Towards a new assay to investigate
electron transfer in DNA

Inauguraldissertation
zur
Erlangung der Würde eines
Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät
der Universität Basel

von

Stéphanie Saigne

aus Colmar
France

Basel 2005
Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel auf Antrag der Herren Professoren

Prof. Dr. Bernd Giese

Prof. Dr. Andreas Pfaltz

Basel, den 7. Juni 2005

Prof. Dr. Hans-Jakob Wirz
(Dekan)
The work presented herein was initiated and guided by Prof. Dr. B. Giese at the Institute of Organic Chemistry of the Philosophic-Scientific Faculty of the University of Basel, during the period from January 2000 to December 2004.

Excerpts from this work have been presented in the following meetings:

I wish to thank:

Prof. Dr. B. Giese for the challenging problems, the many inspiring discussions and for his continuous support during the realization of this work.

Dr. Nicolas Amiot for his intensive help and for the many stimulating discussions during his postdoctoral time in Basel. Sandra Thöni for her continuous availability and for her help to resolve many technical problems.

Dr. Nicolas Amiot and Sandra Thöni for correcting this thesis.

All members of the Giese group for their help, the nice atmosphere and for the fun during work.

Dr. Klaus Kulicke, Dr. Heinz Nadig and Dr. Werner Kirsch for their analytical measurements.

My family for his invaluable support during the writing of my thesis.
For my parents,
Arnaud and Emilie.
Summary

The aim of this work was to develop a new system to investigate electron transfer in DNA using UV active entities acting as charge acceptor in DNA. The long-range charge transfer in DNA can be viewed as a series of short range hops between the energetically appropriate guanine bases, which have the lowest oxidation potential of all the nucleobases. The total charge transport is considered to be a sequence of single, reversible transfer steps between guanines bases, and these steps are highly distance dependent since the charge is tunelling between donor and acceptor. It is characterized as a super exchange mechanism (Scheme A).

Our project is based on the use of redox-indicators (RI) like ferrocene or phenol as charge acceptor/detector in DNA (Scheme B). The UV transient absorption spectroscopy is used to measure the oxidation of the charge acceptor during electron-transfer. Both compounds ferrocene and phenol have lower oxidation potentials than the guanine ($E_{ox}^\circ = 1.29$ V vs NHE) and possess distinct UV-absorption spectras which should allow us to measure the electron transfer using UV transient absorption spectroscopy. Ferrocenium, the oxidized form of ferrocene, has a characteristic absorption at $\lambda_{max} = 615$ nm such as the phenoxy radical which absorbs at $\lambda_{max} = 410$ nm.59,100

Scheme A: Hopping mechanism and super exchange mechanism

Scheme B: Novel assay to investigate ET in DNA using a redox-indicator covalently linked to the DNA as charge acceptor.
Nanosecond flash-photolysis has been employed to induce the electron transfer in DNA, using the 4’- pivaloyl modified thymidine T* developed in the Giese group as charge injector. This charge injector has the advantage to initiate a localized charge transport from a fixed starting point within the DNA backbone.

Ferrocene was first investigate in a simple D-A system (Scheme C) in order to show that ferrocene can be used as a charge acceptor in electron transfer processes. The first results based on a RP-HPLC analysis of the irradiated products were very promising. They proved that electron transfer occurs from the ferrocene to the radical cation because the ketone, the product of electron transfer was clearly identified on the HPLC chromatogram. However, despite our first hopes, the second series of experiment based on laser flash photolysis and transient absorption spectroscopy measurement shows that ferrocenium could not be detected by UV because of its too low extinction coefficient. The spectroscopic properties of ferrocene can not be used to measure electron transfer using laser flash photolysis and transient absorption spectroscopy in such systems.

Scheme C
Ferrocene as charge acceptor in a simple D-A system
Electron transfer was then investigated in DNA using phenol as charge acceptor. A phenol modified nucleoside was synthesized and incorporated into DNA using fully automated solid-phase synthesis (Figure A).

Figure A Phenol modified nucleoside (R = Me, All, AOC or Ac)

The choice of the phenol protecting group was a key point of the synthesis of the phenol modified nucleoside. The acetyl protecting group appeared to be ideal because it withstooded the nucleoside synthesis conditions, it was compatible with the standard procedures for DNA synthesis and finally it was easily removed during ammonia treatment used to cleave the DNA strand from the solid support (Scheme D). The synthesis of the acetyl protected building block was achieved successfully in 10% yield over 10 steps and its incorporation within oligonucleotides was performed with efficient coupling using standard automated DNA synthesis.

Scheme D The acetyl protecting group strategy for incorporation of the phenol nucleoside into DNA using automated solid-phase DNA synthesis and further ET investigations

Photolysis of single and double strand phenol-labeled oligonucleotides followed by HPLC analysis of the irradiated products demonstrated that phenol is an excellent electron donor. The electron-transfer rates measured in single and double strand experiments are in agreement with the low oxidation potential of the phenol.
Theoretical Part

1 **Introduction** ...1
 1.1 The structure of Deoxyribose Nucleic Acid (DNA) ..1
 1.2 DNA: the storage of the genetic code ...3
 1.3 Oxidative damage to DNA ..4
 1.3.1 The oxidative stress and its consequences ...4
 1.3.2 Electron transfer as cathodic protection against oxidative stress6

2 **Charge transport in DNA** ...7
 2.1 Background ...7
 2.2 Charge injection in DNA ..10
 2.3 Charge migration in DNA ..12
 2.4 Charge transfer detection ..13
 2.4.1 By competition between charge transfer and water trapping reaction13
 2.4.1.1 Gel electrophoresis and phosphorimagery detection13
 2.4.1.2 HPLC detection ...14
 2.4.2 Detection by photochemical methods ...16

3 **Proposal** ..17

4 **Ferrocene as charge acceptor in a simple D-A system** ..19
 4.1 **Introduction** ...19
 4.1.1 The use of ferrocene and its derivatives in chemical and biological systems19
 4.1.2 Incorporation of ferrocene into DNA ..19
 4.1.3 Why ferrocene? ...21
 4.2 **Our project** ..22
 4.3 **Synthesis of the ferrocenyl precursor** ..23
 4.4 **Photolysis experiments** ..26
 4.4.1 HPLC analysis ..26
 4.4.1.1 Synthesis of the electron transfer product as reference27
 4.4.1.2 Blind test ..28
 4.4.2 Laser experiment ..31
 4.5 **Conclusion** ...33
5 Phenol as charge acceptor .. 35
 5.1 Introduction .. 35
 5.2 Our project .. 36
 5.3 Synthesis of the phenol modified nucleoside 37
 5.3.1 Synthesis background ... 37
 5.3.2 Synthesis strategy ... 40
 5.3.3 Synthesis of the anisole nucleoside 41
 5.3.4 Synthesis of the phenol protected nucleoside 44
 5.3.4.1 The anisole approach: cleavage of the methyl ether 44
 5.3.4.2 A new approach: the benzyl approach 46
 5.3.5 Summary ... 49
 5.4 Incorporation of the building blocks into DNA 50
 5.4.1 Usual procedures for oligonucleotides synthesis 50
 5.4.2 Characterization of the modified oligonucleotides 52
 5.4.2.1 The anisole nucleotides .. 52
 5.4.2.2 Deprotection of the phenol nucleotides in DNA 53
 5.4.3 Summary ... 56
 5.5 Investigation of electron transfer using HPLC analysis 57
 5.5.1 Single strand experiments ... 57
 5.5.1.1 Estimation of the $k_{\text{ET,rel}}$ 57
 5.5.1.2 Anisole as electron donor ... 60
 5.5.2 Double strands experiments .. 62
 5.5.2.1 Estimation of the $k_{\text{ET,rel}}$ 62
 5.5.2.2 Comparison with other electron donors 65
 5.5.2.3 Further experiments ... 71
 5.6 Investigation of electron transfer using UV detection of the phenoxyl radical 73
 5.7 Conclusion ... 75
 5.8 Further work and outlook .. 76
Experimental Part

6 Instruments and materials .. 79
 6.1 Physical Data .. 79
 6.1.1 NMR spectroscopy .. 79
 6.1.2 Mass spectroscopy ... 80
 6.1.3 UV-Vis spectroscopy .. 81
 6.1.4 Elemental analysis .. 81
 6.2 Chromatographic Methods .. 82
 6.2.1 Thin Layer Chromatography .. 82
 6.2.2 Flash Column Chromatography ... 82
 6.2.3 High Pressure Liquid Chromatography ... 82
 6.3 Irradiation instruments ... 83
 6.4 DNA instruments ... 84
 6.5 Chemicals and Solvents ... 84

7 General methods .. 85
 7.1 Synthesis ... 85
 7.2 General oligonucleotide procedures ... 85
 7.2.1 Synthesis .. 85
 7.2.2 Purification ... 86
 7.2.3 Unmodified strands .. 86
 7.2.4 Mass analysis .. 87
 7.2.5 Quantification by UV-absorption ... 87
 7.2.6 Hybridization ... 88
 7.2.7 Melting point determination by UV-vis spectroscopy ... 88
 7.2.8 Photolysis .. 88
 7.3 Quantification of the photolysis products by RP-HPLC .. 89
 7.3.1 Ferrocene derivatives photolysis ... 89
 7.3.2 Phenol oligonucleotides photolysis .. 89
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Synthesis of the ferrocenyl derivatives</td>
<td>90</td>
</tr>
<tr>
<td>8.1</td>
<td>Synthesis of the ferrocenyl linker, the 4-Ferrocenylbutanol (49)</td>
<td>90</td>
</tr>
<tr>
<td>8.2</td>
<td>Synthesis of the radical injector (53)</td>
<td>94</td>
</tr>
<tr>
<td>8.3</td>
<td>Synthesis of the ferrocenyl precursor (42)</td>
<td>97</td>
</tr>
<tr>
<td>8.4</td>
<td>Synthesis of the ketone reference (58)</td>
<td>101</td>
</tr>
<tr>
<td>8.5</td>
<td>Synthesis of the phenyl derivatives for the blind test</td>
<td>102</td>
</tr>
<tr>
<td>9</td>
<td>Synthesis of the phenol nucleoside</td>
<td>107</td>
</tr>
<tr>
<td>9.1</td>
<td>The benzyl approach</td>
<td>107</td>
</tr>
<tr>
<td>9.2</td>
<td>The methoxy approach</td>
<td>124</td>
</tr>
<tr>
<td>10</td>
<td>Deprotection of the allyloxycarbonate protected oligonucleotide</td>
<td>135</td>
</tr>
<tr>
<td>11</td>
<td>Oligonucleotide sequences</td>
<td>136</td>
</tr>
<tr>
<td>12</td>
<td>Literature</td>
<td>137</td>
</tr>
<tr>
<td>13</td>
<td>Abbreviations and Acronyms</td>
<td>145</td>
</tr>
</tbody>
</table>
Theoretical Part
1. Introduction

1.1 The structure of Deoxyribose Nucleic Acid (DNA)

DNA is a biopolymer with a pivotal role in biology as the carrier of genetic information in all living species.\(^1\) \(^2\) "This molecule of life" possesses a highly ordered structure which have been originally postulated in 1953 by the pioneers James Watson and Francis Crick.\(^3\)

DNA is composed of repeating subunits (deoxyrinucleotides) and each nucleotide is further composed of a phosphate group, a sugar the 2'-deoxyribose, and a heterocyclic base. Four different bases are found in natural DNA: the pyrimidine bases cytosine (C) and thymine (T) and the purine bases adenine (A) and guanine (G). The linkage of the sugar-phosphate backbone of a single DNA strand is such that there is a directionality. That is, the phosphate on the 5' carbon of deoxyribose is covalently linked to the 3' carbon of the next deoxyribose. This lends a 5'-3' directionality to a DNA strand (Figure 1.1).

![Primary structure of a DNA oligonucleotide](image)

Under physiological conditions DNA exists predominantly as a double helix where the two oligonucleotide strands are coiled around each other around a common axis. The strands are arranged in opposite directions, the strands are thus anti-parallel. The two chains are held together by hydrogen bonds formed between pairs of bases. Pairing is highly specific: Adenine pairs with thymine, while guanine always pairs with cytosine (Figure 1.2). This satisfies Chargoff's rule that the amount of adenine is equal to the amount of thymine (\(A = T\)) and the amount of guanine equal
to the amount of cytosine ($G = C$). Adenine and thymine are connected by two hydrogen bonds while guanine and cytosine are connected by three hydrogen bonds.

![Watson-Crick hydrogen bonding](image)

Duplex DNA can adopt several secondary structures; the most common is the B-form (Figure 1.3). B-DNA features a right-handed double helix in which the hydrophobic base pairs are on the inside of the helix and form a π-stacked core whereas the phosphate and the deoxyribose units are situated on the outside. The planes of the base residues are perpendicular to the helix axis. While the planes of the sugar residues are almost at right angles to those of the bases. The diameter of the helix is 20 Å. Adjacent bases are separated by a stacking distance of 3.4 Å along the helix axis. Hence the helix repeats itself every 10 residues on each chain at intervals of 34 Å.

