regular lattice. In every step of a simulation, one or more individuals perform a
series of behaviors; if multiple individuals act simultaneously, the events are resolved in ran-
dom order.

Two types of individual cells are included in the simulations (Fig 2a and 2b): self-immune
T6S+ (“T6S+”) cells, shown in red, and sensitive T6S- (“sensitive”) cells, shown in blue. (Self-
sensitive T6S+ strains “self-destruct” rapidly in simulations, and indeed have not been
observed in nature.) Every cell has an associated probability of cell division per step of the sim-
ulation. The T6S+ division rate αt is taken as the (inverse) time unit of the system and is set
equal to 1. The sensitive division rate αs is generally set higher than αt, as only T6S+ cells pay
the cost of maintaing the T6S. Upon cell division, a copy of the dividing cell is placed in a
vacant space adjacent to the dividing cell (Fig 2a). If no vacancies exist adjacent to the dividing
cell, nearby cells are pushed out of the way to make room (S1 Text).

Each T6S+ cell has a fixed rate γ of initiating an attack (Fig 2b). The attack is then resolved
according to an individual-based rule: attack exactly one randomly chosen nearest neighbor if

Fig 2. A simple spatial model of T6S-driven community dynamics. (a) Any cell can divide. Division results in an identical cell being placed in an adjacent
site. If no adjacent site is available, cells are pushed out of the way to make room for the new cell (S1 Text). (b) T6S+ cells (red) can attack any cell. When
a sensitive cell (blue) is attacked, it is “killed” (removed from the system). T6S+ strains are self-immune. (c-f) Time series of competitions between a
T6S+ strain (red) and a sensitive strain (blue) during a range expansion in 2D. In all cases the T6S+ growth rate is αt = 1, and the sensitive strain growth rate
is αs = 4. Initial sensitive strain fractions are 0.1 (c, d) and 0.5 (e, f). Attack rates are γ = 5 (c, e) and 15 (d, f). (g) Quantification of dynamics observed in panels
(c-f). Thin colored lines are individual trajectories; dotted black lines are averages over 8 of the 10 cases shown (eliminating highest and lowest outliers).
Parameters are as in the time series. Time is units of 1/αt. Timestep multiplier λ = 1.

doi:10.1371/journal.pcbi.1004520.g002
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there is one; otherwise do nothing. If the attack targets a sensitive cell or a cell of a different
T6S+ strain, the target dies and its lattice site becomes unoccupied; T6S+ cells are immune to
attack by cells of the same T6S+ strain, as observed experimentally [26]. The overall rate of
events is controlled by the simulation timestep multiplier, λ (S1 Text).

Results

Competition between T6S+ and sensitive strains
To determine the effect of T6S on multi-species population dynamics, we simulated a competi-
tion between T6S+ and sensitive strains during a range expansion. The simulations begin with
a well-mixed, fully occupied circular inoculum of approximately 500 individuals (S1 Text). For
2D simulations on a triangular lattice, the starting population is 469 individuals (i.e. inoculum
radius r0 = 12).

The T6S+ division rate is chosen as the unit of time, αt = 1. The three other parameters are
the sensitive strain growth rate αs, the initial sensitive strain fraction, and the attack rate γ. (In
simulations in which there are no T6S+ cells, the unit of time is αs = 1.) The attack rate γ and
the sensitive strain growth rate αs are found to offset one another as discussed below. The
parameter space was extensively explored. Fig 2 shows parameters chosen to emphasize the
effect of varying the attack rate γ and the initial sensitive strain fraction. Specifically, we fixed
the sensitive strain growth rate as αs = 4 and varied γ and the sensitive fraction.

When the attack rate is low (γ = 5), sensitive cells can ultimately dominate even when the
sensitive strain fraction starts as only a 10% minority (Fig 2c, S2 Video). Initially, the sensitive
population declines as isolated individuals are attacked and killed. Eventually, only a small
number of surviving sensitive domains remain, concentrated along the periphery of the colony.
However, because sensitive cells grow faster than T6S+ cells, these domains begin to outgrow
the T6S+ strain, eventually leading to a majority sensitive population. By contrast, at high
attack rate (γ = 15) and an initial 10% sensitive strain fraction all sensitive individuals are rap-
idly eliminated (Fig 2d). When the initial sensitive strain fraction is increased to 50%, a larger
number of sensitive cells begin near to one another, accelerating the formation of sensitive
domains; the early formation of these domains helps the sensitive strain to survive and eventu-
ally dominate the T6S+ strain, even under a high rate of attack (Fig 2e and 2f).

An analysis of multiple, independent simulations (Fig 2g) shows that sensitive populations
decline and then recover when both the attack rate and initial sensitive strain fraction are low
(upper left), or when both are high (lower right). During the period of decline, isolated sensitive
cells are eliminated while clusters of sensitive cells enjoy a degree of protection from attack.
The monotonic increase of the sensitive population fraction in the most favorable conditions—
high initial sensitive strain fraction, low attack rate (lower left)—results from the early forma-
tion of sensitive domains, whereas adverse conditions—low initial sensitive strain fraction,
high attack rate (upper right)—preclude sensitive domain formation and lead to elimination of
the sensitive strain.

Smallest viable sensitive domain
Since T6S-mediated killing can take place only at the interface between T6S+ and sensitive
strains, we hypothesized that the net growth rate of the sensitive strain depends on the differ-
ence between the area or volume of a sensitive domain and the extent of the interface between
the strains. To identify the dependence of this relationship on attack rate and relative growth
rates, we studied a simple sensitive domain model (Fig 3a and 3b). The 2D simulations begin
with a fully-occupied, homogeneous circular sensitive inoculum. As in the competition model,
all individuals are capable of cell division. As before, the model assumes that interior cells can

Established Microbial Colonies Can Survive Type VI Secretion Assault
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push other cells toward the surface of the colony to make room for their daughter cells (S1
Text). To simulate attack, individuals at the outer periphery are subject to being killed at a rate
~g, essentially equivalent to embedding the sensitive domain in a larger T6S+ domain.

To explore the transition from sensitive strain collapse to sensitive strain growth observed
in Fig 2, we varied the sensitive strain domain radius while holding constant the “attack” rate
~g ¼ 8, retaining the αs = 4 growth rate from the earlier competitions. Most sensitive strain
domains with starting radius r0 � 5 shrank toward zero, while larger domains survived (S3
Video). We then varied the sensitive strain growth rate, allowing it to fall below αs = 1. Strik-
ingly, the minimum sensitive strain domain radius required for survival depends inversely on
the relative sensitive strain growth rate, implying that a sufficiently large sensitive strain
domain can resist displacement by even a faster-growing T6S+ attacker (Fig 3c).

We can readily estimate the critical population size n� above which a sensitive strain domain
is expected to enjoy a net positive growth rate. Above this value, a sensitive domain would not
shrink as a result of T6S+ competition, although it could, depending on conditions, represent
an increasingly small fraction of total population. Eq 1 represents a theoretical “worst-case”
scenario for a domain of sensitive cells, in which they are completely surrounded by an infinite
domain of T6S+ cells. The key observation is that the rate of killing is proportional to the
length of the interface between strains, while the rate of sensitive strain population growth is
proportional to the sensitive population. For a population size n in 2D, the size of the interface
is simply the circumference of the circle. Hence,

dn
dt

¼ asn� 2~g ðpnÞ12: ð1Þ

Fig 3. Sensitive T6S- individuals can dominate T6S+ competitors. (a-b) A ball of sensitive cells (blue) is surrounded by a thick layer of T6S+ cells (red).
(a) Below a critical radius, the sensitive strain ball tends to shrink to extinction; (b) above it, the ball tends to expand. This behavior is demonstrated for 1D,
2D, and 3D. (c) Heat map of the probability that a 2D sensitive domain surrounded by T6S+ competitors achieves steady growth, as a function of sensitive
strain growth rate and initial radius of the sensitive domain. Dashed curve indicates predicted critical parameter values based on Eq. S1. Attack rate ~g ¼ 8;
interpolated from 80,250 simulations with timestep multiplier λ = 500. (Sensitive population either decreased or increased from near the outset of each
simulation; consequently, simulations were run only until the sensitive population changed by a factor of three in either direction.) (d) Comparison of growth
rate observed in single-domain sensitive 2D growth simulations (y-axis) to the values predicted for this regime in Eq 1 (x-axis). Points represent the average,
by sensitive population, across all simulations with the same parameters (20 per condition; λ = 2). Color represents domain radius; black line is y = x.

doi:10.1371/journal.pcbi.1004520.g003

Established Microbial Colonies Can Survive Type VI Secretion Assault

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004520 October 20, 2015 6 / 16



II. RESULTS

88 | P a g e

Solving Eq 1 for n at dn/dt = 0, i.e. at the unstable fixed point between increasing and decreas-
ing n, we find that

n� ¼ 4~g2p
a2s

; ð2Þ

which is shown as a dotted line on Fig 3c. The slight divergence at high radius between the pre-
dicted and simulated values is the result of accumulated simulation error (S1 Text). The finding
suggests that, even at this theoretical limit of maximal contact with T6S+ competitors, a sensi-
tive domain can persist for long times.

Fig 3d shows simulation results for dn/dt plotted against the prediction from Eq 1. The rate
of change of sensitive strain population was measured periodically in simulations with initial
domain radii from r0 = 3 to r0 = 12. Attack rates ranged from ~g ¼ 0 to ~g ¼ 14; sensitive strain
growth rates ranged from αs = 1 to αs = 4. The simulations show excellent agreement with the
predicted dynamics (R2 > .98), despite deviations of the sensitive domain from a pure circle
arising both from the lattice structure and from the stochasticity of the simulations. Similar
results are obtained for a corresponding relationship in 1D and 3D (S2 Text).

