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Extending the notion of symmetry protected topological phases to insulating antiferromagnets (AFs) described
in terms of opposite magnetic dipole moments associated with the magnetic Néel order, we establish a bosonic
counterpart of topological insulators in semiconductors. Making use of the Aharonov-Casher effect, induced
by electric field gradients, we propose a magnonic analog of the quantum spin Hall effect (magnonic QSHE)
for edge states that carry helical magnons. We show that such up and down magnons form the same Landau
levels and perform cyclotron motion with the same frequency but propagate in opposite direction. The insulating
AF becomes characterized by a topological Z2 number consisting of the Chern integer associated with each
helical magnon edge state. Focusing on the topological Hall phase for magnons, we study bulk magnon effects
such as magnonic spin, thermal, Nernst, and Ettinghausen effects, as well as the thermomagnetic properties
of helical magnon transport both in topologically trivial and nontrivial bulk AFs and establish the magnonic
Wiedemann-Franz law. We show that our predictions are within experimental reach with current device and
measurement techniques.
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I. INTRODUCTION

Since the observation of quasiequilibrium Bose-Einstein
condensation [1] of magnons in an insulating ferromagnet
(FM) at room temperature, the last decade has seen remarkable
and rapid development of a new branch of magnetism, dubbed
magnonics [2–4], aimed at utilizing magnons, the quantized
version of spin waves, as substitute for electrons with the
advantage of low dissipation. Magnons are chargeless bosonic
quasiparticles with a magnetic dipole moment gμBez that can
serve as a carrier of information in units of the Bohr magneton
μB. In particular, insulating FMs [5–8] that possess a macro-
scopic magnetization [Fig. 1(a)] have been playing an essential
role in magnonics. Spin-wave spin current [5,7], thermal Hall
effect of magnons [6], and Snell’s law [9,10] for spin-waves
have been experimentally established and just this year the
magnon planar Hall effect [8] has been observed. A magnetic
dipole moving in an electric field acquires a geometric phase by
the Aharonov-Casher [11–17] (AC) effect, which is analogous
to the Aharonov-Bohm effect [18–20] of electrically charged
particles in magnetic fields, and the AC effect in magnetic
systems has also been experimentally confirmed [21].

Under a strong magnetic field, two-dimensional electronic
systems can exhibit the integer quantum Hall effect [22]
(QHE), which is characterized by chiral edge modes. Thou-
less, Kohmoto, den Nijs, and Nightingale [23,24] (TKNN)
described the QHE [25–28] in terms of a topological invariant,
known as TKNN integer, associated with bulk wave functions
[29,30] in momentum space. This introduced the notion
of topological phases of matter, which has been attracting
much attention over the last decade. In particular, in 2005,
Kane and Mele [31,32] have shown that graphene in the
absence of a magnetic field exhibits a quantum spin Hall
effect (QSHE) [32–35], which is characterized by a pair of
gapless spin-polarized edge states. These helical edge states
are protected from backscattering by time-reversal symmetry
(TRS), forming in this sense topologically protected Kramers
pairs. This can be seen to be the first example of a symmetry
protected topological (SPT) phase [36–38] and it is now

classified as a topological insulator (TI) [31,34,35,39,40],
which is characterized by a Z2 number, as the TKNN integer
[23,24] associated with each edge state.

In this paper, we extend the notion of topological phases
to insulating antiferromagnets (AFs) in the Néel ordered
phases, which do not possess a macroscopic magnetization,
see Fig. 1(b). The component of the total spin along the Néel
vector is assumed to be conserved, and it is this conservation
law, which plays the role of the TRS (which is broken in the
ordered AF) that protects the topological phase and helical
edge states against nonmagnetic impurities and the details1

of the surface [41]. In particular, using magnons [42–45] we
thus establish a bosonic counterpart of the TI and propose a
magnonic QSHE resulting from the Néel order in AFs.

In Ref. [46], motivated by the above-mentioned remarkable
progress in recent experiments, we [4,13,47,48] have proposed
a way to electromagnetically realize the “quantum” Hall effect
of magnons in FMs, in the sense that the magnon Hall
conductances are characterized by a Chern number [23,24]
in an almost flat magnon band, which hosts a chiral edge
magnon state, see Fig. 1(a).2 By providing a topological
description [23,24,49] of the classical magnon Hall effect
induced by the AC effect, which was proposed in Ref. [13],
we developed it further into the magnonic quantum Hall
effect and appropriately defining the thermal conductance for
bosons, we found that the magnon Hall conductances in such
topological FMs obey a Wiedemann-Franz [50] (WF) law for
magnon transport [4,47]. In this paper, motivated by the recent
experimental [51] demonstration of thermal generation of spin
currents in AFs using the spin Seebeck effect [52–59] and by

1We assume a sample in the absence of magnetic disorder that
breaks the global spin rotation symmetry about the z axis such as the
uncompensated surface magnetization.

2See also Refs. [105,109,134,135] for topological aspects of
magnons in FMs, Ref. [104] for observation of a topological magnon
band [46,48,103], and Refs. [92,93,136] for photonic TIs.

2469-9950/2017/96(22)/224414(14) 224414-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.224414


NAKATA, KIM, KLINOVAJA, AND LOSS PHYSICAL REVIEW B 96, 224414 (2017)

(a)

(b)

gμB

gμB

-gμB

FIG. 1. (Left) Schematic representation of spin excitations in (a)
a FM with the uniform ground-state magnetization and (b) an AF
with classical magnetic Néel order. (Right) Schematic representation
of edge magnon states in a two-dimensional topological (a) FM and
(b) AF. (a) Chiral edge magnon state where magnons with a magnetic
dipole moment gμBez propagate along the edge of a finite sample
in a given direction. (b) Helical edge magnon state where up and
down magnons (σ = ±1) with opposite magnetic dipole moments
σgμBez propagate along the edge in opposite directions. The AF thus
forms a bosonic analog of a TI characterized by two edge modes with
opposite chiralities and can be identified with two independent copies
(with opposite magnetic moments) of single-layer FMs shown in (a).

the report [60–62] of the magnonic spin Nernst effect in AFs,
we develop Ref. [46] further into the AF regime [42–45,63,64]
and propose a magnonic analog of the QSHE [31–35,39,40]
for edge states that carry helical edge magnons [Fig. 1(b)] due
to the AC phase. Focusing on helical magnon transport both in
topologically trivial and nontrivial bulk [29,30] AFs, we also
study thermomagnetic properties and discuss the universality
of the magnonic WF law [4,46,47]. Using magnons in
insulating AFs characterized by the Néel magnetic order, we
thus establish the bosonic counterpart of TIs [31,34,35,39,40].

At sufficiently low temperatures, effects of magnon-
magnon and magnon-phonon interactions become [47,56,65]
negligibly small. Indeed, Ref. [65] reported measurements of
magnets at low temperature T � O(1)K, where the exponent
of the temperature dependence of the phonon thermal con-
ductance is larger than the one for magnons. This indicates
that for thermal transport the contribution of phonons dies
out more quickly than that of magnons with decreasing
temperature. We then focus on noninteracting magnons at such
low temperatures throughout this work3 and assume that the
total spin along the z direction is conserved and thus remains
a good quantum number.

This paper is organized as follows. In Sec. II, we introduce
the model system for magnons with a quadratic dispersion
because of an easy-axis spin anisotropy in a topologically
trivial bulk AF and find that the dynamics can be described
as the combination of two independent copies of that in a
FM and thus derive the identical magnonic WF law for a
topologically trivial FM and AF. In Sec. III A, introducing

3Within the mean-field treatment, interactions between magnons
works [47] as an effective magnetic field and the results qualitatively
remain identical. A certain class of QHE in systems with interacting
bosons, a SPT phase [36,37] is implied in Refs. [38,137].

the model system for magnons in the presence of an AC
phase induced by an electric field gradient, we find the
correspondence between the single magnon Hamiltonian and
the one of an electrically charged particle moving in a magnetic
vector potential, and see that the force acting on magnons
is invariant under a gauge transformation. In Sec. III B, we
see that each magnon with opposite magnetic dipole moment
inherent to the Néel order forms the same Landau levels and
performs cyclotron motion with the same frequency but in
opposite direction, leading to the helical edge magnon state.
We find that the AF in the topologicalZ2 phase is characterized
by a Chern number associated with each edge state. In
Sec. III C, introducing a tight-binding representation (TBR)
of the magnon Hamiltonian, we obtain the magnon energy
spectrum and helical edge states numerically, for constant
and periodic electric field gradients. In Sec. III D, we study
thermomagnetic properties of Hall transport of bulk magnons,
with focus on the helical edge magnon states, and analyze
the differences between the topological and nontopological
phases of the AF. In Sec. IV, we give some concrete estimates
for experimental candidate materials. Finally, we summarize
and give some conclusions in Sec. V, and remark open issues
in Sec. VI. Technical details are deferred to Appendices.

