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Abstract People with higher IQ scores also tend to per-
form better on elementary cognitive-perceptual tasks, such
as deciding quickly whether an arrow points to the left or
the right Jensen (2006). The worst performance rule (WPR)
finesses this relation by stating that the association between
IQ and elementary-task performance is most pronounced
when this performance is summarized by people’s slowest
responses. Previous research has shown that the WPR can
be accounted for in the Ratcliff diffusion model by assum-
ing that the same ability parameter—drift rate—mediates
performance in both elementary tasks and higher-level cog-
nitive tasks. Here we aim to test four qualitative predictions
concerning the WPR and its diffusion model explanation in
terms of drift rate. In the first stage, the diffusion model
was fit to data from 916 participants completing a percep-
tual two-choice task; crucially, the fitting happened after
randomly shuffling the key variable, i.e., each participant’s
score on a working memory capacity test. In the second
stage, after all modeling decisions were made, the key vari-
able was unshuffled and the adequacy of the predictions was
evaluated by means of confirmatory Bayesian hypothesis
tests. By temporarily withholding the mapping of the key
predictor, we retain flexibility for proper modeling of the
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data (e.g., outlier exclusion) while preventing biases from
unduly influencing the results. Our results provide evidence
against the WPR and suggest that it may be less robust and
less ubiquitous than is commonly believed.
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Over the past decades, the field of mental chronometry has
revealed several robust associations between high-level cog-
nitive ability (e.g., IQ, working memory) and response times
(RT) in elementary cognitive-perceptual tasks (Jensen,
2006; Van Ravenzwaaij et al., 2011). The main finding is
that people with relatively high IQ-scores tend to respond
relatively quickly in simple RT tasks that do not appear to
involve deep cognitive processing; one example of such a
task is the random dot kinematogram, which requires partic-
ipants to detect the direction of apparent motion in a cloud
of dot stimuli.

Another important finding is known as the worst perfor-
mance rule (WPR): the fact that the worst performance in
these simple tasks—that is, the slowest responses—is most
indicative of high-level cognitive ability (Baumeister and
Kellas, 1968; Larson & Alderton, 1990). In this study, we
aimed to assess the presence and intensity of the WPR in a
large data set. In addition, we test a prediction from the Rat-
cliff diffusion model (Ratcliff, 1978; Ratcliff et al., 2008),
namely that speed of information processing is the factor
that underlies the WPR.

In order to ensure that our statistical assessment is fair
(e.g., unaffected by hindsight bias or confirmation bias), we
first preregistered our entire analysis plan and submitted it
to Attention, Perception, & Psychophysics (e.g., Chambers,

http://crossmark.crossref.org/dialog/?doi=10.3758/s13414-017-1304-y&domain=pdf
mailto:gilles.dutilh@gmail.com


714 Atten Percept Psychophys (2017) 79:713–725

2013; Wolfe, 2013). Only after approval by the journal did
we start to analyze the data. The preregistration plan can be
found online at https://osf.io/qc5dh/.

A novel element to our preregistration proposal is the
inclusion of a blinding procedure, where an analyst (in this
case, author JV) is sent the data with the key variable shuf-
fled (MacCoun & Perlmutter, 2015). This way, the analyst is
free to (1) resolve ambiguities and oversights in the prereg-
istration document; and (2) adjust the analysis to unexpected
peculiarities of the data. Crucially, this freedom of analysis
does not endanger the confirmatory nature of the statistical
inference: shuffling the key variable breaks the analysis-
outcome feedback loop that compromises the confirmatory
status of the inference. Only after the analyst had committed
to the analysis plan was the key variable unshuffled.

The worst performance rule

Since the seminal work by Baumeister and Kellas (1968),
the WPR has been shown to exert itself in various forms. In
its most general form, the WPR holds that the worst perfor-
mance on multi-trial elementary cognitive-perceptual tasks
is more predictive for g-loaded measures than is the best
performance on these tasks (Coyle, 2003). This prediction
is usually confirmed by demonstrating that higher RT bands
correlate more strongly than lower RT bands with both IQ
measures (e.g., Larson & Alderton, 1990; Jensen, 1982) and
working memory capacity (WMC; e.g., Unsworth, Redick,
Lakey, & Young, 2010). For example, Fig. 1 presents the
results from Larson and Alderton (1990), showing that the
negative correlation between RT and IQ gets stronger as RT
lengthens.
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Fig. 1 An example of the worst performance rule. The negative corre-
lation of RT with IQ gets stronger as RTs lengthen. Data from Larson
and Alderton (1990)

The WPR expresses itself in several related ways as well.
Coyle (2001), for example, found that the worst perfor-
mance on a word-recall task (i.e., the lowest number of
words from a list recalled by each participant) correlates
higher with IQ than the best performance on this task (i.e.,
the highest number of words from a list recalled by each par-
ticipant). Furthermore, Kranzler (1992) and Ratcliff et al.
(2010) showed that theWPR is strongest for multi-trial tasks
that are relatively complex.