![The structure of a B-DNA duplex](image)
In addition to hydrogen bridging, the helical structure is substantially stabilized by \(\pi \)-stacking interactions between neighbouring nucleobases. Since the phosphate on the backbone is negatively charged, the DNA is surrounded by positive “counterions”.

Other secondary structures of DNA are the A-and the Z-form. For example, in a solution with higher salt concentrations or with alcohol added some specific sequences such a poly-G :poly-C favor the A-form, which is still right-handed, but makes a turn every 23 Å and there are 11 base pairs per turn.\(^5\)\(^6\) Another DNA structure is called the Z form, because its bases seem to zigzag. Z DNA is left-handed. One turn spans 46 Å, comprising 12 base pairs. The poly-GC : poly-CG DNA sequences in alcohol or high salt solution (> 4M NaCl) tends to have such structure.\(^7\)\(^8\)

Under the experimental conditions of this work we can assume that duplex DNA possesses a B-form structure. The B-form DNA structure is ideal for electron transfer because some of the electron orbitals belonging to the bases overlap quite well with each other along the long axis of the DNA.\(^2\)\(^7\)

1.2 DNA: the storage of the genetic code

Within a gene, the sequence of nucleotides along a DNA strand defines a protein, which an organism is liable to express at one or several points in its life using the information of the sequence.\(^9\) The relationship between the nucleotide sequence and the amino-acid sequence of the protein is determined by simple cellular rules of translation: the genetic code. Reading along the protein-coding sequence of a gene, each successive sequence of three nucleotides (called a codon) specifies or “encodes” one amino acid. Any changes to those instructions can alter the gene's meaning and therefore change the protein that is made (or how or when a cell makes that protein).

In the living cell, DNA undergoes frequent chemical changes, especially during replication. Most of these damages are quickly repaired. Those that are not result in a mutation, increasing the risk of cancer.\(^10\) Numerous damages to DNA are also caused by oxygen radicals.
1.3 Oxidative damage to DNA

1.3.1 The oxidative stress and its consequences

Reactive oxygen species (ROS) are activated oxygen reagents such as hydroxyl radical OH’, superoxide radical O_2^−, hydroperoxide H_2O_2 or singulet oxygen ^1O_2. ROS induce numerous lesions in essential biomolecules, such as lipids, proteins and particularly DNA.\(^{10,11}\)

ROS are products of the oxygen metabolism in all aerobic organisms. ROS are principally generated as a result of energy production from the mitochondria (from the electron transport chain). Environmental agents such as ultraviolet light, ionizing radiation, redox chemicals and cigarette smoke also readily generate ROS.\(^{12}\) The antioxidant defense system in most cells is composed of two components, the antioxidant enzymes (superoxide dismutase, catalase, glutathion peroxidase) and the low molecular weight antioxidants (vitamins A, C and E, glutathion and thioredoxin). These substances are the body's natural defense against endogenous generated ROS and other free radicals, as well as ROS generated by external environmental factors. Oxidative stress occurs when the production of ROS exceeds the body's natural antioxidant defense mechanisms, causing damage in cells notably to DNA. It has been estimated that endogenous ROS can result in about 200 000 base lesions per cell per day.\(^{13,14}\)

Oxidative stress to DNA causes deletions, mutations and other lethal genetic effects.\(^{11,15}\) Characterization of this damage to DNA has indicated that both the sugar and the base moieties are susceptible to oxidation, causing base degradation, single strand breakage, and cross-linking to protein.\(^{16}\) The biological consequences of many of the oxidative products are known. For example, unrepaired thymine glycol, an oxidative product of pyrimidine damage, is a block to DNA replication and is thus potentially lethal to cells.
The guanine base is particularly sensitive to oxidative stress because it has the lowest oxidation potential (1.29 vs NHE) of all the natural nucleobases. Guanine 1 can be oxidized by OH’ attack, by \(^1\)O₂ addition or by electron transfer, which generates for example 8-oxo-7,8-dihydro-2’-deoxyguanosine (G\(^{\text{oxo}}\)) 2 (Scheme 1.1). G\(^{\text{oxo}}\) 2 is readily bypassed by the DNA polymerase and is highly mutagenic because unrepaired G\(^{\text{oxo}}\) will mispair with A, leading to an increase in G to T transition mutations (Scheme 1.2).

![Scheme 1.1](image1.png)

Scheme 1.1 Formation of oxoG by oxidative stress

![Scheme 1.2](image2.png)

Scheme 1.2 Mutation generated into DNA by unrepaired G\(^{\text{oxo}}\)

An other consequence of oxidative stress is the DNA strandbreak. The principal cause of single strand break is oxidation of the sugar moiety by the hydroxyl radical OH’. Oxidative attack by OH’ on the deoxyribose moiety will lead for example to the release of free bases from DNA, generating strand breaks with various sugar modifications and simple abasic sites.
1.3.2 Electron transfer as cathodic protection against oxidative stress

In order to maintain the fidelity of the genetic material, all organisms have evolved many different biological pathways to repair or remove various types of DNA damage, resulting from either endogenous or external DNA reactive agents. The migration of electron holes in DNA has been proposed among these pathways to serve as a protection of the genetic information against oxidative stress.

Oxidation of a guanine leads to the intermediate guanine radical cation \(G^+ \) (\(150 \rightarrow 151 \)) (Scheme 1.3). This \(G^+ \) can initiate a hole migration through the DNA towards a GG-doublet or GGG-triplet (\(151 \rightarrow 152 \)), which is more easily oxidized due to the GG stacks and therefore acts as a thermodynamic sink for the positive charge.

In some organisms sacrificial G-rich DNA sequences presumably protect genes and other essential chromosomal domains against oxidative damage. When an essential element of the genome is attacked by an oxidizing agent, a less essential element of their genome is sacrificed and oxidized through electron transfer. Protection can be provided by an insulating, but very short G-rich single strand (\(\sim 10-18 \) base long) such as the telomeric 3’-overhang located at the termini of chromosomes or by a highly conductive long double strand (\(>103 \) base pair long) such as the long CpG islands found at the 5’-ends of genes in animal chromosomes. These islands consist mostly, or exclusively, as their name indicates, of CG base pairs. Neither the CpG islands nor the telomeric overhangs are transcribed. The sacrificially oxidied domain may have only a protective function.
2. Charge transport in DNA

2.1 Background

The structure and properties of duplex DNA have a special fascination for chemists, materials scientists, and life scientists. The possibility that the one-dimensional array of \(\pi \)-stacked base pairs in B-DNA might serve as a pathway for charge migration was suggested over 40 years ago by Daniel Eley and D.I.Spivey,\(^{27} \) soon after Watson and Crick discovered the double-helix structure.\(^{3} \)

Interest in DNA electron transfer has been spurred by its relevance to oxidative damage and repair mechanisms in DNA as shown before (Chapter 1.3) and by its potential applications in molecular electronics.

During the last decade hole transport in DNA has been extensively investigated by several different photochemical methods.\(^{28,29,30} \) The principle behind these experiments is straightforward (Scheme 2.1). A photoactivated oxidant, covalently linked or intercalated to the DNA, captures an electron from a neighboring nucleobase, with preference from a guanine because guanine has the lowest oxidation potential of the four DNA bases (1.29 V vs NHE)\(^{17} \) (153→154) and a guanine radical cation \(G^+ \) is generated in the core of the DNA. This electron-loss center ultimately ends up at G residues via hole migration through the DNA duplex (154→155).\(^{31,32,33} \)

![Scheme 2.1 General method for charge transport in DNA](image)

\(G \)

Charge injection

\(G^+ \)

Hole migration

\(G \)
Initial studies on electron transfer through DNA employed randomly intercalated metal complexes (ruthenium) as excited acceptors and either a second intercalator, nucleobase, or modified nucleobase as the donor. Uncertainty concerning the donor-acceptor separation has made the interpretation of these studies problematic. Then, several different chromophores were developed which are tethered to the end of an oligonucleotide and are proposed to intercalate between base pairs near the end of the duplex. Fukui and Tanaka employed DNA-acridine conjugates in which the acridine is proposed to substitute for a base pair upon hybridization with a complementary oligonucleotide. Both end-tethered and mid-strand-tethered anthraquinone chromophores have been employed by Schuster and coworkers. More recently, Kelly and Barton have investigated the interaction of fluorescent nucleobase analogues of adenine with donor nucleobases. Our approach in the Giese group is fundamentally different since we employ a photocleavage reaction to irreversibly generate a guanine radical cation which can undergo hole transfer to a trap site consisting of three guanines in the same strand (a GGG unit).

The intense discussion of results obtained is centered around the β-value of the Marcus-Levich-Jortner correlation (Eq. 2.1) that describes the exponential influence of the donor-acceptor distance (Δr) on the electron transfer rate (k_{ET}) in a single-step process.

$$k_{\text{ET}} \propto e^{-\beta \Delta r} \quad \text{(Eq. 2.1)}$$

The β-value characterizes the extent of the distance dependence and varies with the nature of the donor-bridge-acceptor (D-B-A) system. Depending on the experiment, β-values between 0.1 and 1.4 Å$^{-1}$ have been reported for DNA double strands. These differences in β-values demonstrate dramatic divergent effects of the distance on the electron-transfer rate. It was possible to explain the contradictory results regarding the range and rate of the electron transfer by a new model: the hopping model. In this model, the long-range charge transfer in DNA can be viewed as a series of short range hops between energetically appropriate guanine bases (Scheme 2.2 A). The total charge transport is considered to be a sequence of single, reversible transfer steps between guanines bases, and these steps are highly distance dependent since the charge is tunelling between donor and acceptor.
The bridge (AT base pairs <4) is not oxidized or reduced during this process. It is characterized as a super exchange mechanism (Scheme 2.2 B). The hopping mechanism has been intensively studied in the Giese group using the Giese charge injection system.42,43,44

\begin{align*}
\text{A) hopping mechanism:} & \quad 5' - G^+ - A - C - G - T - C - T - G - A - C - T - G - G - G \\
& \quad 3' - C - T - G - C - A - G - A - C - T - G - A - C - C - C
\end{align*}

\begin{align*}
\text{B) super exchange mechanism:} & \quad 5' - G^+ - A - T - G - G - G - G \\
& \quad 3' - C - T - A - C - C - C - C
\end{align*}

\textit{Scheme 2.2} \quad \textit{A) The ET hopping mechanism. B) The ET super exchange mechanism}

Recently a new model was developed in the Giese group to explain the electron transfer over long (A-T)\textsubscript{n} sequences: the A-hopping model (Scheme 2.3). This new model takes into consideration the oxidation of adenine and involves adenine as charge carriers.146,147

\begin{align*}
\text{A-hopping model:} & \quad 5' - G^+ - T - T - T - T - C - T - G - G - G \\
& \quad 3' - C - T - T - T - T - C - C - C - C
\end{align*}

\textit{Scheme 2.3} \quad \textit{The A-hopping model}
2.2 Charge injection in DNA

Different radical injectors were developed in the Giese group in order to investigate charge transport through DNA (Fig. 2.1).42,43,44 These radical injectors are photolabile modified nucleosides which are incorporated into DNA and which generate a C4'-deoxyribosyl radical cation upon irradiation. This method has the advantage to offer a unique opportunity to induce a localized charge transport from a fixed starting point within the DNA backbone and with little disruption of the DNA shape.45

![Figure 2.1](image)

Figure 2.1 Radical injectors of the Giese group that can generate C4'-ribose radical cations

The pivaloyl modified injector 6 is the most efficient one upon irradiation with a 320 nm cut-off filter. At this wavelength the homolytic cleavage of the C4' bound occurs with high yield and the nucleobases of the DNA are not damaged. In this work, we will use the C4'-pivaloyl substituted thymidine nucleotide T* 6a as charge injector.

