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1 INTRODUCTION

A healthy multicellular organism depends on continuous cell turnover, to replace old

cells. Therefore, a proportion of cells are permanently required to divide and

differentiate in order to repopulate living organs. Stem cells are responsible for roughly

1012 divisions per day, and even in organs with low turnover rates, massive

proliferation can be initiated by events such as trauma or infection. Regardless of such

an enormous production of new cells, the adult human body maintains a constant

weight. Even obesity is not primarily the result of increased cell multiplicity but of

increased volume and thus mass of adipocytes. In multicellular organisms, however,

this exquisite coordination can only be achieved through a sophisticated network of

overlapping molecular mechanisms, governing the birth and death rates of the cells.

Cancer cells ignore the most basic rules of how multicellular organisms are produced

and maintained. Their behaviour characteristically involves accelerated growth,

invasion, avoidance of senescence, enhanced stimulation of angiogenesis and

genome instability.

Defects, that tangent to ‘the balance of birth and death’, have the potential to disrupt

the social control, if they cannot be corrected immediately. In a human body with such

a large mass of cell divisions per day, billions of cells experience molecular

disturbances or mutations every day. Under particular circumstances, a mutation may

give a selective advantage to a cell, allowing it to divide more frequently than its

neighbours and to become a founder of a growing mutant clone (see figure 1).

primary
tumour

mutation 1  mutation 2clonal growth

Figure 1: The succession leading to a primary tumour starts with a particular mutation in a single cell. This
mutation may provide a selective advantage that allows this cell to divide more rapidly than the
adjacent cells. Thereby it may become a founder of a growing mutant clone. Repeated rounds of
mutation, competition, and natural selection eventually lead to a clone of fully malignant cancer
cells. At each step, a specific mutation enhances cell proliferation, so that newly modified mutant
clones become dominant over predecessors. Enhancing proliferation speed and population size of
the developing clone additionally increases the risk for further mutations.
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If the cancerous cell and its progeny remain clustered together in a single mass, the

tumour is said to be benign. As soon as the tumour cells have acquired the ability to

spread and invade surrounding tissue, the tumour is considered malignant. In the

following sections, the development of cancer as a microevolutionary process will be

discussed. This process occurs much more often and proceeds much faster than the

evolution of species in an ecosystem, but it depends on the same principles of

mutation and natural selection.

In the case of bladder cancer, as for many other cancers, the origin of the tumours is

said to be multifactorial, with tobacco smoking as the principal cause in most

countries (see below). The molecular development of the disease is highly complex

and involves many genetic abnormalities. These abnormalities yield phenotypic

changes that allow normal transitional cells to become cancerous and finally acquire

the malignant phenotype. Some of the genetic changes can additionally be detected

among a wide range of other malignancies, suggesting the existence of common ‘key

pathways’ in cancer development, while others may be specific for bladder cancer.

Besides providing an overview of the significance of bladder cancer, the following

chapters also review the most common genetic alterations as well as the molecular

mechanisms and pathways involved in the disease.

1.1 Epidemiology: significance of cancer in general, and of bladder cancer in

particular

According to the WHO, cancer was estimated to account for about 7 million deaths

(12% of all deaths) worldwide in 2000, only to be preceded by cardiovascular diseases

(30%) and infectious and parasitic diseases (19%). Estimates for global cancer

incidence and mortality are shown in table 1.

Urinary bladder cancer contributes significantly to the overall human cancer burden.

Over 300’000 people are confronted with the disease and more than 130’000 patients

die because of bladder cancer every year (figure 2). As far as modern societies are

concerned, however, the incidence and mortality rates are somewhat higher than in

developing countries. In the U.S.A. bladder cancer accounts for about 6% of all new

cancers and is three times more common in men than in women (making it the 4th

most common cancer in men). Furthermore, bladder cancer is twice as common in

white individuals as in blacks. On average patients are 65 years old; only 1% is less

than age 40.
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Site Incidence Mortality
Trachea, bronchus and lung

cancers

1'211'804 1'089'258
Breast cancer 1'017'207 371'680
Stomach cancer 950'319 714'452
Colon and rectum cancers 944'677 510'021
Liver cancer 554'344 536'904
Prostate cancer 536'279 202'201
Cervix uteri cancer 474'387 232'153
Mouth and cropharynx cancers 462'979 250'900
Lymphomas and multiple

myeloma

405'995 236'494
Oesophagus cancer 386'612 350'841

Bladder cancer 326'532 131'681
Leukaemia 255'932 209'328
Pancreas cancer 201'506 200'865
Ovary cancer 188'482 114'488
Corpus uteri cancer 185'951 44'359
Melanoma 131'469 37'654
Other sites 1'678'413 1'027'317
 

Total 9'910'878 6'260'596

Table 1:  The incidence and mortality of cancer. Data are according to the WHO 2000. Total new cases of
bladder cancer diagnosed were 326'532. Note that approximately 40% of the patients die as a
result of the disease.

Figure 2: Global
cancer incidence and
mortality rates
(according to estimates
of the WHO 2000).
Bladder cancer is
accentuated (orange
bars).
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The reason why one person develops bladder cancer while others don’t, is not yet fully

understood. But several risk factors have been noted: cigarette smoking, diet

(especially fried meat and fat), being old, being male, carcinogen exposure, family

history, place of residence, some medications, skin colour, presence of bladder

polyps, presence of chronic irritations of the bladder, or infection with a parasite

(Schistosoma haematobium ). Furthermore, workers with an increased risk of

developing bladder cancer include painters, hairdressers, machinists, printers and

truck drivers, suggesting that there might be a variety of carcinogens waiting to be

detected. Progress in the early detection and treatment of bladder cancer has

improved prognosis, with five-year survival rates of 60-80%.

Early mortality has declined in modern human populations throughout the past several

100 years due to improvements in hygiene and nutrition (6). But, as more people

survive into old age, more people encounter the diseases associated with old age. As

a result, particularly the risk of cancer has dramatically increased with respect to other

relatively frequent diseases (see figure 3). The ageing of the population in developing

countries, points to an even further increasing burden of cancer worldwide for the

future.

Figure 3: Change in US death rates by cause, 1950 and 2002. Compared to 1950, the cancer death rate in
2002 was about the same, while rates for other major chronic diseases decreased during the same
period.

Source:    1950 Mortality Data – CDC/NCHS, NVSS. Mortality Revised.
2002 Mortality Data – US mortality public use data tape, 2002.
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1.2 Histopathology of bladder cancer

Cancers can be classified according to their tissue and cell type of origin. Cancers

arising from epithelial cells are termed carcinomas; those from connective tissue or

muscle cells are termed sarcomas; and cancers that do not fit in either of these two

categories are termed leukemias1. About 90% of human cancers are carcinomas,

perhaps because most of the cell proliferation in the body occurs in epithelia, or

because epithelial tissues are most frequently exposed to the various forms of physical

and chemical damage that favour the development of cancer.

In bladder cancer, more than 90% of the tumours are pure transitional cell carcinomas

(TCCs) or TCCs mixed with other histologies, primarily squamous cell carcinoma

(SCCs), adenocarcinoma (ACs), or both. An additional 3% to 7% are pure SCCs (8),

which are approximately twice as likely to occur in women as in men. Besides, SCCs

often develop in individuals who have Schistosoma hematobium infections of the

bladder or who have histories of long-term indwelling urinary catheters, bladder

stones, or recurrent bladder infections. Adenocarcinomas and undifferentiated cancers

also occur, but much less frequently.

The degree of tumour extension is reflected by the ‘staging system’. For example,

small cancers in a single site are at an early stage, whereas cancers that have spread

to many different parts of the body are at an advanced stage. Using the staging

system has two main benefits. Firstly it gives an idea of how advanced a cancer is and

secondly, it helps to determine what the treatment should be, since a patient with an

early stage cancer needs different treatment than a person with a more advanced

stage cancer.

Additionally to the tumour stage, a pathologist can assess the ‘tumour grade’, referring

to the appearances of individual tumour cells under the microscope. Depending on

how the cells look, a tumour may be given one of four grades. A low grade is when the

cancer cells resemble normal cells, with only slightly abnormal changes (G1), while a

high grade (G3) tumour contains cells that look very abnormal and show little or no

resemblance to normal tissue. In between there is an intermediate grade (G2). The

grade of a cancer is a guide to how aggressive the tumour is.

                                                       
1 Brain tumours do not entirely fit into one of these three distinct groups and have therefore to be classified
separately (7).7). Sanson, M., Thillet, J., and Hoang-Xuan, K. Molecular changes in gliomas. Curr Opin
Oncol 2004;16:607-613.
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Taken together, staging and grading help to predict how a cancer might behave, how

it might respond to treatment, and what the chance of cure might be. An overview of

all tumour stages that can be found in bladder cancer is given in figure 4.

Approximately 75% of all bladder neoplasms are either non-invasive papillary tumours

(pTa) or carcinomas with only minimal invasion (pT1). For the remaining 25%, the initial

presentation involves muscle invasive disease that will usually relapse with metastases

within a median of 2 years. The overall recurrence rates are high (30% to 83%), and

even after instant treatment by resection and intravesical immunotherapy half of the

pTa-pT1 TCCs recur within 4 years (9). But the necessary repeated operative

procedures to remove these TCCs are potentially morbid. Many recurrent papillary

TCCs never progress to invasive TCCs (10). However, a fraction of 20-30% may

progress into muscle invading stages. Patients with tumours that develop to stage

pT2-pT4 have a significantly worse prognosis.

Frequently, tumours staged as pT1 or less are grouped together by pathologists as

“superficial bladder carcinomas” because they can be cured by transurethral resection

in most instances. But, this classification is not very selective: in contrast to non-

invasive tumours (pTa), the majority of the minimal invasive tumours (pT1) will progress

into a more invasive phenotype (pT2-pT4). Since, the prognoses of patients and the

choice of treatments depend on the aggressiveness and grade of the tumour, it would

Figure 4: The different stages in bladder cancer. TNM classification: T= primary tumour; T0= no evidence of
primary tumour; Ta= non-invasive papillary carcinoma; Tis= carcinoma in situ (“flat tumour”); T1=
tumour invades subepithelial connective tissue, T2= tumour invades muscle; T3= tumour invades
perivesical tissue; T4= tumour invades any of the following: prostate, uterus, vagina, pelvic wall,
abdominal wall; pT= pathologic classification (diagnosis after removal of tissue). According to
Bostwick & Lopez-Beltran 1999; modified.
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be extremely important to find better criteria (genetic markers) for an accurate

discrimination between different pT1 tumours (10).

1.3 Cancer genes

Cancer results from an accumulation of mutations in genes called gatekeepers,

caretakers, and landscapers (11, 12).  Gatekeepers such as oncogenes and some

tumour suppressor genes directly regulate cellular growth and differentiation (13).

Oncogenes are activated by gain-of-function mutations that lead to increased or novel

function; tumour suppressor genes, in contrast, are affected by loss-of-function

mutations. Gatekeeper defects directly provoke abnormal cellular proliferation,

differentiation, and apoptosis. Caretakers are a special group of tumour suppressor

genes, which function in maintaining the genomic integrity of the cell, regulating DNA

repair mechanisms, controlling chromosome segregation, and monitoring cell cycle

checkpoints (1). Caretaker defects lead to genetic instabilities that contribute to the

accumulation of mutations in other genes, instead of directly affecting cell proliferation

and survival (14). Loss of caretakers is not essential for the development of cancer, but

it accelerates the process. Finally, landscaper defects do not directly affect cellular

growth, but generate an abnormal stromal environment that contributes to the

neoplastic transformation of cells.

1.3.1 Molecular biology of cancer: How a normal cell becomes a tumour cell

Tumours derive from single somatic cells and their progeny. The cells in the emerging

neoplastic clone accumulate a series of genetic or epigenetic alterations that lead to

changes in gene activity or -function, and consequently to altered phenotypes which

are subject to selection (12). Evidence for this theory comes from analysis of the

chromosomes in tumour cells. Chromosomal aberrations and rearrangements are only

present in the cancerous cells of the tumour itself, but cannot be found in the healthy

tissue. However, it is almost impossible for a single genetic change to cause a tumour.

Estimated 4 to 7 distinct rate-limiting genetic events are essential for the development

of common epithelial cancers (11) (see figure 5). Each mutation thereby creates a

cellular clone that is increasingly well adapted for autonomous growth in the host

organism. Eventually, a cell population might evolve that can overcome the control of

normal proliferation and territory and become a cancer. Accumulation of all necessary

steps or “pathway events”, normally requires a relatively long period of approximately
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40-80 years (15, 16). In inherited cancer syndromes one event is already present at

birth throughout all cells of the body and as a result, people with inherited

predisposition often suffer from an especially early onset of the disease.

Albeit tumour cells need to overcome similar constraints on the road to cancer, the

importance of the constraints varies widely between different tissues, and can be

evaded by alternative approaches. For example signalling pathways can be disrupted

at different points (figure 5). On the other hand, tumours sometimes share particular

mutations (e.g. of p53, Her-2/Neu, BRCA1 and BRCA2). This indicates in return, that

some genes are especially important in tumourigenesis, independent from organs,

tissues or patients.

1.3.2 Tumour initiation

The transformation from a normal cell to a malignant phenotype is a complex process

that involves the interaction of many genes, proteins, and other molecules.

Environmental chemicals are thought to play a predominant role in tumour initiation,

perhaps giving rise to 70% of the mutations (1). To add on, carcinogens either derived

from occupational exposures, inflammatory conditions, or schistosomal infections are

clearly among the most important environmental factors in bladder cancer initiation

(see above).

Figure 5: The “multistep model” as developed by Hanahan & Weinberg 2000. Specific associations of

pathway events are seen within individual tumours, and these presumably reflect the evolution of

the tumours along particular pathways.

linear
pathway

alternative
pathways

normal
cell

  cancer
cells
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From a biological point of view, tumour initiation starts with a genetic change in the

DNA. Although shepherded with utmost care, DNA nevertheless is a molecule whose

chemical bonds obey the same laws as other chemicals existing in an aqueous

environment at 37°C in the middle of a cell and dependent upon making and breaking

chemical bonds. Thus, DNA constantly suffers chemical damage, some as a

consequence of chemical attack by reactive molecules leading to errors in the correct

reading of the damaged DNA by DNA-poymerases, others are simply occurring as a

result of errors in replication. The latter are also called spontaneous mutations. It has

been estimated, that they are extremely rare. In cultured human cells the spontaneous

mutation rate is only approximately 2 x 10–7 per gene per cell division (16, 17).

Therefore, it is insufficient to explain the incidence rates of cancer. Even if the

extrapolated number represents an accurate measurement of in vivo mutations in a

healthy body, extrapolation over a life-time would predict much lower prevalence of

cancers than currently experienced.

A more realistic prediction arises from the scenario that genome stability will be

continuously decreased by every further mutational event, leading to an accelerated

pace of mutations overall (18). This model particularly takes into consideration the

well-recognized inherent instability of tumour genomes relative to their normal

counterparts. It is important to note, however, that chemical damage itself is not yet a

mutagenic event. DNA replication and subsequent cell division are additionally

necessary to convert chemical damage into inheritable changes. Besides, chemical

damage that does not enhance proliferation will not influence cancer development,

since such cells have a high probability of being displaced by adjacent normal cells,

sooner or later.

Many different mutations have been documented so far, but not all of them have the

potential to induce transformations. A vast majority does not lead to truncated protein

products, because approximately 97% of the DNA is non-coding. Others fail to affect

protein expression as a result of the similar chemical properties of the interchanged

amino-acids. Last but not least, a couple of mutations does not even give rise to

amino acid substitutions due to the redundancy of codon recognition, proofreading

capabilities of high-fidelity DNA polymerases and DNA-repair mechanisms. Thus, only

very few mutations can overcome all these barriers and might finally provoke a genetic

change.

Once mutagenic effects successfully destroy or encrypt the gene’s instructions for

making the protein, the affected cell will be subject to natural selection. If the genetic

change enhances proliferation, a mutant clone will slowly but surely overgrow adjacent
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cells (see figure 1). Cells harbouring heritable somatic mutations must therefore be

regarded as transformed. Mutations with a particularly high probability of producing a

transformed cell can be expected among tumour suppressor genes and oncogenes.

1.3.3 Tumour progression

Once an inherited mutation has increased the proliferation rate in a particular cell,

tumour progression starts as an inevitable and logic process, following the basic rules

of natural selection. As soon as one of the initially transformed cells in the developing

clone will experience another advantageous mutation, perhaps further enhancing

proliferation speed, facilitating cell cycle entry, improvement of nutrient supply, or else,

its progeny will again overgrow the surrounding tissue as the process of clonal

evolution goes into the next successive round (see figure 1) until the ‘adult’ primary

tumour will finally gain the potential to distribute its metastatic deposits (19).

In general, the rate of evolution in any population is affected by four parameters: (1) the

mutation rate; (2) the number of individuals in a given population; (3) the rate of

reproduction; and (4) the selective advantage provided by a genetic change. These

factors are in the same way critical for the evolution of cancer cells in a multicellular

organism. Suggesting that a minimum of 4-7 individual mutations are needed for the

development of a normal cell into a malignant tumour, it is not surprising that the risk

for cancer dramatically increases with age (6) (see figure 6).

Figure 6: The cancer incidence rate dramatically increases with age. The current data support the theory that
cancer is a multifactorial process. Development of the disease cannot be triggered by one single
mutation but instead needs at least 4-7 distinct somatic mutations. Mutations arise equally often
throughout life and accumulate until, at a certain age, the disease breaks out. If a single mutation
was sufficient to cause cancer, incidence rates would be expected constant throughout all age
classes. Source: IARC, 1987.
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Furthermore, it is obvious that, perhaps as a result of the mutational events in

combination with disturbed epigenetic regulation, altered stromal milieu, and telomeric

instability, the accumulation of subsequent genetic changes during tumour

progression will be further facilitated.

Like cells of distinct tissue types, bladder cancer cells need to acquire some

particularly important “major” pathway events (figure 7) in order to be able to grow

more rapidly, invade, and metastasize. These essential properties include uncontrolled

growth and cellular mobility, mediated at least in part via growth factors and their

receptors, expression or loss of expression of specific cell adhesion molecules, and

overproduction of angiogenic factors.

1.3.4 Inheritable factors affecting the development of cancer

As mentioned earlier on, a subset of the genetic changes leading to cancer are

inheritable. For example in breast cancer, the risk of close relatives of a patient,

averaged across all ages, is about 2-fold. Most of this familial risk is probably genetic

in origin. The risk is about the same for the mother, sisters or daughters of a breast

cancer patient, suggesting dominant rather than recessive effects. Large population-

based studies indicate that only between 15-20% of overall familial risk is attributable

Figure 7: The conclusion that cancers result from a series of 4-7 independent somatic mutations is
supported by studies of people who inherit a strong susceptibility to the disease. If single
mutations were able to cause cancer, the chance of developing the disease should be independent
of age.  Above the “hallmark features of cancer” are depicted (modified according to Kinzler &
Vogelstein, Nature 1997).
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to the strong predisposition genes BRCA1 and BRCA2. The possibilities for the

remaining 80% are some combination of a small number of moderately strong genes,

and a larger number (possibly a hundred or more) of weaker tumour suppressor genes

(14, 20, 21).

For bladder cancer, however, the influence of inheritable factors seems to be quite low

(19). Only occasionally inheritable tendencies are detected in familial clusters

(accounting for less than 1% of all cases). For example people with a mutation of the

retinoblastoma gene, which causes cancer of the eye already during childhood, have

an increased rate of bladder cancer. But apart from the retinoblastoma gene, there is

currently no further evidence for inheritable genetic changes in bladder cancers (22). It

seems that common genetic polymorphisms (such as being white) have only modest

effects on risk and mostly interact with known risk factors such as smoking (check

above). Thus, as a general rule, the overwhelming majority of bladder cancer cases is

sporadic and does not show familial patterns.

1.3.5 Epigenetic factors affecting the development of cancer

Work over the past years has shown that gene expression is not determined solely by

the DNA code itself but additionally by the assortment of proteins and, sometimes,

RNAs that tell the genes when and where to turn on or off. Such epigenetic

phenomena enable cells to respond to environmental signals conveyed by hormones,

growth factors, and other regulatory molecules without having to alter the DNA itself. It

is obvious that e.g. monozygous twins are not fully identical, although they share a

common genotype. Even in twins, some variable types of phenotypic differences are

always present, including dissimilar susceptibilities to cancer and several other

diseases. Molecular mechanisms that drop into the category of epigenetic effects are:

genomic imprinting, gene silencing and DNA methylation. Epigenetic differences

increase with age (23). Observed twins were epigenetically indistinguishable during the

early years of life, whereas older twin pairs exhibited remarkable differences in their

overall content and genomic distribution of epigenetic factors, often visibly affecting

their gene-expression portrait. This demonstrates how epigenetic mechanisms can

form different phenotypes originating from the same genotype. The same holds true

for cancer cells. They started out as identical twins of their neighbours that began to

deviate. Wheeler and colleagues (24) recently reviewed that hypermethylation of gene

promoters can efficiently inactivate tumour suppressor genes.
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1.3.6 Tissue specificity and variability of expression

Local factors can strongly affect the development of cancer: If only the sequential

accumulation of somatic mutations over a lifetime would finally drive a subset of cells

in the organism over a critical threshold, leading to emergence of cancers late in life,

the risk of developing a cancer should be equally high in all tissues. But cancer

statistics clearly show a different picture (figure 2). All inherited predispositions to

cancer exhibit a considerable degree of tissue specificity, even in the case of

predisposition by defective DNA-repair. The exact mechanisms, however, still remain

unknown.

Evidence for a crucial role of local gene expression comes from the sheer endless

seeming list of substances with precise tissue specific effects: e.g. artificially increased

oestrogene-levels, either induced through taking oral contraceptives or through

hormone-replacement-therapy, enhance the risk for breast cancer, while the risk for

reproductive carcinomas is significantly lowered (14, 25). Apart from the tumours’ local

environment, also wounding and chronic inflammation can influence cancer

development (chapter 1.1 Epidemiology). Their effects may be mediated either

through increased mitogenesis, which may be associated with increased mutation, or

through paracrine effects. Again, it is also possible, that there will be genetically

determined variation in the wounding and inflammatory responses between tissues

and/or individuals.

1.4 Genetic alterations in bladder cancer

Generally, the development of bladder cancer is not much different from development

of other malignancies, in a similar way characterized by tumour initiation and -

progression. However, as a typical feature tumours of the urinary bladder are

extremely heterogeneous with respect to their genetic alterations, histopathologic

properties, morphologic growth patterns and clinical behaviour. Therefore, it must be

expected that many different biological pathways could be involved in bladder cancer.

An overview of frequent genetic changes encountered in bladder cancer is given in

table 2.
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genomic       frequency (%) potential target

region loss gain gene(s)

9q 83 ?

9p 55-78 ?

8p21 54-65 DBC2, LZTS1

3p 56 ?

13q14 20-56 Rb

10q 52-54 ERCC6, PTEN, and DMBT1

8q 50 ?

17p13 45 p53

5p 43 ?

5q 41 MCC; APC; IRF-1

11p15 40 CDKN1C/p57(KIP2)

1p36 84 p73, TNFRSF12, E2F2, FGR

11q12-q23 36-78 CCND1, EMS1, PRAD1

12q13 18-77 MDM2, GLI, SAS, CDK4, TIP120A

17q21 73 ERBB2

6p22 60 E2F3, CDKAL1, SOX4, ID4

8q21.3-q22 54 ?

8q24 45 MYC

7p 45 EGFR

20q  40 AIB1, BTAK, NABC1, ZNF217, BCAS4

Data from comparative genomic hybridization studies (CGH) have lead to the

identification of many chromosome region losses and gains in human bladder cancers

(table 2). The non-random losses and gains of chromosomal DNA during

tumourigenesis have been generally interpreted to signify the contribution of

inactivation and activation of ‘cancer genes’ to tumourigenesis. Losses are most likely

to be involved in the inactivation of tumour suppressor genes, whereas gains may be a

means to activate oncogenes.

Since the majority of non-random losses and gains have been known for years, many

relevant cancer genes are already identified. The list of prominent examples is long:

loss of p53 (at 17q13), Rb (at 13q14), and PTEN (at 10q22), or alternatively

amplification of Her2/Neu (at 17q21), CCND1 (at 11q13), and EGFR (at 7p12).

However, critical gene(s) for some chromosome regions remain(s) unknown, including:

4q, 9p, 1p36, 20q and 6p22. According to current data, 6p22 represents the 2nd most

frequently amplified chromosome region in human bladder cancer (as depicted in

Figure 8).

Table 2:  Most frequent genetic alterations in bladder cancer (by CGH; FISH). Source: Reznikoff et al., 2000;
Terracciano et al., 1999 Hurst et al., 2004, Zaharieva et al., 2003; Simon et al., 2003, Simon et al.,
2002; Simon et al., 2001; Oeggerli et al., 2004; Genome Database 2005.
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1.4.1 DNA amplification

Gene amplifications occur in variety of organisms ranging from bacteria to mammals. It

can be a naturally regulated mechanism (ribosomal DNA amplification in amphibian

oocytes) but it can be also an aberrant process that occurs uncontrolled in genetically

unstable cells. In the recent years, DNA sequence amplification has been intensively

investigated in connection with drug resistance and tumourigenesis in mammalian

cells (26). The first observation of DNA amplification was the identification of distinct

chromosomal structures termed homogeneously staining regions (HSRs) and double

minute chromosomes (DMs) in the cytogenetic analyses of a drug resistant cell line.