Several explanations for the WPR have been proposed.
The most dominant explanation holds that performance on
cognitive tasks of any level in any domain (e.g., IQ, WMC,
speeded perceptual choice) is facilitated by the general neu-
ral processing speed of an individual’s brain (Jensen, 2006).
Inspired by this idea, Ratcliff et al. (2008) suggested that the
drift rate parameter of the diffusion model reflects precisely
this speed of processing.

The Ratcliff diffusion model

The diffusion model (Ratcliff, 1978) describes the observed
RT distributions of correct and error responses on two-
choice tasks as the finishing times of a diffusion process
with absorbing bounds. When presented with a stimulus,
a decision-maker is assumed to accumulate noisy evidence
from that stimulus (i.e., the meandering lines in Fig. 2) until
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Fig. 2 The Ratcliff diffusion model. Noisy evidence is accumulated
until one of two pre-set boundaries is reached. The lower half of the
figure shows two exemplary accumulation paths (meandering lines)
and two different drift rates (the average rate of information accumula-
tion, straight lines). The upper part shows the correct RT distributions
that result from a low and a high drift rate. Vertical lines indicate the
shift in .1st (solid lines) and .9th (dashed lines) percentiles caused by
a change in drift rate
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either of two pre-set evidence boundaries is reached and the
associated response is initiated. On average, the accumula-
tion of evidence approaches the correct boundary at a speed
that is quantified by the drift rate parameter. Due to noise in
the accumulated evidence, the diffusion process sometimes
reaches the incorrect boundary, leading to error responses.
This within-trial noise is also responsible for the right-
skewed distribution of RT. In the model’s most extended
form, the diffusion process is governed by seven parameters,
including drift rate. Thus, drift rate is a key parameter of
the diffusion model, as it corresponds to the signal-to-noise
ratio in the evidence accumulation process; hence, drift rate
quantifies the speed of information processing.

Ratcliff et al. (2008) pointed out an important property of
the diffusion model for the explanation of theWPR: increas-
ing drift rate acts to reduce RT. Crucially, this reduction
is most pronounced for higher percentiles of RT (cf. Van
Ravenzwaaij et al., 2011), as is illustrated in the upper part
of Fig. 2. The figure shows RT distributions that originate
from two different drift rates. The solid vertical lines indi-
cate the .1 quantiles of the distributions resulting from a
high drift rate (dark line) and a low drift rate (grey line). The
dashed vertical lines indicate the .9 quantiles of these dis-
tributions. Clearly, the change in drift rate leads to a larger
shift of the slow .9 quantile than of the fast .1 quantile.
Thus, differences in drift rate and differences in IQ have the
same qualitative effect on RT, in the sense that both are most
strongly expressed in the slowest RTs. This observation adds
credibility to the idea that the diffusion model’s drift rate
parameter quantifies the speed of processing that is thought
to underlie the WPR as well as other associations between
higher-level and lower-level cognitive tasks. In order to test
this idea, several empirical studies related drift rate to IQ
and WMC. Ratcliff et al. (2010) and (2011) showed that IQ
correlated positively with drift rate in recognition memory
tasks. Ratcliff et al. (2010) further showed that IQ corre-
lated positively with drift rate in a lexical decision task and
a numerosity judgment task. A study by Leite (2009), how-
ever, found no evidence of a correlation between IQ and
drift rate in either a brightness discrimination task or a let-
ter discrimination task. Schmiedek et al. (2007) showed that
WMC could be predicted from drift rate on a range of RT
tasks.1

Another important observation about the relation of drift
rate and RTwas made by Van Ravenzwaaij et al. (2011). The
diffusionmodel holds that both stimulus difficulty and subject
ability are expressed in drift rate. In fact, drift rate can be
viewed as a pair of scales weighting two intrinsically related

1In fact, Schmiedek et al. (2007) constructed a measurement model
to distill for each participant a latent factor for drift rate, boundary
separation, and non-decision time.

constructs: difficulty and ability. The drift rate is the deflec-
tion of the pointer of this scale and is most pronounced in
the slowest RTs, that is, in the worst performance. From this
observation, Van Ravenzwaaij et al. (2011) suggested that
difficulty, just as ability (e.g., IQ), should be reflected most
strongly in the higher ranges of RT, a prediction that was
empirically confirmed by Van Ravenzwaaij et al. (2011).
From this same interconnection of IQ and difficulty, we
hypothesize that the WPR is more pronounced for difficult
than for easy items of an elementary RT task. Figure 3 illus-
trates this hypothesis with a concrete example. The figure
shows four hypothetical correct RT distributions generated
by four drift rates that differ across IQ group and stimulus
difficulty. The effect of IQ on slow (.9 quantile) responses
is larger than the effect on fast (.1 quantile) responses. This
difference is more pronounced for difficult stimuli (dotted
lines) than for easy stimuli (solid lines). This prediction is
closely in line with the observations of Kranzler (1992) and
Ratcliff et al. (2010), who showed that more complex tasks
show a more pronounced WPR.