Depletion of nutrients
The simulations described so far assume an unlimited supply of nutrients. To determine the
effect of nutrient depletion on T6S population growth and competition, we developed a variant
of the IBM that incorporates local depletion of nutrients. Even very limited nutrient concentra-
tions still lead to exponential growth during range expansions, resulting in growth and compe-
tition dynamics that are nearly identical to those of the unlimited-nutrient case (S3 Text).

Live-culture competition assay
To validate our simulation results, we inoculated 2.5 μL each of of LacZ- T6S+ V. cholerae and
LacZ+ T6S- E. coli onto X-Gal plates at various dilutions (see “Materials and Methods”). We
compared the outcomes of these experiments with simulations for which the growth rates of
sensitive and T6S+ cells were matched to those of E. coli and V. cholerae, respectively. In a pre-
liminary estimate, E. coli was observed to grow slightly faster than V. cholerae (2.19 h−1 vs
2.05 h−1), so this difference was also used in the simulations. The simulation attack rate was set
to γ = 5, which yielded a rough parallel with the experimental images. These simulations were
run until the colony had doubled in radius.

Fig 4a–4d compare the experimental and simulated competitions, with initial inoculum
concentrations decreasing 9-fold with each successive panel. As the inoculum becomes more
dilute, single-species domains become larger. Simultaneously, E. coli become more numerous
(Fig 4f; S4 Video). In a micrograph of the experimental competition, large domains of E. coli
are observed to grow, while smaller domains undergo proportionately higher cell death (Fig
4e). S5 Video suggests that these E. coli domains persist stably after 24h. In the simulations, the
final sensitive population is seen to increase as initial inoculum density decreases. This is due
to the formation of large sensitive domains prior to initial T6S+ encounter, leading to increased
sensitive strain survival.

Interestingly, in the low-resolution images, a darkened region is observed along the inter-
species interfaces, but not at same-species microcolony interfaces. We infer that the darkened
zones represent an accumulation of E. coli lysates, due to the continual renewal of the interspe-
cies front by cell division within the bulk.

Established Microbial Colonies Can Survive Type VI Secretion Assault
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T6S+ invasion dynamics
So far, we have considered competition between T6S+ and sensitive bacteria. We next investi-
gated whether being T6S+ could help in the case of invasion by a T6S+ competitor. To answer
this question, we simulated a competition between two T6S+ strains during a range expansion.
Each strain can kill the other, but is immune to self-attack. Each strain has the same attack rate
γ and cell division rate αt = 1. Fig 5 shows two T6S+ strains (yellow and red) that were allowed
to compete during a range expansion from n0 = 469 (r0 = 12) to a final population of nf = 4690.
The relative success of the invasion was measured by comparing the initial yellow (minority)
fraction to the final yellow fraction.

In the presence of attack, the minority population is quickly eliminated (Fig 5a). By contrast,
in the absence of attack the minority fraction remains roughly constant throughout the course
of the range expansion (Fig 5b, S6 Video). As the attack rate increases, the initial minority frac-
tion needed for survival asymptotically approaches 50% (Fig 5c). Note that for equal initial
numbers of red and yellow cells, attack leads to spontaneous segregation from a well-mixed
inoculum, with higher attack rates leading to faster and more thorough sectoring (S6 Video).
Equivalent competitions in 1D and 3D led to analogous results (S4 and S5 Figs). These results
imply that T6S+ is useful for defending established populations against invasion.

Discussion
Gram-negative bacteria can employ T6S to kill competitors, yet the system is not found univer-
sally among these bacteria. To better understand the conditions favoring T6S, we modeled a
competition between T6S+ and sensitive strains. In a range expansion from a well-mixed inoc-
ulum, we found that the sensitive cells can survive in the presence of T6S+ competitors by
forming compact domains that protect interior cells from attack. To test these results, we com-
peted T6S+ V. cholerae and T6S-, sensitive E. coli in an analogous range expansion. We
observed that E. coli outcompeted V. cholerae, so long as the E. coli had the opportunity to

Fig 4. Domain size predicts T6S- survival. (a-d) Comparisons of experimental to simulation outcomes. (a) Left, overnight growth on X-Gal media from an
inoculum consisting of V. cholerae str. 2740–80 (LacZ-) and E. coliMG1655 (LacZ+), starting from equal amounts of OD600nm = 2 × 10−3 culture from each
species. Right, simulated competition between 6,561 T6S+ individuals and an equal number of sensitive individuals, scattered randomly in an initial domain
of r0 = 82, and allowed to grow until the population radius has doubled (λ = 500). (b) 9-fold dilution (experiment and simulation); (c) 81-fold dilution; (d)
729-fold dilution. Scale bars 1mm. (e) Fluorescent micrograph of competition between E. coli and V. cholerae; shown as illustration of target cell killing. Scale
bar 10 μm. Arrows indicate areas of E. coli net growth (yellow) and net decline (red). (f) Ratio of E. coli to V. cholerae CFUs, after overnight growth starting
from equal initial amounts, as a function of initial inoculum concentration.

doi:10.1371/journal.pcbi.1004520.g004
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form compact domains. Finally, we found that in a model competition between two equivalent
T6S+ strains the more numerous strain always drove the minority to extinction.

It is informative to compare the current model to related model systems. For example, in a
Lotka-Volterra model, a prey species grows in the absence of predation, and a predator grows
faster in the presence of prey [48]; such systems have also been generalized to lattices [49]. By
contrast, T6S+ does not grow faster as a result of killing, but potentially occupies more of the
habitat. In this sense, the current model is more closely analogous to colicin dynamics in E. coli
[50, 51]. Chao and Levin [52] observed that a colicin-producing strain of E. coli dominated a
sensitive strain on soft agar by creating a zone of inhibition around itself, preventing the sensi-
tive cells from exploiting the habitat. Colicin dynamics have also been studied using an IBM
based on contact-mediated killing [53]. The colicin IBM differs from our T6S model in two
respects: in [53], agents can only divide into adjacent vacancies, and sensitive cells have a strict

Fig 5. Competition between T6S+ strains. (a-b) Range expansion of two competing T6S+ strains. (a) Each
strain kills only individuals of the other type. For each strain, the growth rate is αt = 1 and the attack rate is
γ = 2. (b) No killing occurs; grey and brown cells grow neutrally (γ = 0) and at the same rate (αt = 1). Initial
inoculum is well-mixed and has radius r0 = 12; starting minority fraction is 25%. (c) Fold-change in minority
fraction, starting at radius r0 = 12 (n0 = 469) and growing to exactly 10-fold larger. Orange (fold change = 1.0)
indicates that the initial population ratio was retained. Values interpolated from 3,200 simulations. Simulation
timestep multiplier λ = 1.

doi:10.1371/journal.pcbi.1004520.g005
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growth advantage. The colicin model predicts that either species can dominate, with domi-
nance depending primarily on parameter choices. By contrast, in the current study, initial col-
ony size determines the survivorship of sensitive cells at all parameter values. The difference
comes from the fact that in our model for T6S-mediated competition, interior sensitive cells
are protected from killing by the outermost layer of cells. Such a “refuge” effect has previously
been studied in the context of predator-prey dynamics, where density-driven sheltering is
observed to destabilize predator-prey ratios relative to a well mixed model [54].

Our model employs a number of simplifying assumptions. Most importantly, cells are rep-
resented as agents on a regular lattice, and cells divide stochastically. While cell shape can affect
the details of colony morphology during range expansions, it does not seem to affect the quali-
tative population dynamics [55]; indeed, lattice population dynamics have been shown to be
consistent with the dynamics of real microbial populations [56]. The similarity of our observa-
tions in 1D, 2D, and 3D further suggests that our results are not sensitive to cellular geometry.
Similarly only overall growth rates, rather than the detailed timing of cell divisions, are impor-
tant for long-term population dynamics [55].

It has been hypothesized that nutrient depletion may introduce a substantial advantage for
T6S+ strains. In practice, cells at the interior of a natural community face nutrient and oxygen
depletion [57]. Does this limitation result in a different competitive outcome? In a simple model
of nutrient depletion, we found that a moderately nutrient-limited environment leads to dynamics
extremely similar to those in the absence of limitation (S3 Text). This is because exponential
growth ensures that only a very small fraction of the population occupies a fully depleted zone (S7
Fig). Thus, our preliminary results suggest that the effects of nutrient depletion on cell growth do
not qualitatively alter the population dynamics arising from T6S-mediated competitions. Under
special circumstances, such as burrowing invasions of a nutrient-depleted biofilm, T6S-mediated
cell lysis could provide a significant nutrient benefit beyond the direct benefit of killing competitor
cells. Typically, this effect would be limited, as the nutrient benefit would be divided among both
T6S+ species and their prey. In an entirely nutrient-depleted environment, though, actively grow-
ing invaders would have an early growth advantage over previously quiescent resident cells.

In determining the ecological role of T6S, the costs of maintaining a T6SS must be taken
into consideration. The T6SS requires the expression of 13 core genes, the assembly and disas-
sembly of the baseplate structure and sheath, and the production of the secreted effectors [19,
27, 30]. Immunity to T6S requires the maintenance of a complementary immunity protein,
and may require additional modifications to the attacker’s peptidoglycan [26]. Selective use of
T6S can mitigate these costs by reducing the frequency of wasteful attacks. To this end, bacteria
have evolved a variety of T6SS regulatory schemes, including quorum-sensing and retaliation.

Quorum sensing can reduce wasteful attacks by repressing T6S until it is likely to provide a
benefit [21, 58]. For example, QS regulates expression of T6SS in V. cholerae [59]. Interestingly,
expression of T6SS and natural competence is induced by high cell density and growth on chi-
tinous surfaces, which suggests a role of T6SS in horizontal gene transfer [60]. In addition, the
V. cholerae QS signal integrates both species-specific and multigeneric signals [61], which
means that the presence of competitors could also activate V. cholerae’s T6SS. However, reflect-
ing the diversity of T6S roles, T6S is not always upregulated in response to high density. In P.
aeruginosa, there are three T6SSs; species-specific QS signals LasR and MvfR activate two of
these T6SSs, but repress the third [62].

