edoc

Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR

Li, J. and Zhao-Hui, C. and Batoux, M. and Nekrasov, V. and Roux, M. and Chinchilla, D. and Zipfel, C. and Jones, J. D. G.. (2009) Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 37. pp. 15973-15978.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5261897

Downloads: Statistics Overview

Abstract

Plant innate immunity depends in part on recognition of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin, EF-Tu, and fungal chitin. Recognition is mediated by pattern-recogntition receptors (PRRs) and results in PAMP-triggered immunity. EF-Tu and flagellin, and the derived peptides elf18 and flg22, are recognized in Arabidopsis by the leucine-rich repeat receptor kinases (LRR-RK), EFR and FLS2, respectively. To gain insights into the molecular mechanisms underlying PTI, we investigated EFR-mediated PTI using genetics. A forward-genetic screen for Arabidopsis elf18-insensitive (elfin) mutants revealed multiple alleles of calreticulin3 (CRT3), UDP-glucose glycoprotein glucosyl transferase (UGGT), and an HDEL receptor family member (ERD2b), potentially involved in endoplasmic reticulum quality control (ER-QC). Strikingly, FLS2-mediated responses were not impaired in crt3, uggt, and erd2b null mutants, revealing that the identified mutations are specific to EFR. A crt3 null mutant did not accumulate EFR protein, suggesting that EFR is a substrate for CRT3. Interestingly, Erd2b did not accumulate CRT3 protein, although they accumulate wild-type levels of other ER proteins. ERD2B seems therefore to be a specific HDEL receptor for CRT3 that allows its retro-translocation from the Golgi to the ER. These data reveal a previously unsuspected role of a specific subset of ER-QC machinery components for PRR accumulation in plant innate immunity.
Faculties and Departments:05 Faculty of Science > Departement Umweltwissenschaften > Botanik > Pflanzenphysiologie Pathogenabwehr (Boller)
UniBasel Contributors:Chinchilla, Delphine
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:National Academy of Sciences
ISSN:0027-8424
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:23
Deposited On:22 Mar 2012 13:34

Repository Staff Only: item control page