(27). Further accumulation of evidence suggested that, while HSRs are often found in

human tumour cell lines in culture, the prevalent manifestation of amplification in

human tumour cells is in the form of DMs (26). The hallmarks of most aberrant

amplification phenomena is that the amplified DNA sequences (amplicons) are

arranged end to end in tandem arrays either in chromosomes (HSRs) or in

exrachromosomal elements (DMs). It was suggested that amplicons could have

complex patterns due to co-amplification of non-contiguous parts. Such a

discontinuity indicates that numerous rearrangements take place during evolution of

the amplicon (28). Additionally, an amplicon from a given locus can be extremely

variable in size and position, both among different cell lines and of the same species

and within the same cell line. Another interesting fact is that the copy number of

Figure 8: The genomic region 6p22 is frequently amplified in human bladder cancer. Amplification hot-spots
determined by fluorescence in situ hybridisation are displayed above. Source: Simon et al., 2001,
2002 and 2003, Oeggerli et al., 2004.
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amplified sequences is not uniform across the entire amplicon. This suggests that only

a part of the original amplified unit is amplified in subsequent steps. The corollary of

amplicon heterogeneity is that amplicon endpoints apparently do not represent hot

spots for the recombination events that join the amplicons together. In tumours the

level of amplification may vary from few to more than 1000 copies but more than 50-

fold amplification in primary tumours is rare. The size of the amplified DNA segment

varies considerably from approximately 50 kb to 50 Mb suggesting the existence of

micro amplicons that can not be detected by comparative genomic hybridization

(CGH) due to the limited resolution and dynamic range of this technique (26).

The mechanism of gene amplification in human cancer cells is still unknown, but

several different models have been proposed. The basic starting point by all proposed

models is the fact that a cell starts out with two copy loci and ends up with more than

two after the first step, so appearance of this extra DNA is a subject that needs to be

explained. The outlined models invoke either over-replication, disjunction or some

combination of these processes.

Bridge-breakage-fusion model. The initial event is chromosomal breakage followed

by fusion of the broken pieces and formation of dicentric sister chromatides. This

model explains the presence of amplicons with different sizes and molecular

configurations. Recently breakage events at chromosomal fragile sites have been seen

to be involved in DNA amplification (29).

The episome-excision model. Extrachromosomal amplification may be generated by

the formation of small circular acentric molecules that can multimerize to form DMs

(29).

Unequal exchange model. Multiple gene copies are generated by recombination

events between homologous and non-homologous DNA sequences on two misaligned

chromosomes or chromatides (30).

1.4.2 Oncogenes activated – tumour suppressor genes inactivated

Oncogenes are defined as a gene, whose activation allows uncontrolled growth and

causes normal cells to become cancerous. As a logical consequence, oncogenes are

found amplified and overexpressed in many types of cancers, including tumours of the

urinary bladder. Oncogenes that are frequently found amplified in bladder cancer have

been suggested to be involved in pathogenesis of the disease. Gene amplification is

the most common mechanism for their activation rather than translocation or mutation.
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Many of these suspected genes encode for growth factor receptors or factors involved

in gene transcription or cell cycle regulation.

One potential prognostic marker for bladder tumour progression is the epidermal

growth factor receptor, encoded by the gene ErbB1 (synonym EGFR) located at 7p13.

EGFR is activated by binding of ligands, epidermal growth factor (EGF), (31) and

transforming growth factor alpha (TGF-alpha) to its external domain (32). This

activation results in autophosphorylation of Egfr protein by the cytoplasmatic portion

of Egfr and subsequently leads to cellular proliferation, transformation and cell division.

Immunohistochemistry studies have shown a significant correlation between EGFR

expression, grade and stage, as well as association with tumour cell proliferation and

progression. EGFR gene amplifications were found in 10-20% of Egfr overexpressing

bladder carcinomas. (33)

The HER-2/Neu oncogene, located at the chromosome 17q21 encodes a

transmembrane glycoprotein that is closely related to the epidermal growth factor

receptor (EGFR). Overexpression of the HER-2 protein is a frequent event and has

prognostic value in a variety of human tumours (34) HER-2 has been found amplified

and overexpressed in high grade and stage TCCs (35).

Furthermore, several studies have reported that HER-2 expression in patients with

bladder cancer is associated with increased incidence of metastasis (36) and

decreased overall survival (37). Although these studies suggest a prognostic value of

HER-2 expression, others have reported conflicting results, concluding that evaluation

of Her-2 provides no additional prognostic value over previously established predictors

(stage and grade) for transitional cell carcinoma of the bladder (38).

The MDM2 proto-oncogene (murine double minutes) product acts as a major regulator

of the tumour suppressor p53 by promoting its degradation (39). MDM2 was mapped

to the 12q14.3-q15 chromosomal region by FISH distal to CDK4 gene. Amplification of

MDM2 gene is sporadically reported in bladder cancer (40). Another gene candidate,

CDK4 resides at the same genomic region and is recurrently amplified in bladder

cancer (41). Its role in the cell cycle at the G1-S checkpoint is well documented.

Regulation of CDK4 is controlled by CDKN2A (p16INK4A) another key regulator in

bladder cancer biology. The 12q13-15 amplicon contains potential target genes

involved in cell cycle regulation and comprehensive study of this amplicon detected

co-amplification of MDM2 and CDK4 in (10.6%) of analyzed tumour samples.

Immunohistochemistry revealed conflicting results linking MDM2 expression to high, or
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to low grade and stage tumours (42).

11q13 represents another region that is extremely often amplified in bladder cancer. It

harbours the gene CCND1 (Cyclin D1) which is involved in the regulation of G1/S

phase transition of the cell cycle (43). Several studies have indicated that CCND1

overexpression occurs in urinary bladder cancer and that its expression is associated

with low grade, low stage, and papillary tumour growth (44). However, the gene

revealed no prognostic significance for increased CCND1 overexpression in superficial

urinary bladder cancer (45).

The MYC gene, mapped to chromosome 8q24, encodes a nuclear phosphoprotein

involved in transcription regulation. Its normal function has been linked to growth

regulation, cell differentiation, and apoptosis (46). The few studies characterizing MYC

protein expression in bladder cancer have yielded controversial results, showing

protein overexpression associated with low stage tumours (47), as well as with high

grade tumours (48). A study using FISH and immunohistochemistry suggested that c-

MYC protein overexpression is associated with low grade and early stage of bladder

cancer and that MYC gene copy number gain is more frequent in advanced tumours.

A common mechanism for activation of MYC family genes is chromosomal

translocation. A recent report describes similar findings, regarding MYC mRNA (49).

However, a significant correlation was found between the methylation pattern and

mRNA overexpression of the MYC oncogene in bladder tumours (50). Therefore it

appears that mechanisms other than amplification may as well cause MYC protein

overexpression in bladder cancer.

The H-RAS gene is an oncogene thought to be involved in the development and

progression of bladder cancer (51). Mutation analyses of the RAS gene family have

demonstrated alterations in codon 12, 13 and 61 of the H-RAS gene (52). H-RAS

belongs to a family of plasma membrane associated signal transduction molecules.

Activated H-RAS interacts with a large series of downstream signal molecules with

multiple functions including the stimulation of proliferation.

Alternatively to increased activation or overexpression of growth factor receptors,

tumour growth could also benefit from inappropriate ligand concentrations. Thus,

ligands also possess oncogenic potential (e.g. TGF-alpha, PDGF, EGF). However, the

ultimate target of the oncogenes is to achieve activation of transcription factors such

as c-myc or E2F3. The more direct activation circumvents the complexity and

feedback controls which exist in upstream signal transduction pathways. Evidence for
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this theory comes from c-myc, a transcription factor whose expression is tightly

regulated in normal cells and is only expressed in S-phase of the cell cycle. The

chromosomal region harbouring c-myc (8q24) is frequently amplified in a large number

of bladder cancers. Additionally, the gene is overexpressed throughout the cell cycle in

a large number of human tumour types, driving the cells continuously towards

proliferation. If the tumour suppressor genes that normally restrict this action by

initiating apoptosis are mutated themselves, inappropriate proliferation occurs.

Genes whose inactivation plays a role in oncogenesis have been termed tumour

suppressor genes. Whereas in oncogenes, mutation of a single allele is sufficient to

induce the oncogenic function because of the dominant nature of the activation step,

both alleles must be inactivated in tumour suppressor genes. Loss of only one allele of

a suppressor gene is generally silent and allows germ-line inheritance of the damaged

allele. Familial inheritance of mutated tumour suppressor genes can lead to cancer-

prone individuals. The study of such inheritance patterns has allowed significant

breakthroughs in the identification of responsible genes.

In particular, loss of 3 tumour suppressor genes by deletion, mutation, and/or

methylation-inactivation seems to be of unquestionable importance in developing

bladder cancer cells: Rb at 13q14 is altered in 30% TCCs, cyclin dependent kinase

inhibitor gene (CDKN2A/p16) at 9p21 is altered in 20-60% TCCs and in 70% SCCs

and p53 at 17q13 is altered in 50-60% TCCs and SCCs.

Last but not least, inactivation of DNA repair genes leads to increased genetic

instability and mutation rates. Defects in DNA repair systems such as, nucleotide-

excision repairs and mismatch repair have been well documented in cancer (53).

1.5 How can evolutionary theory contribute to understanding cancer?

Just as Darwinian evolution depends on random mutations leading to genetically

different individuals, it now seems clear that random mutations of the genes, which

regulate proliferation or control apoptosis are responsible for cancer. To take the

analogy further, just as natural selection allows the survival of the fittest individual, in

the case of carcinogenesis it will instead select the fastest growing cells, if they

manage to overcome a few limiting processes. The transformation that allows a normal

cell to become a malignant one is now widely accepted to be a stepwise process and

does normally require between 40 to 80 years (16). Cancer is typically recognized as a

disease of the elderly. According to the concepts of Darwinian evolutionary theory,
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natural selection must be expected to enhance adaptedness to prolonged life. Thus, at

first sight, it might seem puzzling why better mechanisms to avoid deleterious

mutations did not evolve. However, as one can easily imagine, it is almost impossible

to construct and operate a highly complex replicational process that functions 100%

error-free. Additionally, such a ‘perfect’ system would also fail due to basic theoretical

principles of Darwinian evolution (no more variation among individuals; stop of

evolutionary processes; extinction of species).

To completely understand incidence and mortality rates and the disease ‘cancer’ as a

whole, it is important to consider the mechanisms causing the decline with age –often

described as ‘senescence’. This chapter, therefore, is devoted to describe the theories

that have been proposed to explain cancer and the evolution of senescence.

1.5.1 Brief introduction to the theory of senescence

So far, our focus has been on the developing cancer cell, on the genetic events and

the deficiencies in DNA repair and genomic stability, which drive the process. But this

focus provides only part of the picture. It is likely that genetic variation at other sites,

within and outside the cancer cell, may substantially affect cancer development.

Darwinian investigations of the evolution of senescence start from the observation

that, in nature, most animals die before they reach old age. As a consequence, genetic

mutations that have their effects on adaptation late in life are selected against only

weakly, in comparison with mutations affecting fitness early in life.

Imagine a mutation that increases survival or fecundity early in life, at the expense of

reducing adaptedness late in life. Such a mutation would be favoured by natural

selection. There are many reasons why such trade-offs between success early and late

in life are to be expected. Experimental evidence demonstrates that trade-offs do not

only exist in theory, but also in reality: e.g. in Drosophila almost any environmental

treatment (including 5000 rad of X-rays) that reduces the rate at which a female lays

eggs prolongs her life. On the other hand side, artificial selection for increased

longevity reduces early fecundity (54). There are currently three reasonable

explanations for the seemingly high incidence and mortality of cancer, without being

necessarily exclusive:
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1.5.2 Influence of stochastic processes

Many different stochastic processes, eventually leading to senescence, are suspected

to play a role in formation and progression of cancers: e.g. changes in the nuclear

genome, erroneous transcription and translation and oxidative damage. The trade-off

model predicts, that even if all these processes could be eliminated (by more accurate

replication and translation, or more effective removal of oxidizing agents) a trade-off

would exist, and energy employed to protection would not be available for

reproduction, if maintenance mechanisms are costly. And it is obvious that such costs

must exist.

1.5.3 Influence of mutant-genes

It is well documented that mutant genes exist in populations (55). Each is likely to be

at low frequency, maintained by a balance between mutation generating new mutant

alleles, and selection from time to time eliminating them. The selection against a gene

whose effects on fitness are late in life will be relatively weak, and its frequency in the

population correspondingly high, even if it has no counterbalancing beneficial effects

early in life. Thus we expect late-acting deleterious alleles to accumulate, and

eventually to cause cancer. After all, genome instability is playing a fundamental role

also for the long-term survival of existent species. The evolution of the human race

would have been much slower if it had only involved genetically stable individuals.

From the individual’s point of view, however, it would be advantageous to have

maximal genetic stability.

1.5.4 Influence of the environment

It is often stated that humans are not fully adapted in many ways to current lifestyles

and to such a long life expectancy as normally experienced in modern human

populations (56). Lack of adaption is generally made responsible e.g. for woman’s

reproductive cancers. Typical members of our modern society experience earlier

menarche, late first birth, less nursing, lower parity, and later menopause (57). The net

effect is to increase the exposure of reproductive tissues to oestrogenic hormones,

which in turn increases cell proliferation (e.g. breast duct cell turnover rates are up to

20 times higher between menarche and first birth than after the first full-term
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pregnancy). Cells that are dividing frequently are more likely to develop clinical

malignancy. Information about women’s cancer rates in foraging societies is unknown,

but it may well be that women in modern societies have a risk that is from 10- to 100-

fold greater. Nevertheless we know, that menarche delay, early pseudo-pregnancy,

and oestrogen-lowering oral contraception are reducing the risk of reproductive

cancers, perhaps by recreating an ancestral hormonal milieu (25). It has been

suggested that modern lifestyles may also increase the risk for bladder cancer (58).

Recently found risk factors for bladder cancer include compounds present in hair

lotions (arylamine), painkillers (phenacetine, chlornaphazine and cyclophosphamide,

formerly added to Aspirin® and Paracetamol®) as well as drugs momentarily utilized for

chemotherapy and arsenic drinking water. Last but not least, smoking remains to be

the highest risk factor. Cigarette consumption probably accounts for almost half of all

bladder cancer induced deaths in the USA (48% for men; 28% for woman; according

to US National Cancer Institute). Some of the cancer-causing chemicals in tobacco

smoke are absorbed from the lungs and get into the blood. From the blood, they are

filtered by the kidneys and concentrated in the urine. Since the urine is stored in the

bladder, carcinogens can cause irreparable damage to the urothelial cells that line the

inside of the bladder. This damage increases the chance of developing cancer. Risk is

reduced with cessation of smoking, but a relatively small decrease in incidence is seen

for the first 5 to 7 years after cessation. Even after 10 years, the risk of an individual

developing bladder cancer is still almost twice that of an individual who has never

smoked. Among the chemicals implicated in smoking-induced bladder cancer are

aminobiphenyl. It is, like many other chemicals, only becoming an effective carcinogen

after being metabolized by detoxifying enzymes. As a conclusion, there are several

harmful agents increasing the risk of bladder cancer. Sadly, the majority are explicitly

accumulated by modern lifestyles.

1.6 Finding cancer-critical genes

Finding critical genes for mutant phenotypes is already quite difficult, but for cancer

the task is particularly complex because a typical tumour possesses a whole set of

mutations. Moreover, due to the genomic instability of cancer cells, it is a challenge to

detect those genetic, chromosomal, and transcriptional changes that are fundamental

to the malignant process versus those that represent secondary or epigenetic

aberrations (1). In general, detecting the latter might be valuable for prognostic

purposes, while identification of the former are useful to develop preventive strategies.

However, awareness of both is essential to develop effective therapeutic approaches.
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Many cancer relevant genes are already identified -but at the same time it is clear that

many more will follow. A few specialised methods are preferentially utilized for their

detection. In the case of dominantly acting oncogenes, successful identification can be

achieved by a cell transformation assay. This method starts by scanning the genome

of the cancer cell for fragments of DNA that will, when introduced into cells of a

suitable tester cell line, drive them toward cancerous behaviour. Therefore, DNA must

be extracted from tumour cells, broken into fragments, and introduced into the host

cell line in culture. If any of these segments contains an oncogene, small colonies of

abnormally proliferating transformed cells may begin to appear. The formerly

introduced fragment must then be isolated and sequenced to see if a gene is mutated.

The Ras gene, which is probably mutated in one out of four human tumours, was

identified using this strategy.

As it was the case for the retinoblastoma tumour suppressor, a method to find cancer-

relevant genes is to analyse the inheritance pattern of a cancerous disease (59).

Retinoblastoma is a childhood cancer that accounts for approximately 1% of cancer

deaths in children. 40% of all cases are inherited. Affected individuals often develop

the disease shortly after birth. Additionally, there is a high probability of the second eye

becoming involved within 4 years and/or the development of other malignancies.  In

contrast, most of the sporadic cases have only a low incidence of involvement of the

second eye and there is no enhanced risk for other malignancies. This pattern

convinced Knudson to hypothesize a two-hit theory of carcinogenesis. Subsequent

family studies and analysis of patients with inborn chromosome abnormalities, lead to

the detection of the 13q14 genomic region (60). Using the known location of the

chromosomal deletion associated with the disease, it was possible to clone and

sequence the gene whose loss appears to be critical for the development of the

cancer –the retinoblastoma (Rb). Following its detection, the gene turned out to be

also missing in many other common types of cancer, indicating that loss of Rb is a

major step in the tumourigenesis (see figure 9).

Another method -loss of heterozygosity analysis (LOH) -has largely helped to identify

the localization of many tumour suppressors. Known and candidate genes identified

by LOH include CDKN2A, DBC1 and TSC1 on chromosome 9, PTEN on 10q22, Rb on

13q14 and p53 on 17q13 (61).

Following the years of Rb-detection, however, Knudson’s theory received additional

support from comparative genomic hybridization (CGH) studies, which is a good
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technique to detect large chromosomal abnormalities (62). Gene amplification is a

common mechanism for upregulation of oncogenes. Yet, more than 30 different loci

have been identified that harbour DNA amplifications (63-65). Furthermore, CGH

enabled the identification of many regions that contain known or candidate oncogenes

(see table 2), including: cyclin D1 (CCND1) at 11q13 (66), ERBB2 at 17 q21 (67) and

MDM2 and CDK4 at 12q14-q15 (41).

Introduced in the late 1980’s, Fluorescence in situ hybridisation (FISH) is now often

used to detect or confirm gene or chromosome abnormalities, alternatively. Utilizing

fluorescence labelled DNA probes has the advantage that even relatively small

amplifications beyond the resolution of routine cytogenetics are visible (68).

Last but not least, telomerase activity is present in most human malignant tumours,

whereas it is generally not detectable, in normal cells. Therefore, it represents an

alternative tool for tumour detection that is non-invasive. Telomerase activity can

usually be measured by using a telomeric repeat amplification protocol (TRAP) assay

(69).

Despite nowadays a broad range of different methods is available to find cancer

genes, corresponding target genes remain unknown for the majority of amplicons,

Figure 9: Deregulation of Rb is a common event in tumourigenesis. Rb affects many important cellular
mechanisms. Alterations in cell-cycle regulatory genes that encode proteins that participate in the
regulation of Rb function are also commonly observed in a broad spectrum of tumour type. (acc. to
Classon & Harlow, Nature 2002; modified) .
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such as for 1q21-31, 2q13, 3p22-24, 6p22, 8p11, 8q21, 9p21, 10p13-14, 13q13,

13q31-33, 18p11, 20q, 21p11, 22q11-13, Xp11-13 and Xq21-22.2 (64, 65, 70, 71).

1.6.1 Chromosomal region 6p22

Chromosome 6 constitutes about 6% of the human genome. The finished sequence

comprises 166,880,988 base pairs, representing the largest chromosome. The entire

sequence has been subject to high-quality manual annotation, resulting in the

identification of 1,557 genes and 633 pseudogenes. At least 96% of the protein-

coding genes have been identified, as assessed by multi-species comparative

sequence analysis, providing evidence for the presence of further, otherwise

unsupported exons/genes. According to the chromosome 6-research database

(www.sanger.ac.uk), some of the uncharacterized genes might be implicated in

cancer, schizophrenia, autoimmunity and many other diseases. In addition,

chromosome 6 presumably harbours the largest transfer RNA gene cluster in the

genome. Furthermore, the essential immune loci of the major histocompatibility

complex (MHC), HLA-B, was found to be the most polymorphic gene on chromosome

6 and in the human genome.

Amplification of the chromosomal region 6p22 occurs in roughly 10-20% of bladder

cancers, making 6p22 one of the most common sites of high-level amplification in this

tumour type (70, 72-76). Based on our previous comparative genomic hybridization

(CGH) data of more than 300 bladder carcinomas, amplification of 6p22 was present in

10 of 172 advanced-stage tumours of our patients (70, 77). Additionally, presence of

6p22-amplification correlates with the tumour grade (70, 78) and is therefore

respected as clinically relevant.

1.6.2 Potential target genes of 6p22.3

It has been predicted that 6p22 must harbour one or more oncogene(s) that drive the

amplification (72, 76, 77). In order to define the borders of the amplification unit, the

6p22 region was FISH-mapped in our lab prior to this study (73). Results narrowed

down the minimal commonly amplified region to a 1.7 Mb interval (see Figure 10). The

recently completed sequencing of the entire human genome now additionally allows

direct information on genes that reside in the 6p22.3-core of the amplicon. According

to this, the region of interest includes presumably 13 genes: Q9H1N9, PRL, SOX-4,
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NM_017774 (=CDKAL1), E2F3, OACT1, ID-4, TFAP2, HMGIY, CCND3, IRF4, HOX12,

and PIM1.

Prior to this work, a couple of genes were excluded as presumptive candidate

oncogenes: SOX-4 and Q9H1N9 showed relatively weak expression, unrelated to

6p22.3 amplification (74). And expression of PRL was to be found even completely

absent in bladder tissues (76).

In contrast, expression patterns of some other candidate target genes, suggests an

involvement in 6p22.3-amplification. E2F3 was detected to be strongly amplified and

overexpressed in a high percentage of human bladder cancers (74, 76), as well as in

some prostate cancers (79). However, in one report overexpression data favours

NM_017774 (=CDKAL1) over E2F3 as responsible target gene (74). As a consequence,

the presumptive 6p22.3 oncogene remains to be conclusively identified. It is not

impossible, however, that 6p22.3 is driven by more than one oncogene, as it was

already demonstrated, e.g. for MDM2 and CDK4 at 12q13-15 (41, 80): among the

Figure 10: The core region of
6p22 spans approximately 1.7
Mb, and includes at least 5
confirmed genes, as well as
several predicted transcripts.
To assess the individual
impact of these on 6p22.3
amplification, the signal
intensity of 71 BAC/PAC
clones, covering the 6p22.3
amplicon, were tested by
fluorescence in situ
hybridisation (FISH). E2F3 and
NM_017774 showed highest
amplification levels. According
to Tomovska 2002, Oeggerli et
al., 2005.
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questionable genes at 6p22.3, E2F3 and NM_017774 showed highest amplification

levels (see figure 10).

1.7 CDKAL1 (=NM_017774): a gene with unknown function

The term ‘CDKAL1’, fully ‘Cyclin dependent kinase 5 regulatory subunit associated

protein1-like 1’, suggests a reasonable amount of similarity to the ‘CDK5 regulatory

subunit associated protein1’ (CDK5RAP1). According to ‘NCBI Entrez Nucleotide’

search engine, the protein encoded by the mRNA sequence of NM_017774 owns

specific regions known to have either ‘iron ion binding capacity’ or ‘catalytic activity’,

respectively. Other functional domains are not yet known. About the actual function of

the protein nothing is known.

mRNANM_017774: ………2642 bp

                       .…...…17 exons

protein NM_017774: ……….579 aa

                        …..……65 kDa

1.8 Transcriptionfactor E2F3 (=NM_001949)

E2F3 is a transcriptionfactor that binds DNA cooperatively with its associated subunit

(DP) through the E2 recognition site, 5'-TTTCGCGC- 3' found in the promoter region of

a number of genes whose products are involved in cell cycle regulation or in DNA

replication. E2F3 belongs to a family of cell cycle regulatory transcription factors

(E2F’s; depicted in figure 11) that are controlled by the retinoblastoma tumour

suppressors (page 30).

E2F’s are also targets of the transforming proteins of small DNA tumour viruses. The

origin of the name goes back to 1987, when a promoter-specific factor was discovered

that was regulated by an inducible promoter of the adenoviral early region 1A (=E1A)

that is stimulating five viral promoters during the early phase of the viral infection (53),

in order to direct host cells towards S-phase of the cell cycle. The newly found factor

was termed Early 2 Factor (=E2F) (81, 82). After the discoveries of several other E2F-

family members the complex picture of a functionally heterogeneous gene family

became apparent (5, 83): E2F1, E2F2 and E2F3 act as promoters of the G1/S-Phase

induction, E2F4, E2F5 and E2F6 are generally regarded either as weak transcriptional

activators or as transcriptional repressors.



INTRODUCTION

28

E2F proteins contain several evolutionarily conserved domains. These include a DNA

binding domain, a dimerization domain, which determines interaction with the

differentiation regulated transcription factor proteins (DP), a ‘transactivation’ domain

enriched in acidic amino acids, and a pocket protein-binding domain. E2F3, along with

two other family members (E2F1 and E2F2), have an additional cyclin A binding

domain (84), enabling tight control over the expression of these genes during the cell-

cycle (5).

mRNAE2F3: ………4744 bp

                 …..……7 exons

protein E2F3: ……….465 aa

                  ….……58 kDa

In the mouse (M. musculus), two different variants of E2f3 were found (4, 85). Complex

transcriptional regulatory mechanisms control the expression of the E2f3a/b locus (5).

The more recently detected E2f3b is missing 101 N-terminal amino acids relative to

E2f3a (or full-length E2f3). Absence of the N-terminal region in mouse E2f3b leads to a

constant expression of the gene throughout the cell cycle (similar to E2F4 and E2F5).

In contrast, E2f3a is only expressed at the G1/S-phase. Both splice variants share the

same nuclear localization sequence and the potency to bind Rb (see figure 12). This

suggests that mouse E2f3a and E2f3b have opposing roles in cell cycle control (85).

However, the existence of distinct splice variants has not yet been reported for human

E2F3.