Like quorum sensing, “retaliatory” T6S attack can prevent attack until a hostile cell is
encountered. For example, P. aeruginosa is observed to engage in retaliatory T6S attack [27, 63,
64]. This ‘tit-for-tat’ strategy could limit wasteful T6S+ interactions within clonal populations,
as well as facilitating coexistence within productive consortia. Notably, P. aeruginosa also
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attacks its target repeatedly; by eliminating wasteful attacks, retaliators are also free to employ a
more concerted (and damaging) series of attacks [27].

In considering the ecological role of T6S, it is instructive to consider an analogous system
found in marine invertebrates. Members of the phylum Cnidaria, which includes corals,
hydrae, and jellyfish, possess an explosive cell called a nematoycte containing a harpoon-like
projectile [65]. Upon detonation, the effector is propelled with extreme force (up to 40,000g)
into a target, leading to paralysis and death [66]. Among corals, nematocytes are used interspe-
cifically to compete for habitat access. High attack rates are most commonly observed among
slower-growing species, where nematocytes are used to defend against encroachment [67]. Our
results suggest that, like nematocytes, T6S can also offset a growth rate disadvantage. The full
breadth of its ecological role, however, is only beginning to come into focus.

Supporting Information
S1 Text. Simulation details.
(PDF)

S2 Text. Generalization of sensitive domain survival to 1D and 3D.
(PDF)

S3 Text. The impact of nutrient depletion on T6S-mediated population dynamics.
(PDF)

S1 Video. T6S-mediated interactions between bacteria. Competition between V. cholerae str.
2740–80 (sheath labeled with GFP) and E. coliMG1655 (unlabeled). 60 frames; frames are 30s
apart.
(MP4)

S2 Video. A simple spatial model of T6S-driven community dynamics. Time series of simu-
lated competitions between a T6S+ strain (red) and a sensitive strain (blue) during a range
expansion in 2D. In all cases the T6S+ growth rate is αt = 1, and the sensitive strain growth rate
is αs = 4. Initial sensitive strain fractions are 0.1 (upper) and 0.5 (lower). Attack rates are γ = 5
(left) and 15 (right). Timestep multiplier λ = 1.
(MP4)

S3 Video. Critical domain size for sensitive strain survival. Time series of a simulated range
expansion of a sensitive strain subject to stochastic killing at the outer boundary of the colony.
Initial colony radius varies from r0 = 4 (left) to r0 = 7 (right). The growth rate is αs = 4 and the
killing rate at the outer boundary is ~g ¼ 8. Timestep multiplier λ = 1.
(MP4)

S4 Video. Community dynamics between T6S+ and T6S-sensitive populations. Fluorescent
micrograph of competition between T6S+ V. cholerae and T6S-sensitive E. coli (see Fig 4e).
two fields, 60 frames; frames are 20s apart. Shown as illustration of target cell killing.
(MP4)

S5 Video. Time series of T6S-mediated competition during range expansion.Overnight
growth on X-Gal media from an inoculum consisting of V. cholerae str. 2740–80 (LacZ-) and
E. coliMG1655 (LacZ+), starting from equal concentrations of OD600 = 0.5 culture from each
species. Dilution shown at bottom of each panel. 1 frame = 10 minutes; scale bar = 1mm.
(MP4)

S6 Video. Competition between T6S+ strains. Time series of simulated range expansion of
two competing T6S+ strains. Initial inoculum is well-mixed and has radius r0 = 12. Starting
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minority (yellow) inoculum fraction is 10% (bottom), 25% (middle), and 50% (top). Attack
rates are γ = 0 (left), γ = 1 (middle), and γ = 2 (right). Timestep multiplier λ = 1.
(MP4)

S1 Fig. The effect of time step on simulation error at large population in 1D. (a) Plot of simu-
lated growth rates (y-axis) vs. predicted growth rates from Eq. S1 (x-axis) for a sensitive domain
with simulation timestep multiplier λ = 0.25. Each point represents the average, over identical
conditions, from 5 simulations. (b) The same plot, averaging over 20 simulations with λ = 2.
(TIF)

S2 Fig. Sensitive domain growth dynamics in 1D. (a) Comparison of simulation results (y-
axis) to predicted values from Eq. S1 (x-axis) for rate of growth of a 1D sensitive domain.
Points represent the average, by sensitive population, across all simulations with the same
parameters (40 per condition). Color represents domain radius; black line is y = x. Simulation
timestep multiplier λ = 0.01. (b) Heat map of the probability that a 1D sensitive domain sur-
rounded by T6S+ competitors achieves steady growth, as a function of sensitive strain growth
rate and initial radius of the sensitive domain. Dashed line indicates predicted critical parame-
ter values based on Eq. S1. Attack rate ~g ¼ 20; timestep multiplier λ = 0.5. Interpolated from
1.9 million simulations.
(TIF)

S3 Fig. Sensitive domain growth dynamics in 3D. (a) Comparison of simulation results (y-
axis) to predicted values from Eq. S3 (x-axis) for rate of growth of a 3D sensitive domain.
Points represent the average, by sensitive population, across all simulations with the same
parameters (5 per condition; λ = 2.0). Color represents domain radius; black line is y = x. (b)
Heat map of the probability that a 3D sensitive domain surrounded by T6S+ competitors
achieves steady growth, as a function of sensitive strain growth rate and initial radius of the
sensitive domain. Dashed curve indicates predicted critical parameter values based on Eq. S3.
Attack rate ~g ¼ 8; interpolated from 6,090 simulations (λ = 2000).
(TIF)

S4 Fig. Range expansion of two competing T6S+ strains. Each strain kills only individuals of
the other type; the two strains are otherwise identical. Initial inoculum is well-mixed; starting
minority (yellow) fraction is 25%. For each strain, the growth rate is αt = 1 and the attack rate
is γ = 2. (a) Kymograph of a 1D competition; time is shown on the x-axis. Initial innoculum
r0 = 500; timestep multiplier λ = 1. (b) Center slice through a 3D competition. Initial innocu-
lum r0 = 6; timestep multiplier λ = 2.
(TIF)

S5 Fig. Fold-change in minority fraction after 10-fold growth in population of two compet-
ing T6S+ strains. For each strain, the growth rate is αt = 1. (a) Competition in 1D. Initial inno-
culum r0 = 500; timestep multiplier λ = 1. (b) Competition in 3D. Initial innoculum r0 = 6;
timestep multiplier λ = 1.
(TIF)

S6 Fig. Time series of nutrient-limited population expansion (K = 2). Time points shown
are t = 0 (left), t = 9 (middle), and t = 12 (right). Lighter color corresponds to higher nutrient
concentration. Simulation scaling factor λ = 100.
(TIF)

S7 Fig. Nutrient-limited population growth. (a) Population over time for nutrient-limited
growth (K = 2, blue) and non-limited growth (green). Simulation results shown as solid lines
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(n = 50 per condition, ribbon = 1 S.E.); numerical estimate for deterministic exponential
growth (Eq. S11 for limited case, simple exponential growth for non-limited) shown as dashed
lines. (b) Long-time inactive fraction as a function of division capacity K. Black points: final
inactive fraction after range expansion from single cell to radius r = 164 (n = 10 per condition,
bar = 1 S.E.). Green line: numerical estimate (from Eq. S11 and S21) for deterministic growth.
Red line: analytical prediction (Eq. S25). For all simulations, scaling factor λ = 100.
(TIF)

S8 Fig. Nutrient limitation does not qualitatively alter dynamics of simulated T6S-medi-
ated competition. Populations begin with an equal number of T6S+ and sensitive individuals
at a specified per-species population, scattered over an r0 = 84 domain, and grow until the
radius has doubled. (a) Population over time for nutrient-limited growth (K = 2, left) and non-
limited growth (right). Error ribbons smaller than data curve. (b) Mean sensitive fraction over
time for nutrient-limited growth (K = 2, left) and non-limited growth (right). For both panels,
n = 40 per condition; scaling factor λ = 100. Ribbons = 1 S.E.
(TIF)

S9 Fig. Effect of initial T6-sensitive cluster size on dynamics of simulated T6S-mediated
competition. Initial populations are placed in compact groups ofm = 1, 3, or 7 individuals,
and with strict separation between these clusters. Shown is final sensitive fraction as a function
of initial per-species count. Populations begin with a specified per-species population, scattered
over an r0 = 84 domain, and grow until the radius has doubled. n = 90 per condition; scaling
factor λ = 100. Error bars = 1 S.E.
(TIF)

S1 Table. Simulation geometries for range expansions. For range expansion simulations, all
cells within a specified Manhattan distance (“Innoculum radius”) are included in the founding
population. The resulting population (“Innoculum population”) depends on the lattice geome-
try.
(PDF)

S2 Table. Simulation behavior definitions.
(PDF)

S3 Table. Parameter ranges for comparison of predicted to simulated rates of sensitive
strain growth.
(PDF)

S4 Table. Active population growth rates for various division capacities.
(PDF)
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Supplementary Data: 

The supplementary data may be found in the appendix. 

