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Summary 

Myeloproliferative neoplasms (MPN) are a group of chronic hematologic diseases, which are 

characterized by an over production of mature blood cells. The term MPN summarizes four 

main hematologic diseases: Chronic myelogenous leukemia (CML), essential 

thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF). In this group 

of malignancies, CML patients can be identified by a chromosomal translocation, the 

Philadelphia chromosome. Patients with ET, PV and PMF share genetic markers, and can only 

be distinguished by clinical parameters. Currently, it is still unclear, how a specific genetic 

alteration can lead to different clinical phenotypes. 

In the present thesis, we utilized novel NGS technologies and analyzed more than 100 genes 

in parallel to find secondary somatic mutations with impact on the phenotype of Ph-negative 

MPN patients. We also analyzed the temporal order of acquisition of these mutations and 

compared our results between adult MPN patients and rare pediatric cases. Our results show 

that in adult patients, the number of somatic mutations correlates with adverse survival and 

transformation to AML. Further, we report cases of patients who carry clones of TP53 

mutations for multiple years and only when these clones expand, the MPN phenotypes of these 

patients progresses to AML. In pediatric MPN cases, we found a different mutational landscape 

and less genetic mutations per patient. 

In the second part of the thesis, we analyzed patients with a very low mutant JAK2 allele 

burden and found that the MPN clone in these patients expands in the platelet and red cell 

lineages. Furthermore, we analyzed the genetic alterations of a large combined cohort to 

uncover instructive effects on the MPN phenotype of less frequently mutated genes. Finally, 

we show how different genetic alterations may modulate the MPN phenotype and propose a 

model of disease evolution and risk stratification in correlation to mutational events. 
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1 Introduction 

1.1 Hematopoiesis 

Myeloproliferative neoplasms are a group of hematologic diseases, which are characterized 

by an overproduction of mature myeloid peripheral blood cells, such as granulocytes, red cells 

or platelets(1). MPN are clonal disorders of hematopoietic stem cells (HSC) with an inherent 

tendency towards leukemic transformation.  

During homeostasis, a tightly regulated hierarchical differentiation process called 

hematopoiesis constantly produces all hematopoietic lineages (Figure 1). HSC, a rare 

population of 1-2 x 105 HSC in human(2), represent the origin of this process. HSC 

asymmetrically divide giving rise to differentiated progenitors and maintain their own pool by 

self-renewal. They reside in the bone marrow hematopoietic niche forming a specific 

microenvironment(3). The hematopoietic niche supports HSCs by nurturing and controlling 

quiescence, proliferation and differentiation. In homeostasis, two thirds of HSCs are kept in a 

quiescent state(4). At a given time point, only one third of the HSCs actively contribute to 

hematopoiesis or self-renewal. During hematopoiesis, HSCs give rise to multipotent 

progenitors (MPPs), which only have limited self-renewal capacity(5). MPPs give rise to 

common myeloid progenitors (CMP) and common lymphoid progenitors (CLP) with restricted 

myeloid or lymphoid lineage formation potential, therefore classified as oligopotent progenitors. 

The progeny of CMP further segregates between megakaryocyte–erythroid progenitors (MEP) 

and granulocyte-macrophage progenitors (GMP). The differentiation potential of MEP is limited 

to progenitors of platelets and red cells. GMPs can give rise to progenitors of granulocytes and 

macrophages. CLP generate progenitors of natural killer cells, B- and T-cells. In this classical 

model of hematopoietic hierarchy, it is generally believed that terminally differentiated platelet 

competent megakaryocytes (Mk) derive from HSC by sequential developmental transitions. 

According to this hypothesis, HSC differentiate through multipotent progenitors (MPP), 

common myeloid progenitors (CMP), MK-erythroid progenitors (MEP), and MK progenitor 

(MkP) stages. This paradigm was recently updated following the identification and 

characterization of potent stem-like Mk committed progenitors (SL-MkP) within the phenotypic 

HSC compartment. These SL-MkP are primed and generate MKs without succession through 

classical intermediate myeloid progenitor stages. In the traditional model of hematopoiesis in 

Figure 1, a grey dotted line visualizes these recently discovered lineage-restricted progenitors 

and their potential(5).  
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Figure 1 Hierarchy of hematopoiesis  
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The closer progenitors are to the terminally differentiated peripheral blood cells, to more 

quiescence, self-renewal and differentiation potential is reduced. In turn, proliferation is 

increased(4,5). This results in massive production of mature blood cells in homeostasis: to 

balance out natural occurring cell death approximately 2.5 x 1011 red cells need to be 

generated per day(6). The red blood cells represent nearly 95% of the cellular compartment. 

Platelets, important in hemostasis and wound healing, represent 5% of the blood cells. White 

blood cells, such granulocytes and monocytes, together with lymphoid cells (natural killer cells 

(NK-cells), B-cells and T-cells) represent only 0.1 % to 0.2 % of the blood cells. The numbers 

of the blood cells under normal conditions are summarized in Table 1(7).  

In MPN, the numbers of myeloid cells are elevated due to somatic mutations, which affect 

genes involved in regulation of hematopoiesis. Different subtypes of MPN are defined 

according to the myeloid lineages that show increased cell counts. Patients are diagnosed with 

essential thrombocythemia (ET) when only the platelet numbers are increased. A diagnosis of 

polycythemia vera (PV) requires elevated red cell counts, but may include thrombocytosis and 

leukocytosis. The third main MPN phenotype, primary myelofibrosis (PMF), is diagnosed when 

in the bone marrow megakaryocytes are showing increased numbers and atypical morphology.  

 

 

 

 

 

 

 

 Blood cells Cell types 
No of cells  

per liter 
Percentage 

Red blood cells Erythrocytes 5 x 1012 94.2 % 

Platelets Platelets 3 x 1011 5.6 % 

Leukocytes Neutrophils 5 x 109 0.1 % 

 Eosinophils 2 x 108 0.004 % 

 Basophils 4 x 107 0.0008 % 

 Monocytes 4 x 108 0.008 % 

Lymphoid cells Natural Killer cells 1 x 108 0.002 % 

 B-cells 2 x 109 0.04 % 

 T-cells 1 x 109 0.02 % 

Table 1 Cells of the peripheral blood  
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1.2 Cytokine signaling in normal and malignant hematopoiesis 

To maintain the number of blood cells or to adjust them under physiological stress, internal 

and external regulators control hematopoiesis by balancing proliferation, differentiation and 

apoptosis. External regulators, like cytokines and growth factors, bind and induce signaling 

through their cognate cell surface receptors. Ligand binding of receptors is integrated by 

signaling cascades such as the JAK/STAT, RAS/MAPK and the PI3K/mTOR pathway. These 

cascades control internal regulators like transcription factors or miRNAs, which regulate 

hematopoiesis by adjusting expression of target genes at RNA level.  

Therefore, in hematopoiesis the cytokine-signaling network is one of the most important 

systems, which enables cells to receive and concert information. Cytokines, such as 

thrombopoietin (TPO) and EPO (erythropoietin), are secreted proteins, which bind specific 

surface receptors. Cytokine receptors are classified in six families, the type I and type II 

cytokine receptors, the immunoglobulin superfamily, tumor necrosis factor receptor family, IL-

17 family and G-protein coupled chemokine receptors (reviewed in (8)). The thrombopoietin 

receptor (MPL) and the erythropoietin receptor (EPOR) are both members of the type I receptor 

family and share the structural motifs of this class of receptors. The extracellular domains of 

type I cytokine receptors contain at least one duplet of cysteine repeats and a WSXWS motif. 

The intracellular domains of these receptors do not exhibit enzymatic activity and therefore, 

signaling of TPO and EPO through their cognate receptors MPL and EPOR is dependent on 

associated Janus kinase 2 (JAK2) enzymes (Figure 2)(9). The family of JAK kinases consist of 

four proteins, JAK1, JAK2, JAK3 and TYK2, which all associate with specific motifs at the intra 

cellular domain of cytokine receptors(10–12). Upon ligand binding, the JAKs trans-activate each 

other by trans-phosphorylation and also phosphorylate tyrosine residues at the intracellular 

domain of the cytokine receptor. These phosphorylated tyrosine residues represent binding 

sites for Signal Transducers and Activators of Transcription (STAT proteins)(13). When bound 

to the receptor, STATs get phosphorylated by JAKs(14). Upon phosphorylation, STATs 

dimerize and translocate to the nucleus(15). In the nucleus, dimers of STATs activate gene 

expression by binding specific DNA sequences known as Insulin responsive elements (ISRE) 

or interferon gamma activated sequences (GAS)(16,17). Cytokine receptors can also activate 

other signaling networks than the JAK/STAT pathway upon ligand binding(18). Phosphorylation 

of the intracellular domain of the cytokine receptor by JAKs provides binding sites for proteins 

containing SH2 domains(19). SHC, a protein with such a SH2 domain, binds to phosphorylated 

tyrosine at the receptor. In collaboration with GRB2 and SOS, SHC builds a scaffold for 

signaling through the RAS-MAPK-ERK pathway(20–24). Also PI3K contains a SH2 domain and 

associates with the intracellular domain of cytokine receptors. The activation of PI3K by 
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receptor associated Janus kinases subsequently leads to enhanced AKT/mTOR 

signaling(19,25). Both pathways, RAS-MAPK-ERK and PI3K-AKT1-mTOR, provide STAT 

independent signaling routes, which enhance survival and proliferation(22). 

In cancer, the cytokine signaling network plays an important role as it is involved in promoting 

survival, suppressing apoptosis and modulating immune response to malignant cells(26,27). In 

MPN, activating mutations in cytokine receptors(28–30), receptor associated JAK2(31–34) and 

other proteins (35,36) have been shown to stimulate cytokine signaling, even in absence of the 

receptor ligands. This enhanced signaling leads to constitutive production of mature 

hematopoietic cells which results in elevated platelet numbers or increased red cell count and 

represents the clinical features of MPN(1).  
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Figure 2 Cytokine-induced JAK-STAT signaling 

Schematic drawing of the cytokine-induced JAK-STAT signaling: (1a) Monomeric receptors dimerize 
upon ligand binding or (1b) receptor multimers change conformation upon ligand binding. The ligand 
binding leads to phosphorylation of receptor-bound JAKs and the intracellular domains of the receptors. 
(2) Monomers of STAT associate with the phosphorylated tyrosines of the receptor and also get 
phosphorylated by JAKs. (3) Phosphorylated STATs form dimers and (4) translocate to the nucleus (5), 
where they bind to specific DNA motifs and change expression of the nearby genes. 
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1.3 Myeloproliferative neoplasms and their clinical classification 

Since the early 20th century, diseases of the blood were diagnosed based on cell counts in 

blood smears(37). When dynamic range and sensitivity of blood-counting technologies were 

increasing(38), overlapping features in  a number of hematologic malignancies were discovered 

by William Dameshek. He reported that early-diagnosed patients with chronic myeloid 

leukemia (CML) often presented with signs of erythrocytosis and thrombocytosis, an elevation 

of red cells and platelets, respectively. Patients with diagnosis of PV frequently shared both 

characteristics and ET patients were diagnosed by pronounced thrombocytosis. Based on the 

observation of the overlapping phenotypes, William Dameshek proposed to summarize four 

diseases in a category, that he called myeloproliferative syndromes (MPS): CML, PV, ET and 

erythroleukemia (AEL or AML-M6)(39). Since 1951, the name of the classification was modified 

from syndromes to myeloproliferative disorders (MPD) and changed into myeloproliferative 

neoplasms (MPN), but it is still recognized and maintained as an entity by the World Health 

Organization (WHO). Substantial refinements have been made over time to adapt diagnostic 

requirements to the current knowledge. Accordingly, the 2016 revision of the WHO 

classification(1) summarizes seven MPN subcategories: Four so-called classical MPN 

phenotypes, CML, ET, PV and PMF, and two phenotypes, which are diagnosed by excluding 

other hematological malignancies(40,41). These two phenotypes are chronic neutrophilic 

leukemia (CNL) and chronic eosinophilic leukemia (not otherwise specified, CEL-NOS). The 

seventh phenotype, MPN unclassifiable (MPN-U), represents a group of patients which 

frequently shows features of ET, PV and PMF(42) but do not show the minimum criteria for or 

any of the six other MPN diagnoses.  

In MPN diagnosis, molecular markers play an important role. The presence of a chromosomal 

translocation at position t(9;22)(q34;q11), the Philadelphia (Ph) chromosome, separates 

between CML and the Ph-negative MPN, ET, PV and PMF(1). These three MPN phenotypes 

are distinguished by somatic mutations, blood counts and bone marrow biopsies. Diagnosis of 

PV requires a somatic mutation in JAK2, elevated red cell mass and hypercellularity in the 

bone marrow with trilineage growth. ET is diagnosed upon elevated platelets and proliferation 

of megakaryocytes in the bone marrow. Diagnosis of PMF requires megakaryocytic 

proliferation and atypia accompanied by reticulin and/or collagen fibrosis. The grade of fibrosis, 

megakaryocyte morphology and the potential presence of leukoerythroblastosis differ between 

the prefibrotic stage and the overt stage of myelofibrosis. In addition to clinical markers, the 

diagnosis of ET and PMF requires the presence of a somatic mutation in JAK2, MPL or CALR 

(Table 2).  
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ET PV PMF 

1st major 
criterion 

Platelet count >450x109/L Hb >165 g/L (males) 
Hb >160 g/L (females) 
Or 
HCT >49 % (males) 
HCT >48 % (females) 
Or 
increased red cell mass 

Megakaryocytic proliferation and 
atypia  

reticulin fibrosis ≥grade 1, 
increased age-adjusted bone 
marrow cellularity and 
granulocytic proliferation 
(prePMF)  
or 
reticulin and/or collagen fibrosis 
grade 2 or 3 (overt PMF) 

2nd major 
criterion 

Bone marrow biopsy shows 
proliferation mainly of the 
megakaryocytic lineage with 
increased number of 
enlarged, mature 
megakaryocytes with 
hyperlobulated nuclei, no 
left shift in granulopoiesis or 
erythropoiesis, rarely 
fibrosis grade 1 

Hypercellular bone 
marrow with trilineage 
growth with 
pleomorphic mature 
megakaryocytes 

Excluding criteria for BCL-ABL+ 
CML, PV, PMF, MDS or other 
myeloid neoplasms 

3rd major 
criterion 

Presence of mutation in 
JAK2, CALR or MPL 

Presence of JAK2-
V617F or JAK2-exon12 
mutation 

Presence of mutation in JAK2, 
CALR or MPL, or another clonal 
marker 

4th major 
criterion 

Excluding criteria for BCL-
ABL+ CML, PV, PMF, MDS 
or other myeloid neoplasms 

  

Minor 
criteria 

Presence of a clonal marker 
or reactive thrombocytosis 
excluded 

Subnormal serum 
erythropoietin level 

Anemia not attributed to a 
comorbid condition, or 
leukocytosis <11 x 109/L, or 
palpable splenomegaly, or LDH 
increased to above upper 
normal limit of institutional 
reference range, or 
Leukoerythroblastosis (overt 
PMF only) 

Diagnosis 
requires 

All four major criteria, or the 
first major criteria 1,2,4 and 
the minor criterion 

All three major criteria 
or major criteria 1 & 2 
and the minor criterion 

All three major criteria and at 
least one minor criterion 

Table 2 WHO criteria for the diagnosis of ET, PV and PMF  

The data displayed in this table is from reference (1) 
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A study of the Swedish cancer registry with >9’000 MPN patients has shown that the survival 

differs between ET, PV and PMF. The relative survival ratio (RSR) of ET and PV patient for 5-

year disease duration was comparable, 0.95 and 0.91, respectively. The RSR of PMF patients 

was significantly reduced for the same period of time. The longer the observation time, the 

more the survival of MPN patients differed. The RSR of 15 years after diagnosis was 0.66 for 

patients diagnosed for ET, 0.56 for PV patients and 0.13 for patients with PMF. The RSR of 

patients with MPN-U is increased compared to PMF but reduced compared to ET or PV(43). 

The overall survival of MPN patients with ET, PV, PMF or MPN-U phenotype improved over 

the last 40 years due to improved prevention of complications such as thromboembolic 

events(43).  

In long-term follow-up, patients with ET and PV may progress into post-ET or post-PV 

myelofibrosis (MF). In addition, ET, PV and PMF can transform to acute myeloid leukemia 

(AML) (Figure 3). Transformation of ET into PV has been described in 1-5 % of cases and is 

lower, when WHO proposed criteria are strictly followed for MPN diagnosis(44). Transformation 

from ET or PV to post-ET/post-PV MF requires an increase of fibrosis to grade 2 or 3 along 

with additional criteria, such as: anemia, loss of need for phlebotomies, increasing 

splenomegaly or circulating blasts. The frequency of progression into myelofibrosis (MF) is 

reported to be slightly higher (5-14 %) for PV patients compared to ET patients (5-9 %)(45). 

Frequency of transformation from ET to post-ET MF is supposedly lower since prefibrotic MF 

(preMF) is defined as an own category by WHO criteria. Patients with preMF show a 

significantly higher frequency (17 %) of transformation into overt MF than ET patients (5 %)(45). 

All three classical MPN may progress into AML(46). In average 5 % of ET and PV patients 

transform to AML. The frequency of progression to AML is lower for PV patients maintained 

on phlebotomies (<2 %), compared to PV patients treated with cytoreductive 

drugs/chemotherapy (up to 16 %). PMF patients have a risk of 16 % to progress to AML during 

15 years after MPN diagnosis(47). 
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Figure 3 Transformation and progression in MPN 

Adapted from data available in (1,44–47). Values show probabilities for phenotypic transformations within 

15 years of follow-up. 
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1.4 Molecular characteristics of ET, PV and PMF 

The diagnosis of ET, PV or PMF, relies on clinical features and the presence of a clonal genetic 

marker (Table 2, 3rd major criterion). In contrast to CML where the Philadelphia chromosome 

is the sole genetic requirement for diagnosis, the classical Ph-negative MPN phenotypes share 

a set of genetic markers in the genes JAK2, MPL and CALR (Table 3)(1). The JAK2-V617F 

mutation, discovered in 2005 by four labs(31–34), is a single nucleotide point mutation in exon 

14 of the JAK2 gene and is found in ET, PV and PMF patients. The prevalence of varies among 

the Ph-negative MPN is depending on the disease phenotype: nearly all PV patients (90%) 

carry this mutation, whereas only 50-60% of the patients diagnosed with ET or PMF are JAK2-

V617F positive(31–34). JAK2 exon 12 mutations are exclusively found in PV patients. Another 

gene recurrently mutated in Ph-negative MPN is the thrombopoietin receptor MPL. MPL 

mutations changing the codon of the tryptophan at position 515, are found in about 5% of ET 

and PMF patients, but are absent in PV patients(29). The third gene recurrently mutated in ET 

and PMF is Calreticulin (CALR). CALR is affected by insertion or deletion mutations, which 

lead to a frame shift in exon 9. CALR mutations are absent in PV patients(35,36). MPN patients 

who do not carry any of the previously described mutations in the three genes JAK2, MPL or 

CALR, are termed “triple negative” patients and represent 5-10% of ET, PV or PMF patients. 

 

 

 

 

 

 

Mutation ET PV PMF 

JAK2-V617F 50-60% 95% 50-60% 

JAK2-exon12 0% 4% 0% 

MPL-W515L/K/A 5% 0% 5% 

CALR-exon9 30-40% 0% 30-40% 

None 5-10% 0-2% 5-10% 

Table 3 Genetic markers of MPN 

Combined data from references (29,31-34)  
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1.4.1 Mutations of the MPL receptor in MPN 

The thrombopoietin receptor TpoR known as myeloproliferative leukemia protein MPL, is a 

receptor, which specifically binds the cytokine thrombopoietin (TPO) and signals through the 

JAK/STAT pathway (Figure 4A). TPO is produced by the liver and specifically binds to the MPL 

receptor. MPL is expressed by hematopoietic stem and progenitor cells, megakaryocytes and 

platelets. Upon binding TPO, MPL activates JAK/STAT, MAPK and PI3K-AKT1-mTOR 

pathways resulting in survival and proliferation. Further, TPO binding induces internalization 

and degradation of the ligand-receptor complex. The concentration of unbound TPO is 

therefore regulated by uptake and degradation by MPL expressing cells, mostly platelets and 

megakaryocytes (Table 1). This mechanism results in an inverse correlation of the 

concentration of unbound THPO and the number of platelets under homeostasis (Reviewed in 

(21)). 

Several mutations in MPL have been found, mostly in MPN, which activate the receptor even 

in absence of its ligand. They affect the second amino acid of the intracellular domain, 

tryptophan at position 515(29). Mutations at this position result in a conformational change of 

the intracellular domain, which brings associated JAK2 enzymes in spatial proximity. This 

steric conformation mimics a ligand-bound state and leads to constant phosphorylation and 

activation of JAK2, MPL and STAT proteins (Figure 4C). Soon after the discovery of the MPL 

W515L mutation, mouse models have shown the ability of the mutation to induce the MPN 

phenotypes ET and PMF(29,48). 

Other mutations of MPL (K39N, P106L) are found in its extracellular domain and the 

transmembrane domain (S505N, Figure 4B). Recent studies have shown that the P106L 

mutation in the extracellular domain results in a cell type specific trafficking defect. While this 

mutant receptor is expressed on the surface of progenitor cells, its surface expression is 

blocked in adult megakaryocytes(49). This leads to formation of platelets, which lack the MPL 

receptor on their surface. Therefore, these platelets are unable to efficiently bind and 

internalize TPO. The lack of TPO clearance in the blood results in a high concentration of 

unbound TPO and stimulation of progenitors towards platelet production without activating the 

receptor(50). The MPL-S505N mutation induces a conformational change in the 

transmembrane domain of the receptor, which reduces the distance of associated JAK2 

enzymes and results in activation of MPL and the downstream signaling pathways(51). Both 

mutations, P106L and S505N, were found in families and their frequency seem to depend on 

the ethnical background of the studied population(51–54).  

  



  

Page 20 

 

 

Figure 4 Activation of JAK-STAT signaling by TPO 

(A) MPL activation under normal conditions: Pre-formed dimers undergo a change in conformation after 
binding TPO. Then, the JAK2 kinases get closer to each other so they can phosphorylate each other 
and the intracellular domains of the MPL receptor. (B) Schematic drawing of the MPL protein: black, 
names of structural domains; grey, name of specific motifs; pink, common mutations in MPL. (C) Ligand-
independent self-activation of MPL W515. The conformational change is induced by the MPL-W515L 
mutation in absence of the ligand. Receptor bound JAK2 enzymes can activate each other and 
phosphorylate the receptor for downstream signaling. ECD: extra cellular domain, TMD: transmembrane 
domain, ICD: intracellular domain.  
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1.4.2 Activating JAK2 mutations  

JAK2 belongs to the family of Janus kinases and specifically binds to cytokine receptors, which 

are forming dimers in absence of their ligand. Upon ligand binding, the receptor dimers 

undergo a conformational change, which brings the intracellular domains and the associated 

JAK2 enzymes in close proximity. This proximity is required for the JAK enzymes to trans-

phosphorylate each other and the intracellular domains of the cytokine receptors(9). MPL and 

EPOR, but also granulocyte colony-stimulating factor receptor (G-CSF-R) and leptin receptor 

(LEP-R), follow this mode of action. JAK2 also binds to cytokine receptors, such as the 

interferon-gamma receptor (IFNGR), which form heterodimers. When bound to these 

receptors, JAK2 can cooperate with other JAK family members. Upon ligand binding, the 

monomers receptors associate and the JAKs are trans-activating each other in homo- or 

heterodimers(55,56). This transactivation of JAKs enables to translate ligand binding into 

signaling at enzymatically inactive cytokine receptors. 

Structurally, JAK family members consist of a FERM domain, a SH2 domain and two kinase 

domains at the c-terminus (Figure 5A). The FERM and SH2 domains are required to associate 

with cytokine receptors at box1 and box 2 motifs(57). The kinase domain closer to the c-

terminus harbors the major catalytic activity for the phosphorylation of targets like STAT. The 

kinase domain next to the SH2 domain is only 10% as active as the c-terminal kinase domain 

and therefore is called the pseudokinase domain(58). The activity of the pseudokinase domain 

is required for the auto-phosphorylation of serine 523 and tyrosine 570(59,60). The 

phosphorylation of these two residues and close contract of the two kinase domains result in 

reduction of the JAK2 kinase activity (Figure 5, (61)).  

Recent studies show that the interface, which generates this auto-inhibitory interaction within 

a JAK2 molecule is frequently disrupted by somatic mutations(62). These mutations are the 

JAK2-V617F mutation in exon 14, which is found in all phenotypes of sporadic and familial 

MPN(31–34), the JAK2-R683G/S mutations in exon 15 of JAK2, which were found in Down 

syndrome-related acute lymphoblastic leukemia (DS-ALL), and the mutations in exon 12 

(reviewed in(63)), which are solely found in PV patients. The disruption of the auto-inhibitory 

interface by these mutations is thought to enable JAK2 kinase activity. Once activated, JAK2 

phosphorylates the intracellular domain of receptors even in the absence of their cognate 

ligand(14).  