II. TOPOLOGICALLY TRIVIAL AF

In this section, we consider a topologically trivial AF
on a three-dimensional (d = 3) cubic lattice in the ordered
phase with the Néel order parameter along the z direction,
see Fig. 1(b). Spins of length S on each bipartite sublattice,
denoted by A and B, satisfy [60,61,66] SA = −SB = Sez in
the ground state. The magnet is described by the following
spin Hamiltonian [42,43]:

H = J
∑
〈ij〉

Si · Sj − K
2

∑
i

(
Sz

i

)2
, (1)

where J > 0 parametrizes the antiferromagnetic exchange
interaction between the nearest-neighbor spins and K > 0 is
the easy-axis anisotropy [67,68] that ensures the magnetic Néel
order along the z direction. Since the Hamiltonian is invariant
under global spin rotations about the z axis, the z component
of the total spin is a good quantum number (i.e. conserved).
Therefore magnons, quanta of spin waves, have well-defined
spin along the z axis, as will be shown explicitly below. Using
the sublattice-dependent Holstein-Primakoff [60,61,66,69]
transformation, S+

iA = √
2S[1 − a

†
i ai/(2S)]1/2ai , Sz

iA = S −
a
†
i ai , S

+
jB = √

2S[1 − b
†
j bj /(2S)]1/2b

†
j , Sz

jB = −S + b
†
j bj , the

spin degrees of freedom in Eq. (1) can be recast in terms
of bosonic operators that satisfy the commutation relations,
[ai,a

†
j ] = δi,j and [bi,b

†
j ] = δi,j and all other commutators

between the annihilation (creation) operators a
(†)
i and b

(†)
i

vanish to the lowest order in 1/S, assuming large spins S � 1.
Further performing the well-known Bogoliubov transforma-
tion [66] (see Appendix A for details), the system can be
mapped onto a system of noninteracting spin-up and spin-
down magnons, which carry opposite magnetic dipole moment
[66] σgμBez with σ = ±1. The transformed Hamiltonian as-
sumes diagonal form [42,43], H = ∑

k h̄ωk(A†
kAk + B†

kBk),

224414-2



MAGNONIC TOPOLOGICAL INSULATORS IN . . . PHYSICAL REVIEW B 96, 224414 (2017)

in terms of Bogoliubov quasiparticle operators, Ak and Bk,
satisfying [Ak,A†

k′] = δk,k′ and [Bk,B†
k′ ] = δk,k′ with all the

other commutators vanishing. Within the long wave-length
approximation and assuming a spin anisotropy [67,68] at
low temperature, the dispersion [43] becomes gapped and
parabolic4 in terms of k = |k|, h̄ωk = Dk2 + �, where D =
JSa2/

√
κ2 + 2κ parametrizes the inverse of the ‘magnon

mass’ (see below), � = 2dJS
√

κ2 + 2κ is the magnon gap,
κ = K/(2dJ ), a denotes the lattice constant, and d = 3 is
the dimension of the cubic lattice (e.g., d = 2 for the square
lattice). Note that the dispersion becomes linear h̄ωk ∝ k in
the absence of the spin anisotropy [42], see Appendix A for
details.

Since the z component of the total spin is
given by [60] Sz = ∑

i(S
z
iA + Sz

iB) = ∑
k(−a

†
kak + b

†
kbk) =∑

k(−A†
kAk + B†

kBk), the A (B) magnon carries σ = −1
(+1) spin angular momentum along the z direction and can
be identified with a down (up) magnon. Thus the low-energy
magnetic excitation of the AF [Eq. (1)] can be described as
chargeless bosonic quasiparticles carrying a magnetic dipole
moment σgμBez with σ = ±1 [Fig. 1(b)], where g is the g

factor of the constituent spins and μB is the Bohr magneton.
Throughout this paper, we work under the assumption that the
total spin along the z direction is conserved and remains a
good quantum number.

In the presence of an external magnetic field B � 0 along
the z axis B = Bez, the degeneracy is lifted and the low-energy
physics of the AF at sufficiently low temperatures where effects
of magnon-magnon and magnon-phonon interactions become
[47,56,65] negligibly small is described by the Hamiltonian

H =
∑

σ=↑,↓

∑
k

h̄ωkσ a
†
kσ akσ , (2)

where σ = ↑ and σ = ↓ denote the up magnon (σ = 1) and the
down magnon (σ = −1), respectively. Here, h̄ωkσ = Dk2 +
�σ and �σ = � − σgμBB are the energy and the gap of
spin-σ magnons; a

†
kσ akσ is the number operator of spin-σ

magnons. Throughout the paper, we adopt the aforementioned
notations for simplicity. We consider a magnetic field that is
much weaker than the anisotropy, i.e., gμBB 
 �, where the
spin anisotropy prevents spin flop transition.

A. Onsager coefficients

The two magnon modes, up and down, are completely
decoupled in the AF described by Eq. (2). Therefore the
dynamics of magnons in the AF can be described as the
combination of two independent copies of the dynamics of
magnons in a FM for each mode σ = ±1. For spin-σ magnons,
a magnetic field gradient ∂xB along the x axis works as
a driving force FB = Fσ ex with Fσ = σgμB∂xB. Since the
directions of the force are opposite for the two magnon modes
σ = ±1, the magnetic field gradient generates helical magnon
transport in the topologically trivial bulk AF, Eq. (2), as will

4As long as the temperature is lower than the magnon gap �,
thermomagnetic and topological properties remain qualitatively the
same also for magnons with a linear dispersion [46,47].

be shown explicitly below. Specifically, the magnetic field
and temperature gradients generate magnonic spin and heat
currents, jxσ and jQ

xσ , respectively, along the x direction.
Within the linear response regime, each Onsager coefficient
Lijσ (i,j = 1,2) is defined by(〈jxσ 〉〈

jQ
xσ

〉) =
(

L11σ L12σ

L21σ L22σ

)(
∂xB

−∂xT /T

)
. (3)

A straightforward calculation using the Boltzmann equation
[70–73] gives the following coefficients (see Appendix B for
details):

L11σ = (gμB)2C Li3/2(e−bσ ), (4a)

L12σ = σgμBkBT C
[

5
2 Li5/2(e−bσ ) + bσ Li3/2(e−bσ )

]
(4b)

= L21σ , (4c)

L22σ = (kBT )2C
[

35
4 Li7/2(e−bσ ) + 5bσ Li5/2(e−bσ )

+ b2
σ Li3/2(e−bσ )

]
, (4d)

where bσ ≡ �σ/(kBT ) represents the dimensionless inverse
temperature, Lis(z) = ∑∞

n=1 zn/ns is the polylogarithm func-
tion, and C ≡ τ (kBT )3/2/(4π3/2h̄2

√
D) with a phenomeno-

logically introduced lifetime τ of magnons, which can be
generated by nonmagnetic impurity scatterings and is assumed
to be constant at low temperature. The coefficients in Eq. (4c)
satisfy the Onsager relation. In the absence of a magnetic
field, B = 0, up and down magnons are degenerate and the
degeneracy is robust against external perturbations due to
the spin anisotropy [67,68] and the resultant magnon energy
gap. This gives Lii↑ = Lii↓, while Lij↑ = −Lij↓ for i 
= j

because of the opposite magnetic dipole moment σ = ±1.
Note that the particle current for each magnon jP

xσ is given
by jP

xσ = jxσ /(σgμB), and Eqs. (4a) and (4b) show that the
magnetic field gradient generates helical magnon transport in
the bulk AF where magnons with opposite magnetic moments
flow in opposite x directions, while all magnons subjected to a
thermal gradient flow in the same x direction. Thermomagnetic
properties of such magnon transport in topologically trivial
bulk AFs are summarized in Table I.