Figure 11: The mammalian genome encodes at least six different E2F transcriptionfactor-proteins, termed
E2F1-6. In the mouse (M. musculus) the E2F-family can be subdivided according to individual
transcription properties and interaction with different pocket-binding proteins. E2F1-E2F3a are
potent transcriptional activators and are inactivated by Rb. E2F3b-E2F5 are relatively weak
transcriptional activators that are inactivated by p107 and p130 (although E2F4 will interact with all
three pocket proteins). E2F6 acts as a transcriptional repressor but does perhaps not associate
with pocket-binding proteins (acc. to Classon & Harlow, Nature 2002; modified).
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Figure 12: In the mouse (M. musculus) two structurally very similar but functionally distinct E2F3 homologs
are reported. E2f3b differs structurally from E2f3a by the absence of a short DNA sequence in the
5’-flanking region of the gene, which is assumed to function as a cyclin A binding site (3-5). This
difference is said to originate from distinct transcriptional start sites (5), rather than from alternative
splicing. According to Hu & Cress 2000 and 2002, Leone et al., 2000a, Leone et al., 2000b, Adams
et al., 2000, Dimova & Dyson 2005.

E2F-family
members:
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BOX1: Role of Rb and E2F’s

The synthesis of DNA is a tightly controlled, highly coordinated process. Delays in progression

through S-phase as a consequence of DNA damage or insufficient availability of protein or DNA

precursors frequently result in cell death, chromosomal abnormalities or mutations. It is not

surprising that many mutations in tumour cells are found in genes that are directly involved in cell

cycle regulation. To prevent premature entry into the division cycle, mammalian cells have

developed elaborate control mechanisms to delay cell cycle progression if DNA damage has has

been detected, in order to provide necessary time for the cell to repair. The most significant

restriction point occurs in late G1, approximately 4 hours prior to the cell’s entry into S-phase. It

represents the final checkpoint after which the cell is irreversibly programmed to begin DNA

synthesis. This in turn suggests, that the most dangerous DNA alterations occur in cells damaged

in late G1 and early S-phase after the restriction point has been passed.

In healthy cells cyclin D is synthesized as a response to mitogen stimulation. Free cyclin D binds

to cyclin dependent kinases CDK4 and CDK6. Activated cyclin D/CDK-complexes inactivate Rb

by multiple phosphorylations at its C-terminal (see figure 13). Inactivation of Rb liberates

transcription factors of the E2F-family, which activate genes that are directly involved in G1/S-

transition and DNA-replication. In late G1- and during S-, G2-, and M-phase other cyclin/CDK-

complexes are formed to maintain the phosphorylated state of Rb unless cytokinesis is

completed. If a cell suffers from DNA damage, p53 -the ‘guardian of the genome’ –induces

expression of a series of CDK-inhibitors, including p21, to block Rb phosphorylation by

cyclin/CDK-complexes. Under normal circumstances, this cell-cycle arrest is not released before

the cell has successfully repaired all damaged DNA-sequences. If this cannot be achieved, p53

will induce apoptosis.

Figure 13:
G1/S-phase induction is
mediated via transcription
factors of the E2F-family.
Hypophosphorylated Rb is
believed to bind E2F’s and
their associated DP-subunits,
inducing recruitment of
chromatin remodelling
complexes to the promoter
regions. Phosphorylation of Rb
by CDK4/cyclin D and
CDK2/cyclin E inactivates Rb
and induces the protein to
dissociate from E2F/DP-
silencing-complexes. This
results in activation of E2F-
responsive target genes: e.g.
cyclin A, -E, -D, DNA
polymerase, thymidin kinase,
and cdc6.
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1.9 Aim of the present study

Bladder cancer contributes significantly to the overall human cancer burden. While

over 300’000 individuals are confronted with this disease every year, more than

130’000 patients die annually due to the consequences. Gene amplifications that are

frequently detected in malignant tumours, are believed to harbour oncogenes, driving

the amplifications.

Previous studies have shown that 6p22 is one of the most frequently amplified regions

in urinary bladder cancer. In 2000 Cancer Research reported the successful

delineation of the chromosome 6p-amplicon, giving rise to intensive investigations

aimed at the identification of the responsible oncogene (72). During the following

years, several genes could be excluded from further analysis due to low-level or

absent expression in 6p22-amplified bladder cancer cell lines. These findings make it

unlikely that such genes have an oncogenic role in bladder cancer. In contrast, certain

genes earned increasing attention, but it was impossible to conclusively identify the

responsible target gene, yet. However, most experts would agree that two relevant

genes remain as most likely candidates, the transcriptionfactor E2F3 and a gene of

unknown function (NM_017774).

This study was designed to identify the gene (or the genes) at 6p22.3 that is/are

responsible for frequent amplification of the genomic region in human bladder cancer.

The specific aims included:

 Determination of the amplification frequency of NM_017774 by FISH analysis, by

utilizing the same bladder cancer TMA as previously used for E2F3 (includes 2317

bladder tumour samples).

 Evaluation of possible associations between NM_017774 with invasive and high-

grade tumour phenotype, and patient prognosis.

 Comparison of E2F3 and NM_017774 amplification frequencies, in order to detect

particular tumours that amplify only one gene. Such tumours should be subject to

more detailed studies performed by Large-Section FISH, resulting in a precise

case-by-case evaluation.

 Quantification and comparison of gene expression levels for E2F3 and NM_017774

in bladder cancer cell lines with and without amplification of 6p22.3.
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 Establishment of functional approach in order to determine if E2F3 or NM_017774

is the main amplification target, or if both genes might contribute jointly to the

aggressive features of 6p22.3 amplified bladder tumours. This analysis might

provide also supplementary information pointing at a presumptive function of

NM_017774.

This work is intended to advance our knowledge of the genes and mechanisms

involved in human bladder cancer development. Thereby the results of this thesis will

hopefully contribute to design better diagnostic and therapeutic procedures to finally

reduce mortality rates of the disease in the future.
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2 MATERIALS & METHODS

2.1 Tissue collection studied

Three pre-existing TMAs were utilized in this study. The first one is a bladder cancer

prognosis array composed of 2317 formalin-fixed paraffin embedded tissues (see

Figure 14), which was described in detail including histological and clinical data (75).

The second is a Multi Tumour Array (MTA) composed of 4788 tissue samples including

3670 primary tumours from 128 different tumour categories. The tissue samples were

derived from the following organs or anatomical sites: fetus and placenta, brain, salivary

glands, oral cavity, esophagus, stomach, small intestine, colon, appendix, anus,

gallbladder, pancreas, liver, larynx, lung, kidney, urinary bladder, prostate, testis, ovary,

uterus, vagina and vulva, mammary gland, adrenal gland, thyroid gland, parathyroid

gland, thymus, nodal and lymphatic tissue, skin, and soft tissue (86). The third TMA,

used in this study, was a cell line TMA containing 18 bladder cell lines which has also

been described in detail before (41). All slides of all tumours were reviewed by one

pathologist (GS). Tumour stage and grade were defined according to UICC and WHO

(87, 88).

2.2 Fluorescence in situ hybridization (FISH)

FISH analysis of the cell line TMA and the bladder cancer TMA was performed with

digoxigenated BAC (NM_017774: BAC RP3444C7, RZPD, Berlin, Germany) and PAC

(E2F3: PAC dJ177P22, Sanger Centre, UK) probes containing the target genes and a

Spectrum Red-labeled chromosome 6 centromeric probe (CEP6) as a reference (Vysis,

Downers Grove, IL). Hybridization and posthybridization washes were according to the

‘LSI procedure’ (Vysis). Amplification was defined as presence (in ≥ 5% of tumour

cells) of at least 3 times as many target gene specific signals than centromere 6

signals.

For the MTA, two different digoxigenated BAC probes were used, spanning the

predicted genomic localizations for E2F3 and NM_017774 (RP3498I24; RP3348I23;

RZPD, Berlin, Germany). To accelerate analysis, FISH signals were not scored in a

cell-by-cell manner but estimated for each tissue spot by an experienced technician

(HN).
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2.3 Cell lines and culturing conditions

Cell lines were obtained from American Type Culture Collection (ATCC, Manassas, VA)

and grown under standard cell culturing conditions in Optimem cell culture medium

(Invitrogen, Carlsbad, CA), supplemented with 1% penicillin/streptomycin (Amimed,

Basel, Switzerland) and 10% FCS  (Amimed) at 37° C/ 5% CO2. Trypsin-EDTA

(Amimed) was used as a transferring reagent. The following cell lines were utilized in

our experiments: HTB-1 (J82), HTB-2 (RT4), HTB-3 (SCaBER), HTB-4 (T24), HTB-5

(TCC SUP), HTB-9 (5637), CRL-1472 (HT-1376), CRL-2169 (SW 780), CRL-7588 (Hs

853.T), CRL-7882 (Hs 769.T), CRL-7930, RT-112, RT-112 D21, HB-CLS-1, HB-CLS-

439, EJ28, BFTC-905 and Ku-1919.

2.4 Northern Blot

Poly-A+ RNA was isolated from an equal amount of total RNA utilizing Qiagen (Hilden,

Germany) Oligotex purification kit. 2 µg poly-A+ RNA of each sample was processed

for Northern blot analysis as described by (72). The house-keeping gene G3PDH was

utilized as a control. Table 3 shows an overview of the hybridisation probes used.

Figure 14: Bladder cancer TMA. Overview of the 5 array blocks, containing 2317 samples. A single tissue-
spot, measuring 0.6mm in diameter, is shown at higher magnification. Pictures are courtesy of
Prof. Dr. Guido Sauter.
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CDKAL1 (NM_017774) Primer sequences Method Probe Probe

Gene size = 2642 bp; 17 exons   Size (bp) localization

Primer_F1 5'-CAGGACTACCTTAAGGGACTGA-3' N-Blot   

Primer_R1 5'-TTTCCATGAGTACGCTGTCG-3' N-Blot 562 spans exon 6-11

Primer_F2 5'-TATGCCTTCTGCATCCTGTG-3' real-time PCR   

Primer_R2 5'-AACCCCATGTTCGTATCCAA-3' real-time PCR 218 spans exon 2-3

siRNA_1 5'-CAGCAGATAGATCGTGTGGTA-3' real-time PCR - inside exon 7

siRNA_2 5'-TGGAATTGGTATACTAAGCAA-3' real-time PCR - inside exon 17

E2F3 (NM_001949) Primer sequences Method Probe Probe

Gene size = 4744 bp; 7 exons   Size (bp) localization

Primer_F 5'-GATGGGGTCAGATGGAGAGA-3' real-time PCR   

Primer_R 5'-GAGACACCCTGGCATTGTTT-3' real-time PCR 211 inside exon 7

siRNA_1 5'-TTGCGTTACTTTAAGTACTAA-3' real-time PCR - inside exon 7

siRNA_2 5'-TTGGGAGTAGGCAAACTACTA-3' real-time PCR - inside exon 7

G3PDH (NM_002046) Primer sequences Method Probe Probe

Gene size = 1310 bp; 9 exons   Size (bp) localization

Primer_F 5'-GAAATCCCATCACCATCTTCC-3' N-Blot; real-time PCR   

Primer_R 5'-CAGAGATGATGACCCTTTTGG-3' N-Blot; real-time PCR 156 spans exon 4-6

2.5 RNA interference

RNA interference specific knock-down of target genes was achieved according to the

instructions of Dykxhoorn and colleagues (89). The localizations of siRNA-duplexes,

and corresponding primers for real-time PCR, are visualized in figure 15 (for precise

RNAi- and primer-sequences see additionally table 3). E2F3-specific- and

NM_017774-specific-, as well as unspecific RNAi (nonsense-RNAi; control) were

purchased from Qiagen. Lipofectamine and Oligofectamine (Invitrogen) were used as

transfection reagents according to the manufacturers protocols. Transfection

conditions including the number of cells plated and the cells : RNAi : lipid-carrier ratio

for efficient transfection were optimised for each cell line in separate experiments. 24h

prior to transfection cells were serum starved and then stimulated to re-enter the cell

Table 3: RNAi-duplexes and primer sequences used for gene expression analysis.
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cycle by the re-addition of serum. Cells were harvested at regular intervals to

determine the proliferation rate. At the same time RNA- and protein extractions were

performed as described below. Results were normalized against the nonsense-RNAi

control.

2.6 Growth curves

To monitor the effect of gene silencing on tumour cell proliferation, growth curves were

calculated from RNAi-treated and -untreated cell cultures. Replicate cultures were

grown in parallel allowing for repeated cell harvesting and counting in 24h intervals.

Cell counting was performed using a ‘Neubauer’ counting chamber. Standard counting

procedures were followed to determine cell quantity (90).

2.7 RNA extraction, cDNA synthesis and Quantitative real-time PCR

RNA isolation was carried out according to manufacturer’s specifications using DNase

I system in combination with the RNeasy kit (Qiagen, Hilden, Germany). RNA

concentration was determined with a spectrophotometer. For each cell line 250 ng

total RNA was used as starting material for cDNA synthesis combined with oligo-dT

(Roche, Basel, Switzerland) as primer. Real-time PCR was performed in duplicates in

20 µl reactions containing: 2 µl cDNA template (from 1:2 dilutions of cDNA synthesis

reaction), 10 µl FastStart SYBR® Green I PCR Master Mix (Roche), MgCl2 as well as

forward- and reverse primer mix (10 mM each). Thermal cycling conditions for the

Figure 15: Locations of RNAi-sequences and primers, as employed in RT-PCR analysis.
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LightCycler Instrument (Roche) were: one cycle at 95° C for 10 min at steps of 20°

C/sec (activation), 40 cycles at 95° C for 15 sec at 20° C/sec, 55° C for 10 sec at 20°

C/sec and 72° C for 10 sec at 5° C/sec (amplification) and one additional cycle at 95°

C for 1 sec at 20° C/sec, 65° C for 15 sec at 20° C/sec and 99° C for 1 sec at 0.05°

C/sec (melting). Relative levels of expression were determined using the 2-δδCT method

as described by (91).

2.8 Western Blot Analysis

Protein was extracted from cell lines HTB-5, HTB-9, CRL-1472, CRL-7882 and RT-112

as described by Leone et al. (1998). 10 µg protein of each sample was subjected to

SDS-PAGE on 10% polyacrylamide gels (Invitrogen) according to the manufacturers

protocol. Blots were incubated with mouse monoclonal E2F3 Ab-4 primary antibody

(1:1000) (Lab Vision, Fremont, CA) followed by incubation with goat anti-mouse IgG

secondary antibody (1:2000) (Fc, AP127P; Juro Supply AG, Lucerne, Switzerland).

Finally, blots were processed with the ECL system (Amersham Pharmacia Biotech,

Duebendorf, Switzerland) and exposed to Kodak AR film (Stuttgart, Germany).

2.9 Statistics

All tissue samples on the TMA were utilized for comparisons of amplification and

overexpression of NM_017774. Only the first biopsy was used for further statistical

analyses in patients having more than one tumour on the TMA, in analogy to E2F3

(75). Contingency table analysis and Chi-square tests were applied to study the

relationship between histology tumour type, grade, stage, and target gene

amplification. Student’s t-tests were employed to examine the associations of the Ki67

LI with target gene amplification. ANOVA was utilized to determine the parameters with

greatest influence on tumour cell proliferation. Survival curves were plotted according

to the Kaplan-Meier method and analysed for statistical differences using a log rank

test. Finally, contingency table analysis and chi-square tests were applied to rate

differences in E2F3 and NM_017774 expression levels in different cell lines and under

silenced and non-silenced conditions. Analysis of variance (ANOVA) tests were

employed to estimate growth differences between RNAi treated and untreated

samples.
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3 RESULTS

3.1 Gene amplification

3.1.1 Comparison of NM_017774- and E2F3 amplification frequencies in human

bladder cancers

Fluorescence in situ hybridisation (FISH) analysis was performed to compare the

amplification frequencies of NM_017774 and E2F3. FISH analysis for E2F3 had been

performed before (75) but was repeated for this study. This was necessary because

FISH signals were not counted cell by cell but estimated for each tissue spot. In this

case it is critical that one experienced person (HN) scores all tissue spots in a short

period of time to avoid a scoring bias that might occur if different persons perform the

scoring or results from different studies are compared. Absolute number of

interpretable samples and overall frequency of E2F3-amplifications, were slightly

different from our previous analysis. However, all statistical associations established in

our recent study (75) were also found in the current analysis.

FISH was successful for both, NM_017774 and E2F3, in 893 of 2317 tumour samples

(38.7%). Analysis failures were either due to missing tissue spots or lack of FISH

signals. After an initial analysis, amplification frequencies were 9.8% for NM_017774

and 11.4% for E2F3. A subset of 34 tumours (3.8%) could be identified, exhibiting

amplification of only one candidate target gene (see table 4a). The following case-by-

case comparison revealed, that 15 samples (1.7%) were classical borderline artefacts,

i.e. where the criterion for the presence of an amplification is marginally fulfilled with

respect to E2F3 but is in contrast marginally missed for NM_017774, or vice versa.

Since our study aimed in an as precise comparison of the amplification pattern as

possible, the yet remaining 19 tumours (2.1%) with discrepant scores were carefully

Figure 16: Tumour samples with (left)
and without (right) prevalent 6p22.3
amplification.
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re-examined, using conventional large tissue sections. In two cases large sections

could not be examined because of insufficient or damaged residual tumour tissue.

However, re-analysis was successful for 17 of 19 tumours, and showed that gene copy

numbers were in complete agreement for E2F3 and NM_017774 (see table 4b).  The

initially observed discrepancies were either attributable to technical artefacts (n=9), or

scoring errors (n=8). In summary, co-amplification of E2F3 and NM_017774, was found

in all 6p22.3 amplified tumours (11.6%). As a consequence, amplification of

NM_017774 is identically associated with invasive and high-grade phenotype, and

patient prognosis as already published for E2F3.

Table 4a:  Initial FISH-Analysis for E2F3 and NM_017774;

                 PT=Primary tumour
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PT1 PT1/G3 6 15 20 2.5 3.3 borderline

PT2 PT1/G3 4 10 12 2.5 3.0 borderline

PT3 pT1/G3 2-4 8 15 2.7 5.0 borderline

PT4 pT2-4/G2 2-4 8 10 2.7 3.3 borderline

PT5 pTa/G2 1-2 4 5 2.7 3.3 borderline

PT6 pT2-4/G3 2-5 10 15 2.9 4.3 borderline

PT7 pT2-4/G3 2-5 10 12 2.9 3.4 borderline

PT8 PT1/G3 2 6 5 3.0 2.5 borderline

PT9 PT1/G2 1 3 2 3.0 2.0 borderline

PT10 PT1/G3 4-6 15 10 3.0 2.0 borderline

PT11 pT2-4/G3 2-5 12 10 3.4 2.9 borderline

PT12 PT1/G3 1-2 6 4 4.0 2.7 borderline

PT13 pTa/G3 2 8 5 4.0 2.5 borderline

PT14 pT2-4/G3 1 4 2 4.0 2.0 borderline

PT15 pT2-4/G3 1 4 2 4.0 2.0 borderline

PT16 pT1/G3 2-4 10 2 3.3 0.7 discrepant

PT17 pT1/G3 2 10 2 5.0 1.0 discrepant

PT18 pT1/G3 2-5 3 13 0.9 3.7 discrepant

PT19 pT2-4/G3 2 12 2 6.0 1.0 discrepant

PT20 pT1/G3 4 12 2 3.0 0.5 discrepant

PT21 pT2-4/G3 2-5 6 15 1.7 4.3 discrepant

PT22 pTa/G3 2 15 2 7.5 1.0 discrepant

PT23 pT1/G3 2-4 10 2 3.3 0.7 discrepant
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PT24 pT2-4/G3 2-3 10 2 4.0 0.8 discrepant

PT25 pT2-4/G3 2-3 2 20 0.8 8.0 discrepant

PT26 pT2-4/G3 2-4 10 2 3.3 0.7 discrepant

PT27 pT1/G3 2-3 2 35 0.8 14.0 discrepant

PT28 pT2-4/G3 2-4 15 2 5.0 0.7 discrepant

PT29 pT1/G3 2 15 2 7.5 1.0 discrepant

PT30 pT1/G3 1-2 2 15 1.3 10.0 discrepant

PT31 pT1/G3 2-4 4 10 1.3 3.3 discrepant

PT32 pT1/G3 1-2 2 30 1.3 20.0 discrepant

PT33 pT2-4/G3 2 20 2 10.0 1.0 discrepant

PT34 pT1/G3 1 20 4 20.0 4.0 discrepant

Table 4b:  Large section FISH-Analysis for E2F3 and NM_017774.
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PT16 pT1/G3 2-3 2-3 2-3 1.0 1.0 normal

PT17 pT1/G3 2-4 2-4 2-4 1.0 1.0 normal

PT18 pT1/G3 2-4 2-4 2-4 1.0 1.0 normal

PT19 pT2-/G3 2-5 2-8 2-6 1.4 1.1 gain

PT20 pT1/G3 4-8 4-12 4-12 1.3 1.3 gain

PT21 pT2-/G3 2-6 2-10 2-6 1.5 1.5 gain

PT22 pTa/G3 2-10 10-20 10-20 2.5 2.5 gain

PT23 pT1/G3 2-4 6-10 6-10 2.7 2.7 gain

PT24 pT2-/G3 2-4 10 10 3.3 3.3 co-amp

PT25 pT2-/G3 4 10-20 20 3.8 5.0 co-amp

PT26 pT2-/G3 2 10 10 5.0 5.0 co-amp

PT27 pT1/G3 2-4 10-20 10-20 5.0 5.0 co-amp

PT28 pT2-/G3 2-4 10-20 10-20 5.0 5.0 co-amp

PT29 pT1/G3 2-4 10-30 10-30 6.7 6.7 co-amp

PT30 pT1/G3 1-2 10-20 10-20 10.0 10.0 co-amp

PT31 pT1/G3 2-4 30 30 10.0 10.0 co-amp

PT32 pT2-/G3 2-6 50 50 16.7 16.7 co-amp

PT33 pT2-/G3 tissue * - - - - -

PT34 pT1/G3 tissue † - - - - -

tissue * = insufficient tissue leftover

tissue † = tissue damage
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3.1.2 Amplification of NM_017774 and E2F3 in bladder cancer cell lines

To once for all determine the 6p22.3-amplification status of bladder cancer cell lines

potentially used for further investigations, we performed FISH in 18 cell lines: HTB-1,

HTB-2, HTB-3, HTB-4, HTB-5, HTB-9, CRL-1472, CRL-2169, CRL-7588, CRL7882,

CRL-7930, KU-1919, BFTC-905, EJ-28, RT-112, RT-112 D21, HB-CLS-439 and HB-

CLS-1. Results, including precise gene copy numbers are displayed (see figure 17). 4

out of 18 showed amplification of 6p22.3 (22.3%). E2F3 and NM_017774 could only be

found co-amplified. Highest copy numbers were present in HTB-9, HTB-5 and CRL-

1472. HB-CLS-439 revealed moderately increased target gene copy numbers.

3.1.3 Detection of E2F3-amplification in other cancer types

The E2F3 copy number was determined in situ in 4788 tissue specimens. The tissue

samples included 3670 primary tumours (from 128 different tumour categories), 720

metastases (from 31 different tumour categories), and 359 normal tissues (from 40

different tissue categories).

Successful hybridizations were observed in 2296 of the 4788 specimens (48%). E2F3

amplification was found in 14 bladder cancer specimens and, in addition, in two

seperate cases of breast cancer (one breast cancer primary tumour and one breast

cancer metastasis; see table 5). No other cancer types showed E2F3 amplification.

Figure 17: FISH performed in 18 bladder cancer cell lines showed complete correlation according to the
amplification status of both target genes (E2F3, NM_017774). Furthermore, observed gene copy
number increase was also similar for both genes.
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Table 5 Tumour categories with prevalent E2F3-amplification

Tumour categories Interpretable E2F3-amplified
 (n=2296) (n=16)

Breast cancer primary tumour 43 1
Breast cancer metastasis 181 1
Bladder cancer muscle invasive (pT2-4) 70 13

Bladder cancer non-invasive (pTaG2) 42 1

3.2 Gene expression analysis

3.2.1 Simultaneous quantification of target gene expression (by Real-time PCR)

The influence of 6p22.3-amplification on the expression of NM_017774 and E2F3 was

quantified by real-time PCR. Results are summarized in figure 18.

Figure 18: Relative gene expression of E2F3 and NM_017774 in various cancer cell lines with and without
6p22.3 amplification. E2F3 revealed on average 4.25-fold higher expression levels than
NM_017774. Both genes were markedly upregulated in amplified cell lines. The data was obtained
by means of SYBR Green real-time PCR (Roche). All samples were normalized against G3PDH,
utilizing the 2-ΔΔCT method.
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In total, 7 bladder cancer cell lines, 3 colon cancer cancer cell lines, 1 prostate cancer

cell line, and 1 sample of normal bone marrow were tested. Amplification of 6p22.3

was strongly associated with increased expression of both E2F3 and NM_017774. On

average, expression of the target genes was more than 10-fold higher in amplified

cancer cells as compared to non-amplified cells. Besides, E2F3 was stronger

expressed than NM_017774 in all cell lines analysed (average difference 4.25-fold;

p=0.0009).

3.2.2 RNA expression of NM_017774 (by Northern-blot analysis)

Expression of NM_017774 could not be observed by Western blot (see below),

because no adequate antibody is currently available. Therefore, the expression of

NM_017774 was instead determined by Northern blot analysis utilizing 3 amplified

(HTB-5, HTB-9 and CRL-1472) and 3 non-amplified (RT-112, RT-112 D21 and CRL-

7930) bladder cancer cell lines. Expression of NM_017774 was in perfect correlation

with 6p22.3-amplification (see figure 19). Highest expression of NM_017774 was

found in HTB-5, followed by HTB-9 and CRL-1472.