The JAK2-V617F and one of the most common JAK2-exon12 mutations, JAK2-N542-E543del, 

have been introduced into mouse models to prove the MPN initiating potential of these JAK2 

alterations(64,65). The first JAK2-V617F mouse models were designed by our lab and are based 

on a human JAK2-V617F transgene. A comparative analysis showed that the MPN phenotype 
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in mice is depending on the expression of JAK2-V617F in relation to wild type JAK2. The mice 

represented an ET phenotype with increased platelet and neutrophil numbers, when JAK2-

V617F expression was lower than wild type JAK2. Excessive expression of JAK2-V617F in 

relation to wild type JAK2 resulted in a trilineage PV phenotype with thrombocytosis, 

neutrophilia and increased hemoglobin(64). Meanwhile, additional mouse models were 

generated and confirmed the dependence of MPN phenotype on JAK2-V617F expression in 

mice(66). In the first JAK2-exon12 mouse model, recently introduced by our group, the 

expression of mutant JAK2 results in elevated numbers of erythroid progenitors and precursors 

accompanied with normal counts of platelets and leukocytes. Furthermore, the mice showed 

increased STAT3 phosphorylation and altered expression of transferrin receptor-1 and 

erythroferrone, both involved in iron metabolism. Therefore, the JAK2-exon12 mouse model 

resembles a PV phenotype similar to the observations in PV JAK2-exon12 patients(65). 
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Figure 5 Mutant JAK2 induces cytokine signaling 

(A) Schematic drawing of JAK2 kinase. Structural domains in light red: FERM: 4.1, ezrin, radixin, moesin 
domain, SH2: Src homology 2 domain, PS-K: pseudo-kinase domain, K: kinase domain. Important 
phosphorylation residues are shown on top of JAK2, most common mutations are shown below. (B) The 
JAK2 domains FERM and SH2 are binding intracellular domains of cytokine receptors (in green) at 
specific box motifs. In steady state, the kinase domain is in close contact with the pseudokinase domain 
and the SH2 linker region. (C) Mutant JAK2 activates cytokine receptors (here: MPL) in absence of their 
ligand. The above-depicted mutations induce a conformational change of the inhibitory interface 
(depicted as bulky pink PS-K). The kinase domain, as not associating with PS-K, can get close to the 
kinase domain of the second JAK enzyme. When the kinase domains are in close proximity, the JAKs 
trans-phosphorylate each other and the intracellular domains of the receptor and activate downstream 
signaling pathways. 
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1.4.3 CALR mutations in MPN 

The third gene commonly mutated in MPN is Calreticulin (CALR)(35,36). CALR protein is located 

in the endoplasmic reticulum (ER), where it supports the folding of glycoproteins as a 

chaperone. CALR is also found at the cell surface, however its function in this compartment is 

less clear(67). It consists of three domains: the N-terminal domain, the P domain or proline rich 

region in the center and the C-terminal domain(68,69). The N-terminal region is a protein-binding 

domain, which associates with proteins like alpha-integrin, protein disulphide-isomerase (PDI) 

and other ER proteins. The P-domain interacts with PDI and inherits the chaperone function 

of CALR and negatively regulates the affinity of the N-terminal domain to its targets. The c-

terminal domain mainly consists of negatively charged amino acids, which enable a single 

CALR protein to bind up to 25 mol of Ca2+. This Ca2+ binding capacity regulates the 

concentration of unbound calcium in the ER and is required to modulate its own function as a 

chaperone (Figure 6A). The activity of both, N- and P-domain, depend on the amount of Ca2+ 

bound to the C-domain(68,69).  

Mutations of CALR were found in MPN patients who are negative for mutations in JAK2 or 

MPL. These mutations, all located in the C-terminal domain, are a diverse group of insertions 

or deletions. The specific location and length of the deletions and insertions vary within the 

exon 9 of CALR, but nearly all of them result in a -1 frameshift(36). The two most common 

mutations are a 52 base pair deletion (CALR type 1 mutation) and a five base pair insertion 

(CALR type 2 mutation) in exon 9 of CALR. In contrast to frameshift mutations in other genes, 

this -1 frameshift in CALR does not immediately lead to a premature stop codon. Instead, from 

the point of mutation on, the expression of the mutant CALR gene results in a new sequence 

of amino acids. This new sequence represents an accumulation of positively charged amino 

acids, whereas in wild type CALR protein the majority of amino acids is negatively charged(36). 

In the case of mutant CALR protein, the new amino acid sequence of the c-terminal domain 

seems to reduce the auto-inhibitory function of the p-domain (Figure 6B), resulting in a stronger 

binding to and constitutive activation of MPL in the absence of its ligand (Figure 6C). This 

observation was specifically made for the interaction of CALR and MPL, but not for the closely 

related EPOR receptor, which might explain why mutations of CALR are only found in ET and 

PMF cases of MPN(70,71). Recently, a retroviral mouse models has confirmed that expression 

of the type 1 and type 2 CALR mutations result in an ET phenotype, which includes 

amplification of the megakaryocyte lineage and elevated platelet counts. Mice expressing the 

CALR type 1 mutation have also been shown to frequently progress to myelofibrosis 

phenotype including features of anemia, splenomegaly and BM hypocellularity(72).   
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Figure 6 Activation of MPL by mutant CALR 

(A) Schematic drawing of wild type CALR gene structure. N-domain binds to target proteins (green 
circles). P-domain recruits partners like PDI (orange sphere) and regulates binding affinity of the N-
domain to the target proteins. The C-domain binds Ca2+ ions with its negatively charged amino acids. 
(B) Schematic drawing of mutant CALR. The new sequence in exon 9 (pink square) consists of 
numerous positively charged amino acids. Ca2+ binding is inhibited and the reducing effect of the P-
domain on the affinity of the N-domain to target proteins is hampered (pink T). As a result, the N-domain 
binds target proteins with higher affinity (pink arrow). (C) Mutant CALR binds MPL receptor and mimics 
ligand binding in absence of TPO. The receptor associated JAK2 molecules reach critical proximity for 
trans-phosphorylation and activate downstream signaling by phosphorylation of the MPL intracellular 
domain.  
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1.4.4 Additional somatic mutations in hematologic cancers 

The recurrent mutations in MPL, JAK2 and CALR are recognized as driver mutations, as they 

were shown to induce MPN in several mouse models(73). In addition to driver mutations, other 

somatic mutations have been found, which do not evoke a MPN phenotype on their own. These 

mutations are referred to as passenger mutations as thought to result from a genome-

destabilizing function of the driver mutations(73). Several of these mutations are also found in 

other myeloid malignancies including AML, CML or myelodysplastic syndrome (MDS). Most 

frequently, DNMT3A(74,75), TET2(76,77), IDH1/2(78,79), EZH2(80) and ASXL1(81,82) are affected. 

Interestingly, all of these genes are involved in DNA methylation and histone modification 

(Figure 7)  

DNMT3A, TET2, IDH1 and IDH2 regulate the DNA methylation states of GC rich DNA regions, 

so called CpG islands. DNA (cytosine-5)-methyltransferase 3A (DNMT3A) methylates DNA by 

transferring a methyl group to cytosine at CpG islands(83). TET2 is a member of the ten-eleven 

translocation (TET) family of methylcytosine dioxygenases, which catalyze the conversion of 

methylcytosine to 5-hydroxymethylcytosine. This catalysis requires α-ketoglutarate, which is 

generated by isocitrate dehydrogenase (IDH) enzymes. Therefore, mutations in these genes 

lead to a global change of DNA methylation(84). DNMT3A mutations mostly result in loss of 

function of the enzyme and are associated with focal DNA hypomethylation. Loss-of-function 

mutations in TET2, IDH1 and IDH2 result in global hypermethylation of DNA(85,86). DNA 

methylation plays an important role in regulating gene expression, as it blocks the binding of 

activators of transcription with DNA. Furthermore, methylated DNA is associated with 

repressive chromatin structure, called heterochromatin(87).  

Heterochromatin describes DNA, which is wrapped around histone proteins. This state of 

tightly packed and transcriptionally inactive DNA is regulated by enzymes, which modify 

residues of the histone proteins. In hematologic malignancies, mutations in EZH2, and later 

also SUZ12, were found frequently. Both proteins belong to the core units of the polycomb 

repressive complex 2 (PRC2). This complex catalyzes trimethylation of histone 3 lysine 27 

(H3K27me3) and silences expression of target genes, by stabilizing the heterochromatin. 

Mutations in EZH2, the enzymatic unit of the PRC2 complex, have been shown to reduce 

methylation levels of H3K27 and induce expression of genes located in regions of 

heterochromatin(88).   
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Figure 7 Pathways of DNA methylation and histone modification altered in hematologic 
malignancies 

Enzymes involved in DNA methylation and demethylation are depicted in pink. Core proteins of the 
polycomb repressive deubiquitinase (PR-DUB) complex and the polycomb repressive complex 1 and 2 
(PRC1 & PRC2) are highlighted with individual colors. Optional partners and adapter proteins of these 
complexes are rendered in grey. Arrows and scissors: enzymatic activity, GCGC: GC-rich DNA 
regions/CpG islands, 5mC: 5-methylcytosine, 5hmC: 5-hydroxymethylcytosine, me3: trimethylation at 
H3K27, u1: monoubiquitin at H2AK119. 

  



  

Page 28 

ASXL1 is part of the polycomb repressive deubiquitinase (PR-DUB) complex, which erases 

monoubiquitin from histone 2A lysine 199 (H2AK119ub1,(89)). This ubiquitin mark is generated 

by RING1A/B, which is part of the polycomb repressive complex 1 (PRC1,(90)). H2AK119ub1 

is recognized by the PRC2 adapter protein JARID and association of PRC2 with H2AK119ub1 

induces generation of repressive H3K27me3 marks(91). Recent studies show that ASXL1 

truncations lead to increased activity of the PR-DUB complex(92) and reduction of global 

H2AK119ub1 and H3K29me3 levels(93). In line with these findings, ASXL1 truncations elevate 

expression of HOXA5 and HOXA9, which are repressed by PRC2 complex activity. 

Interestingly, a study showed that DNMT proteins directly interact with EZH2, which underlines 

the association of DNA methylation and histone methylation(94). Mutations in DNMT3A and 

EZH2 have been linked with reduced survival in AML(74,80) and alterations of IDH1 were 

associated with progression to AML(78,95). In MPN, ASXL1 mutations have been recently 

associated with the PMF phenotype and reduced survival(96). In summary, these findings were 

challenging the notion that passenger mutations are passive and do not impact the primary 

disease(73).  
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1.4.5 Sequencing technologies used in MPN research and diagnostics 

The described alterations in DNMT3A, TET2, IDH1/2, EZH2 and ASXL1 were mainly found by 

using two different technologies, capillary sequencing and single nucleotide polymorphism 

(SNP) arrays. Capillary sequencing is based on chain termination technology and is also called 

“Sanger sequencing”(97). This method allows screening for small sequence alterations like 

single base pair mismatches. Duplications and larger deletions were detected by SNP arrays, 

where DNA hybridizes to immobilized allele-specific oligonucleotide(98). Therefore, the 

capillary sequencing was traditionally used for finding sequence alterations in the coding 

region of a single gene or single loci of multiple genes. The SNP arrays enabled a genome-

wide detection of insertions and deletions, but only for known alleles. Even when these two 

technologies were combined(76,80), cohort analyses remained incomplete, as parallel analysis 

for multiple genes and their full-length sequence was still missing(99). The development and 

commercialization of the so-called next-generation sequencing (NGS) solved these 

technological constraints as it introduced parallel sequencing of multiple genes with a so far 

unmatched sensitivity(100). 

In this new NGS technology, DNA is fragmented and ligated to adapters. These adapters allow 

immobilizing individual DNA fragments on a chip (Illumina) or on beads (Ion torrent,(101)). 

Immobilized fragments then get amplified and analyzed individually. The strength of this 

technology lies in the amount (or length) of DNA, which can be sequenced, as millions of DNA 

fragments are analyzed in parallel. Additionally, these NGS technologies allow to a flexible 

adaption of sensitivity: the smaller the DNA region of interest, the more sensitive the method 

becomes in detection of mutations. This is important in the field of MPN, as somatic mutations 

may only affect a low number of blood cells. Therefore, sensitive methods are required to 

detect small clones in a majority of wild type cells. In the present study, we are using different 

NGS technologies to screen for somatic mutations, which modulate the MPN phenotype and 

have so far been undiscovered due to previous technical limitations. 
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1.5 Aim of the study 

Ph-negative MPN are a group of hematologic diseases with three distinct clinical phenotypes. 

However, it is still unclear what defines ET, PV and PMF on a molecular level, as the disease-

initiating clonal markers in JAK2, CALR and MPL are shared between these phenotypes.  

Here, we take advantage of the new NGS technologies and analyze more than 100 genes in 

parallel to find secondary somatic mutations with impact on the phenotype of Ph-negative MPN 

patients. We also analyze the temporal order of acquisition of these mutations and compare 

our results between adult MPN patients and rare pediatric cases. 

In the second half of the thesis, we analyze patients with a very low mutant JAK2 allele burden 

to find out if the MPN clone in these patients expands to a different blood cell lineage, which 

may explain the disease phenotype. Furthermore, we analyze the genetic alterations of a large 

virtual cohort to discover instructive effects of less frequently mutated genes on the MPN 

phenotype.  
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2 Methods 

2.1 Study population and sampling intervals 

The Basel cohort of sporadic MPN includes patients with diagnosis of ET, PV, PMF and MPN-

U. The collection of clinical data and blood samples was performed at the study center in Basel, 

Switzerland and approved by the local Ethics Committees (Ethik Kommission Beider Basel). 

Written informed consent was obtained from all patients in accordance with the Declaration of 

Helsinki. The diagnosis of MPN was established according to the revised criteria of the World 

Health Organization 2008(102) and the update in 2016(1). The clinical data of the Basel sporadic 

MPN cohort is summarized Table 4 (status: June 2016). 

Blood samples were acquired in yearly interval, starting with the first sample at diagnosis. Hair 

follicles and buccal swabs were collected once per patient. Additional samplings might have 

been necessary for non-standard analysis, which were proposed based on the patient’s 

individual results in cohort-wide experiments. Patients may refuse the donation of samples and 

reject from the study at any time. The Basel sporadic MPN cohort is an active cohort and 

therefore, newly diagnosed patients may join the cohort and fresh blood samples are acquired 

constantly. 
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  PV ET PMF MPN-U 

Number of patients 132 106 50 6 

Female patients 63 (47 %) 71 (66 %) 16 (32 %) 4 (66 %) 

Age at diagnosis 
(range), years 

60 (11 - 87) 51 (4 - 83) 63 (21 - 85) 63 (36 - 85) 

Follow-up time 
(range), months 

34 (0 - 168) 21 (0 - 164) 21 (0 - 153) 9 (0 - 42) 

Hemoglobin (g/L) 
median (range) 

178 (119 - 229) 140 (13 - 182) 121 (12 - 171) 126 (126 - 126) 

Platelets (109/L) 
median (range) 

474 (90 - 1487) 898 (452 - 1983) 623 (16 - 1677) 1527 (793 - 2261) 

Leukocytes (109/L) 
median (range) 

11 (3 - 38) 8 (4 - 16) 9 (4 - 26) 13 (9 - 18) 

Neutrophils (109/L) 
median (range) 

8 (2 - 36) 5 (2 - 15) 6 (2 - 20) 6 (6 - 6) 

Transformation to 
secondary MF 

7 (5 %) 3 (3 %) NA 0 

Transformation to 
AML 

8 (6 %) 4 (4 %) 4 (8 %) 0 

Death 21 (16 %) 8 (8 %) 11 (22 %) 1 (17 %) 

Table 4 Clinical characteristics of the MPN patients at diagnosis  
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2.2 Blood sample preparation 

Blood samples are processed in a standard protocol to allow purification of several cellular 

subsets and lysates of comparable quality (Figure 8). A usual blood sample comprises five 

EDTA tubes (S-Monovette 7.5, Cat. No. 01.1601.100, Sarstedt AG & CoKG, Nümbrecht, 

Germany), with 7.5 mL of whole blood and one tube of 7.5 mL whole blood without 

anticoagulants (“native blood”). The tube containing coagulating blood is centrifuged at 2300 

rcf for 10 minutes. The clear supernatant (serum) is frozen at -80 °C. One tube of whole blood 

containing citrate as anticoagulant is centrifuged at 2300 rcf for 10 minutes. Here the clear 

supernatant (platelet-poor plasma, PPP) and the interphase (buffy coat) are frozen at -80 °C. 

The four remaining tubes of whole blood containing citrate are centrifuged at 100 rcf for 10 

minutes. The supernatant of all four tubes (platelet-rich plasma, PRP) is collected for sub-

sequent sephadex column purification of platelets (Sepharose CL-2B, Cat. No. 17-0140-01, 

VWR international, Radnor, PA, USA). The purified platelets are frozen at -80 °C in western 

blot buffer (50 mM Tris pH 6.8, 2 % SDS, 1 mg/mL bromphenolblue, 10 % glycerol, 5 % 2-

mercaptoethanol) and in TriFast (Trifast Peq Gold FL, Cat. No. 30-2110, Axon Lab AG, 

Reichenbach an der Fils, Germany) for RNA purification. The remaining red part of the blood 

from all four tubes is collected and diluted 1:2 in PBS (PBS, pH 7.2, Cat No. 20012068, 

LuBioscience GmbH, Lucern, Switzerland). This dilution is used to overlay Ficoll (Ficoll 

Lymphprep, Cat. No. 1114547, Axon Lab AG, Reichenbach an der Fils, Germany). After 

centrifugation at 100 rcf for 30 mintues, five layers are formed: plasma, peripheral blood 

derived mononuclear cells (PBMCs), Ficoll Plaque, granulocytes and erythrocytes. PBMCs 

and granulocytes are isolated separately. Both fractions are red cell lysed (0.15 M NH4Cl, 0.01 

M KHCO3, 0.05 M EDTA, pH8) at room temperature for 10 minutes. The main fraction of the 

PBMCs are frozen in FBS (Fetal Bovine Serum, Cat. No. F7524-500ml, Sigma Aldrich, St. 

Louis, MI, USA) including 10 % DMSO (Dimethyl sulfoxide, Cat No. 276855-100ML, Sigma-

Aldrich, St. Louis, MI, USA) in liquid nitrogen. A small fraction of cells is frozen at -80 °C in 

PBS for DNA preparation. The granulocytes are frozen at -80 °C in PBS for DNA preparation 

and in TriFast (Trifast Peq Gold FL, Cat. No. 30-2110, Axon Lab AG, Reichenbach an der Fils, 

Germany) for RNA preparation. The fraction of erythrocytes is usually discarded. Buccal swabs 

are frozen at -80 °C upon arrival. Hair follicles are stored at room temperature until preparation 

of DNA. For patients with a very low allele burden, a special protocol was developed to isolate 

reticulocytes for further analysis from the otherwise discarded erythrocyte fraction. The 

protocol and results of this study are reported in chapter 3.3.  
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Figure 8 Standard blood sample work-up 
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2.2.1 Preparation of nucleic acids from different tissues and cell types 

2.2.1.1 DNA preparation from granulocytes and buccal swabs 

DNA from granulocytes and buccal swabs was prepared using the QIAamp DNA Mini Kit (Cat 

No. 51306, Qiagen Instruments AG, Hilden, Germany). 

2.2.1.2 Preparation of DNA from hair follicles 

Hair contains dead keratinocytes, which originate from living keratinocytes located in the follicle 

of each hair. To generate the hair, living keratinocytes differentiate by a process called 

cornification, which includes crosslinking of keratin and keratin-associated proteins and the 

degeneration of the cell nucleus with the contained DNA(103). Therefore, only the follicle 

contains living cells with high molecular weight DNA, which is required for NGS applications 

and other genetic analyses. For this reason, single hairs need to be cut as close to the root as 

possible to prepare a sample. The roots from one individual were collected in a 1.5 mL tube 

and have been stored at room temperature until lysis (Lysis Buffer T, Cat No. 823, PerkinElmer 

chemagen Technologie GmbH, Baesweiler, Germany) was started for all samples 

simultaneously. From lysis to elution, the chemagic BTS Kit special (Cat No. 1046, PerkinElmer 

chemagen Technologie GmbH, Baesweiler, Germany) was applied to isolate genomic DNA 

from the hair follicles.  

2.2.1.3 Preparation of RNA from granulocytes & platelets 

Granulocytes and platelets were isolated from peripheral blood and stored in TriFast as 

described in chapter 2.2. The preparation of RNA is the same for granulocytes and platelets 

and follows the protocol of the distributor “PEQLAB_v0815_E”. In brief, 1 mL TriFast was 

vigorously mixed with 0.2 mL of chloroform (Chloroform, Cat. No. 32211-1L, Sigma Aldrich, St. 

Louis, MI, USA). After 15 minutes incubation on ice, the samples were centrifuged for 15 

minutes at 4 °C and 12’000 rcf. The aqueous phase was transferred to a pre-cooled tube 

containing 0.5 mL isopropanol (2-Propanol, Cat. No. 59300-1L, Sigma Aldrich, St. Louis, MI, 

USA) including 1 µL of glycogen (UltraPure Glycogen, Cat. No. 10814-010, Thermo Fisher 

Scientific Inc, Waltham, MA, USA). After mixing, the samples were incubated 15 minutes on 

ice and centrifuged for 15 minutes at 4 °C and 12’000 rcf. Then, the supernatant was discarded 

and 1 mL of 75 % ethanol (Ethanol, Cat. No. 1.00983.1000, VWR international, Radnor, PA, 

USA) was added to wash the pellet. After brief vortexing, the samples were centrifuged for 15 

minutes at 4 °C and 12’000 rcf. All ethanol was removed and the pellet was resolved in 30 µL 

of RNAse free water. 
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2.2.1.4 Preparation of RNA from limited number of cells 

When RNA was prepared from samples with small cell numbers, the Acturus picopure kit 

(PicoPure RNA Isolation Kit, Cat. No. KIT0204, Thermo Fisher Scientific Inc, Waltham, MA, 

USA) was used according to the user manual. 

 

2.3 Molecular analyses 

2.3.1 Driver mutation analysis using DNA 

Single nucleotide mutation JAK2-V617F was characterized by PCR amplification, followed by 

DNA sequencing. PCR amplification was performed with wild-type JAK2-specific forward 

primer 5’-GTTTCTTAGTGCATCTTTATTATGGCAGA-3’ and reverse primers 5’-6Fam-

AAATTACTCTCGTCTCCACAGAA-3’ and 5’-6Fam-TTACTCTCGTCTCCACAGAC-3’. The 

mutation analysis of CALR-exon9, -52 bp deletion (type1) and +5 bp insertion (type2) was 

performed by allele specific PCR as previously reported(36). The primer sequences were as 

follows: CALR-intr8-fam-fwd 5’-FAM-GGCAAGGCCCTGAGGTGT-3’ and CALR-ex9-rev 5’-

GGCCTCAGTCCAGCCCTG-3’. The PCR products were analyzed by fragment analysis with 

ABI3130xl Genetic Analyzer (Applied Biosystems Inc). The mutant allele burden was 

calculated by Peak hightmut / (Peak hightmut + Peak hightwt) x 100 %.  

 

2.3.2 Quantitative JAK2 analysis using RNA 

For the analysis of JAK2 mutations on RNA, the SNaPshot™ Multiplex Kit (Snapshot Multiplex 

Kit, Cat. No. 4323159, Thermo Fisher Scientific Inc, Waltham, MA, USA) was used. The 

protocol includes an amplification of the mutated region by PCR, purification of the PCR 

product with AMPure XP Beads (AMPure XP, Cat No. A63881, Beckman Coulter Inc., Brea, 

CA, USA) and the generation of mutation specific signal by single base elongation of dedicated 

primers (Table 5). 
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Primer function Primer ID Primer sequence (5'-3') 

Amplification of  

JAK2 exon 12 from DNA 

2075_hJAK2-exon12-F CAAAGTTCAATGAGTTGACCCC 

2076_hJAK2-exon12-R TGCTAACATCTAACACAAGGTTGG 

Amplification of  

JAK2 exon 14 from RNA 

4336_hJAK2-ex13-fwd GGCGTACGAAGAGAAGTAG 

4337_hJAK2-ex15-rev GCCCATGCCAACTGTTTA 

Amplification of  

JAK2 exon 12 from RNA 

4416_hJAK2-exon11-fwd ACTAAATGCTGTCCCCCAAA 

4417_hJAK2-exon13-rev TACTTCTCTTCGTACGCCTT 

Amplification of  

JAK2 exon 14 from DNA 

4586_hJak2_intron13_fwd AGAATTTTCTGAACTATTTATGG 

4587_hJak2_intron14_rev ACCTAGCTGTGATCCTGAAACTG 

Quantification of  

JAK2-V617F 
4338_hJAK2-VF-SNaP-fwd AAGCATTTGGTTTTAAATTATGGAGTATGT 

Quantification of  

JAK2-exon12 (P021) 

4420_P021del_SNPsht_fwd AAAGTCTGACAACAAATGGTGTTTCACAAAATCAGA 

4425_P021del_SNPsht_rev AATCCTTAGGTAAGGCTTTCATTAAATATCAAATCT 

Quantification of  

JAK2-exon12 (P218) 
4426_P216aaTT_SNPsht_rev TAGGTAAATATCAAATCTTCATTTCTGATT 

Table 5 Primers for SNaPshot analysis 
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2.3.3 Next-generation sequencing by Illumina technology 

For the initial mutation screen by Illumina sequencing, 500 ng of genomic DNA was used for 

the sample preparation protocol. At the beginning, genomic DNA was fragmented by 

incubation with fragmentase (NEBNext® dsDNA Fragmentase, Cat No. M0348L, New England 

Biolabs, Ipswich, MA, USA) at 37 °C for 30 minutes. Since 2014, fragmentation was achieved 

by 5 minutes of Covaris sheering (Covaris E220, Covaris, Woburn, MA, USA). Subsequently, 

endrepair, adenylation and barcode ligation were performed with the NEXTflex™ Rapid DNA 

Sequencing Kit (Cat No. 5144-1, Bioo Scientific, Austin, TX, USA). Depending on sample size, 

NEXTflex™ DNA Barcodes – 48 or NEXTflex™ DNA Barcodes – 96 (Cat No. 514104 or 

514105, Bioo Scientific, Austin, TX, USA) were used for indexing of individual samples. 

Intermediate cleanup steps were conducted using the Agencourt AMPure XP PCR Purification 

protocol (AMPure XP, Cat No. A63881, Beckman Coulter Inc., Brea, CA, USA). 

For each sequencing run, 48 individually barcoded samples were pooled equimolarly prior to 

enrichment. The most recent version of the “SureSelectXT Target Enrichment System for 

Illumina Paired-End Multiplexed Sequencing Library” was used to enrich for genes of interest. 

The system consisted of a SureSelectXT custom panel (Cat No. 5190-xxx, Agilent 

Technologies Inc., Santa Clara, CA, USA) to enrich for the genes of interest and a Herculase 

II fusion DNA kit (Cat No. G00677, Agilent Technologies Inc., Santa Clara, CA, USA) to amplify 

the barcoded and enriched DNA fragments. To order SureSelectXT custom panels, the bait 

design was generated in SureDesign (https://earray.chem.agilent.com/suredesign/home.htm, 

last accessed on 24.02.2017). The gene set, which was used to sequence 200 MPN patients, 

included all exons of 104 genes listed in Table 6. Dynabeads® MyOne™ Streptavidin T1 (Cat 

No. 65601, Thermo Fisher Scientific Inc, Waltham, MA, USA) were used for intermediate 

clean-up steps of the target enrichment. The prepared libraries were sequenced on Illumina 

HiSeq 2500 (Illumina, San Diego, CA, USA). Analysis of the raw reads were performed by the 

most recent version of CLC genomics Workbench (Qiagen Instruments AG, Hilden, Germany). 