S1 Video. T6S-mediated interactions between bacteria. 
Competition between V. cholerae str. 2740–80 (sheath labeled with GFP) and E. coli 
MG1655 (unlabeled). 60 frames; frames are 30s apart. 
(available at: https://doi.org/10.1371/journal.pcbi.1004520.s004 ) 

S2 Video. A simple spatial model of T6S-driven community dynamics. 
Time series of simulated competitions between a T6S+ strain (red) and a sensitive strain 
(blue) during a range expansion in 2D. In all cases the T6S+ growth rate is αt = 1, and the 
sensitive strain growth rate is αs = 4. Initial sensitive strain fractions are 0.1 (upper) and 0.5 
(lower). Attack rates are γ = 5 (left) and 15 (right). Timestep multiplier λ = 1. 
(available at: https://doi.org/10.1371/journal.pcbi.1004520.s005 ) 

S3 Video. Critical domain size for sensitive strain survival. 
Time series of a simulated range expansion of a sensitive strain subject to stochastic killing 
at the outer boundary of the colony. Initial colony radius varies from r0 = 4 (left) to r0 = 7 
(right). The growth rate is αs = 4 and the killing rate at the outer boundary is 𝛾𝛾� = 8. Timestep 
multiplier λ = 1. 
(available at: https://doi.org/10.1371/journal.pcbi.1004520.s006 ) 

S4 Video. Community dynamics between T6S+ and T6S-sensitive populations. 
Fluorescent micrograph of competition between T6S+ V. cholerae and T6S-sensitive 
E. coli (see Fig 4e). two fields, 60 frames; frames are 20s apart. Shown as illustration of 
target cell killing. 
(available at: https://doi.org/10.1371/journal.pcbi.1004520.s007 ) 

S5 Video. Time series of T6S-mediated competition during range expansion. 
Overnight growth on X-Gal media from an inoculum consisting of V. cholerae str. 2740-80 
(LacZ-) and E. coli MG1655 (LacZ+), starting from equal concentrations of OD600 = 0.5 
culture from each species. Dilution shown at bottom of each panel. 1 frame = 10 minutes; 
scale bar = 1mm. 
(available at: https://doi.org/10.1371/journal.pcbi.1004520.s008 ) 

S6 Video. Competition between T6S+ strains. 
Time series of simulated range expansion of two competing T6S+ strains. Initial inoculum 
is well-mixed and has radius r0 = 12. Starting minority (yellow) inoculum fraction is 10% 
(bottom), 25% (middle), and 50% (top). Attack rates are γ = 0 (left), γ = 1 (middle), and 
γ = 2 (right). Timestep multiplier λ = 1. 
(available at: https://doi.org/10.1371/journal.pcbi.1004520.s009 ) 
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III.1 Discussion and outlook 
The recently discovered T6SS has become an important player in the field of microbial 

interactions. Initially described to participate in the interaction with eukaryotic hosts it has 

become apparent that the T6SS also plays a crucial role in interbacterial interactions (Alteri 

and Mobley, 2016; Hachani et al., 2016). In fact, the interbacterial competition may 

contribute to the virulence towards a host (Fu et al., 2013; Ma et al., 2014; Sana et al., 2016) 

or protect a host from pathogens by their outcompetition (Hecht et al., 2016). The T6SS 

not only fosters inter-species, but also intra-species competition allowing for a 

discrimination between closely related species which may facilitate territorial behavior 

(Alteri et al., 2013; Hecht et al., 2016; Unterweger et al., 2014; Wenren et al., 2013). The 

diversity of processes to which the T6SS contributes is also reflected in the effector 

repertoire (Alcoforado Diniz et al., 2015; Hachani et al., 2016). However, the role of only 

few effectors was experimentally validated and even less effectors were biochemically 

characterized. Moreover, as described in the introduction, the canonical proteobacterial 

T6SS consists of 13 conserved core components, the role of which has been addressed in 

great detail (Alteri and Mobley, 2016; Boyer et al., 2009; Lin et al., 2013; Shalom et al., 

2007; Weber et al., 2016; Zheng and Leung, 2007; Zheng et al., 2011). However, there are 

proteobacterial T6SSs which lack conserved core components, usually regarded to be 

essential (Boyer et al., 2009; Weber et al., 2013). Understanding how these T6SSs 

compensate for the loss of such a component may help elucidate the role of the conserved 

component.  

III.1.1 Characterization of the T6SS in A. baylyi ADP1 
At the beginning of this thesis the antibacterial T6SS of A. baylyi ADP1 had just been 

described, but the effector repertoire remained unknown (Basler et al., 2013; Shneider et 

al., 2013; Weber et al., 2013). Furthermore, A. baylyi ADP1 lacks the conserved outer 

membrane protein TssJ (Weber et al., 2013). Therefore, we set out to functionally 

characterize both the T6SS as well as the effector repertoire of A. baylyi ADP1.  

Although shown to secrete Hcp constitutively, the dynamics of the T6SS in A. baylyi ADP1 

had not yet been described (Basler et al., 2013; Shneider et al., 2013; Weber et al., 2013). 

Fluorescence microscopy of the T6SS in different organisms had revealed various modes 

of T6SS activity. The most direct observation was made by imaging fluorescently labeled 

VipA sheath dynamics (Basler et al., 2012). Also fluorescently labeled ClpV was used, 

which was later realized to be a proxy for sheath contractions (Basler and Mekalanos, 2012; 
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Mougous et al., 2006). This revealed the random deployment of the T6SS, exemplified by 

V. cholerae, and the intricate tit-for-tat retaliation strategy employed by P. aeruginosa 

(Basler et al., 2012, 2013).  In A. baylyi ADP1 we observed a seemingly random 

deployment of the T6SS similar to what had been described for V. cholerae (see Fig. II.1.1) 

(Basler et al., 2012). However, unlike V. cholerae there were only one to three active 

sheaths which immediately contracted after polymerization (Basler et al., 2012). 

Interestingly, there were also sheaths which did not stop polymerizing when encountering 

the opposite side of the cell, but rather kept polymerizing and bending the structure. 

As expected, the T6SS dynamics were abolished in both the TssM and the Hcp deficient 

strains (see Fig. II.1.2). However, the TssE deficient strain was still capable of forming 

small dynamic foci associated with the membrane, but neither Hcp secretion nor the 

reduction of prey recovery or its lysis were detected. Therefore, it is not possible to deduce 

that these foci constitute small but functional T6SS (see Fig. II.1.2). It should be noted, that 

the formation of functional T6SSs in absence of TssE has been observed in V. cholerae 

(Basler et al., 2012; Vettiger and Basler, 2016; Zheng et al., 2011). It is unclear how the 

T6SS forms in absence of TssE, which is thought to be a key component of the baseplate 

and to form the foundation for the contractile sheath (Basler et al., 2012; Brackmann et al., 

2017a; Leiman et al., 2009; Lossi et al., 2011). It may be possible, that interactions with 

the peripheral baseplate components are sufficient for the formation of the contractile tail 

in V. cholerae. 

As mentioned in the introduction, the T6SS of A. baylyi ADP1 is constitutively active under 

the conditions tested, despite the presence of TagF, which was found to act as a 

posttranslational repressor of the T6SS in P. aeruginosa (Basler et al., 2013; Shneider et 

al., 2013; Silverman et al., 2011; Weber et al., 2013, 2016). Furthermore, A. baylyi ADP1 

does not encode an ortholog of Fha which is essential for the activation of the T6SS in 

P. aeruginosa upon TagF derepression (Silverman et al., 2011; Weber et al., 2013). The 

recently obtained RNA sequencing data revealed that tagF is actively transcribed (see 

section II.2.1). Nevertheless, we were unable to detect a phenotype of the TagF deficient 

strain in any of our assays (see Fig. II.1.2), although another study recently observed an 

increase in Hcp secretion (Weber et al., 2016). Thus, the role of TagF remains to be 

elucidated. Since TagF is thought to act as a posttranslational repressor it may be interesting 

to perform a pulldown or co-immuno precipitation assay to identify its interaction partners. 
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Although it cannot be ruled out that the protein is not functional in A. baylyi ADP1, these 

findings may have implications for other T6SSs bearing a TagF ortholog. 

In agreement with previous results, TagN, which is thought to anchor the T6SS to the 

peptidoglycan (Aschtgen et al., 2010a), was found to be dispensable for T6SS activity (see 

Fig. II.1.2) (Weber et al., 2016). This result is supported by the recent observation that 

peptidoglycan is dispensable for T6SS activity in V. cholerae (Vettiger et al., 2017). 

However, it should be noted that V. cholerae is naturally devoid of any putative T6SS 

associated peptidoglycan anchoring protein (Aschtgen et al., 2010a). Moreover, even 

though TagN is dispensable, we observed a significant decrease in the number of active 

T6SSs in its absence (see Fig. II.1.2), whereas another study found an increase in Hcp 

secretion (Weber et al., 2016). Nonetheless, the sheath dynamics were not affected (see 

Fig. II.1.2). Although one would expect that such a powerful injection system should be 

anchored to the peptidoglycan, the membrane anchoring seems to be sufficient (Vettiger et 

al., 2017).   

The recently discovered TagX, which is thought to locally degrade the peptidoglycan, 

enabling the envelope spanning complex to assemble, was described to be essential for Hcp 

secretion (Weber et al., 2016). Nevertheless, the fluorescence microscopy revealed that 

T6SS structures are occasionally forming and that those display wild type like sheath 

dynamics (see Fig. II.1.2). Additionally, the sensitive CPRG lysis assay confirmed that the 

assemblies are functional. This may indicate that large enough transient peptidoglycan 

pores form during ageing or remodelling of the peptidoglycan which allow the envelope 

spanning complex to assemble. To test this hypothesis, it may be interesting to inhibit 

peptidoglycan synthesis in absence of TagX which should result in more pores and thus in 

a higher number of active T6SSs. 

The phenotype of the ACIAD2685 deficient strain mimicked that of the TagX deficient 

strain. Bioinformatic analysis only identified two putative N-terminal transmembrane 

helices and predicted that both the N- and C-termini reside in the cytoplasm. A previous 

study found ACIAD2685 to be essential for Hcp secretion confirming our result (Weber et 

al., 2016). The fluorescence microscopy revealed that the few T6SS structures formed had 

wild type like sheath dynamics suggesting that ACIAD2685 is likely involved in a step 

upstream of the sheath formation (see Fig. II.1.2). However, the role of ACIAD2685 

remains elusive. Likely, the C-terminal part carries the functional domain, therefore it may 
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be interesting to determine its subcellular localization which may hint at whether 

ACIAD2685 contributes to a cytoplasmic process, such as the formation of the baseplate, 

or a periplasmic process. 