Photolysis of a DNA strand 7 containing T* (6a) leads via Norrish Type I cleavage to the C4'-riboradical 8 (Scheme 2.4).42 Norrish Type I cleavage of ketones or aldehydes is an homolytic cleavage originating from their excited nπ* state. Cleavage of the excited carbonyl compound leads to an acyl-alkyl radical pair which generates another alkyl radical and carbon monoxide through decarbonylation. The more stabilized the generated radical the easier is the α-cleavage. Therefore tert-butylketone does lend itself for Norrish Type I reactions.46 The semi occupied orbital of 8 destabilizes the adjoining 3'-C-O bound which undergoes rapid heterolytic 3' β-elimination forming selectively the strand break product C4'-radical cation 9 and 5' phosphate 10. This mechanism has been confirmed by numerous experimental and theoretical studies.47,48
The radical cation 9 has several reaction possibilities (Scheme 2.5). It can be trapped by nucleophiles such as water leading to the 3’ phosphate 14 and the ketoaldehyde 16. Or, more importantly, the radical cation 9 is a strong oxidant (E° = 1.29-1.44 V vs NHE) that can react with electron donors to give the enol ether 11.31,39
2.3 Charge migration in DNA

As stated before, a guanine base within the DNA strand preferentially acts as an electron donor and reduces the radical cation 9 to the enol ether 11 (156→157) (Scheme 2.6). The initial charge transfer from guanine to the sugar radical cation 9 is due to the low oxidation potential of this base ($E^\circ_{\text{ox}} = 1.29$ V vs NHE17). The efficiency of this charge transfer depends on the distance between the radical cation 9 and the guanine base. The resulting guanine radical cation G^+ can then initiate electron transfer through DNA mediated by guanine bases (157→158). A triple GGG unit was used as a thermodynamic sink for the positive charge (158→159).23

![Diagram of charge migration in DNA](image)

Scheme 2.6 Charge migration in DNA through the guanine bases

One of the side reactions that occurs during charge transfer is the addition of water to the sugar radical cation49 (Scheme 2.5) or to the guanine radical cation. 50 This leads to oxidatively modified nucleotide fragments. This competition reaction between charge transfer and water addition has been used for the detection of the electron transfer and for the measurement of its efficiency in DNA.
2.4 Charge transfer detection

2.4.1 By competition between charge transfer and water trapping reaction

2.4.1.1 Gel electrophoresis and phosphorimagery detection

For analytical reasons the positive charge of the first formed \(\text{G}^+ \) is transferred to an adjacent \(\text{G} \) of the complementary strand 17 which is \(^{32}\text{P} \) radiolabeled at its 5’-end (Scheme 2.7). Water addition on \(\text{G}^+ \) leads to an oxidatively modified guanine, the oxoguanine that can be cleaved off selectively by base treatment.\(^{50-52} \) Once the charge arrives on the triple GGG it is trapped by nucleophilic addition of water.\(^{31} \) Hot piperidine is used to cleave the DNA strand at the oxoguanine site. This cleavage yields the corresponding \(^{32}\text{P} \)-labeled fragments that can be analyzed and quantified by gel electrophoresis and phosphorimagery.

![Diagram of the process](https://example.com/diagram.png)

Scheme 2.7 Charge detection by water addition and piperidine treatment followed by gel electrophoresis and phosphorimagery
The relative electron transfer rate \((k_{ET,\text{rel}}) \) is given by the ratio (Eq. 2.2) between the rates of the electron transfer reaction \((k_{ET}) \) and water addition \((k_{H2O}) \) because of first-order or pseudo first-order conditions (excess of \(H_2O \)):

\[
k_{ET,\text{rel}} = \frac{k_{ET}}{k_{H2O}} \propto \frac{22 + 23}{25} \tag{Eq. 2.2}
\]

2.4.1.2 HPLC detection

We have seen that charge transfer \((9\rightarrow11) \) competes with water reaction that leads to 3'-phosphate 14 and ketoaldehyde 16 (Scheme 2.8). This competition between water addition \((9\rightarrow14+16) \) and electron transfer \((9\rightarrow11) \) can be used to determine relative rates for the electron transfer from an electron donor (e.g. guanine) to the sugar radical cation 9 by means of the competitive reaction kinetic procedure. The yields of the different fragments 10, 11, 14 and 16 were obtained by RP-HPLC analysis of the irradiated solution (Figure 2.2).

![Scheme 2.8: Competition between ET and H2O addition to radical cation 9](image)
A typical RP-HPLC chromatogram of the irradiated solution containing both electron transfer and water addition products is shown below (Figure 2.2). Once isolated, all the products were characterized by mass spectroscopy (MALDI-ToF-MS).

![Typical HPLC chromatogram of the irradiated solution containing both electron transfer and water addition products](image)

Figure 2.2 Typical HPLC chromatogram of the irradiated solution containing both electron transfer and water addition products

During a complete conversion of the radical cation 9 to enol ether 11 and water addition products 14 and 16 the relative electron transfer rate could be given by the ratio:

$$k_{ET,rel} = \frac{k_{ET}}{k_{H2O}} \propto \frac{[\text{enol ether } 11]}{[3'- \text{ phosphate } 14] + [\text{keto-aldehyde } 16]} \quad \text{Eq. 2.3}$$

However, because of first-order or pseudo first-order conditions (excess of H$_2$O) the ratio between the rates of the electron transfer reaction (k_{ET}) and all other trapping reaction like the water addition (k_{H2O}) is also given by the concentration ratio:

$$k_{ET,rel} = \frac{k_{ET}}{k_{H2O}} \propto \frac{[\text{enol ether } 11]}{[5' - \text{ phosphate } 10] - [\text{enol ether } 11]} \quad \text{Eq. 2.4}$$

Under the assumption that the competing reactions are not dependant upon the nucleotide sequence, we used the ratio k_{ET}/k_{H2O} as the relative rate $k_{ET,rel}$ of the electron transfer step.48 It is important to note that in contrast to photoinduced electron transfer studies, in our ground state experiments the electron transfer is irreversible, there is no back electron transfer.
Both methods based on competitive kinetic reaction between electron transfer and water addition have the advantage to mimics the natural conditions of DNA reactions in a living cell.

2.4.2 Detection by photochemicals methods

Other methods also exist for the study of charge transport in DNA. In most of these studies the rates were determined by fluorescence quenching of photoactivated metal complexes or aromatic compounds intercalated into DNA.\(^{29a,53}\) Measurements of electron transfer-rate by fluorescence quenching often yield more than one rate for the electron transfer through DNA. This is interpreted as a result of the reactions of different conformations or, alternatively, as competing side reactions that have nothing to do with the electron transfer through DNA. EPR and transient absorption spectroscopy were also employed to detect radical intermediates in flash-quench studies of charge transfer through DNA.\(^{144}\) The flash-quench technique was originally developed to explore charge transport in proteins.\(^{56}\) but has been applied effectively to DNA systems. However the DNA systems used in these studies present the disadvantage that either the electron donor or the electron acceptor were intercalated complexes, which might perturbe the DNA.
3. Proposal

In order to decipher the elementary steps and the mechanism of electron transfer, one has to directly measure the dynamics in real time and in suitably designed, structurally well characterized DNA assemblies. As stated before, transient absorption spectroscopy can be used to directly observe the formation and decay of the radical ion intermediates in photoinduced electron transfer processes. Such measurements have been routinely employed to determine the kinetics of charge separation and charge recombination in synthetic D-B-A systems and in proteins, they also aid in the assignment of multiple decay components to specific species.54,55

Our approach to the kinetic investigation of electron transfer through DNA is based on the use of an unnatural redox-active nucleotide 26 or 100 (Figure 3.1) acting as charge detector when incorporated into DNA. Both artificial building blocks 26 and 100 have lower oxidation potentials than the guanine17 and would therefore also be oxidized during the electron transfer process (scheme 3.1). We plan to use transient absorption spectroscopy in order to monitor the formation of the oxidized redox-indicators (RI) 26 or 100 in DNA because both compounds possess also distinct UV-absorption spectra. The long-range charge transport through DNA would also be measured more precisely using optical methods. Nanosecond flash-photolysis shall be employed to induce the electron transfer in DNA, using the 4’-pivaloyl modified thymidine T* as charge injector. This charge injector has the advantage to initiate a localized charge transport from a fixed starting point within the DNA backbone.45

Scheme 3.1 Novel assay in kinetic investigation of ET through DNA using a redox-indicator covalently linked to the DNA, which can be detectable by transient UV-spectroscopy
We chose to carry out our experiments with ferrocene and phenol as redox-indicators since both have lower oxidation potential than the guanine \((E^\circ_{\text{ox}} = 1.29 \text{ V vs NHE})\).\(^{17}\) The oxidation potential of ferrocene was found to be \(E^\circ_{\text{ox}}(\text{Fc}^{2+}/\text{Fc}^{3+}) = 0.40 \text{ V vs NHE}\) in acetonitrile\(^{57}\) and that of phenol \(E^\circ_{\text{ox}}(\text{PhOH} / \text{PhOH}^{+}) = 0.86 \text{ V vs NHE}\).\(^{141}\) Moreover ferrocenium, the oxidized form of ferrocene, has a characteristic absorption at \(\lambda_{\text{max}} = 615 \text{ nm}\)\(^{58}\) such as the phenoxy radical which absorbs at \(\lambda_{\text{max}} = 410 \text{ nm}\).\(^{59,100}\)

![Figure 3.1](image)

Figure 3.1 Building blocks containing the redox-indicators ferrocene (26) or phenol (100). \(R\) is a protecting group which has to be removed once building block 100 is incorporated into DNA.

We thus intended to synthesize modified nucleotides containing ferrocene 26 or phenol 100 and to examine, first in simple D-A systems, if these redox indicators can act as charge traps. If this proved successful we will incorporate the modified nucleotides into DNA and examine the subsequent charge transport. The following work consists of two parts, a first part about ferrocene as charge acceptor in a simple D-A system, and a second about phenol as charge acceptor in DNA.
4. Ferrocene as charge acceptor in a simple D-A system

4.1 Introduction

4.1.1 The use of ferrocene and its derivatives in chemical and biological systems

Investigations of photoinduced electron transfer processes in biological systems such as DNA and proteins or in many chemical redox systems such as self assembled monolayers as well as the development of DNA hybridization probes and electrochemical sensors have employed a numerous of transition-metal complexes. These includes ruthenium, osmium, rhodium, copper and iron complexes. Ferrocene, most particularly, was often used as electrochemical probe for the detection of DNA sequences. DNA hybridization can be detected by changes in electrochemical voltage through the redox-active ferrocene that behaves differently in the presence of a DNA hybrid than it does in the presence of a single strand. Ferrocene was also employed to measure the electron transfer rate using voltammetry in series of ferrocene–based monolayers (alkane, phenylethynyl) attached on gold electrode via thiol groups. Ferrocene derivatives have thus emerged as strong candidates for molecular electronic devices and electro optical materials.

4.1.2 Incorporation of ferrocene into DNA

Several methods for incorporating a ferrocene moiety into DNA exist. Fc-containing DNA oligonucleotides have been prepared, in which the ferrocenyl group is either linked to the N-3 position of a thymine base or conjugated to the nucleobase of deoxyuridine through an unsaturated bond or attached to the 2′ position of the ribose ring through a butoxy linker (Figure 4.1).
The incorporation of a ferrocenyl residue into oligodeoxyribonucleotides has been also achieved by coupling a ferroceny1-phosphoramidite derivative 31 with the 5'-OH end of an oligonucleotide chain or by condensation of an activated ester of ferrocene-carboxylic acid 33 with the 5'-amino modified end of an oligodeoxyribonucleotide chain 34 (Scheme 4.1). A key advantage in those procedures is that, by attaching a conjugating molecule at the 5'-terminus of an oligomer, no modification in the standard automated solid-phase synthesis protocols has to be introduced.

Scheme 4.1 Other methods for incorporating ferrocene into DNA
4.1.3 Why ferrocene?

The advantages of a ferrocene-based approach to investigate electron transfer are:

- Ferrocene is a unique class of one-electron donor due to its well-established robust and reversible redox couple. Ferrocene and the corresponding ferrocenium salt differ from most other complexes since the central iron atom assumes the oxidation state +2 in ferrocene and the oxidation state +3 in ferrocenium ion. They contain two cyclopentadienyl rings in a sandwich-arrangement, so that the iron atom is highly bound and can scarcely participate in further coordination bindings.\(^{75}\)

- The oxidation potential of ferrocene \((E_{\text{ox}}^0 = 0.40 \text{ V vs NHE in acetonitrile})\)^{57} is lower than the oxidation potential of guanine \((E_{\text{ox}}^0 = 1.29 \text{ V vs NHE})\).\(^{17}\)

- Ferrocene has a high degree of chemical and thermal stability (e.g. to air and water).\(^{58}\)

- Ferrocene is also an attractive probe because of its convenient synthetic chemistry: it is amendable to standard organic transformations, in particular typical coupling and protection/deprotection chemistry.