  

https://earray.chem.agilent.com/suredesign/home.htm
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AKT1 CBL ETV6 HOXA9 L3MBTL PIAS2 PIK3R1 SH2B3 

AKT1S1 CEBPA EVI1 IDH1 MPL PIAS3 PIK3R2 SOCS1 

AKT2 CREBBP EZH2 IFI30 MYB PIAS4 PIK3R3 SOCS3 

AKT3 CUX1 FLT3 IKZF1 MYBL1 PIK3AP1 PIK3R4 SOSC2 

AKTIP DNMT3A FOXP1 IL6 MYBL2 PIK3C2A PIK3R5 STAT3 

AML1 EGLN1 GATA1 IL6R MYC PIK3C2B PIK3R6 STAT5 

ARNT EID1 GATA2 IRF4 MYCBP PIK3C2G PRMT5 TET2 

ARNT2 EID2 GCSF IRF8 NF1 PIK3C3 PTEN TNR 

ARNTL EID3 GDF15 JAK2 NFE2 PIK3CA PTPN11 TP53 

ARNTL2 PAS1 GSN JUNB NPM1 PIK3CB PTPRT TPO 

ASXL1 EPO HIF1A JUN-D NRAS PIK3CD RBBP5 VHL 

BCL2 EPOR HIF3A KIF17 P300 PIK3CG SCF WT1 

BRAF ERG HINT1 KRAS PIAS1 PIK3IP1 SGK2 ZFP36L1 

CALR 
       

Table 6 List of the 104 genes sequenced by NGS 

CALR was analyzed by allele-specific PCR  
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2.3.4 Validation of NGS by ION torrent technology 

Variants found by Illumina sequencing were validated by ION torrent sequencing technology. 

For each variant, primers were generated using the primer design tool of CLC genomics 

Workbench (Qiagen Instruments AG, Hilden, Germany). Standard PCR method was used to 

produce amplicons of ~250 bp for each individual variation. Amplicons of multiple mutations 

were pooled for barcoding. Each so-called “pool” of amplicons was labeled with a different 

barcode. The decision, which variant was added to which pool, was dependent on the location 

of the variations (Figure 9). Recurrent variants and variants, which were located in close 

proximity, must not been blended in the same pool. Otherwise, recurrent mutations of different 

patients would not be identified in the sequencing analysis. Mutations in close proximity might 

influence each other’s allele frequency if their amplicons were overlapping. As amplicons are 

~250 bp long, the minimal distance between two mutations was set to 500 bp to allow the 

combination of these mutations in the same pool. 

The pools are barcoded using the Ion Xpress™ Fragment Library Kit (Ion Plus Fragment 

Library Kit, Cat. No. 4471252, Thermo Fisher Scientific Inc, Waltham, MA, USA). The 

sequencing was performed by Ion PGM (Cat No. 4462921, Thermo Fisher Scientific Inc, 

Waltham, MA, USA). The acquired sequencing data was analyzed by the Ion Reporter 

Software (Cat No. 4487118, Thermo Fisher Scientific Inc, Waltham, MA, USA). 
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Figure 9 Pooling strategy for validation of mutations 

(A) Graphical representation of pooling strategy (B) Formula for automatic assignment of the pool for 
the individual mutation. Column A requires sorted the numeric chromosomal position; Column B is the 
output column for the pool the amplicon has to be sorted to. 
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2.3.5 Analysis for clonal architectures 

Patients with more than one validated somatic mutation have been qualified for the analysis of 

their clonal architecture. The analysis required progenitor cells, which were enriched in the 

PBMC fraction isolated from peripheral blood (see 2.2).  

PBMCs of these patients were thawed from liquid nitrogen and recovered in IMDM (Cat No. 

21980032, LuBioscience GmbH, Lucern, Switzerland) including 10 % FBS. After centrifugation 

at 200 rcf for 5 minutes, the PBMC pellet was reconstituted in 10 mL pure IMDM. The viable 

cells were counted and 300’000 cells were added to 3 mL of non-selective methylcellulose 

medium (MethoCult™ H4434 Classic, Cat. No. 04444, Stemcell Technologies, Vancouver, 

Canada). The cells were vortexed to allow homogenous distribution in the MethoCult. When 

air bubbles disappeared, the cell/MethoCult mix was placed in three 3 cm dishes (Easy grip 

tissue culture dish, Cat. No. 353001, Thermo Fisher Scientific Inc, Waltham, MA, USA), 1 mL 

each. The dishes were incubated at 37 °C and 5 % CO2 for 14-16 days.  

The grown colonies were harvested individually and transferred into 5 % chelex (Chelex 100 

Resin, Cat. No. 143-2832, Bio-Rad Laboratories, Hercules, CA, USA) in water containing 0.1 

% Tween (Tween 20, Cat. No. 170-6531, Bio-Rad Laboratories, Hercules, CA, USA). The mix 

was incubated 15 min at 56 °C followed by heat inactivation at 99 °C for 8 minutes. The reaction 

could be placed at -20 °C for long-time storage. 

The chelex-cell mix was used as template for standard capillary sequencing. The sequencing 

reactions were performed in BigDye version 3.1 (BigDye Terminator v3.1 Cycle Sequencing 

Kit, Cat. No. 4337455, Thermo Fisher Scientific Inc, Waltham, MA, USA). The sequencing 

tracks were generated by the Applied Biosystems 3130xl Genetic Analyzer (Thermo Fisher 

Scientific Inc, Waltham, MA, USA) and analyzed with the CLC genomics Workbench (Qiagen 

Instruments AG, Hilden, Germany). 
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3 Results  

3.1 Clonal evolution and clinical correlates of somatic mutations in MPN 

3.1.1 Cohort definition, sequencing workflow & quality 

To define the mutational profile of MPN patients, a patient cohort comprising 200 MPN patients 

was lined up for NGS analysis. From all patients, germline control material was available to 

validate if the detected mutations were somatic mutations of the blood system. The clinical 

data of these patients is summarized in Table 7.  

Figure 10 shows the sequencing workflow and Figure 11 displays results from quality control 

measurements from the individual stages of this workflow. Genomic DNA from granulocytes 

of all 200 patients was screened in duplicates for mutations by targeted Next-generation 

sequencing by Illumina technology (Figure 10A). The duplicates of individual patients showed 

comparable average fold coverage (Figure 11A). In nearly all duplicates, 90 % of the exons 

were covered at least 20x. In the majority of samples, 90 % of the exons were covered 100x 

or more (Figure 11B). Based on their low coverage, samples from three patients (P011, P134 

and P135) were excluded from further analysis. From 197 patients with high sequencing 

coverage, 12 patients (6.1 %) had no alterations at all (Figure 10A).  
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  PV ET PMF 

Number of patients 94 69 34 

Female patients 48 (51 %) 46 (67 %) 9 (26 %) 

Age at diagnosis 
(range), years 

58 (18 - 87) 51 (21 - 86) 61 (21 - 85) 

Average time of 
follow-up, months 

92 56 49 

Hemoglobin (g/L) 
median (range) 

181 (148 - 225) 141 (78 - 225) 126 (90 - 161) 

Platelets (109/L) 
median (range) 

554 (90 - 1487) 994 (452 - 1983) 635 (16 - 1677) 

Leukocytes (109/L) 
median (range) 

12 (4 - 39) 9 (5 - 17) 11 (5 - 27) 

Neutrophils (109/L) 
median (range) 

9 (2 - 36) 6 (3 - 16) 8 (3 - 21) 

Transformation to 
secondary MF 

4 (4 %) 1 (1 %) NA 

Transformation to 
AML 

3 (3 %) 2 (3 %) 2 (6 %) 

Table 7 Clinical characteristics of MPN patients eligible for NGS analysis  
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Figure 10 NGS workflow 
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Figure 11 Quality control measurements of NGS 

(A) Average fold coverage as a function of the average number of reads per base in the target region. 
(B) Percentage of exons per patient covered at least 20 or 100 times. (C) List of targeted regions, which 
were not covered in the majority of the sequenced samples (D) Correlation between JAK2-V617F allele 
burden determined by Illumina-sequencing (y-axis) and by allele-specific PCR (x-axis). (E) Summary of 
the validation of variants by Ion Torrent sequencing, sub-divided in columns based on the variant 
frequency reported by Illumina sequencing. (F) Frequency distribution of confirmed somatic mutations.  
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Most of the exons from the selected genes were reliably covered in all of the sequenced 

samples. Regions, which were missed, are listed in Figure 11C. The total size of the commonly 

missed regions was 1291 bp and represented less than 0.4 % of the targeted regions. To 

validate the accuracy of the Illumina sequencing method, the variant allele frequency (VAF) of 

the JAK2-V617F mutation was compared to the result acquired by allele specific PCR 

(asPCR). Both methods showed a strong correlation, which confirm the accuracy of the 

Illumina sequencing method (Figure 11D).  

The Illumina sequencing resulted in 549 candidate mutations, from which 438 could be 

confirmed by Ion Torrent sequencing (Figure 10B). The validation showed that variants with a 

frequency between 5 and 10 % are mostly false positive sequencing artifacts (80 %). Roughly, 

half of the variants with a frequency between 10 and 25 % could be confirmed by Ion Torrent 

sequencing. Nearly all variants (95 %) with an allele frequency above 25% could be confirmed 

as either somatic or germline mutation (Figure 11E).  

By re-sequencing all 438 confirmed mutations in the germline control DNA, 104 mutations were 

found to be somatic (Figure 10C). The VAF of all 104 confirmed somatic mutations is shown 

in a histogram of Figure 11F. The frequency distribution shows three distinct peaks. The first 

peak at 15 % of allele frequency indicates somatic mutations present in a minority of cells. The 

second peak at 45 % allele frequency represents somatic mutations, which, if they are 

heterozygous, are present in nearly all cells of the patient. The last peak at 80 to 100 % of 

allele frequency marks mutations, which turned homozygous and are present in the great 

majority of the cells of a patient.  
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3.1.2 Mutational profile of sporadic MPN 

In total, 104 genes were analyzed by NGS (Figure 12). Driver mutations such as JAK2-V617F 

and insertion/deletion mutations in CALR-exon9 were the most frequent somatic mutations; 

found in 135 and 29 patients, respectively. Additional somatic mutations were found in 28 of 

104 (27 %) genes. In 14 of 28 (50 %) genes, more than one mutation was found (Figure 13A). 

Epigenetic modifier genes (TET2, ASXL1, DNMT3A, EZH2 and IDH1) represented the most 

frequently mutated group of genes. Five patients had mutations in TP53 and four patients 

carried mutations in NFE2. All four mutations found in the transcription factor NFE2 were either 

deletion or insertion mutations. The genes CBL, CUX1, NRAS and NF1 were found to be 

mutated twice in our cohort of MPN patients (Figure 13A).  

The 104 somatic mutations, which are not reported as driver mutations, were found in 73 out 

of 197 (37 %) MPN patients. Only 26 % (18/69) of ET patients carried at least one somatic 

mutation additional to the driver mutation. In the group of PV and PMF patients, the proportion 

of patients with additional alterations was slightly larger: 35 of 96 (37 %) PV patients and 12 of 

34 (35 %) PMF patients were positive for additional somatic mutations. One PMF patient 

carried four somatic mutations additional to JAK2-V617F.  

In 13 % (9/69) of ET patients, 7 % (7/94) of PV patients and 12 % (4/34) PMF patients neither 

a driver mutation nor any other somatic mutation was found (Figure 13B). 
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Figure 12 Karyogram and chromosomal location of all sequenced genes 

Genes labeled in black have not been found to be mutated. Blue names represent genes with somatic 
mutations; red asterisks copy number alterations.  
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Figure 13 Frequency and distribution of somatic mutations in patients with MPN 

(A) Histogram of patients mutated for the listed genes. Numerical aberrations in chromosomes are 
marked in grey. The colors of the bars indicate the diagnosis of the patients. (B) Distribution of all 
confirmed somatic mutations among the 197 MPN patients according to their phenotype. The shades 
of gray indicate the number of somatic mutations per patient. (C) Distribution of the known driver 
mutations among the same MPN patients. The different colors indicate the individual driver mutation. 
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In the group of driver mutations, JAK2-V617F was found the most frequently. In total, 135 of 

197 (69 %) patients of all three MPN phenotypes were positive for JAK2-V617F. The insertion 

deletion mutations in the exon 9 of CALR were found in patients with ET and PMF. In total, 18 

of 69 (26 %) ET and 11 of 34 (32 %) PMF patient were CALR positive. Mutations in JAK2 exon 

12 were present in 7 of 94 (7 %)PV patients. MPL-W515 mutations were found in three 

patients, one diagnosed for ET and two diagnosed for PMF (Figure 13C). 

In addition to somatic mutations, three types of chromosomal aberrations could be detected 

by targeted NGS. Deletions in the q arm of chromosome 20 (del 20q) were found in one PV 

patient and three patients with PMF. Three PV patients were affected by a trisomy of 

chromosome 9 and one ET patient carried a deletion in the q arm of chromosome 7 (del 7q, 

Figure 13A). Detailed analysis showed that in two out of four patients with del 20q, the ASXL1 

gene was included in the deletion (Figure 14).  
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Figure 14 Location of copy number variations on chromosome 20 

(A) Schematic view of chromosome 20. Red triangles mark the locations of the genes covered by 
targeted NGS. (B) Detailed view on q arm of chromosome 20 and the covered genes. (C) Individual 
graphs for normal controls and four patients indicate the average copy number at the corresponding 
chromosomal region.   
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In total, 113 of 197 (57 %) patients showed a single somatic aberration, 64 (32 %) were found 

to carry more than one. Only 18 patients (9 %) did not present any somatic mutation. The 

Circos plots in Figure 15 display the co-occurrence of somatic mutations of all patients, who 

carry at least one somatic mutation. Patients with single mutations usually are positive for a 

known driver mutation such as JAK2-V617F, JAK2-exon12 or the CALR-exon9 (Figure 15A-

C). Most commonly observed co-occurrences are DNMT3A and TET2 mutations in 

combination with a driver mutation. Mutations in IDH1 and NFE2 are rare, but seem to 

preferentially appear in JAK2-V617F mutated patients (Figure 15A). As mutations in these 

genes are found less often, larger patient populations are required to validate this pattern of 

co-occurrence.  

Interestingly, we also found two patients who carry two driver mutations, JAK2-V617F and 

CALR-exon9. Previous reports indicated that driver mutations would usually be mutually 

exclusive in a patient(35,36).  
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Figure 15 Circos plots showing co-occurrence of somatic mutations 

The broader the connection between two genes, the more patients carry mutations in both of the genes. 
Empty regions of the outer circle, which are not connected to any other gene, represent patients, which 
are only mutated for this particular gene represented by this part of the circle. (A) Circos plots illustrating 
co-occurrence of somatic mutations in all patients carrying somatic mutations (B) Circos plots illustrating 
co-occurrence of somatic mutations in patients with CALR driver mutation (C) Circos plots illustrating 
co-occurrence of somatic mutations in patients with JAK2-exon12 driver mutation or no driver mutation 
at all. 
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3.1.3 Assessment of clonal evolution in MPN 

To combine the picture of co-occurrence of mutations with their temporal order of acquisition, 

we plated PBMCs in methylcellulose and genotyped the DNA from single grown colonies. The 

mutations could occur one after another in a sequential order or appear in an extra clone 

(Figure 16A). By comparing the order of acquisition of mutations in epigenetic modifier genes 

in relation to JAK2-V617F, we found that mutations in DNMT3A and TET2 predominantly occur 

prior to JAK2-V617F or separately, resulting in a bi-clonal pattern. EZH2 and ASXL1 mutations 

appear before and after JAK2-V617F or coexisted in separate clones. Only IDH1 was 

exclusively acquired after JAK2-V617F (Figure 16B).  

Patients with three or more somatic mutations are shown in Figure 16C. The patients show 

various patterns of clonal architecture. In four patients, all mutational events happened in a 

sequential order, in the four other patients, a branching led to the different subclones. In four 

cases, mutations in TET2 were acquired before other mutations such as JAK2, EZH2 or KRAS. 

In two patients with an insertion-deletion mutation in CALR-exon9, the CALR mutation was 

acquired before additional somatic mutations, such as EZH2 and TET2.  

Two patients in our cohort were found to be mutated for JAK2-V617F and an insertion-deletion 

mutation in CALR-exon9. One of these patients, P101, also carries a mutation in DNMT3A and 

TET2. The colony analysis of this patient shows that the MPN driver mutations in JAK2 and 

CALR are present in separate clones. While the JAK2-V617F clone disappeared over time, 

the CALR clone remained stable in size. The clone with mutations in DNMT3A and TET2 

expanded during the course of disease (Figure 16C). Another patient, who carried two driver 

mutations, was positive for JAK2-V617F and JAK2-E542-N543-del, a reported driver mutation 

in exon12 of JAK2. Similar to patient P101, also in this patient the driver mutations were 

present in individual clones. Our lab has published this third patient in a previous study(77). 
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Figure 16 Clonal evolution in MPN patients carrying somatic mutations in epigenetic modifier 
genes 
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Figure legend from previous page: Single erythroid or granulocytic colonies (BFU-Es and CFU-G) grown 
in methylcellulose were individually picked and analyzed for the presence or absence of JAK2 V617F 
and other somatic mutations. (A) Examples of 3 patients who acquired an ASXL1 mutation before JAK2 
V617F (left panel), after JAK2 V617F (middle panel), or in a clone separate from JAK2 V617F (right 
panel) are shown. Each dot represents a single colony that was genotyped and placed into the 
corresponding quadrant. (B) Summary of the temporal order of acquisition of mutations in relation to 
JAK2 V617F. Each dot represents 1 patient analyzed as shown in panel A and placed into the 
corresponding quadrant. Events in ET patients are depicted in yellow, PV patients in red, and PMF 
patients in brown. (C) Patterns of clonal evolution in eight MPN patients carrying multiple somatic 
mutations. Dotted lines denote the time of analysis and the y-axis indicates the percentage of the 
colonies with or without the corresponding somatic mutations. GRA, granulocytes. %VF, JAK2-V617F 
mutant allele burden in granulocytes purified from peripheral blood. Although the order of events 
depicted can be deduced from the single-clone analysis (dotted line), the exact timing of the acquisition 
of the individual mutations and the time needed for the clonal expansion remains unknown and is shown 
only schematically.  
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3.1.4 Prognostic value of somatic mutations 

The comparison of clinical data with NGS results showed that the number of somatic mutations 

per patient correlates with increased leukocyte count. Especially patients with two or more 

somatic mutations or with a mutation in EZH2 showed an elevated leukocyte count (Figure 

17A and B). Patients with somatic mutations in ASXL1 presented with significantly lower 

hemoglobin at diagnosis (Figure 17C). The comparison of the NGS result with clinical follow-

up data showed that in MPN, the number of somatic mutations per patient correlates with 

increased risk of transformation to AML and reduced overall survival (Figure 17D and E). 

Mutations in TP53, TET2 and other epigenetic modifier genes, such as ASXL1, DNMT3A, 

EZH2 and IDH1, were analyzed separately for their impact on the risk of transformation to AML 

and reduced overall survival (Figure 18). 

Mutations in TP53 and TET2 correlated with transformation into AML and reduced survival, 

while mutations in other epigenetic modifier genes did not reach significance (Figure 18B-D). 

Somatic mutations found in the most recent patient samples were re-sequenced and quantified 

in all previous samples of the same patient. This allowed tracking the mutant allele burden and 

assessing the clonal size over time for each patient with more than one sample (Figure 18A). 

From five patients with somatic mutations in TP53, serial samples were available from four 

patients (Figure 18B). Three patients had one somatic mutation in TP53 (solid lines) and one 

patient had two somatic mutations in TP53 (dashed lines, each representing the clone carrying 

one of the two TP53 mutations). Four of the five mutations, which could be tracked through 

previous samples, were present in all of the examined samples. Only one somatic mutation in 

TP53 was acquired during the follow-up time of the study. Interestingly, the allele burden of all 

somatic TP53 mutations remained very low (<5 %) for multiple years. In four patients, the TP53 

mutant allele burden increased above 50 %, potentially through a combination of loss of 

heterozygosity and clonal expansion. Notably, the MPN phenotype of these patients 

transformed to AML, leading to subsequent death only months after the expansion of the clone. 

The only patient of the cohort with a mutation in TP53 and an allele burden below 50 % is still 

alive. This intriguing observation was specific for mutations in TP53 and could not be found in 

patients carrying somatic mutations in other genes. 
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Figure 17 Impact of somatic mutations on blood counts, transformation and survival 

(A) Correlations between the number of somatic mutations (excluding driver mutations) and leukocyte 
count. (B) Correlation between the mutation status of EZH2 and leukocyte count. (C) Correlation 
between mutational status of ASXL1 and hemoglobin count. Kaplan-Meier curves for correlation of the 
number of somatic mutations (omitting driver mutations) with transformation to AML (D) and overall 
survival (E). Symbols: * p<0.05, ** p<0.01, *** p<0.005, **** p<0.001. 
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Serial samples were available from 12 of 23 patients carrying mutations in TET2. In 11 of the 

12 patients (92 %), the TET2 mutation was present in all previous samples. In five of 12 

patients with serial samples, the TET2 clone expanded during follow-up. Only in one patient, 

the mutant allele burden reached >75 %. All of the cases with stable clonal size displayed a 

TET2 mutant allele burden of approximately 50 % from the first to the most recent sample, 

indicating that clonal expansion happened prior to MPN diagnosis (Figure 18C). Furthermore, 

colony analysis revealed that TET2 mutations most often remain heterozygous. Thereby, a 

TET2 mutant allele burden of 50 % indicates, that most cells of the peripheral blood are 

carrying a mutant TET2 allele.  

Patients (N=11) with somatic mutations in other epigenetic modifier genes seemed to follow 

the pattern observed in the subgroup of TET2 mutated patients. In about half of the patients, 

the mutant clone remained stable at an allele burden of 50 %, whereas the other patients 

displayed an increased allele burden over time. All mutations found in the most recent sample 

were present in the previous samples of the patients (Figure 18D).  

In total, serial samples were available from 28 patients harboring 38 somatic mutations (Figure 

19A). The serial samples covered a total of 133 patient years and during this time only two 

patients acquired a mutation (Figure 19B and C). P111, the PV patient who gained a TET2 

mutation, was treated with aspirin. The patient who gained the TP53 mutation (P060), was 

initially diagnosed with an ET and transformed into AML. This patient was treated with 

hydroxyurea. All other somatic mutations were found at diagnosis or at the first available 

sample.  

Interestingly, when correlating the number of somatic mutations per patient with their age at 

diagnosis, patients who did not carry any somatic mutation were diagnosed at younger age 

(Figure 19D). In total, 18 patients of 197 (9 %) did not carry any mutation: nine ET, seven PV 

and four PMF patients. Patients with an ET phenotype were diagnosed at median age of 51, 

PV and PMF patients at 60 and 63 years, respectively (Figure 19E). 
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Figure 18 Longitudinal sequencing reveals most mutations are present at diagnosis 

(A) Scheme of re-sequencing and quantification of somatic mutations in patient samples acquired prior 
to the sample used for NGS. (B) Time course of the TP53 mutant allele burden in serial follow-up 
samples of four MPN patients with available follow-up samples (upper panel). One patient harbored two 
distinct TP53 mutations (dotted lines), only one of which displayed loss of heterozygosity. Survival 
(middle panel) and transformation to AML (lower panel) is shown below for five patients with mutations 
in TP53. (C) Time course of the TET2 mutant allele burden in serial follow-up samples of 12 MPN 
patients (upper panel). Survival (middle panel) and transformation to AML (lower panel) is shown below 
for 23 patients with mutations in TET2. (D) Time course of the mutant allele burden of epigenetic 
modifiers (ASXL1, DNMT3A, EZH2, and IDH1) in serial follow-up samples of 11 MPN patients (upper 
panel). Survival (middle panel) and transformation to AML (lower panel) is shown below for 29 patients 
with mutations in ASXL1, DNMT3A, EZH2, or IDH1.   
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Figure 19 Only two somatic mutations acquired during disease course 

(A) Distribution of years of follow-up among the 28 patients shown in panel B & C. (B) Histogram of 
patients (N=10) with serial samples, starting with the first sample at the date of diagnosis. (C) Histogram 
of patients (N=18) with serial samples and study entry after the date of diagnosis. (D) Correlation of age 
at diagnosis with MPN phenotype. (E) Correlation of number of somatic mutations (including driver 
mutations) with age of diagnosis. 
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3.2 Pediatric MPN patients display a different mutational phenotype 

We next sought to determine the genetic background of pediatric MPN patients in comparison 

to adult MPN patients. The clinical and laboratory data of 43 patients with pediatric MPN (age 

⩽18 years at diagnosis) that were included in this study are summarized in Table 8. Family 

history of MPN was negative in all children. The WHO 2008 criteria for ET were fulfilled in all 

25 cases whose bone marrow histology was available. To establish the diagnosis of ET in the 

remaining 16 patients without bone marrow examination, we used the proposed revision of the 

WHO criteria(104) adjusted for age-specific differences in the normal blood counts(105,106). 

Elevated platelet counts (>450 × 109/L) for at least 12 month of follow-up and absence of signs 

suggesting a reactive or secondary cause were required for ET diagnosis. Data on spleen size 

were available for 34 patients with ET and splenomegaly was noted in 14 of them (41 %). 

There were five hemorrhagic events and one transient ischemic attack observed in five of 41 

(12 %) ET patients. Two PV patients were JAK2-V617F positive, had hematocrit values >50 

% upon follow-up requiring phlebotomies and both had splenomegaly(107).  

 

 

 

 

 ET PV 

Number of patients 41 2 

Percentage of females 66% 100% 

Age at diagnosis  
median (range) 

9 (1-18) 10 (4-17) 

Hemoglobin (g/L) of all patients  
median (range) 

128 (80-157) 156 (153-160) 

   Hemoglobin males only 135 (113-157) n.a. 