Two Acinetobacter specific components, ACIAD2693 and ACIAD2698, were dispensable 

for T6SS activity (see Fig. II.1.2). A previous study reported that ACIAD2693 is essential 

for Hcp secretion, however, this is likely the result of a polar effect of the Tdk-KanR 

cassette, used for insertional mutagenesis, on the downstream VipA (Weber et al., 2016). 

The ACIAD2693 deficient strain displayed a reduced number of sheath assemblies the 

dynamics of which remained unaltered (see Fig. II.1.2). It is a predicted periplasmic protein 

and seemingly acts upstream of the sheath assembly, but its function remains unknown. 

The absence of the predicted membrane protein ACIAD2698 was reported to lead to a 

higher Hcp secretion (Weber et al., 2016). Nevertheless, in our assays the ACIAD2698 

deficient strain was indistinguishable from the parental strain precluding a functional 

prediction. 

It is noteworthy that both the fluorescence microscopy of the sheath dynamics and the 

CPRG assay are considerably more sensitive than the commonly employed Hcp secretion 

assay or the quantitative competition assay. Because the CPRG assay is highly sensitive, it 

also saturates at medium T6SS activity leaving the fluorescence microscopy as the method 

with the highest sensitivity and range (see Fig. II.1.2). It is therefore advisable to perform 

both the CPRG assay as well as the imaging of sheath dynamics to assign functions of T6SS 

components. 

As part of observing the T6SS dynamics we also tried to visualize the actual T6SS injection 

and secretion events by labeling Hcp. Although we employed various strategies of both 

chemical as well as fluorescent protein labeling we were so far unsuccessful (see section 

II.2.2). However, the adaptation of different labeling protocols and plasmids may not only 

enable us to label Hcp, but might also yield a valuable tool to label other proteins in the 

less common model bacteria. 

Although the T6SS activity in A. baylyi ADP1 is apparently random, other members of the 

group and myself have also observed some seemingly non-random activity, especially 

pronounced in less active mutants when imaged at lower cell density. In these strains the 

T6SS structures appeared to preferentially form at cell contact sites. However, since the 

neighboring cell also formed structures at this site it is unclear whether cell contact or cell 
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damage by another T6SS may act as a signal. Possibly, the random activity observed at 

high cell density is caused by triggering the signal all along the cell surface. However, 

unlike the retaliation in P. aeruginosa (Basler et al., 2013) also single A. baylyi ADP1 cells 

constitutively deploy their T6SS, suggesting that there is a random component to the 

activity. Currently there is no quantitation of the randomness of these events, but further 

investigation with a more automated image analysis may yield statistically significant 

numbers. Furthermore, we would like to understand the underlying molecular mechanism 

should there exist a trigger. Recently, the in situ structure of the T6SS in 

Myxococcus xanthus was solved by cryo-ET which also revealed bacteriophage tail fiber-

like antennae (Chang et al., 2017). Although their role remains to be elucidated one might 

speculate that these tail fibers could be involved in such a contact dependent triggering of 

the T6SS. However, unlike the tail fibers in contractile bacteriophages these would not 

trigger the contraction of the sheath but rather induce the formation of a T6SS structure.  

III.1.2 The T6SS effector repertoire of A. baylyi ADP1 
We identified five antibacterial T6SS cargo effectors in A. baylyi ADP1 by virtue of their 

genetic linkage to spike components, one of which was disrupted by an IS1236 insertion 

element and could be restored (see Figs. II.1.3, II.1.5, S II.1.1 and S II.1.2). Additionally, 

the corresponding immunity proteins were identified and verified (see Fig. II.1.5). All of 

these are encoded in close proximity of their corresponding effector (see Fig. S II.1.1). The 

genes encoding the immunity proteins for Tse1 and Tse2 had undergone gene duplication 

events. Such duplications seem to be common and are thought to contribute to the resistance 

towards diverging effectors arising in the population (Kirchberger et al., 2017; Zhang et 

al., 2012). Indeed, we found up to five paralogous immunity proteins consecutively 

encoded downstream of a tse2 ortholog in Klebsiella pneumoniae W14 (see Fig. S II.1.3). 

In some cases all of the paralogous immunity proteins contribute to the immunity (Jiang et 

al., 2014; Ma et al., 2017; Russell et al., 2013; Salomon et al., 2015). So far, we used strains 

lacking both paralogous immunity proteins, but it may be interesting to determine the 

contribution of the individual immunity proteins. None of the five effector immunity pairs 

cross react (see Fig. II.1.5).  

An effector deficient strain was constructed which retained an unaltered T6SS activity but 

failed to permeabilize or inhibit E. coli as indicated by the quantitative competition assay, 

the CPRG assay and the competition microscopy (see Fig. II.1.3). Interestingly, the effector 

deficient strain was still capable of eliciting the retaliatory attack by P. aeruginosa PAO1 
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indicating that it is still able to inflict some damage in the target cell (see Fig. II.1.4) (Basler 

et al., 2013; Ho et al., 2013; Wilton et al., 2016). When comparing the transcriptomes of 

E. coli competed against a T6SS inactive TssM deficient A. baylyi ADP1 and against the 

effector deficient strain, we were unable to identify differentially regulated genes (see 

section II.2.1). This result still has to be confirmed by a biological replicate, nonetheless, 

taken together, these observations indicate that mere puncturing of the cell envelope by the 

T6SS is harmless to bacteria. This unexpected result is consistent with the observation that 

even multiple puncturing of diderm bacteria with an AFM tip did not affect their viability 

(Suo et al., 2009). The effector deficient strain may be useful to construct and test custom 

tailored chimeric effectors. 

For three of the identified effectors the putative activity could be predicted by bioinformatic 

analysis (see Fig. S II.1.1). Tpe1 carries a neutral zinc metallopeptidase active site, Tae1 

likely constitutes a peptidoglycan amidase and Tle1 is predicted to belong to the family 4 

of T6SS associated phospholipases (Russell et al., 2013). Tpe1 did not affect E. coli, but 

was able to reduce the recovery of the non-immune A. baylyi ADP1 (see Figs. II.1.3 and 

II.1.5), suggesting that Tpe1 is secreted and functional, however, E. coli is resistant to its 

activity. Conducting a zymography with Tpe1 may help elucidate its target. The putative 

metallopeptidase active site indicates that Tpe1 may also be involved in the cleavage of 

peptidoglycan but seemingly not that of E. coli. 

Consistent with its predicted peptidoglycan amidase activity, Tae1 induced the expected 

cell rounding and bursting usually observed for peptidoglycan targeting effectors (see Fig. 

II.1.3) (Dong et al., 2013). Further biochemical assays are needed to determine the cleavage 

site engaged by Tae1 which does not share homology with any of the four T6SS 

peptidoglycan amidase families currently identified (Russell et al., 2012). 

In agreement with its predicted phospholipase activity, Tle1 also induces the lysis of prey 

bacteria (see Fig. II.1.3) (Russell et al., 2013). Interestingly, we observed that the targeted 

prey cell first shrinks and then abruptly reinflates coinciding with its lysis as indicated by 

SYTOX® Blue (see Fig. II.1.3). Recently it has been demonstrated that a T6SS 

phospholipase can liberate soluble lipolysis products, reducing the surface pressure of a 

phospholipid monolayer (Flaugnatti et al., 2016). The release of soluble lipolysis products 

may explain the shrinkage of the cells caused by the reduction of available phospholipids 

and thereby cell size. However, during the shrinkage the cells remain impermeable to 
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SYTOX® Blue, indicating that the solute concentration inside the cell increases, which in 

turn increases the turgor. It is unclear how the cell is capable of shrinking without lysing 

although the increasing turgor is no longer held by the peptidoglycan. So far, no member 

of the family 4 of T6SS phospholipases has been biochemically characterized, thus it may 

be interesting to determine the cleavage site of Tle1 (Russell et al., 2013). 

No conserved domains or motifs could be predicted for the remaining effectors, Tse1 and 

Tse2, with the exception of a low quality match to short-chain dehydrogenases/reductases 

active sites for Tse1 (see Fig. S II.1.1). Interestingly, Tse1 harbors four predicted 

transmembrane helices as do its immunity proteins. Different lysis phenotypes were 

observed for Tse1, one resembling that of Tae1, the other was similar to that induced by 

Tle1, both of which took significantly longer than observed for Tae1 and Tle1 (see Fig. 

II.1.3). It is unclear which subcellular target Tse1 has, but according to an HHPred (Alva 

et al., 2016) analysis it shares weak homologies with ionophoric colicins spanning the 

region of three predicted transmembrane helices. However, the observed lysis phenotypes 

suggest that Tse1 is not just acting as a ionophore. The RNA sequencing data from the 

single effector competition did not yield an obvious candidate to follow up on (see section 

II.2.1). Thus, it may help to dissect the contributions of the N-terminal part and the 

transmembrane helices bearing C-terminal part with a special focus on an enzymatic 

activity of the N-terminal part. If acting as a colicin like ionophore, similar to VasX, the 

toxicity should require a translocation to the periplasm which may also be tested (Miyata 

et al., 2013). 