Overview of hypotheses

The current study presents a rigorous, preregistered test of
four hypotheses related to the WPR and the account pro-
vided by the Ratcliff diffusion model. First, we test the
existence of the WPR. Second, we test the prediction that
the WPR is larger for difficult than for easy trials in a sim-
ple RT task. Third, we test the prediction that the diffusion
model drift rate parameter correlates withWMC. Fourth, we
test the prediction that the correlation between drift rate and
WMC is higher for difficult trials than for easy trials from
the perceptual RT task. We test these hypotheses by analyz-
ing an existing data set with 916 participants for which we
measured both perceptual choice RT and WMC. A detailed
account of the design, hypothesis, and proposed analyses is
provided below.

Data collection and method

The data at hand have been collected in a large-scale study
on the genetic underpinnings of risk preferences, funded by
the Swiss National Science Foundation. For this study, 916
participants (502 participants in Berlin, Germany; 414 in
Basel, Switzerland) were tested on a range of psychologi-
cal tasks. Among the participants, 65 % were students, and
62 % were female. The age range spans 18-36 years with
a mode at 24 years. For the current study, we analyze the
data of two relevant tasks: a WMC test and a perceptual
two-choice RT task.
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Fig. 3 Four hypothetical drift rates v for easy stimuli (solid lines) and difficult stimuli (dotted lines), for participants with a relatively high IQ
(light lines) and participants with a relatively low IQ (dark lines). The density lines show the predictions of the diffusion model, given these drift
rates. The vertically drawn quantile lines show that the IQ effect on the higher ranges of RT (i.e., the .9 quantile) relative to the lower range of RT
(i.e., the .1 quantile) is stronger for the difficult than for the easy stimuli

Working memory capacity battery

To measure working memory, we used the WMC battery
developed by Lewandowsky et al. (2010). This battery was
constructed as a tool to measure working memory capacity
with a heterogeneous set of tasks that involves both verbal
and spatial working memory. A pre-defined measurement
model described in Lewandowsky et al. (2010) allows the
calculation of a single WMC score for each participant.
Lewandowsky et al. (2010) show that this score has a strong
internal consistency and correlates highly with Raven’s test
of fluid intelligence (r = .67).

Speeded perceptual two-choice task

In the elementary RT task, participants were presented with
10 × 10 matrices of black and white dots (Fig. 4). Par-
ticipants were instructed to indicate whether the matrix
contained more black or more white dots by pressing either
of two mouse buttons. In this simple perceptual task, diffi-
culty can be manipulated by adjusting the number of black
and white dots. Participants saw 90 easy trials (proportion
of black and white dots: 60/40, 40/60) and 90 difficult tri-
als (proportions 55/45, 45/55). In addition, there were trials
with an equal proportion of black and white dots. These
stimuli are “undoable”, and are of no special interest in
this perceptual task but were included for comparison with
another task conducted in the large-scale study. In the cur-
rent analyses, we nonetheless include these trials in order
to facilitate the estimation of the diffusion model parame-
ters. Participants received no feedback, but were instructed

to respond as fast and accurately as possible. A “too slow”
message was displayed after responses slower than 3.5 s.
Our task originates from Dutilh and Rieskamp (2016) and
resembles tasks that have been modeled successfully with
the diffusion model, such as the brightness discrimination
task (Ratcliff & Rouder, 1998) and the numerosity task
(Ratcliff et al., 2010).

Registered analysis plan

In this study, our goal was to test four key hypotheses
in a manner that is described in detail below. For all
hypotheses, we use the Bayes factor to quantify the degree

Fig. 4 Example of a stimulus in the perceptual RT task. Participants
pressed the left or right mouse button to indicate quickly whether the
stimulus contained more black or more white dots
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of confirmation provided by the data (Jeffreys, 1961); we
will also provide the posterior distribution for the parame-
ters of interest.

The registered analysis plan was carried out on the com-
plete data set (subject to the outcome-blind decisions by
the analyst; see the next section on the two-stage analy-
sis process). In a second, exploratory analysis, we will test
the hypotheses separately for the relatively homogeneous
student group and the relatively heterogeneous non-student
group.

Note that, with 1000 participants, we collected data that
are sufficiently informative to pass Berkson’s “interocular
traumatic test” (Edwards et al., 1963) such that the confir-
matory hypothesis tests serve merely to corroborate what is
immediate apparent from a cursory visual inspection of the
data. Below, we provide a description of the hypotheses and
analyses that is consistent with the original preregistration
plan; as will become apparent later, the analyst executed
some outcome-independent changes to this original plan.

Planned analysis of hypothesis 1: Worst performance
rule

For each participant, we obtained a single WMC score from
the WMC battery. Furthermore, for each participant we
obtained the 1/6, 2/6, 3/6, 4/6, and 5/6 quantiles of cor-
rect RTs; it is possible to use more quantiles, but only at
the cost of reducing the precision with which the mean RT
within each bin is estimated. Hypothesis 1 states that the
correlation between WMC and mean RT within each quan-
tile is negative (i.e., higher WMC is associated with faster
responding). More specifically, Hypothesis 1 states that the
absolute magnitude of this correlation increases monotoni-
cally from the fastest to the slowest quantile (i.e., the WPR).
Hypothesis 1a refers to the WPR for easy stimuli, and
Hypothesis 1b refers to the WPR for difficult stimuli.