B. Thermomagnetic relations

In analogy to charge transport in metals [74] and magnon
transport [4,47] in FMs, we refer to Sσ ≡ L12σ /(T L11σ )
as the antiferromagnetic magnon Seebeck coefficient and
Pσ ≡ L21σ /L11σ as the antiferromagnetic Peltier coefficient
for up and down magnons. The Onsager relation provides
the Thomson relation (also known as Kelvin-Onsager relation
[75]) Pσ = T Sσ . In contrast to FMs, the total term vanishes
for AFs,SAF ≡ ∑

σ Sσ = 0 andPAF ≡ ∑
σ Pσ = 0, due to the

opposite magnetic dipole moment,
∑

σ L12σ = ∑
σ L21σ = 0.

Still, focusing on each magnon mode separately, the coeffi-
cientsSσ andPσ show a universal behavior at low temperature,
b ≡ �/(kBT ) � 1, in the sense that the coefficients do
not depend on the antiferromagnetic exchange interaction J

specific to the material, and reduce to the qualitatively same
form as the ones for FMs [4,47]:

Sσ
→= σ

gμB

�

T
, Pσ

→= σ
�

gμB
. (5)
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TABLE I. Thermomagnetic properties of magnon transport at low temperatures induced by magnetic field and thermal gradients both
in topologically trivial and nontrivial bulk AFs, discussed in Secs. II and III D, respectively. The difference arises from the Chern number
N0σ = σ = ±1, i.e., the relation between topological integer N0↑ + N0↓ = 0, while Z0 ≡ (N0↑ − N0↓)/2 = 1 (mod 2). Here we refer to helical
magnon transport where magnons with opposite magnetic dipole moments σgμBez propagate in opposite directions.

Antiferromagnet Topologically trivial bulk: Sec. II Topological bulk: Sec. III D

Magnetic field gradient Helical magnon transport Magnon Hall transport

Spin:
∑

σ L11σ 
= 0 Spin:
∑

σ L
yx

11σ = 0

Heat:
∑

σ L21σ = 0 Heat:
∑

σ L
yx

21σ 
= 0

Thermal gradient Magnon transport Helical magnon Hall transport

Spin:
∑

σ L12σ = 0 Spin:
∑

σ L
yx

12σ 
= 0

Heat:
∑

σ L22σ 
= 0 Heat:
∑

σ L
yx

22σ = 0

This is another demonstration of the fact that the dynamics
of the AF reduces to independent copies for each magnon
σ = ±1 in FMs; up and down magnons are completely
decoupled in an AF in leading magnon approximation given
by Eq. (2). This implies that the up and down contributions,
Kσ , to the thermal conductance of the AF KAF = ∑

σ Kσ can
be considered separately, and are given by [4,47]

Kσ = 1

T

(
L22σ − L12σL21σ

L11σ

)
. (6)

As we have seen in the study of FMs [4,46,47], Kσ is
expressed by off-diagonal elements [76,77] L12σL21σ /L11σ

as well as L22σ . This can be seen in the following way
(see Refs. [4,46,47] for details). The applied temperature
gradient ∂xT induces a magnonic spin current for each
magnon (σ = ↑,↓), 〈jxσ 〉 = −L12σ ∂xT /T , which leads to an
accumulation of each magnon at the boundaries and thereby
builds up a nonuniform magnetization since two magnon
modes are decoupled and do not interfere with each other
in the AF. This generates an intrinsic magnetization gradient
[71–73,78–80] ∂xB

∗
σ acting separately on each magnon that

produces a magnonic countercurrent. Then, the system reaches
a stationary state such that in- and out-flowing magnonic
spin currents balance each other; 〈jxσ 〉 = 0 in this new
quasiequilibrium state where

∂xB
∗
σ = L12σ

L11σ

∂xT

T
. (7)

Thus the total thermal conductance KAF = ∑
σ Kσ defined by

〈jQ
xσ 〉 = −Kσ∂xT is measured. Since the thermally-induced

intrinsic magnetization gradient ∂xB
∗
σ given in Eq. (7) acts

individually on each magnon as an effective magnetic field
gradient, inserting Eq. (7) into Eq. (3), the contribution from
each magnon Kσ to the total thermal conductance of the AF
KAF becomes Eq. (6) in terms of Onsager coefficients where
the off-diagonal elements [76,77] arise from the magnetization
gradient-induced counter-current. This is in analogy to thermal
transport of electrons in metals [74] where, however, the off-
diagonal contributions are strongly suppressed by the sharp
Fermi surface of fermions at temperatures kBT much smaller
than the Fermi energy.

The coefficient L11σ is identified with the magnonic spin
conductance Gσ = L11σ for each magnon and the total one
of the AF is given by GAF = ∑

σ Gσ . From these we obtain

the thermomagnetic ratio KAF/GAF, characterizing magnonic
spin and thermal transport in the AF. At low temperatures,
b � 1, the ratio becomes linear in temperature,

KAF

GAF

→= LAFT . (8)

Here, LAF is the magnetic Lorenz number for AFs given by

LAF = 5

2

(
kB

gμB

)2

, (9)

which is independent of material parameters apart from the g-
factor. Thus, at low temperatures, the ratio KAF/GAF satisfies
the WF law in the sense that it becomes linear in temperature;
the WF law holds in the same way for magnons both in AFs and
FMs [4,46,47], which are bosonic excitations, as for electrons
[50,74], which are fermions. In this sense, it can be concluded
that the linear-in-T behavior of the thermomagnetic ratio is
indeed universal. We remark that if one wrongly omits the
off-diagonal coefficients [76,77] in Eq. (6) which can be as
large as the diagonal ones, the ratio would not obey WF law,
breaking the linearity in temperature.

Lastly we comment on the factor “5/2” in Eq. (9) which
is different from “1” that we have derived in our last work on
magnon transport in topologically trivial three-dimensional
ferromagnetic junctions [4,47]. The difference arises from the
geometry of the system setup, single bulk or junction, rather
than FMs or AFs. Indeed, the factor “5/2” arises also in a
single bulk FM and the ratio reduces to the same form Eq. (8).
This can be seen also as follows; until now, considering a
topologically trivial three-dimensional single bulk AF, we have
seen that the up and down magnons of the AF are completely
decoupled (in leading order) and the dynamics indeed reduces
to independent copies of each magnon in single bulk FMs
[Eq. (2)]. Therefore focusing only on σ magnons and using
Eqs. (4a)–(4d), the magnonic WF law for a single bulk FM
can be derived, which becomes at low temperatures, b � 1,

Kσ

Gσ

→= 5

2

(
kB

gμB

)2

T . (10)

Thus we see that the factor “5/2” arises also for the single
bulk FM,5 and we conclude that the factor 5/2 is common to

5This well agrees with a recent calculation by A. Mook et al. [110]
of the magnonic WF law for a single bulk ferromagnetic insulator.
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both ferro- and antiferromagnetic single bulk magnets. From
this, we see that in contrast to the universality of the linear-in-T
behavior, the magnetic Lorenz number is not; it may vary from
system to system depending on, e.g., the geometry of the setup,
single bulk or junction [47], and the system dimension [46]. In
addition, the Onsager coefficients for the systems depend on
the details of the setup by having different types of polylog-
arithm function Lis ; both ferro- and antiferromagnetic single
bulk magnets are described by Lil+3/2 (l = 0,1,2), while the
three-dimensional ferromagnetic junction by the exponential
integral Lil . This difference in the polylogarithm functions
gives rise to different prefactors depending on the system setup.

III. TOPOLOGICAL AF

In this section, using above results, we consider a clean
AF on a two-dimensional square lattice (d = 2), embedded in
the xy-plane, with a focus on the effects of an electric field E
that couples to the magnetic dipole moment σgμBez of up and
down magnons through the AC effect [11].

A. Aharonov-Casher effect on magnons

In the last section (Sec. II), starting from the spin Hamilto-
nian Eq. (1) in the absence of electric fields, we have shown
that the low-energy dynamics of AFs in the long wave-length
(continuum) limit is described by the completely decoupled
up and down magnons, see Eq. (2), with dispersion h̄ωkσ =
Dk2 + �σ . We can then introduce an effective Hamiltonian for
such magnon modes, given byHmσ = p̂2/2m + �σ , where the
effective mass of the magnons is defined by (2m)−1 = D/h̄2

with d = 2, and p̂ = (px,py,0) is the momentum operator.
Thus the magnons behave like ordinary particles of mass m

with quadratic dispersion, moving in the xy plane and carrying
a magnetic dipole moment σgμBez.