Apart from a prior report, which identified a Tse2 homolog to constitute an antibacterial 

effector, the subcellular target of Tse2 remains elusive (Weber et al., 2016). The only hint 

is the putative periplasmic localization of the two immunity proteins, suggesting that its 

target is accessible from the periplasm. Although the Tse2 single effector strain reduced 

the recovery of E. coli significantly, the CPRG assay indicated that only very little lysis is 

occurring, which was confirmed by the competition microscopy (see Fig. II.1.3). The 

morphology of the slowly permeabilizing cells did not change significantly, however, a 

bright SYTOX® Blue stained spot formed in the cell which may indicate the compaction 

of the nucleoid (see Fig. II.1.3), regarded to be a general stress response of bacteria 

(Shechter et al., 2013). The RNA sequencing data revealed that the transcriptional response 

of the prey cells was similar to that elicited by the phospholipase Tle1 (see section II.2.1), 

however, the data did not reveal a discernable candidate to follow up on. 
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III.1.3 The contribution of the T6SS to horizontal gene transfer 
As elaborated in the introduction, the T6SS of V. cholerae has been demonstrated to be 

involved in the acquisition of genetic material from prey cells and is even part of the 

competence regulon (Borgeaud et al., 2015). A. baylyi ADP1 is also naturally competent, 

but unlike V. cholerae retains this state throughout most of its growth (Juni and Janik, 1969; 

Palmen et al., 1992, 1993). Thus, we reasoned, that the T6SS in A. baylyi ADP1 may also 

contribute to horizontal gene transfer. Since we identified three lytic and one non-lytic 

T6SS effector in A. baylyi ADP1, we set out to determine the contribution of the T6SS and 

the lysis phenotype towards horizontal gene transfer. Indeed, we found that the lysis of 

sensitive strains by the T6SS facilitated horizontal gene transfer (see Fig. II.1.6). Moreover, 

the lysis of prey bacteria by Tle1 yielded a higher number of transformants than when the 

prey cells were inhibited by Tse2, even though Tse2 reduced the number of viable prey 

cells to a greater extent than Tle1 (see Fig. II.1.6). These results indicate, that lytic effectors 

are beneficial for horizontal gene transfer, likely because they liberate the genomic DNA 

making it accessible for the subsequent uptake. 

Intra-species competition of V. cholerae is fostered by different T6SS effector sets which 

may be expanded or changed by exchanging effectors or acquiring new effector modules 

from competitors (Kirchberger et al., 2017; Thomas et al., 2017; Unterweger et al., 2014). 

This process is facilitated by the T6SS (Thomas et al., 2017). Some clinically relevant 

A. baumannii strains, which are close relatives of A. baylyi ADP1, are also known to be 

naturally competent and may carry a T6SS (Ramirez et al., 2010; Weber et al., 2017). 

Therefore, it is appealing to speculate that similar processes may contribute to the spread 

of antibiotic resistances among these strains (Lin and Lan, 2014). In fact, the intra-species 

competition may be especially suited for this purpose, because of the high sequence 

similarity shared between the strains, which facilitates the incorporation of the acquired 

genetic material by homologous recombination. Moreover, it may be beneficial to acquire 

genes from related species which have adapted to the niche. Some A. baumannii strains 

inject a DNAse effector which may preclude or reduce horizontal gene transfer (Weber et 

al., 2016). Thus, it could be interesting to investigate whether the presence of a DNAse 

effector reduces the horizontal gene transfer frequency. 

Taken together, our data expands the applicability of the T6SS mediated horizontal gene 

transfer from V. cholerae to other naturally competent species carrying an antibacterial 
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T6SS. Furthermore, we could demonstrate, that the effector set significantly influences the 

horizontal gene transfer frequency with lytic effectors being beneficial. 

III.1.4 Modelling of interbacterial competitions 
Apart from trying to understand the mechanism of the T6SS we were also interested in how 

the T6SS mediated interbacterial competition contributes to population dynamics. 

Quantitative competition assays with a T6SS sensitive prey strain are commonly used to 

determine the T6SS activity of the predator strain. These assays have been performed at 

various ratios and densities of the competitors (Basler et al., 2013; Hachani et al., 2013). 

While conducting such experiments it was noticed, that the sensitive prey strain could 

survive and form distinct colonies within the predator domain. When isolated and competed 

against the predator again, the prey strain did not exhibit increased resistance, indicating, 

that the cause for survival was not an inheritable resistance towards the predator 

(unpublished). This intriguing observation led us to investigate the reason for the survival 

of the prey strain. 

To derive a more general description for this type of interaction, a mathematical modelling 

approach, based on individual-based models (IBMs), was chosen (see research article II). 

The models consisted of different entities occupying a position on a regular grid. These 

entities behave according to a specific rule set which defines growth, T6SS activity and 

resistance as well as the lysis behavior (for a complete description see section IV.1 

Simulation details). In a model, where a sensitive prey strain and a T6SS active predator 

with random targeting activity were competed, the prey strain could survive depending on 

the initial degree of mixing. This observation may be explained as follows: The T6SS 

mediated killing of a target cell is contact dependent, therefore, prey cells residing behind 

other prey cells are protected from the attack. When a population starts out homogeneously 

mixed at a high space occupancy, most prey cells are in contact with a predator and may 

be killed. Is the initial space occupancy not as dense, the prey and predator strains first form 

microcolonies before encountering one another. The same is achieved when the population 

is not homogeneously mixed. During the competition the population segregates into 

domains consisting only of the predator or the prey thereby minimizing the contact surface 

at which the killing occurs. This behavior is comparable to the unmixing of oil and water 

where dispersed oil droplets will form continuous domains in order to minimize the contact 

surface. Since the killing can only occur at the surface, the prey can achieve net growth in 
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face of attack when the growth within the domain outweighs the killing on the surface. 

Indeed, the model was able to predict a critical domain radius beyond which the prey would 

survive the attack and possibly even outgrow the predator. This critical domain radius 

depends both on the growth rate ratio between the prey and the predator as well as the attack 

rate. Furthermore, the outcome of such a competition is only mildly affected by nutrient 

limitation. 

By competing the prey E. coli MG1655 GentR against the predator V. cholerae 2740-80 at 

different ratios and different initial densities we were able to confirm these results obtained 

by modelling. These assays also demonstrated that it is imperative to conduct competition 

assays at high cell densities when aiming to determine the antibacterial T6SS activity of a 

predator. 

Additionally, the modelling of the competition of two equivalent T6SS active populations, 

which could kill one another, showed that the more numerous strain would outcompete the 

minority suggesting that the T6SS is beneficial for defending an established population. 

This model also demonstrated that the competitors would segregate. Recently, such a 

competition has been observed by fluorescence microscopy. The T6SS active bacteria 

A. hydrophila SSU and V. cholerae V52, which are susceptible to each others attacks, were 

competed and were shown to be able to coexist in a T6SS dependent manner (Wong et al., 

2016). To achieve this behavior in an IBM similar to our model, the authors proposed a 

model in which the dying cells are converted to “debris” which occupies the space for some 

time before being removed from the lattice. In the model this debris state acts as a shield 

and prevents the encounter with another competitor for some time (Wong et al., 2016). As 

predicted by our model, the competition mixture segregated and the interspersed bacteria 

were eliminated. However, in contrast to our model, the mutual killing formed a border 

which is maintained by the balanced antagonistic interactions (Wong et al., 2016). 

Furthermore, due to the continuous killing at the boundary, a large amount of cell debris 

accumulated, which, according to their model, the authors proposed, protects both 

competitors and thereby enables their coexistence (Wong et al., 2016). Interestingly, this 

model permitted the existence of “cheaters”, defined as bacteria which lost their T6SS 

activity but retained resistance to the attack of one of the competitors. Indeed, V. cholerae 

strains which do not possess an active T6SS were protected in a three strain competition 

mixture with wild type A. hydrophila by a V. cholerae strain harboring a constitutively 

active T6SS (Wong et al., 2016). A similar approach was recently used to demonstrate that 
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the segregation, driven by antagonistic processes, promotes the evolution of public goods. 

This is because in a segregated domain, a public good producer is mostly surrounded by its 

kin reducing the loss of the product to competitors (McNally et al., 2017). However, the 

model assumed a “cheater” to be sensitive to the antagonistic interaction, which results in 

the segregation of the producer and cheater. As mentioned above, the previous study could 

demonstrate that a cheater, which is resistant to the attack of one of the competitors, will 

even be protected by the respective competitor and reside in its domain thereby being able 

to exploit the public goods available in that domain (Wong et al., 2016). Interestingly, in 

B. thailandensis the formation of cheaters is suppressed by linking the production of T6SS 

immunity proteins to the production of public goods (Majerczyk et al., 2016). Unlike 

V. cholerae, which constitutively expresses the immunity protein encoding genes (Miyata 

et al., 2013), both the T6SS effectors and the immunity proteins are regulated by a quorum 

sensing system in B. thailandensis (Majerczyk et al., 2016). The same quorum sensing 

system regulates the expression of a large number of genes, the products of which may 

contribute to the production of public goods. A “cheater” strain, which is blind to the 

quorum sensing signal, and thereby does not contribute to the production of public goods, 

also does not express the T6SS immunity protein encoding genes. This sensitizes the 

cheater to T6SS killing by the parental strain and thus efficiently suppresses the formation 

of cheaters within the parental population (Majerczyk et al., 2016). 

Taken together, the modelling approach may yield valuable insights and mechanistic 

explanations for an observed phenotype. Furthermore, the use of models also enables the 

generalization of the observation to comparable contact dependent inhibitory systems. 

Moreover, in a model a single parameter can be adjusted while keeping the remaining 

parameters constant which may be hard or even impossible to achieve in a biological 

system. The ability to predict the outcome of a competition with given parameters is an 

important trait of a model. 

Apart from the quorum sensing regulated T6SS, all of the models described above assumed 

a random targeting activity of the T6SS. However, as elaborated in the introduction, the 

T6SS may also serve as a defensive weapon as exemplified by the retaliation strategy 

employed by P. aeruginosa (Basler et al., 2013), or it may be regulated to serve a specific 

purpose such as the repression of the T6SS by a resistance plasmid in A. baumannii (Weber 

et al., 2015). It may be instructive to study the benefits of such regulation strategies by 

modelling different types of competitions.   
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Simulation details

Lattice geometries

Simulations were run in a 1D linear, 2D triangular, or 3D cubic lattice. Founding
populations were well-mixed and occupied all positions within a specified Manhattan
radius of the center point. Unless otherwise specified, the founding population size was
chosen to be close to n0 = 500 (Table S1). Each lattice was much larger than required
for the maximum final population, such that the population never reached the boundary.