Both Hypothesis 1a and 1b are tested separately, in the
following manner. Denote by ρi the estimated Pearson cor-
relation coefficient for quantile i. Then, the simplest linear
version of the WPR predicts that ρi = β0 + β1Ii , where Ii

indicates the quantile, β0 is the intercept of the regression
equation, and β1 is the slope. We then use the Bayes factor
(Jeffreys, 1961; Kass & Raftery, 1995) to quantify the sup-
port that the data provide for two competing hypotheses: the
null hypothesis H0 : β1 = 0 versus the WPR alternative
hypothesis H1 : β1 < 0. Under H1, we assign each ρi an
independent uniform prior from −1 to 0, in order to respect
the fact that all correlations are predicted to be negative. Fur-
thermore, we assign a uniform prior to β0 that ranges from
−1 to 0, in order to respect the fact that even for the fastest
RTs, the correlation is not expected to be positive. Finally,
we assign a uniform prior to β1 that ranges from its steepest
possible value to 0. Specifically, since the quantiles are on

the scale from zero to one, and the highest possible value of
the intercept β0 equals 0, the assumption of linearity across
the scale implies that the steepest slope is −1. Hence, we
assign β1 a uniform prior from −1 to 0 (see the results
section for an inconsistency in this model specification).

With the model specification in place, the Bayes fac-
tor between H0 :β1=0 versus H1: β1 ∼ U [−1, 0] can be
obtained using an identity known as the Savage–Dickey
density ratio (e.g., Dickey & Lientz, 1970; Wagenmakers,
Lodewyckx, Kuriyal, & Grasman, 2010). Specifically, this
involves focusing on parameter β1 inH1 and comparing the
prior ordinate at β1 = 0 to the posterior ordinate at β1 = 0,
that is, by computing BF10 = p(β1 = 0 | H1)/p(β1 = 0 |
y,H1), where y denotes the observed data. Bayes factors
higher than 1 favorH1 and provide support for theWPR. All
parameters will be estimated simultaneously using a hierar-
chical Bayesian framework and Markov chain Monte Carlo
(MCMC, e.g., Lee & Wagenmakers, 2013).

Planned analysis of hypothesis 2: Stronger worst
performance rule for more difficult stimuli

The WPR tested under Hypothesis 1 is predicted to be more
pronounced for difficult stimuli than for easy stimuli. In the
previous WPRmodel, ρi = β0 + β1Ii; now denote β1 for the
difficult stimuli by β1d and denote β1 for the easy stimuli
by β1e. Hypothesis 2 holds that β1e > β1d . We multiply
both parameters by −1 so that we obtain variables on the
probability scale, and hence β∗

1d > β∗
1e. We use a dependent

prior structure (Howard, 1998), apply a probit transfor-
mation, and orthogonalize the parameter space (Kass &
Vaidyanathan, 1992). Specifically, denoting the probit trans-
formation by �−1, we write �−1(β∗

1d) = μ + δ/2 and
�−1(β∗

1e) = μ − δ/2. We assign the probitized grand mean
parameter μ an uninformative distribution, that is, μ ∼
N(0, 1), and then use the Bayes factor to contrast two mod-
els: the null hypothesis H0 : δ = 0 versus the alternative
hypothesis H2 : δ > 0. We complete the model specifica-
tion forH2 by assigning the difference parameter δ a default
folded normal prior defined only for positive values, that is,
δ ∼ N(0, 1)+. As before, parameter estimates are obtained
fromMCMC sampling in a hierarchical Bayesian model and
Bayes factors will be computed using the Savage–Dickey
density ratio test on parameter δ underH2.

Planned analysis of hypothesis 3: Working memory
capacity correlates positively with drift rate

We fit the diffusion model to the data using hierarchical
Bayesian estimation (e.g., Wabersich & Vandekerckhove,
2014; Wiecki, Sofer, & Frank, 2013). This hierarchical
method allows us to exploit the vast number of partici-
pants and estimate parameters even for participants whose
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data contain little information (for example due to a small
number of errors, which are crucial for diffusion model
parameter estimation). Hypothesis 3 holds that WMC cor-
relates positively with drift rate. Hypothesis 3a refers to the
positive correlation between WMC and drift rate for the
easy stimuli, and Hypothesis 3b refers to the positive corre-
lation between WMC and drift rate for the difficult stimuli.
Both Hypothesis 3a and 3b will be tested separately, in the
following manner.

First WMC is included within the hierarchical struc-
ture. WMC will then be correlated with drift rate estimates
(Hypothesis 3a: for the easy stimuli; Hypothesis 3b: for
the difficult stimuli) in a hierarchical structure. The null
hypothesis holds that there is no correlation, H0 : ρ = 0,
whereas the alternative hypothesis holds that the correlation
is positive, H3 : ρ > 0. Specifically, we assign ρ a uni-
form prior from 0 to 1. Bayes factors can be obtained by a
Savage–Dickey density ratio test on parameter ρ underH3.