Figure 19: Northern blot analyses of NM_017774 gene expression. Expression of G3PDH is shown as a
control. Expression of NM_017774 is markedly increased in bladder cancer cells exerting 6p22.3-
amplification.
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3.2.3 E2F3 protein expression (Western-blot analysis)

To estimate the influence of gene amplification on protein expression, Western blot

analysis was performed with three amplified (HTB-5, HTB-9 and CRL-1472) and two

non-amplified bladder tumour cell lines (CRL-7882, RT-112). All three amplified, but

none of the non-amplified cell lines, showed strong E2F3 protein expression (figure

20).

3.3 Functional Analysis

In the past few years, several discoveries have underlined the importance of small

RNAs for a variety of cellular functions. Small interfering RNAs (siRNAs), which are

produced endogenously from cleavage of long double-stranded RNA molecules, elicit

gene silencing via targeted mRNA destruction as part of the RNA interference (RNAi)

pathway. siRNAs are now commonly used as tools to specifically silence target gene

expression.

Two 6p22.3 amplified (HTB-5; CRL-1472) and two non-amplified cell lines (CRL-7930;

PC-3) were tested for their suitability for subsequent RNAi experiments. The tests

served to clarify the following points:

Figure 20: Western blot
analysis of E2F3 in
6p22.3-amplified bladder
cancer cell lines (CRL-
1472, HTB-5, HTB-9) and
in non-amplified cell lines
(CRL-7882, RT-112).
Amplified cell lines show
a massive increase of
E2F3 protein expression
as compared to non-
amplified bladder cancer
cell lines. Weak non-
specific bands are seen in
both amplified an non-
amplified cell lines.
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 Choice of a bladder cancer cell line that shows strong silencing of both

target genes

 Determination of the most powerful RNAi-duplex

 Selection of a transfection reagent that leads to transfection of

approximately 90% of the present cells is highly recommended

SYBR green real-time PCR (LightCycler, Roche) was employed to measure the effect

of RNAi on target gene expression. Gene knock-down rates of at least -46% after 24h

were achieved at minimum (see figure 21). Based on this experiment, the non-

amplified cell line CRL-7930 (E2F3: 73% knock-down; NM_017774: 59% knock-down)

and the amplified cell line HTB-5 (E2F3: 53% knock-down; NM_017774: 50% knock-

down) were selected for subsequent experiments, in combination with Lipofectamine

as the transfection reagent. As a general rule, cell lines with normal 6p22.3 copy

numbers (CRL-7930, PC-3) offered slightly higher knock-down rates than amplified cell

lines (CRL-1472 and HTB-5).

Figure 21: siRNA-efficiency tests to select
appropriate bladder cancer cell lines,
transfection reagents and siRNA-sequences. A:
E2F3-specific siRNA_1 and NM_017774-specific
siRNA_1 produce the highest expression
reduction and are therefore chosen for additonal
tests (average of: CRL-7930, PC-3, CRL-1472
and HTB-5). B  and C: After transfection of
E2F3-specific siRNA_1 and NM_017774-specific
siRNA_1 target gene expression is visibly
decreased in all tested cell lines. Finally, the data
resulted in selection of bladder cancer cell lines
CRL-7930 (6p22.3 status normal) and HTB-5
(strong amplification of 6p22.3) for subsequent
functional analyses. PC-3 was used as a
reference and originally derives from a bone
marrow metastasis of a prostate primary tumour.
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3.3.1 Gene knock-down efficiency during proliferation assay

The two selected RNAi-sequences lead to powerful target gene knock-down. The

impact was detectable 12h after transfection (see figure 22). After one day, target

gene expression was already more than halved.

In cell line CRL-7930 mRNA levels decreased until the end of the experiment (day 6).

On average, silencing was slightly more efficient for E2F3 (73% decrease of mRNA

level; average from days 4-6) than for NM_017774 (59% decrease of mRNA level;

average from days 4-6; p=0.0016).

In the amplified cell line HTB-5 the lowest mRNA expression levels were reached

between 24h and 48h after transfection. Starting with day 3, target gene expression

begun to recover slowly but constantly. No difference between average knock-down of

E2F3 (53%) and NM_017774 (50%) was detectable (p=0.4186). Interestingly,

combined knock-down did not result in a further decrease of individual mRNA-levels

as compared to separate knock-down, in all tested cell lines.

Figure 22: During the
entire period of the
proliferation assay, the
mRNA knock-down
was tightly controlled.
Powerful reductions in
target gene expression
were observed during
the first 24h after
transfection,
independently from the
utilized bladder cancer
cell lines. However,
after 48h, differences
between the cell lines
became visible:
Whereas in the non-
amplified CRL-7930
cells (A) they continued
to decrease until the
end of the experimental
period, the mRNA
levels of both target
genes began to recover
after the first two days
in the amplified HTB-5
cells (B).
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3.3.2 Proliferation assay

The distinctive effects of E2F3-, NM_017774- and combined gene knock-down on cell

proliferation were compared against the effect of nonsense-RNAi control and are

visualized in figure 23. In the non-amplified cell line (CRL-7930) knock-down of E2F3

and NM_017774 resulted each in a pronounced decrease of the cell proliferation rate

(average over 6 days: E2F3: -43.1%; NM_017774: -48.7%; maximum E2F3: -48.2% at

day 4; maximum NM_017774: -55.4% at day 4). Simultaneous knock-down exerted an

even stronger decrease amounting to –57.9% (maximum -69.6%; day 4).

Figure 23: Cell proliferation of bladder cancer cell lines with and without 6p22.3 amplification. Bars illustrate
observed differences in cell proliferation rates after gene specific knock-down of potential
amplification targets E2F3 and NM_017774. Silencing of E2F3 always markedly decreased cell
proliferation (A+B), whereas silencing of NM_017774 only inhibited non-amplified CRL-7930 cells
(A) but failed to affect proliferation in amplified HTB-5 cells (B). Controls, treated with unspecific
RNAi, are shown in green.
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In the amplified cell line (HTB-5) knock-down of E2F3 resulted in a comparable

decrease of the cell proliferation, as it had been observed in non-amplified cells

(average: -36.7%; maximum: -44.7% at day 4). In contrast, knock-down of

NM_017774 had no negative influence on cell proliferation in amplified cells (average:

+5%; maximum –10.9% at day 4). The combined knock-down (average: -27.7%, max

-36.8% at day 4) reached values analogous to E2F3 alone.

The fraction of apoptotic cells was estimated during cell counting (data not shown).

There was no obvious difference between control cell cultures treated with transfection

Figure 24: Western blot analysis (A) displays the massive reduction of E2F3 expression induced by E2F3-
specific gene silencing that lead to the proliferation decrease in 6p22.3-amplified cancer cells
(HTB-5). As a comparison, with nsRNAi-treated HTB-5 cells are shown in parallel, and offer
normal E2F3 protein concentrations (see control). Protein concentrations are visualized for t0=0h,
t1=40h and t2=90h. Corresponding G3PDH-levels can be viewed at the bottom. Inhibition of
E2F3 (mRNA; Protein) leads to powerful decrease of cell proliferation in 6p22.3-amplified
bladder cancer cell line HTB-5, as well as in the non-amplified control CRL-7930. Results of the
proliferation assay (B) are additionally provided at the bottom.

A: Western Blot E2F3

B: Proliferation Assay
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reagent and non-sense RNAi as compared to cell cultures treated with target specific

RNAi. The observed differences in cell proliferation between cells with and without

E2F3 or NM_017774 knockdown, therefore, are clearly due to the silencing effect and

not caused by apoptosis. Besides, we did not observe any changes in cell morphology

as a consequence of gene silencing.

The silencing power of E2F3-specific RNAi, resulting in reduced proliferation of HTB-5

cells, was not only confirmed by real-time PCR but also by western blot analysis

(figure 24 gives an informative overview). The silencing power of NM_017774-specific

RNAi could not yet be shown, because NM_017774-specific antibodies are currently

not available.

3.4 Bioinformatics research: The gene NM_017774 and its possible function

In order to learn more about possible functions of NM_017774, we compared the gene

with its next closest relative CDK5RAP1. First, the mRNA sequences of both genes

was aligned using the ‘Vector NTI’. This program allows similarity searches on mRNA-

and/or protein-sequence basis. As a control, we compared both splice variants of the

CDK5RAP1. Results are shown in figure 25.

To collect structural information about the protein product of NM_017774 that would

perhaps point at a possible function, we employed CDART (‘Conserved Domain

Architecture Retrieval Tool’). The analysis revealed that three functional domains are

shared with CDK5RAP1, including UPF0004, Radical-SAM, and TRAM. The function of

Figure 25: Sequence homology of NM_017774 (=CDKAL1) and both splice variants of CDK5RAP1. Whereas
both splice variants turned out to be highly similar except for the additional 5’-region that is only
present in the CDK5RAP1b (this region was incorporating 148 bp, or 90 aa, respectively),
NM_017774 showed less than 50% similarity to both splice variants.
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the UFP0004 domain is unknown, but it is almost always found in conjunction with

Radical-SAM and TRAM. Radical-SAM is believed to be involved in radical-based

catalysis in a number of previously well-studied but unresolved biochemical pathways,

including unusual methylations, isomerization, sulfur insertion, ring formation,

anaerobic oxidation and protein radical formation (92). TRAM presumably represents a

RNA-binding domain. The TRAM domain is present in several other proteins

associated with the translation machinery and may also play a role in the regulation of

tRNA modification or translation (93). Alternatively, NM_017774 can be aligned using

the ‘EXPASy BLAST2 Interface’, showing a score of: 24% identity, 46% positives and

14% gaps to both CDK5RAP1 splice variants (www.expasy.org/cgi-bin/blast.pl;

reference number Q5QP46).

In summary, although only little is known about the possible function of NM_017774,

the presence of particular functional domains in the predicted protein structure link it

to the protein translation machinery (94). The most important information found during

our investigations is summarized in table 6.
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Table 6: Predicted homolog, structure, molecular functions and involvement in molecular
processes of: NM_017774 and CDK5RAP1. According to information of the NCBI Research
Database 2005. Scientific evidence increases from light to dark green. The same set of information
is additionally provided for E2F3.
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4 DISCUSSION

Early mortality has declined in modern human populations throughout the past several

100 years due to improvements in hygiene and nutrition. However, as more people

survive into old age, more individuals encounter the diseases associated with old age.

As a consequence, particularly the risk of cancer has constantly increased during the

last decades, and the ageing of the population in developing countries is pointing to an

even further rise in the future.

Bladder cancer contributes significantly to the overall human cancer burden. While

over 300’000 individuals are confronted with this disease per year, more than 130’000

patients die due to the consequences. In Western societies the impact of bladder

cancer is even somewhat higher, probably as a result of increased life expectancies in

combination with modern life-styles, making it the 5th most common malignancy in

men in Western societies.

Like in other malignancies, the precise fact why one person develops bladder cancer

while others don’t, is not yet fully understood. The origin of the disease is now believed

to be multifactorial, and several risk factors have been noted. Development of bladder

cancer is highly complex and involves various different abnormalities. While it is certain

that molecular alterations are required for initiation and progression of the disease,

only little is known about the exact nature of these events and the sequence in which

they occur.

Most often, the progression of cancer is accompanied by gene amplification, which

represents perhaps the most common mechanism of oncogene activation. Gene

amplifications that are often detected in tumours are believed to harbour oncogenes

that drive the amplifications. More than 30 different chromosomal loci are frequently

amplified in bladder cancer. For some of them, the responsible target gene is already

identified: CCND1 at 11q13 (43), ERBB2 at 17q21 (95), or MDM2 at 12q13 (39).

Evidence for neighbouring oncogenes that undergo co-amplification, followed by co-

overexpression has recently been reported at 12q13-q15 (harbouring MDM2, GLI,

CDK4, and SAS) (80). Presumptive oncogenes for other important amplicons, e.g.

1p36, 4q, 9p, 20q and 6p22, remain undetermined.

Amplification of the chromosomal region 6p22.3 occurs in about 10-20% of human

bladder cancers, being one of the most abundant genetic alterations of this tumour

type. This fact has lead to the hypothesis, that 6p22.3 must harbour at least one
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potential oncogene that is responsible for the high amplification frequency. Intensive

investigations aimed in the identification of the target gene, have resulted in the

delineation of the chromosome 6p22-amplicon, so far (72). Over the last 5 years, the

presence of at least 13 genes inside the 6p22.3 amplicon has been claimed: Q9H1N9,

PRL, SOX-4, NM_017774 (=CDKAL1), E2F3, OACT1, ID-4, TFAP2, HMGIY, CCND3,

IRF4, HOX12, and PIM1 (see table 7).

In a recent study the amplicon could be narrowed down to 1.7 Mb at 6p22.3 (75), and

as a consequence the list of presumptive genes could be reduced to: ID-4, OACT1,

E2F3, NM_017774, SOX-4 and PRL, and several predicted transcripts. However,

verification of individual target gene expression levels exposed weak or absent

expression in certain cases, making it very unlikely that such genes play an important

role in the development of the disease (72-74, 76, 79). Based on this evidence, 4 local

genes were excluded from further studies, including ID-4, OACT1, SOX-4 and PRL.

In contrast, expression patterns of two other candidate genes, suggests an

involvement in 6p22.3-amplification. E2F3 was detected to be strongly amplified and

overexpressed in a high percentage of human bladder cancers (74, 76), as well as in

Table 7: Overview of the existent amplification, expression and functional studies aimed in the detection and
identification of potential oncogenes localized at 6p22.3. E2F3, as well as its closest neighbouring
gene NM_017774 (which is also known as CDKAL1 or FLJ20342) are clearly the most suspected
targets to drive the amplification.
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some prostate cancers (79). Furthermore, E2F3 was found amplified in 19.8% of

invasive bladder tumours, making it the most frequently amplified gene in invasive

bladder cancer. Using the same methodology including FISH and TMAs and copy

number cut-off levels, lower amplification frequencies were observed for HER-2

(15.3%) and CCND1 (11.1%). Besides 6p22.3 there are no other molecular alterations

showing such marked differences between non-invasive (0.7%) and invasive (19.8%)

bladder cancers, stressing the importance of the responsible target gene. However,

both E2F3 and NM_017774 show comparable amplification frequencies, rendering it

impossible to tell which one is the more likely amplification target based on gene copy

number information alone.

Therefore, we performed amplification, expression, and functional analyses of E2F3

and its neighbouring gene NM_017774. Our results clearly favour E2F3 as the primary

target gene of 6p22.3 amplification in urinary bladder cancer.

First of all, a large tissue microarray comprising more than 2,000 bladder cancer

samples was utilized to compare E2F3 and NM_017774 amplification patterns.

Although we had analysed E2F3 amplification before (75), this analysis was repeated

to have the same person scoring both E2F3 and NM_017774. The slightly higher rate

of amplified cases in this study (11.6%) as compared to the previous one (7%) was not

unexpected because of the higher fraction of analyzable high-grade tumours in the

present study. In addition, estimating the number of signals instead of counting may

have resulted in some inter-observer variability. Slight inter-observer differences are

regularly seen in TMA studies where large numbers of tissues are scored in a short

period of time, but have no influence on the significance of findings because of the

high statistical power in studies with large patient numbers (96). It was therefore

expected, that all statistical associations established in our recent study (75) were also

found in the current analysis.

After initial analysis, amplification frequencies were 9.8% for NM_017774 and 11.4%

for E2F3. Interestingly, not all tumours showed co-amplification of both target genes. A

fraction of 34 tumours was identified, exhibiting only amplification of one gene or the

other. Since a presumptive oncogene that drives the amplicon is expected to be

involved in all tumours with 6p22.3 amplification, the true absence of either E2F3 or

NM_017774 in one or more 6p22.3 amplified bladder cancers would make it very

unlikely that this particular gene plays an important role in the amplicon. Therefore, the

subset of 34 ‘discrepant’ tumours was subject to thorough case-by-case re-evaluation

by conventional large tissue sections. This re-evaluation demonstrated, however, that
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every tumour with E2F3 amplification had also NM_017774 amplification, and vice

versa. The initially observed discrepancies were either due to variable interpretation of

borderline findings in low level amplified tumours (15 cases) or counting errors

because of low FISH signal intensities, high background, tissue damage and technical

artefacts (19 cases). In summary, co-amplification of E2F3 and NM_017774, was

found in all 6p22.3 amplified tumours (11.6%). As a consequence, amplification of

NM_017774 is identically associated with invasive and high-grade phenotype, and

patient prognosis as already published for E2F3 (75).

Since FISH analysis could not identify either E2F3 or NM_017774 as the 6p22.3 target

gene, we performed RNA- and protein expression analysis as a second step. Because

of the superior RNA quality in freshly collected tissues as compared to formalin fixed

paraffin embedded samples we analysed RNA levels in amplified versus non-amplified

bladder cancer cell lines. We hypothesized that the amplification target gene would

show a particularly strong mRNA and protein expression increase.

Highly enriched levels of E2F3 expression have been previously found in 6p22.3

amplified bladder cancer cell lines CRL-1472, HTB-5 and HTB-9 by Northern blot (76,

97). In contrast, only little is known about NM_017774 expression (74). To compensate

for the still expected evidence we analysed mRNA expression of NM_017774 by

Northern blot analysis. Overexpression of NM_017774 was detected to be in perfect

correlation with 6p22.3 amplification. The gene was highly expressed in 6p22.3

amplified cell lines, whereas expression in non-amplified cell lines was almost absent.

Highest levels were observed in HTB-5, similarly to recent findings by real-time PCR

analysis (74).

To quantitatively investigate target gene expression as a result of 6p22.3 amplification

we additionally performed real-time PCR. Expression of E2F3 was on average 4.25-

fold stronger than expression of NM_017774 in ‘normal’ bladder cancer cell lines,

without amplification of 6p22.3. Gene amplification had a comparable influence on the

expression of both target genes, scaling up individual mRNA levels at least by a factor

10. However, mRNA-increase, as a result of the amplification, was on average slightly

higher for NM_017774 than for E2F3. These findings are in line with a previous analysis

by (74) in cell lines HTB-5, HTB-9, JO’N and CRL-1472.

To complete gene expression verification, Western blot analysis was performed. All

three amplified cell lines (HTB-5, HTB-9 and CRL-1472), but none of the non-amplified

cell lines showed strong E2F3 protein expression. HTB-9 exposed highest levels of
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E2F3 expression, followed by HTB-5 and CRL-1472. The findings confirm our results

from Quantitative real-time PCR analysis. The corresponding protein expression level

of NM_017774 was not assessed, because specific antibodies are not available at the

moment.

In summary, our comprehensive target gene expression analysis ended up with the

conclusion that E2F3 and NM_017774 are without exception co-overexpressed in

bladder cancers featuring the 6p22.3 amplification. Clearly, DNA amplification is a

perfect method to co-overexpress neighbouring genes. Evidence of clusters of co-

overexpressed genes have already been detected in human, fly, and worm (98).

Examples in humans include the non-I-integrin alpha-chain genes located in clusters

on chromosomes 2, 12, and 17. It has been suggested before that keeping functionally

related genes near could be advantageous for a cell because it may ease the burden

of unpacking of DNA for transcription (99). It appears possible, that amplification might

not always target only one particular gene, but two or more genes that contribute to a

common function or pathway. Although only little is known about the possible function

of NM_017774, the presence of particular functional domains in the predicted protein

structure have linked it to the protein translation machinery (94). It can be expected

that a cooperative effect of E2F3 and NM_017774 would result in a particular strong

growth advantage and that knock-out of one of these two genes should be sufficient

to reverse the effect.

In order to test this hypothesis, we decided to performed knock-out experiments in

6p22.3 amplified cell lines. We chose RNA interference (RNAi) as an established

method to specifically inactivate messenger RNA of the selected target genes (100,

101). RNAi is a phenomenon in which the introduction of double-stranded RNA

(dsRNA) into a diverse range of organisms and cell types causes degradation of the

complementary mRNA. In the cell, long dsRNAs are cleaved into short, 21-25

nucleotide small interfering RNAs, or siRNAs, by a ribonuclease known as Dicer. The

siRNAs subsequently assemble with protein components into an RNA-induced

silencing complex (RISC). An ATP-generated unwinding of the siRNA activates RISC,

which in turn binds to the complementary transcript by base pairing interactions

between the siRNA anti-sense strand and the mRNA. The bound mRNA is cleaved and

then targeted for destruction. Repeated rounds of sequence specific mRNA

degradation finally results in gene silencing (102, 103).

siRNAs are now commonly used as tools to specifically silence target gene

expression. Detection and quantification of gene silencing can be assayed by
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measuring either mRNA or protein levels, or both. Isolation of high quality RNA is an

essential step for subsequent gene expression analysis. But complementary studies at

the protein level are also highly recommended, since evidence is mounting that

siRNAs can reduce target gene expression at multiple levels: target-specific mRNA

degradation, transcriptional regulation through chromatin alteration, and translational

control through miRNA-like mechanisms (104). Furthermore, a scrambled control is

necessary to assess the specificity of the RNAi-sequence utilized, and to demonstrate

the absence of non-specific toxic effects.

Applying RNAi technique resulted in a more than 50% decrease of normal mRNA

levels for both candidate target genes. Knock-down of E2F3 strongly inhibited cell

proliferation in 6p22.3-amplified cells (-37%), whereas no such effect was observed for

NM_017774 (+5%). Combined knock-down of E2F3 and NM_017774 did not result in

a stronger proliferation reduction than knock-down of E2F3 alone (-28%). This argues

against a cooperative effect of E2F3 and NM_017774 on cell proliferation. Importantly,

even after successful knock-down of E2F3 and NM_017774, the residual amount of

mRNA left over in the amplified cell line exceeded the standard mRNA levels of non-

amplified and non-RNAi treated cells by a factor 5-10. Nevertheless, knock-down of

E2F3 severely inhibited regular cell growth in 6p22.3-amplified cells (see figure 26).

This emphasizes E2F3 as the relevant target gene of 6p22.3-amplification. Together

with our recent observation that E2F3 expression is strongly associated with rapid

tumour proliferation (75), these data support an important role of E2F3 as a limiting

factor for urothelial cell proliferation. It seems that 6p22.3 amplification conveys

massive E2F3 overexpression in order to overcome a molecular bottleneck that

prevents accelerated cell proliferation.

In contrast, NM_017774 knock-down did not lead to reduced growth rates of 6p22.3

amplified cells. In non-amplified cells, however, reduced levels of NM_017774 induced

a comparable proliferation reduction (-49%) as seen for E2F3 (-43%). The growth

reduction was even stronger if both E2F3 and NM_017774 were jointly silenced (-

58%). The biological function of NM_017774 is unknown yet, but this finding adds

additional evidence to the hypothesis (see above) that NM_017774 might be involved

in regular cell growth. However, we found no evidence for NM_017774 to have a

possible supportive effect when co-amplified and co-overexpressed alongside E2F3.

6p22.3-amplification is strongly linked to rapid tumour proliferation (75). While knock-

down of E2F3 severely inhibits regular cell growth of 6p22.3-amplified cells, knock-

down of NM_017774 shows no proliferation decrease. Hence, our results suggest that
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NM_017774 is only accidentally co-amplified because of its spatial neighbourhood to

E2F3 (like other genes in the area), but does not have a functional role in 6p22.3-

amplification.

Since our conclusions are largely based on functional analysis we tried to ascertain as

carefully as possible that silencing efficiencies were optimal for both E2F3 and

NM_017774. Therefore, different RNAi-sequences were tested prior to the functional

analysis. Both RNAi-sequences selected for the proliferation assay revealed strong

silencing rates, able to reduce target gene expression by at least –50%. Additionally,

several different transfection reagents were screened for maximal transfection

capabilities versus minimal non-specific toxic effects in combination with selected

RNAi-sequences and bladder cancer cell lines. After the optimization period, we

obtained excellent transfection rates, surpassing 90%. This is an important

achievement since it directly leads to stronger knock-down rates, and thereby more

reliable results. Last but not least, all experiments were performed in triplicates, and

gene silencing and cell proliferation were carefully observed in parallel at reasonably

short intervals and over a considerably long period of time (see figure 23). If possible

(in case of E2F3), gene silencing was confirmed not only by RT-PCR but additionally

be an independent method (W-blot).

It is important to note, that target gene expression was 10 to 20-fold increased in the

6p22.3 amplified cells. As a direct consequence of the high-level amplification, it was

impossible to reduce candidate target gene expression to a normal niveau (as

prevalent in untreated cell lines without 6p22.3 amplification). Therefore, expression of

E2F3 and NM_017774 always remained at least 5 to 10-fold higher in amplified cells,

even after experiencing a powerful gene knock-down.

However, silencing of E2F3-expression severely reduced proliferation of 6p22.3

amplified HTB-5 cells. On average the proliferation reduction was –37%, although

E2F3 expression rates constantly remained 5 to 10-fold over the limit for regular

proliferation. This fact strongly supports the hypothesis, that silencing of E2F3 affects

‘enhanced’ cellular proliferation in 6p22.3-amplified HTB-5. A similar effect can only be

suspected for a gene that has the capacity to enhance cellular proliferation in case it is

overexpressed. We conclude that E2F3 must be the target gene that drives 6p22.3

amplification in human bladder cancer (figure 26).
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Based on its biological role E2F3 represents an ideal candidate, whose activation by

amplification could easily contribute to oncogenesis. E2F3, which together with E2F1

and E2F2 belongs to the subclass of E2F factors that are thought to act as

transcriptional activators of genes that are derepressed following transition through the

Rb-dependent G1/S-phase cell cycle checkpoint. Several lines of evidence highlight

the importance of E2F3 in cell cycle progression and proliferation. E2f3-/- mouse

embryo fibroblasts have a proliferative and cell cycle defect when compared to their

wild-type counterparts, and a critical threshold level of one or more E2f3-regulated

genes appears to determine the timing of the G1/S transition and rate of DNA

synthesis in the mouse (3, 105, 106). Inhibition of E2f3 activity by antibody

Figure 26: Relative ‚normal’ target gene expression and ‚reduced’ level after treatment with RNAi. Target
gene knock-down surpassed –50% at all times. While knock-down of E2F3 lead to a clear cut
proliferation decrease in 6p22.3 amplified HTB-5 cells, knock-down of NM_017774 was unable to
show a comparable effect. We therefore conclude that E2F3 must be the responsible gene that
drives amplification and/or overexpression of 6p22.3 in bladder cancer.
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microinjection impairs entry into the S-phase,  and in transgenic mouse studies E2f3

expression has been demonstrated to contribute to the ectopic proliferation of

neuronal cells and lens fibre cells that occur in Rb-/- null mice (3).

