In the crystal structure of the title compound, C_{13}H_{19}ClO_{8}, extensive intermolecular hydrogen bonding leads to a three-dimensional network, but the Cl substituent is not involved in these interactions.

Comment

We have recently prepared a series of 1-(2-haloethyl)-2,3,5-tri-O-acetyl-β-D-ribofuranose derivatives for use in the synthesis of ribose-functionalized 2,2'-bipyridine (Constable et al., 2004) and 2,2',6',2'-terpyridine ligands. Crystals of 1-(2-chloroethyl)-2,3,5-tri-O-acetyl-β-D-ribofuranose, (I), were grown by freeze–thawing the colourless oil that was obtained after chromatographic purification of the compound.

Fig. 1 shows the molecular structure of (I). Bond distances and angles are unexceptional. The conformation of (I) is very similar to that found in polymorph B of 1,2,3,5-tetra-O-acetyl-β-D-ribofuranose (Bombicz et al., 2003; James & Stevens, 1973; Poppleton, 1976), and the conformations of the two molecules

2,3,5-Tri-O-acetyl-1-(2-chloroethyl)-β-D-ribofuranose

Fig. 1

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
are compared in Figs. 2 and 3. Both compounds crystallize in the non-centrosymmetric space group $P2_12_12_1$, with cell dimensions that are similar, suggesting similar packing. Two polymorphs of 1,2,3,5-tetra-O-acetyl-β-d-ribofuranose exist (Bombicz et al., 2003; Czugler et al., 1981; James & Stevens, 1973; Patterson & Groshens, 1954; Poppleton, 1976) and the relative instability of polymorph A has been attributed to extremely short H···H contacts (Bombicz et al., 2003).

The molecule of (I) exhibits two short intramolecular C–H···O contacts [C2–H21· O8 = 2.25 Å and C2–H21· O8 = 2.671 (2) Å, and C5–H51· O4 = 2.26 Å and C5–H51· O4 = 2.671 (2) Å]. These are, however, non-directional (C2–H21· O8 = 106° and C5–H51· O4 = 105°) (Desiraju & Steiner, 1999). Similar short contacts are observed in 1,2,3,5-tetra-O-acetyl-β-d-ribofuranose. Intermolecular interactions involve C–H···O contacts (Table 2) and lead to the formation of an extensive network of interconnected molecules. The Cl substituent is not involved in any intermolecular interactions.

Experimental

The title compound was prepared as a colourless oil from 1,2,3,5-tri-O-acetyl-β-d-ribofuranose and 2-chloroethanol in the presence of SnCl$_4$ by a method previously described for the analogous reaction starting from arabinofuranose (Pathak et al., 2001). Crystals were grown by repeatedly dipping a sample of the compound contained in a tube under high vacuum into liquid nitrogen.

Crystal data

$C_{13}H_{19}ClO_8$

$M_r = 338.74$

Orthorhombic, $P2_12_12_1$

$a = 7.3407$ (5) Å

$b = 13.5532$ (14) Å

$c = 15.4384$ (9) Å

$V = 1536.0$ (2) Å3

$Z = 4$

$D_m = 1.465$ Mg m$^{-3}$

$\mu = 0.29$ mm$^{-1}$

$T = 173$ K

Block, colourless

$0.28 	imes 0.26 	imes 0.22$ mm

Table 1

Selected geometric parameters ($\bar{\AA}$, $^\circ$).

C1–C7	1.7847 (19)	C3–C4	1.516 (2)
C1–C2	1.513 (2)	C3–C5	1.428 (2)
C1–C1	1.397 (2)	C4–C5	1.506 (2)
C2–C1	1.421 (2)	C4–O2	1.428 (2)
C2–C3	1.515 (2)	C5–C3	1.436 (2)
C2–C7	1.435 (2)		
C2–C1	106.34 (13)		
C2–C2	105.66 (14)		
C1–C1	111.71 (13)		
C1–C3	100.45 (14)		
C1–C7	106.62 (13)		
C3–C2	109.57 (13)		
C3–C3	102.56 (13)		

Data collection

Nonius KappaCCD area-detector diffractometer

ϕ and ω scans

Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997)

$T_{min} = 0.93, T_{max} = 0.94$

46023 measured reflections

3896 independent reflections

2801 reflections with $I > 3\sigma(I)$

$R_{int} = 0.075$

$\mu = 0.29$ mm$^{-1}$

Refinement

Refinement on F

$R(F) = 0.035$

$S = 1.07$

2801 reflections

200 parameters

H-atom parameters constrained

$w = [1 - (F_o^2/F_c^2)^2]^{-1}$

$T_2 = 0.945T_1 + 0.132T_3 + 0.288T_4$

where T_i are the Chebychev polynomials and $x = F_c/F_{max}$ (Prince, 1982; Watkin, 1994)

$\Delta\rho_{max} = 0.20$ e Å$^{-3}$

$\Delta\rho_{min} = -0.18$ e Å$^{-3}$

Absolute structure: Flack (1983), with 1663 Friedel pairs

Flack parameter: –0.01 (6)
Table 2

Intermolecular C—H···O interactions (\AA, °) in (I).

<table>
<thead>
<tr>
<th></th>
<th>H—O</th>
<th>C···O</th>
<th>H—C···O</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1—H11···O4′</td>
<td>2.56</td>
<td>3.453 (2)</td>
<td>157</td>
</tr>
<tr>
<td>C9—H92···O6ii</td>
<td>2.55</td>
<td>3.447 (3)</td>
<td>156</td>
</tr>
<tr>
<td>C11—H113···O5iii</td>
<td>2.48</td>
<td>3.428 (2)</td>
<td>168</td>
</tr>
<tr>
<td>C7—H72···O4iv</td>
<td>2.61</td>
<td>3.391 (3)</td>
<td>139</td>
</tr>
<tr>
<td>C6—H61···O2i</td>
<td>2.71</td>
<td>3.249 (2)</td>
<td>117</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) \(-\frac{1}{2} + x, \frac{1}{2} + y, 2 - z\); (ii) \(-\frac{1}{2} - x, \frac{1}{2} + y, 2 - z\); (iii) \(-\frac{1}{2} + x, \frac{1}{2} - y, 2 - z\); (iv) \(x - 1, y, z\).

All H atoms were treated as riding atoms, with C—H = 0.96 \AA and \(U_{iso}(H)\) between 1.0\(U_{eq}(C)\) and 1.2\(U_{eq}(C)\).

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CRYSTALS.

We thank the Swiss National Science Foundation and the University of Basel for financial support.

References