Planned analysis of hypothesis 4: Stronger correlation
between working memory and drift rate
for more difficult stimuli

Hypothesis 4 holds that WMC correlates more strongly
with drift rates for difficult stimuli than with drift rates
for easy stimuli. Denote by ρd the WMC-drift rate corre-
lation for the difficult stimuli, and by ρe the WMC-drift
rate correlation for the easy stimuli. Hypothesis 4 states that
ρd > ρe. Moreover, both ρd and ρe are assumed to be
positive, so that both are on the probability scale. Conse-
quently, the proposed analysis mimics that of Hypothesis
2: We use a dependent prior structure, apply a probit trans-
formation, and orthogonalize the parameter space. We write
�−1(ρd) = μ+δ/2 and �−1(ρe) = μ−δ/2. We assign the
probitized grand mean parameter μ an uninformative distri-
bution, that is, μ ∼ N(0, 1), and then use the Bayes factor
to contrast two models: the null hypothesis H0 : δ = 0 ver-
sus the alternative hypothesis H4 : δ > 0. We complete
the model specification for H4 by assigning the difference
parameter δ a default folded normal prior defined only for
positive values, that is, δ ∼ N(0, 1)+. As before, parameter
estimates are obtained from MCMC sampling in a hierar-
chical Bayesian model and Bayes factors will be computed
using the Savage–Dickey density ratio test on parameter δ

under H4.

Two-stage analysis

We pursue an unbiased yet flexible method to test the dif-
fusion model account of the WPR. Therefore, we adopted
a two-stage analysis with a special status for coauthor JV

who fits the diffusion model to data (e.g., Vandekerckhove
& Tuerlinckx, 2007, 2008; Vandekerckhove, Tuerlinckx,
& Lee, 2011; Wabersich & Vandekerckhove, 2014). In
the first stage, we provided JV with the perceptual RT
data and a randomly permuted version of the WMC vari-
able. With these data in hand, JV produced code to fit
the model while respecting the analysis choices outlined
above (i.e., Hypotheses 1–4). This first stage allowed JV to
model the data at will, for instance by excluding outliers,
introducing contaminant processes, adding transformations,
and generally make any other reasonable modeling choice.
Importantly, JV was also able to correct ambiguities and
oversights in the preregistration document that had ini-
tially escaped us. Since the crucial WMC score variable is
randomly permuted, the correlation between drift rate and
WMC estimated in this stage-one model is meaningless.
The first stage was terminated when JV indicated the model
code is ready. At this point, the code was fixed and made
available on the Open Science Framework (osf.io/wupbm).
In the second stage, the true sequence of WMC scores was
revealed, and the code created by JV was applied to the data
in a deterministic manner to address each of the hypotheses
outlined above.

This two-stage analysis is both flexible and fair. It is flex-
ible because the modeler retains the freedom to exclude data
and make adjustments to the model to account for eventual
peculiarities of the data, and it is fair because the mod-
eling choices are not outcome-driven, that is, guided by
expectations about the main hypotheses.

Results of preregistered analyses

After the methods and analysis plan above were prereg-
istered and accepted as such at Attention, Perception &
Psychophysics on October 1st , 2015, author JV prepared
the preregistered analyses based on the blinded data. For
hypotheses 1 and 2, JV had to deviate slightly from the
analysis plan. This deviation solved an inconsistency in the
original analysis description. Thanks to the fact that the ana-
lyst was blinded, the findings of this analysis remain purely
confirmatory.

On May 11, 2016, JV registered the analysis plan on
the Open Science Framework (osf.io/wupbm), at which
moment the unblinded data set was shared with JV. After
lifting the blind, a small typo was found in the analyses
codes for both Hypotheses 3b and 4. This typo involved
the coding of stimulus types (left, right, hard, easy). The
nature of this typo and its correction are unambiguous, and
we believe that the analyses can still be considered purely
confirmatory. The model code for all analyses is available at
https://osf.io/qc5dh/.

https://osf.io/wupbm
https://osf.io/wupbm
https://osf.io/qc5dh/
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Fig. 5 Scatterplots of key outcome variables for the easy items.Upper
row: relation between WMC and each of the five quantiles (.1, .3, .5,
.7, .9) of correct RT; Lower row: relation between accuracy and each
of the five quantiles of correct RT. The first panel in the lower row
shows the relation between overall accuracy and WMC. Each point

represents a participant. Each panel shows the Bayes factor in favor
of a linear model with non-zero slope (represented by the black line)
versus the intercept-only model. Bayes factors are calculated from the
BayesFactor Package for R (Morey et al., 2014)