   Hemoglobin females only 125 (80-146) 156 (153-160) 

Platelets (109/L)  
median (range) 

1391 (489-4443) 893 (744-1043) 

Leukocytes (109/L)  
median (range) 

9 (5-17) 19 (10-27) 

Splenomegaly 14/34 (41%) 2/2 (100%) 

Complications  
(thrombotic events or hemorrhaging) 

5/41 (12%) n.a. 

Table 8 Clinical characteristics of pediatric MPN patients   
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The DNA of the patients was kindly provided by Maria Lugia Randi (University of Padova, 

Padova, Italy). We used the same capture-based targeted NGS approach to analyze the same 

104 genes in the pediatric patients. The frequencies of the 45 observed sequence alterations 

are shown in Figure 20A. JAK2-V617F (8/43) and CALR-exon9 (4/43) mutations were found 

most frequently (Figure 20A). In adults with MPN, the frequency of mutations in genes 

implicated in epigenetic regulation (TET2, ASXL1, DNMT3A, EZH2 and IDH1) was about 25 

%(35,108). In contrast, we detected mutations in these genes in only four of our 43 pediatric 

MPN patients (9 %; Figure 20A). We found recurrent mutations in the IRF8 gene, which 

encodes an interferon-regulatory transcription factor with a possible role as a leukemia tumor 

suppressor(109). Three patients with ET had the same IRF8-P310A mutation, which is predicted 

to be deleterious by all structure prediction algorithms and a fourth patient carried an IRF8-

R228H mutation, where the predictions were not unanimous. The allele burden of the IRF8-

P310A mutation was 99, 90 and 67 %, respectively, suggesting that the mutation was 

homozygous in some or the majority of granulocytes in these patients. Six additional genes 

were mutated in two different patients each, whereas the other genes were mutated only once 

(Figure 20A). Two patients with ET carried mutations in the EPOR with allele burdens close to 

50% suggesting heterozygosity. One JAK2-V617F positive ET patient carried an EPOR-

V264G mutation in the transmembrane domain of EPOR. Based on a model for mouse 

EPOR(110), this mutation is expected to stabilize a less active dimeric interface for EPOR and 

predicted to decrease EPOR function. Another ET patient carried an EPOR-W233G mutation, 

which alters the first tryptophan of the conserved WSXWS motif in the extracellular domain of 

EPOR to GSXWS. In a mouse study, the Epor-W233G mutation reduced EPOR surface 

expression and resulted in a loss of function of the receptor(111). Thus, both EPOR mutations 

are predicted to reduce or eliminate EPOR function. The fact that both patients have ET and 

not PV, further argues against a causative role of these mutations(107).  
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Figure 20 Mutational profile of pediatric MPN 

(A) Histogram of patients mutated for the listed genes. ET patients marked in light grey, PV patients 
marked in dark grey. (B) Circos plot showing the co-occurrence of somatic mutations in pediatric MPN 
patients (C) Patterns of clonal evolution of two pediatric MPN patients. The dotted line marks the time 
of diagnosis. 
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Co-occurrence between mutations in the same patient is shown in Figure 20B. The four 

patients with CALR mutations did not carry additional gene mutations, whereas patients with 

JAK2-V617F or MPL mutations frequently carried other gene mutations. From one pediatric 

patient (P260) with JAK2-V617F and a mutation in DNMT3A and the patient (P028) with JAK2-

V617F and a mutation in TET2 PBMCs were available. We used these cells to dissect the 

clonal architecture by genotyping DNA from PBMC-derived single colonies grown in 

methylcellulose. The DNMT3A mutation in this patient had been acquired before JAK2-V617F 

and the clone expanded to account for 50 % of the progenitors. The TET2 mutation in P028 

was also acquired before JAK2-V617F and was found in 225 of 226 tested colonies (Figure 

20C). Both tested pediatric patients resemble the observation in adult MPN patients, where 

mutations in TET2 and DNMT3A preferentially also occur early in the development of the MPN 

clones(108). 

Figure 21A compares the distribution of the number of mutations per patient in our pediatric 

cohort with the data from our published MPN cohort of 192 adult patients that was analyzed 

using the same technologies(108). Mutations in one of the established MPN driver genes JAK2, 

CALR or MPL were found in a lower percentage of pediatric cases (34 %) than adult MPN 

patients (90 %; Figure 21A). Conversely, a substantial proportion of pediatric patients who 

were tested negative for mutations in MPN driver genes, carried mutations in other genes. In 

addition, a higher percentage of pediatric cases had no detectable mutation in the analyzed 

genes (32 % versus 8 % in adults; Figure 21A and B). Overall, the mean number of mutations 

per patient in pediatric MPN was significantly lower than in adult disease (Figure 21C). The 

subgroup of pediatric patients without detectable mutation showed a trend toward higher 

platelet counts compared with patients carrying mutations (Figure 21D).  

In summary, this study shows that a majority of pediatric patients does not have detectable 

mutation in any of the genes known to be associated with MPN. Driver mutations in JAK2, MPL 

and CALR are also the most common hits in this group of patients. Pediatric MPN patients 

overall also display fewer mutations in genes involved in epigenetic regulation. Two somatic 

mutations found in TET2 and DNMT3A resemble the order of acquisition observed in adult 

MPN patients(108).  
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Figure 21 Comparison of mutations in pediatric and adult MPN 

(A) Comparison of the distribution of driver mutations in the pediatric cohort (N=43) and a previously 

analyzed adult MPN cohort (N=192)(108). The different colors indicate the type of driver mutation. (B) 

Distribution of somatic mutations among the same pediatric and adult MPN patients. The shades of gray 
indicate the number of somatic mutations per patient. (C) Comparison of number of mutations per 
patients for the pediatric and adult MPN cohort. (D) Comparison between platelet count and driver 
mutation in the pediatric MPN cohort. The gray shaded area indicates the range of normal platelet 
counts.  
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3.3 Patients with low JAK2-V617F allele burden 

The application of NGS technologies to uncover the mutational landscape of MPN, helped to 

learn more about somatic mutations, but driver mutations remain the most common molecular 

characteristic in MPN patients. Only 30-40 % of adult MPN patients carry somatic mutations 

additional to driver mutation. Approximately, 50-60 % of patients are carrying a mutation in 

JAK2, CALR or MPL as their sole somatic mutation.  

For the detection and quantification of driver mutations, granulocytes are enriched from 

peripheral blood samples of patients with clinical signs of MPN. The DNA of isolated 

granulocytes is used as template material for allele specific PCR or quantitative sequencing. 

At the time of MPN diagnosis, the JAK2-V617F allele burden can reach a value between >0 % 

and 100 %. The majority of patients with JAK2-V617F mutation and diagnosis of ET has a 

mutant allele burden <50 % (Figure 22A). Patients with PV show a more heterogeneous 

frequency distribution. Only in a small proportion of PV patients, the JAK2-V617F mutant allele 

burden remains <20 %. An apparent proportion of patients with diagnosis of PV and a JAK2-

V617F mutation represent with a mutant allele burden of 80% and above, indicating a loss of 

heterozygosity in the majority of granulocytes. Both observations were in line with results of 

previous studies(112,113). PMF patients carrying the JAK2-V617F mutation show a similar 

heterogeneous distribution as PV patients (Figure 22A).  

Studies of JAK2 negative and MPL negative ET and PMF patients led to the discovery of frame 

shift mutations in CALR-exon9(35,36). Correlations in ET and PMF patients show, that ET 

patients represent with a significantly lower CALR mutant allele burden than PMF patients. 

The majority of patients with a CALR mutation presented an allele burden of 45 to 55 %. This 

indicates that nearly all peripheral cells carry a mutant CALR allele, as based on our own 

experience from single colony analysis, loss-of-heterozygosity is rare at the CALR locus 

(Figure 22B). Similar results were obtained from two ET and two PMF patients with a MPL-

W515 driver mutation. However, the total number of MPL mutated patients is too low to draw 

general conclusions from this small group (Figure 22C). Interestingly, PV patients with a JAK2-

exon12 mutation represented an allele burden of <30 %, at time of diagnosis (Figure 22D).  

In the next step, we tested for a gender-based skewing in patients positive for JAK2-V617F 

and CALR mutations. No significant difference in the mutant allele burden was found when the 

patients were sub-categorized according to their gender (Figure 22E and F). Furthermore, we 

tested for correlations of the driver mutation burden and blood counts at diagnosis. In PV 

patients, the JAK2-V617F mutant allele burden at diagnosis positively correlates with 

hemoglobin and hematocrit and inversely correlates with the number of thrombocytes (Figure 

22G-I). The inverse correlation of JAK2-V617F burden with platelet count has been observed 
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before(114). The correlation analyses were repeated with ET and PMF patients with JAK2-

V617F or CALR mutation, but no correlation was found. 

 

 

 

Figure 22 Correlation of driver mutation burden at time of diagnosis 

Mutatant allele burden at time of diagnosis of MPN patients mutant for (A) JAK2-V617F, (B) insertion-
deletion mutations in CALR-exon9, (C) mutations in MPL at position W515 and (D) mutations in JAK2-
exon12. Correlation for the gender of patients with the mutant allele burden of JAK2-V617F (E) and 
CALR (F) at diagnosis. (G-I) Correlation of clinical blood values with JAK2-V617F allele burden of PV 
patients. The grey area marks the normal range of the specified clinical value  
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It is generally accepted in the field to use the allele burden of a driver mutation as an indicator 

of size of the MPN clone: The more mutant alleles are present relative to the wild type alleles, 

the more cells carry the analyzed mutation and the larger the mutant clone is. This assumption 

is based on the fact that a normal cell carries two alleles and from standard analysis, 

homozygous cells can’t be differentiated from heterozygous cells. Still, the mutant clone in a 

patient with an allele burden of 5 % is smaller than the clone in a patient with a mutant allele 

burden of 25 %. Therefore, the JAK2-mutant allele burden is the marker of molecular response 

of patient treatments. 

Interestingly, the JAK2-V617F burden (or: the size of the MPN clone) does not correlate with 

clinical values in ET and PMF patients at diagnosis. In PV patients, the allele burden of JAK2-

V617F in granulocytes even inversely correlates with thrombocyte counts. Furthermore, at 

diagnosis, patients in all MPN phenotypes can be found, which present with a mutant JAK2 

burden <20 % in granulocytes. Hence, we wondered if granulocytes are a reliable indicator for 

the size of the JAK2 clone in other lineages of the peripheral blood. We were especially 

interested in lineages, which are relevant for the diagnosis of MPN, platelets and red cells. 

For the patients of the Basel sporadic MPN cohort, RNA of platelets was available from all 

patients, as the purification of platelets is part of our standard sample workup protocol (Figure 

8). To analyze the allele burden in red cells, we decided to enrich reticulocytes, the most 

advanced red cell progenitors, which still contain RNA. We intended to purify red cell 

progenitors from frozen PBMC samples, which are also part of our standard sample workup 

protocol. During multiple pilot experiments, we only managed to enrich only marginal amounts 

of reticulocytes from the PBMC fraction. Finally, the numbers of reticulocytes purified from 

frozen PBMCs were not sufficient for subsequent analyses. Presumably, reticulocytes were 

affected by the treatment with red cell lysis buffer during PBMC preparation. Therefore, we 

developed an extended purification scheme (Figure 23A), which allowed the parallel isolation 

of all lineages of the peripheral blood.  

Granulocytes, PBMCs and platelets were isolated according to the standard protocol (Figure 

8). PBMCs were stained for CD3 (T-cells), CD14 (monocytes), CD19 (B-cells) and CD335 (NK-

cells) to isolate Monocytes, NK-, B- and T-cells. Single positive cells were FACS-sorted into 

individual tubes to prepare cell type specific RNA. In addition to these commonly isolated 

lineages, we enriched for reticulocytes from the (otherwise discarded) erythrocyte fraction 

(Figure 23A). Subsequently, enriched reticulocytes were sorted for CD71+/CD235+/CD42a-

/CD45- markers to select immature red cells and exclude platelets and white blood cells. Cells 

from non-red cell lineage origins needed to be excluded, as reticulocytes eject DNA and RNA 

during their differentiation to mature red cells. Therefore, a contamination of non-red cell-

derived RNA would have great impact on cDNA-based analysis of the mutant allele burden. 
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Figure 23B shows the representative re-analysis of the sorted CD71+/CD235+/CD42a-/CD45- 

reticulocyte fraction.  
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Figure 23 Purification of progenitors and peripheral blood lineages from individual blood 
samples 

(A) Purification scheme (B) FACS analysis of sorted CD71+/CD235+/CD42a-/CD45- reticulocytes  
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Due to the lack of DNA in platelets and reticulocytes, the driver mutation burden in all peripheral 

lineages was performed on cDNA using SNaPshot analysis. In granulocytes, the mutant allele 

burden was quantified in DNA and RNA to show that both, the wild type and the mutant allele, 

are expressed at comparable levels. To compare results from peripheral lineages of the blood 

with the progenitor compartment, we also seeded (non-enriched) PBMCs in methylcellulose 

for colony forming assays and subsequently picked single colonies for driver mutation analysis. 

As the enrichment of reticulocytes required an extended work up protocol, the complete 

analysis was limited to freshly donated samples. For this analysis, we selected MPN patients 

with a JAK2 mutant allele burden below 20 % in their most recent sample. In total, 13 ET 

patients and eight PV patients mutated for JAK2-V617F were included in this study. We also 

included two PMF patients with JAK2-V617F allele burden <20 % and combined them in the 

group of ET patients. In addition, two PV patients (P021 and P284) were analyzed, who had a 

JAK2-exon12 mutation and a mutant allele burden below 20 %. One of the JAK2-exon12 PV 

patients, P021, was also mutated for JAK2-V617F and was analyzed for both driver mutations.  

The JAK2-V617F allele burden in platelets of ET patients showed a significant increase 

compared to granulocytes. The significant difference in driver mutation burden between 

granulocytes and platelets confirms the data previously shown by Bellosillo in 2007(115). 

Interestingly, the reticulocytes of the same ET patients showed a significantly higher allele 

burden compared to granulocytes. In eight of 13 (62 %) patients, the JAK2 mutant allele burden 

in reticulocytes reached >20 %. The two PMF patients followed the trend of ET patients (dotted 

lines in Figure 24A). A significant increase in allele burden in reticulocytes compared to 

granulocytes was also observed in nine of 10 (90 %) PV patients (Figure 24B). In PV patients, 

the median increase from granulocytes to reticulocytes is 3.2 fold and is slightly more 

pronounced than in ET patients, where a 2.2 fold median increase was measured. Similar 

values were obtained for the fold increase of allele burden in granulocytes compared to 

platelets (Figure 24C). For two ET and two PV patients, RNA of granulocytes and platelets 

was available from previous samples. We measured the mutant allele burden only in these two 

lineages, as reticulocytes were not collected at earlier time points and it was not possible to 

enrich them at sufficient numbers from PBMCs of previously obtained samples. The results 

from these patients show that the observed difference in allele burden of platelets and 

granulocytes is stable over time (Figure 24D-F).  

Patient P021, who carries both, a JAK2-E542-N543-del mutation in exon 12 and a JAK2-

V617F mutation, was reported in a previous study of our lab(77). We showed that both 

mutations are present in an individual, non-overlapping clone. Interestingly, the allele burden 

of both mutations, JAK2-exon12 and JAK2-V617F, is significantly increased in platelets 

compared to granulocytes. The allele burden in the platelets of this patient are 25 % and 35 % 
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for JAK2-E542-N543-del and JAK2-V617F. This indicates that the vast majority of platelets 

originated from a megakaryocyte, which carried at least one mutant allele of JAK2. 

Furthermore, the data suggests the presence of a homozygous clone and implies that there is 

only a small population of wild type platelets (Figure 24G). 

A case of a patient with diagnosis of PV (P192) caught our attention, as he was the only patient 

with interferon-alpha treatment in this study. The JAK2-V617F allele burden in reticulocytes of 

this patient was distinct from measurements in granulocytes and platelets. We analyzed 

previous samples of the patient and found that initially, the JAK2 mutant allele burden was 

similar in platelets (18 %) and granulocytes (15 %). Within two years from diagnosis, the allele 

burden in platelets increased to 28 % and remained stable for the following five years. During 

the same period of seven years, the mutant allele burden in granulocytes steadily increased 

to 25 %. At this time point, interferon alpha treatment was started and led to a constant 

reduction of mutant JAK2 allele burden in both, granulocytes and platelets. The patient was 

under treatment of interferon since three years, when the sample was drawn for the analysis 

of all lineages, including reticulocytes, platelets and granulocytes. The analysis of this sample 

revealed a mutant allele burden of 8 % in granulocytes, 12 % in platelets and 33 % in 

reticulocytes (Figure 24H).  
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Figure 24 Comprehensive JAK2 analysis in progenitors and peripheral blood lineages 

(A) Mutant JAK2 allele burden in myeloid lineages of individual patients diagnosed for ET and PMF. 
Dotted lines represent the two PMF cases. (B) Mutant JAK2 allele burden in myeloid lineages of 
individual patients diagnosed for PV. Dotted lines represent patients with JAK2-exon12 mutation. Dark 
blue dotted line: P021 JAK2-V617F, light blue dotted line: P021 JAK2-exon12, purple dotted line: P284. 
(C) Average fold difference of mutant JAK2 burden in reticulocytes and platelets compared to 
granulocytes. (D-F) Longitudinal measurements of JAK2 mutant allele burden in platelets and 
granulocytes of three individual patients. (G) Representation of allele burden of both driver mutations of 
P021 in granulocytes, platelets and reticulocytes. (H) Detailed analysis of samples from patient P192, 
who received interferon-α treatment  
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Our quantification of the mutant JAK2 allele in peripheral blood shows a significantly higher 

allele burden in platelets and red cells compared to granulocytes in a subset of patients. To 

test if this difference can be found also in the progenitor compartment, we seeded PBMCs in 

methylcellulose assays and analyzed single colonies for the presence of the driver mutation. 

PBMC samples were available for five patients with ET, both PMF patients, four PV patients 

with JAK2-V617F mutation and both PV patients with JAK2-exon12 mutation. Colonies of 

platelet progenitors, CFU-Meg, required to be fixed and stained for morphologic identification. 

As this pre-treatment doesn’t allow picking and genotyping of CFU-Meg, the platelet 

progenitors were excluded from single colony analysis. Morphologically distinct colony types, 

BFU-E, CFU-G and CFU-M were analyzed as progenitors of red cells, granulocytes and 

monocytes, respectively.  

In total, five times more BFU-E colonies than CFU-G colonies were picked from 

methylcellulose plates. CFU-M colonies represent 5 % of the analyzed colonies and in some 

patients only a single colony of this phenotype could be found. In the colonies from three of 

five (60 %) ET patients and three of six (50%) PV patients we found homozygous clones in at 

least one lineage (Figure 25A+B). Due to the low frequency of double mutant colonies, the 

homozygous clone of individual patients consisted of only a single colony in two ET and two 

PV patients. No homozygous colony was found in the two PMF patients (Figure 25A). To test 

if the progenitors of red cells, granulocytes or monocytes contain a larger fraction of the mutant 

clone, we pooled the information from all 11 patients for each type of colonies (Figure 25C). In 

the combined analysis, we found a similar distribution of heterozygous colonies in BFU-E, 

CFU-G and CFU-M, 5.2 %, 4. 8% and 4.0 % respectively. A homozygous genotype was found 

in 0.6 % of both, BFU-E and CFU-G colonies. In total, 83 CFU-M colonies were analyzed from 

11 patients and none was found to be mutated in both JAK2 alleles (Figure 25C). In summary, 

our results show that at the progenitor level, the driver mutation is equally distributed among 

the analyzed lineage progenitors. At the progenitor level, the red cell lineage doesn’t show a 

larger MPN clone, as found in the mature cells. 

When comparing the JAK2 mutant allele burden in progenitors with the allele burden in their 

mature counterparts, PV patients showed a significant increase for the red cell lineage, but not 

the granulocytes (Figure 25D+E). In ET patients, we observed a significant proliferation of the 

mutant clone from BFU-E progenitor level to reticulocytes. The mutant clone showed a non-

significant trend towards expansion during the differentiation from CFU-G to mature 

granulocytes of individual ET patients (Figure 25F). In contrast to PV patients, the clonal 

expansion in ET patients was not significantly different between the red cell and the 

granulocytic lineage (Figure 25G). 
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Figure 25 Analysis of JAK2 driver mutations in progenitors of MPN patients 
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Figure legend from previous page: Analysis of JAK2 genotype in BFU-E, CFU-G and CFU-M colonies 
in individual patients diagnosed for ET and PMF (A) and PV (B). (C) Combined analysis of JAK2 burden 
by colony type. (D) Allele burden in progenitors compared to mature cells individual PV patients. (E) 
Fold clonal expansion in red cell and granulocyte lineage of PV patients. (F) Allele burden in progenitors 
compared to mature cells individual ET and PMF patients (G) Fold clonal expansion in red cell and 
granulocyte lineage of ET and PMF patients. (H) Schematic of clonal expansion in MPN during 
hematopoiesis. BFU-E: blast-forming unit erythroid, CFU-G: colony-forming unit granulocyte, CFU-M: 
colony-forming unit macrophage 

 

 

 

 

 

In summary, 12 of 13 (92 %) ET patients and nine of 10 (90 %) of PV patients show a 

significantly higher allele burden in platelets and red cells compared to granulocytes. The allele 

burden in these two lineages reached >20 % in nine of 13 (69 %) ET patients and six of 10 (60 

%) PV patients. Our results indicate that the majority of platelets and red cells in these patients 

are part of the JAK2 driven MPN clone. Therefore, the allele burden in granulocytes as an 

indicator of clonal size might lead to an underestimation of mutant cells in the periphery. 

Furthermore, our results might serve as a possible explanation for MPN phenotype in patients 

with an allele burden in granulocytes at the lower end of detection range of today’s standard 

assays.  

MPN are thought to arise from hematopoietic stem cells or the early progenitor level. Previous 

studies(116) of our lab have shown that only a minority of the JAK2 mutant MPN clone expands 

to leukocyte lineages. Data from this analysis shows that the MPN clone equally proliferates 

within the committed progenitors of the myeloid lineages. Based on the data from colonies, we 

suggest that the mutant clone expands at very late stages of the red cell development. In 

contrast, during differentiation of granulocytes, the size of the JAK2 mutant clone only 

increases moderately (Figure 25H). It would be interesting to expand our analysis to other 

progenitor stages and the platelet lineage in future, to learn more about the clonal dynamics in 

MPN.  
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3.4 Modulation of the MPN phenotype by additional somatic mutations 

3.4.1 Meta-analyses to identify effects of somatic mutations on the MPN phenotype 

In parallel to clonal dynamics of MPN driver mutations, we examined how additional somatic 

mutations may modulate the phenotype of MPN patients. For the most frequent somatic 

mutations, mouse models have been established to uncover the molecular mechanism of 

these phenotype modulations. To identify consequences of less frequent mutations, large 

patient cohorts are required. However, large cohorts are rare due to the low prevalence(117) of 

MPN. 

In our study center in Basel, we have access to 197 sporadic MPN patients with a NGS profile. 

Since 2014, samples from 82 additional patients were analyzed using the same NGS 

technology(108). In total, the Basel cohort of sporadic MPN cohort contains NGS profiles of 279 

patients. Furthermore, we included data of 127 patients from the Belgrade sporadic MPN 

cohort, which we generated by applying our published workflow. Finally, we added the online 

available data of a MPN cohort of 150 patients, which was analyzed and published by Nangalia 

et al(35). In total, 556 patients were summarized in a virtual cohort (Figure 26A). The MPN 

phenotypes showed a comparable distribution in all three individual cohorts. For the third 

cohort, we had to consider, that the downloaded data was generated by exome sequencing 

and not by targeted NGS like the Basel and Belgrade cohorts. Hence, we restricted the 

analysis to a defined a set of 21 genes, which previously have been reported to be frequently 

mutated in MPN (Table 9). The exome sequencing used in the Nangalia study covered all of 

these genes. The gene enrichment panel of the published 197 MPN patients included 19 genes 

of the 21 reported genes. Later on, our enrichment panel was updated and included all of the 

genes listed in Table 9. The updated enrichment panel was used for the analysis of 82 new 

patients of the Basel cohort and 127 patients of the Belgrade cohort.  
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AEBP2* DNMT3A IDH1 KRAS NRAS SF3B1 TET2 

ASXL1 EED IDH2* NF1 RBBP4 SH2B3 TP53 

CBL EZH2 JARID2 NFE2 RBBP7 SUZ12 U2AF1* 

Table 9 Frequently mutated genes in MPN 

Red: Genes of the PRC2 complex, Green: RAS GTPases summarized in later analysis, Black: genes 
analyzed individually, asterix: genes, which were not included in the analysis of the first 197 Basel 
sporadic MPN patients. 

 

 

 

 

 

 

Figure 26 Genotype-phenotype correlations in MPN 

(A) Overview of the phenotypes observed in all three individual cohorts and the summarized virtual MPN 
cohort. (B) Phenotypes of patients, who carry mutations in one of the frequently mutated genes. (C-F) 
Individual plots of patients mutated for PRC2 complex genes: EZH2, SUZ12, EED, AEBP2, JARID, 
RBBP4 and RBBP7. (G) Summary of patients carrying a mutation in at least one PRC2 gene. (A-G) 
Numbers on top of bars: Number of patients with mutations in the specified genes, driver only: describes 
patients without any somatic mutation in the predefined gene set.  
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Subsequently, we split the combined cohort into two groups: one group contained patients, 

who carry mutations in at least one of the frequently mutated genes. The other group contained 

patients, who did not show any mutation in the pre-defined group of genes. The great majority 

of these patients carry only a driver mutation and represent the control group for a normal 

distribution of MPN phenotypes. Then, we compared the frequency of MPN phenotypes in 

patients with mutations in at least one of the selected genes, with the control group. Here we 

assume that a different distribution of MPN phenotypes in patients with mutations in a specific 

gene would indicate an impact of this gene on generating the MPN phenotype.  