It seems that disruption of the Rb-pathway is a particularly important event during

bladder cancer development: First, Rb and p16INK4A are the most frequently lost tumour

suppressor genes in bladder cancer (along with p53). Second, Rb is the only gene that

shows inheritable patterns in bladder cancer. And third, 11q13 (including CCND1) and

6p22.3 (including E2F3) are the most frequently amplified genomic regions in bladder

cancer. Overexpressing E2F3 could additionally have the additional advantage for a

tumour that it can circumvent the complexity and feedback controls, which exist in

upstream signal transduction pathways. Evidence for this theory comes from c-myc,

another transcription factor whose expression is tightly regulated in normal cells. In

contrast to E2F3, c-myc is only expressed during S-phase of the cell cycle. The

chromosomal region harbouring c-myc (8q24) is altered in a large proportion of

bladder cancers (107). Overexpression of c-myc is driving tumour cells continuously

towards proliferation (108). Alternatively, if the tumour suppressor genes that normally

restrict this action by initiating apoptosis are mutated themselves, inappropriate

proliferation occurs.

Furthermore, E2F3 may contribute to tumour development and progression in other

ways. Recently, it was demonstrated that E2F3 represses p14/ARF, which is an

important tumour repressor in the p53 pathway (39, 40, 55). According to these data,

overexpression of E2F3 could result in repression of the p53 pathway and thus

facilitate tumour progression. It remains to be clarified what kind of selective

advantages favour proliferation of tumour cells with amplification of E2F3 and how to

measure this effect in an experimental system.

Recent reports of 6p gains in retinoblastoma have detected E2F3 to be amplified and

overexpressed also in this tumour type (109). In a similar way as for 6p22.3

amplification in bladder cancer a few years ago, the list of candidate genes for 6p

gains in retinoblastoma was narrowed down, but no single gene could be identified as

the exclusive target. In addition, it is well known that survivors of hereditary

retinoblastoma have a particularly high risk of developing bladder cancer,

osteosarcomas, malignant melanomas and small cell lung cancer as secondary

tumours (109). It is intriguing to ask whether E2F3 could be involved in these

processes, since 6p gains have already been reported for all of these tumour entities

(110-115). There is a possibility that 6p gains in these tumours may simply target the
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same pathway(s) that is /are altered in bladder cancer and vice versa.

When considered with these biological properties of E2F3, our results suggest that the

E2F3 gene represents a candidate cancer oncogene that is activated by DNA

amplification and/or overexpression. The idea that the E2F3 gene has a role in

promoting progression of bladder cancer cells is consistent with the observation that

the presence of the 6p22 amplicon in human bladder cancer has been shown to be

associated with higher cancer cell proliferation rates (73).

Our data in conjunction with published evidence strongly indicate that amplification of

E2F3 is a hallmark of one genetic pathway in invasive bladder cancer that is followed

by approximately one third of these tumours.

4.1 Conclusion

Conclusively, the findings of this study document that amplification of 6p22.3 leads to

upregulated mRNA expression, and increased protein production of the

transcriptionfactor E2F3. While also other genes localized in the amplified region may

be co-amplified and co-overexpressed as a by-product of the amplification, E2F3

represents the main target gene and is therefore responsible for the frequent

amplification of 6p22.3 in urinary bladder cancer.

4.2 Future Prospects

Mutations in the Rb-pathway are believed to occur in nearly all human cancers (116).

Most frequent are mutations in upstream regulators such as the CDK inhibitor p16INK4A

and cyclin D1 (44). Mutations in Rb were identified initially in retinoblastoma (59) and

subsequently in various adult sporadic cancers (83). One of the reasons for studying

the functions of E2F has been the idea that it might explain the significance of the Rb-

pathway in oncogenesis. Such a role was initially suggested by the identification of

E2F as one of the cellular targets for viral oncoproteins (81, 82). Numerous groups

have found deregulated E2F activity in different human cancers, often correlating with

poor prognosis (76). Many recent discoveries of new family members and new

potential target genes have contributed to an increasingly complex view of E2F

function reaching beyond G1/S control in several different ways.

Previous analyses of the three bladder cancer cell lines CRL-1472, HTB-5 and HTB-9,
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which we have shown to contain amplification and high levels of expression of E2F3,

have consistently demonstrated loss or aberrant expression of pRb, and the presence

of wild-type INK4A/ARF (117-120). These observations suggest that co-operation

between pRb removal and overexpression of E2F3 may be required for bladder cancer

carcinogenesis. Two recent publications report 6p22 overexpression (without

amplification) in prostate cancer (79) and 6p22 gains in retinoblastoma tumours (109).

Additional findings of a single case of breast cancer with 6p22.3 amplification in a

multitumour TMA experiment, and a second breast cancer that was found to be E2F3

amplified in a DNA-chip based copy number analysis in our lab indicate that E2F3

amplification is perhaps not limited only to bladder cancer. However, true amplification

of 6p22.3 has been reported exclusively from the bladder cancer so far (72, 74, 76),

but any set of data should be viewed only in the context of a particular environment.

Studies of E2F3 function and alterations have to take into account the attributes of the

particular biological system such as tissue type, extracellular signals, mutations in

other signalling pathways, etc (figure 27). It will be interesting to analyse genes

upstream and downstream of E2F3 on large multitumour arrays (121) to

comprehensively study the molecular epidemiology of alterations in the Rb/E2F-

pathway of all types of human cancers.

Figure 27: Human
tumours often contain
alterations such as
point mutations,
deletions,
amplifications or
promoter methylations
in components of the
Rb/E2F pathway. This
alterations can be
either activating or
inactivating. Most
frequently, they occur
in upstream regulators
of Rb. Examples of the
types of human cancer
where such alterations
occur are given next to
each component of the
pathway. According to
Dimova and Dyson
2005.
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Furthermore, our findings prompt for a review of existing drug compound databases

for potential E2F3 inhibitors and may also have relevance to the design of novel drugs

targeting cancers with high frequencies of E2F3 amplification and/or overexpression.

Drugs directed against upstream targets of E2F3 such as Rb and CDKs (122) might be

expected to be less effective against cancers overexpressing E2F3. There would also

be concern that amplification and upregulation of E2F3 could represent a mechanism

for developing resistance to such drugs (figure 27).

Last but not least, siRNAs were exploited in this study to resolve the question of the

presumptive amplification target gene at 6p22.3. But they are currently also evaluated

as potential therapeutic agents (123). If realized, siRNAs could make it possible to

target virtually any gene for therapeutic intervention. Synthetic siRNAs and siRNA

expression vectors have been injected systemically and into defined tissues and

elicited target –specific responses (124). A number of publications have shown that

siRNAs can inhibit the replication HIV and Hepatitis B (125-127). As the RNAi field

continues to develop, moving into animal models, therapeutics, and drug discovery,

eventually reducing E2F3 overexpression in 6p22.3 amplified cancer cells, can

perhaps become possible.
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5 SUMMARY

The 6p22 is generally regarded as one of the most important amplification sites in urinary

bladder cancer. Investigations, encouraged by these findings, subsequently lead to the

delineation of the amplicon. During this process the genomic region was narrowed down to

1.7 Mb at 6p22.3, including presumably 13 different genes. Some of these genes were

withdrawn from additional investigations due to low-level or absent expression in 6p22.3-

amplified bladder cancers. Two genes, however, showed unquestionable correlation

between high-level amplification and subsequent overexpression. But the relevant target

gene that drives the amplification remained unidentified, yet.

This work was ultimately aimed in a comprehensive comparison of the two remaining

candidate oncogenes. The major findings were:

  By performing FISH on a large bladder cancer TMA we show that NM_017774 is

amplified in 11.6% of 893 tested human bladder cancer samples. Thus, the gene

reaches an amplification level that is comparable to E2F3.

  Following case-by-case re-evaluation of a large-section FISH analysis, exhibiting

104 6p22.3-amplified bladder cancers, demonstrates that both genes are 100% co-

amplified.

 Furthermore, we show that both candidate oncogenes are always co-overexpressed

in 6p22.3-amplified bladder cancer cell lines, presumably as a consequence of the

amplification.

  Experimentally decreased expression levels of NM_017774 and/or E2F3 similarly

lead to strongly inhibited cell proliferation (observed in normal bladder cancer cells

CRL-7930; without 6p22.3-amplification).

 This finding suggests that NM_017774 -the gene of hitherto unknown function –must

be functionally connected to the cell cycle regulatory machinery.

  Besides, decreased E2F3-expression results in proliferation-reduction, and thus

confirms the previously predicted essential role of this transcriptionfactor in cell

cycle progression.
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  Finally, functional analysis performed in the 6p22.3-amplified HTB-5 cell line,

demonstrate that E2F3 –but not NM_017774 -captures a limiting role for enhanced

cellular proliferation in 6p22.3-amplified bladder cancer cells.

  Hence, our results suggest that NM_017774 is only accidentally co-amplified

because of its spatial neighbourhood to E2F3 (like other genes in the area), but does

not have a functional role in 6p22.3-amplification, whatsoever.

Conclusively, the findings of this study consistently document that amplification of 6p22.3

leads to upregulated mRNA expression, and increased protein production of the

transcriptionfactor E2F3. While also other genes localized in the amplified region may be co-

amplified and co-overexpressed as a by-product of the amplification, E2F3 represents the

main target gene and is therefore responsible for the frequent amplification of 6p22.3 in

urinary bladder cancer.
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E2F3 amplification and overexpression is associated with invasive tumor

growth and rapid tumor cell proliferation in urinary bladder cancer

Martin Oeggerli1,3, Sanja Tomovska1,3, Peter Schraml1, Daniele Calvano-Forte1, Salome
Schafroth1, Ronald Simon1, Thomas Gasser2, Michael J Mihatsch1 and Guido Sauter*,1

1Institute of Pathology, Schoenbeinstrasse 40, CH-4031 Basel, Switzerland; 2Clinics of Urology, Rheinstrasse 26, CH-4410 Liestal,
Switzerland

E2F3 is located in the 6p22 bladder amplicon and encodes
a transcription factor important for cell cycle regulation
and DNA replication. To further investigate the role of
E2F3 in bladder cancer, a tissue microarray containing
samples from 2317 bladder tumors was used for gene copy
number and expression analysis by means of fluorescence
in situ hybridization (FISH) and immunohistochemistry
(IHC). E2F3 amplification was strongly associated with
invasive tumor phenotype and high tumor grade
(Po0.0001 each). None of 272 pTaG1/G2 tumors, but
35 of 311 pT1-4 carcinomas (11.3%), had E2F3
amplification. A high E2F3 expression level was asso-
ciated with high grade, advanced stage, and E2F3 gene
amplification (Po0.0001 each). To evaluate whether
E2F3 expression correlates with tumor proliferation, the
Ki67 labeling index (LI) was analysed for each tumor.
There was a strong association between a high Ki67 LI
and E2F3 expression (Po0.0001), which was independent
of grade and stage. We conclude that E2F3 is frequently
amplified and overexpressed in invasively growing bladder
cancer (stage pT1-4). E2F3 expression appears to provide
a growth advantage to tumor cells by activating cell
proliferation in a subset of bladder tumors.
Oncogene (2004) 23, 5616–5623. doi:10.1038/sj.onc.1207749
Published online 3 May 2004

Keywords: bladder cancer; 6p22; E2F3; amplification;
FISH; IHC

Introduction

Gene amplification plays an important role in the
progression of bladder cancer. More than 30 different
genomic loci have been identified that recurrently
harbor DNA amplifications (Mitelman, 1994; Kallio-
niemi et al., 1995; Voorter et al., 1995; Richter et al.,
1997, 1998; Simon et al., 1998; Simon et al., 2000).
Several of these amplifications contain known onco-

genes such as HER2 at 17q21, CCND1 at 11q13, MYC
at 8q24, EGFR at 7p13, or MDM2 and CDK4 at
12q13-15 (Dalla-Favera et al., 1982; Kondo and
Shimizu, 1983; Popescu et al., 1989; Xiong et al., 1992;
Reifenberger et al., 1994). The target genes are unknown
for the majority of amplicons, such as 1q21-31, 2q13,
3p22-24, 6p22, 8p11, 8q21, 9p21, 10p13-14, 13q13,
13q31-33, 18p11, 20q, 21p11, 22q11-13, Xp11-13, and
Xq21-22.2 (Kallioniemi et al., 1992; Mitelman, 1994;
Sauter et al., 1994; Kallioniemi et al., 1995; Voorter
et al., 1995; Richter et al., 1997, 1998; Simon et al., 1998;
Richter et al., 1999; Terracciano et al., 1999; Zhao et al.,
1999).
Based on our comparative genomic hybridization

(CGH) data of more than 300 bladder carcinomas
(Richter et al., 1997, 1998; Simon et al., 1998; Richter
et al., 1999; Terracciano et al., 1999; Zhao et al., 1999;
Simon et al., 2000), one of the most common sites of
high-level amplification is 6p22, which was present in 10
of 172 advanced-stage tumors of our patients. One of
the potential candidate genes at the 6p22 region is E2F3
(Veltman et al., 2003), which belongs to a family of cell
cycle regulatory transcription factors that are controlled
by the retinoblastoma tumor suppressor (Lees et al.,
1993; Leone et al., 1998; Humbert et al., 2000; Leone
et al., 2001; Wu et al., 2001). Heterodimers of E2F1,
E2F2, or E2F3 with DP1 serve as transcriptional
activators of genes that promote cell cycling, whereas
complexes of E2F/DP with pRb repress transcription
and inhibit cell growth (Leone et al., 1998; Nevins, 1998;
Trimarchi and Lees, 2002). Recent reports have
indicated that different members of the E2F gene family
could play specific and diverse roles in tumorigenesis of
various human malignancies. For example, increased
copy numbers and overexpression of E2F1 were found
in an erythroleukemia cell line (Saito et al., 1995), and
E2F5 was amplified and upregulated in 4.2% of breast
cancers (Polanowska et al., 2000). Decreased expression
of E2F1 was to be associated with an increased risk of
progression to metastases in bladder cancer (Rabbani
et al., 1999).
Whereas almost all research on E2F3 has been

performed in cell line or mice models so far, little is
known about the potential role of E2F3 in human
cancers. Based on the rate-limiting role of E2F3 for cell
proliferation (Humbert et al., 2000), it is possible that a
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disturbed regulation of E2F3 could facilitate cell cycle
progression and an increased cell proliferation rate. In
turn, overexpression of E2F3 could provide a growth
advantage to cells exhibiting this alteration, resulting in
clonal selection explaining the presence of 6p22 ampli-
fications in advanced-stage tumors. In this study, we
applied the tissue microarray (TMA) technology (Ko-
nonen et al., 1998) to study E2F3 alterations in urinary
bladder cancer. A TMA containing 2317 bladder
cancers was used to examine the impact of E2F3 gene
copy number changes on the protein expression level,
tumor phenotype, and clinical outcome.

Results

Technical aspects

Immunohistochemistry (IHC) and fluorescence in situ
hybridization (FISH) analyses were performed in a
blinded way on different TMA sections. Owing to
technical reasons, the number of interpretable samples
varies between the individual analyses and comparisons.

E2F3 gene amplification

FISH analyses were performed in two steps: prescreen-
ing and establishing optimal hybridization conditions
was carried out on a mini-TMA containing specimens
with 6p22 amplification (as identified by CGH),
followed by a large-scale TMA analysis of 2317 clinical
specimens. The 6p22-amplification-specific mini-TMA
revealed E2F3 amplification in all three cell lines and
seven primary tumors that had shown 6p22 amplifica-
tion by CGH. The average E2F3 copy numbers in these
tumors ranged between 7 and 31.
FISH was successful in 875 of 2317 (38%) samples of

the large TMA. FISH-related problems (weak hybridi-
zation, background, tissue damage) were responsible for
about 80%, TMA-linked problems (too few or absence
of tumor cells on the TMA spot) were causing about
20% of the noninformative cases. Statistical analysis
was limited to 696 tumors, representing the initial
biopsies of 696 patients. E2F3 amplification was
detected in 49 these 696 tumors. Examples of amplified
and nonamplified tumors are shown in Figure 1. The
associations with tumor phenotype are summarized in
Table 1. Within urothelial carcinoma, which is by far the
most common bladder cancer subtype, E2F3 amplifica-
tion was strongly associated with high tumor grade and
advanced stage (Po0.0001 each). Most strikingly, E2F3
amplification was absent in pTaG1/G2 tumors (0 of
272), while 11.3% (35 of 311) of the invasively growing
urothelial carcinoma (pT1-4) had E2F3 amplification.
E2F3 amplification was most frequent in the histological
subgroups of muscle invasive urothelial carcinoma
(14.3%) and small cell carcinomas (16.7%).

E2F3 expression in bladder tumor cell lines

To estimate the influence of E2F3 amplification on
protein expression, Western blot analysis was performed

on three amplified (CRL1479, HTB5, HTB9) and two
nonamplified bladder tumor cell lines (CRL7882,
RT112). All three amplified, but none of the nonampli-
fied cell lines, showed strong E2F3 protein expression
(Figure 2).

E2F3 IHC on tumor microarrays

E2F3 IHC was analysed within 1334 first biopsy tumor
tissue spots on the bladder cancer TMA. Nearly one-
fifth of the tumors exhibited varying degrees of positive
staining. No E2F3 staining was observed in normal
urothelium (Figure 1a). Examples of E2F3-positive and
-negative tumors are shown in Figure 1b–d. E2F3
expression by IHC was significantly linked to E2F3 copy

Figure 1 E2F3 alterations in bladder cancer. (a) Normal
urothelium appeared negative for E2F3 IHC under the selected
experimental conditions. (b–d) Bladder cancer tissue spots showing
different levels of immunostaining. (d) Tissue spot of an E2F3-
amplified cancer sample showing strong E2F3 expression. All tissue
spots (a–d) are located on the same TMA slide and have been
subjected to identical experimental conditions. (e) E2F3 gene
amplification as detected by FISH analysis. Red fluorescence
signals represent centromere 6 copies, massive increase of green
E2F3 signals indicate gene amplification. (f) Tumor cell nuclei with
two E2F3 and centromere 6 copy numbers, representing the normal
copy number state
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number changes (Po0.0001). E2F3 positivity was found
in 24 of 34 amplified urothelial carcinomas (70.6%), but
in only 82 of 456 (18.0%) nonamplified tumors. This
association held also true within the group of 269 pT1-4
urothelial carcinomas that could be analysed by both
FISH and IHC (Po0.0001). E2F3 positivity was
significantly more frequent in small cell carcinomas
(55.6% positive) than in other histologic subtypes
(Table 1). Within urothelial carcinomas, E2F3 expres-
sion was linked to advanced stage and high grade
(Po0.0001 each). The frequency of E2F3-positive
tumors increased from 10% in pTaG1/G2 tumors (49
of 492) to 20.9% in invasively growing pT1-4 urothelial
carcinomas (127 of 608).

E2F3 expression and tumor cell proliferation (Ki67
labeling index (LI))

Both gene amplification and protein overexpression
were significantly associated with rapid tumor cell
proliferation (Po0.0001 each). Analysis of variance
(ANOVA) analysis including E2F3 expression/amplifi-
cation and either tumor stage or grade showed that both
E2F3 expression and amplification were independent
predictors of rapid tumor cell proliferation (Po0.0001
each). Accordingly, the separate analyses of tumors of

identical grades and stages lead to either significant
differences in the proliferation between E2F3-negative
and -positive tumors or at least to a clear tendency
towards a higher Ki67 LI in E2F3-positive tumors
(Table 2).

E2F3 alterations and prognosis

E2F3 expression was associated with poor tumor-
specific survival if all patients were included in the
analysis (Po0.05,. Figure 3). There was no association
between E2F3 expression and tumor-specific survival
within the subgroup of pT2-4 urothelial carcinomas, or
between E2F3 alterations and tumor recurrence or
tumor progression among pTa/pT1 tumors. There were
too few E2F3-amplified tumors with available survival
data to allow statistically meaningful analysis.

Discussion

Previous CGH studies have repeatedly highlighted 6p22
as an amplification site in bladder cancer (Richter et al.,
1998, 1999). E2F3, a key gene for G1/S transition
(Leone et al., 1998), has been mapped to 6p22. Studies
by array CGH have suggested that E2F3 can be

Table 1 E2F3 alterations and tumor phenotype in urinary bladder cancer

E2F3 FISH E2F3 IHC

na Amplified (%) Pb na Positive (%) Pb

All tumors 696 7.0 1334 17.3

Histologyc

Urothelial carcinoma 140 14.3 337 21.1
Squamous cell carcinoma 14 7.1 38 18.4
Small cell carcinoma 12 16.7 18 55.6
Sarcomatoid carcinoma 6 0.0 10 0.0
Adenosquamous carcinoma 1 0.0 1 0.0

Staged

pTa 301 0.3 539 11.1
pT1 171 8.8 Po0.0001e 271 20.7 Po0.0001e

pT1- 27 18.5 46 26.1
pT2–4 140 14.3 337 21.1

Graded

G1 73 0.0 163 8.0
G2 315 1.3 Po0.0001 527 10.8 Po0.0001
G3 254 14.6 507 26.0

Stage and graded

pTa G1 73 0.0 162 8.0
pTa G2 199 0.0 330 10.9
pTa G3 29 3.4 47 23.4
pT1 G2 70 1.4 107 9.3 Po0.0001
pT1 G3 101 13.9 Po0.0001 164 28.0
pT2–4 G2 35 5.7 79 8.9
pT2–4 G3 105 17.1 258 24.8

Growth patternc,d

Papillary 58 13.8 0.4292 126 20.6 0.6486
Solid 81 14.8 210 21.4

aNumber of tumors with interpretable results (only first biopsies are considered). bChi-square test. cOnly pT2-4. dOnly urothelial ca. epT1-excluded
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included in the 6p22 amplicon in at least a fraction of
bladder tumors (Veltman et al., 2003). In an attempt to
further investigate the importance of E2F3 in primary
bladder tumors and in bladder cancer cell lines, we first
analysed a mini-TMA composed of 10 tumors with
known 6p22 amplification (by CGH). Our finding of an
involvement of E2F3 in the 6p22 amplicons of all 10
amplified tumors provided strong evidence for a major
role of E2F3 in bladder cancer. Western blot analysis
targeting the E2F3 protein showed strong E2F3 over-
expression in all amplified cell lines demonstrating a
functional relevance of E2F3 amplification. Based on
these data, we proceeded to analyse the prevalence and
significance of E2F3 amplification/expression in our
previously constructed bladder cancer TMA-containing
tissues from 2317 different tumors (Richter et al., 2000).
The TMA approach allowed the rapid analysis of

more than 800 carcinomas on the DNA and protein
level. The findings suggest an important role of E2F3
amplification/overexpression in invasive bladder cancer.
A total of 14.3% of muscle invasive bladder cancers

showed E2F3 amplification. This makes E2F3 one of the
most frequently amplified genes in invasive bladder
cancer. Using the same methodological criteria, includ-
ing FISH protocols, copy number cutoff levels, and
TMA resources, we have observed similar frequencies
for amplifications of HER2 (14%) (Simon et al., 2003)
and CCND1 (15%) (Zaharieva et al., 2003) in pT2-4
bladder cancer. Remarkably, E2F3 amplification was
not found in any of 272 pTaG1/G2 tumors, which is
consistent with models suggesting that pTaG1/G2
tumors are genetically stable neoplasias with a much
lower likelihood to acquire chromosomal rearrange-
ments than invasively growing tumors (Richter et al.,
1997, 1998; Simon et al., 1998; Richter et al., 1999; Zhao
et al., 1999; Simon et al., 2001, 2002). Recently,
chromosomal alterations have been successfully used
for the detection of bladder cancer in voided urine cells
(Halling et al., 2000; Bubendorf et al., 2001) and a
commercial FISH test has been approved by the US
Food and Drug Administration in 2001. Our data raise
the possibility that 6p22 amplification detection could
have clinical utility for distinction of invasive and
noninvasive bladder tumors in urine cells.
Given the well-known function of E2F3 for S-phase

induction (Leone et al., 1998), it could be expected that
E2F3 overexpression exerts an oncogenic function
through cell cycle activation. This hypothesis is largely
supported by the strong association of E2F3 amplifica-
tion and expression with tumor cell proliferation (Ki67
LI), which was also found in all large subgroups of
tumors with identical grade and stage. Despite this
strong link between E2F3 positivity and a high Ki67 LI,
no association was found between E2F3 overexpression
and prognosis if tumors with comparable tumor stages
were examined. This result is not completely unex-
pected. Although there are studies suggesting a prog-
nostic role of tumor cell proliferation in urinary bladder
cancer (Lipponen et al., 1993; Liukkonen et al., 1999),
there are also reports that fail to reproduce these data
(Nakopoulou et al., 1998; Pfister et al., 1998). Our own
previous analyses on the same set of carefully staged
tumors were unable to show a convincing association of
Ki67 LI with prognosis in pTa, pT1, or pT2-4 cancers
(Nocito et al., 2001). Although accelerated cell pro-
liferation is an important prerequisite for tumor growth,
it is probably other factors, like invasive growth and the
metastatic potential, which are the key determinants for
the clinical outcome of neoplastic diseases.
The comparison of E2F3 FISH and IHC data

revealed a good but not a perfect correlation. A strong
E2F3 expression by IHC was seen in 70% of E2F3-
amplified, but in only 18% of nonamplified tumors.
These data seem to suggest that E2F3 overexpression is
not present in all amplified tumor samples. However, at
least some of the discrepant results might be caused by
technical reasons. For example, none of the currently
commercially available antibodies targeting E2F3 (in-
cluding that one used in our study) is specifically
recommended for IHC on formalin-fixed tissues. It is
possible that technical shortcomings of our IHC
procedure resulted in a fraction of IHC false-negative