Descriptive results

Before we turn to the results of our preregistered analy-
ses, we first present a descriptive view of the observed data

in Figs. 5 (easy items) and 6 (hard items) to facilitate the
understanding of our results. In these figures, individual
participants are presented by points, and the lines illustrate
linear regressions fitted to these points. In both figures, the
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Fig. 6 Scatterplots of key outcome variables for the hard items.Upper
row: relation between WMC and each of the five quantiles (.1, .3, .5,
.7, .9) of correct RT; Lower row: relation between accuracy and each of
the five quantiles of correct RT. The first panel in the lower row shows
the relation between overall accuracy andWMC. Each point represents

a participant. Each panel shows the Bayes factor in favor of a linear
model with non-zero slope (represented by the black line) versus the
intercept-only model. Bayes factors calculated from the BayesFactor
Package for R (Morey et al., 2014)
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panels in the upper row show the relation between working
memory capacity versus each of the five quantiles of correct
RT. In the lower row, the first panel shows the relation
between working memory capacity and overall accuracy.
The remaining five panels in the lower row display the rela-
tion between overall accuracy and each of the five quantiles
of correct RT.

These figures support a number of observations. First, for
both easy and hard items, the left-most panel of the lower
row reveals a clear positive correlation between WMC and
accuracy; in other words, participants with high WMC are
relatively accurate on the perceptual task. Second, although
all our hypotheses predict a negative correlation between
WMC and RT, the panels in the upper row suggest that in
our sample of participants, such a relation is absent. For
the fastest RTs, there is even weak evidence for a posi-
tive relation. Finally, the five right-most panels in the lower
row highlight that accuracy correlates positively with RT. In
other words, participants who respond slowly also respond
more accurately. We keep these observations in mind when
we present the results of the confirmatory hypothesis tests
below.

Hypotheses 1a and 1b

Hypothesis 1 states that working memory capacity corre-
lates negatively with mean RT in the bins defined by the
1/6, 2/6, 3/6, 4/6, and 5/6 quantiles of correct RT, both for
easy and hard stimuli. The precise prediction that we tested
was that the negative correlation increases linearly over the
RT bins. When working on the blinded data, an inconsis-
tency was discovered in the preregistered analysis plan for
this hypothesis. This analysis plan specified both the slope
parameter β1 and the correlations ρi of WMC with each
quantile of RT as estimable parameters. Since ρi is defined
as a function of β1, only one of both can be estimated. This
inconsistency was corrected while working on the blinded

data and only the beta weight was defined as an estimable
parameter.

The results show strong evidence against Hypothesis 1a
that stipulates a negative β1 for the easy items (BF01 =
64.3) and strong evidence against Hypothesis 1b that stip-
ulates a negative β1 for the hard items (BF01 = 222). This
support for a zero β1 constitutes evidence against the WPR
in its classical form. This result is not too surprising given
the apparent absence of negative a negative relation obser-
vation that we observed in Figs. 5 and 6. Indeed, when we
present the exploratory results, it will become apparent that
the reason for the strong support against Hypotheses 1a and
1b is that, when estimated freely, the correlations between
RT andWMC are actually slightly positive rather than nega-
tive, such that people who respond more slowly tend to have
larger WMC. This positive rather than negative correlation
is also suggested by the posterior distributions of β1 for easy
and hard items in Fig. 7, which show most of their mass at
the 0-edge of the prior parameter range.

For illustration of the results of this analysis, Fig. 8 shows
the correlations between RT quantiles and WMC as defined
by the linear function that was estimated in the model. The
densities indicate the uncertainty of each correlation follow-
ing from the uncertainty in the estimate of the parameters of
the linear function.

Hypothesis 2

Hypothesis 2 states that the linear decrease tested under
hypothesis 1b (hard stimuli) was stronger than the decrease
tested under hypothesis 1a (easy stimuli). Although we
found evidence against the existence of each of these WPR
effects, we can still test whether one effect is stronger than
the other. The Bayes factor indicates inconclusive evidence
about this hypothesis (BF01 = 1.10). The posterior dis-
tribution of the difference parameter δ is displayed in the
rightmost panel of Fig. 7.
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Fig. 8 Correlation between RT quantiles and WMC, as defined from the linear function estimated in confirmatory analyses H1a and H1b. The
densities reflect the uncertainty about these correlations that follow from the uncertainty about the parameters of the linear function. Note that no
statistical evidence was found for a negative slope

Hypotheses 3a and 3b

Hypothesis 3 states that working memory capacity corre-
lates positively with the diffusion model drift rate on the
perceptual task, for both easy (hypothesis 3a) and hard (3b)
stimuli. Both hypotheses 3a and 3b are confirmed with
strong evidence (hypothesis 3a: BF10 = 58.7, hypothesis
3b: BF10 = 889). The estimated correlations with work-
ing memory capacity were 0.24 for easy and 0.28 for hard
stimuli. The posterior distributions of the correlations are
displayed in the leftmost panels of Fig. 9.

Hypothesis 4

Hypothesis 4 states that the correlation between working
memory and drift rates is higher for hard than for easy stim-
uli. The Bayes factor shows inconclusive evidence about
this hypothesis (BF01 = 1.25). The posterior distribution
of the difference parameter δ is displayed in the rightmost
panel of Fig. 9.