- Ferrocene possesses a unique spectroscopic property that should enable its sensitive and specific detection in a complex biological environment (Absorption of ferrocene: \(\lambda_{\text{max}} = 440 \text{ nm} \) and ferrocenium: \(\lambda_{\text{max}} = 615 \text{ nm})\).\(^{58}\)

- The redox potential can be easily tuned over a wide range by the choice of substituents on the rings of the ferrocene moiety.\(^{76}\) Electron-donating groups, such as alkyls, shift the redox-potential of ferrocenyl derivatives to lower potential,\(^{69,70}\) while electron-withdrawing groups such as carbamyls shift the redox potential to higher values.\(^{67,68,80}\)
4.2 Our project

We plan to use ferrocene as redox-indicator to measure electron transfer through DNA as depicted in Scheme 4.2. Ferrocene is incorporated into DNA together with the charge injector T*. Upon irradiation at $\lambda \geq 308$ nm, a radical cation is generated on the charge injector (163→164) resulting from a Norrish type I cleavage of the pivaloyl group, followed by a spontaneous 3'-elimination (see Scheme 2.4 p. 11) and charge migration is initiated. We expect the positive charge to migrate towards ferrocene (164→165) which should be a thermodynamic sink for the positive charge\(^{57}\). Ferrocene (+2) would thus be oxidized to ferrocenium (+3) and we intend to detect this oxidation using transient absorption spectroscopy.

![Scheme 4.2](image.png)

Scheme 4.2 Electron transfer detection using ferrocene

In order to test the principle before applying it to the DNA, a simple system 42 was designed, in which ferrocene is linked to a photolabile radical injector (Scheme 4.3). Irradiation of 42 at $\lambda \geq 308$ nm generates the radical cations 44 via Norrish type I cleavage and subsequent β-elimination of the phosphate leaving group.\(^{82}\) This radical cation has strong oxidizing properties.\(^{83}\) We expect it to oxidize ferrocene (+2) to ferrocenium (+3) (44→45) and we intend to follow this process by transient absorption spectroscopy. Since ferrocenium has an absorption maximum at 615 nm\(^{58}\), the absorbance at this wavelength will be monitored in order to obtain kinetic information about electron transfer in system 42. If this experiment proves successful, ferrocene will then be used as redox-indicator in DNA systems.
4.3 Synthesis of the ferrocenyl precursor

The ferrocenyl precursor 42 was synthesized via a 10 steps procedure. In the first step ferrocene 36 is reacted with succinic anhydride using Friedel–Craft’s catalyst AlCl₃ to provide the ketoacid 46 in 58% yield (Scheme 4.4).²⁹ Ketoacid 46 was then reduced with tetrabutylammonium borohydride and ZnCl₂ using a mild Clemmensen type reductive deoxygenation to furnish the acid 47.³⁴ The carboxylic acid function which could not be directly reduced to the corresponding alcohol was first esterified with methanol in the presence of para-toluene sulfonic acid and thereafter reduced under suitable conditions by reaction with LiAlH₄.
The synthesis of compound 50 has been developed in the Giese group. The tetrahydropyran protecting group seemed to be a good choice for the orthogonal protecting group strategy required in the following synthesis (Scheme 4.5) because it can selectively be introduced and removed under mild acidic conditions. Protection of the primary alcohol function of 50 with dihydropyran catalysed with pyridinium paratoluene sulfonate gives compound 51 which was then converted to the methylether 52 by treatment with trifluoromethane sulfonic acid methyl ester. The ester function of compound 52 was saponified in the presence of lithium hydroxid to afford the carboxylic acid 53 in good yield.
In order to get the target compound 42 we have to coupled the alcohol 49 with the carboxylic acid 53 (Scheme 4.6). Alcohol 49 reacted with carboxylic acid 53 in presence of EDC and DMAP as catalyst to provide the desired ferrocenylester 54 in good yield.90,91 The tetrahydropyranosyl protecting group was then removed under mild acidic conditions87 to afford alcohol 55 and a suitable phosphate group was incorporated to give the photolytically active phosphorylated monomer 42.92 This resulting conjugate containing both ferrocene and radical injector is now suitable for irradiation experiments in order to examine the charge transfer in our system.
4.4 Photolysis experiments

4.4.1 HPLC analysis

HPLC analysis was used as a first simple method to examine if ferrocene can act as an electron donor in system 42. We hope by this way to detect the formation of the enol ether 45 which is the product of the electron transfer reaction. The irradiation of compound 42 was attempted using a mercury high pressure lamp with a 305 nm cut-off filter, under argon in acetonitrile (10^{-5} M) (Scheme 4.7). The photolysis solution was analyzed by RP18-HPLC and the products were identified by ESI-mass spectrometry if possible.

![Scheme 4.7](image.png)

Scheme 4.7 Photolysis of the ferrocenyl precursor

The result as expected shows that enol ether 45 was formed under above experimental conditions but it is rapidly converted in presence of water to ketone 58 which has a retention time of 5.3 min. (Figure 4.2). Ketone 58 was obtained in 15% yield. The product was quantified by using an internal standard (see Experimental Part 7.3.1).
4. Ferrocene as charge acceptor

By longer irradiation time (≥15 min), the ketone 58 can undergo further Norrish Type I reaction to give product 56 (Scheme 4.8) but this product was not observed in our case.

Scheme 4.8 Norrish Type I reaction of ketone 58.

4.4.1.1 Synthesis of the electron transfer product as reference

A product verification was made by co-injecting the independently formed ketone 58 with the irradiated solution of 42 into the RP18-HPLC. Ketone 58 was easily synthesized by coupling the previously synthesized ferrocenyl butanol with the commercial 6-oxoheptanoic acid (Scheme 4.9).

Scheme 4.9 Synthesis of the ketone reference
The co-injection of the synthesized ketone 58 confirmed its existence as electron transfer product by the presence of only one peak at 5.3 min with only one mass (m/z = 384) on the chromatogram.

The formation of ketone 58, despite of its low yield, gives us a strong evidence that electron transfer occurs from ferrocene to radical cation 44 (see Scheme 4.3 p. 23). However in order to be sure that the electron comes really from ferrocene, we had to replace the ferrocene by a phenyl moiety that can not act as an electron donor as reported below.

4.4.1.2 Blind test

Compound 62, in which the ferrocene group has been replaced by a phenyl group was synthesized and subjected to the same irradiation conditions as compound 42 (Scheme 4.10). The phenyl group cannot be an electron donor so it should not generate electron transfer product in this case.

![Scheme 4.10](image)

Scheme 4.10 *Photolysis of the phenyl derivate 62 as blind test*

Compound 62 was synthesized following the procedures used for compound 42 (Scheme 4.11). Phenylbutanol 59 was reacted with carboxylic acid 53 in presence of EDC and DMAP to afford compound 60 which was further deprotected and converted to the corresponding phosphorylated product 62.
In case that electron transfer occurred in system 62, the electron transfer product should be the ketone 64. Thus, the ketone 64 was synthesized (Scheme 4.12) and injected into the RP18-HPLC as a reference (Figure 4.3B).

Compound 62 was irradiated under the same irradiation conditions as compound 42 (under argon with mercury high-pressure lamp with a 305 nm cut-off filter) in acetonitrile (10⁻⁵M). The sample was analyzed by RP18-HPLC (Figure 4.3A) and the products were identified by ESI-mass spectrometry. A product with a retention time of 2.1 min (m/z = 308) was isolated but, as expected, the ketone 64 which has a retention time of 3.8 min (m/z = 276) (Figure 4.3B) was not observed on the chromatogram. A product verification was made by co-injecting the independently formed ketone 64 into the RP18-HPLC.
4. Ferrocene as charge acceptor

These results prove, first that there is no electron transfer in a system like 62, when ferrocene is replaced by a non-electron donating group and second, that the electron transfer observed in system 42 is due to ferrocene. According to the literature it is assumed that electron transfer occurs via an intermolecular process in compound 42 by low concentrations (10^{-5} M). We can therefore conclude that ferrocene can be use as an electron donor in such photolysis experiments and although the yield of the electron transfer product is quite small, these results give us the opportunity to take the next step. We intend to use the spectroscopic properties of ferrocene to investigate electron transfer in system 42 using laser irradiation followed by transient absorption spectroscopy.

4.4.2 Laser experiment

The light-induced charge transfer in model system 42 was investigated using nanosecond flash photolysis (XeCl-excimer laser, $\lambda = 308$ nm). In this way we attempt to detect spectroscopically the oxidation of ferrocene (2) to ferrocenium (3) resulting from the electron transfer from the ferrocene to the induced radical cation (Scheme 4.13). Absorbance at 615 nm was monitored in order to obtain kinetic information about electron transfer.

![Scheme 4.13](image)

Scheme 4.13 Light-induced electron transfer in model system 42 using laser spectroscopy

Before starting the laser experiment with system 42 we first studied ferrocene 36 alone to be sure that no absorption could interfere at the detected wavelength (Scheme 4.14). A 8 mM solution of ferrocene 36 in acetonitrile was irradiated at 308 nm. As expected, no absorption was observed for irradiated ferrocene at 615 nm.

![Scheme 4.14](image)

Scheme 4.14 Laser irradiation of ferrocene
In order to examine if electron transfer can be monitored through the oxidation of ferrocene to ferrocenium, system 42 was subjected to laser irradiation. Experiment consists of dissolving the compound 42 in degassed acetonitrile in order to obtain a 8 mM solution which was irradiated under argon with a XeCl-excimer laser at 308 nm. The reaction was observed at wavelength 615 nm corresponding to the absorbance maximum of ferrocenium.

![Figure 4.4](image)

Figure 4.4 A) Absorbance spectrum of compound 42. B) Time-resolved transient absorption at 615 nm for compound 42

The spectrum shortly after the laser flash shows no transient absorption at 615 nm. A second series of laser irradiation were carried out but the transient absorption of the ferrocenium part was never detected probably because of the low extinction coefficient of ferrocenium. Extinction coefficient was found to be only $\varepsilon = 420 \text{ M}^{-1}\text{.cm}^{-1}$ for ferrocenium and $\varepsilon = 100 \text{ M}^{-1}\text{.cm}^{-1}$ for ferrocene.57,58 Considering these low extinction coefficients, the OD max for the transient absorption of ferrocenium in compound 42 was estimated to be in range of 0.004 when using such a laser (100mJ/pulse). This absorbtion is quite too small to be detectable.
4.5 Conclusion

The experiments in this chapter were carried out in order to show that ferrocene can be used as a charge trap in electron transfer processes and with the aim to use ferrocene as redox indicator for kinetic measurement of electron transfer, notably in DNA. The first results based on a RP-HPLC analysis of the irradiated products were very promising. They proved that electron transfer occurs from the ferrocene to the radical cation because enol ether, the product of electron transfer was clearly identified on the HPLC chromatogram. However, despite our first hopes, the second series of experiment were disappointing. The spectroscopic properties of ferrocene cannot be used to measure electron transfer using laser flash photolysis and transient absorption spectroscopy because of the too low extinction coefficient of the ferrocenium.57,58

Another system using phenol as charge trap was therefore developed to measure electron transfer in DNA. The outcome of these experiments are discussed in the following chapter.
5. **Phenol as charge acceptor**

5.1 **Introduction**

Phenolic compounds such as anisol, p-cresol, tyrosine or tyrosylglycine have generated much interest, mainly due to their role as antioxidants in important biological and industrial processes. The mechanism of their action as antioxidants is primarily due to their ability to scavenge radicals by hydrogen abstraction or any electron transfer processes. Consequently, they are converted into phenoxy radicals.\(^94\)\(^-\)\(^99\) In this respect, because of their low ionization potential, phenols are solutes with good electron donor properties.\(^141\) Early studies of phenols revealed phenoxy radicals as the first observable products of one-electron-transfer oxidation.\(^100\)

The tyrosyl radical \(^65\) (Figure 5.1) for example which is employed by nature for radical transport reactions in ribonucleotide reductase and in photosystem II,\(^102\),\(^103\) can also be used as redox site to determine kinetics of charge separation and charge recombination in proteins using transient absorption spectroscopy.\(^59\) The kinetic of electron transfer through oligopeptides was investigated in the Giese group on different systems comprising a tyrosine as charge acceptor connected to a photolabile radical injector.\(^104\),\(^105\) The electron transfer rate was determined by the direct observation of the transient absorption of the tyrosyl radical.

![Figure 5.1](image)

Figure 5.1 The tyrosyl radical
5.1 Our project

Based on these results we decided to use the UV properties of the phenoxyl radical to measure the rate of electron transfer in the DNA. Our project consists in incorporating a phenol moiety into DNA through a modified nucleoside \textbf{100} (Figure 5.2). R is a protecting group which has to be removed once building block \textbf{100} is incorporated into DNA.