Mutations in U2AF1, ASXL1, PRC2 genes and SF3B1 were found in eight, 50, 36 and 13 

patients respectively. The majority of patients with mutations in U2AF1 and ASXl1 was 

diagnosed for PMF. In addition, five of 13 (38%) patients with mutations in SF3B1 were 

diagnosed with PMF. In the control group, 15% of patients were diagnosed with PMF. This 

data resembles results of previous studies in myeloid malignancies, which were restricted to 

the analysis of a single gene or smaller gene sets(96,118). The combination of multiple MPN 

cohorts uncovered that mutations in genes of the PRC2 complex(119) (EZH2, SUZ12, EED, 

AEBP2, JARID, RBBP4 and RBBP7) are primarily found in patients with diagnosis of PMF 

(Figure 26B). In the past, only mutations in EZH2 were linked with ET or PMF phenotype and 

adverse survival(120,121). Mutations in other PRC2 complex members were only described for 

SUZ12(99) so far. As mutations in other PRC2 genes are less frequently mutated, a correlation 

with ET and PMF phenotype might so far have been missed due to too low cohort sizes. In our 

cohort, patients with mutations in EZH2 (Figure 26C) and SUZ12 (Figure 26D) are diagnosed 

with PMF more frequently than patients in the control group. Mutations in EED and JARID also 

seem to occur more often in ET or PMF patients. Two mutations in RBBP4 and RBBP7 were 

found in the same triple negative PV patient. Mutations in AEBP2 were found in one ET patient 

and one patient with unclassifiable MPN. The patient with diagnosis of MPN-U carries one 

AEBP2-A4V and one frame shift mutation at codon F398 (Figure 26F). In summary, when 

patients with mutations in PRC2 genes were grouped, about 40% of the cases were diagnosed 

with PMF, compared to 15% in the group of patients without mutations (Figure 26G). However, 

our combined cohort only shows digital numbers of patients with mutations in EED and PRC2 

adapter proteins (AEBP2, JARID, RBBP4 and RBBP7, Figure 26E and F). Therefore, even 

larger patient cohorts will be required to validate these observations.  

Mutations in SH2B3 were equally distributed among the MPN phenotypes and only mutations 

in DNMT3A mutations were predominantly found in ET patients. TP53 mutations were 

previously described to correlate with MPN disease progression and adverse survival(122). 

However, patients with mutations in TP53 show a nearly even distribution of MPN diagnoses 

with only a small increase of PMF phenotype.  
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Patients with mutations in KRAS, NRAS, NFE2, TET2, CBL, NF1 and IDH1 or IDH2 were more 

often diagnosed as PV than the control cohort of non-mutated patients (Figure 26B). KRAS 

and NRAS were combined due to similar function and mutations in these genes were mainly 

found in patients diagnosed for PV. Both genes belong to the group of small GTPases, which 

regulate proliferation and survival pathways. RAS proteins bind GTP to get activated. GTPase 

activating proteins (GAPs) bind to RAS proteins to catalyze the hydrolysis of GTP to GDP, 

which inactivates the RAS proteins. The majority (75%) of K/NRAS mutations in our cohort 

were activating mutations of glycine 12(123). Other activating mutations in codons 13 or 61 

were not observed in our virtual cohort(124). Mutations in codon 12 of RAS GTPases result in 

elevated activity, as the mutant proteins do not form the complex with GAPs. Due to the lack 

of GAP interaction and the low intrinsic activity of RAS proteins to hydrolyze GTP, the mutant 

RAS proteins remain activated once bound to GTP. This constitutive activation leads to 

elevated signaling of the MAPK and mTOR pathways, which is inducing proliferation and 

survival. Activating RAS mutations have been described in numerous tumor types and are 

most common in pancreas cancer (up to 63%(124)). In MPN, RAS mutations are found in less 

than 2% of the cases. 

Mutations in NFE2 have been described at similar frequency in MPN cohorts as mutations in 

RAS proteins(108,125). NFE2 is a transcription factor of the human beta globulin and essential 

for its expression in vitro(126). The most frequent mutations in NFE2 are frame shift mutations, 

which lead to premature stop of the protein. The truncated proteins lack the leucine zipper 

domain of NFE2, which is required for DNA interactions of NFE2 dimers. Mouse studies 

showed that disruption in the NFE2 gene prevents shedding of platelets by mature 

megakaryocytes(127,128). From three patients with NFE2 frame shift mutations clinical data at 

date of diagnosis were available. Contrary to expectations, all patients displayed thrombocyte 

counts of >700 x 109/L, indicating elevated production. Presumably, the constitutive JAK2 

signaling in MPN patients surpasses the lack of functional NFE2 protein and results in 

proliferation of both, the red cell and the megakaryocyte-platelet lineage.  
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3.4.2 Somatic EZH2 mutations promote megakaryopoiesis, resulting in ET and PMF 

phenotypes  

Among the frequently mutated PRC2 genes in MPN, EZH2 was reported first(80). It is the 

enzymatic core component of the PRC2 and mutations in EZH2 occur in approximately 3% of 

the patients in the Basel sporadic MPN cohort(108). To examine a possible synergistic effect of 

mutations in EZH2 on the initiation or progression of MPN, our group generated a mouse model 

combining the JAK2-V617F mutation with a loss-of-function in EZH2. Dr. Takafumi Shimizu 

crossed mice with a conditional knockout allele of EZH2(129) with inducible JAK2-V617F 

mice(64). The induction of JAK2-V617F in mice wild type for EZH2 results in ET or PV 

phenotypes, depending on expression levels of JAK2-V617F in hematopoietic cells(64). Loss 

of EZH2 in mice with wild type JAK2 did not lead to significant changes in blood counts or 

prognosis. Heterozygous loss of EZH2 in JAK2-V617F expressing mice enhances 

thrombocytosis and neutrophilia and accelerates the transition from PV to PMF. The excision 

of both EZH2 alleles in JAK2-V617F mice results in an even more pronounced phenotype, 

leading to PMF, without a preceding PV phase. Limiting dilution transplantation experiments 

show that loss of EZH2 on a JAK2-V167F background leads to an expansion of the HSC and 

progenitor pool, resulting in increased megakaryopoiesis over erythropoiesis(130). 

To determine, how the loss of EZH2 modulates the MPN phenotype, we analyzed the 

expression pattern of FACS sorted LT-HSC and MEP cells by RNAseq. Principle component 

analysis revealed that induction of JAK2-V617F has significant impact on expression patterns 

in LT-HSC, whereas homozygous loss of EZH2 mainly abrogates the expression patterns of 

MEP cells. In MEP cells, expression of LIN28B and its target genes, such as HGMA2, IGF2BP3 

and PCOLC2, were significantly increased upon EZH2 deletion in mice(130). The up-regulation 

of HMGA2 in myeloid progenitors such as CMP and MEP has been linked in a recent study 

with increased megakaryopoiesis(131), confirming observations of thrombocytosis in our MPN 

mouse model. Furthermore, increased expression of LIN28B and HMGA2 has also been 

shown to increase the stem cell pool by inducing self-renewal in the HSC compartment(132). 

To test if the observations from the mouse model resemble the effect of EZH2 mutations in 

MPN patients, the expression of HGMA2, IGF2BP3 and PCOLC2 was measured in RNA from 

patient derived granulocytes (Figure 27A-C). In total, RNA was available from 21 MPN patients 

with a mutation in EZH2: Five patients were mutant for EZH2 and an insertion-deletion 

mutation in CALR-exon9, 16 patients were mutant for EZH2 and JAK2-V617F. One CALR 

mutant patient and four patients mutant for JAK2-V617F had a homozygous EZH2 mutation. 

EZH2 mutant patients showed higher HMGA2 expression compared to their EZH2 wild type 

counter parts. The expression level of HMGA2 correlated with the mutant allele burden of 
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EZH2 in patients. Our data confirms that reduction of PRC2 activity by EZH2 mutations leads 

to overexpression of the LIN28B-HMGA2 axis in humans, as it has been shown in mice. In the 

studied mouse model, the combination of JAK2-V617F driver mutation and loss of EZH2 

function modulates the MPN phenotype towards megakaryopoiesis. Due to the similar effect 

on the transcription of key players of megakaryocyte differentiation and proliferation(130), we 

suggest a similar mode of action in human patients with EZH2 mutations.  

Interestingly, mutations in PRC2 genes other than EZH2, such as SUZ12, EED and JARID, 

frequently occur in patients with ET or PMF diagnosis (Figure 26C-F). The complex requires 

three core proteins EZH2, EED and SUZ12 to methylate the lysine 27 of histone 3. In addition 

to these core members, other proteins can associate with the complex, which results in 

modulated specificity and activity of the PRC2. These optional PRC2 members are AEBP2, 

JARID2, RBBP4 and RBBP7. AEBP2 and JARID2 are thought to associate with GC-rich 

promoter regions of PRC2 target genes. In addition, JARID binds to mono-ubiquitinylated 

lysine 119 of histone H2A(133,134). RBBP4 and RBBP7 bind to unmodified residues at the N 

terminus of histones H3 and H4(119). SUZ12 serves as an adapter between RBBP4/7, JARID 

and EZH2 and is thought to enhance the activity of EZH2 when bound to these optional 

complex members(135). AEBP2 and JARID2 have been shown to associate with EED, which 

itself specifically binds to H3K27me3(136). Like SUZ12, EED serves as a linker between EZH2 

and optional adapter proteins(119) (Figure 7). In summary, current knowledge suggests a 

relationship between physical interaction of these proteins and the enzymatic activity of the 

PRC2 complex. Therefore, we hypothesize that mutations in other PRC2 genes result in similar 

phenotypes than loss-of-function mutations in EZH2. Hence, we scheduled experiments for 

the expression analysis of LIN28B target genes (HGMA2, IGF2BP3 and PCOLC2) in patients 

with mutations in other genes of the PRC2 complex. The experiments were still running while 

the thesis was being written up.  
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Figure 27 Loss of EZH2 in mice reflects the MPN in human patients 

(A) Relative expression of HGMA2 (left panel) and correlation with the mutant allele burden of EZH2 
(right panel). (B) Relative expression of IGF2BP3 and PCOLC2 (C). All qPCR analysis were performed 
using RNA of granulocytes, each dot represents an individual MPN patient.  
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3.4.3 The type of mutation and additional alterations influence the effect of an individual 

somatic mutation on the MPN phenotype 

Previously, we analyzed which genes are frequently mutated in a specific MPN phenotype. 

We also compared, if distinct mutations in an individual gene might affect the molecular biology 

of the MPN phenotype in a different way. 

The effect of IDH1 and IDH2 gene mutations on the MPN phenotype seems to be the lowest 

in our preselected group of recurrently mutated genes (Figure 26B). In the group of patients 

with IDH mutations, 50% of the patients were diagnosed for PV, compared to 41% in their non-

mutant counterparts (Figure 28A). Interestingly, the frequency of PV diagnosis in patients with 

IDH mutations seems to be dependent on the mutation type. The proportion of PV diagnoses 

increases when only so-called neomorphic IDH mutations are taken into account. These 

neomorphic mutations are alterations in IDH1 or IDH2, which affect the residues IDH1-R132, 

IDH2-R140 or IDH2-R172 and alter the enzymatic activity of the proteins. Endogenous IDH1 

and IDH2 proteins catalyze the conversion of isocitrate to α-ketoglutarate. These specific 

mutations are termed “neomorphic” as mutant proteins produce the novel metabolite 2-

hydroxyglutarate instead of α-ketoglutarate(137,138). These mutations have been shown to be 

present in 1 % to 2 % of MPN cases(79,139,140), which is comparable to our results. In the 

combined cohort of 556 patients, eight (1.4%) patients were mutant for either IDH1-R132 or 

IDH2-R140 and PV was diagnosed in six of these eight (75 %) cases. IDH2-R172 mutations 

were not found in this virtual cohort. From five patients with other SNVs than the described 

neomorphic mutations, two patients were diagnosed for PV and PMF and one for ET. In the 

DNA of three patients, frameshift mutations led to a premature stop codon. These patients 

were diagnosed with ET, PMF and MPN-U (Figure 28A).  

Similar to patients with mutations in IDH1 and IDH2, patients with mutations in DNMT3A 

showed a different ratio of diagnoses based on the observed mutation type. Mutations in 

DNMT3A are most frequently described in the normal aging population(141–143). In addition, 

DNMT3A, together with TET2 and ASXL1, belongs to the most often mutated genes in 

MPN(35,108). The most frequent somatic mutations within DNMT3A affect the arginine 882 and 

convert it to either cysteine or histidine(74,75). This specific type of mutations has been shown 

to result in loss-of-function of the mutant protein. Secondary, the mutant protein blocks wild 

type DNMT3A proteins from forming active tetramers(84). Mutations in DNMT3A-R882 

therefore result in focal hypomethylation at the DNA. A recent study also showed, that mutant 

DNMT3A-R882, but not wild type DNMT3A physically interacts with core proteins of the PRC1 

complex, such as BMI1, CBX7 and RING1B(144). In the same study, the interaction of mutant 

DNMT3A-R882 correlated with loss of H2K27me3. Activity of the PRC1 complex has been 
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shown to be required for the full functionality of the PRC2 complex(91). These results indicate 

that DNMT3A-R882, in addition to its defect in DNA methylation, leads to reduction of PRC2 

activity by removing PRC1 from target regions. Interestingly, patients with DNMT3A-R882 

mutations are more frequently diagnosed with ET than patients without somatic mutations 

(Figure 28B). Other mutations in DNMT3A, such as frame shifts, stop mutations or SNVs in 

other positions of the gene, also show increased frequency of ET diagnoses compared to non-

mutant patients, but the effect is less distinct than compared to the group of patients with 

DNMT3A-R882 mutations. 

Furthermore, we tested if the effect of mutations in a specific gene on the MPN phenotype can 

be neutralized by co-occurring mutations in other genes. When TET2 is the only mutated gene, 

patients show an increased frequency of PV diagnosis compared to patients without mutations. 

This effect is reversed in the group of patients with other somatic mutations in addition to TET2 

mutations (Figure 28C). A comparable analysis with patients mutated for ASXL1 showed, that 

this observation might be gene dependent. Patients who only have somatic mutations in 

ASXL1 as well as patients with mutations in ASXL1 and mutations in other genes show an 

elevated frequency of PMF and MPN-U diagnosis (Figure 28D). This observation might 

indicate that the pro-PMF effect of mutant ASXL1 protein might be superior compared to effects 

from other gene mutations.  

When effects of somatic mutations might be overwritten by somatic mutations in other genes, 

the impact of mutations in an individual gene will mainly be apparent in patients with any other 

somatic mutation. However, only approximately one third of the MPN patients carry somatic 

mutations additional to driver mutations. Further, reducing analysis to patients with mutations 

in a specific gene might result in too low numbers for drawing conclusions about phenotypic 

effects. Therefore, it might be necessary to analyze all patients of the combined cohort 

simultaneously using mathematical modeling. This technology assigns a hypothetical 

phenotypic effect to each mutated gene and validates these effects by successive 

approximation and comparing the diagnosis and the somatic mutation status of all patients. As 

an example, we manually analyzed all patients with mutations in CBL to estimate a phenotypic 

effect of mutations in this gene. All patients with CBL mutations and JAK2-V617F were 

diagnosed for PV. Further, CBL mutations seem not to reverse the hypothetical pro-PV effect 

in patients with additional mutations in TET2 and RAS. Two patients with co-occurring SF3B1 

mutations are both diagnosed with PMF, suggesting a stronger potential pro-PMF effect of 

SF3B1 than the effect of CBL mutations towards PV. A patient with a deletion in DNMT3A and 

one patient with a SUZ12 missense mutation additional to CBL were diagnosed with ET and 

MPN-U, respectively (Figure 28E). In summary, we suggest a mild pro-PV effect for mutations 

in CBL, as patients with only CBL mutations are all diagnosed with PV and additional somatic 

mutations seem to be able to overwrite this effect. 
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In summary, this meta-analysis indicates that the phenotypic effect of a mutation might not 

only depend on which gene is mutated. In addition, it may play a role where the specific 

mutation is located within the gene and which other gene mutations are present in the same 

patient. 
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Figure 28 Effect of individual mutations on MPN phenotypes 

(A) Patients with different types of mutations in IDH1 o IDH2. stp: frame shift or nonsense mutations 
leading to premature stop codon, SNV: single nucleotide variants leading to missense mutations 
(excluding previously described neomorphic mutations), R132/R140: summarizes previously reported 
neomorphic mutations in IDH1-R132 or IDH2-R140 (B) Patients with different types of mutations in 
DNMT3A. R882: DNMT3A-R882C or DNMT3A-R882H mutations, other: missense, frame shift or 
nonsense mutations not affecting DNMT3A codon 882. (C) Comparison of patients with a mutation in 
TET2 only and patients with mutations in TET2 and additional somatic mutations in genes of the selected 
gene set. (D) Comparison of patients with a mutation in ASXL1 only and patients with mutations in 
ASXL1 and additional somatic mutations in genes of the selected gene set. (A-D) Numbers on top of 
bars: Number of patients mutated in the specified genes, driver only: describes patients without any 
mutation in the predefined gene set. (E) Detailed representation of genetic alterations in patients with 
mutations in CBL. The gene names are colored according to the potential phenotypic effect when 
affected by mutations. 
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4 Discussion 

4.1 Mutational landscape of MPN 

In this thesis, we were using NGS technologies to gain insight in the genomic landscape of 

MPN, clonal evolution, phenotype development and correlation with clinical outcomes. In the 

first part of the study, we analyzed 197 patients using a targeted NGS approach and analyzed 

the coding region of 104 genes in parallel. The most frequent mutations are driver mutations 

in JAK2 (JAK2-V617F, 69%) and CALR (15%). We also found JAK2-exon12 mutations in 

seven of 197 (3%) cases and MPL-W515 mutations in three of 197 (1.5%) patients. In addition 

to the driver mutations, we found 108 somatic mutations in 73 patients.  

The most frequently mutated genes are TET2, ASXL1, EZH2, DNMT3A confirming the results 

of others(35,36). At lower frequencies, we found mutations in TP53(45,122), IDH1(140), 

KRAS/NRAS(124), which were previously linked with progression. In the same year, two studies 

were published, which were focusing on finding somatic mutations in the normal aging 

population(142,143) and one study, which showed the mutational landscape in MDS(118). In 

Figure 29 the most frequently mutated genes are listed from each of the publications. 

Interestingly, the mutation patterns are similar, but also reveal differences based on the 

hematologic status of the analyzed patients. The studies, which focused on the normal aging 

population, revealed that DNMT3A, TET2 and ASXL1 are the most commonly mutated genes. 

In addition, JAK2 mutations were frequently found in healthy individuals. Mutations of the 

splicing machinery (SF3B1, SRSF2, U2AF1, and ZRSR2) were less frequently found in normal 

population. In the general populations, the mutation frequency correlated with age and was the 

highest in individuals with an age of 100 years or older.  

In MPN, mutations of JAK2 and CALR are the most frequent. This is not surprising, as 

mutations in these two genes are requirements for the diagnosis of MPN. However, after 

excluding driver mutations, the genes, which are most commonly mutated in MPN, are the 

same as in the aging population: TET2, DNMT3A and ASXL1. In addition to these three 

epigenetic modifier genes, also EZH2 is frequently mutated. Mutations of genes involved in 

splicing were also found in MPN at a lower frequency. In MDS, genes of the splicing machinery 

and epigenetic modifiers are sharing the top ranks in the list of mutations. Therefore, the 

mutational landscape of MPN seems to be more similar to the normal aging population than to 

the pattern observed in MDS (Figure 29). The main differences between the healthy population 

and MPN patients are that all MPN patients carry driver mutations in the JAK/STAT pathway 

and somatic mutations, mainly affecting epigenetic modifier genes, at a higher frequency. MDS 

compared to MPN patients, suffer from more somatic mutations per patient, more frequently 

carry mutations in genes of the splicing machinery and less often in the JAK/STAT pathway. 
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MPN compared to MDS have a favorable prognosis(117,145) and this observation might be 

linked to the type of genes commonly mutated in these diseases. Potentially, mutations 

disrupting the splicing machinery result in a more severe defect, resulting in lower survival 

rates in MDS. However, MDS patients also have a higher number of somatic mutations per 

patient (median: 3 somatic mutations per patient(118)), than MPN patients (median: 1 somatic 

mutation per patient). Furthermore, we show in our study, that the number of mutations has an 

impact on survival in MPN patients (Figure 17).  
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Figure 29 Mutational landscapes of chronic hematologic malignancies 

Most frequently mutated genes for the indicated cohorts. The gene names are sorted in descending 
order by the number of mutated patients. Green: genes of the JAK/STAT pathway, Red: genes of the 
splicing machinery, blue: genes involved in epigenetic modification, black: genes involved in other 

pathways. Gene names with asterisk indicate driver mutations. Data extracted from: Jaiswal et. al(142), 

Genovese et. al(143), Lundberg et. al(108), Nangalia et. al(35), Haferlach et. al(118) 

 

  



  

Page 93 

4.2 Patterns of mutational acquisition and clonal evolution 

In our MPN cohort of 197 patients, we found that approximately a third of the patients carries 

somatic mutations additional to the driver mutation. In patients, we found that patterns of co-

occurring mutations were very specific. Nearly each patient had an individual combination of 

mutations. Recurrent combinations were observed for mutations in TET2, DNMT3A or ASXL1 

in patients with a driver mutation in JAK2 or CALR (Figure 15). However, this observation might 

be a consequence of the high frequency of these mutations in MPN patients.  

In addition to the co-occurrence analysis, we also determined the clonal architecture of 

mutations in patients with two or more somatic alterations. The analysis showed that mutations 

in TET2 and DNMT3A were preferentially acquired before JAK2-V617F. Mutations in EZH2 

and IDH1 frequently were acquired as secondary or tertiary events within the JAK2-V617F 

clone. We also observed biclonal patterns in 30% of analyzed patients, which shows that 

hematologic cancers, similar to solid tumors, could consist of multiple branches of individual 

subclones (Figure 16B). Further, our study shows that single cell analysis is required for the 

correct determination of smaller subclones. Similarly, VAF as sole clonal marker is insufficient 

to resolve the clonal architecture of MPN. Interestingly, a recent study on patients with JAK2-

V617F and TET2 mutations revealed that the order of acquisition has an impact on the 

proliferation of individual progenitor compartments and clinical features of these double mutant 

patients(146). Patients with a TET2 mutation acquired before JAK2-V617F presented at older 

age of diagnosis, an enlarged CMP pool and a lower risk of thrombosis. In turn, JAK2 first 

patients were younger at time of diagnosis and showed an expanded MEP and an increased 

risk of thrombosis(146). These findings show that in patients with multiple somatic mutations all 

subclones may individually contribute to the modulation of the MPN phenotype. 

In our study, we combined the analyses of co-occurrence and the clonal architecture with the 

longitudinal sequencing of the somatic mutations in individual patients. The NGS screen for 

finding somatic mutations was applied on the most recent sample of each patient. In the study 

center Basel, blood samples from MPN patients are collected each year. For the patients who 

carry somatic mutations additional to the known driver mutations, we re-sequenced the 

somatic mutations in previous samples of the same patients. Surprisingly, 95% of the somatic 

mutations, which we found in the most recent sample, were also present in all previous 

samples. Only in two patients, additional mutations were acquired after diagnosis. These 

results show that the clonal architecture remained stable during disease progression (Figure 

19). It remains unclear, if there was a temporary period of genomic instability in these patients. 

It is also unknown, how much time passes between the acquisition of the first somatic mutation 

and the diagnosis of MPN. Possibly, MPN patients undergo a “non-symptomatic” phase of 

disease during which more somatic mutations accumulate, until diagnosis of MPN. This 
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observation also raises the intriguing question, if there are specific risk factors, which result in 

the acquisition of somatic mutations in the hematopoietic system. These risk factors could 

potentially be environmental effects like chronic infections or diseases, which induce cycling 

and accelerate aging of the hematopoietic stem cell and progenitor pool. Continuous 

proliferation and stress might leave somatic mutations as genetic scars(147). 

In summary, our data confirms the clonal expansion model(141), which hypothesizes the 

acquisition of pre-leukemic somatic mutations. These pre-leukemic hits are not sufficient to 

result in a malignant phenotype, as shown by mouse models(148), but increase the risk of 

developing a hematologic cancer(142,143). In the Basel sporadic MPN cohort only two patients 

acquired a somatic mutation post diagnosis, suggesting that the patients undergo a symptom-

free period. In this period, a clone with MPN driver mutations may acquire more somatic 

mutations or gradually expand until the patient gets diagnosed (Figure 30). 

 

 

 

 

 

 

 

 

 

Figure 30 Molecular development to clinically apparent MPN  

Model of clonal expansion. Initiating mutations (bright blue circles) induce the acquisition of driver 
mutations (red circles) and subsequent modulating mutations.   
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4.3 Late clonal expansion in patients with a low mutant JAK2 burden 

Following the model of clonal expansion, one would expect that at diagnosis, MPN patients 

present with considerably large clones positive for driver mutations. Therefore, the existence 

of patients who represent with a very low JAK2-V617F allele burden, are matter of discussion. 

With the current PCR based methods, which identify small JAK2 mutant clones down to 1 % 

allele burden or smaller, the question was rising, which allele burden is sufficient to classify a 

patient as mutated for JAK2. 

In our set of patients with a JAK2 mutant allele burden <20 % in granulocytes, nearly all 

patients showed an increased burden in platelets and/or reticulocytes, independent of the MPN 

phenotype. In a previous study, ET patients showed a significantly increased JAK-V617F 

burden platelets of compared to granulocytes(115). In patients with low allele burden in 

granulocytes, the number of mutant cells in the peripheral blood might be underestimated. Our 

analysis shows that the MPN clone does not expand into all lineages of the peripheral blood 

to the same extent. This observation may also serve as an explanation for the inverse 

correlation of mutant JAK2 allele burden and thrombopoiesis(114), which has been published 

before and is found in our cohort as well (Figure 22I). In pilot experiments (Figure 31), we found 

that patients with a low mutant JAK2 allele burden (<20 %) in granulocytes have a higher 

burden in platelets. When the patients represent with a high mutant JAK2 allele burden (>75 

%) in granulocytes, the burden in platelets frequently is lower. In hospitals, the JAK2-V617F 

burden, measured in granulocytes, serves as an indicator of clonal size and molecular marker 

for response to treatment(149). It would be very interesting to analyze the JAK2 allele burden 

in all MPN relevant lineages of patients with molecular response to treatment. Potentially, 

results will show that therapy of MPN does not affect all blood lineages with the same 

efficiency. Eventually, new insights in dynamics of the MPN clone might help to design the next 

iteration of drugs used in the treatment of MPN.  