Figure 2 Western blot analysis of E2F3 in 6p22-amplified bladder
cancer cell lines (CRL1472, HTB5, HTB9) and in nonamplified cell
lines (CRL7882, RT112). Amplified cell lines show a massive
increase of E2F3 protein expression as compared to nonamplified
bladder cancer cell lines. Weak nonspecific bands are seen in both
amplified and nonamplified cell lines
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samples. Alternatively, our data could indicate that
E2F3 is not the (only) amplification target at 6p22.
Overexpression of one or several other genes in the same
amplicon could be required to drive the growth

advantage of amplified cells in 6p22-amplified tumors
without E2F3 protein overexpression. There is a
growing evidence indicating that the molecular mechan-
ism of gene amplification does not follow the simple one
gene–one amplicon concept. Amplification may be a
mechanism that is particularly effective to simulta-
neously overexpress multiple adjacent genes, which may
jointly provide a growth advantage to amplified tumor
cells. For example, neighboring oncogenes that some-
times undergo coamplification have recently been
identified at various genomic regions such as MDM2,
GLI, CDK4, and SAS at 12q13-q15 (Reifenberger et al.,
1994) or CCND1, EMS1, and INT2 at 11q13 (Hui et al.,
1997).
Only few known genes are known to be located in

direct genomic neighborhood of E2F3. A gene of
unknown function (GenBank: NM_017774) maps clo-
sely centromeric to E2F3. The 579 amino-acid protein
contains a domain that is present in several other
proteins associated with the translation machinery and
in a family of small, uncharacterized archaeal proteins
that are predicted to play a role in the regulation of
tRNA modification or translation (Anantharaman et al.,
2001). SOX4, a transcription factor that is a member of
the high mobility group (HMG)-box family of DNA
binding protein (Farr et al., 1993), and PRL (the gene
encoding Prolactin) map to region between 1 and 2Mb
centromeric to E2F3. Prolactin (PRL) is a protein
hormone closely related to growth hormone and mainly
secreted in the anterior pituitary lactotrope and the

Table 2 E2F3 amplification/overexpression in relation to Ki-67 LI

E2F3 FISH E2F3 IHC

Nonamplified Amplified Pa Negative Positive Pa

pTaG1 73b 0 147 13
5.7c 6.3 7.4 0.4929

(4.5–6.6)d (5.4–7.2) (4.4–10.3)

pTaG2 199 0 294 36
10.1 10.2 13.8 0.015

(9.0–11.2) (9.2–11.1) (11–16.6)

pTaG3 28 1 36 11
22.0 35.3 0.2984 22.8 24.2 0.7512

(17.2–26.8) (9.9–60.6) (18.4–27.2) (16.3–32.1)

pT1G2 69 1 96 10
19.1 14.9 0.7252 19.1 24.7 0.1567

(16.2–22.0) (�9.2 to 38.8) (16.7–21.5) (17.3–32.1)

pT1G3 86 14 118 46
28.9 45.9 0.0002 28.8 37.6 0.0012

(25.6–32.2) (37.7–54.1) (26–31.6) (33.1–42.1)

pT2G2 33 2 72 7
21.4 36.5 0.1019 21.9 35.9 0.0059

(17.0–25.8) (18.7–54.2) (18.9–24.8) (26.5–45.4)

pT2G3 87 18 192 63
35.0 44.4 0.0305 31.4 44.1 o0.0001

(31.4–38.5) (36.6–52.2) (29.1–33.7) (40.2–48.1)

Only first biopsies of patients with TCC (n¼ 1853) included. Nonamplified cases include gains. aStudent’s t-test. bMean Ki-67 LI. c95% CI of Ki-67
LI. dNumber of samples

Figure 3 Survival analysis (Kaplan–Meier plot) in a subset of 757
urothelial carcinoma samples with data on E2F3 IHC and patient
outcome. Immunohistochemically positive cancers show shortened
tumor-specific survival
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decidualized stromal cell of the human endometrium
(DiMattia et al., 1990). However, Northern analysis
demonstrated no correlation between amplification and
overexpression of these genes in eight cell lines (Bruch
et al., 2000).
In summary, E2F3 is regularly included in a bladder

cancer amplicon at 6p22. Taking together the known
cell cycle activating role of E2F3, its overexpression in
amplified tumors, and the association with cell pro-
liferation in vivo, it appears that E2F3 could be an
important target gene inside the 6p22 amplification
whose overexpression gives growth advantage to ampli-
fied tumor cells. This study also demonstrates how a
combination of genomic technologies, microarray dis-
covery platforms, and bioinformatics resources can be
used to rapidly identify, validate, and characterize target
genes for genetic alterations and associate these changes
to specific medical conditions.

Materials and methods

CGH

A review of the CGH profiles of 278 primary bladder
carcinomas and 20 cell lines previously examined in our
laboratory revealed 10 tumors and three cell lines with distinct
peaks around 6p22. Examples of CGH profiles are shown in
Figure 4.

Bladder cancer tissue microarray (TMA)

The composition of our bladder cancer TMA containing 2317
formalin-fixed paraffin-embedded tissues from 1853 bladder
cancer patients was previously described (Richter et al., 2000;
Simon et al., 2002). Some of the clinical data were updated for
this study. All slides of all tumors were reviewed by one
pathologist (GS). Tumor stage and grade were defined
according to UICC and WHO (Mostofi, 1973; UICC, 1992).
Stage pT1 was defined by presence of both unequivocal tumor
invasion of the suburothelial stroma and tumor-free fragments
of the muscular bladder wall. Carcinomas with stroma
invasion but absence of muscular bladder wall in the biopsy
were classified as at least pT1 (pT1-). Clinical data were
available from 1123 patients. The medium follow-up period
was 42 months (range 1–236 months). Time to recurrence and
time to progression (to stage pT2 or higher) were selected as
study end points for patients with pTa and pT1 tumors.

Follow-up information was considered complete enough to
include a pTa/pT1 cancer patient in the study if cystoscopies
had been performed at least at 3, 9, and 15 months, then
annually until the end point of this study (recurrence, last
control). To include a patient for analyses of time to
progression, longer intervals between controls were accepted
if the last follow-up control ruled out progression. Recurrences
were defined as cystoscopically visible tumors. Tumor pro-
gression was defined as the presence of muscle invasion (stage
pT2 or higher) in a subsequent biopsy. An overview of the
histological and clinical data is given in Table 3.

FISH

The tissue microarray sections were treated according to the
Paraffin Pretreatment Reagent Kit protocol (purchased from
Vysis, Downers Grove, IL, USA) before hybridization. FISH
was performed with a digoxigenated PAC probe (PAC

Figure 4 Examples of 6p22 amplifications in bladder cancer as
detected by CGH. The central line indicates the fluorescence ration
of balanced DNA sequence copy number state (1.0), lines to the left
and right represent the 0.8 and 1.2 thresholds for losses and gains.
6p22 amplifications are indicated by strong shifts of the fluores-
cence ratio profile to the right in the respective chromosomal
regions

Table 3 Histological and clinical parameters of 2317 arrayed bladder
cancer samples

Tumors
(n¼ 2317)

Patients
(n¼ 1853)

Patients
with clinical

data
(n¼ 1123)

Stage
pTa 951 768 502
pT1 515 425 263
pT1- 101 80 34
pT2–4 737 571 320

Grade
G1 282 230 157
G2 987 792 467
G3 1048 831 498

Stage/grade
pTaG1 277 226 155
pTaG2 567 461 291
pTaG3 107 81 56
pT1G2 206 170 98
pT1G3 309 255 165
pT2–4G2 186 140 70
pT2–4G3 551 431 250

Histology
Transitional cell

carcinoma
2108 1678 1032

Squamous cell carcinoma 73 59 34
Small cell carcinoma 31 25 12
Adenocarcinoma 22 17 8
Adenosquamous

carcinoma
2 2 1

Sarcomatoid carcinoma 24 17 8

Growth pattern
Papillary 1665 1367 868
Solid 633 472 249

No. of tumors per patient
One 1533 1533 914
Two or more 784 320 209

Clinical end points — —
Tumor-specific survival

(pT2-4)
— — 320

Time to progression (pTa
and pT1)

— — 482

Time to recurrence (pTa
and pT1)

— — 535
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dJ177P22, Sanger Centre, UK) containing the E2F3 gene and
a Spectrum Red-labeled chromosome 6 centromeric probe
(CEP6) as a reference (purchased from Vysis). Hybridization
and posthybridization washes were according to the ‘LSI
procedure’ (Vysis). Probe visualization using fluorescent
isothiocyanate (FITC)-conjugated sheep anti-digoxigenin
(Roche Diagnostics, Rotkreuz, Switzerland) was as described
(Wagner et al., 1997). Slides were counterstained with 125 ng/
ml 40,6-diamino-2-phenylindole in an antifade solution.
Amplification was defined as presence (in X5% of tumor
cells) of at least three times as many E2F3 gene signals than
centromere 6 signals.

IHC

Standard indirect immunoperoxidase procedures were used for
IHC (ABC-Elite, Vector Laboratories, Burlingame, CA,
USA). The monoclonal antibody E2F3 Ab-4 (Lab Vision
Corporation, CA, USA) was tested on array sections contain-
ing formalin-fixed paraffin-embedded, E2F3-amplified and
nonamplified bladder tumors. Optimal staining of the cell
nuclei (1 : 100 dilution of primary antibody) could best be
achieved after pretreatment in 1mM EDTA at 991C for 40min
for antigen retrieval. The primary antibody was omitted for
negative controls. Diaminobenzidine was used as a chromo-
gen. Some cytoplasmic staining was seen in most tissue spots
but only nuclear staining was scored. The IHC staining
intensity (scored in a four step scale including 0, 1þ , 2þ , and
3þ ) and the fraction of positive tumor cells was recorded for
each tissue spot. Based on these values, a final IHC result was
calculated according to the following criteria: Negative: no
staining at all, or 1þ staining intensity in no more than 10%
of tumor cells; positive: at least 2þ staining intensity in more
than 10% of tumor cells.
The rabbit monoclonal antibody MIB1 (1 : 800, Dianova,

Hamburg, Germany) was employed to detect Ki67 protein
(expressed in all cells in G1, S, G2, and Mphase) as previously
described (Moch et al., 1997). Nuclei were considered Ki67
positive if any nuclear staining was seen. The Ki67 LI
(percentage of Ki67-positive cells) was determined on each
arrayed tumor sample by scoring at least 300 cells each.
Tumors with Ki67-negative mitoses were excluded from
analyses.

Western analysis

Protein was extracted from about 2� 106 cells from bladder
cancer cell lines CRL1472, HTB5, HTB9, CRL7882, and the

RT112 cell line as described (Leone et al., 1998). In all, 10mg
protein of each sample was subjected to SDS–PAGE on 10%
polyacrylamide gels. Proteins were transferred onto PVDF
membrane (Bio-Rad, Glattbrugg, Switzerland). The mem-
brane was blocked in TBS (25mM Tris at pH 7.4, 137mM
NaCl, 2.7mM KCl) containing 10% skim milk at RT for 2 h.
Blots were then incubated with mouse monoclonal E2F3 Ab-4
antibody (5 mg/ml) (Lab Vision, CA, USA), which is directed
against the E2F3 full-length protein, in TBS containing 5%
skim milk overnight at 41C, and washed subsequently in TBS
containing 0.1% Tween 20 for 30min. Blots were incubated
with a second antibody (1 : 2000) (goat anti-mouse IgG, Fc,
AP127P; Juro Supply AG, Lucerne, Switzerland) for 1 h at
RT, and washed for 30min. Blots were processed with the
ECL system (Amersham Pharmacia Biotech, Dubendorf,
Switzerland).

Statistics

All tissue samples on the TMA were utilized for comparisons
of amplification and overexpression of E2F3. Only the first
biopsy was used for further statistical analyses in patients
having more than one tumor on the TMA. Contingency table
analysis and Chi-square tests were applied to study the
relationship between histology tumor type, grade, stage, and
E2F3 expression/amplification. Student’s t-tests were
employed to examine the associations of the Ki67 LI with
E2F3 expression/amplification. ANOVA was utilized to
determine the parameters with greatest influence on tumor
cell proliferation. Survival curves were plotted according
to the Kaplan–Meier method and analysed for statistical
differences using a log rank test. Patients with pTa/pT1
tumors were censored at the time of their last clinical
control showing no evidence of disease or at the date
when cystectomy was performed. Patients with pT2-4
carcinomas were censored at the time of their last clinical
control or at the time of death if they died from causes not
related to their tumor.
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P, Leighton S, Torhorst J, Mihatsch M, Sauter G and
Kallioniemi O. (1998). Nat. Med., 4, 844–847.

Lees JA, Saito M, Vidal M, Valentine M, Look T, Harlow E,
Dyson N and Helin K. (1993). Mol. Cell. Biol., 13,

7813–7825.
Leone G, DeGregori J, Yan Z, Jakoi L, Ishida S, Williams RS
and Nevins JR. (1998). Genes Dev., 12, 2120–2130.

Leone G, Sears R, Huang E, Rempel R, Nuckolls F, Park CH,
Giangrande P, Wu L, Saavedra HI, Field SJ, Thompson
MA, Yang H, Fujiwara Y, Greenberg ME, Orkin S, Smith C
and Nevins JR. (2001). Mol. Cell, 8, 105–113.

Lipponen PK, Eskelinen MJ, Jauhiainen K, Terho R and
Nordling S. (1993). Br. J. Urol., 72, 451–457.

Liukkonen T, Rajala P, Raitanen M, Rintala E, Kaasinen E
and Lipponen P. (1999). Eur. Urol., 36, 393–400.

Mitelman F. (1994). Catalog of Chromosome Aberrations in
Cancer, 5th edn. Wiley-Liss: New York.

Moch H, Sauter G, Gasser T, Buchholz N, Bubendorf L,
Richter J, Jiang F, Dellas A and Mihatsch M. (1997). Urol.
Res., 25, S25–S30.

Mostofi F. (1973). Histological Typing of Urinary Bladder
Tumors. World Health Organization: Geneva.

Nakopoulou L, Vourlakou C, Zervas A, Tzonou A, Gakio-
poulou H and Dimopoulos MA. (1998). Hum. Pathol., 29,
146–154.

Nevins JR. (1998). Cell Growth Differ., 9, 585–593.
Nocito A, Bubendorf L, Maria Tinner E, Suess K, Wagner U,
Forster T, Kononen J, Fijan A, Bruderer J, Schmid U,
Ackermann D, Maurer R, Alund G, Knonagel H, Rist M,
Anabitarte M, Hering F, Hardmeier T, Schoenenberger AJ,
Flury R, Jager P, Luc Fehr J, Schraml P, Moch H, Mihatsch
MJ, Gasser T and Sauter G. (2001). J. Pathol., 194, 349–357.

Pfister C, Buzelin F, Casse C, Bochereau G, Buzelin JM and
Bouchot O. (1998). Eur. Urol., 33, 278–284.

Polanowska J, Le Cam L, Orsetti B, Valles H, Fabbrizio E,
Fajas L, Taviaux S, Theillet C and Sardet C. (2000). Genes
Chromosomes Cancer, 28, 126–130.

Popescu NC, King CR and Kraus MH. (1989). Genomics, 4,
362–366.

Rabbani F, Richon VM, Orlow I, Lu ML, Drobnjak M,
Dudas M, Charytonowicz E, Dalbagni G and Cordon-
Cardo C. (1999). J. Natl. Cancer Inst., 91, 874–881.

Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS and
Collins VP. (1994). Cancer Res., 54, 4299–4303.

Richter J, Beffa L, Wagner U, Schraml P, Gasser T, Moch H,
Mihatsch M and Sauter G. (1998). Am. J. Pathol., 153,
1615–1621.
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Alterations of chromosome 8, preferentially deletions of 8p and
gains of 8q, belong to the most frequent cytogenetic changes in
bladder cancer. CMYC on 8q24 is a candidate oncogene in this
region. Little is known about the clinical significance of CMYC
copy number changes in urinary bladder cancer because its fre-
quency is low and a limited numbers of tumors were analyzed so
far. To investigate the impact of CMYC alterations on tumor pro-
gression and patient prognosis in bladder cancer, we applied FISH
to a tissue microarray containing 2317 bladder cancer samples.
Presence of CMYC copy number increase was associated with
advanced stage and high grade. CMYC amplifications were seen in
3 of 467 pTa (0.6%), 10 of 247 pT1 (4%) and 11 of 201 pT2–4 uro-
thelial carcinomas (5.5%; p < 0.0001), as well as in 1 of 123 G1
(0.8%), 8 of 470 G2 (1.7%) and 17 of 365 G3 urothelial carcino-
mas (4.7%; p < 0.0001). CMYC gains were present in 49 of 467
pTa (10.5%), 39 of 247 pT1 (15.8%) and 43 of 201 pT2–4 urothe-
lial carcinoma (21.4%; p < 0.0001), as well as in 7 of 123 G1
(5.7%), 56 of 470 G2 (11.9%) and 72 of 365 G3 urothelial carcino-
mas (19.7%; p < 0.0001). CMYC copy number changes were unre-
lated to prognosis of bladder cancer patients. We conclude that
alterations of the CMYC gene, including copy number gains and
amplifications, are linked to genetically unstable bladder cancers
that are characterized by a high histologic grade and/or invasive
growth. Patient prognosis was not affected by CMYC gene copy
number changes.
' 2005 Wiley-Liss, Inc.
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Amplification of CMYC was discovered in a number of human
cancers, including breast, lung, renal, prostate, head and neck,
endometrium and colorectal carcinomas.1–8 CMYC encodes a tran-
scription factor containing DNA-binding sequences. It permits
entry into the cell cycle by activating several genes, e.g., those
encoding ornithine decarboxylase and the protein phosphatase
cdc259,10 and by repressing others, e.g., encoding tissue-specific
transcription factors.11,12

Alterations of CMYC gene copy numbers or expression levels
are known to occur in bladder cancer. Some authors reported asso-
ciation of CMYC overexpression with histologic grade,13,14 while
others rejected such a relation.15–18 With regard to tumor progres-
sion, previous studies either did not find an association15–19 or
linked CMYC expression to low-grade early-stage tumors.20,21

Increased CMYC protein levels may occur as a consequence of
gene copy number changes, such as gains of the whole long arm
of chromosome 8 or CMYC-specific high-level gene amplification,
but have been also been reported in tumors without evident
changes in the CMYC gene copy number.17,20,22–24

Increased CMYC gene copy numbers were shown to be signifi-
cantly associated with late-stage and high-grade tumors.20,24 A
recent study suggested that increased CMYC copy numbers might
predict invasive tumor growth.25 Little is known about the prog-
nostic value of CMYC alterations in bladder cancer, probably
because of the rarity of CMYC amplifications occurring in less
than 10% of cases.26–29 High numbers of tumors must therefore be
analyzed to allow for statistically relevant comparisons. Tissue
microarrays (TMAs) are optimally suited to determine associa-

tions between tumor phenotype and genotype or prognosis.30

Here, we utilized our previously described bladder cancer progno-
sis tissue microarray (TMA)28,29,31 to establish the prognostic role of
CMYC amplifications in urinary bladder cancer.

Material and methods

Bladder cancer tissue microarray

A preexisting bladder cancer TMA containing 2,317 samples
from 1,853 patients was used.31 The slides of all tumors were
reviewed prior to construction by a single pathologist (G.S.).
Tumor stage and grade were defined according to Union Interna-
tionale contre le Cancer and World Health Organization crite-
ria.32,33 Because of the limitations of transurethral biopsies in
accurately determining the depth of invasion of higher-stage blad-
der cancer, all tumors showing muscle invasion were categorized
in one group (pT2–4). Tumors confined to the bladder mucosa
were classified as stage pTa. Stage pT1 was defined by the pres-
ence of both unequivocal tumor invasion of the suburothelial
stroma and tumor-free fragments of the muscular bladder wall.
Carcinomas with stroma invasion but absence of muscular bladder
wall in the biopsy were classified as at least pT1 (pT1–). A papil-
lary tumor growth was assumed if at least one unequivocal papilla
with similar atypia as in the invasive tumor area was present. An
overview of the histologic and clinical data is given in Table I.
The numbers in the subgroups do not always add up to the total
number of samples because of missing data. We did not reduce
the data set to samples where all data are available because it
would lead to unnecessary loss of statistical power in the subgroup
analyses. No data had been recorded for histologic tumor type
(n 5 57), stage (n 5 13) and tumor growth pattern (n 5 19) in
small subsets of tumors. Of the 1,853 patients, 1,384 were males
and 465 females. The gender was unknown in 4 patients. The
average age was 68 years (range, 20–100 years). Clinical data
were available from 1,123 patients. The medium follow-up period
was 42 months (range, 1–272 months). Time to recurrence and
time to progression (to stage pT2 or higher) were selected as study
endpoints for patients with pTa and pT1 tumors. Follow-up infor-
mation was considered complete enough to include a pTa/pT1
cancer patient in the study if cystoscopies had been performed at
least at 3, 9 and 15 months, then annually until the endpoint of this
study (recurrence, last control). To include a patient for analyses
of time to progression, longer intervals between controls were
accepted if the last follow-up control ruled out progression. Recur-
rences were defined as cystoscopically visible tumors. Tumor pro-
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gression was defined as the presence of muscle invasion (stage pT2
or higher) in a subsequent biopsy. Treatment conditions (TUR/cys-
tectomy) were known for 500 pTa (TUR), 230 pT1 (221 TUR, 9
cystectomy) and 175 pT2–4 (cystectomy) cancers. For survival
analysis of pT2–4 tumors, it was assumed that at least the majority
of the 195 patients with unknown treatment underwent cystectomy.
The expected differences in survival between our pT1 and pT2–4
patients (Fig. 1) strongly support the validity of this assumption.

Fluorescence in situ hybridization (FISH)

Prior to hybridization, the slides were treated according to the
Paraffin Pretreatment Reagent Kit (Vysis, Downers Grove, IL).
FISH was performed using combined CEP8 Spectrum Green/
CMYC Spectrum Orange-labeled probe (Vysis). Denaturation of
the DNA was carried out at 75�C for 10 min (probe mixture) or

5 min (slides). The probe mixture was applied to the slides and
hybridized overnight in a moist chamber at 37�C. The posthybrid-
ization washes were performed as described in ‘‘LSI procedure’’
(Vysis). Slides were counterstained with 125 ng/ml DAPI in anti-
fade solution. The counts for CMYC and CEP8 were estimated in
all tissue spots. Two different approaches were made to define
CMYC copy number gains. In a first analysis, tumors showing an
average of 3 or more gene signals (averaged per tissue spot) were
recorded as increased gene number. In the second approach, the
presence of more than 2 times more gene signals than correspond-
ing centromere signals of chromosome 8 in at least 50% of tumor
cells was considered as amplification, while the presence of more
gene signals than centromere 8 signals (but not reaching the defi-
nition for amplification) in at least 50% of tumor cells was consid-
ered as a gain. All other tumors were considered normal for the
purpose of this study.

Statistics

Only the first biopsy of patients having more than one biopsy
on the array was used for statistical analyses. Contingency table
analysis and chi-square tests were used to study the relationship
between histologic tumor type, grade, stage and gene amplifica-
tion. Analysis of variance (ANOVA) test was applied to evaluate
the influence of CMYC copy numbers on tumor phenotype. Sur-
vival curves were plotted according to Kaplan-Maier.34 A log-rank
test was applied to estimate the relationship between grade, stage,
or gene amplifications and tumor recurrence, progression or sur-
vival. Patient with pTa/pT1 tumors were censored at the time of
their last clinical control showing no evidence of disease or at the
date when cystectomy was performed. For survival analysis,
patients were censored at the time of their last clinical control or
at the time of death if they died from causes not related to their
tumor.

FIGURE 1 – Influence of tumor stage on tumor-specific survival in
1,000 bladder cancer patients (numbers do not add up to the total num-
ber of patients analyzed in this study since patients with nonurothelial
cancers or unclear stage diagnosis were excluded).

TABLE I – HISTOLOGIC AND CLINICAL PARAMETERS OF 2,317 ARRAYED BLADDER CANCER SAMPLES

Tumors
(n 5 2,317)

Patients
(n5 1,853)

Patients with
clinical data
(n 5 1,123)

Stage
pTa 951 768 502
pT1 515 425 263
pT1– 101 80 34
pT2–4 737 571 320

Grade
G1 282 230 157
G2 987 792 467
G3 1,048 831 498

Stage/grade
pTaG1 277 226 155
pTaG2 567 461 291
pTaG3 107 81 56
pT1G2 206 170 98
pT1G3 309 255 165
pT2–4G2 186 140 70
pT2–4G3 551 431 250

Histology
Transitional cell carcinoma 2,108 1,678 1,032
Squamous cell carcinoma 73 59 34
Small cell carcinoma 31 25 12
Adenocarcinoma 22 17 8
Adenosquamous carcinoma 2 2 1
Sarcomatoid carcinoma 24 17 8

Growth pattern
Papillary 1,665 1,367 868
Solid 633 472 249

Number of tumors per patient
One 1,533 1,533 914
Two or more 784 320 209

Clinical endpoints
Tumor-specific survival (pT2–4) 320
Time to progression (pTa and pT1) 482
Time to recurrence (pTa and pT1) 535
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Results

CMYC copy number changes

A subset of 1,853 tumor samples (only the first biopsy of every
patient) was analyzed by FISH for CMYC gene copy number.
FISH was successful in 1,052 (56.8%). Increased gene copy num-
ber state (3 or more than 3 gene copies) was found in 219 tumors
(20.8%). The assessment based on the ratio of the gene copy num-
ber as compared to the centromere copy number of the same chro-
mosome revealed amplifications in 31 tumors (2.9%) and gains in
another 148 tumors (14.1%). The relationship between CMYC
alterations and tumor phenotype according to both selected defini-
tions are summarized in Table II. Both increased CMYC copy
numbers and CMYC gene amplifications were strongly associated
with tumor stage and grade (p < 0.0001 each). Increased copy
numbers were less frequent in squamous cell carcinomas as com-
pared to urothelial cancers (p 5 0.0373). This difference was not
found, however, for CMYC gene amplifications. Comparison of
different histologic subtypes was restricted to the subset of 258
muscle invasive (pT2–4) cancers. This was done to avoid a statis-
tical bias because histologic subtypes other than urothelial cancers
occur almost exclusively in muscle invasive tumors.