![Phenol modified nucleoside (R = Me, All, AOC or Ac)](image)

Phenol possesses an oxidation potential ($E^{\circ}_{\text{ox}} = 0.86$ V vs NHE)141 which is considerably lower than the oxidation potential of the guanine ($E^{\circ}_{\text{ox}} = 1.29$ V vs NHE)17 and should therefore be oxidized to the phenoxy radical during the electron transfer process. The phenoxy radical has a characteristic absorption at $\lambda_{\text{max}} = 410$ nm and its molar extinction coefficient was found to be about 2.8×10^3 M$^{-1}$ cm$^{-1}$ at 410 nm.59,100

The principle is straightforward. The phenol modified nucleoside is incorporated into DNA together with the charge injector T* and the subsequent strands are irradiated at $\lambda \geq 308$ nm (Scheme 5.1). Upon irradiation at this wavelength, a radical cation is generated on the charge injector (170\rightarrow171) resulting from a Norrish type I cleavage of the pivaloyl group, followed by a spontaneous 3'-elimination (see scheme 2.4 p.11). We expect the positive charge to migrate through DNA towards the phenol moiety (171\rightarrow172). In a proton-coupled electron transfer (PCET) reaction106,107 the phenoxy radical will be formed (172\rightarrow173). Thus, we intend to detect the transient absorption of the phenoxy radical at 410 nm in order to obtain kinetic information about electron transfer.
The synthesis of the phenol modified nucleoside 100 and its direct incorporation into oligonucleotides are described below.

5.3 Synthesis of the phenol modified nucleoside (100)

5.3.1 Synthesis background

Kool has demonstrated that certain aromatic compounds like aryl C-nucleosides can function as artificial building blocks in DNA. For example, phenyl C-nucleosides can serve as replacements for natural pyrimidine nucleosides. Moreover, the aryl C-nucleosides maintain the ability for aromatic stacking.
Despite the relatively straightforward structures of such compounds, efficient methods for the synthesis of simple aryl C-nucleosides are scarce. The key synthetic issue is the incorporation of the aryl moiety in the β-configuration, which mimics the anomic stereochemistry of natural nucleosides. Previously, the most common method for the synthesis of aryl C-nucleosides involves the reaction of diarylcadmium or diarylzinc with 1,2-dideoxy-3,5-di-O-p-toluoyl-α-1-chloro-D-ribofuranose 66 (the so-called Hoffer’s α-chlorosugar) (Scheme 5.2).\(^{109,111,112}\)

Unexpectedly, these substitution reactions do not proceed with inversion but yield the α-anomer 67 as the major product in moderate yield. Although the α-anomer 67 could be equilibrated under acidic conditions to a mixture favoring the β-anomer 68, the yields of β-anomer reported using this method are almost too low.\(^{112}\)

\[
\begin{array}{c}
\text{(66)} \quad \text{p-TolO} & \quad \text{O} & \quad \text{H} & \quad \text{p-TolO} \\
\text{Cl} & \quad \text{Ar} & \quad \text{Cd} & \quad \text{Ar} \\
\end{array}
\]

\[
\begin{array}{c}
\text{Ar}_2\text{Cd} \\
\text{major product} \\
\text{minor product} \\
\end{array}
\]

Scheme 5.2 \hspace{1cm} \text{Diarylcadmium coupling method for synthesis of aryl C-nucleosides}

Kraus et al\(^{113}\) and Krohn et al\(^{114}\) reported a method for the synthesis of 1,2-dideoxy-β-1-phenyl-D-ribofuranose 73 based upon the addition of phenyllithium to a protected D-ribono-1,4-lactone 69 followed by stereoselective reduction of the resulting hemiacetal (Scheme 5.3).

\[
\begin{array}{c}
\text{(69)} \quad \text{RO} & \quad \text{O} & \quad \text{CO} & \quad \text{OR} & \quad \text{OR} \\
\text{RO} & \quad \text{OR} & \quad \text{OR} & \quad \text{OR} \\
\end{array}
\]

\[
\begin{array}{c}
\text{1) Li} \\
\text{2) Et}_3\text{SiH, BF}_3\text{OEt}_2 \\
\text{(73)} \\
\end{array}
\]

Scheme 5.3 \hspace{1cm} \text{Lithium coupling method for synthesis of aryl C-nucleosides}
The lithium coupling approach has been applied by Matulic-Adamic, Beigelman, and coworkers115 to the syntheses of aryl C-2’-deoxyribonucleosides. However, it appeared that this method could not be successfully extended to the deoxyribose series because of the \(\beta\)-stereoselectivity in the absence of a 2’-substituent. (Scheme 5.4).

![Scheme 5.4](image)

Scheme 5.4 Lack of \(\beta\)-stereoselectivity of the lithium coupling method for synthesis of aryl C-2’-deoxyribonucleosides

Presumably, this reaction proceeds through a 1’-carbocation intermediate 72 with delivery of the hydride from the \(\alpha\)-face (Scheme 5.5). The \(\alpha\)-2’-substituent could assist the approach of the silane from the more hindered face by control of the conformation of the ribofuranosyl ring or by direct interaction with the silicon center. So the acid-promoted S\(_{\mathrm{N}}\)I-type additions to ribofuranosyl cations generally occur from the \(\alpha\)-face.110

![Scheme 5.5](image)

Scheme 5.5 Proposed mechanism for the lithium coupling method

Encouraged by these observations we decided to start the synthesis of our \(\beta\)-phenol C-2’-deoxyribonucleoside with a protected D-ribono-1,4-lactone rather than with a 2’-deoxy-D-ribonolactone.
5.3.2 Synthesis strategy

Based on the previously described synthesis we designed the following pathway to access to building block 100 (Scheme 5.6), starting from the commercially D-ribo-1,4-lactone 77 and using the coupling method described by Kraus et al113 and Krohn et al114 for the synthesis of aryl C–nucleosides.

The key issue in the design of this phenol modified nucleoside 100 was the choice of the phenol protective group R. This protective group had to withstand the nucleoside synthesis conditions, it also had to be compatible with the standard procedures for DNA synthesis and finally it had to be removed once the nucleoside was incorporated into DNA. The methyl protecting group in 100a will not be cleaved in DNA since we would like to carry out electron transfer experiments also with anisole in order to compare phenol and anisole behaviour. If phenol is required in a DNA strand, the protecting group could be acetyl or benzoyl because it can easily be removed by the base treatment performed at the last step of DNA synthesis. The allyl and the allyloxycarbonyl protecting group were also envisaged because they offer different possibilities for deprotection.
5.3.3 Synthesis of the anisole nucleoside

The nucleoside with the methyl protecting group 100a (Figure 5.3) was the first one that we synthetized following a method described by Leumann et al for the synthesis of pyridine C-nucleosides.117

![Figure 5.3 Anisole modified nucleoside](image)

The first step consisted in a classic protection of the D-ribo-1,4-lactone 77 with tert-butyldimethylsilane in 94% yield (Scheme 5.7). Conversion of the protected ribonolactone 78 to the anisole C-nucleoside 83 was carried out using the lithium coupling procedure previously described for aryl C-nucleosides.110,113,114,116

![Scheme 5.7 Introduction of the anisole at the 1'-position of the D-ribose](image)

The anisole was introduced using a lithium salt of p-bromoanisole (Scheme 5.8). The lithiated anisole 80 reacted cleanly with the protected lactone 78 and give the hemiacetal 81. This furanoside lactol 81 was not isolated but directly subjected to reduction under Lewis acidic conditions using triethylsilane as a hydride source, which led to the sterically uniform β-anisole C-ribofuranose 83 in 55% yield.
The end of the synthesis consisted in the removal of the 2'-hydroxyl group. A general procedure for the conversion of ribonucleosides to 2'-deoxyribonucleosides consists in a selective protection of the 3'- and 5'-hydroxyl functions of ribonucleosides with a cyclic disiloxane group followed by thioacylation, radical-induced reductive cleavage, and deprotection of the 3'- and 5'-hydroxyl functions.118

To do so, the TBDMS protecting groups were first removed with TBAF and the cyclic bifunctional disiloxane was selectively introduced by treatment of ribonucleoside \textbf{84} with 1,3-dichloro-1,1,3,3-tetraisopropyl disiloxane (TIPSCI) in pyridine119 to afford 3',5'-O-(1,1,3,3-tetraisopropyl disilox-1,3-diyl) (TIPS) derivative \textbf{85} in high yields (94\%) (Scheme 5.9). Thioacylation of the 2'-hydroxyl group was achieved smoothly with \(p\)-tolyl chlorothionoformate in acetonitrile with DMAP as catalyst to provide clean conversion to the 2'-(\(O\)-\(p\)-tolyloxithionocarbonate) ester \textbf{86}. AIBN initiated homolytic deoxygenation of this thionocarbonate ester occurs under mild reaction conditions with tri-\(n\)-butyltin hydride in warm toluene. Deprotection with TBAF of the resulting compound \textbf{87} completed the four-stage conversion of ribonucleoside \textbf{84} to 2'-deoxyribonucleoside \textbf{88} in 68\% overall yield.

\textbf{Scheme 5.8} Coupling reaction of the sugar with the phenol moiety
To incorporate the modified nucleoside 88 into a DNA fragment using an automatic DNA synthesizer, it had to be activated with suitable functional groups. Normally it should be protected with an acid labile trityl group at the 5’-position and a phosphoramidite at the 3’-position. The 5’-alcohol was protected with the dimethoxytrityl group using DMAP as catalyst in pyridine (Scheme 5.10). The subsequent product was phosphorylated using standard techniques with 2-cyanoethyl-\(N,Na\)-diisopropylchlorophosphoramidite and Hüning’s base\(^{10,81}\) to afford the building block 100a in 80% yield.

Scheme 5.9 Conversion of the ribonucleoside to the 2’-deoxyribonucleoside
5.3.4 Synthesis of the phenol protected nucleoside

5.3.4.1 The anisole approach: cleavage of the methyl ether

A methyl is a permanent protecting group which cannot be removed once the anisole nucleoside is incorporated into DNA. To carry out assays with phenol as charge acceptor, the methyl has to be replaced by a protecting group which also withstands the automated DNA synthesis but which can be removed in DNA. We observed that the cleavage of the methyl ether was best carried out on compound 91 (Scheme 5.11). We therefore acetylated the dihydroxy compound 88 and subjected the resulting product 91 to treatment with excess boron tribromide in methylene chloride at –78°C121 to afford the phenol 92 in 85% yield.

\[\text{AcO, pyridine} \]

\[\rightarrow \]

\[\text{91} \]

\[\rightarrow \]

\[\text{92} \]

Scheme 5.11 Cleavage of the methyl ether

From there we could introduce different protecting groups and benzoyl was our first choice. The phenol modified nucleoside 92 was benzoylated and compound 93 was isolated in 77% yield (Scheme 5.12). Selective deprotection of the acetyl groups was managed under acidic conditions. However we observed about 20% anomeration. The β-anomer 94 was isolated and subjected to tritylation to prepare the building block for the DNA synthesizer but tritylation failed. The product decomposed systematically after the work-up. Benzoyl seems not to be the best protecting group for this kind of synthesis.

\[\text{BzCl, pyridine} \]

\[\rightarrow \]

\[\text{92} \]

\[\rightarrow \]

\[\text{93} \]

\[\rightarrow \]

\[\text{95} \]

Scheme 5.12 The benzoyl protecting group strategy
We then tried to introduce an allyl protecting group (Scheme 5.13). Allylation of 92 in the presence of lithium bis(trimethylsilyl)amide as base in DMSO\(^{122,123}\) gave the desired product 96b but also 25\% of its \(\alpha\)-anomer 96a. The acetyl protecting groups were then removed from the isolated \(\beta\)-compound 96b using basic conditions and the 5′ alcohol was selectively protected with DMTrCl in pyridine to give the tritylated product 99. Phosphorylation of 99 was performed according to standard procedures\(^{120}\) with 2-cyanoethyl-\(N,N\)-(diisopropyl)-chlorophosphoramidite and Hüning’s base and led to building block 100b which is suitable for automated DNA synthesis.\(^{81}\)

Although the synthesis of a phenol building block was achieved using this route, it was not very satisfactory (too much steps, low yields and C-1\,'
-epimerization during allyl protection of the phenol) and we decided to develop a better pathway for such a class of compounds.

Scheme 5.13 The allyl protecting group strategy
5.3.4.2 A new approach: the benzyl approach

A new approach was designed for the synthesis of phenol modified nucleosides (Scheme 5.14). Back to the beginning of the first route we replaced the methyl protecting group by the more suitable benzyl protecting group. The benzyl protecting group also withstands the conditions of the base introduction. It is resistant to the 2’-OH removal synthesis and more importantly it can be removed by catalytic hydrogenation providing a phenol intermediate that can be protected with new protecting groups.

Scheme 5.14 Synthetic route to phenol modified nucleoside using benzyl as protecting group
The starting ribono-1,4-lactone 77 was transformed into the corresponding deoxyribonucleoside 107 in 6 steps with 29% overall yield. Conversion of the protected ribonolactone 78 to the benzyl protected phenol C-nucleoside 103 was attempted using the lithium coupling procedure previously described (Scheme 5.5). In this case the phenol moiety was introduced at the C-1’ position with complete β-stereoselectivity using a lithium salt of 1-O-(benzyl)-4-bromophenol 102. This method is the first reported for the synthesis of such class of phenol protected C-nucleosides. We also tried to introduce an allyl protected phenol but we failed. The benzyl protecting group appeared to be the best choice since it withstands the condition of the base introduction. The phenol ribonucleoside 103 was converted to phenol 2’-deoxyribonucleoside 107 following the four-step procedure described p. 41.