In the presence of an electric field E(r), the magnetic dipole
moment σgμBez of a moving magnon experiences a magnetic
force in the rest frame of the magnon. This system is formally
identical to the one studied by Aharonov and Casher [11],
namely that of a neutral particle carrying a magnetic dipole
moment, moving in an electric field. Thus, following their
work [11], we account for the electric field by replacing the
momentum operator p̂ by p̂ + σgμBAm/c, where

Am(r) = 1

c
E(r) × ez (11)

is the “electric” vector potential Am acting on the magnons
at position r = (x,y,0). The total Hamiltonian then becomes
Hm = ∑

σ=± Hmσ with

Hmσ = 1

2m

(
p̂ + σ

gμB

c
Am

)2

+ �σ . (12)

This expression describes the low-energy dynamics of the
magnons moving in an electric field E. It is valid at sufficiently
low temperatures where the effects of magnon-magnon and
magnon-phonon interactions become [47,56,65] negligibly
small. The Hamiltonian in Eq. (12) is formally identical to that
of a charged particle moving in a magnetic vector potential, in
which the coupling constant is given by σgμB instead of the
electric charge e.

When an electric field has the special quadratic form E(r) =
E(−x/2,−y/2,0), with E a constant field gradient, it gives rise
to the “symmetric” gauge potential Am(r) = (E/c)(−y/2, +
x/2,0). Since

∇ × Am = E
c

ez, (13)

the field gradient E plays the role of the perpendicular magnetic
field in two-dimensional electron gases [81]. The considered
electric field with the constant gradient E can be realized
e.g. by an STM tip [82,83]. Similarly, the analog of the
Landau gauge Am(r) = (E/c)(0,x,0) is provided by E(r) =
E(−x,0,0). Within the quantum-mechanical treatment [81],
the resulting magnon dynamics [Eqs. (16)–(19)] is identical to
the one of the symmetric gauge since both satisfy ∇ × Am =
(E/c)ez and thus the two Hamiltonians with different “gauges”
can be transformed into each other by the unitary gauge
transformation Uσ ≡ exp(iσgμBExy/2h̄c2).

With the Hamiltonian Hmσ given in Eq. (12) we can adopt
the topological formulations [24,49] of the conventional QHE
in terms of Chern numbers. See Ref. [46] for the developed
formulation of AC phase-induced magnon Hall effects in FM
[see also Fig. 1(a)], which corresponds to that for Hm↑.

Using canonical equations, ṙ = v = ∂Hmσ /∂p and ṗ =
−∂Hmσ /∂r, where ṙ denotes the time derivative of r and v
is the velocity, the force FAC acting on magnons in electric
fields is then given by [13]

FAC = σgμB

[
∇B − v

c
× (∇ × Am)

]
. (14)

The force FAC is invariant under the gauge transforma-
tion Am �→ A′

m = Am + ∇χ accompanied by E �→ E′ = E +
cez × ∇χ for arbitrary scalar function χ = χ (x,y). Note
that the gauge invariance in the present case is specific to
electrically neutral particles only, such as magnons, since E′
and E give rise to different physical forces on charged particles.
Inserting Eq. (13) into Eq. (14), the force becomes

FAC = mv̇ = σgμB

(
∇B − v × Eez

c2

)
, (15)

which indicates that the role of electric field and magnetic field
in electrically charged particles [81] is played by the magnetic
field gradient ∇B and the electric field gradient E , respectively,
for “magnetically charged” particles such as our magnons.

Assuming that the velocity v consists of the cyclotron
motion vc (see Sec. III B) and the drift velocity vd with
[81] v̇d = 0, Eq. (15) gives vd × ez = (c2/E)∇B. Applying
the magnetic field gradient along the x axis ∂xB 
= 0 while
∂yB = 0, the drift velocity becomes vd = (0,c2∂xB/E,0),
which is perpendicular to the applied magnetic field gradient
and independent of σ . Thus, in the presence of both magnetic
and electric field gradients, each magnon (σ = ±1) performs
the drift motion along the same direction since both driving
forces depend on σ [see Eq. (15)] and eventually the σ

dependence cancels out as σ 2 = 1. This is consistent with
the results of “bulk” Hall conductances given in Eq. (32)
where (Sec. III D) the magnetic field gradient is applied
perturbatively. The matrix element in Eq. (31) for magnonic
spin Hall effects of bulk magnons [Eq. (29a)] indeed vanishes
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FIG. 2. Plots of the magnonic energy spectrum, rescaled energy E/tx , as a function of the rescaled wave vector kyay/π obtained by
numerically solving the tight-binding model (24) for a strip with width of 115 lattice sites, for tx = ty = 1 and θ1 = 2π/5, showing the first
and partially the second Landau levels (black). The up magnon edge states (σ = 1) are in red while down magnon edge states (σ = −1) are
in blue. The periodicity of the vector potential is (a) q � 1, (b) q = 7, and (c) q = 4. (a) shows a band structure characteristic for a TI with a
well-developed gap in an almost flat band and with helical edge states formed by the up and down magnons. (b) Qualitatively the same as in
(a). (c) For each given value of ky there are well-defined edge states with a gap in the spectrum, but they coexist with bulk states at different
momenta.

due to the relation between each topological integer. [See
Eqs. (30)–(32) for details.]

Note that the drift velocity vanishes in the absence of the
magnetic field gradient, while each magnon (σ = ±1) still
performs the cyclotron motion in opposite directions due to the
electric field gradient [Eqs. (15)–(19)], leading to the helical
edge magnon states, and we consider this situation henceforth.
[See Sec. III B (also Appendix C) for details.]

B. A bosonic analog of QSHE by edge magnons

A straightforward calculation using Eq. (12) with B = 0
(see Appendix C for details) shows that the quantum dynamics
[81] of down and up magnons are identical except that the
direction of their cyclotron motion is opposite (Fig. 1). Indeed,
they form the same Landau levels [46] with the principal
quantum number nσ ∈ N0,

Enσ
= h̄ωc

(
nσ + 1

2

) + � for nσ ∈ N0, (16)

and the two magnons σgμBez perform cyclotron motions with
the same frequency [46]

ωc = gμBE
mc2

(17)

and same electric length [46] lE , defined by

lE ≡
√

h̄c2/gμBE, (18)

but along opposite direction, cf. Fig. 1(b),

d

dt
(Rxσ + iRyσ ) = iσωc(Rxσ + iRyσ ), (19)

where REσ = (Rxσ ,Ryσ ) is the relative coordinate [84]. The
factor σ in Eq. (19) is rooted in the magnetic dipole moment
σgμBez of a magnon. The source of cyclotron motion is the
electric field gradient E [Eqs. (13) and (17)], which is common
to the both modes.

Taking into account the opposite directions of the cyclotron
motion, the quantum dynamics of the AF reduces to inde-
pendent copies [31,34,35] for each magnon σ = ±1 in FMs
(Fig. 1) Hm = ∑

σ Hmσ . In Ref. [46], we have shown that at

low temperature kBT 
 h̄ωc, only the lowest energy mode
n↑ = 0 in Eq. (16) becomes relevant and the cyclotron motion
of up magnons along one direction [Fig. 1(a)] leads to a
chiral edge state giving [29,30,85–87] the Chern number6

N0↑ = +1. Since the dynamics of down magnons is the same
as that of up magnons except that the direction of cyclotron
motion is opposite [Fig. 1(b)], the down magnon propagates
also along the edge of the sample but in the opposite direction
to that of the up magnon, which gives [29,30,85–87] the Chern
number N0↓ = −1. Thus, at low temperatures, kBT 
 h̄ωc,
the Chern number N0σ of up and down magnons in the lowest
Landau level nσ = 0 is summarized by

N0σ = σ, (20)

and the AF is characterized by the resulting helical edge
magnon state (Fig. 2) where due to the opposite magnon spin
σ = ±1, up and down magnons propagate along the edge of
the sample but in opposite direction [88] [Fig. 1(b)]. This is
a bosonic analog of the QSHE [31–35,39,40] for electronic
edge states, namely, the QSHE for edge magnons induced by
the AC effect. Note that due to the opposite cyclotron motion,
the total Chern number vanishes,∑

σ

N0σ = N0↑ + N0↓ = 0, (21)

while

Z0 ≡ 1
2 (N0↑ − N0↓) = 1 (mod 2). (22)

Thus the QSHE of helical edge magnon states is characterized
by a Z2 topological number [31,34,35,39,40,89], explicitly
given here by Z0 = 1, and the AF with the AC effect may
be identified [90–93] with a bosonic version [88] of TIs.
Such a magnonic analog of TIs can be understood as copies
[31,34,35] of the ferromagnetic “quantum” Hall system [46]
having opposite magnon polarization.