Gene alterations and prognosis

In order to evaluate the prognostic role of CMYC gene altera-
tions in transitional cell carcinoma (TCC), tumor-specific survival
and tumor progression were selected as clinical endpoints in the
subgroup of muscle invasive carcinomas (pT2–4) and in pT1 car-
cinomas, respectively. Tumor recurrence was used as an endpoint
in pTa tumors. The validity of the clinical data attached to the
arrayed tissues is demonstrated in a survival analysis including
tumor stage and grade (Figs. 1 and 2). Alterations of CMYC were
linked to reduced patient survival if tumors of all stages and
grades were jointly analyzed (amplification vs. normal, p 5
0.0281; increased copy number vs. normal copy number, p 5
0.0078; data not shown). Significance, however, was not main-
tained if the analysis was restricted to the subgroup of pT2–4 car-
cinomas (amplification vs. normal, p 5 0.4037; increased copy
number vs. normal copy number, p 5 0.6300; Figs. 3 and 4). Like-
wise, there was no association with CMYC alterations and pro-
gression in pT1 tumors (p 5 0.6414; data not shown) or recur-
rence in pTa tumors (p5 0.2692; data not shown).

Discussion

Our data show a relevant frequency of absolute and relative
copy number increases of the CMYC gene in urinary bladder can-
cer that were strongly linked to high grade and advanced stage in
bladder cancer. Accordingly, CMYC alterations were linked to
poor survival if all tumors of all stages were jointly analyzed. To
exclude the strong influence of tumor stage on patient survival,
analyses of clinical endpoints were restricted to the clinically rele-
vant subgroups of patients, i.e., tumor recurrence in pTa, tumor
progression in pT1 and patient survival in pT2–4 cancers. It
showed that there was no association with clinical outcome inde-
pendently from tumor stage.

No generally accepted standards exist for definition of altered
gene copy numbers. We therefore used 2 different methods for
analyzing the CMYC copy number changes. First, we categorized
all tumors with less than 3 CMYC copy numbers per cell as normal
CMYC copy number state. Consequently, tumors with 3 or more
gene copies were considered to have increased CMYC copy num-
ber. A total of 30.6% of our invasively growing tumors (pT1–4)
had an increased CMYC copy number. This number is somewhat
lower than reported in some previous FISH studies (50–90%).20,25

This is probably due to our cautious definition for aberrations

TABLE II – CMYC COPY NUMBERS, GAIN, AMPLIFICATION STATUS AND TUMOR PHENOTYPE

n1 Absolute
normal (%)

CMYC copy
number

increased (%)
p4 Mean value5

Relative CMYC copy number

Normal
(%)

Gain
(%)

Amplification
(%)

p4

Histology2 1,052 79.2 20.8 2.5 83 14.1 2.9
Transitional cell carcinoma 20 64.2 35.8 3 73.1 21.4 5.5
Squamous cell carcinoma 29 82.8 17.2 0.03737 2.3 79.3 17.2 3.4 0.75157

Small cell carcinoma 12 58.3 41.7 0.68497 4 91.7 0 8.3 0.06027

Sarcomatoid carcinoma 11 72.7 27.3 0.55617 2.3 72.7 18.2 9.1 0.87867

Adenocarcinoma 5 80 20 0.44487 2.6 80 20 0 0.74997

Stage3

pTa 467 90.1 9.9 2.2 88.7 10.5 0.6
pT1 247 73.3 26.7 2.5 80.2 15.8 4
pT1– 39 71.8 28.2 3.6 84.6 10.3 5.1
pT2– 201 64.2 35.8 < 0.0001 3 73.1 21.4 5.5 < 0.00016

Grade3

G1 123 95.9 4.1 2.1 93.5 5.7 0.8
G2 470 86.4 13.6 2.3 86.4 11.9 1.7
G3 365 65.5 34.5 < 0.0001 2.9 75.6 19.7 4.7 < 0.0001

Stage and grade3

pTa G1 123 95.9 4.1 2.1 93.5 5.7 0.8
pTa G2 298 91.6 8.4 2.2 89.3 10.1 0.7
pTa G3 46 65.2 34.8 2.7 73.9 26.1 0
pT1 G2 110 78.2 21.8 2.4 79.1 15.5 5.5
pT1 G3 137 69.3 30.7 2.7 81 16.1 2.9
pT2–4 G2 49 75.5 24.5 2.5 83.7 16.3 0
pT2–4 G3 152 60.5 39.5 < 0.0001 3.1 69.7 23 7.2 < 0.0001

1Number of tumors with interpretable results (only first biopsies are considered).–2Only pT2–4, not all subtypes, shown.–3Only TCC.–4Chi-
square p-value.–5Mean CMYC copy number.–6pT1–excluded.–7TCC vs. respective histological type.

FIGURE 2 – Influence of tumor grade on tumor-specific survival in
1,032 bladder cancer patients (patients with nonurothelial cancers
excluded).
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(aberration in > 50% of cells). Also, we analyzed partly truncated
nuclei on tissue sections while dissociated nuclei were investi-
gated in most previous studies.20,25

Another widely accepted method for gene copy number assess-
ment is based on the ratio of the gene copy number as compared to
the centromere copy number of the same chromosome. In our sec-
ond analysis, we therefore used a cutoff of 2.0 for the ratio CMYC/
centromere 8 to define amplification. This is analogous to the cut-
off of the FDA-approved PathVysion kit (Vysis-Abbott, Downers
Grove, IL) for detection of HER2 amplification. Our overall
amplification rate of 2.9% was comparable to previous studies that
had found CMYC amplification in 3 out of 87 (3.4%) tumors (24)
or in 1 of 37 (3%) tumors.35 A slightly higher frequency (6.5%)
was found in the FISH study of Watters et al.25 and in studies with
less quantitative methods such as competitive PCR (7.5%).17

Lower levels of relative increases of the CMYC gene were
recorded as CMYC gains in this analysis. Such CMYC gains are
likely to reflect large but relatively low-level overrepresentations
of the entire 8q arm as it is often seen in CGH analysis of bladder
cancer and other tumors. However, our frequency of CMYC gain
(17.7% in pT1–4 cancers) was somewhat lower than the 28–42%
found in CGH studies.36–40 One possible explanation for this dis-

crepancy could be a bias of previous CGH studies toward large
tumors with a high content of tumor cells. The higher rate of
tumors with an absolute gain of CMYC as compared to the fre-
quency of relative gains could also suggest that overrepresenta-
tions of CMYC may often include a large stretch of the chromo-
some including centromere 8. In that case, 8q could be overrepre-
sented in CGH analysis without an abnormality in the ratio
CMYC/centromere 8.

Independent of the definitions used in this study, CMYC altera-
tions were strongly associated with high-grade and invasive tumor
growth. This fits well with the results of several previous reports
finding similar associations of genomic CMYC alterations with
advanced grade and stage.20,25 All these data fit well with models
suggesting 2 different entities of bladder neoplasms, 1 (pTaG1/
G2) being genetically stable with low risk of progression, and the
other (pTa/G3 and pT1–4) with a high degree of genetic instability
and a high risk of progression.36,39,41

Although large-scale descriptive information is provided in this
study, no direct evidence is provided for a functional role of CMYC
in bladder cancer. The strongest argument for an important role of
CMYC gene alterations in bladder cancer comes from the presence
of high-level amplifications in a small fraction (< 3%) of cases. It is
likely that such a high-level CMYC amplification resulted in a con-
secutive CMYC overexpression that has provided a direct growth
advantage to these cancer cells. The functional relevance of low-
level absolute or relative CMYC overrepresentations is less clear.
We were unable to identify a CMYC antibody that yielded satisfac-
tory results (association of protein expression with high-level
amplification) in our hands. This renders it impossible to estimate
the clinical impact of CMYC protein expression in bladder cancer
since potential epigenetic factors leading to enhanced or decreased
CMYC transcription activity without detectable gene copy number
changes cannot be assessed. Instability of the CMYC protein in for-
malin-fixed tissues may be a major reason for these difficulties. The
inability for reliable CMYC protein measurement on formalin-fixed
tissues is also illustrated by the significant discordance of previous
IHC studies describing both no association with the tumor
stage14,15,18 and associations with early stage in cancer.20,21

Previous studies have shown that low-level overrepresentations
of the CMYC gene is often part of a complex rearrangement that
includes an overrepresentation of a large segment of 8q and often
also a deletion of 8p.20,23,36–45 It is therefore possible that at least
in a fraction of bladder tumors, the genomic CMYC gene alteration
itself, as detected with our assay, may not be the reason for a sig-
nificant growth advantage of altered cells. It is also possible that
cells with a detectable CMYC overrepresentation are selected in
the tumor, e.g., by a growth advantage driven by overexpression
of one or multiple other genes on 8q or by inactivation of a tumor
suppressor gene on 8p.

In conclusion, the large number of bladder tumors analyzed in
our TMA allowed us to obtain a comprehensive picture on the
CMYC copy number changes in bladder cancer. Overrepresenta-
tions of the CMYC gene clearly linked to a genetically unstable
high-grade and/or invasive tumor phenotype. However, no evi-
dence was found that, within this group of unstable tumors, CMYC
alterations would distinguish a clinically relevant tumor category.
The question for the prognostic impact of CMYC protein expres-
sion remains unanswered since no paraffin-suitable antibody was
identified in our study. TMAs are highly suited for rapid large-
scale surveys comparing molecular features with clinicopathologic
parameters.
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Abstract

Amplification of 6p22.3 is one of the most frequent chromosomal alterations in

high grade and invasive urinary bladder cancer. In order to determine

amplification levels of all known genes inside the 1.6 kb core amplicon, we

constructed a small tissue microarray (TMA) from 9 primary bladder cancers

and 4 bladder cancer cell lines with known 6p22 amplification, and analyzed it

with a panel of 16 overlapping FISH probes constructed from bacterial

artificial chromosomes (BACs). The highest amplification rates were observed

for the transcription factor E2F3 and the adjacent gene NM_017774, the

function of which is not known. For a more detailed analysis of these genes,

additional large section analysis was done in 19 primary bladder cancers and

18 bladder cancer cell lines. It showed that E2F3 and NM_017774 were

always coamplified, but amplification levels in terms of the number of gene

copies were slightly higher (16-19 copies per nucleus) for E2F3 as compared

to NM_017774 (13-15 gene copies). Our study demonstrates that E2F3 and

NM_017774 are located on the top of the 6p22.3 amplicon in bladder cancer.

It remains to be studied which one of the two genes drives 6p22 amplification,

or if both genes contribute jointly to the aggressive features of 6p22 amplified

bladder cancers.



Einleitung

Amplifikationen der chromosomalen Region 6p22 gehören zu den häufigsten

genetischen Veränderungen des Harnblasenkarzinoms. Sie treten in etwa

10% aller urothelialen Tumoren auf, insbesondere in invasiv wachsenden

(pT1-4) Karzinomen (1). Der genaue Entstehungsmechanismus von

Genamplifikationen ist bislang ungeklärt. Es wird vermutet, daß

Amplifikationen dazu dienen, die Transkriptionsrate eines oder mehrere Gene

massiv zu steigern, um eine natürliche Limitierung der Wachstumsrate durch

begrenzt verfügbare Genprodukte zu übergehen (2). So ist zum Beispiel beim

Mammakarzinom die Amplifikation des ERBB2 Gens, das für den HER2-

Rezeptor (das Zielprotein der Herceptin-Therapie) kodiert, mit einer starken

HER2 Proteinüberexpression, Entdifferenzierung, und ungünster Prognose

assoziiert (3). Der Erfolg der Herceptin-Therapie beim Mammakarzinom hat

aber auch gezeigt, dass amplifizierte Gene die „Achillesferse“ eines Tumors

aufzeigen können, und somit potentielle Ziele für neue Genspezifische

Therapeutika darstellen (4). Das Zielgen der 6p22-Amplifikation beim

Harnblasenkarzinom ist bislang unbekannt. Kartierungen des Amplikons

durch Fluoreszenz in situ Hybridisierung (FISH) mit überlappenden Sonden

haben gezeigt, dass insgesamt 8 bekannte Gene (PRL, SOX4, NM_017774,

E2F3, OACT1, ID4, IBRDC2, DEK) in der 1,5 Megabasen überspannenden

amplifizierten Region lokalisiert sind. Allerdings werden die meisten dieser

Gene in 6p22 amplifizierten Tumoren entweder gar nicht oder nur in äusserst

geringen Mengen exprimiert, sodaß sie als Zielgene nicht in Frage kommen

(5-7). Lediglich für zwei Gene konnte bislang ein Zusammenhang zwischen

Genamplifikation und verstärkter Expression festgestellt werden (1, 5). Eines

dieser Gene ist der Transkriptionsfaktor E2F3, ein Mitglied einer Gruppe von

Genen (E2Fs) mit zentraler Funktion bei der Kontrolle des Zellzyklus. E2F3 ist

in seiner inaktiven Form an das Retinoblastoma-Protein (Rb) gebunden.

Phosphorylierung von Rb durch zyklinabhängige Kinasen (CDKs) führt zur

Dissoziation des Rb/E2F3-Komplexes und zum Übergang der Zelle von der

G1- in die S-Phase des Zellzyklus (8). Untersuchungen der E2F3

Amplifikation und Expression an einem Gewebemikroarray (TMA) mit über



2300 Tumoren haben ergeben, das E2F3-Veränderungen mit invasivem

Wachstum, fortgeschrittenem Tumorstadium, schlechter Differenzierung, und

erhöhter Proliferationsrate einhergehen (1). Das zweite Gen, mit der

Bezeichung NM_017774, grenzt direkt an E2F3. Die Funktion von

NM_017774 ist zwar noch unbekannt, doch deuten bestimmte funktionelle

Motive der Aminosäurekette darauf hin, dass es sich um ein Protein handeln

könnte, das bei der Translation von der mRNA zum Protein eine wichtige

Rolle spielen könnte (9). Somit kommt neben E2F3 auch NM_017774 als

Kandidat für das Zielgen der 6p22-Amplifikation in Frage. Hinweise darauf,

welchem der beiden Gene die Ampifikation bevorzugt gilt, könnten zum einen

die Häufigkeit der Amplifikation, zum anderen die Amplifikationsstärke geben.

Das Ziel unserer Studie war daher, die Amplifikationsstärke und Häufigkeit

insbesondere von E2F3 und NM_017774, sowie weiterer benachbarter Gene

im 6p22.3 Amplikon, zu untersuchen.

Material und Methoden

Studiengewebe

19 Harnblasenkarzinome mit 6p22-Amplifikation wurden in einer früheren

Studie am TMA (1) identifiziert. Für die hier vorliegende Studie wurden

Großschnitte jener Tumoren untersucht. Eine Übersicht der verwendeten

Gewebeproben mit histo-pathologischen Parametern ist in Tabelle 1

dargestellt. Zur Ergänzung wurde außerdem ein bereits existierender

Zelllinien-TMA mit 18 verschiedenen Blasenkarzinom-Zelllinien (10) auf E2F3

und NM_017774-Veränderungen untersucht. Folgende Zelllinien sind auf dem

TMA vertreten: J82, RT4, T24, HT1376, SW780, TCC SUP, Hs769.T,

Hs853.T, HB-CLS-1, HB-CLS-439, RT112, RT112 D21, EJ28, 5637,

BFTC905, Ku1919, SCaBER und CRL7930. Darüber hinaus wurde ein

spezieller TMA (6p22-TMA) aus 4 Zelllinien (HT1376, TCC SUP, RT112-D21,

5637) und 9 Primärtumoren mit 6p22 Amplifikation hergestellt, um die

Amplifikationsstärke der Gene im Amplikon zu vergleichen.



Fluoreszenz in situ Hybridisierung (FISH)

Zur FISH-Untersuchung wurden DNS-Sonden aus den künstlichen

Bakterienchromosomen (BACs/PACs) PAC dJ177P22 (für E2F3; Sanger

Centre, UK) und BAC RP3444C7 (für NM_017774; RZPD, Berlin, Germany)

hergestellt. Die weiteren, für diese Studie verwendeten BACs, sind in

Abbildung 1 dargestellt. Alle BACs/PACs wurden über Nacht in LB Medium

bei Raumtemperatur inkubiert. Die Plasmide mit den humanen DNS

Sequenzen wurden mit einem kommerziell erhältlichen Kit (Miniprep, Qiagen,

Hilden) den Herstellervorschriften entsprechend extrahiert. Beide Sonden

wurden über ein Standard-Nicktranlationsverfahren mit Digoxigenein markiert.

Als interne Referenz wurde für jede Hybridisierung eine Spektrum-Rot

markierte Sonde gegen Zentromer 6 ko-hybridisiert (Vysis, Downers Grove,

IL). Hybridisierung und stringente Waschungen wurden exakt nach dem

Vysis-Protokoll (LSI Prozedur) durchgeführt. Die Sonden gegen E2F3 und

NM_017774 und die anderen BACs/PACs wurden durch Inkubation mit einem

Primärantikörper gegen Digoxigenin (Maus anti Dig, 45 min, 37°C) und FITC-

markierten Sekundärantikörper (Ziege anti Maus, 45 min, 37°C)

nachgewiesen. Alle Präparate wurden unter einem Fluoreszenzmikroskop mit

geeigneten Filtern von einer Person (HN) ausgewertet. Für jedes Gewebe

wurde die Anzahl der FISH-Signale für Zentromer 6 und E2F3, sowie

NM_017774 in ca. 20 Zellkernen ausgezählt.

Ergebnisse

Amplifikationsstärke der Gene im 6p22.3 Kernamplikon

16 überlappende BAC/PAC Sonden wurden auf dem 6p22-TMA hybridisiert.

Die durchschnittliche gezählte Kopiezahl (4 Zelllinien, 9 Primärtumoren) je

Sonde ist in Abbildung 1 dargestellt. Die weitaus höchsten Kopiezahlen (16-

18 Gensignale) wurden für E2F3 und einen ca 400 Kb grossen DNS Abschnitt

um E2F3 herum gefunden. Das benachbarte NM_017774 Gen weist nur im

5’-Bereich eine solch hohe Kopiezahl auf. Die weiter 3’ gelegenen Exons des

Genes zeigten hingegen nur eine „durchschnittliche“ Amplifikationsstärke, wie



sie auch für andere bekannte Gene im Kernamplikon (z.B. ID4, SOX4)

gefunden wurden.

Ko-Amplifikationsmuster von E2F3 und NM_017774

Um ein genaueres Bild des Amplifikationsmusters im Zentrum des Amplikons

zu erhalten, wurde die FISH Analyse für E2F3 und NM_017774 in einer Serie

von 19 Primärtumoren an Standard-Gewebeschnitten, sowie einem

Blasentumor-Zelllinien TMA mit 18 Zelllinien durchgeführt. Die FISH

Ergebnisse sind in Tabelle 1 zusammengefasst. Der Vergleich zwischen

E2F3 und NM_017774 zeigt, dass alle E2F3 amplifizierten Tumoren und

Zelllinien ebenfalls NM_017774 Amplifikationen aufweisen. Es konnte kein

einzelner Fall identifiziert werden, in dem nur E2F3, aber nicht NM_017774

(oder umgekehrt) amplifiziert vorlagen. Auch die Unterschiede in der

Genkopiezahl waren in allen Fällen nur äußerst minimal.

Diskussion

In einer vorhergehenden Studie konnten wir zeigen, dass Amplifikationen der

chromosomalen Region 6p22.3 mit invasivem Wachstum, fortgeschrittenem

Tumorstadium, Entdifferenzierung und erhöhter Proliferationsrate assoziiert

sind (1). Obwohl das 6p22.3 Amplikon mit ca. 1,6 Kb relativ klein ist,

umschließt es doch mindestens 8 Gene. Welche(s) dieser Gene letztendlich

das Ziel der Amplifikation ist, konnte bislang nicht geklärt werden.

Bisherige Untersuchungen haben gezeigt, dass 6p22.3 Amplifikationen

lediglich bei E2F3 und NM_017774 zu einem massiv erhöhten

Transkriptionsniveau führen. Unsere Untersuchung des 1,6 Mb umfassenden

Kernamplikons stellt eine lückenlose Feinkartierung der Genkopiezahl von 16

Genloci innerhalb dieses Areals dar, mit einer Auflösung von durchschnittlich

nur 100 Kb. Das Amplifikationsniveau zeigt sich dabei relativ konstant bei 13-



14 Genkopien, wobei nur 4 Sonden direkt um E2F3 herum eine höhere

Kopiezahl (16-19 Signale) erreichen. Diese Zählungen können zwar nur eine

grobe Annäherung der tatsächlichen Kopiezahlen wiedergeben, weil eine

exakte Bestimmung der Signalzahl bei Genamplifikationen aufgrund von

Signalclustern und überlappenden Signalen praktisch unmöglich ist. Dennoch

weist der E2F3-Locus das vergleichsweise höchste Amplifikationsniveau auf.

Das benachbarte NM_017774 Gen dagegen ist nicht über seine gesamte

Länge gleichmässig stark amplifiziert. Eine mit E2F3 vergleichbar hohe

Kopiezahl ist nur im Bereich der vorderen (3’ gelegenen) 3-5 Exons zu finden.

NM_017774 ist mit 1,74 Kb ein zwar kein übermäßig großes Gen, jedoch

erstrecken sich seine 14 Exons über eine genomische Distanz von 685 Kb.

Da für die Transkription des gesamten Genes nur ein zusammenhängendes

Stück genomischer DNS als Matrize in Frage kommt, muss die geringere

Kopienzahl der hinteren (5’) Exons als limitierend für das

Gesamtexpressionsniveau angesehen werden. Dies würde bedeuten, dass

die Amplifikation in erster Linie der Expressionssteigerung von E2F3 zugute

kommt, und vielleicht weniger effizient für NM_017774 sein könnte. Allerdings

modulieren auch andere Faktoren als die reine Gendosis das

Expressionsniveau, z.B. die Verteilung von regulativen Elementen (Enhancer,

Silencer) im genomischen Umfeld des Genes, die Verfügbarkeit von

Transkriptionsfaktoren, sowie epigenetische Faktoren wie z.B.

Transkriptionsregulierung durch Promoter-Methylierung.

Ein weiterer wichtiger Hinweis auf die relative Bedeutung von E2F3 und

NM_017774 für die 6p22 Amplifikation kann aus der molekularen

Epidemiologie dieser Gene gewonnen werden. Es ist logisch anzunehmen,

dass das Zielgen in jedem einzelnen 6p22 amplifizierten Tumor auch von der

Amplifikation betroffen sein sollte. Die Entdeckung eines einzigen 6p22

amplifizierten Tumors mit Beteiligung nur des einen Genes – ohne

Amplifikation des anderen – wäre folglich ein wichtiges Indiz dafür, dass es

sich beim einzeln amplifizierten Gen um das Zielgen der Amplifikation

handeln müsste. Obwohl etwa ein Viertel aller E2F3 amplifizierten Tumoren,

die in unserer vorhergehenden TMA Analyse als E2F3 amplifiziert gefunden

wurden (1) zur Verfügung standen und am Grosschnitt nochmals auf E2F3-



und NM_017774-Amplifikationen nachuntersucht werden konnten, ist in

keinem dieser 19 Fälle nur eines der beiden Gene allein amplifiziert gewesen.

Dieses Ergebnis lässt vermuten, dass E2F3 und NM_017774 stets ko-

amplifiziert vorliegen. Ob dies lediglich auf ihre räumlich Nähe im Genom

(<100 Kb Abstand) zurückzuführen ist, oder ob das 6p22-Amplikon

möglicherweise über zwei gleichwertige Zielgene verfügt, werden erst

funktionelle Untersuchungen zeigen können.

Zusammenfassend ist zu sagen, dass E2F3 und NM_017774 das Zentrum

der 6p22 Amplifikation beim Harnblasenkarzinom repräsentieren. Es scheint

nicht wahrscheinlich, dass andere Gene in der Region, wie z.B. ID4 oder

SOX4, der Amplifikation zu Grunde liegen. Allerdings kann die Untersuchung

des Amplifikationsstatus’ alleine nicht klären, ob E2F3 oder NM_017774 das

wahrscheinlichere Zielgen der 6p22.3 Amplifikation sind. Beide Gene sind

vermutlich schon alleine aufgrund ihrer räumlichen Nähe grundsätzlich ko-

amplifiziert. Lediglich das etwas höhere Amplifikationsniveau von E2F3 im

Vergleich zu NM_017774 könnte ein Hinweis auf eine bedeutendere Rolle

von E2F3 sein. Alternativ ist jedoch auch nicht auszuschließen, das beide

Gene einen kooperativen Effekt auf das Wachstum 6p22 amplifizierter

Tumoren ausüben, wie dies z.B. für c-myc und Her2/neu beim

Mammakarzinom beschrieben worden ist (11, 12). Weiterführende

funktionelle Analysen, etwa an Blasenkarzinomzelllinien mit und ohne 6p22.3

Amplifikation sind notwendig, um die Frage nach dem Zielgen abschließend

zu beurteilen.



Abbildungen / Tabellen

Tabelle 1: Ko-Amplifikationsmuster von E2F3 und NM_017774.