The benzyl protecting group was then removed using catalytic hydrogenation to afford the phenol nucleoside 108 in 74% yield (Scheme 5.15). In this reaction it is necessary not to exceed the reaction time of four hours otherwise the sugar ring will be opened because the sugar ring also possesses a benzylic system at its C-1’ position which will be cleaved under this conditions.

Scheme 5.15 Removal of the benzyl protecting group by catalytic hydrogenation
We could then introduce the desired protective groups into nucleoside 108. We managed the allyloxycarbonation (Scheme 5.16) and the acetylation (Scheme 5.17). Both the allyloxycarbonyl protected and the acetyl protected phenol nucleoside 111 and 113 were converted to the suitable building blocks 100c and 100d, respectively.

Scheme 5.16 The allyloxycarbonyl protecting group strategy

Scheme 5.17 The acetyl protecting group strategy
5.3.5 Summary

Synthesis of the building blocks 100a-d were achieved in good yields, starting from D-ribo-1,4-lactone and using a lithium coupling method for the selective introduction of the phenol at the C-1' position in the β-configuration and a standard radical-based procedure for the conversion of the C-ribonucleosides to the 2'-deoxyribonucleoside. Following this pathway, the anisole building block 100a was synthesized in 9 steps with 21% overall yield, the allyl protected building block 100b in 13 steps with 6.5% overall yield, the allyloxycarbonyl protected building block 100c in 11 steps with 6.5% overall yield and finally the acetyl protected building block 100d was synthesized in 10 steps with an overall yield of 10%. These four building blocks are now suitable for the introduction into synthetic oligonucleotides via automated solid-phase synthesis.

Figure 5.4 The four phenol building blocks for incorporation into DNA
5.4 Incorporation of the building blocks into DNA

5.4.1 Usual procedures for oligonucleotide synthesis

In principle, DNA synthesis is relatively simple. It involves the systematic addition of oligonucleotides to a growing DNA chain using automated Solid Phase DNA Synthesis. In solid-phase chemical synthesis of oligonucleotides, the 5’ hydroxyl group of one nucleoside (immobilized onto a solid support) is coupled to the reactive 3’ phosphorous group of the next nucleoside (introduced as a monomer in solution). Oligonucleotides are generally assembled from 3’-terminal to 5’-terminal. The synthesis cycle is performed via the addition of one nucleoside monomer at a time. The excess liquid phase-reagents are simply removed by filtration and washing with the solvent. Thus no purification steps are required between the cycles, the synthesis column is at the same time ready for the following reaction.

The synthesis is conducted with the growing DNA chain attached to a solid support made of controlled pore-glass (CPG) beads. The starting material is the solid support derivatized with the nucleoside, which will become the 3’ hydroxyl end of the oligonucleotide. The nucleoside is bound to the solid support through a base labile succinyl linker attached at the 3’ hydroxy end. The 5’-hydroxyl is blocked with a dimethoxytrityl (DMTr) group. The synthesis proceeds with the following steps (Scheme 5.18):

- The first step of the synthesis cycle is detritylation. This is done via treatment of the derivatized solid support with trichloroacetic acid (TCA) to remove the DMTr group and to ultimately set free the 5’-hydroxyl group for the coupling reaction.

- An activated intermediate is formed by simultaneously adding the phosphoramidite nucleoside monomer and tetrazole to the reaction column. The tetrazole protonates the nitrogen of the phosphoramidite, making it susceptible to nucleophilic attack.

- Capping emerges as the next step in the synthesis cycle. This stage serves the purpose of terminating any chains that did not undergo coupling. Since the unreacted chains have free 5’-hydroxyl groups on them, they can easily be capped by acetylation. This capping is done with equal volumes of acetic anhydride and 1-methylimidazole. Capping minimizes the amount of the impurities and consequently eases product identification and purification.
• Oxidation ensures after the capping step. The internucleotide linkage is converted from the phosphite to the more stable phosphotriester. Iodine is used as the oxidant in this oxidation procedure.

• After oxidation, the cycle of nucleotide addition is completed. The 5’ terminus of the oligonucleotide is protected by the DMTr group and DNA synthesis is continued by removing this DMTr group and repeating another cycle of base addition.

This cycle is repeated until DNA of specified length and composition has been fully synthesized. This DNA synthesis standard procedure was used for incorporation of the building blocks \textbf{100a-d} into synthetic oligonucleotides. The coupling times were enhanced from 2 min to 15 min for the incorporation of the modifications. Their incorporation was successful in every case.
5.4.2 Characterization of the modified oligonucleotides

5.4.2.1 The anisole nucleotides

After synthesis, the oligonucleotides should be cleaved from the solid support and deprotected. Strands 116 and 117 containing the anisole and the charge injector T* were subjected to standard ammonia treatment to release the oligonucleotide from the solid phase. Cleavage and deprotection are done simultaneously through the addition of concentrated ammonium hydroxide (32%) at 55°C. Ammonia treatment removes the cyanoethyl phosphate protecting groups and also the protecting groups on the exocyclic amines of the bases. After purification of the oligonucleotides, the DMTr group that was present at the final fragment of the DNA synthesis was removed under acidic conditions. At each of these two steps RP-HPLC purification was carried out. The purity of the oligonucleotides was checked by MALDI-ToF-MS (Table 5.1).

<table>
<thead>
<tr>
<th>Sequence</th>
<th>[M-H]- calculated (m/z)</th>
<th>[M-H]- found (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>116: 5'-TTTTTTTTTTT(PhOMe)T*TTTTTTTTTT-3'</td>
<td>6088.77</td>
<td>6087.52</td>
</tr>
<tr>
<td>117: 5'-TGCATCAT(PhOMe)T*TTATCAGAGC-3'</td>
<td>6148.89</td>
<td>6150.25</td>
</tr>
</tbody>
</table>

Table 5.1 Calculated and measured mass of strands containing anisole
5.4.2.2 Deprotection of the phenol nucleotides in DNA

a) Allyl deprotection in DNA

The protecting groups on the phenol should also be removed. Various methods are described in the literature to remove the allyl protective group from phenol.\(^{122}\) We tried to apply some of these methods to our DNA system \(\text{118}\) (Tab.5.2). Strand \(\text{118}\) was beforehand released from the solid support using ammonia treatment (see chapter 5.4.2.1). After RP-HPLC purification the final DMTr group was removed and the strand was purified again.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>([\text{M-H}]) calculated (m/z)</th>
<th>([\text{M-H}]) found (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{118}: 5'-\text{TATATATATA(PhOAll)ATATATTTT-3'})</td>
<td>7945.20</td>
<td>7948.03</td>
</tr>
</tbody>
</table>

Table 5.2 Calculated and measured mass of strand \(\text{118}\) containing the allyl protected nucleoside

The allyl deprotection methods were first tested on the monomer \(\text{99}\) before applying them to DNA. The first method consists of using a strong base, potassium tert-butoxide, in polar solvent (DMSO) to isomerise the allyl phenyl ether to prop-1-enyl which is then cleaved by a oxidative method using a mixture KMnO\(_4\)/NaOH (Scheme 5.19).\(^{122,125,126}\) Compound \(\text{115}\) containing free phenol was obtained by using this cleavage method. Following this success we tried to apply this method to our DNA system, but it failed.

![Scheme 5.19: Method 1 for allyl deprotection in the monomer \(\text{99}\)](image)
Another procedure to remove the allyl protecting group is based on a catalytic process using palladium as transition metal catalyst (Scheme 5.20).122,126 The allyl protected nucleoside 99 was subjected to palladium treatment under acidic conditions and the phenol nucleoside 115 was isolated.

![Scheme 5.20 Method 2 for allyl deprotection in the monomer 99](image)

Unfortunately we were unable to remove the allyl protecting group from the phenol incorporated in DNA using this method, we obtained very complex mixtures very difficult to exploit. We then turned our attention to the allyloxycarbonyl protecting group.

b) Allyloxycarbonyl deprotection in DNA

The allyloxycarbonyl protective group was removed from the DNA using a palladium catalyst (Scheme 5.21).127 The interesting aspect is that this deprotection is carried out on solid support which simplifies the purification.

![Scheme 5.21 Allyloxycarbonyl deprotection in DNA](image)

After deprotection of the phenol, the strand 121 was cleaved from the solid support using ammonia treatment (see 5.4.2.1). After RP-HPLC purification the final DMT group was removed and the strand was purified again.
The purity of the deprotected strand **121** was checked by MALDI-ToF-MS (Table 5.3):

<table>
<thead>
<tr>
<th>Sequence</th>
<th>[M-H] Calculated (m/z)</th>
<th>[M-H] Found (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>121: 5'-TTTATATATATATA(PhOH)ATATATATTTT-3'</td>
<td>7905.14</td>
<td>7908.12</td>
</tr>
</tbody>
</table>

Table 5.3 Calculated and measured mass of the phenol deprotected strand **121**

c) **Acetyl deprotection**

The acetyl protecting group is the optimal case as the acetyl is removed during the basic treatment used to cleave the DNA strand from the solid support. Cleavage and deprotection are done simultaneously through the addition of 32% ammonium hydroxide at 55°C (Scheme 5.22). Ammonia treatment removes the protecting groups on the phosphate, the protecting groups on the bases and finally the acetyl protecting group on the phenol. The final DMTr group was then removed under acidic conditions. After each of these two steps HPLC purification was carried out.

![Scheme 5.22 Acetyl deprotection in DNA](image)

The purity of the deprotected strand **121** was checked by MALDI-ToF-MS (Table 5.4):

<table>
<thead>
<tr>
<th>Sequence</th>
<th>[M-H] Calculated (m/z)</th>
<th>[M-H] Found (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>121: 5'-TTTATATATATATA(PhOH)ATATATATTTT-3'</td>
<td>7905.14</td>
<td>7906.01</td>
</tr>
</tbody>
</table>

Table 5.4 Calculated and measured mass of the phenol deprotected strand **121**
5.4.3 Summary

We reported here the first synthesis of phenol-labeled oligonucleotides. All the phenol protected building blocks that we have synthesized (see Figure 5.4) were successfully incorporated into DNA using automated solid-phase synthesis. However the acetyl protecting group strategy appeared to be the best approach (Scheme 5.23). First, the synthesis of the acetyl protected building block is shorter and has higher overall yields than the syntheses of the other building blocks. Second, the acetyl group can easily be removed once the nucleoside is incorporated into DNA strands. The acetyl protecting group removal requires one step less than the other protecting groups since it is achieved with the ammonia treatment used to cleave the DNA strand from the solid support. So the acetyl protection of the phenol is definitely the pathway to be used to incorporate phenol nucleosides in DNA strands.

Scheme 5.23 The acetyl protecting group strategy for incorporation of the phenol nucleoside into DNA using automated solid-phase DNA synthesis
5.5 Investigation of electron transfer using HPLC analysis

5.5.1 Single strand experiments

5.5.1.1 Estimation of the $k_{ET,rel}$

HPLC analysis was used as a first method to investigate electron transfer from the phenol to the sugar backbone focusing on the donor potential of the phenol modified base. Therefore the phenol modified nucleoside was incorporated together with the radical injector T*, the 4’-modified thymidine, into the DNA strands 122a-d in which the charge injector and the charge acceptor are separated by zero to three thymidines (n = 0, 1, 2 or 3). The DNA single strands were irradiated at 320 nm, under argon, at pH 5.0, which led to the formation of radical cation 123 and of 5’-phosphate 124 (Scheme 5.24). The mechanism of charge injection into DNA upon irradiation is described in detail in chapter 2.2. The radical cation 123 either undergoes water addition to form 3’-phosphate 129, radical cation 130 and ketoaldehyde 131, or electron transfer occurs from phenol which leads to enol ether 128.

Scheme 5.24 Product formation from phenol electron transfer and nucleophilic water addition
The RP-HPLC chromatogram of the irradiated solution containing strand 122 is shown in figure 5.5. The detection was performed at 260 nm where the oligonucleotides have a maximal absorption. For all irradiation experiments the peaks were isolated and characterized by MALDI-ToF-MS with an accuracy of ±5 m/z. Three main products were identified as 5’-phosphate 124, 3’-phosphate 129 and enol ether 128.