6See Ref. [46] for the definition of the Berry curvature which gives
the Chern number.
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C. Energy spectrum and chiral edge states

We calculate the magnon energy spectrum now for a finite
geometry of strip shape to find the Landau levels and in
particular the chiral edge modes of magnons, all in analogy to
the QHE for electrons [94,95]. For the numerical evaluation
we need to discretize the continuum Hamiltonian

∑
σ Hmσ ,

given in Eq. (12). This leads to the standard TBR of a
continuum Hamiltonian in the presence of a gauge potential
[96–99],

HAC = −
∑

σ=↑,↓

∑
〈ij〉

(tij eiσ θij ai,σ a
†
j,σ + H.c.), (23)

where aiσ is the annihilation operator of spin-σ magnons
localized at the site i satisfying the bosonic commutation
relations, [aiσ ,a

†
jσ ′ ] = δij δσσ ′ , etc., and where the Peierls

phase θij = (gμB/h̄c)
∫ rj

ri
dr · Am is the AC phase, which

the magnon with the magnetic moment σgμBez acquires
during the hopping on the lattice, and tij > 0 is the hopping
amplitude. Here, we suppressed the constant � [Eq. (12)],
being irrelevant for the chiral edge states. If a magnon hops
between site i and j along x (y) direction, the amplitude is
given by [97] tx(y) = h̄2/(2ma2

x(y)), where ax(y) is the lattice
constant along x(y) direction in the TBR. For simplicity, we
will consider the isotropic limit tx = ty henceforth. In the
continuum limit, ax,y → 0, Eq. (23) reduces to the magnon
Hamiltonian Eq. (12).

We wish to emphasize that the tight-binding lattice is just
introduced for calculational purposes and the tight-binding
lattice is not related to the original lattice of the spin system,
Eq. (1), from which we started. In other words, there is
no relation between the lattice constants ax(y) occurring in
the TBR and the lattice constants occurring in Eq. (1).
Also, searching for edge states that are topological and thus
independent of microscopic details, we can choose parameter
values in the simulations that are most convenient from a
numerical point of view.

Next, we use the analog of the Landau gauge such that the
system is translation-invariant along the y axis. Introducing
the momentum ky , we can perform a Fourier transformation
of Eq. (23) such that HAC = ∑

ky
Hky

[94,95], with

Hky
= −tx

∑
n,σ

(
a
†
ky ,n+1,σ aky,n,σ + H.c.

)

− 2ty
∑
n,σ

[cos(kyay + σθn)]a†
ky ,n,σ aky,n,σ , (24)

where aky,n,σ annihilates a spin-σ magnon with momentum
ky in y direction at site n = x/ax (along x direction). The
AC phase accumulated by the up magnon (σ = 1) as it
hops in y direction by one lattice constant ay is given by
θn = (gμB/h̄c2)Enaxay = nθ1, where θ1 ≡ (gμB/h̄c2)Eaxay ,
while the down magnon (σ = −1) acquires the opposite sign
−θn. For definiteness, we focus on the spectrum around the
lowest Landau level.

Performing exact numerical diagonalization of the Hamil-
tonian (24), we obtain the spectrum shown in Fig. 2. In the
TI regime, the system hosts a pair of helical edge magnon
states. We have checked numerically, that choosing different

parameter values changes the spectrum quantitatively but
the helical edge states remain, showing that they are indeed
topologically stable.

To avoid a breakdown of the sample due to the huge
voltage drop resulting from an applied strong electric field,
we also consider electric fields and vector potentials Am that
are periodic in x direction and of saw-tooth shape [46]. Using
such a periodically extended fields only over a distance that
can be much smaller than the sample dimensions or even the
electric length lE , we [46] have seen that the requirement
of strong field gradients E needed for creating a quantum
Hall effect of magnons in FMs (e.g., Landau levels and the
resultant level spacing) can be substantially softened, while
still producing well-defined chiral edge magnon states [46],
since the magnitude of E for each period remains the same.
Periodic fields may be realized by periodically arranging STM
tips [46,82,83].

Such periodic potentials are easily implemented in our
approach by assuming in Eq. (24) θn = θ1q{n/q}, with period
q (integer) and where {·} denotes the fractional part smaller
than one. This implies that the periodic vector potential has
the form Amq = (ERq/c)(0,{x/Rq},0), where Rq = qax is the
period.

From Fig. 2, we see that for large period q there is
a well-developed gap in an almost flat band and with the
corresponding edge states, see Fig. 2(a). If q gets smaller
than the electric length, the bulk gap is no longer uniform in
momentum, see Figs. 2(b) and 2(c). As a result, edge states
coexist with bulk modes at different momenta [100,101], see
Fig. 2(c). However, for fixed values of ky , there is still a gap
in the spectrum and furthermore, well-defined edge states still
exist. Thus, if disorder is weak, the edge modes will not couple
to the bulk and the Hall conductance will still be dominated
by these edge modes, similarly to Weyl semimetals.

Under the assumption that the spin along the z direction
remains a good quantum number [89,102], we have seen that
the key to a nonzero Chern number N0σ is the cyclotron
motion of individual magnons. Indeed, the AC phase-induced
cyclotron motion leads to edge magnon states (Fig. 2) each
giving [29,30,85–87] rise to a nonzero Chern number N0σ =
σ . Therefore, as long as magnons can perform cyclotron
motions, the edge magnon state is robust against external
perturbation [31–35,39,40] and the relation N0↑ + N0↓ = 0
between each topological integer [31,34,35,89] remains valid.
Indeed, it has been confirmed experimentally that magnons
satisfy Snell’s law at interfaces [9,10], indicating specular
(i.e., elastic) reflection at the boundary to vacuum, and
thereby we can expect that magnons form skipping orbits
along the boundary like electrons [29], giving rise to edge
states.

We note that there are still general differences [46] to
electrons due to the bosonic nature of the magnons. Due
to the Bose-distribution function, even in the presence of
topological edge states, the Hall transport coefficients of bulk
magnons generally cannot be described in terms of a Chern
integer. Only in almost flat bands [46], the Hall coefficients
become characterized by such a topological invariant that
edge magnon states bring about, while the Hall coefficients
are still characterized by the Bose-distribution function (see
Sec. III D). This is in contrast to electronic systems.
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D. Hall conductances of magnons

In this section, we discuss Hall transport properties of bulk
[29,30,85–87] magnons in the AC effect-induced magnonic
TIs characterized by a spin-dependent Chern numberN0σ = σ

[Eq. (22)], by making use of the aforementioned mapping
between the system and two independent copies [31,34,35]
of a ferromagnetic quantum Hall system [46]. We consider
the cases where again the total spin along the z direction
is a good quantum number. The crystal lattice creates a
periodic potential for magnons [24,49,74] U (r) = U (r + R)
with Bravais lattice vector R = (ax,ay), which gives rise to
a band structure for magnons. In the absence of a magnetic
field, B = 0, the Hamiltonian for spin-σ magnons is given
by Hσ (r) = Hmσ (r) + U (r). We then introduce the Bloch
Hamiltonian with Bloch wave vector k = (kx,ky) follow-
ing Refs. [24,46,49], Hkσ ≡ e−ik·rHσ eik·r = [−ih̄∇ + h̄k +
σgμBAm(r)/c]2/2m + � + U (r), where Am is the period-
ically extended vector potential [46]. The eigenfunction of
the Schrödinger equation Hkσ unkσ (r) = Enkσ unkσ (r) is given
by [24,48,49] the magnonic Bloch wave function unkσ (r) ≡
e−ik·rψnkσ , where Hσψnkσ = Enkσψnkσ .