PT=Primärtumor, ZL = Zelllinie

Gewebe Probe Stadium/Grad #C6 #E2F3 #NM_017774 Ergebnis
E2F3

Ergebnis
NM_017774

PT1 B77.20282 pT2-4/G3 Keine Signale - - - -
PT2 81/15573 pT1/G3 4-8 4-12 4-12 gain gain
PT3 B82.2514 pT1/G3 2-4 2-4 2-4 normal normal
PT4 83/19350 pTa/G3 2-10 10-20 10-20 gain gain
PT5 84/6859 pT1/G3 1-2 10-20 10-20 amp amp
PT6 86/18588 pT1/G3 2-4 10-20 10-20 amp amp
PT7 87/3359 pT1/G3 2-4 10-30 10-30 amp amp
PT8 87/6655 II pT2-4/G3 4 10-20 20 amp amp
PT9 88/32460 pT2-4/G3 2-4 10-20 10-20 amp amp

PT10 B89.13845 pT1/G3 Keine Signale. - - - -
PT11 mü91.1770 pT1/G3 2-3 2-3 2-3 normal normal
PT12 B91.2252 pT1/G3 2-4 6-10 6-10 gain gain
PT13 92/14878 IA pT2-4/G3 2-6 50 50 amp amp
PT14 92/17791 pT2-4/G3 2-4 10 10 amp amp
PT15 92/22075 pT2-4/G3 2-5 2-8 2-6 gain gain
PT16 92/8711 pT1/G3 2-4 30 30 amp amp
PT17 94/1684 pT2-4/G3 2-6 2-10 2-6 normal normal
PT18 95/11037 pT2-4/G3 2 10 10 amp amp
PT19 B96.17168 pT1/G3 2-4 2-4 2-4 normal normal
ZL1 J82 - 2-4 2-6 2-7 normal normal
ZL2 RT4 - 4 4 5 normal normal
ZL3 T24 - 2-3 2-6 2-3 normal normal
ZL4 HT1376 - 2-6 20 20 amp amp
ZL5 SW780 - 2-4 2-4 2-5 normal normal
ZL6 TCC SUP - 2-4 20 20 amp amp
ZL7 Hs769.T - 2-4 2-4 2-4 normal normal
ZL8 Hs853.T - 2-4 2-4 2-4 normal normal
ZL9 HB-CLS-1 - 2 2 3 normal normal
ZL10 HB-CLS-439 - 1 6 4-6 amp amp
ZL11 RT112 - 2-4 2-4 2 normal normal
ZL12 RT112 D21 - 2-4 2-6 2-4 normal normal
ZL13 EJ28 - 2-4 2-4 2-4 normal normal
ZL14 5637 - 2 20 20 amp amp
ZL15 BFTC905 - 2-4 2-4 2 normal normal
ZL16 Ku1919 - 2-4 2-4 2 normal normal
ZL17 SCaBER - 4 4 2-4 normal normal
ZL18 CRL7930 - 4 4 2-4 normal normal



Abbildung 1: Schematische Darstellung vom Kerngebiet des 6p22.3
Amplikons: Überlappende BAC Klone sind am unteren Rand des Diagramms
aufgeführt. Die grüne Farbe steht für bereits bekannte Gene, cDNS
Transkripte sind hingegen mit hellgrün markiert. Die mittlere
Amplifikationsrate (=durchschnittliche Signalintensität in 10 amplifizierten
Primärtumoren und 2 amplifizierten Tumorzelllinien) für jeden untersuchten
BAC Klon wurde mit einem roten Punkt dargestellt.
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E2F3 is the main target gene of the 6p22 amplicon with high specificity

for human bladder cancer

MOeggerli1, P Schraml2, C Ruiz1, M Bloch1, H Novotny1, M Mirlacher3, G Sauter3 and R Simon3

1Department of Molecular Pathology, Institute of Pathology, University of Basel, Basel, Switzerland; 2Departement Pathology,
University of Zurich, Zurich, Switzerland and 3Department of Pathology, University Medical Center Hamburg-Eppendorf,
Hamburg, Germany

Amplification of 6p22 occurs in about 10–20% of bladder
cancers and is associated with enhanced tumour cell
proliferation. Candidate target genes for the 6p22
amplicon include E2F3 and the adjacent gene
NM_017774. To clarify which gene is representing the
main target, we compared the prevalence of the amplifica-
tion and the functional role of both genes. Amplification of
E2F3 and NM_017774 was analysed by fluorescence
in situ hybridization on a bladder cancer tissue microarray
composed of 2317 cancer samples. Both genes showed
amplification in 104 of 893 (11.6%) interpretable tumours
and were exclusively found co-amplified. Additional
gene expression analysis by real-time polymerase chain
reaction in 12 tumour-derived cell lines revealed
that amplification of 6p22 was always associated with
co-overexpression of E2F3 and NM_017774. Further-
more, RNA interference was used to study the influence of
reduced gene expression on cell growth. In tumour cells
with and without the 6p22 amplicon, knockdown of E2F3
always lead to unequivocal reduction of proliferation,
whereas knockdown of NM_017774 was only capable to
slow down cell proliferation in non-amplified cells. Our
findings point out that E2F3 but not NM_017774 is
driving enhanced proliferation of 6p22 amplified tumour
cells. We conclude that E2F3 must be responsible for the
growth advantage of 6p22 amplified bladder cancer cells.
Oncogene advance online publication, 4 September
2006; doi:10.1038/sj.onc.1209946

Keywords: E2F3; 6p22; bladder cancer; amplification
target gene

Amplification of the chromosomal region 6p22 is one of
the most frequent genetic alterations in urinary bladder
cancer, affecting up to 20% of high grade, invasively
growing tumours (Bruch et al., 2000; Tomovska et al.,
2001; Hurst et al., 2004; Oeggerli et al., 2004). In a recent
study, we narrowed down the amplicon to a region

spanning approximately 1.6 megabases at 6p22.3
enclosing 13 different genes (Tomovska et al., 2001).
Only two of these genes, the transcription factor E2F3
and the adjacent gene NM_017774, are consistently
overexpressed in 6p22.3 amplified bladder cancers and
are therefore considered candidate genes driving the
amplification (Bruch et al., 2000; Feber et al., 2004;
Hurst et al., 2004).
E2Fs play an important role in the retinoblastoma

(Rb) pathway (Hunter and Pines, 1994). The regulatory
function of Rb largely depends on the ability to bind
and inhibit E2F family members of transcription factors
including E2F3 (Hiebert et al., 1992; Qian et al., 1992).
We have recently shown that amplification of the E2F3
gene locus is associated with protein overexpression,
invasive tumour growth and enhanced cell proliferation
(Oeggerli et al., 2004). The function of NM_017774 is
currently not known, but it shows some homology to a
protein that is associated with cyclin–dependent kinase 5
(CDK5RAP1), which is the reason why it has originally
been termed cyclin–dependent kinase 5–associated
protein 1–like 1. However, it is important to note that
there is no experimental evidence for any functional
similarities between these two proteins.
In order to determine, whether E2F3 or NM_017774

is the main amplification target, or if both genes might
contribute jointly to the aggressive features of 6p22.3–
amplified bladder cancers, we first inspected amplifica-
tion frequencies in 18 bladder cancer cell lines by
fluorescence in situ hybridization (FISH), as described
previously (Wagner et al., 1997). We utilized dig-
oxigenated BAC (NM_017774: BAC RP3444C7,
RZPD, Berlin, Germany) and PAC (E2F3: PAC
dJ177P22, Sanger Centre, Cambridge, UK) probes
containing the target genes and a Spectrum Red-labeled
chromosome 6 centromeric probe (CEP6) as a reference
(Vysis, Downers Grove, IL, USA). Amplifications were
found in four of 18 (22%) bladder cancer cell lines
(HTB-5, HTB-9, CRL-1472 and HB-CLS-439), showing
that E2F3 and NM_017774 were always co-amplified.
A bladder cancer prognosis tissue microarray (TMA),

composed of 2317 formalin-fixed paraffin–embedded
tissues (Oeggerli et al., 2004), was then used to
comprehensively compare the amplification frequencies
of both genes. We hypothesized that the main amplifica-
tion target would be present in all tumours that revealReceived 9 February 2006; revised 24 July 2006; accepted 24 July 2006
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amplification of the 6p22.3 genomic region. Initial
amplification frequencies were 9.8% for NM_017774
and 11.4% for E2F3. A small subset of 34 tumours
(3.8%) could be identified, exhibiting amplification
of only one gene (see Table 1a and Table 1b). The
following case-by-case comparison of these tumours
using conventional large tissue sections demonstrated,
however, that every tumour with E2F3 amplification
had also NM_017774 amplification, and vice versa.
The initially observed discrepancies were either due to
variable interpretation of borderline findings in low level
amplified tumours (15 cases) or counting errors because
of low FISH signal intensities, high background, tissue
damage or technical artefacts (19 cases). In summary,
co-amplification of E2F3 and NM_017774 was found
in all 6p22.3 amplified tumours (11.6%). As a con-
sequence, amplification of NM_017774 is identically
associated with invasive and high-grade phenotype, and
patient prognosis as already published for E2F3
(Oeggerli et al., 2004).
As FISH analysis could not identify either E2F3 or

NM_017774 as the primary amplification target, we next
performed mRNA expression analysis. We expected
that the main amplification target gene would show a
particularly strong mRNA expression increase. Because

of the superior RNA quality in freshly collected tissues
as compared to formalin-fixed paraffin–embedded sam-
ples, we compared mRNA levels of three amplified and
four non-amplified bladder cancer cell lines. Detailed
results of our gene expression analysis can be taken
from Figure 1. E2F3 was generally expressed at higher
levels than NM_017774 (average difference 4.25-fold).
However, 6p22.3 amplification had a comparable
influence on E2F3 and NM_017774 expression,
scaling up individual mRNA levels at least 10-fold.
These findings are in line with a previous analysis in cell
lines HTB-5, HTB-9, JO’N and CRL-1472 by Hurst
et al. (2004) who also found significantly increased
expression of NM_017774 and E2F3 following the
amplification of 6p22.3.
These results point to the hypothesis that both

genes might jointly contribute to the aggressive features
of 6p22.3–amplified bladder cancers. Clearly, DNA
amplification is a perfect method to co-overexpress
neighbouring genes. Evidence of clusters of co-over-
expressed genes have already been detected in human,
fly and worm (Wang et al., 1995). Examples in humans
include the non-I-integrin alpha-chain genes located in
clusters on chromosomes 2, 12 and 17. It has been
suggested before that keeping functionally related genes

Table 1a Initial FISH analysis for E2F3 and NM_017774

Sample Stage/grade Gene copy number Ratio Initial score

C6 E2F3 NM_017774 E2F3 NM_017774

1 PT1 PT1/G3 6 15 20 2.5 3.3 Borderline
2 PT2 PT1/G3 4 10 12 2.5 3.0 Borderline
3 PT3 pT1/G3 2–4 8 15 2.7 5.0 Borderline
4 PT4 pT2–4/G2 2–4 8 10 2.7 3.3 Borderline
5 PT5 pTa/G2 1–2 4 5 2.7 3.3 Borderline
6 PT6 pT2–4/G3 2–5 10 15 2.9 4.3 Borderline
7 PT7 pT2–4/G3 2–5 10 12 2.9 3.4 Borderline
8 PT8 PT1/G3 2 6 5 3.0 2.5 Borderline
9 PT9 PT1/G2 1 3 2 3.0 2.0 Borderline
10 PT10 PT1/G3 4–6 15 10 3.0 2.0 Borderline
11 PT11 pT2–4/G3 2–5 12 10 3.4 2.9 Borderline
12 PT12 PT1/G3 1–2 6 4 4.0 2.7 Borderline
13 PT13 pTa/G3 2 8 5 4.0 2.5 Borderline
14 PT14 pT2–4/G3 1 4 2 4.0 2.0 Borderline
15 PT15 pT2–4/G3 1 4 2 4.0 2.0 Borderline
16 PT16 pT1/G3 2–4 10 2 3.3 0.7 Discrepant
17 PT17 pT1/G3 2 10 2 5.0 1.0 Discrepant
18 PT18 pT1/G3 2–5 3 13 0.9 3.7 Discrepant
19 PT19 pT2–4/G3 2 12 2 6.0 1.0 Discrepant
20 PT20 pT1/G3 4 12 2 3.0 0.5 Discrepant
21 PT21 pT2–4/G3 2–5 6 15 1.7 4.3 Discrepant
22 PT22 pTa/G3 2 15 2 7.5 1.0 Discrepant
23 PT23 pT1/G3 2–4 10 2 3.3 0.7 Discrepant
24 PT24 pT2–4/G3 2–3 10 2 4.0 0.8 Discrepant
25 PT25 pT2–4/G3 2–3 2 20 0.8 8.0 Discrepant
26 PT26 pT2–4/G3 2–4 10 2 3.3 0.7 Discrepant
27 PT27 pT1/G3 2–3 2 35 0.8 14.0 Discrepant
28 PT28 pT2–4/G3 2–4 15 2 5.0 0.7 Discrepant
29 PT29 pT1/G3 2 15 2 7.5 1.0 Discrepant
30 PT30 pT1/G3 1–2 2 15 1.3 10.0 Discrepant
31 PT31 pT1/G3 2–4 4 10 1.3 3.3 Discrepant
32 PT32 pT1/G3 1–2 2 30 1.3 20.0 Discrepant
33 PT33 pT2–4/G3 2 20 2 10.0 1.0 Discrepant
34 PT34 pT1/G3 1 20 4 20.0 4.0 Discrepant

Abbreviations: FISH, fluorescence in situ hybridization; PT, primary tumour.
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near could be advantageous for a cell because it may
ease the burden of unpacking of DNA for transcription
(Lee and Sonnhammer, 2003). It appears possible that
amplification might not always target only one parti-
cular gene, but two or more genes that contribute to a
common function or pathway. Although only little is
known about the possible function of NM_017774, the
presence of particular functional domains in the
predicted protein structure have linked it to the protein
translation machinery (Altschul et al., 1997). It can be
expected that such a cooperative effect of E2F3 and

Table 1b Large section FISH analysis for E2F3 and NM_017774

Sample Stage/grade Gene copy number Ratio Final score

C6 E2F3 NM_017774 E2F3 NM_017774

1 PT16 pT1/G3 2–3 2–3 2–3 1.0 1.0 Normal
2 PT17 pT1/G3 2–4 2–4 2–4 1.0 1.0 Normal
3 PT18 pT1/G3 2–4 2–4 2–4 1.0 1.0 Normal
4 PT19 pT2–/G3 2–5 2–8 2–6 1.4 1.1 Gain
5 PT20 pT1/G3 4–8 4–12 4–12 1.3 1.3 Gain
6 PT21 pT2–/G3 2–6 2–10 2–6 1.5 1.5 Gain
7 PT22 pTa/G3 2–10 10–20 10–20 2.5 2.5 Gain
8 PT23 pT1/G3 2–4 6–10 6–10 2.7 2.7 Gain
9 PT24 pT2–/G3 2–4 10 10 3.3 3.3 Co-amplified
10 PT25 pT2–/G3 4 10–20 20 3.8 5.0 Co-amplified
11 PT26 pT2–/G3 2 10 10 5.0 5.0 Co-amplified
12 PT27 pT1/G3 2–4 10–20 10–20 5.0 5.0 Co-amplified
13 PT28 pT2–/G3 2–4 10–20 10–20 5.0 5.0 Co-amplified
14 PT29 pT1/G3 2–4 10–30 10–30 6.7 6.7 Co-amplified
15 PT30 pT1/G3 1–2 10–20 10–20 10.0 10.0 Co-amplified
16 PT31 pT1/G3 2–4 30 30 10.0 10.0 Co-amplified
17 PT32 pT2–/G3 2–6 50 50 16.7 16.7 Co-amplified
18 PT33 pT2–/G3 Tissuea — — — — —
19 PT34 pT1/G3 Tissueb — — — — —

Abbreviations: FISH, fluorescence in situ hybridization; PT, primary tumour. aTissue¼ insufficient tissue left. bTissue¼ tissue damage.

Figure 1 Relative gene expression levels of E2F3 and NM_017774
in various cancer cell lines with and without 6p22.3 amplification.
Both genes are markedly upregulated in amplified cell lines. Cell
lines were obtained from American Type Culture Collection
(ATCC, Manassas, VA, USA) and grown under standard cell
culturing conditions. RNA isolations were carried out according to
the manufacturer’s specifications using DNase I system in
combination with the RNeasy kit (Qiagen, Hilden, Germany).
RNA concentrations were determined with a spectrophotometer.
For each cell line, 250 ng total RNA was used as starting material
for complementary DNA (cDNA) synthesis combined with Oligo-
dT (Roche, Basel, Switzerland) as primer. Real-time PCR was
performed in duplicates in 20 ml reactions containing: 2 ml cDNA
template (from 1:2 dilutions of cDNA synthesis reaction), 10ml
FastStart SYBR Green I PCR Master Mix (Roche), MgCl2 as well
as forward and reverse primer mix (10mM each). Thermal cycling
conditions for the LightCycler Instrument (Roche) were: one cycle
at 951C for 10min at steps of 201C/s (activation), 40 cycles at 951C
for 15 s at 201C/s, 551C for 10 s at 201C/s and 721C for 10 s at 51C/s
(amplification) and one additional cycle at 951C for 1 s at 201C/s,
651C for 15 s at 201C/s and 991C for 1 s at 0.051C/s (melting).
Relative levels of expression were determined using the 2�DDCT

method as described by Livak and Schmittgen (2001). All samples
were normalized against glyceraldehydes-3-phosphate dehydro-
genase (G3PDH).

Figure 2 Western blot analysis displaying the reduction of E2F3
expression, induced by E2F3-specific knockdown in 6p22.3-
amplified cancer cell line HTB-5. Nonsense RNAi was used as
negative control, G3PDH as loading control. Cells were serum
starved at the beginning of the experiment (at that time E2F3 is not
expressed). Protein was extracted from cell line HTB-5, according
to Leone et al. (1998). Ten micrograms protein of each sample was
subjected to sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis for reduced samples on 10% polyacrylamide gels
(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
protocol. Blots were incubated with mouse monoclonal E2F3
Ab-4 primary antibody (1:1000) (Lab Vision, Fremont, CA, USA)
followed by incubation with goat anti-mouse IgG secondary
antibody (1:2000) (Fc, AP127P; Juro Supply AG, Lucerne,
Switzerland). Finally, blots were processed with the enhanced
chemiluminescence system (Amersham Pharmacia Biotech, Due-
bendorf, Switzerland) and exposed to Kodak AR film (Stuttgart,
Germany).
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NM_017774 would result in a particular strong
growth advantage and that any reduction in the
quantity of one of these two genes should be sufficient
to reverse the effect.
In order to test this hypothesis, we decided to perform

gene silencing experiments in 6p22.3–amplified cell lines.
RNA interference (RNAi) is an established method to
specifically inactivate mRNA of selected target genes
(Elbashir et al., 2001; Paddison et al., 2002). Two
6p22.3–amplified (HTB-5, CRL-1472) and two non-
amplified cell lines (CRL-7930, PC-3) were tested for

their suitability for RNAi treatment. SYBR Green real-
time polymerase chain reaction (PCR) (LightCycler,
Roche, Basel, Switzerland) was employed to measure
the effect of RNAi on target gene expression.
Applying this technique resulted in an always more

than 50% decrease of mRNA levels for both potential
target genes over a period, starting from 12 h after
transfection and lasting until the end of the experiments
(after 6 days). Based on these studies, non-amplified cell
line CRL-7930 and amplified cell line HTB-5 were
selected for subsequent experiments.

Figure 3 Cell proliferation of bladder cancer cell lines with and without 6p22.3 amplification. Bars illustrate observed differences in
cell proliferation rates following gene-specific and combined siRNA treatment against both amplification targets (E2F3 and
NM_017774). Silencing of E2F3 always markedly decreased cell proliferation, whereas silencing of NM_017774 only inhibited non-
amplified CRL-7930 cells (top), but failed to affect proliferation in amplified HTB-5 cells (bottom). Controls, treated with nonsense
RNAi, are shown in black. To monitor the effect of gene silencing on tumour cell proliferation, growth curves were calculated from
siRNA-treated and untreated cell cultures. Replicate cultures were grown in parallel allowing for repeated cell harvesting and counting
in 24 h intervals. All utilized specific siRNA sequences are available on request. Cell counting was performed using a ‘Neubauer’
counting chamber. Standard counting procedures were followed to determine cell quantity (Lindl TaB, 1989).
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In cell line CRL-7930, mRNA levels decreased until
day 4 after transfection and did not rise again until the
end of the experiment (day 6). Knockdown levels were
slightly higher for E2F3 (73% decrease of mRNA level;
average from days 4 to 6) as compared to NM_017774
(59% decrease of mRNA level; average from days 4 to 6;
P¼ 0.0016).
In the amplified cell line HTB-5, the lowest mRNA

expression levels were reached already 24 h after
transfection. No difference between E2F3 (53%) and
NM_017774 (50%) was detectable (P¼ 0.4186, average
knockdown from days 1 to 4). Combined knockdown
did not result in a further decrease of individual mRNA
levels as compared to separate knockdown, in all tested
cell lines. Decreased protein expression of E2F3 in
HTB-5, induced by E2F3-specific siRNA, was addition-
ally confirmed by Western blot analysis and results
are visualized in Figure 2. The silencing power of
NM_017774-specific siRNA could not yet be documen-
ted by Western blot, because NM_017774-specific
antibodies are currently not available.
The effects of E2F3, NM_017774 and combined gene

knockdown on cell proliferation are compared against
the effect of nonsense siRNA control and are shown in
Figure 3: In the non-amplified cell line (CRL-7930),
knockdown of E2F3 as well as NM_017774 resulted
in a pronounced decrease of the cell proliferation
rate (average over 6 days: E2F3: �43.1%, P¼ 0.004;
NM_017774: �48.7%, P¼ 0.006; maximum E2F3:
�48.2% at day 4; maximum NM_017774: �55.4% at
day 4). Simultaneous knockdown exerted even a
stronger proliferation decrease amounting to �57.9%
(P¼ 0.008; maximum �69.6% at day 4).
In the amplified cell line (HTB-5), knockdown of

E2F3 resulted in a comparable decrease of the cell
proliferation, like it had been observed in non-amplified
cells (average: �36.7%, P¼ 0.018; maximum �44.7% at
day 4). In contrast, knockdown of NM_017774 had
no negative influence on cell proliferation in amplified
cells (average: þ 5%, P¼ 0.309; maximum –10.9% at
day 4). The combined knockdown (average: �27.7%,
P¼ 0.011; maximum �36.8% at day 4) reached values
analogous to E2F3 alone.
In summary, knockdown of E2F3 strongly inhibited

cell proliferation in 6p22.3-amplified cells (�36.7%),
whereas no such effect was observed for NM_017774
(þ 5%). This argues against a cooperative effect of
E2F3 and NM_017774 on cell proliferation. Impor-
tantly, even after successful knockdown of E2F3 and
NM_017774, the residual amount of mRNA left over in
the amplified cell line exceeded the standard mRNA
levels of non-amplified and non-siRNA–treated cells by
a factor 5–10 (see Figure 4). Nevertheless, knockdown
of E2F3 severely inhibited regular cell growth in 6p22.3-
amplified cells. This emphasizes E2F3 as the relevant
target gene of 6p22.3 amplification. Together with our
recent observation that E2F3 expression is linked to
rapid proliferation (Oeggerli et al., 2004), these data
support an important role of E2F3 as a limiting factor
for urothelial cell proliferation. It seems that 6p22.3
amplification conveys massive E2F3 overexpression in

order to overcome a molecular bottleneck that prevents
accelerated cell proliferation.
Simultaneous knockdown levels of NM_017774 did

not lead to reduced growth rates of 6p22.3-amplified
cells. In non-amplified cells, however, reduced levels of
NM_017774 induced a comparable proliferation reduc-
tion (�48.7%) as seen for E2F3 (�43.1%; see Figure 3).
The growth reduction was even stronger if both E2F3
and NM_017774 were jointly silenced (�57.9%). The
biological function of NM_017774 is unknown yet, but
this finding adds additional evidence to the hypothesis
(see above) that NM_017774 might be involved in
regular cell growth. Conclusively, we found no evidence
for NM_017774 to have a possible supportive effect on
enhanced cellular proliferation when co-amplified
and co-overexpressed alongside E2F3. Our results
either suggest that NM_017774 is only accidentally

Figure 4 Effects of siRNA on E2F3- and NM_017774-specific
mRNA levels are displayed for 6p22.3-amplified and non-amplified
bladder cancer cell lines. In each case, the influence on cell
proliferation was measured. Bars show that knockdown rates were
comparable for both target genes, resulting in an always more than
50% reduction of individual mRNA levels. Pie charts at the bottom
provide the complementary information whether reduced gene
expression did affect cell growth or not. Values of reduced
proliferation rates are noted above each pie chart (in percentage
of the nonsense RNAi control samples). Importantly, in 6p22.3-
amplified cell line HTB-5, only the reduction of E2F3 lead to
decreased cell growth, whereas an equally strong reduction of
NM_017774 had no negative effect on tumour cell proliferation.
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co-amplified because of its spatial neighbourhood to
E2F3 (like other genes in the area) and does not have
a functional role in 6p22.3 amplification, or that
co-amplification of NM_017774 could be involved
in another, not yet detected aspect of the disease, that
is not linked to enhanced cellular proliferation.
Amplification of 6p22.3 has been reported exclusively

in bladder cancer so far (Bruch et al., 2000; Feber et al.,
2004; Hurst et al., 2004). The finding of a single case
of breast cancer with 6p22.3 amplification in a

multitumour TMA experiment, and a second breast
cancer that was recently found to be E2F3 amplified in a
DNA chip-based copy number analysis in our lab (C
Ruiz, unpublished personal observation) (see Table 2)
indicates that E2F3 amplification is not limited only to
bladder cancer.
Conclusively, our data in conjunction with published

evidence strongly indicate that amplification of E2F3 is a
hallmark of one genetic pathway in invasive bladder
cancer that is followed by approximately one-third of these
tumours. These results prompt for a review of existing
drug compound databases for potential E2F3 inhibitors.
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