Assuming that both electron transfer and water addition proceed irreversibly, the ratio of the water addition products (124-128) against the electron transfer product 128 is given by Eq. 5.1:

\[
k_{ET, rel} = \frac{k_{ET}}{k_{H2O}} = \frac{[\text{enol ether 128}]}{[5’-\text{phosphate 124}]-[\text{enol ether 128}]}
\]

Eq. 5.1

The photolysis products were quantified by dividing the HPLC-peak areas by their calculated molar extinction coefficients and internal calibration. The molar extinction coefficients were calculated using the increment values of each base (see Experimental Part chapters 7.2.5 and 7.3).
The $k_{ET, rel}$ values obtained for the strands 122 a-d are given in table 5.3:

<table>
<thead>
<tr>
<th>Sequence 122</th>
<th>$k_{ET, rel}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'-GCCTTATAPhOH(T)_nT*ATAAATCGT-3'</td>
<td></td>
</tr>
<tr>
<td>122a: n = 0</td>
<td>0.53</td>
</tr>
<tr>
<td>122b: n = 1</td>
<td>0.26</td>
</tr>
<tr>
<td>122c: n = 2</td>
<td>0.13</td>
</tr>
<tr>
<td>122d: n = 3</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Table 5.3

Based on previous experiments using external electron donors such as methionine, selenomethionine or KI, we can assign a value for the rate of water addition at radical cation 123 of $k_{H2O} = 1.10^{-8}$ s$^{-1}$. With this value the electron-transfer rate from phenol to radical cation 123 can be estimated to be about $0.53.10^{-8}$ s$^{-1}$ at a distance of 6.2 Å. Although electron transfer is observed in all four cases, the results show that there are only little rate differences in strands 122a-d where the phenol is separated by zero, one, two or three T’s from the radical cation site. Thus, on addition of one or two T nucleotides between the phenol and the radical cation, the relative electron transfer rate decreases only slightly from 0.53×10^8 s$^{-1}$ through 0.26×10^8 s$^{-1}$ to 0.16×10^8 s$^{-1}$. A further increase of one intervening T nucleotide has no decreasing effect on the electron-transfer rate.

Analogous experiments of charge transfer towards a guanine were carried out by Meggers and led to the same conclusion. The number of T nucleotides between the radical cation and the G has only a weak influence of the electron-transfer rate. We explain these results on the basis of the flexibility of the DNA single strand that can adopt conformations in which the distance between the electron donor, the phenol moiety or the guanine, and the electron acceptor, the radical cation, are short enough for a fast charge-transfer step, even if they are separated by several T units. Experiments by Kan and Schuster led to the same conclusion.
In order to verify that the electron-transfer rates obtained are not influenced by a guanine present in the sequence 122, the experiment was repeated with poly A-T strands.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>$k_{ET, \text{rel}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>132: 5'-TTTTTATA(PhOH)TT*ATAAATAAT-3'</td>
<td>0,20</td>
</tr>
<tr>
<td>133: 5'-TTTATATATATATA(PhOH)AT*ATATATTTT-3'</td>
<td>0,22</td>
</tr>
</tbody>
</table>

Table 5.4 $k_{ET, \text{rel}}$ values for the poly A-T strands 132 and 133

The relative electron-transfer rates obtained (Table 5.4) with the poly A-T single strands 132 (20mer) and 133 (26mer) in which phenol and T* are separated by one T are similar to the one found for strand 122b. In 122b phenol and T* are also separated by one T but G bases are present in the sequence (Table 4.3). We can therefore conclude that the G bases present in the sequences 122 have no influence on the measured electron transfer rates.

5.5.1.2 Anisole as electron donor

The single strands 116 and 117 in which anisole adjoining T* were irradiated under the same irradiation conditions that the phenol strands (320 nm, pH 5.0) and the photolysis products were analyzed by RP-HPLC.

116: 5'-TTTTTTTTTTPhOMeT*TTTTTTTT-3'
117: 5'-TGCATCATPhOMeT*TTATCAGAGC-3'

In both cases, no electron transfer product (enol ether) was found, only water addition products 5’-phosphate and 3’-phosphate were observed (Figure 5.6 A). The irradiations were repeated in the presence of KI (0.2 M), a strong electron donor. The KI has the effect of transforming the radical cation formed directly into enol ether in a near diffusion-controlled reaction ($5 \times 10^9 \text{s}^{-1}$). The enol ether peak revealed by the KI test (Figure 5.6 B) was never observed in the irradiation experiments of the single strands 116 and 117.
These results can be explained regarding the oxidation potential of anisole and phenol. The oxidation of anisole to anisole radical cation in aqueous solutions has a potential $E^{\circ}_{\text{ox}}(\text{PhOMe/PhOMe}^+) = 1.52 \text{ V vs NHE}^{133}$ which is similar to the oxidation potential of phenol to phenol radical cation ($E^{\circ}_{\text{ox}}(\text{PhOH/PhOH}^+) = 1.50 \text{ V vs NHE}$). The enol ether radical cation ($E^{\circ}_{\text{red}}(\text{EE}^+) = 1.29-1.44 \text{ V vs NHE}$) generated upon irradiation should not be capable of oxidizing phenol to phenol radical cation and anisole to anisole radical cation. However, the driving force in the phenol oxidation is the formation of the phenoxy radical by loss of the hydrogen which corresponds to a much lower oxidation potential ($E^{\circ}_{\text{ox}}(\text{PhOH/PhO}^-) = 0.86 \text{ V vs NHE}$). Thus, oxidation of phenol in DNA systems could easily occur if the electron transfer is coupled with proton transfer to the solvent. This is not the case with anisole in systems 116 and 117, the phenoxy radical cannot be formed by loss of the methyl moiety. The overall result is that upon irradiation the anisole cannot be oxidized and no electron transfer occurs. In regards of these results we decided to focus our attention on phenol as electron donor in double strand experiments.
5.5.2 Double strand experiments

5.5.2.1 Estimation of the $k_{ET,\text{rel}}$

In this chapter we examine the charge transfer of our system in double strands experiments. A DNA double strand has a well defined structure compared to DNA single strands, it’s not flexible and can not bend over on itself, so we can assume that the distance between the electron donating phenol and the T* radical cation injector is defined. Thus, strand 122b was hybridized with its complementary strand 134X to form double strand (Figure 5.6).

\[\text{122b: 5'}-\text{GCC TTATAPhOH TT*ATAAATCGT-3'} \]
\[\text{134X:3'}-\text{CGG AATAT X AA TATT TAGCA-5'} \]

Figure 5.6 DNA double strands

We checked the influence of the base (X) placed across the phenol on the electron transfer. The irradiation was performed following the procedure described in single strand experiments ($\lambda \geq 320$ nm, anaerobic conditions, citrate buffer pH 5.0). The analysis of the photolysis solution was done by RP-HPLC (Figure 5.7).

Figure 5.7 HPLC chromatogram of the irradiated double strand 122b/134X
5. Phenol as charge acceptor

For X we incorporated A, T, C or an abasic site (Table 5.5). In all four systems electron transfer was observed but the rates obtained differed from each other. Thermal denaturation studies were done to compare the stability of the four 20mer double strands. In all cases the melting temperature \((T_m)\) obtained are lower than that of a perfect match (unmodified strand). The \(T_m\) of an unmodified 20mer containing five to six G:C base pairs is estimated to be around 45°C. The destabilization might be due to the fact that the two modifications, phenol and \(T^*\) are placed on the same strand and may be too close to each other.

<table>
<thead>
<tr>
<th>X</th>
<th>(T_m) (°C)</th>
<th>(k_{ET, rel})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>26.8</td>
<td>1.14</td>
</tr>
<tr>
<td>T</td>
<td>28.8</td>
<td>1.49</td>
</tr>
<tr>
<td>C</td>
<td>37.1</td>
<td>0.84</td>
</tr>
<tr>
<td>Abasic</td>
<td>29.5</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Table 5.5 Melting point and \(k_{ET, rel}\) values for the double strand 122b/134X (X = A, T, C or abasic)

However, when a cytosine C is placed across the phenol in the complementary strand, the \(T_m\) is 8 to 10°C higher than the other ones. This can be explained by formation of hydrogen bonds between the –OH group of the phenol and the ketone of the cytosine or between the –OH group and the imine of the cytosine (Figure 5.8). The hydrogen bonding would stabilize the double-helix structure and therefore lead to higher melting point. Based on this result we can suppose that phenol behaves more like guanine G and prefers to hybridize to C instead of A or T.

The \(k_{ET, rel}\) found in double strand experiments are as large or larger than the one found in single strand experiments (Table 5.6). But the electron-transfer rate with an abasic site opposite the phenol is significantly smaller than the other ones. This suggests that the base placed across the phenol in the complementary strand has an influence on the electron-transfer rate. When an abasic site is placed across phenol no hydrogen bonding is possible. We can then imagine that phenol points outside of the DNA helix and forms an extra-helical bulge and this may account for the low rate observed in this case.
Figure 5.8 Possible hydrogen bonding between the –OH of the phenol and the ketone or the imine of cytosine in double strand DNA 122b /134C
5.5.2.2 Comparison with other electron donors and discussion

The \(k_{\text{ET,rel}} \) values obtained with phenol as electron donor in DNA double strands 122/134 were compared with the \(k_{\text{ET,rel}} \) values reported for other electron donors in an identical DNA double strands system 178 (Figure 5.9). In this system the electron donor and the electron acceptor, the enol ether radical cation 9 resulting from \(T^* \) irradiation (see Scheme 2.4) are separated by one T nucleotide. The electron donors are guanine (G), 7-deazaguanine (G\(^z\)), 8-oxoguanine (G\(^\text{oxo}\)) and 8-Bromoguanine (G\(^\text{Br}\)) (Figure 5.10). In all cases a C nucleotide is placed opposite the electron donor.

Figure 5.9 Influence of the electron donor on the electron-transfer rate in a D-B-A system 178 in DNA double strand (D = PhOH, G\(^z\), G\(^\text{oxo}\), G\(^\text{Br}\), G)
5. Phenol as charge acceptor

Table 5.6 displays the $k_{ET,rel}$ values obtained for the different electron donors in system 178 and the oxidation potential or ionization potential of the electron donors.

<table>
<thead>
<tr>
<th>Donor (D)</th>
<th>$k_{ET,rel}$</th>
<th>E_{ox}° (in V vs NHE)</th>
<th>IP128 (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhOH</td>
<td>0.84</td>
<td>0.86141</td>
<td>5.99</td>
</tr>
<tr>
<td>GZ</td>
<td>0.19128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goxo</td>
<td>0.04649,128</td>
<td></td>
<td>6.19</td>
</tr>
<tr>
<td>G</td>
<td>0.01249,128</td>
<td>1.2917</td>
<td>6.40</td>
</tr>
<tr>
<td>GBr</td>
<td>0.011128</td>
<td></td>
<td>6.45</td>
</tr>
</tbody>
</table>

Table 5.6 Comparison between the $k_{ET,rel}$ obtained in DNA double strand with different electron donors. The ionization potentials (IP) were calculated as base pair with C in DNA using the UB3LYP/6-31G**.

Phenol appears to be the most efficient electron donor in this series. The $k_{ET,rel}$ value increases when the oxidation potential of the electron donor decreases. For example, electron transfer from phenol is 70 times faster than from guanine, which has a 0.45 V higher oxidation potential. These results are in agreement with the Marcus theory130 for photoinduced electron-transfer reaction, as explained below.
According to Marcus, the rate constant of a single-step electron transfer reaction depends on the energy barrier (activation free energy) to pass the transition state (Eq. 5.2). A is a factor that depends on the nature of the charge transport reaction, R is the gas constant and T is the temperature of the reaction.

\[k_{ET} \propto A \cdot e^{\frac{-\Delta G^*}{RT}} \] \hspace{1cm} \text{Eq. 5.2}

The activation free energy \(\Delta G^* \) may be expressed as following:

\[\Delta G^* = \frac{(\Delta G^\circ + \lambda)^2}{4\lambda} \] \hspace{1cm} \text{Eq. 5.3}

\(\Delta G^\circ \) is the reaction free energy (driving force) which corresponds to the energy difference between the minima of the parabolas (Figure 5.11) and \(\lambda \) the reorganization energy which is defined by the energy needed to change the nuclear coordinates of the reactant state (including contributions from the solvent) from its own minima configuration to the minima configuration of the product state.

![Figure 5.11](image)

\text{Figure 5.11} \hspace{0.5cm} \text{Illustration of the Marcus model for electron transfer from an electron donor} \ D \ \text{to an electron acceptor} \ A^{+*}

The reaction free energy \(\Delta G^\circ \) is given by Eq.5.4. \(E^\circ_{\text{ox}} \) is the oxidation potential of the electron donor and and \(E^\circ_{\text{red}}^{*} \) the reduction potential of the electron acceptor, F is the Faraday constant.

\[\Delta G^\circ = F(E^\circ_{\text{ox}} - E^\circ_{\text{red}}^{*}) \] \hspace{1cm} \text{(5-4)}
The reaction free energy ΔG^o is strongly dependent on the oxidation potential of the electron donor when the reduction potential of the electron acceptor doesn’t change. In all the systems reported in Table 5.7, the electron acceptor is the enol ether radical cation 9 which was generated by photolysis of T^* (see Scheme 2.4 p.11). Thus, the lower the oxidation potential of the electron donor is, the larger is $-\Delta G^o$ (see dashed line in Figure 5.11).