Based on the results from peripheral cells, we hypothesized that the difference in allele burden 

already exists at the progenitor level. Interestingly, the mutant JAK2 burden is similar in 

progenitors of red cells compared to granulocyte progenitors. Only in the very late stage of red 

cell differentiation, between BFU-E level and reticulocytes, the MPN clone expands 

significantly. Unfortunately, it was not possible to analyze the JAK2-V617F burden in CFU-

Meg, colonies of platelet progenitors. Therefore, we can only speculate that the observed late 

expansion in the red cell lineage might also occur in the platelet lineage. In addition, further 

studies are required to examine if our observations show an excessive clonal expansion 

specifically at the late stage of red cell differentiation or a block of clonal expansion at the 

progenitor level.   
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Figure 31 Dynamics of the MPN clone between platelets and granulocytes 

Figure shows a schematic of the JAK2 burden in platelets relative to the burden in granulocytes; based 
on results from pilot experiments (data not shown). In patients with a low JAK2 allele burden in 
granulocytes (0-25 %), the mutant JAK2 burden is higher in platelets. When the burden in granulocytes 
is intermediate (40-60%), the burden in platelets is comparable. In patients with a very high JAK2 allele 
burden in granulocytes (75-100%), the burden in platelets is lower.  
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4.4 Pediatric and adult young adult patients show different mutational 

landscape 

We compared the number of somatic mutation in MPN patients with the age at diagnosis, and 

found that the number of somatic mutations does not increase with advanced age at diagnosis. 

Interestingly, we found that patients, who do not carry any driver mutation or any other 

additional somatic mutation, are frequently diagnosed at younger age (Figure 19D). This is in 

line with observations from pediatric cases, where patients frequently present with ET 

phenotype and lack driver as well as additional somatic mutations. When we applied our 

established NGS method to screen for somatic mutations, we found that pediatric patients 

presented with less somatic mutations compared to adult cases. Both, driver and somatic 

mutations, were less frequent in young MPN patients. This lack of molecular markers 

complicates establishing diagnosis and standard care in pediatric patients, as diagnosis of 

MPN is otherwise based on blood counts and bone marrow biopsies, which parents frequently 

refuse to agree on(106,150,151).  

In pediatric patients, not only less mutations are observed but also other genes were mutated 

than reported in adult MPN patients. Mutations in genes like TET2, DNMT3A and ASXL1 were 

found at lower frequency than in our study on adult MPN patients. Further, we found new 

mutations in IRF8, a transcription factor, which gets activated upon interferon signaling. 

Interferon receptors belong to the class II cytokine receptors, which also rely on JAK-signaling 

pathways. The mutations in IRF8 were unknown and prediction algorithms presented divergent 

results for the impact of the mutations on the protein. Unfortunately, germline control DNA was 

not available for most of the pediatric cases. Hence, we could not validate the novel alterations 

to be somatic or germline mutations. Therefore, we assume that a significant proportion of the 

reported mutations in our pediatric study may be germline mutations. 

Given the fact, that pediatric MPN patients are diagnosed at early age, but lack common 

somatic mutations, an accumulation of predisposing germline alterations might be an 

explanation for some of the cases. Genome-wide association studies have shown that the 

acquisition of the somatic JAK2-V617F mutation correlates with a SNP (rs10974944), also 

known as the 46/1 JAK2 haplotype(152). Another study reported three additional SNPs located 

at the genes MECOM, HBS1L-MYB and TERT, which were correlating with the diagnosis of 

MPN(153). A recent genome wide association study of 17’000 individuals of the Estonian 

population has shown strong correlation of a number of SNPs with blood counts(154). The top 

hit, a germline variant of CEBPA is associated with basophil counts. Other variants were 

associated with red cell numbers, mean corpuscular hemoglobin and volume. Interestingly, 

HBS1L-MYB is one of these variants and additionally correlated with elevated platelet numbers 
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in the Estonian population. These studies show that germline alterations in the normal 

population are influencing blood counts. Large GWAS analyses are mainly based on material 

of adult individuals. It might be possible that in pediatric MPN cases, which lack clonal markers, 

disease might be driven by germline factors, like SNPs modulating blood counts. As SNPs are 

inherited through the generations, this hypothesis suffers from the fact, that family history 

requires to be excluded for the diagnosis of sporadic MPN. For all patients analyzed in our 

study, both, family history and reactive causes were excluded for diagnosis of sporadic 

pediatric MPN. 
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4.5 Somatic mutations cause disease progression and reduced survival 

In adult patients, we correlated the number of somatic mutations per patient with survival and 

transformation to AML. We found out that a higher number of somatic mutations associated 

with adverse outcome and increased risk of transformation. Patients, who only carried a driver 

mutation showed the most favorable survival. A previous study showed no difference in 

survival for individuals with CALR or JAK2 driver mutation(155). In our study, we saw a slight 

improvement in patients positive for CALR, but in our cohort of 197 adult MPN patients, only 

29 patients were positive for a CALR mutation. Therefore, the discrepancy might be explained 

by the composition or the size of our cohort.  

When searching for an effect of non-driver mutations, we found that alterations in the genes 

TET2 and TP53 increased the risk of transformation and correlated with adverse survival. 

Mutations in TET2 were observed in previous studies of myeloid malignancies(76,156–158), but 

were not always found to affect survival or disease progression or in myeloid malignancies. A 

study with AML patients showed a negative impact of TET2(159) and a study in MPN patients 

found no significant effect of TET2 mutations. In the AML study, TET2 variants were classified 

as somatic mutations, only when they were absent in a paired remission sample of the same 

patient. The authors of the MPN study classified all mutations as somatic, when they were not 

reported in the dbSNP database(156). In our own study, we combined both approaches: first, 

we annotated reported variants as SNPs and then validated all unknown variants in the 

germline control DNA. Only variants, which were not present in the germline DNA, were 

classified as somatic mutations.  

We compared patients without mutations in TET2 with patients with somatic mutations in TET2 

and found a significant reduction in survival. When patients with germline TET2 mutations were 

compared to the control group, there was no significant difference in survival (Figure 32A). The 

impact of TET2 mutations on the survival of MPN patients was reduced when patients with 

somatic mutations and germline mutations in TET2 were summarized in one group (Figure 

32B). A similar effect was observed for correlations of the TET2 mutation status with 

transformation into AML (Figure 32C+D). Therefore, we conclude that currently available 

databases do not contain enough information yet to replace re-sequencing of variants in 

control tissue. Especially when the number of somatic mutations will be used for risk 

stratification, re-sequencing of the mutations in DNA of a different germ layer is recommended. 

Furthermore, we found some germline mutations at VAF below 10%, which might indicate that 

some alleles are more difficult to read than others are. This underlines the importance of 

germline DNA sequencing and shows that somatic mutation calling based on low VAF is also 

insufficient to curate NGS data from germline alterations (Figure 11E). Studies without access 
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to germline control DNA might therefore underestimate the effect of somatic mutations on the 

disease phenotype. 

 

 

 

 

 

 

 

 

 

 

Figure 32 Somatic mutations in TET2 impair survival 

Kaplan-Meier curves of patients with mutations in TET2. (A) Survival of patients with a somatic mutation, 
a germline mutation or no mutation in TET2. (B) Survival of the same patients with TET2 mutations, 
irrespective of if the TET2 mutation is germline or somatic. (C) Transformation to AML of patients with 
a somatic mutation, a germline mutation or no mutation in TET2. (D) Transformation to AML of the same 
patients with TET2 mutations, irrespective of if the TET2 mutation is germline or somatic. ns: not 
significant.  
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The second mutated gene, which was found to correlate with reduced survival and 

transformation to AML in our cohort, is TP53. The gene was found mutated in five patients and 

four of these developed a post-MPN-AML. Only months after transformation to AML, all four 

patients died. Re-sequencing of patient samples from earlier time points showed that the size 

of the clones remained small for years and then expanded rapidly during disease progression 

(Figure 18B). The final TP53 allele burden reached >50 % in these patients, which indicates a 

loss of the wild type allele during the clonal expansion. We therefore suggest that in patients 

with small TP53 clones, the loss of the wild type allele in combination with clonal expansion 

might play a crucial role during the transformation of MPN to AML.  

In 2014, a study showed that TP53 is one of the most common genes found to be mutated in 

post-MPN-AML patients(160). The authors also presented results from a mouse model with a 

full TP53 knock out and retrovirally introduced JAK2-V617F. All mice developed a fully 

penetrant and lethal disease, which was transplantable to secondary and tertiary recipients. 

Hence, it could be of interest to screen MPN patients for small TP53 clones to elucidate, if 

there are more patients carrying small TP53 clones. A long-term study would then be required 

to learn how many of these patients show an expansion of the TP53 clone and subsequently 

transform to AML. However, to detect mutations at very low allele burden (0.1 – 5 %) sensitive 

methods need to be developed, as current methods are either not sensitive enough, or only 

allow to analyze isolated hotspots of mutations. TP53 mutations mainly occur in the DNA-

binding domain, which corresponds to 50 % of the gene sequence, but somatic mutations may 

also occur at any other position of the gene. Therefore, the combination of a sensitive ultra-

deep NGS method with a primer-based gene enrichment might be an appropriate technology 

to detect unknown TP53 mutations at low allele burden(161,162)  

In our initial NGS study of 197 adult MPN patients, mutations in DNMT3A and ASXL1 were 

found at the similar frequency, in 5% of the analyzed patients. Variants in other genes, like 

EZH2 or IDH1, were less frequently found. To reach a sufficient number for the correlation of 

the mutation status survival or risk of transformation, we summarized patients with mutations 

in these epigenetic modifier genes (Figure 18D). When these four genes were grouped 

according to their function as epigenetic modifier genes, the survival of mutant patients was 

not significantly reduced. However, we found that increased number of somatic mutations per 

patient, independent of the mutated gene, correlates with adverse survival. This implies that 

individual genes, when they are mutated, do not have the same negative effect on the survival 

of MPN patients. In a large study focused on MPN patients with PMF diagnosis, the presence 

of ASXL1 mutations correlated with adverse survival(96). This indicates, that our cohort might 

not contain enough patients to uncover the effect on survival, when the gene is less frequently 

mutated than TET2 and the impact of the mutations are smaller than mutations in TP53.  
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In summary, most somatic mutations are acquired before diagnosis of MPN. The first hits, 

initiating mutations may not be sufficient to induce a leukemic phenotype, but increase the risk 

of developing a hematologic cancer. MPN patients who only carry driver mutations show a 

favorable survival compared to patients with additional mutations. Somatic mutations in genes 

like ASXL1 and TP53 indicate high-risk patients, as they increase the risk of transformation 

from MPN to AML (Figure 33). 

  



  

Page 103 

 

 

Figure 33 Model of MPN disease evolution and risk stratification in correlation to mutational 
events 
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4.6 Identifying somatic mutations affecting the MPN phenotype  

Somatic mutations might not only affect the survival of the patient but may also influence the 

phenotype of MPN in the chronic phase of the disease. Somatic mutations in specific genes 

may affect the proliferation of individual lineages and thereby promote a distinct phenotype. In 

patients of the Basel sporadic MPN cohort, we observed that mutations in ASXL1 and EZH2 

affect the hemoglobin and the neutrophil counts, respectively (Figure 17). In a mouse model, 

we showed that loss-of EZH2 promotes proliferation of megakaryocytes, resulting in ET and 

PMF phenotype. Like for correlations with patient survival, the size of the cohort is critical for 

genotype-phenotype correlations. We therefore combined three cohorts, which were analyzed 

with comparable NGS methodologies. 

In a combined virtual cohort, we confirmed that somatic ASLX1 mutations preferentially occur 

in patients with PMF phenotype(99). Interestingly, also mutations in PRC2 genes and DNMT3A 

preferentially were found in patients with ET or PMF phenotype (Figure 26). Within PRC2 

genes, the physical interaction of the proteins within the complex might explain, why mutations 

in SUZ12 and EZH2 result in the same MPN phenotype. For ASXL1 and DNMT3A, recent 

studies showed that mutations in both genes reduce PRC2 activity and result in lowered 

H3K27me3 mark by affecting PRC1. ASXL1 is part of the complex PR-DUB, which removes 

H2AK119u1, placed by PRC1. Somatic mutations in ASXL1 are often frame shift mutations, 

which disrupt the gene and result in uncontrolled removal of H2AK119u1. H2AK119u1 is 

recognized by adapter proteins of the PRC2 complex and binding to it enhances the enzymatic 

activity of PRC2. Therefore, reduced H2AK199u1 results in reduced H3K27me3 marks and 

increased target gene expression. DNMT3A mutations seem to reduce H2AK119u1 marks by 

interaction with the PRC1 complex. Especially R882 mutations in DNMT3A seem to bind PRC1 

efficiently and inhibit PRC1 activity. Subsequently, the interaction of DNMT3A and PRC1 leads 

to enhanced expression of PRC2 target genes(144). Taking all these data together, it seems 

possible that mutations in ASXL1, DNMT3A and PRC2 genes might affect the MPN phenotype 

by similar mechanisms. In mouse models, the alteration of EZH2 led to reduced PRC2 function 

in combination with the transcriptional activation of genes, which would otherwise be repressed 

by the PRC2 histone mark (Figure 34). In a loss-of EZH2 mouse model, we found that 

reduction of PR2 activity results in elevated expression of the LIN28B-HGMA2 axis, which 

promotes megakaryopoiesis. Enhanced megakaryopoiesis might result in increased platelet 

counts or stimulate fibrosis in the bone marrow, which are the main diagnostic criteria of the 

WHO for ET and PMF, respectively. 
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Figure 34 Gene mutations affecting PRC2 activity 

Mutations in ASXL1, DNMT3A and PRC2 genes seem to result in reduction of PRC2 activity either by 
removing or reduction of supportive histone marks or by affecting the PRC genes directly.  
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In addition, mutations in genes of the spliceosome complex, U2AF1 and SF3B1, were 

predominantly found in PMF patients. Spliceosome mutations have been described to be the 

most frequent somatic mutations in MDS(118,163,164). MDS are chronic hematologic disorders, 

which are associated with adverse survival compared to MPN(117). Within MPN, PMF 

represents the most advanced phenotype, with the highest risk to transform to AML(46). 

Clinically, patients have been observed to share features of both diseases and these patients 

are diagnosed with MDS/MPN overlap. Patients with MPN driver mutations and additional 

somatic mutations commonly found in MDS might potentially belong to this more complex 

group of patients. As a consequence of mutational landscape and diagnosis, these patients 

might be at higher risk to transform to AML than other MPN patients. Molecularly, spliceosome 

mutations alter the processing of the transcribed RNA by the recognition of cryptic splice sites 

or by disturbing endogenous levels of differentially expressed isoforms(165,166). The SRSF2-

P95S mutations have been shown to affect splicing of EZH2 mRNA resulting in non-functional 

protein(167). This indicates that also spliceosome mutations might alter the MPN phenotype 

through reduction of PRC2 activity. However, but it is likely that these mutations also impair 

the mRNA-splicing of many other genes. This potential systemic effect may explain why these 

mutations are frequently found in more aggressive chronic hematologic malignancies, like 

MDS(118,163). 

The last mutated gene in our panel, that showed enrichment in PMF patients, is TP53. It has 

been associated with disease progression in our own study and others(45,108). Therefore, we 

expected TP53 mutations to be vastly enriched in patients with PMF diagnosis. Interestingly, 

the distribution of MPN phenotypes among TP53 mutated patients is similar to patients without 

somatic mutations. This might indicate that mutations in TP53 do not promote a specific MPN 

phenotype per se and only induce disease progression when the clone lost the wild type allele 

and expands to a certain size. Potentially, inducing a specific MPN phenotype requires 

different alterations of the molecular biology than disease progression and not all mutations 

cover both directions, MPN initiation and progression.  

Mutations found in the ET or PMF phenotype frequently are associated with the same specific 

molecular function, the repression of genes through the PRC2 activity. Genes, which are 

frequently mutated in PV patients, seem to affect a more diverse set of pathways. In our meta-

analysis, we found that mutations in KRAS, NRAS, CBL, NFE2, TET2, IDH1 and IDH2 are 

more frequent in PV than in other MPN phenotypes. The RAS genes frequently contained 

activating mutations, which are reported to elevate PI3K/AKT and MAPK/ERK signaling and 

result in enhanced cycling and survival(124). CBL is a negative regulator of signaling pathways 

that are induced by receptors at the cell surface(168). Accordingly, mutations in CBL are 

associated with elevated signaling of these pathways. In patients, mutations in CBL, KRAS 
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and NRAS might therefore enhance JAK/STAT signaling in addition to the MPN driver 

mutation. This might correspond to the observations in mouse models, where increased JAK2-

V617F expression results in PV phenotypes(66).  

In our virtual cohort of 556 MPN patients, four of six (66%) patients with NFE2 mutations were 

diagnosed as PV. Similar frequencies have been reported in a previous study of 456 MPN 

patients, where six of eight (75%) patients with NFE2 mutations were initially diagnosed with 

PV(125). Mouse models have shown that gene disruptions in NFE2 result in a reduced efficacy 

of platelet production(127,128). Therefore, in combination with enhanced JAK/STAT signaling, 

NFE2 mutations might promote a PV phenotype through lowering the efficiency of platelet 

production. 

Interestingly, mutations in IDH and TET2 mutations are slightly overrepresented in patients 

with PV. Both genes are involved in DNA demethylation and required to remove the methyl 

group from cytosine in CpG islands (Figure 7)(83). Loss-of-function mutations in TET2 and IDH 

result in a global hypermethylation of DNA. Therefore, mutations in TET2 and IDH display the 

contrary phenotype as compared to DNMT3A mutations, which lead to focal 

hypomethylation(83). To some degree, this observation seems to be transferable to the MPN 

phenotype: DNMT3A mutations are slightly more often found in ET patients, whereas 

mutations in TET2 and IDH are frequently found in PV patients (Figure 28A-C). However, in 

patients with other somatic mutations in addition to TET2 mutations, the distribution of MPN 

phenotypes is comparable to the control group. This indicates that the clonal architecture 

needs to be considered when trying to understand contribution of single somatic mutations to 

the phenotype.  

To examine the contribution of single somatic mutations to the MPN phenotype, single cell 

RNAseq could be used to analyze the expression pattern of the patients. However, this 

analysis requires analyzing the genotype of each single cell in parallel to the transcriptome. 

Otherwise, transcriptional differences could not be associated with the genotype of single cells. 

The combination of expression analysis and genotyping is currently not available to date. It 

might be possible by spiking primers into the library preparation, which are specific for the 

somatic mutations of individual patient. During amplification of the cDNA of the single cell, 

mutation specific primers would amplify the regions of interest. In the raw data after NGS 

analysis, the amplified regions of interest will be detected as PCR duplicates and might be 

interpreted by a separate genotyping workflow. Reads from endogenous RNA may be 

analyzed using a standard differential gene expression pipeline.   
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4.7 The complexity of genotype - phenotype correlations in MPN 

During the past five years, NGS technology has enabled to analyze MPN patients in more 

detail than ever before. Still, one of the most intriguing questions in MPN was and still is how 

different phenotypes can arise from the same driver mutation. Based on our experience from 

NGS studies of MPN patients, we suggest, that the phenotype of MPN patients is an integration 

of various genetic aberrations (Figure 35).  

At the first level of these genetic changes, driver mutations in JAK2, CALR or MPL define the 

subset of MPN phenotypes. Mutations in CALR and MPL specifically enhance signaling of the 

MPL receptor and result in either ET or PMF phenotype. As there are no PV patients with 

CALR or MPL mutation or ET/PMF patients with JAK2-exon12 mutation, the effect of these 

mutations is definitive and non-reversible. The JAK2-V617F mutation is found in all MPN 

phenotypes, which might be due to the universal role of JAK2 in the signal transduction of 

cytokines and their receptors.  

The next level is represented by somatic mutations. The modulating effect of somatic 

mutations seem to be less pronounced as compared to driver mutations as distinct somatic 

mutations might enhance or neutralize each other’s effect. In this context, clonal architecture 

might play a role and needs to be analyzed in large scale. Different clonal branches within a 

patient might add separate individual effects modulating the MPN phenotype. Interestingly, a 

recent study shows that the order of acquisition of somatic mutations has impact on treatment 

response and clinical correlates(146).  

In another layer of complexity, the type of mutation within one gene might have huge impact, 

as seen in IDH1 and IDH2, were only specific mutations enable the enzyme to generate a new 

metabolite(137,138). Another example is DNMT3A, as DNMT3A-R882 mutant protein has been 

shown to inhibit wild type protein and to associate with the PRC1 complex(144). Observed frame 

shift or stop mutations in the DNMT3A might not support the exactly same effect due to major 

changes in the amino acid sequence. The final layer in our current version of this model 

contains germline alterations. Specific variations in the population have been shown to 

correlate with elevated numbers of specific blood lineages(154). In MPN, SNPs might have an 

impact on the severity of the symptoms and thereby, potentially influence age at diagnosis. In 

patients with JAK2-V617F and no other somatic mutation, germline variants might represent 

the feather that breaks the balance towards a red cell or megakaryocytic phenotype.  

The model doesn’t have to end at this layer. As there are approximately 60% of patients, who 

do not carry somatic mutations additional to the driver mutations, other factors are likely to be 

uncovered in future. Potential candidates are genetic alterations affecting regulatory elements 

or miRNAs. 
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Figure 35 Multiple facets of genotypes generate the MPN phenotype in patients 

Proposed multi-layered model of how different genetic alterations might contribute to the MPN 
phenotypes. The gene names are colored according to the phenotype, which they are suggested to 
promote in a mutated state. Red: PV, yellow: ET, brown: PMF.  
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4.8 Future 

MPN are representing a rare group of disorders. As research needs to focus on subgroups of 

patients, local cohorts seem to reach a limit of what conclusions can be made. Currently, 

research groups are combining their cohorts in order to reach significance in their 

observations. In future, not only cohorts should be merged, also it will be important to combine 

NGS results with data from other available knowledge bases. This will help to make better 

predictions or potentially give insights, which would have been missed when analyzing NGS 

data as individual, self-contained experiments. 

The need of running innovative analysis and complex experiments has been recognized. In 

hospitals, medical doctors have started work together with biologists and computer scientists 

to make use of the newest insights and provide detailed diagnoses. The implementation of 

NGS technologies in the daily routine recently created the fancy terms of precision diagnostics 

and personalized medicine.  

However, as fast as medicine is incorporating new technologies, new challenges arise. 

BigData, a term which initially was used by giant internet companies, now also finds its way to 

research and soon also to medicine. The more data is generated by technologies like NGS 

methods, the more of these analyses infringe the anonymity of the patients. Anonymity is 

important in research, as the declaration of Helsinki, which sets ethical principles for medical 

research involving human subjects, clearly states, that study participants must not be affected 

by disadvantages as a result of the study. Therefore, proper data handling and protection of 

the study participants’ rights will play an important role, when data is combined or shared 

worldwide. At the same time, the general population started to use gadgets and apps to track 

health and record achievements in sports. Even whole genome analyses are offered to private 

persons. Therefore, the accumulation of personal data might also change the way the public 

values this private information. These recordings might be of interest in future studies, as they 

might offer information from pre-malignant phases or allow automatic administration of 

treatment based on on-time measurement, for example heart rate assessed by fitness 

trackers. It will be interesting to follow which potential can be unleashed from these new 

developments. 
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5 Disclosure of individual contributions  

Chapter 3.1 is based on a collaboration with Dr. Pontus Lundberg and Dr. med Axel Karow, 

who shared the first authorship of this study. Both developed the protocol for NGS sequencing 

by Illumina. Dr. Lundberg analyzed Illumna raw data (Figure 11A-C). Based on this data, I 

validated all variants in DNA of granulocytes and hair follicles or buccal swabs. Therefore, I 

developed pooling strategies for amplicon sequencing using the Ion torrent technology (Figure 

9). This technology was also used for quantification of VAF from known mutations in earlier 

patient samples (“longitudinal sequencing”, Figure 18). I also supported Dr. med Karow in the 

high throughput analysis of more than 2’800 colonies (Figure 16). Further, I translated the 

Illumina sequencing protocol (based on 1.5mL tubes) to 96 well plate preparation. I also was 

responsible for the graphical representation of clonal architecture analysis (Figure 1) and 

Circos plots (Figure 15), which represent co-occurrence of somatic mutations, or others (Figure 

12, Figure 33). The original publication can be found as appendix 1 at the end of this document. 

Chapter 3.2 is based on a collaboration with Dr. Pontus Lundberg and Dr. med Axel Karow. 

Dr. med Karow and me shared the first authorship of this study. From 43 patients, samples 

from approximately 20 patients were prepared, sequenced, analyzed and validated in 

collaboration with Dr. Lundberg and Dr. med Karow. During revision of the study, I added 

analysis of 23 new patient samples, kindly provided by Dr. med Maria Luicia Randi. The original 

publication can be found as appendix 2 at the end of this document. 

The study presented in chapter 3.3 was prepared by my self. 

The cohort analyses presented in chapter 3.4.1 and 3.4.3 were performed by my self. Raw 

data from the Nangalia cohort was available online(35). Data from 192 sporadic MPN patients 

was generated and published in collaboration, as described above. All new patient samples 

from the study center Basel and Belgrade were sequenced and validated by my self according 

to the previously published workflow (Figure 10(108)). Chapter 3.4.2 refers to mouse 

experiments, which I was not involved. However, I supported Dr. Takafumi Shimizu in planning, 

performing and analyzing qPCR experiments on mouse and human samples to elucidate the 

molecular effect of EZH loss-of-function mutations. Data from human samples of this study is 

shown in Figure 27.  

All parts of the study were supported by vivid discussions with lab members and helpful 

comments from many other colleagues.   
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Key Points

• The total number of somatic
mutations was inversely
correlated with survival and
risk of leukemic
transformation in MPN.

• The great majority of somatic
mutations were already
present at MPN diagnosis,
and very few new mutations
were detected during
follow-up.