Discussion of preregistered hypotheses

In its standard form, the worst performance rule predicts
that the correlation between working memory capacity and
perceptual RT is negative, and that this negative correlation
becomes increasingly pronounced for the higher RT bands.
Our preregistered analysis revealed strong evidence against
the worst performance rule, for both easy and hard items
(i.e., Hypotheses 1a and 1b).

Interestingly, however, we did find strong evidence for a
positive correlation between the perceptual drift rates and
working memory capacity (i.e., Hypotheses 3a and 3b). This
finding supports the conceptual idea underlying the WPR:
higher-level processing and lower-level processing are facil-
itated by the same general processing speed. The evidence
for a difference in the strength of this effect between easy
and hard items was inconclusive.

Initially, these two main results may seem inconsistent;
after all, the hypothesis of a correlation between working
memory and drift rate was raised since this correlation could
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produce the worst performance rule in its classical form.
Therefore, it is remarkable that we found strong evidence
in favor of a correlation between perceptual drift rate and
working memory capacity, but comparably strong evidence
against the classical WPR hypothesis. The exploratory anal-
yses below aim to address this issue.

Results of exploratory analyses

Inspection of the descriptive data in Figs. 5 and 6 suggest
two explanations for our seemingly conflicting set of results,
that is, evidence against a negative correlation between
WMC and RT, and evidence in favor of a positive corre-
lation between WMC and perceptual drift rate. The first
explanation is that we have put inappropriate constraints on
the correlations of WMC with RT: these correlations were
constrained to be negative, although in the data they appear
slightly positive. This misspecification may be responsible
for our failure to find the classical WPR.

The second explanation is that the drift rate is a
more specific measure of general processing speed than
response times. The diffusion model explicitly describes
how response times can be influenced by factors other
than the speed of processing, such as the caution with
which decisions are made. Thus, large individual differ-
ences in response caution across participants might have
masked the worst performance rule in its classical form.
Both explanations will be discussed and tested below.

Explanation 1: Undue constraints on correlations

Our preregistered hypotheses specified all correlations
between RT and WMC to be negative: people with higher
WMC were expected to respond more quickly on the per-
ceptual task, an effect expected to increase over RT bands.

Therefore, in the statistical analyses for Hypotheses 1 and
2, these correlations were restricted to fall between –1 and
0. Figures 5 and 6 suggest that this prediction may be incor-
rect: if anything, the correlations appear to be positive. The
correlations may in fact appear to decrease monotonically
over quantiles. It is possible, therefore, that this pattern
is masked by the constraint that all estimated correlations
should be negative. The analysis below examines whether it
was this misspecification that kept us from detecting a true
worst performance rule in the data.

Results releasing constraints on correlations
for Hypotheses 1a, 1b, and 2

In a revision of analyses 1a, 1b, and 2, we release the con-
straint on correlations to be strictly negative; specifically,
we release the constraints on the intercept and slope of
the linear function relating quantile number to the corre-
lations. After releasing these constraints, the intercept (β0)
was indeed estimated to be positive for both easy and hard
items of the perceptual task. At the same time, the slope (β1)
was estimated to be slightly negative, as illustrated by the
posterior distributions of the β1 parameters depicted in the
leftmost panels of Fig. 10. For the easy perceptual items,
these β0 and β1 values defined a linear function with posi-
tiveWMC–RT correlations for all but the highest quantile of
perceptual RT. For the hard perceptual items, all correlations
defined by this linear function are positive. These linear
functions are illustrated in Fig. 11. Again, the black dots
and grey line indicate the highest density estimate of this
linear function, whereas the densities depict the uncertainty
around the resulting individual correlations.

Although these estimates suggest that releasing the con-
straint on the correlation function improved the analyses, we
again found evidence opposing the worst performance rule
hypothesis for both easy stimuli (Hypothesis 1a*, BF01 =
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6.29) and hard stimuli (Hypothesis 1b*, BF01 = 19.9).
Thus, releasing the constraint on the correlations did not
result in a different conclusion and the evidence still favors
the absence of the worst performance rule in its classical
form, albeit less strongly than for the restricted analysis.

Explanation 2: Confound of response caution

A possible theoretical explanation for the fact that we find
evidence against the WPR in its classical form is that true
WPR effects are confounded by individual differences in
response caution. To understand this explanation, consider
the scenario in which participants who are more cautious
than others on the perceptual task, also more carefully per-
form the WMC test. Careful participants will score higher
on the WMC test and respond more slowly (and maybe
more accurately) on the perceptual task. The result could
be a positive correlation between WMC and perceptual
RT. More precisely, the diffusion model predicts that an
increased boundary separation on both tasks will result in
a positive correlation between WMC and RT that increases
over RT bands (Ratcliff et al., 2008), an effect that opposes
the WPR predictions.