At sufficiently low temperature kBT 
 h̄ωc, the lowest
mode n = 0 dominates the dynamics (Fig. 2). In Ref. [46],
where we have studied the magnon bands of a FM in the
quantum Hall phases realized by the electric field gradient-
induced AC effects, we have shown that the lowest magnon
band is almost flat on the energy scale set by the temperature
[48,103,104], i.e., the band width is much smaller than kBT ,
and named it almost flat band. Due to this flatness, the lowest
band [e.g., Fig. 2(a)] can be well characterized by its typical
energy E∗

0σ in the sense that the value of the Bose-distribution
function nB(E0kσ ) = (eβE0kσ − 1)−1 with β ≡ (kBT )−1 can be
considered as approximately uniform in the Brillouin zone,
nB(E0kσ ) � nB(E∗

0σ ), which we will adopt in the subsequent
discussion.

Within the linear response regime, the spin and heat Hall
current densities for each mode, jyσ and jQ

yσ , subjected to a
magnetic field gradient [105,106] and a temperature one are
described by the Onsager matrix

(〈jyσ 〉〈
jQ
yσ

〉
)

=
(

L
yx

11σ L
yx

12σ

L
yx

21σ L
yx

22σ

)(
∂xB

−∂xT /T

)
. (25)

Since the band is almost flat, the Hall transport coefficients
[46,107,108] L

yx

ijσ can be characterized by the Chern number
N0σ = σ ,

L
yx

ijσ = (kBT )η(σgμB)2−ηCη(nB(E∗
0σ ))N0σ /h, (26)

where η = i + j − 2, C0(nB(E∗
0σ )) = nB(E∗

0σ ), C1(nB(E∗
0σ ))=

[1 + nB(E∗
0σ )] ln[1 + nB(E∗

0σ )] − nB(E∗
0σ ) ln[nB(E∗

0σ )], and
C2(nB(E∗

0σ )) = [1 + nB(E∗
0σ )]{ln[1 + 1/nB(E∗

0σ )]}2 − {ln[nB

(E∗
0σ )]}2 − 2Li2(−nB(E∗

0σ )). The Onsager reciprocity is
satisfied by having L

yx

12σ = L
yx

21σ . The coefficient L
yx

11σ is
identified with the magnonic spin Hall conductance G

yx
σ

arising from each magnon and the total one of the AF is given
by G

yx

AF = ∑
σ G

yx
σ . The contribution of each magnon K

yx
σ to

the thermal Hall conductance of the AF K
yx

AF = ∑
σ K

yx
σ is

expressed in terms of Onsager coefficients by [46]

Kyx
σ =

(
L

yx

22σ − L
yx

21σ L
yx

12σ

L
yx

11σ

)/
T , (27)

where as we have seen in Sec. II, the off-diagonal elements
[76,77] similarly arise from the magnon counter-current by
the thermally-induced magnetization gradient [71–73,78–80]
∂xB

∗
σ = (Lyx

12σ /L
yx

11σ )(∂xT /T ). See Ref. [46] for details of the
thermal Hall conductance in the quantum Hall regime and the
Hall coefficient L

yx

ij↑.
In the almost flat band E∗

0↑ ≈ E∗
0↓ ≡ E∗

0 , the Hall transport
coefficient Eq. (26) becomes

L
yx

ijσ = σ 2−ηL′
ijN0σ , (28)

where we introduced L′
ij = (kBT )η(gμB)2−ηCη(nB(E∗

0 ))/h,
which does not depend on the index σ with dropping the
index yx for convenience. This gives G

yx
σ = L′

11N0σ and
K

yx
σ = (1/T )(L′

22 − L′
21L

′
12/L

′
11)N0σ . Consequently,

G
yx

AF = L′
11(N0↑ + N0↓), (29a)

K
yx

AF = (1/T )

(
L′

22 − L′
21L

′
12

L′
11

)
(N0↑ + N0↓). (29b)

The vanishing of the total Chern number [31,34,35]
[Eq. (21)], N0↑ + N0↓ = 0, results in

G
yx

AF = 0, K
yx

AF = 0. (30)

Thus in contrast to the magnonic Hall system of FMs [46], the
thermomagnetic ratio of the AF K

yx

AF/G
yx

AF becomes ill-defined
in the sense that the total magnonic spin Hall conductance is
zero G

yx

AF = 0; the WF law [4,47] characterized by the liner-in-
T behavior becomes violated since the total magnonic thermal
Hall conductance vanishes, i.e., K

yx

AF = 0.
Defining the total magnonic spin and heat Hall current den-

sities, Jy ≡ ∑
σ jyσ and J Q

y ≡ ∑
σ jQ

yσ , respectively, Eq. (25)
is rewritten as(

〈Jy〉〈
J Q

y

〉
)

=
(

L′
11(N0↑ + N0↓) L′

12(N0↑ − N0↓)

L′
21(N0↑ − N0↓) L′

22(N0↑ + N0↓)

)(
∂xB

− ∂xT

T

)
.

(31)

The component of L′
12 represents the magnonic spin Nernst

effect in AFs [60–62] where thermal gradients generate helical
magnon Hall transport, and consequently, the total magnonic
spin Hall current becomes nonzero. This arises from the
opposite magnetic dipole moment σ = ±1 inherent to the
Néel magnetic order in AF, and the effect is characterized
or ensured by the Z2 topological invariant [31,34,35,39,89]
[Eq. (22)] Z0 ≡ (N0↑ − N0↓)/2 = 1.

The same holds for the reciprocal phenomenon, the
magnonic Nernst-Ettinghausen effects [109] parametrized by
L′

21, while [31–35,39,40]. Note that here we refer to the
phenomenon described by L′

11 term as “magnonic spin Hall
effect” in the bulk AF since it characterizes the magnonic
spin Hall conductance G

yx

AF where all magnons subjected to a
magnetic field gradient propagate in the same direction and,
consequently, the total magnonic spin Hall current becomes
zero. This can be qualitatively understood as follows; the
particle Hall current density for each magnon jP

yσ is given
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by jP
yσ = jyσ /(σgμB), and Eqs. (25) and (28) provide (see

also Table I)

〈
jP
yσ

〉 = σN0σ

L′
11

gμB
∂xB − N0σ

L′
12

gμB

∂xT

T
. (32)

Since N0σ = σ , i.e., N0↑ = −N0↓ = 1, it shows that thermal
gradient generates helical magnon Hall transport in the
topological bulk AF where up and down magnons flow in
opposite y direction, while all magnons subjected to the
magnetic field gradient flow in the same y direction because of
the relation σN0σ = 1. This is in contrast to the topologically
trivial bulk AF (Sec. II) where the magnetic field gradient
working as a driving force Fσ ∝ σgμB produces helical
magnon currents. The difference arises from each topological
integer [31–35,39,40], i.e., the Chern number N0σ = σ , which
leads to σN0σ = 1. Note that each magnon by itself carries
spin G

yx
σ 
= 0 and heat K

yx
σ 
= 0, and each mode, respectively,

satisfies the same WF law [46] K
yx
σ /G

yx
σ = [kB/(gμB)]2T as

the quantum Hall system of ferromagnetic magnons. However,
due to the relation N0↑ + N0↓ = 0 between each topological
integer [31–35,39,40], magnonic spin and thermal Hall effects
in the bulk represented by Eqs. (29a) and (29b), respectively,
are prohibited in the topological bulk AF, while the magnonic
Nernst-Ettinghausen effects [109] shown by the off-diagonals
in Eq. (31), L′

12 and L′
21 terms, are characterized or ensured

by the Z2 topological number Z0 defined in Eq. (22).
Thermomagnetic properties of such magnon transport in the
topological bulk [110] AF are summarized in Table I.