Myeloproliferative neoplasms (MPNs) are a group of clonal disorders characterized

by aberrant hematopoietic proliferation and an increased tendency toward leukemic

transformation. We used targeted next-generation sequencing (NGS) of 104 genes to

detect somaticmutations in a cohort of 197 MPN patients and followed clonal evolution

and the impact on clinical outcome. Mutations in calreticulin (CALR) were detected

using a sensitive allele-specific polymerase chain reaction. We observed somatic

mutations in 90% of patients, and 37% carried somatic mutations other than JAK2 V617F

andCALR. The presence of 2 ormore somaticmutations significantly reduced overall

survival and increased the risk of transformation into acute myeloid leukemia. In

particular, somatic mutations with loss of heterozygosity in TP53 were strongly

associated with leukemic transformation. We used NGS to follow and quantitate

somatic mutations in serial samples from MPN patients. Surprisingly, the number of

mutations between early and late patient samples did not significantly change, and

during a total follow-up of 133 patient years, only 2 new mutations appeared, suggesting

that the mutation rate in MPN is rather low. Our data show that comprehensive mutational

screening at diagnosis and during follow-up has considerable potential to identify patients at high risk of disease progression.

(Blood. 2014;123(14):2220-2228)

Introduction

Myeloproliferative neoplasms (MPNs) are a group of stem cell
disorders characterized by aberrant hematopoietic proliferation and
an increased tendency toward leukemic transformation. MPNs com-
prise 3 major subgroups: polycythemia vera (PV), essential throm-
bocythemia (ET), and primary myelofibrosis (PMF). An acquired
mutation in JAK2 (JAK2 V617F) is present in the majority of MPN
patients.1-4 Although JAK2 mutations have been shown to be the
phenotypic drivers in MPN, there is evidence of clonality and
mutational events preceding the acquisition of JAK2 V617F.5-8 An
increasing number ofmutations in genes distinct from JAK2have been
identified in patientswithMPN.These includemutations in epigenetic
modifiers, such as TET2,8 DNMT3A,9 ASXL1,10 and EZH2,11 and
genes involved in hematopoietic signaling (reviewed in Vainchenker
et al12). Very recently, recurrent mutations in the calreticulin gene
(CALR) have been reported in ET and PMF by 2 next-generation
sequencing (NGS) whole-exome studies.13,14 In addition, novel re-
current mutations occurring at low frequencies have been also found
in CHEK2, SCRIB, MIR662, BARD1, TCF12, FAT4, DAP3, and

POLG.14,15 Mutations in TP53, TET2, SH2B3, and IDH1 are more
frequently observed in leukemic blasts from transformed MPN
patients, suggesting a role for these gene mutations in leukemic
transformation.16-19 However, so far only mutations in ASXL1 and
NRAS have been shown to be of prognostic value in patients with
PMF.15,20

Using targeted NGS to search for mutations in 104 cancer-related
genes, we have defined themutational profile of a cohort of 197MPN
patients and dissected the temporal order of acquisition and clonal
architecture of mutational events. We further analyzed the impact of
the somatic mutations on clinical outcome. We provide evidence that
most somatic mutations were present already at MPN diagnosis. In
addition, we show that somatic mutations in TP53 and TET2 are
associated with decreased overall survival and increased risk for
leukemic transformation. Importantly, mutations in TP53were present
for several years in the chronic MPN phase at a low allelic burden,
whereas after loss of the wild-type (WT) TP53 allele, the clone rapidly
expanded, resulting in leukemic transformation.
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Methods

Patient cohort

The collection of blood samples and clinical data was performed at the study
center inBasel, Switzerland and approved by the local EthicsCommittees (Ethik
Kommission Beider Basel). Written informed consent was obtained from all
patients in accordance with the Declaration of Helsinki. The diagnosis of MPN
was established according to the revised criteria of the World Health
Organization.21Table1providesclinical dataof thepatients included inour study.

Illumina library preparation and target region capture

A total of 500 ng of granulocyte DNA derived from the most recent available
follow-up samples of the patients was fragmented using Fragmentase (New
England Biolabs), resulting in an average fragment size of ;250. The
fragmented library was purified using Agencourt AMPure XP beads.
Following purification, the library was end-repaired and adenylated (both
enzymes from Bioo Scientific), and after each of those steps, the library
was purified using Agencourt AMPure XP beads. Finally, patient-specific
barcoded adapters were ligated (NEXTflex, Bioo Scientific; 48 different ones
in total) and divided into duplicate samples. Subsequently, adaptor-ligated
DNA from 48 patients, each assigned with a different barcode, was pooled
equimolarly in duplicate tubes.

Bait design and target capture

Capture of target regions was performed using an Agilent SureSelect custom
design including the targeted exons 650 bp of flanking regions with a total
size of ;0.44 Mb. Enrichment was performed using the provided Agilent
protocol and capturewas performed for 72 hours. Postenrichment polymerase
chain reaction (PCR) was performed for 10 cycles.

Illumina sequencing and sequencing analysis

Paired-end 100-bp cycle sequencing of the captured libraries was performed
using an Illumina HiSeq2000. Demultiplexed samples were mapped and
analyzedusing theCLCgenomicsworkbench.Mappingwas performedusing
amismatch cost of 2 and insertion and deletion cost of 3 with a length fraction
0.7 and similarity fraction of 0.8. For mutational calling, the quality-based
variant detection was used, using a neighborhood radius of 5, maximum gap
and mismatch count of 2, minimum neighborhood phred quality of 25, and
minimum central quality of 30. Minimum coverage of called regions was set
at 20, and minimum variant frequency was set to 5%. Only nonsynonymous
mutations were further pursued, whereas splice-site mutations were de-
termined using the predict splice-site effect module. Average coverage of
targeted regions was performed using the coverage analysis module and
including only the targeted exons and not the flanking regions. Targets
consistently having no coverage are displayed in supplemental Figure 2H,
available on the BloodWeb site.

To assess copy number alterations, the RNA-sequencing analysis module
was used, and expression value was calculated using reads per kilobase per

million. Statistical analysis was performed on proportions, and as references
5 normal controls were pooled. Genes deviating with .30% in expression
value and with a P value of ,.01 were considered as candidate regions.

Validation of candidate mutations

Candidate mutations observed in the Illumina screen were validated using the
Ion Torrent PGM platform. Amplicons covering the regions of interest were
designed with an amplicon length of 150 to 250. Sequencing adapters
(IonXpress) were ligated to the amplicons using the IonXpress protocol. Final
librarieswere sequencedwith 200-bp read length on a 318 chip.Mutation calling
was performed using the torrent suite variant called using the somatic settings. A
mutation was called somatic when the mutant allele burden in buccal DNAwas
,25% of the value observed in granulocytes. In the great majority of somatic
mutations (;90%), no signal was detected in the germline control DNA.

Sanger Sequencing and AS-PCR

For aminority of amplicons, no sequencing coveragewas obtainedwith the Ion
TorrentPGM.For these regions, Sanger sequencing formutation validationwas
performed according to standard protocols. Allele-specific PCR (AS-PCR) of
CALR exon 9 was performed as previously reported.13

Analyses of patient cell colonies

The colony assays were performed using peripheral blood mononuclear cells
from patients as previously published.7 After 14 days, colonieswere picked and
analyzed individually for JAK2 V617F using AS-PCR and for the presence of
somaticmutations by Sanger sequencing, respectively. On average, 88 colonies
per patient were analyzed. To determine the temporal order of mutation
acquisition, at least 2 informative colonies were required. In total, we analyzed
33 patients.

Statistical analysis

Mutational status of genesmutated in$5 patients in the cohort was correlated
with blood counts at diagnosis (hematocrit, platelets, leukocytes, and
neutrophils) in generalized linear models adjusting for patient gender,
disease (PV vs ET vs PMF), and age. Survival and transformation curves
were estimated using the Kaplan-Meier univariate method and compared
by the Mantel-Cox log-rank test. Primary end points were overall survival,
defined as time between diagnosis and death by any cause, and trans-
formation to acute myeloid leukemia (AML). Statistical analyses were
performed using SPSS (version 20) and GraphPad Prism (version 6).

Results

We characterized a cohort of 200 MPN patients from whom paired
granulocyte and nonhematopoietic DNA samples were available
(Figure 1). Clinical characteristics of the patients at diagnosis of MPN
are summarized in Table 1. Serial blood samples were available

Table 1. Clinical characteristics of the MPN patients at diagnosis

Diagnosis PV ET PMF

Number of patients 94 69 34

% female 51 67 26

Average age at diagnosis (range), y 58 (18-87) 51 (21-86) 61 (21-86)

Average time of follow-up, mo 92 56 49

Hemoglobin (g/L) average (range) 181 (148-225) 141 (78-225) 126 (90-161)

Platelets (109/L) average (range) 554 (90-1487) 994 (452-1983) 635 (16-1677)

Leukocytes (109/L) average (range) 12 (4-39) 9 (5-17) 11 (5-27)

Neutrophils (109/L) average (range) 9 (2-36) 6 (3-16) 8 (3-21)

Transformation to secondary myelofibrosis 4 (4%) 1 (1%) NA

Transformation to AML 3 (3%) 2 (3%) 2 (6%)

NA, not applicable.
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for 143 of 200 (72%) patients. To detect the maximal number of
candidate mutations, granulocyte DNA from the most recent
patient sample was used for initial sequencing. The workflow is
summarized in Figure 1. We used the Agilent SureSelect method to
capture exons and flanking regions of 104 selected genes with known
or possible role in MPN (supplemental Figure 1A). To reduce PCR
and sequencing artifacts, all DNA samples were processed and
sequenced in duplicates and only sequence alterations that were
present in both duplicate samples and displayed amutant allele burden
of .5% were further analyzed. The average exon coverage of
Illumina sequencing per patient was 370-fold (supplemental
Figure 2A), and only 3 patients had to be excluded due to insufficient
coverage (Figure 1A). Resequencing of granulocyte DNAconfirmed
437 of the 549 candidate mutations (80%) that were detected in the
original screening (Figure 1B). Using DNA derived from buccal
mucosa or hair follicles, we found that 334 of the 437 mutations were
germline (76%) and 103 were somatic (24%) (Figure 1C). Further-
more,we screenedour cohort also formutation in theCALRgene using
AS-PCR.13 Overall, 41 of 94 PV patients (44%), 20 of 69 ET patients
(29%), and 12 of 34 PMF patients (35%) carried somatic mutations
other than JAK2 V617F or CALR.

Frequency and distribution of mutations in patients with MPN

By NGS, we found that 28 of 104 (27%) of genes analyzed were
mutated in at least 1 of the 197MPNpatients (supplemental Table 1).
By AS-PCR, in addition, 17 of 69 (25%) ET patients and 11 of

34 (32%) PMF patients carried mutations in CALR. After JAK2
V617F and CALR, the most frequently observed mutations affected
genes implicated in epigenetic regulation (TET2, ASXL1, DNMT3A,
EZH2, and IDH1) (Figure 2A). We also identified 2 novel somatic
mutations in the tumor suppressor NF1. Furthermore, we found muta-
tions in NFE2, which had only been described in one recent report,22

and CUX1, uncovered previously in an MPN patient transforming
to AML.23 Recurrent somatic mutations were also observed in the
genes TP53, CBL, MPL, and NRAS. Nonrecurrent mutations were
detected in 16 other genes (Figure 2A). Bymeasuring the relative read
abundance of targeted regions in patients and normal controls, the
NGS approach also detected copy number alterations, for example,
deletions on chromosome20q (Figure 2A and supplemental Figure 3).
The distribution of mutations per patient is summarized in Figure 2B
and supplemental Figure 2G.Overall, 20 of 197 patients (10%) had no
detectable somatic mutation in any of the genes analyzed (9 ET, 7 PV,
and 4 PMF). Two or more somatic mutations were found in 65 of
197 (33%) patients. The frequencies of somatic mutations in patients
positive for either CALR or JAK2 V617F are depicted in Figure 2C.
Circos diagrams show the cooccurrence of all somatic mutations
(Figure 2D) and the cooccurrence of events in CALR-positive patients
(Figure 2E) andpatients negative formutation in both JAK2V617Fand
CALR (Figure 2F). In contrast to the recently published studies that
reported JAK2 and CALR mutations to be mutually exclusive,13,14 we
observed coexistence of JAK2 V617F and CALR mutations in 1 ET
patient (Figure 2E). This coexistence was confirmed in granulocytes
from 3 independent time points 1.5 years apart.

Figure 1. Targeted NGS in MPN: study design and

workflow.
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Serial samples were available from 28 of the 73 patients (38%)
carrying somatic mutations other than JAK2 V617F or CALR. To
estimate the mutation rate, we determined whether 38 somatic mu-
tations found in themost recent samplewere already present in the first
patient sample that was available (Figure 3A and supplemental
Figure 4). We found that the vast majority of mutations (36/38, 95%)
were already detectable in thefirst sample and only 2 somaticmutations
were acquired in a total of 133 patient years of follow-up (supplemental
Figure 4). Thus, a patient would have to live ;66 years to acquire 1
mutation in the targeted region.

Clinical correlations and risk stratification

We analyzed the impact of the number of mutations other than JAK2
V617F on survival and transformation into AML using the log-rank

test for trend. We observed that increased number of somatic
mutations lead to a significantly reduced overall survival and in-
creased the risk of transformation into AML (Figure 3B). Patients
with mutations in TP53, TET2, or other genes involved in epigenetic
regulation (ASXL1, DNMT3A, EZH2, and IDH1) were analyzed
separately (Figure 3C-E). We had serial samples from 4 out of 5
patients carrying TP53 mutations. In these 4 patients, the TP53
mutations were detected at a low allele burden in the first available
sample and remained low for several years (Figure 3C). After loss of
theWTallele throughmitotic recombination or deletion, the hemi- or
homozygous TP53 clone expanded rapidly in 3 out of 4 patients, and
these 3 patients transformed to AML (Figure 3C), whereas 1 patient
remained stable at a low allelic burden. The fifth patient with TP53
mutation (from whom serial samples were not available) also

Figure 2. Frequency and distribution of mutations

in patients with MPN. (A) Number of patients with

mutations in the genes is indicated. ET patients are

depicted in yellow, PV patients in red, and PMF

patients in light brown. Numeric chromosomal aberra-

tions are marked in italic font. (B) Distribution of

somatic mutations among the 197 MPN patients

according to phenotype. The shades of gray in-

dicate the number of somatic mutations per patient.

(C) Average number of somatic mutations per

patient in CALR-positive (left panel) and JAK2-

V617F–positive individuals (left panel) observed in ET,

PV, and PMF patients, respectively. (D) Circos plot

illustrating cooccurrence of somatic mutations in the

same individual. The length of the arc corresponds

to the frequency of the mutation, whereas the width of

the ribbon corresponds to the relative frequency of co-

occurrence of 2 mutations in the same patient. (E)

Circos plot showing cooccurrence of somatic mutations

in CALR-positive patients. (F) Circos plot showing co-

occurrence of somatic mutations in patients negative

for JAK2 V617F and mutations in CALR.
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transformed to AML. Serial blood samples were also available in 12
out of 23 patients withmutations in TET2, and in 11 of these patients,
the TET2mutation was already present in the initial sample. Patients
carrying TET2 mutations had significantly reduced overall survival
and an increased risk of leukemic transformation (Figure 3D). The
number of individual patients with mutations in DNMT3A, ASXL1,
EZH2, or IDH1 was low, and when combined as a group, these
patients showed no significant differences in the clinical course
(Figure 3E). Thus, only 2 patients acquired amutation during follow-
up. One of these patients was treated with hydroxyurea (TP53
mutation), whereas the second patient was treated with aspirin only
(TET2 mutation).

In addition, we observed correlations between mutation status
and blood counts at diagnosis. Patients with an increased number of
somatic mutations had a significantly higher leukocyte count (supple-
mental Figure 5A). Moreover, individuals with ASXL1mutations had
significantly lower hemoglobin levels than their WT counterparts
(supplemental Figure 5B), whereas patients carrying EZH2 muta-
tions had a significantly increased leukocyte count (supplemental
Figure 5C).

Clonal evolution

For clonal analyses, we focused on patients carrying mutations in
epigenetic modifier genes. To address the temporal order of acquisi-
tion, we genotyped DNA from single colonies grown in methylcel-
lulose and plotted the results for each of the colonies analyzed
(Figure 4A). The mutations could be classified as occurring before,
after, or in a clone separate from JAK2 V617F, and 1 example for
each of these patterns is shown in Figure 4A. The results from all
patients analyzed are summarized in Figure 4B. We found that mu-
tations in TET2 and DNMT3A were predominantly acquired before
JAK2 V617F or coexisted as separate clones (biclonal disease).
Mutations in ASXL1 and EZH2 occurred before, after, or separate
from JAK2 V617F, whereas in 3 patients, IDH1 mutation occurred
exclusively after JAK2 V617F (Figure 4B).

For patients with 3 or more somatic mutations, the results from
single-colony analyses are shown in Figure 4C. In patients carrying
mutations in JAK2 V617F and epigenetic modifier genes or
mutations in TET2 or DNMT3A were predominately acquired as
the first event. In 2 patients, CALR mutations were acquired first

Figure 3. Analysis of sequential samples: clinical

correlations and risk stratification. (A) Scheme of

resequencing of mutations in serial samples to de-

termine the time of acquisition and clonal evolution. (B)

Kaplan-Meier curves for the probabilities of survival

(left panel) and transformation into AML (right panel).

Numbers indicate the number of somatic mutations per

patient omitting JAK2 V617F and CALR mutations. (C)

Time course of the TP53 mutant allele burden in serial

follow-up samples of 4 MPN patients with available

follow-up samples (upper panel). One patient harbored

2 distinct TP53 mutations (dotted lines), only one of

which displayed loss of heterozygosity. Survival (mid-

dle panel) and transformation to AML (lower panel) is

shown below for 5 patients with mutations in TP53. (D)

Time course of the TET2 mutant allele burden in serial

follow-up samples of 12 MPN patients (upper panel).

Survival (middle panel) and transformation to AML

(lower panel) is shown below for 23 patients with

mutations in TET2. (E) Time course of the mutant

allele burden of epigenetic modifiers (ASXL1, DNMT3A,

EZH2, and IDH1) in serial follow-up samples of 11 MPN

patients (upper panel). Survival (middle panel) and

transformation to AML (lower panel) is shown below

for 29 patients with mutations in ASXL1, DNMT3A,

EZH2, or IDH1.
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and were present in all colonies examined (p194 and p197),
whereas 1 patient (p101) displayed a complex pattern with 3
separate clones at diagnosis with disappearance of the JAK2
V617F clone during follow-up (Figure 4C). Interestingly, all 7
patients from whom a sample at diagnosis was available already
showed a complex mutational pattern in the single-clone analysis
(Figure 4C).

Discussion

We used targeted NGS and AS-PCR to assess mutation profiles of
105 genes in a cohort of 197 MPN patients. Our results provide
unique insights into the genomic landscape of MPN, its clonal
evolution, and correlation with clinical outcomes.

We found that 90% of all MPN patients carried at least 1 somatic
mutation. JAK2 V617F was the most frequent recurrent somatic
mutation (69%), followed by CALR (15%), TET2 (12%), ASXL1
(5%), and DNMT3A (5%). These frequencies are similar to those
recently reported in an exome study of MPN patients.14 Mutations

with a low allelic burden frequently affected genes considered late
events inMPNpathogenesis, such as TP53, IDH1, andKRAS/NRAS.

Our study also examined the longitudinal evolution of muta-
tions in serial samples from patients with MPN using a sensitive
NGS approach. Based on the comparison of the sequences in the
first-available and the most recent patient samples, we estimated
the overall mutation rate in the 104 genes examined to be 1 somatic
mutation per 66 patient years (supplemental Figure 4).We also did
not observe any de novo JAK2 V617F mutations in patients that
were JAK2V617F negative at diagnosis during a follow-up of 116
patient years (supplemental Figure 4). The mutation rate on a
cohort basis was then calculated by dividing the age of the patients
in years (at the time when the most recent sample was taken) by
the number of somatic mutations in the 105 genes found in this
sample by NGS. This analysis yielded a mutation rate of 1 somatic
mutation per 45 patient years, which is fairly close to the result
obtained by the longitudinal analysis (1/66 patient years). These
observations do not support the presence of a strong hypermutable
state in MPN24,25 and also question the magnitude of the genomic
instability caused by expressing JAK2 V617F.26-28 Consistent
with the lowmutation rate that we observed, a recent exome-based

Figure 4. Clonal evolution in MPN patients carrying

somatic mutations in epigenetic modifier genes.

Single erythroid or granulocytic colonies (BFU-Es and

CFU-G) grown in methylcellulose were individually

picked and analyzed for the presence or absence of

JAK2 V617F and other somatic mutations. (A) Exam-

ples of 3 patients who acquired an ASXL1 mutation

before JAK2 V617F (left panel), after JAK2 V617F

(middle panel), or in a clone separate from JAK2

V617F (right panel) are shown. Each dot represents

a single colony that was genotyped and placed into

the corresponding quadrant. (B) Summary of the

temporal order of acquisition of mutations in re-

lation to JAK2 V617F. Each dot represents 1 patient

analyzed as shown in panel A and placed into the

corresponding quadrant. Events in ET patients are

depicted in yellow, PV patients in red, and PMF

patients in brown. (C) Patterns of clonal evolution in

8 MPN patients carrying multiple somatic muta-

tions. Dotted lines denote the time of analysis and

the y-axis indicates the percentage of the colonies

with or without the corresponding somatic muta-

tions. %VF, JAK2-V617F mutant allele burden in

purified granulocytes from peripheral blood. Al-

though the order of events depicted can be de-

duced from the single-clone analysis (dotted line),

the exact timing of the acquisition of the individual

mutations and the time needed for the clonal ex-

pansion remains unknown and is shown only sche-

matically. GRA, granulocytes.
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study detected ;0.2 somatic mutations per Mb in 151 MPN pa-
tients, showing that MPN has a low frequency of somatic mu-
tations compared with other malignancies (eg, 0.37 mutations per
Mb for AML and;1 mutation per Mb for multiple myeloma).14,29

Our analyses illustrate that one of the strongest predictors of
outcome is the number of somatic mutations that occur in addition to
JAK2, CALR, or MPL (Figure 3B). Interestingly, in our cohort, the
group of patients carrying either no detectable somatic mutation or
a mutation in JAK2,CALR, orMPL only had a particularly favorable
prognosis. None of these patients showed leukemic transformation,
suggesting that most genes with prognostic relevance are part of the
gene set that we analyzed. In a study with a similar design in MDS
patients, an association of time to AML transformation and number
of mutations was found.30 We observed that mutations in TP53 and

TET2were associatedwith particularly poor outcome (Figure 3C and
3D). TET2 mutations were recently reported as negative prognostic
markers in patients with intermediate-risk AML,31 and although
a previous study in MPN showed no correlation between TET2
mutational status and survival,32 other studies found an increased
incidence of TET2 mutation in blasts from patients with leukemic
transformation.16 For TP53, we observed that mutations were pre-
sent in a heterozygous state for an extended period of time during
the chronic MPN phase without clonal expansion. However, after
loss of theWT allele by either chromosomal deletion or uniparental
disomy, the hemi- or homozygous TP53 clone rapidly expanded,
ultimately leading to leukemic transformation (Figure 3C). Thus,
patients with TP53 mutations represent a high-risk group, and
screening for TP53 mutations in MPN patients should be considered.

Figure 5. Model of MPN disease evolution and risk stratification in correlation to mutational events.
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Because in the chronic phase of MPN the allelic burden of TP53
mutation was,15%, sensitive methods such as NGS are needed for
reliable detection. The prediction of disease progression by TP53
mutations corresponding to our observations was described pre-
viously for patients with low-risk MDS33 and chronic lymphocytic
leukemia.34 One recent study reportedTP53mutations to be frequent
in leukemic blasts of transformed MPN patients,17 whereas in
chronic MPN from the same cohort, 2 out of 65 patients carried
monoallelic TP53 mutations.

By dissecting the clonal architecture of patients carrying $3
distinct somatic mutations, we found diverse patterns, some com-
patible with a linear acquisition of mutations, but also several cases
with an apparent biclonal structure (Figure 4). Overall, such a
biclonal pattern was found in 7 of 33 patients (21%), which illustrates
that in many patients, the clonal architecture cannot be imputed using
allele burden of mutations alone. In general, mutations in TET2 and
DNMT3A were early genetic events acquired before JAK2 V617F,
whereas mutations in ASXL1, EZH2, or IDH1 were often acquired
after JAK2 V617F. In contrast, mutations in CALR appeared to be
an early event in the limited number of patients analyzed, consistent
with previous reports.13,14 One patient (p101) showed a complex 3
clonal pattern, and the CALR clone was present only in a minority
of the colonies (Figure 4C).

Based on our data and previous studies, a model is presented in
Figure 5. With the current methodologies, 10% of MPN patients
show no detectable somatic mutations in the 105 genes analyzed (top
row). In an additional 54% of patients, JAK2 V617F or CALR were
the only detected mutations. These 64% of MPN patients in our
cohort displayed the most favorable prognosis and the lowest risk of
disease progression. In the remaining 36% of MPN patients, we
detected combinations of.1 somaticmutation, and in some patients,
we can define the stage and order of acquisition. In the case of JAK2-
V617F–positive MPN, often a somatic mutation occurred before the
acquisition of JAK2 V617F, compatible with providing a “fertile
ground” for MPN disease initiation.35 In contrast, CALR mutations
appear to be the initiating event that could be followed by mutations
in same set of genes as observed in JAK2-positive MPN. Patients

with multiple mutations formed a high-risk category, with increased
risk of transformation and reduced survival. Although based on
a limited number of patients, the acquisition of TP53 appears to be
a particularly unfavorable event, and loss of heterozygosity was
invariably associated with progression to AML.
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Supplemental Figure 1: 

B) Chromosomal location of genes with somatic mutations: blue, point mutations; red asterisks, copy number
alterations; black, no mutations detected

CALR
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  table	
  1

Affected 
gene

Chr. Physical position 
on chr.