Cell displacement

Our model makes the simplifying assumption that all cells can divide (Fig. 2a). If a cell
has one or more adjacent vacancies, it will randomly select one of these to divide into. If
all neighbor sites are occupied, then one of the occupied neighbors is chosen at random.
Next, the nearest vacancy to the original location is located as is the nearest vacancy to
the chosen neighbor, as measured by Manhattan distance. If the original cell is closer to
a vacancy, the cells along a randomly-selected shortest path from the original cell to the
vacancy are pushed leaving the vacancy occupied; otherwise, cells are pushed in a
similar way from the chosen neighbor to the nearest vacancy. If both the original cell
and the chosen neighbor are equidistant to a vacancy, the tie is broken at random. The
benefit of this approach is that it respects the “inertia” of existing cells, while
introducing some nondeterminism in order to reduce artifacts from the regular lattice.

Events

Every cell in the system has a number of “behaviors” or events (Table S2). Behaviors
may be probabilistic, meaning that sometimes nothing may happen when the event is
triggered. During each simulation step, each cell is instructed to trigger its “attack”
behavior. The attack events are resolved one at a time in a random order. The
remaining cells are then instructed to trigger their “divide” behaviors. Finally, the state
is compared to the halt condition(s) for the simulation (specified population reached,
specified cell type constitutes a defined fraction of the population etc.). Images and
data points are taken before attack events take place.

Integration error

The base unit of time in the simulations is the generation time for a T6S+ strain,
defined as τ = 1/αt. (In simulations with only sensitive individuals, the unit of time
τ = 1/αs.) The definition of the T6S+ generation time implies that, in each time unit,
on average every T6S+ individual will divide once. As with many agent-based
simulation schemes, special consideration is needed to resolve simultaneous events in a
manner that minimizes error. To this end, we employ a null-event scheme [1] in which,
each time the simulation updates its state, time is advanced only a fraction of a step. In
each of these simulation updates, the system time advances by only a fraction of τ .

To implement this scheme, we first scale the probability of events from probability
per τ to probability per simulation update. We define the interval between simulation
updates as ∆t = τλ/N , where N is the total number of lattice positions and λ is a
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scaling factor used to control simulation speed and divergence from an “ideal”
simulation with perfect separation of events (i.e., no integration error). If λ = 1 for
example, then a lattice that is entirely full of T6S+ cells would have an average of one
cell division per simulation update cycle. The parameter λ represents a tradeoff
between the speed at which simulations can be run on a computer and the error due to
overlapping events. That is, integration error increases with the value of λ (Fig. S1).

Depending on the system configuration, integration error can create an advantage
either for a T6S+ or a sensitive strain. As discussed above, every cell is triggered to
consider attacking; once these events are resolved, the cells are triggered to consider
dividing. In situations with extensive surface area between strains, therefore, λ � 1
would result in extensive killing prior to cell division, creating an advantage for T6S+
strains. However, when large sensitive domains exist, high λ leads to many individuals
dividing before they are at risk of being killed; the result is an advantage to sensitive
strains.

Using λ > 1 allowed us to run large-scale simulations at high replicate. Whenever
λ > 1 was used, we first tested the dynamics at smaller scale with λ = 1 to verify that
the observed results were consistent. In all cases, dynamics were qualitatively equivalent
to both smaller scale tests and to analytical predictions.
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Generalization of sensitive domain survival to 1D
and 3D

Critical sensitive domain in 1D

Given a linear sensitive domain embedded in an arbitrarily large, 1D T6S+ population,
the minimum surviving sensitive domain population n∗ is found in a manner analogous
to that of a circular sensitive domain in 2D. The birth rate of the sensitive strain scales
like the length of the line, and the death rate (due to killing at the interface) is 2γ̃.
Hence the total growth rate is

dn

dt
= αsn− 2γ̃. (S1)

The observed value of dn/dt is plotted against the predicted value in Fig. S2a; the
parameter range is given in Table S3. Solving Eq. S1 for n∗, we find that

n∗ =
2γ̃

αs
, (S2)

which is shown as a dashed curve on Fig. S2b.

Critical sensitive domain in 3D

Given a spherical sensitive domain embedded in an arbitrarily large 3D T6S+
population, the minimum surviving sensitive domain population n∗ is found in a
manner analogous to that of a circular sensitive domain in 2D. We assume that the
sensitive domain is spherical. The birth rate of the sensitive strain scales like the total
volume of this sphere (i.e., n), and the death rate (due to killing at the interface) scales
like its surface area. Hence the total growth rate is

dn

dt
= αsn− γ̃π1/3(6n)2/3. (S3)

The observed value of dn/dt is plotted against the predicted value in Fig. S3a; the
parameter range is given in Table S3.

We can predict the transition from sensitive strain extinction to survival. Solving Eq.
S3 for n at dn/dt = 0, we find that

n∗ =
36πγ̃3

α2
s

, (S4)

which is shown as a dashed curve on Fig. S3b.

Mean-field model

The simulations and experiments described in the paper suggest that sensitive domains
tend to survive encounters with T6S+ attackers provided those domains have reached a
sufficient size. At a population level, this phenomenon is a simple consequence of
geometry: population scales with the volume of the sensitive domain, while killing scales
only with the surface area. At the scale of individuals, however, the probability of
sensitive strain survival is determined by the fraction of neighbors that are capable of
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T6S attack. It is therefore useful to consider the conditions required for sensitive strain
dominance in the absence of spatial structure. To this end, we consider a mean-field
model for a well-mixed system.

Assume that each cell has some fixed number of neighbors z, but that these
neighbors are drawn at random from a total population with fraction ϕt of T6S+
individuals and fraction ϕs of sensitive individuals, such that ϕt + ϕs = 1.

The net growth rate for a sensitive individual, i.e. the bare growth rate minus the
rate of being attacked and killed depends on the number of T6S+ neighbors. Since each
T6S+ individual can attack any of its z neighbors, for a sensitive cell the expected rate
of being attacked and killed per T6S+ neighbor is γ/z. The expected growth rates for
each type as a function of its randomly sampled neighborhood is

gt = αt, (S5)

gs = αs − γϕt. (S6)

The difference in growth rate between the two strains is

∆g = αs − αt − γϕt. (S7)

Sensitive strains are expected to grow more quickly than T6S+ individuals when
∆g > 0, i.e. when

αs − αt

γ
> ϕt. (S8)

If one assumes T6S to incur a non-zero cost, such that αs − αt > 0, the mean-field
model implies that sensitive strains grow faster than T6S+ strains so long as the T6S+
fraction ϕt is not too large. This result holds for a system of any dimensionality. The
spatial structure of populations exaggerates this effect by decreasing the probability of
sensitive individuals having T6S+ neighbors. Space also allows an arbitrarily small
global fraction of the sensitive strain to survive, so long as they have a sufficiently large
local population somewhere in the community. For this reason, the spatial model allows
sensitive domains to survive attack even if they grow more slowly than T6S+
competitors, whereas this is not possible in the mean-field model.
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The impact of nutrient depletion on T6S-mediated
population dynamics

Nutrient depletion model

Microbial communities deplete nutrients from their environment as they grow. To
explore the impact of nutrient depletion, we studied a simple resource-limited variant of
our competition model. The variant is identical to the original model except that we
now assume each lattice site starts with a finite nutrient supply, and thus a finite
“division capacity” K. Every time a cell divides at a particular location, the nutrient
supply k at that site is decreased by one unit: k → k − 1. Once the local nutrient
supply reaches zero, no further cell divisions can take place at that location (Fig. S6).
Thus every lattice site can support exactly K cell-division events.

Analysis of growth dynamics

To understand the effect of resource depletion on T6S-mediated competition, it is first
helpful to understand its effect on growth in the absence of killing. In this case, each
cell division leads to exactly one cell being placed in a previously unoccupied lattice site.
By assumption, this newly occupied lattice site has K cell divisions remaining. All
other previously occupied lattice sites remain occupied; individual cells may change
lattice sites, but overall there is the same number of sites with k cell divisions
remaining, except for the new site with K divisions remaining, and the site of the
cell-division event, for which k → k − 1.

We ignore the case of K = 1 (i.e., fixed active population), which implies linear
population growth. For all K > 1, we can classify all occupied lattice sites by the
number of cell divisions remaining. We can then stratify the cell population by the
remaining capacity of the site each cell occupies. Let pk represent the number of cells
that occupy lattice sites with k cell divisions remaining, and let us consider the average
behavior of pk.

Let α be the growth rate for cells, i.e. cells on sites with k > 0 divide at a rate α.
The population of cells on new, capacity K sites increases due to all cell divisions, but
decreases due to division of cells on capacity K sites. Hence, on average,

dpK

dt
= α

K−1∑
k=1

pk. (S9)

The populations of all other cell classes pk likewise decrease due to their own divisions
and increase due to divisions of the next higher class pk+1:

dpk
dt

= α (pk+1 − pk) , 0 < k < K. (S10)

Setting aside depleted sites (p0) for the moment, this relation can be expressed by the
matrix equation
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dp

dt
= Lp, (S11)

where p = (p1, p2, . . . , pK) and

L =




−α α . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . −α α 0
α α . . . α α 0


 . (S12)

We observe numerically that the matrix L always has exactly one eigenvalue with
positive real part (Table S4). The growth of the population is therefore driven by this
dominant eigenvalue. To understand the dynamics of the system, therefore, we seek a
positive eigenvalue λ of L such that

dp

dt
= λp. (S13)

We further simplify the system by factoring out the growth rate α, defining L̂ = L/α
and µ = λ/α, such that

L̂p = µp. (S14)

We make the ansatz that at long times the population structure approaches a geometric
series

p =
(
1, β, . . . , βk−2, βk−1

)
. (S15)

Substituting this ansatz into Eq. S14, we obtain the relation




−1 1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . −1 1 0
1 1 . . . 1 1 0







1
β
...