Lastly, regarding the linear response to magnetic field gradi-
ent, e.g., the total magnonic spin Hall conductance G

yx

AF or L′
11

term, we remark that in Eqs. (29a) and (31), we may still work
under the assumption that the relationN0↑ + N0↓ = 0 between
each topological integer [31–35,39,40] is valid since, just for
a perturbative driving force, we assume a (negligibly) small
magnetic field gradient that does not disturb the cyclotron
motion of magnons; thanks to the spin anisotropy-induced
energy gap, the energy spectrum is not affected at all and
each edge magnon state remains unchanged thereby ensuring
the relation N0↑ + N0↓ = 0 between topological integer, i.e.,
N0σ = σ . Recall that in Sec. III B, we have seen that the
cyclotron motion induced by the AC effect leads to the helical
edge magnon state characterized by the nonzero Chern number
N0σ = σ . Therefore, as long as each magnon type performs a
cyclotron motion, the relation remains unchanged.7

IV. ESTIMATES FOR EXPERIMENTS

Observation of spin-wave spin currents [5,7], thermal Hall
effect of magnons [6], magnon planar Hall effect [8], Snell’s
law for spin wave [9,10], and electrically induced AC effect
[11–15,46] on a magnonic system [21] has been reported.
Recently, measurement of magnonic spin conductance [8]
has been reported in Ref. [111] and thermal generation of
spin currents in AFs has been established experimentally
in Ref. [51] using the spin Seebeck effect [52–59], with
the subsequent report [60–62] of magnonic spin Nernst
effect in AFs. Moreover, on top of Brillouin light scattering

7The expression, Eqs. (29a) and (31), itself is valid in any case.

spectroscopy [1,112,113], using infrared camera, the real-time
observation of spin-wave propagation is now possible and
Ref. [114] reported the observation of magnon Hall-like
effect [8].

Therefore we can expect that the observations of the
magnonic WF law in the topologically trivial bulk AF and
the magnonic QSHE (helical edge magnons) in the topological
AF are now within experimental reach [80,82,83,115–117] via
measurement schemes proposed in Ref. [46]. The considered
electric field with the constant gradient can be realized by
an electric skew-harmonic potential [46] and, while being
challenging, it may be realized by STM tips [82,83]. The
resulting magnetization gradient from the applied thermal
gradient plays a role of an effective magnetic field gradient and
works as a nonequilibrium magnonic spin chemical potential
[71–73,78,79] that has been established experimentally in
Ref. [80].

For an estimate, we assume the following experiment
parameter values [67,68] for Cr2O3, J = 15 meV, K =
0.03 meV, S = 3/2, g = 2, E = 1 V/nm2, and a = 0.5 nm.
This provides the Landau gap h̄ωc = 1 μeV and lE = 0.7 μm
[Eqs. (17) and (18)], with which the magnonic QSHE and he-
lical edge magnons could be observed at T � 10 mK. At these
low temperatures, effects of magnon-magnon and magnon-
phonon interactions can be expected to become negligible
[47,56,65]. An alternative platform to look for topological
magnon Hall effects would be skyrmionlike lattices of AFs
[118–120] with Dzyaloshinskii-Moriya (DM) [121–123] inter-
action where the Néel order parameter varies slowly compared
to the typical wavelength of magnons (i.e., spin-waves). In
Ref. [48] (see Appendix D for details), we have seen that the
low-energy magnetic excitations in the skyrmion lattice are
magnons and the DM interaction [124–126] produces intrin-
sically a vector potential analogous to Am which reduces to
the same form as Eq. (12). Assuming experimental parameter
values [127–129] (see Ref. [46] for details), Landau gaps on the
order of a few meVs could be reached. Since the Hamiltonian
for an AF in a skyrmionlike lattice where the Néel order varies
slowly (compared to the typical wavelength of spin-waves)
also reduces to the qualitatively same form as Eq. (12), we
expect that the topological magnon Hall effects could be
observed at T � O(10) K in such AFs [118–120]. The tem-
perature, however, should be low enough to make spin-phonon
and magnon-magnon contributions negligible [47,56,65]. As
to the magnonic WF law in the topologically trivial bulk
AFs, the energy gap amounts to � = 4 meV and thus the
magnonic WF law may be observed at T = 40 K (kBT =
�). However, again, the temperature should be low enough
[130] to make spin-phonon and magnon-magnon contributions
negligible [47,56,65]. Therefore we expect that the effect
becomes observable at low temperature T � O(1) K.8 Given

8Reference [65] reported measurements in a magnet at low
temperature T � O(1) K, which showed that the exponent of the
phonon thermal conductance is larger than that of magnons in terms of
temperature. This indicates that in terms of thermal conductance, the
effects of phonons die out more quickly than magnons at decreasing
temperature.
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these estimates, we conclude that the observations of the
magnonic and topological phenomena in AFs as proposed in
this work, while being challenging, seem within experimental
reach [131].

V. SUMMARY

Under the assumption that the spin along the z direction
remains a good quantum number, we have studied thermo-
magnetic properties of helical transport of magnons with the
opposite magnetic dipole moment inherent to the Néel order
both in topologically trivial and nontrivial bulk AFs. Since the
quantum-mechanical dynamics of magnons in the insulating
AF is described as the combination of independent copies of
that in FMs, we found that both topologically trivial magnets
satisfy the same magnonic WF law, exhibiting a linear-in-T be-
havior at sufficiently low temperatures, while the law becomes
violated in the topological bulk AF due to the topological
invariant that helical edge magnon states bring about. In
the electric field gradient-induced AC effect, up and down
magnons form the same Landau energy level and perform
cyclotron motion with the same frequency but in opposite
directions giving rise to helical edge magnon states, i.e., QSHE
of edge magnons, and the AF becomes characterized by the
Z2 topological number consisting of the Chern integer that
each edge state brings about and the AF can be identified as
a bosonic version of a TI. In the almost flat band inherent
to the electrically induced topological AF, the magnonic spin
and thermal Hall effects of bulk magnons are prohibited by the
topological integer, while the Nernst-Ettinghausen effects are
ensured by the Z2 topological invariant. The relation between
each topological integer is robust against external perturbation
as long as magnons can perform cyclotron motion giving the
helical edge magnon states. Finally, it would be interesting to
test our predictions experimentally.

VI. DISCUSSION

To conclude a few comments on our approach are in order.
Instead of deriving the helical edge states directly from the
spin Hamiltonian in the presence of electric fields as done
previously for FMs [46], here we first derive the magnon
approximation of the spin Hamiltonian in the continuum limit
and then introduce the AC phase. The resulting Hamiltonian
with quadratic magnon dispersion is then analyzed numeri-
cally by introducing the corresponding TBR. Throughout this
paper we have thus restricted our consideration to AFs where
within the long wavelength approximation the dispersion
becomes gapped and parabolic, and the dynamics of magnons
in the AF can be described as the combination of two
independent copies of the dynamics of magnons in a FM
for each mode σ = ±1. The helical edge states we found
in this approximation are topologically stable and thus their
emergence does not depend on the microscopic details as
long as the gap remains open. Still, a general treatment of
AFs (beyond the parabolic dispersion regime, on different
lattices, e.g., on a triangular spin lattice in the presence of
frustration, etc.) remains an open issue and deserves further
study.

Lastly, we remark that due to the opposite magnetic
dipole moments of up and down magnons associated with
the magnetic N ´eel order in AFs, the σ dependence is simply
added to the TBR, Eq. (23). This σ dependence, while being
a small theoretical difference from the FMs [46], produces
qualitatively new phenomena in AFs such as helical edge
magnon states and the violation of the magnonic WF law [46].
We stress that this simplicity of the σ -dependence is specific
to the time-independent case considered here. In contrast,
when the electric field becomes time-dependent (e.g., in the
presence of laser pulses) the AC gauge potential becomes also
time-dependent and the σ dependence could be controlled or
even vanish for some ac electric fields. This opens up a new
control on the topological phase. It will thus be interesting
to study time-dependent effects in these systems in more
detail.
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APPENDIX A: MAGNONS IN AFS