Reference Variance Amino acid exchange UPN Diagnosis

AKT1 chr 14 105239628 A G Met306Thr P102 PMF
AML1 chr 21 36252877 C T Arg135Lys P191 PMF
ARNTL chr 11 13399934 C T Arg371Trp P346 PV
ASXL1 chr 20 31021250 C T Arg417* P290 PMF
ASXL1 chr 20 31022288 C G Tyr591* P298 PV
ASXL1 chr 20 31022632 - A His706fs P121 PV
ASXL1 chr 20 31022637 C T Gln708* P277 ET
ASXL1 chr 20 31023162 G T Glu883* P048 PMF
ASXL1 chr 20 31023408 C T Arg965* P202 PMF
ASXL1 chr 20 31023408 C T Arg965* P350 PMF
ASXL1 chr 20 31023437 C G Tyr974* P082 PV
ASXL1 chr 20 31023625 G A Trp1037* P194 PMF
ASXL1 chr 20 31024117 - A Gln1201fs P178 PMF
CALR chr 19 exon 9 - +2 insertion P285 ET
CALR chr 19 exon 9 - +5 insertion P055 ET
CALR chr 19 exon 9 - +5 insertion P080 ET
CALR chr 19 exon 9 - +5 insertion P101 ET
CALR chr 19 exon 9 - +5 insertion P168 ET
CALR chr 19 exon 9 - +5 insertion P230 ET
CALR chr 19 exon 9 - +5 insertion P232 ET
CALR chr 19 exon 9 - +5 insertion P289 ET
CALR chr 19 exon 9 - +5 insertion P340 ET
CALR chr 19 exon 9 - +5 insertion P074 PMF
CALR chr 19 exon 9 - +5 insertion P197 PMF
CALR chr 19 exon 9 - +5 insertion P163 PV
CALR chr 19 exon 9 -52 deletion P073 ET
CALR chr 19 exon 9 -52 deletion P091 ET
CALR chr 19 exon 9 -52 deletion P109 ET
CALR chr 19 exon 9 -52 deletion P176 ET
CALR chr 19 exon 9 -52 deletion P215 ET
CALR chr 19 exon 9 -52 deletion P217 ET
CALR chr 19 exon 9 -52 deletion P224 ET
CALR chr 19 exon 9 -52 deletion P323 ET
CALR chr 19 exon 9 -52 deletion P004 PMF
CALR chr 19 exon 9 -52 deletion P194 PMF
CALR chr 19 exon 9 -52 deletion P239 PMF
CALR chr 19 exon 9 -52 deletion P267 PMF
CALR chr 19 exon 9 -52 deletion P276 PMF
CALR chr 19 exon 9 -52 deletion P304 PMF
CALR chr 19 exon 9 -52 deletion P325 PMF
CALR chr 19 exon 9 -52 deletion P336 PMF
CALR chr 19 exon 9 -52 deletion P343 PMF
CBL chr 11 119148991 G A Cys404Tyr P209 PV
CBL chr 11 119149356 --- ATG Tyr455delinsTyrAsp P255 PV
CLSTN1 chr 01 9833363 C T Ala61Thr P102 PMF
CUX1 chr 07 101801854 -- AA Glu241fs P019 PV
CUX1 chr 07 101923411 G A Arg588Gln P125 ET
DNMT3A chr 02 25457209 C G Trp893Ser P325 PMF
DNMT3A chr 02 25457242 C T Arg882His P101 ET
DNMT3A chr 02 25457242 C T Arg882His P199 ET
DNMT3A chr 02 25457243 G A Arg659Cys P018 ET
DNMT3A chr 02 25457243 G A Arg882Cys P110 PV
DNMT3A chr 02 25459837 G A Gln593* P181 ET
DNMT3A chr 02 25467083 G A Arg598* P250 PV
DNMT3A chr 02 25468129 T - Asn516fs P121 PV
DNMT3A chr 02 25469932 G T Tyr370* P260 ET
DNMT3A chr 02 25470480 C T Gly332Arg P091 ET
EZH2 chr 07 148506183 T - Glu681fs P312 PV
EZH2 chr 07 148506443 C T Arg646His P336 PMF
EZH2 chr 07 148508788 C T Val582Met P210 PV
EZH2 chr 07 148512018 A G Cys510Arg P349 ET
EZH2 chr 07 148523590 C T Arg249Gln P290 PMF
EZH2 chr 07 148526857 TA - Leu110fs P194 PMF
FOXP1 chr 03 71021817 C T Arg514His P264 PV
GATA2 chr 03 128205672 G A Ala68Val P284 PV
IDH1 chr 02 209113112 C T Arg132His P033 PV
IDH1 chr 02 209113112 C T Arg132His P052 PV
IDH1 chr 02 209113112 C T Arg132His P280 PV
JAK2 chr 09 5054790 G A Gly281Asp P088 PV
JAK2 chr 09 5070024 ACA --- His538_Lys539delinsGln P138 PV
JAK2 chr 09 5070026 A T Lys539* P216 PV
JAK2 chr 09 5070026 A T Lys539* P218 PV
JAK2 chr 09 5070034 AAATGA ------ Arg541_Glu543delinsArg P021 PV
JAK2 chr 09 5070036 ATGAAG ------ Asn542_Asp544delinsAsn P166 PV
JAK2 chr 09 5070036 ATGAAG ------ Asn542_Asp544delinsAsn P307 PV
JAK2 chr 09 5070037 TGAA - Asn542fs P002 PV
JAK2 chr 09 5073770 G T Val617Phe P006 PV
JAK2 chr 09 5073770 G T Val617Phe P009 PV
JAK2 chr 09 5073770 G T Val617Phe P013 ET
JAK2 chr 09 5073770 G T Val617Phe P015 ET
JAK2 chr 09 5073770 G T Val617Phe P017 PMF



JAK2 chr 09 5073770 G T Val617Phe P018 ET
JAK2 chr 09 5073770 G T Val617Phe P019 PV
JAK2 chr 09 5073770 G T Val617Phe P021 PV
JAK2 chr 09 5073770 G T Val617Phe P022 PV
JAK2 chr 09 5073770 G T Val617Phe P023 PV
JAK2 chr 09 5073770 G T Val617Phe P024 PV
JAK2 chr 09 5073770 G T Val617Phe P025 PV
JAK2 chr 09 5073770 G T Val617Phe P033 PV
JAK2 chr 09 5073770 G T Val617Phe P034 ET
JAK2 chr 09 5073770 G T Val617Phe P038 PV
JAK2 chr 09 5073770 G T Val617Phe P046 PV
JAK2 chr 09 5073770 G T Val617Phe P048 PMF
JAK2 chr 09 5073770 G T Val617Phe P049 ET
JAK2 chr 09 5073770 G T Val617Phe P052 PV
JAK2 chr 09 5073770 G T Val617Phe P053 PV
JAK2 chr 09 5073770 G T Val617Phe P054 ET
JAK2 chr 09 5073770 G T Val617Phe P062 PV
JAK2 chr 09 5073770 G T Val617Phe P070 PV
JAK2 chr 09 5073770 G T Val617Phe P079 ET
JAK2 chr 09 5073770 G T Val617Phe P082 PV
JAK2 chr 09 5073770 G T Val617Phe P085 PV
JAK2 chr 09 5073770 G T Val617Phe P088 PV
JAK2 chr 09 5073770 G T Val617Phe P089 ET
JAK2 chr 09 5073770 G T Val617Phe P090 PV
JAK2 chr 09 5073770 G T Val617Phe P093 PV
JAK2 chr 09 5073770 G T Val617Phe P099 PV
JAK2 chr 09 5073770 G T Val617Phe P103 PV
JAK2 chr 09 5073770 G T Val617Phe P104 PV
JAK2 chr 09 5073770 G T Val617Phe P110 PV
JAK2 chr 09 5073770 G T Val617Phe P111 PV
JAK2 chr 09 5073770 G T Val617Phe P112 PV
JAK2 chr 09 5073770 G T Val617Phe P113 ET
JAK2 chr 09 5073770 G T Val617Phe P115 PV
JAK2 chr 09 5073770 G T Val617Phe P116 PV
JAK2 chr 09 5073770 G T Val617Phe P119 ET
JAK2 chr 09 5073770 G T Val617Phe P120 PMF
JAK2 chr 09 5073770 G T Val617Phe P121 PV
JAK2 chr 09 5073770 G T Val617Phe P125 ET
JAK2 chr 09 5073770 G T Val617Phe P126 PV
JAK2 chr 09 5073770 G T Val617Phe P127 PV
JAK2 chr 09 5073770 G T Val617Phe P136 PV
JAK2 chr 09 5073770 G T Val617Phe P148 PV
JAK2 chr 09 5073770 G T Val617Phe P150 PV
JAK2 chr 09 5073770 G T Val617Phe P153 ET
JAK2 chr 09 5073770 G T Val617Phe P156 PV
JAK2 chr 09 5073770 G T Val617Phe P157 ET
JAK2 chr 09 5073770 G T Val617Phe P162 ET
JAK2 chr 09 5073770 G T Val617Phe P170 ET
JAK2 chr 09 5073770 G T Val617Phe P178 PMF
JAK2 chr 09 5073770 G T Val617Phe P180 PMF
JAK2 chr 09 5073770 G T Val617Phe P181 ET
JAK2 chr 09 5073770 G T Val617Phe P182 ET
JAK2 chr 09 5073770 G T Val617Phe P187 PMF
JAK2 chr 09 5073770 G T Val617Phe P191 PMF
JAK2 chr 09 5073770 G T Val617Phe P192 PV
JAK2 chr 09 5073770 G T Val617Phe P193 ET
JAK2 chr 09 5073770 G T Val617Phe P199 ET
JAK2 chr 09 5073770 G T Val617Phe P200 PV
JAK2 chr 09 5073770 G T Val617Phe P203 PMF
JAK2 chr 09 5073770 G T Val617Phe P204 ET
JAK2 chr 09 5073770 G T Val617Phe P206 PV
JAK2 chr 09 5073770 G T Val617Phe P207 PV
JAK2 chr 09 5073770 G T Val617Phe P208 PV
JAK2 chr 09 5073770 G T Val617Phe P209 PV
JAK2 chr 09 5073770 G T Val617Phe P210 PV
JAK2 chr 09 5073770 G T Val617Phe P211 PV
JAK2 chr 09 5073770 G T Val617Phe P212 PMF
JAK2 chr 09 5073770 G T Val617Phe P213 ET
JAK2 chr 09 5073770 G T Val617Phe P214 PV
JAK2 chr 09 5073770 G T Val617Phe P225 PV
JAK2 chr 09 5073770 G T Val617Phe P231 PV
JAK2 chr 09 5073770 G T Val617Phe P233 PV
JAK2 chr 09 5073770 G T Val617Phe P235 PV
JAK2 chr 09 5073770 G T Val617Phe P238 ET
JAK2 chr 09 5073770 G T Val617Phe P241 ET
JAK2 chr 09 5073770 G T Val617Phe P242 PV
JAK2 chr 09 5073770 G T Val617Phe P243 ET
JAK2 chr 09 5073770 G T Val617Phe P248 PV
JAK2 chr 09 5073770 G T Val617Phe P250 PV
JAK2 chr 09 5073770 G T Val617Phe P254 PV
JAK2 chr 09 5073770 G T Val617Phe P255 PV
JAK2 chr 09 5073770 G T Val617Phe P257 ET
JAK2 chr 09 5073770 G T Val617Phe P258 PV
JAK2 chr 09 5073770 G T Val617Phe P259 ET



JAK2 chr 09 5073770 G T Val617Phe P260 ET
JAK2 chr 09 5073770 G T Val617Phe P264 PV
JAK2 chr 09 5073770 G T Val617Phe P265 PV
JAK2 chr 09 5073770 G T Val617Phe P266 ET
JAK2 chr 09 5073770 G T Val617Phe P268 ET
JAK2 chr 09 5073770 G T Val617Phe P270 ET
JAK2 chr 09 5073770 G T Val617Phe P274 ET
JAK2 chr 09 5073770 G T Val617Phe P277 ET
JAK2 chr 09 5073770 G T Val617Phe P280 PV
JAK2 chr 09 5073770 G T Val617Phe P282 PV
JAK2 chr 09 5073770 G T Val617Phe P284 PV
JAK2 chr 09 5073770 G T Val617Phe P287 ET
JAK2 chr 09 5073770 G T Val617Phe P288 ET
JAK2 chr 09 5073770 G T Val617Phe P290 PMF
JAK2 chr 09 5073770 G T Val617Phe P291 PV
JAK2 chr 09 5073770 G T Val617Phe P295 PMF
JAK2 chr 09 5073770 G T Val617Phe P297 PV
JAK2 chr 09 5073770 G T Val617Phe P298 PV
JAK2 chr 09 5073770 G T Val617Phe P300 PMF
JAK2 chr 09 5073770 G T Val617Phe P303 PV
JAK2 chr 09 5073770 G T Val617Phe P305 PV
JAK2 chr 09 5073770 G T Val617Phe P306 PV
JAK2 chr 09 5073770 G T Val617Phe P310 PMF
JAK2 chr 09 5073770 G T Val617Phe P311 ET
JAK2 chr 09 5073770 G T Val617Phe P312 PV
JAK2 chr 09 5073770 G T Val617Phe P315 PV
JAK2 chr 09 5073770 G T Val617Phe P317 ET
JAK2 chr 09 5073770 G T Val617Phe P320 PV
JAK2 chr 09 5073770 G T Val617Phe P324 ET
JAK2 chr 09 5073770 G T Val617Phe P326 PV
JAK2 chr 09 5073770 G T Val617Phe P328 PV
JAK2 chr 09 5073770 G T Val617Phe P329 PV
JAK2 chr 09 5073770 G T Val617Phe P332 PV
JAK2 chr 09 5073770 G T Val617Phe P333 ET
JAK2 chr 09 5073770 G T Val617Phe P337 PV
JAK2 chr 09 5073770 G T Val617Phe P338 ET
JAK2 chr 09 5073770 G T Val617Phe P339 ET
JAK2 chr 09 5073770 G T Val617Phe P342 PV
JAK2 chr 09 5073770 G T Val617Phe P344 PV
JAK2 chr 09 5073770 G T Val617Phe P345 PV
JAK2 chr 09 5073770 G T Val617Phe P346 PV
JAK2 chr 09 5073770 G T Val617Phe P347 PMF
JAK2 chr 09 5073770 G T Val617Phe P349 ET
JAK2 chr 09 5073770 G T Val617Phe P351 PMF
JAK2 chr 09 5073770 G T Val617Phe P354 PV
JAK2 chr 09 5073770 G T Val617Phe P355 PV
KIF17 chr 01 20998607 C T Arg849Gln P192 PV
KRAS chr 12 25398220 A T Asp33Glu P315 PV
MECOM chr 03 168862979 G C putative splicesite P250 PV
MPL chr 01 43815008 T A Trp515Arg P319 PMF
MPL chr 01 43815009 G T Trp515Leu P193 ET
MPL chr 01 43815009 G T Trp515Leu P202 PMF
MPL chr 01 43815009 G A Trp515Leu P319 PMF
MPL chr 01 43815009 G T Trp515Leu P299 ET
MYBL2 chr 20 42320927 G A Gly211Ser P329 PV
NF1 chr 17 29527539 G C Ala364Pro P191 PMF
NF1 chr 17 29557401 G T putative splicesite P121 PV
NFE2 chr 12 54686495 CTCT ---- Glu261fs P126 PV
NFE2 chr 12 54686495 CTCT ---- Glu261fs P211 PV
NFE2 chr 12 54686888 - A Leu131fs P333 ET
NFE2 chr 12 54687044 G - Pro79fs P033 PV
NRAS chr 01 115258747 C T Gly12Asp P202 PMF
NRAS chr 01 115258748 C T Gly12Ser P148 PV
PIAS2 chr 18 44470777 A G Ser89Pro P254 PV
PIK3R2 chr 19 18272776 G T putative splicesite P299 ET
PRMT5 chr 14 23391763 T C Met529Val P255 PV
PTPRT chr 20 40735551 C A Gly1089Trp P282 PV
SH2B3 chr 12 111856105 T G His52Gln P339 ET
TET2 chr 04 106155422 A T Gln108Leu P211 PV
TET2 chr 04 106155496 C - Pro133fs P265 PV
TET2 chr 04 106156729 C T Arg544* P209 PV
TET2 chr 04 106157222 C G Ser708* P019 PV

TET2 chr 04 106157275 C T Gln726* P325 PMF
TET2 chr 04 106157346 AATAAAG ------- Gln749fs P111 PV
TET2 chr 04 106157527 C T Gln810* P312 PV
TET2 chr 04 106157770 C T Gln891* P136 PV
TET2 chr 04 106157845 C T Gln916* P315 PV
TET2 chr 04 106157961 G A Trp954*, Trp954* P204 ET
TET2 chr 04 106158503 G A Cys1135Tyr P324 ET
TET2 chr 04 106162528 T C Tyr1148His P297 PV
TET2 chr 04 106164038 CT -- Thr1183fs P111 PV
TET2 chr 04 106164761 T C Leu1231Pro P191 PMF
TET2 chr 04 106180785 C G Cys1292Trp P349 ET
TET2 chr 04 106180824 CTT --- Ser1284_Phe1285delinsSer P101 ET



TET2 chr 04 106182926 T A Leu1322Gln P315 PV
TET2 chr 04 106182958 - A Met1333fs P235 PV
TET2 chr 04 106190774 - A Tyr1351fs P099 PV
TET2 chr 04 106190837 C T Thr1372Ile P021 PV
TET2 chr 04 106190861 A G His1380Arg P306 PV
TET2 chr 04 106193787 G T Val1417Phe P311 ET
TET2 chr 04 106196233 - G Gln1544fs P197 PMF
TET2 chr 04 106196267 C T Gln1534* P138 PV
TET2 chr 04 106196503 TAATCCC - Ser1633fs P197 PMF
TET2 chr 04 106196819 G T Val1718Leu P105 PV
TET2 chr 04 106197080 - T Asn1826fs P191 PMF
TET2 chr 04 106197387 T A Met1907Lys P138 PV
TP53 chr 17 7577121 G A Arg273Cys P017 PMF
TP53 chr 17 7577566 T C Asn239Asp P224 ET
TP53 chr 17 7578203 C T Val216Met P060 ET
TP53 chr 17 7578393 A T His179Gln P019 PV
TP53 chr 17 7578445 A T Ile162Asn P079 ET
TP53 chr 17 7578527 A G Cys135Arg P060 ET
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Myeloproliferative neoplasms (MPN) are a group of stem cell
disorders predominantly occurring in elderly,1 whereas children
are affected at much lower frequencies.2 Therefore, less is known
about the mutational spectrum and the biology of childhood
MPN.3,4 Lower incidence of JAK2-V617F has been reported in
childhood essential thrombocythemia (ET) and polycythemia vera
(PV),5,6 and in recent studies fewer CALR mutations were found in
children with ET.7–10

The clinical and laboratory data of 43 patients with pediatric
MPN (age ⩽ 18 years at diagnosis) that were included in this
study are summarized in Table 1. Family history of MPN was
negative in all children. The WHO (World Health Organization)
2008 criteria for ET were fulfilled in all 25 cases from whom
bone marrow histology was available. To establish the diagnosis of
ET in the remaining 16 patients without bone marrow examina-
tion, we used the proposed revision of the WHO criteria,11,12

adjusted for age-specific differences in the normal blood
counts.5,13 Elevated platelet counts (4450 × 109/l) for at least
12 month of follow-up and absence of signs suggesting a reactive
or secondary cause were required for ET diagnosis. Data on spleen
size were available for 34 patients with ET and splenomegaly was
noted in 14 of them (41%). There were 5 hemorrhagic events and
1 transient ischemic attack observed in 5/41 (12%) ET patients. The
two PV patients were JAK2-V617F positive, had hematocrit values
450% upon follow-up requiring phlebotomies and both had
splenomegaly.
We used a capture-based targeted next-generation sequencing

to simultaneously search for mutations in 104 genes.14 DNA
samples from purified granulocytes were prepared in duplicates
from each patient and the exons and flanking regions of 104
selected cancer-related genes were captured using an Agilent
SureSelect custom design (Agilent Technologies, Santa Clara, CA,
USA). Sequencing was performed with Illumina HiSeq2000
(Illumina, Inc., San Diego, CA, USA) and sequence alterations were
analyzed using the CLC genomics workbench (CLC Bio, Aarhus,
Denmark). Alterations with an allele burden 410% detected in
both DNA samples were considered as candidate mutations and
validated using PCR based Ion Torrent PGM (Life Technologies,
Waltham, MA, USA) resequencing. Known germline polymorph-
isms were excluded. In three patients DNA from buccal swabs and
in one of them also hair root DNA was available to determine the
presence of variants in germline DNA. Mutations in CALR were
screened using a sensitive allele-specific PCR.15

The frequencies of the 45 observed sequence alterations are
shown in Figure 1a. For detailed information about the individual
mutations see Supplementary Table 1. JAK2-V617F (8/43) and
CALR exon 9 (4/43) mutations were found most frequently
(Figure 1a). In adults with MPN, the frequency of mutations in
genes implicated in epigenetic regulation (TET2, ASXL1, DNMT3A,
EZH2 and IDH1) was about 25%.14,16 In contrast, we detected
mutations in these genes in only 4 of our 43 pediatric MPN
patients (9%; Figure 1a). We found recurrent mutations in the IRF8
gene, which encodes an interferon-regulatory transcription factor
with a possible role as a leukemia tumor suppressor.17 Three

patients with ET had the same IRF8-P310A mutation, which is
predicted to be deleterious by all structure prediction algorithms,
and a fourth patient carried an IRF8-R228H mutation, where
the predictions were not unanimous (Supplementary Table 1).
The allele burden of the IRF8-P310A mutation was 99, 90 and 67%,
respectively, suggesting that the mutation was homozygous in
some or the majority of granulocytes in these patients. Six
additional genes were mutated in two different patients each,
whereas the other genes were mutated only once (Figure 1a).
Two patients with ET carried mutations in the erythropoietin
receptor (EPOR) with allele burdens close to 50% suggesting
heterozygosity. One JAK2-V617F positive ET patient carried
an EPOR-V264G mutation in the transmembrane domain of
EpoR. Based on a model for mouse EpoR,18 this mutation is
expected to stabilize a less active dimeric interface for EpoR and
predicted to result in a reduction of EpoR function. Another ET
patient carried an EPOR-W233G mutation, which alters the first
tryptophan of the conserved WSXWS motif in the extracellular
domain of EpoR to GSXWS. In a mouse study, the EpoR-W233G
mutation reduced EpoR surface expression and resulted in a loss
of function of the receptor.19 Thus, both EPOR mutations are
predicted to reduce or eliminate EpoR function. The fact that both
patients have ET and not PV, further argues against a causative
role of these mutations.
Co-occurrence between mutations in the same patient is shown

in Figure 1b. The four patients with CALR mutations did not carry
additional gene mutations, whereas patients with JAK2-V617F or
MPL mutations frequently carried other gene mutations. Figure 1c
compares the distribution of the number of mutations per patient
in our pediatric cohort with the data from our published MPN
cohort of 192 adult patients that was analyzed using the same
technologies.14 Mutations in one of the established MPN driver
genes JAK2, CALR or MPL were found in a lower percentage of
pediatric cases (34%) than adult MPN patients (90%; Figure 1c).
Conversely, a substantial proportion of pediatric patients who
were tested negative for mutations in MPN driver genes, carried

Table 1. Clinical characteristics of the pediatric MPN patients at
diagnosis

Diagnosis ET PV

Number of patients 41 2
Percentage of females 66% 100%
Age at diagnosis—median
(range)

9 (1–18) 10 (4–17)

Hemoglobin (g/l) of all
patients—median (range)

128 (80–157) 156 (153–160)

Hemoglobin males only 135 (113–157) NA
Hemoglobin females only 125 (80–146) 156 (153–160)

Platelets (109/l)—median (range) 1391 (489–4443) 893 (744–1043)
Leukocytes (109/l)—median
(range)

9 (5–17) 19 (10–27)

Splenomegaly 14/34 (41%) 2/2 (100%)
Complications (thrombotic
events or hemorrhaging)

5/41 (12%) NA

Abbreviation: NA, not applicable.
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mutations in other genes and a higher percentage of pediatric
cases had no detectable mutation in the genes analyzed
(32% versus 8% in adults; Figures 1c and d). Overall, the mean
number of mutations per patient in pediatric MPN was
significantly lower than in adult disease (Figure 1e). The subgroup
of patients without detectable mutation showed a trend toward
higher platelet counts compared with patients carrying mutations
(Figure 1f).
From the pediatric patient with JAK2-V617F and a mutation

in DNMT3A frozen peripheral blood mononuclear cells were
available and we dissected the clonal architecture by genotyping
DNA from peripheral blood mononuclear cell-derived single
colonies grown in methylcellulose. The DNMT3A mutation in this
patient had been acquired before JAK2-V617F and the clone
expanded to account for 50% of the progenitors (Figure 1f).
Similar analysis in adults with MPN showed that DNMT3A
mutations preferentially also occur early in the development of
the MPN clones.14

Our study illustrates similarities but also differences in the
mutational landscape between pediatric and adult MPN and

shows that a larger proportion of pediatric patients have no
detectable mutation in any of the genes known to be associated
with MPN. Pediatric MPN patients overall also display fewer
mutations in genes involved in epigenetic regulation.
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Figure 1. Molecular analysis of pediatric MPN. (a) Number of patients with mutations in the genes is indicated. The diagnosis of the patients is
indicated in different shades of gray. (b) Circos plot illustrating co-occurrence of somatic mutations in the same individual. The length of the
arc corresponds to the frequency of the mutation, whereas the width of the ribbon corresponds to the relative frequency of co-occurrence of
two mutations in the same patient. (c) Comparison of the distribution of driver mutations in the pediatric cohort (n= 43) and a previously
analyzed adult MPN cohort (n= 192).14 The different colors indicate the type of driver mutation. (d) Distribution of somatic mutations among
the same pediatric and adult MPN patients. The shades of gray indicate the number of somatic mutations per patient. (e) Comparison of
number of mutations per patients for the pediatric and adult MPN cohort. (f) Comparison between platelet count and driver mutation in the
pediatric MPN cohort. The gray shaded area indicates the range of normal platelet counts. (g) Pattern of clonal evolution in a patient mutated
for DNMT3A and JAK2-V617F. The text on top of the diagram describes the percentage of affected granulocytes (GRA) based on data acquired
from granulocytic DNA. Although the order of events and percentage of mutated progenitors can be deduced from the single clone analysis
(dotted line), the exact timing of the acquisition of the individual mutations and the time needed for the clonal expansion remains unknown
and is shown only schematically.
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