βk−2

βk−1




= µ




1
β
...

βk−2

βk−1




. (S16)

For the last line (corresponding to pK), we have

1 +

K−2∑
k=1

βk = µβK−1, (S17)

and for all other lines we obtain

β = µ+ 1. (S18)

Substituting Eq. S18 into Eq. S17, we obtain the polynomial expression for the
eigenvalues of L̂
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1 +
K−2∑
k=1

(µ+ 1)
k
= µ (µ+ 1)

K−1
. (S19)

The largest root of Eq. S19 (by real value) is shown in Table S4. The table also shows
the dominant eigenvalues of the matrix L̂, demonstrating agreement between the two,
and confirming the ansatz (Eq. S15) for the asymptotic population structure.

We observe from Table S4 that µ approaches 1 with with increasing K. We therefore
write µ = 1− ε and expand Eq. S19 to obtain the estimate

µ(K) ≈ 1− 2−K . (S20)

Turning our attention to the inactive population p0, we note that p0 grows as a
result of cell division by subpopulation p1. Since p1 divides at a rate α, we have

dp0
dt

= αp1. (S21)

At long times, p1 grows at a rate set by the dominant eigenvalue. At long times,
therefore,

dp1
dt

−→ λp1. (S22)

By inspection of these two equations, we observe that for long times

dp0
dt

−→ α

λ

dp1
dt

, (S23)

which implies

p0 −→ α

λ
p1 =

1

µ
p1. (S24)

Substituting Eq. S20 and the ansatz from Eq. S15 into Eq. S24 and simplifying, we
obtain the estimate

p0 =
1

2K
. (S25)

Fig. S7a shows predicted and observed population growth over time, both without
and with nutrient depletion (K = 2). As predicted, nutrient-limited populations grow
exponentially, albeit at a slower rate than non-limited populations. The inactive
population fraction asymptotically approaches zero as K increases, as predicted by Eq.
S25 (Fig. S7b).

Effects of nutrient depletion on T6S competition dynamics

Fig. S8 presents the results of competition between T6S+ and sensitive individuals
during a range expansion. The initial conditions and parameters are identical to those
used for Figs. 4a-d. In the absence of nutrient limitation, the overall population grows
more quickly than when nutrients are limited (Fig. S8a). Nevertheless, even in a
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strongly nutrient-limited case (K = 2), the qualitative dynamics of the competition are
essentially identical whether nutrients are limited or not (Fig. S8b).

Since nutrients are depleted from the inside of a colony outward, might varying the
initial microcolony size reveal differences between nutrient-limited and non-limited
conditions? Fig. S9 explores competitive dynamics in range expansions for which the
cells are initially dispersed into clusters of a specific size. Larger clusters provide an
advantage to sensitive cells by giving them more time to form large domains before T6S
assault. However, no qualitative difference was observed between nutrient-limited and
non-limited conditions. Intuitively, because of exponential growth, only a small fraction
of the population is ever in the p0 state for which division is not possible, so the effects
of nutrient depletion are small.
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S1 Fig. The effect of time step on simulation error at large population in 1D. 
(a) Plot of simulated growth rates (y-axis) vs. predicted growth rates from Eq. S1 (x-axis) for a sensitive 
domain with simulation timestep multiplier λ = 0.25. Each point represents the average, over identical 
conditions, from 5 simulations. (b) The same plot, averaging over 20 simulations with λ = 2. 
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S2 Fig. Sensitive domain growth dynamics in 1D. 
(a) Comparison of simulation results (y-axis) to predicted values from Eq. S1 (x-axis) for rate of growth of a 
1D sensitive domain. Points represent the average, by sensitive population, across all simulations with the 
same parameters (40 per condition). Color represents domain radius; black line is y = x. Simulation timestep 
multiplier λ = 0.01. (b) Heat map of the probability that a 1D sensitive domain surrounded by T6S+ 
competitors achieves steady growth, as a function of sensitive strain growth rate and initial radius of the 
sensitive domain. Dashed line indicates predicted critical parameter values based on Eq. S1. Attack rate 
𝛾𝛾� = 20; timestep multiplier λ = 0.5. Interpolated from 1.9 million simulations. 
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S3 Fig. Sensitive domain growth dynamics in 3D. 
(a) Comparison of simulation results (y-axis) to predicted values from Eq. S3 (x-axis) for rate of growth of a 
3D sensitive domain. Points represent the average, by sensitive population, across all simulations with the 
same parameters (5 per condition; λ = 2.0). Color represents domain radius; black line is y = x. (b) Heat map 
of the probability that a 3D sensitive domain surrounded by T6S+ competitors achieves steady growth, as a 
function of sensitive strain growth rate and initial radius of the sensitive domain. Dashed curve indicates 
predicted critical parameter values based on Eq. S3. Attack rate 𝛾𝛾� = 8; interpolated from 6,090 simulations 
(λ = 2000). 
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S4 Fig. Range expansion of two competing T6S+ strains. 
Each strain kills only individuals of the other type; the two strains are otherwise identical. Initial inoculum is 
well-mixed; starting minority (yellow) fraction is 25%. For each strain, the growth rate is αt = 1 and the attack 
rate is γ = 2. (a) Kymograph of a 1D competition; time is shown on the x-axis. Initial innoculum r0 = 500; 
timestep multiplier λ = 1. (b) Center slice through a 3D competition. Initial innoculum r0 = 6; timestep 
multiplier λ = 2. 

 

S5 Fig. Fold-change in minority fraction after 10-fold growth in population of two competing T6S+ 
strains. 
For each strain, the growth rate is αt = 1. (a) Competition in 1D. Initial innoculum r0 = 500; timestep multiplier 
λ = 1. (b) Competition in 3D. Initial innoculum r0 = 6; timestep multiplier λ = 1. 

  



IV. APPENDIX 
 

156 | P a g e  
 

 

S6 Fig. Time series of nutrient-limited population expansion (K = 2). 
Time points shown are t = 0 (left), t = 9 (middle), and t = 12 (right). Lighter color corresponds to higher 
nutrient concentration. Simulation scaling factor λ = 100. 

 

S7 Fig. Nutrient-limited population growth. 
(a) Population over time for nutrient-limited growth (K = 2, blue) and non-limited growth (green). Simulation 
results shown as solid lines (n = 50 per condition, ribbon = 1 S.E.); numerical estimate for deterministic 
exponential growth (Eq. S11 for limited case, simple exponential growth for non-limited) shown as dashed 
lines. (b) Long-time inactive fraction as a function of division capacity K. Black points: final inactive fraction 
after range expansion from single cell to radius r = 164 (n = 10 per condition, bar = 1 S.E.). Green line: 
numerical estimate (from Eq. S11 and S21) for deterministic growth. Red line: analytical prediction  
(Eq. S25). For all simulations, scaling factor λ = 100. 
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S8 Fig. Nutrient limitation does not qualitatively alter dynamics of simulated T6S-mediated 
competition. 
Populations begin with an equal number of T6S+ and sensitive individuals at a specified per-species 
population, scattered over an r0 = 84 domain, and grow until the radius has doubled. (a) Population over time 
for nutrient-limited growth (K = 2, left) and non-limited growth (right). Error ribbons smaller than data curve. 
(b) Mean sensitive fraction over time for nutrient-limited growth (K = 2, left) and non-limited growth (right). 
For both panels, n = 40 per condition; scaling factor λ = 100. Ribbons = 1 S.E. 
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S9 Fig. Effect of initial T6-sensitive cluster size on dynamics of simulated T6S-mediated competition. 
Initial populations are placed in compact groups of m = 1, 3, or 7 individuals, and with strict separation 
between these clusters. Shown is final sensitive fraction as a function of initial per-species count. Populations 
begin with a specified per-species population, scattered over an r0 = 84 domain, and grow until the radius has 
doubled. n = 90 per condition; scaling factor λ = 100. Error bars = 1 S.E. 
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S9 Fig. Effect of initial T6-sensitive cluster size on dynamics of simulated T6S-mediated competition.
Initial populations are placed in compact groups of m = 1, 3, or 7 individuals, and with strict separation 
between these clusters. Shown is final sensitive fraction as a function of initial per-species count. Populations 
begin with a specified per-species population, scattered over an r0 = 84 domain, and grow until the radius has 
doubled. n = 90 per condition; scaling factor λ = 100. Error bars = 1 S.E.
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Table S1. Simulation geometries for range expansions.

Lattice Inoculum population Inoculum radius
1D (linear) 500 250
2D (triangular) 469 12
3D (cubic) 377 6
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Table S2. Simulation behavior definitions.

Name T6S- (sensitive) T6S+ (self-immune)
attack Do nothing. With probability γ, trigger the

be-attacked behavior in one oc-
cupied neighbor (if one exists);
otherwise, do nothing.

be-attacked Die. Do nothing.

reproduce With probability αs, divide into
an adjacent space; otherwise do
nothing.

With probability αt, divide into
an adjacent space; otherwise do
nothing.
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Table S3. Parameter ranges for comparison of predicted to simulated rates of sensitive strain growth.

Attack rate (γ̃) Sensitive strain growth rate (αs) Inoculum radius (r0)
min max step min max step min max step

1D 1 20 1 1 4 1 1 20 1
2D 0 14 2 1 4 1 3 11 2
3D 0 14 2 1 4 1 3 11 2
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Table S4. Active population growth rates for various division capacities.

Division capacity (K) Highest root of µ Dominant eigenvalue of L̂
2 0.618 0.618
3 0.839 0.839
4 0.928 0.928
5 0.966 0.966
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