This observation offers an alternative interpretation for
the results in Figs. 5 and 6: On the one hand, there exists
a true correlation between WMC and drift rate; a corre-
lation that is assumed under the WPR and found in our
confirmatory analyses, which would, unopposed, cause a
negative correlation between RT and WMC in the form of
the worst performance rule. Acting against this influence,
however, are individual differences in boundary separation
and carefulness that cause a positive correlation between RT
andWMC. Below, we study this alternative interpretation in
more detail.

Results correcting for potential confound

To test whether individual differences in response caution
have confounded the worst performance rule on the raw RT
data, we explore how analyses 1a, 1b, and 2 turn out when
we perform them on ten subgroups with similar response
caution. These ten homogeneous–caution groups were cre-
ated by dividing participants based on the .1, .2, .3, .4,
.5, .6, .7, .8, .9 quantiles of the boundary separation esti-
mates obtained in analysis 4. The results of this analysis
did, however, not yield consistent results either. Only in one
boundary separation bin (the .3 through .4 quantile), and
then again only for easy stimuli, there appeared to be a
decrease of the correlation over quantiles. Thus, accounting
for the potential confound of response caution does not alter
our conclusions about the existence of the WPR on the raw
RT data.

Student vs. non-student participants

In the preregistration document, we foreshadowed
exploratory analyses to study whether the worst perfor-
mance rule would show more reliable for the relatively
homogeneous student-sample, than for the rest of the par-
ticipants. For this exploratory analyses, we repeated the
worst-performance hypothesis tests H1a, H1b, and H2
separately for students (n = 690) and non-students (n =
211, for 15 participants, there was no information available
as to whether they were students or not). As was the case
in the full data set, the analyses for neither the students
sub-sample, nor the non-students sub-sample, yielded note-
worthy evidence in favor of the WPR hypothesis. These
results are available in the online appendix on OSF (https://
osf.io/7dwfy/).

https://osf.io/7dwfy/
https://osf.io/7dwfy/
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General discussion

Summary of results

We tested four main hypotheses to study the worst per-
formance rule. The first two hypotheses concerned the
relationship between working-memory capacity and percep-
tual choice response times. Hypothesis 1, which formalized
the classical WPR hypothesis predicting a negative corre-
lation between working-memory capacity and all quantiles
of perceptual RT that strengthens over the quantiles of
RT, was rejected for both easy and hard perceptual stimuli
(hypotheses 1a and 1b). Even after releasing the order-
constraints on the correlations in our exploratory analyses,
the evidence spoke against the worst performance rule in its
classical form. We also explored the possibility that indi-
vidual differences in response caution had confounded a
true latent WPR. A separate analysis of groups of partic-
ipants with homogeneous response caution did not lead
to different conclusions. Given these results, it is not sur-
prising that the related Hypothesis 2, that the WPR would
hold more strongly for hard than for easy items, was not
supported.

The second set of hypotheses concerned the explana-
tion of the worst performance rule in terms of the diffusion
model’s drift rate. Hypothesis 3 formalized this explana-
tion by predicting a positive correlation between working
memory capacity and the diffusion model drift rate in the
perceptual task. This hypothesis was strongly confirmed for
both easy and hard perceptual stimuli. However, no evi-
dence was found for Hypothesis 4 that stated that working
memory capacity correlates stronger with drift rates for hard
than for easy perceptual stimuli.

Interpretation of results

Our results suggest that the worst performance rule is more
fragile than the literature suggests. Whereas many studies
have reported support for the worst performance rule, our
preregistered analyses revealed evidence for the absence of
the effect. It is also of note that the size of the correlations
between WMC and drift rate are moderate in comparison to
those found in similar studies (e.g., Schmiedek et al., 2007;
Ratcliff et al., 2010, 2011; Schmitz & Wilhelm, 2016). Our
preregistered results were obtained in a large data set and,
to a skeptical by-stander, it may appear that the ubiquity
and robustness of the worst performance rule results in part
from selective reporting and publication bias. This worrying
possibility can only be excluded by additional large-scale
preregistered studies.

Preregistration and blinding

This study reported the first purely confirmatory and unbi-
ased test of the well-studied worst performance rule. To
achieve this goal, we preregistered an analysis plan that was
conditionally accepted for publication in Attention, Percep-
tion, & Psychophysics (Wolfe, 2013). We anticipated that
the required modeling effort would be relatively complex,
and therefore we incorporated a blinding protocol in which
the analyst (author JV) developed the analysis code based
on a version of the data set in which the crucial WMC vari-
able was shuffled. This shuffling prevented JV to alter the
analysis plan in order to achieve desirable outcomes. Our
personal experience with the blinding protocol was highly
positive, as it secured fairness without sacrificing flexibility.

Conclusions

Our results show strong evidence for the claim that the
same underlying processing speed, as quantified by the dif-
fusion model drift rate, underlies perceptual choice and
working memory capacity. Thereby our results support the
theoretical explanation of the worst performance rule. The
worst performance rule itself, however, was absent in our
data. These results raise the question of how ubiquitous the
worst performance rule really is, a question that can only
be addressed by additional studies using preregistration and
blinding.
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