In this appendix, we provide some details of the straight-
forward treatment of AFs [42,43,66] showing that their Néel
order provides up and down magnons, i.e., “magnetically
charged” bosonic quasiparticles carrying opposite magnetic
dipole moments σgμBez. An external magnetic field B = Bez

couples with spins via the Zeeman interaction given by
HB = −gμBB

∑
l S

z
l . Assuming spins in the AF form the Néel

order along z direction, and using the sublattice-dependent
Holstein-Primakoff [60,61,66,69] transformation, Sz

iA = S −
a
†
i ai, S

z
jB = −S + b

†
j bj , with [ai,a

†
j ] = δi,j and [bi,b

†
j ] = δi,j ,

we find for the z component of the total spin [60] Sz ≡∑
l S

z
l = ∑

i(S
z
iA + Sz

iB) = ∑
i(−a

†
i ai + b

†
i bi). After Fourier

transformation Sz = ∑
k(−a

†
kak + b

†
kbk), the Hamiltonian be-

comes HB = gμBB
∑

k(a†
kak − b

†
kbk). Using a Bogoliubov

transformation(
a
†
k

bk

)
= M

(
A†

k

Bk

)
,

(
ak

b
†
k

)
= M

(
Ak

B†
k

)
(A1)

with the coefficient matrix M defined by

M =
(

coshϑk −sinhϑk

−sinhϑk coshϑk

)
, (A2)

the Hamiltonian H in the main text becomes diag-
onal [42,43,66], H = ∑

k h̄ωk(A†
kAk + B†

kBk), in terms
of Bogoliubov quasiparticle operators, Ak and Bk, sat-
isfying bosonic commutation relations [Ak,A†

k′] = δk,k′

and [Bk,B†
k′] = δk,k′ , where tanh(2ϑk) = γk/(1 + κ), γk =

(1/ρ)
∑ρ

m=1 e−ik·δm , the coordination number ρ = 2d, and
δm the relative coordinate vector that connects the
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nearest neighboring sites. The z component of the
total spin is rewritten as Sz = ∑

k(−a
†
kak + b

†
kbk) =∑

k(−A†
kAk + B†

kBk) and thereby HB = gμBB
∑

k(a†
kak −

b
†
kbk) = gμBB

∑
k(A†

kAk − B†
kBk). Therefore it can be seen

that the A- (B-) magnon carries σ = −1 (+1) spin angular
momentum along the z direction and can be identified with
down and up magnons, respectively.

In the absence of the magnetic field, B = 0, these up
and down magnons are degenerate and the energy dispersion
[42,43] is given by h̄ωk = 2JdS

√
(1 + κ)2 − γ 2

k . Within
the long wave-length approximation, it becomes γ 2

k = 1 −
(ak)2/d for |k| = k and thereby assuming a spin anisotropy
[67,68] at low temperature, the dispersion becomes parabolic
in terms of k and reduces to the form h̄ωk = Dk2 + � with
D = JSa2/

√
κ2 + 2κ which is used in the main text. Note that

the dispersion becomes linear in terms of k, h̄ωk ∝ k, when
there is no spin anisotropy K = 0, i.e., κ = 0.

Lastly, we remark that the z component of spins is a good
quantum number [89] of our system, which commutes with
the original spin Hamiltonian [Eq. (1)]. Therefore regardless
of the analytical approach taken, e.g., noninteracting magnon
picture [42,43] using the Holstein-Primakoff transformation,
we adopted throughout this work, the excitations should
have a well-defined spin z component. The Hamiltonian
and the spin z component are simultaneously diagonalizable.
Therefore it can be expected that, apart from any magnon
picture, two well-defined opposite spin modes and the helical
nature of the resultant edge spin modes should survive in
any case at sufficiently low temperatures where phonons die
out [56,65].

APPENDIX B: BOLTZMANN EQUATION
FOR MAGNONS

In this appendix, we provide some details of the straight-
forward calculation for the Onsager coefficients Lijσ in
the topologically trivial bulk AF. Assuming the system
is slightly out of equilibrium and using the Boltzmann
transport equation [71–73] given in Ref. [70], the Bose-
distribution function of magnons fkσ becomes fkσ = f 0

kσ +
gkσ where f 0

kσ = (eβεkσ − 1)−1 with εkσ = h̄ωkσ is the
equilibrium distribution while the deviation from equilib-
rium gkσ = fkσ − f 0

kσ is given by gkσ = τvk · [−σgμB∇B +
(εkσ /T )∇T ](∂f 0

kσ /∂εkσ ) within the liner response regime,
where vk = ∂εkσ /∂h̄k is the velocity and τ a phenomenolog-
ically introduced relaxation time of magnons, mainly due to
nonmagnetic impurity scatterings and thereby we may assume
it to be a constant at low temperature. The resulting particle,
spin, and heat currents for each magnon mode, jP

σ , jσ , jQσ ,
respectively, are given by jP

σ = ∫
[d3k/(2π )3]vkgkσ , jσ =∫

[d3k/(2π )3]σgμBvkgkσ , jQσ = ∫
[d3k/(2π )3]εkσ vkgkσ . As-

suming spatial isotropy |kx | = |ky | = |kz| for k = (kx,ky,kz)
and performing the Gaussian integrals, the Onsager coeffi-
cients Lijσ shown in the main text are obtained.

APPENDIX C: CYCLOTRON MOTION OF MAGNONS

In this appendix, we provide for completeness some details
of the straightforward calculation showing that the dynamics of

magnons with the opposite magnetic dipole moments σgμBez

are identical except that the resulting chirality of the magnon
propagation becomes opposite [Fig. 1(b)]. Using the corre-
spondence explained in the main text, the calculation becomes
analogous to the one for electrons [70,81], and especially it
parallels the one for ferromagnetic magnons given in Ref. [46]
except that we have now two magnon modes with opposite
magnetic dipole moment (σ = ±1). Introducing operators
analogous to a covariant momentum �̂σ ≡ p̂ + σgμBAm/c =
(�xσ ,�yσ ), which satisfy [�xσ ,�yσ ] = −iσ h̄2/l2

E , and drop-
ping the irrelevant constant, the Hamiltonian for each mode
can be rewritten as Hmσ = (�2

xσ + �2
yσ )/2m. Next, intro-

ducing the operators Aσ ≡ lE (�xσ − iσ�yσ )/
√

2h̄ and A†
σ ≡

lE (�xσ + iσ�yσ )/
√

2h̄, which satisfy bosonic commutation
relations, [Aσ ,A†

σ ] = 1 with the remaining commutators van-
ishing, the Hamiltonian becomes Hmσ = h̄ωc(A†

σAσ + 1/2).
Indeed, introducing [81] the guiding-center coordinate by
Xσ = x − σ l2

E�yσ /h̄ and Yσ = y + σ l2
E�xσ/h̄, which satisfy

[Xσ ,Yσ ] = iσ l2
E with dXσ/dt = dYσ /dt = 0 indicating that

the drift velocity vanishes in the absence of the magnetic
field gradient, the time evolution of the relative coor-
dinate REσ = (Rxσ ,Ryσ ) ≡ (−l2

E�yσ /h̄,l2
E�xσ /h̄) becomes

d(Rxσ + iRyσ )/dt = iσωc(Rxσ + iRyσ ). Thus in the pres-
ence of an electric field gradient, two magnons form the same
Landau level and perform cyclotron motion with the same
frequency, but propagate in opposite directions due to the
opposite magnetic dipole moment σgμBez [Fig. 1(b)].

APPENDIX D: LANDAU LEVELS
IN TOPOLOGICAL MAGNETS

In this appendix, we provide some insight into the magnons
in DM interaction-induced skyrmion-like structures where the
DM [121–123] interaction provides [126] an effective AC
phase. In Ref. [48], we have seen that the low-energy magnetic
excitations in the skyrmion lattice are magnons and the DM
interaction produces a textured equilibrium magnetization
that works intrinsically as a vector potential analogous to
Am. The Hamiltonian of magnons indeed reduces to the
same form of Eq. (12) with the analog of the Landau gauge
that produces the Landau energy level [Eq. (16)]. Assuming
the magnitude of the DM interaction [127–129,132,133]
�DM, the Landau energy level spacing is given by [48]
(4JS/

√
3π )(�DM/J )2; see Refs. [46,48] for details. Using

the correspondence with the Landau energy level spacing by
electric field gradient-induced AC effect h̄ωc [Eqs. (16) and
(17)], it can be seen to be qualitatively identified with an
effective inner electric field gradient [88] and the magnitude
is estimated by EDM = [2/(

√
3πa2)](h̄c2/gμB)(�DM/J )2 ∝

�2
DM. This indicates that the DM interaction produces a slowly-

varying textured equilibrium magnetization that provides an
effective AC phase and in such a skyrmionlike structure,
it works as an effective, fictitious, and intrinsic electric
field gradient EDM = O(102)V/nm2 of very large magnitude
[48,126]. Note that the key to edge magnon states is the vector
potential Am that globally satisfies the relation [Eq. (13)]
∇ × Am = (E/c)ez where magnons experience the vector
potential macroscopically, leading to cyclotron motion.
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