Exploring dissociative water adsorption on isoelectronically BN doped graphene using alchemical derivatives

Al-Hamdani, Yasmine S. and Michaelides, Angelos and von Lilienfeld, Anatole O.. (2017) Exploring dissociative water adsorption on isoelectronically BN doped graphene using alchemical derivatives. Journal of Chemical Physics, 147 (16). p. 164113.

PDF - Published Version

Official URL: https://edoc.unibas.ch/63256/

Downloads: Statistics Overview


The design and production of novel 2-dimensional materials have seen great progress in the last decade, prompting further exploration of the chemistry of such materials. Doping and hydrogenating graphene are an experimentally realised method of changing its surface chemistry, but there is still a great deal to be understood on how doping impacts on the adsorption of molecules. Developing this understanding is key to unlocking the potential applications of these materials. High throughput screening methods can provide particularly effective ways to explore vast chemical compositions of materials. Here, alchemical derivatives are used as a method to screen the dissociative adsorption energy of water molecules on various BN doped topologies of hydrogenated graphene. The predictions from alchemical derivatives are assessed by comparison to density functional theory. This screening method is found to predict dissociative adsorption energies that span a range of more than 2 eV, with a mean absolute error <0.1 eV. In addition, we show that the quality of such predictions can be readily assessed by examination of the Kohn-Sham highest occupied molecular orbital in the initial states. In this way, the root mean square error in the dissociative adsorption energies of water is reduced by almost an order of magnitude (down to ∼0.02 eV) after filtering out poor predictions. The findings point the way towards a reliable use of first order alchemical derivatives for efficient screening procedures.
Faculties and Departments:05 Faculty of Science > Departement Chemie > Former Organization Units Chemistry > Physikalische Chemie (Lilienfeld)
UniBasel Contributors:von Lilienfeld, Anatole
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:AIP Publishing
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
edoc DOI:
Last Modified:08 Feb 2020 14:56
Deposited On:16 Apr 2018 07:25

Repository Staff Only: item control page