In order to discuss the influence of the oxidation potential and therefore of the reaction free energy ΔG^o on the electron transfer-rate, we have to consider two cases (Figure 5.12):

- When, $-\Delta G^o < \lambda$, the electron transfer reaction takes place in the normal Marcus region as is generally the case for photoinduced electron-transfer reactions. In this case the sum $\Delta G^o + \lambda$ is positive and an increase of the driving force (more negative ΔG^o) due to a lower oxidation potential of the electron donor, diminishes the sum $\Delta G^o + \lambda$ and therefore reduces ΔG^*. This leads to an increase of the electron-transfer rate.

- When, $-\Delta G^o \geq \lambda$, the electron transfer reaction takes place in the inverted Marcus region. In this case the sum $\Delta G^o + \lambda$ is negative and an increase of the driving force makes the sum $\Delta G^o + \lambda$ even more negative and due to the quadratic dependence increases ΔG^*. This leads to a decrease of the electron-transfer rate.

The optimal case would be $-\Delta G^o = \lambda$, corresponding on the top region of the Marcus parabola. In this case the electron transfer is barrierless.

\[\text{Figure 5.12} \quad \text{Dependence of the electron-transfer rate on the driving force } \Delta G^o \]
The driving force of the electron transfer from phenol to enol ether radical cation can be estimated by considering the oxidation potential of phenol \((E_{ox}^{\circ} \text{(PhOH)} = 0.86 \text{ V vs NHE}) \)141 and the reduction potential of the enol ether radical cation generated by photolysis \((E_{red}^{\circ} \text{(EE^+)} = 1.29 - 1.44 \text{ V vs NHE}) \).134 The estimated driving force is then \(-\Delta G^0 = 0.4 - 0.5 \text{ eV}\). The reorganization energy values \(\lambda \) reported from electron transfer in protein systems containing tyrosine are around 0.7 eV.135 We assume that the \(\lambda \) value of phenol in DNA system \textbf{178} is in the same order. Based on these assumptions we can consider that electron transfer from phenol in system \textbf{178} takes place in the \textit{normal Marcus region} \(-\Delta G^0 < \lambda\).

For \(G, G^{Br}, G^{oxo} \) and \(G^Z \) Biland reported a \(\lambda \) value of 0.4 ± 0.02 eV calculated with the same method as the oxidation potentials (UB3LYP/6-31G**).128 The \(\ln k_{ET,rel} \) values obtained for \(G, G^{Br}, G^{oxo} \) and \(G^Z \) are plotted against the oxidation potential (in eV) in figure 5.13, which exhibits a typical feature of the photoinduced electron-transfer processes in the \textit{normal Marcus region}: the \(\ln k_{ET,rel} \) increases with a decrease in the oxidation potential and therefore in the \(\Delta G^0 \) value. Biland estimated that a decrease of 0.1 eV in the oxidation potential doubles the electron-transfer rate constant. For example the oxidation potential of \(G^Z \) was calculated to be 0.2 eV lower than the oxidation potential of \(G^{oxo} \) and the electron transfer is four times faster with \(G^Z \) than with \(G^{oxo} \).

![Figure 5.13 Influence of the oxidation potential on the electron-transfer rate](image)

\[\ln(k_{ET,rel} \cdot 100) \]

\[\begin{align*}
\text{Oxidationspotential (eV)} & \quad \text{ln(k}_{ET,rel} \cdot 100) \\
-5.7 & \quad -5.5 & \quad -5.3 & \quad -5.1 & \quad -4.9 & \quad -4.7 & \quad -4.5 & \quad -4.3 & \quad -4.1 & \quad -3.9 & \quad -3.7 & \quad -3.5 & \quad -3.3 & \quad -3.1 & \quad -2.9 & \quad -2.7 & \quad -2.5 & \quad -2.3 & \quad -2.1 & \quad -1.9 & \quad -1.7 & \quad -1.5 & \quad -1.3 & \quad -1.1 & \quad -0.9 & \quad -0.7 & \quad -0.5 & \quad -0.3 & \quad -0.1 & \quad 0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 \\
\text{G}^{Br} & \quad \text{G}^{oxo} & \quad \text{G}^Z & \quad \text{PhOH} \\
\end{align*} \]
Interestingly, the relative electron-transfer rate with phenol is also about four times faster than the one with G² in system 178. It is difficult to compare the oxidation potential of phenol given in V vs NHE with those of G², G⁺oxo and G⁺Br given in eV as base-pair with C in DNA (Table 5.6). However we can suppose that the oxidation potential of phenol is lower than the oxidation potential of G². The oxidation potential calculated by Lewis for G², E°₀ = 0.95 V vs SCE, would confirm our hypothesis. Assuming that the distance between the phenol and the enol ether radical cation in system 178 is the same like the distance between G, G⁺Br, G⁺oxo, G² and the radical cation, we can speculate and report the lnₖₑₜ,rel obtained with phenol on the trend line formed by G, G⁺Br, G⁺oxo and G² in Figure 5.13 (phenol in blue). The corresponding oxidation potential would be 5.78 eV. This value is very near the oxidation potential of 5.6 eV estimated by Biland, to reach the maximum of the Marcus parabola where -ΔG° = λ (Figure 5.14). According to Biland, the optimal oxidation potential should be approximatively 0.75 eV lower than the oxidation potential of the guanine. Although this approximation is very speculative, phenol still appears from our experimental data as an excellent electron donor compared to the G series. Moreover the phenol modified nucleoside is also compatible with DNA.

Figure 5.14 Schematic illustration of the Marcus model for electron transfer in the normal Marcus region from an electron donor D (G⁺Br, G⁺oxo, G² and phenol) to an electron acceptor EE⁺ (the enol ether radical cation 9)
5.5.2.3 Further experiments

In further experiment the charge transfer was investigated in a poly A:T double strand in which the charge is initiated in one strand and then transferred to the complementary strand. Strand 137 containing the radical cation injector T* was annealed with its complementary strand 121 containing the phenol modification (Table 5.7). Photolysis of double strands 121/137 (λ ≥ 320nm, anaerobic conditions, citrate buffer pH 5.0) generates the sugar radical cation in strand 137 (Scheme 5.25). The charge is then transferred to the phenol in the complementary strand 121.

![Scheme 5.25](image)

This double strand system displays again high electron transfer rate ($k_{ET, rel} = 0.68$) compared to similar system with G as electron donor (Table 5.7).

<table>
<thead>
<tr>
<th>Sequence</th>
<th>$k_{ET, rel}$</th>
<th>Δr (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>121: 5'-TTTATATATATA(PhOH)ATATATTTTT-3' 137: 3'-AAATATATATATAT* A TATATAAAAA-5'</td>
<td>0.68</td>
<td>11.5</td>
</tr>
<tr>
<td>138: 5'-GCTCTGATAAGTAGCTAGCA-3' 139: 3'-CGAGACTATTTCATCGATCGT-5'</td>
<td>0.01545</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Table 5.7 ET results in DNA double strands with phenol or guanine as electron donor. (a) The distance between phenol or G and T* radical cation was estimated by computational ab initio calculations (macromodel 7.2).
Thermal denaturation studies137,138 were done to compare the melting temperatures (T_m) of duplex 121/137 containing the two modifications, phenol and T^*, with unmodified duplex 135/136 and with duplexes 121/136 and 135/137 bearing just one of the both modifications (Table 5.8).

<table>
<thead>
<tr>
<th>Sequence</th>
<th>T_m (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>121 : 5'- TTTATATATATATA(PhOH)ATATATTTTT-3'</td>
<td>44.2</td>
</tr>
<tr>
<td>137 : 3'-AAATATATATAT* A TATATATAAA-5'</td>
<td></td>
</tr>
<tr>
<td>135 : 5'- TTTATATATATATATA TA TTTT-3'</td>
<td>45.6</td>
</tr>
<tr>
<td>136 : 3'-AAATATATATATATATATATATAAAA-5'</td>
<td>45.1</td>
</tr>
<tr>
<td>121 : 5'- TTTATATATATATA(PhOH)ATATATTTTT-3'</td>
<td>44.2</td>
</tr>
<tr>
<td>136 : 3'-AAATATATATATATATATATATA AAAA-5'</td>
<td>40.6</td>
</tr>
</tbody>
</table>

Table 5.8
T_m studies of poly A:T double strands (26-mers) containing no, one or both modifications

The T_m value measured for duplex 121/137 containing both modifications (44.2 °C) is only 1°C lower than the T_m value of a perfect match 135/136 (45.6 °C). This indicates that the DNA structure is not destabilized when the two modifications are placed closed to each other in opposite strands. Interestingly, the T_m value obtained with duplex 135/137 containing only T^* is 5°C lower (40.6°C) than that of a perfect match 135/136 (45.6°C) whereas the T_m value of duplex 121/136 containing only phenol is nearly the same (45.1°C). Moreover, the T_m value of duplex 121/137 containing both modifications is higher (44.2°C) than the T_m value of duplex 135/137 containing only $T^*(40.6°C)$. We can therefore conclude that T^* destabilizes the DNA double-stranded structure whereas phenol stabilizes it.
5.6 Investigation of electron transfer using UV detection of the phenoxy radical

In the previous chapter we have proved that phenol can act as a very good electron donor in electron transfer processes through DNA. In order to determine the rates of the electron transfer more precisely we propose to detect the phenoxy radical using time resolved UV spectroscopy. Laser nanosecond flash-photolysis (XeCl-excimer laser, $\lambda = 308$ nm) of the DNA double strand 140 initiates charge transfer towards the phenol (140→141) which is oxidized to phenol radical cation (141→142). The phenoxy radical is then generated by deprotonation of the phenol radical cation (142→143) (Scheme 5.26). The phenoxy radical is UV active with a characteristic absorption maxima at 410 nm.

Although the experimental data we collected from our past studies indicated that we could base our assays on the principle described in Figure 5.26 we had to reconsider our proposal. When carrying out our preliminary experiments we became aware from studies related to electron transfer in protein systems104 and using similar methodology, that the association pivaloyl and phenol is not suitable with the technique used. The pivaloyl chromophore resulting from the T* irradiation (see Figure 5.26) exhibited a strong fluorescence observed at 410 nm where the phenoxy radical absorbs. The result is an overload of the photomultiplier which is blinded and requires 200 to 300 ns to give accurate values again.
Unable to correct this instrument problem we had to modify our system slightly and replace the phenol moiety by a trimethoxybenzene which absorbs at a different wavelength and seems to be an equally good electron donor. The study of the new system and the development of the assay is carried out by Amiot in the Giese group.
5.7 Conclusion

Modifying an oligonucleotide with a specific chemical functionality, such as a photo-, redox- or chemically-active metal complex, is of wide-spread interest for mechanistic studies (electron transfer, structure-function), analytical applications (sequencing, hybridization assays) and therapeutic uses (anticancer, antiviral pharmaceuticals). In order to use phenol as electron donor to investigate electron transfer in DNA, we have reported the first DNA solid-phase synthesis of phenol labeled oligonucleotides using a novel phenol modified nucleoside phosphoramidite 100 (Figure 5.15) and a fully automated protocol.

The choice of the phenol protecting group was a key point of the synthesis of the phenol modified nucleoside 100. This protecting group had to withstand the nucleoside synthesis conditions, it also had to be compatible with the standard procedures for DNA synthesis and finally it had to be easily removed once the nucleoside was incorporated into DNA. The acetyl protecting group appeared to be ideal because it satisfied these three conditions, particularly it was removed during ammonia treatment used to cleave the DNA strand from the solid support. The synthesis of the acetyl protected building block 100d was achieved successfully in 10% yield over 10 steps and its incorporation within oligonucleotides was performed with efficient coupling using standard automated DNA synthesis (Scheme 5.27).
The pivaloyl modified thymine T* was incorporated into DNA at the same time as phenol and used as charge injector. Photolysis of single and double strand phenol-labeled oligonucleotides followed by HPLC analysis of the irradiated products demonstrated that phenol is a very good electron donor. The electron-transfer rates measured in single and double strand experiments are in agreement with the low oxidation potential of the phenol.

The system we have developed to investigate electron transfer in DNA is unique in that both the electron donor (phenol) and the electron acceptor (T*) are modified nucleic acids which are covalently linked to DNA. So only minor structural perturbations arise and no ambiguities occur with respect to distance separating the donor and the acceptor and the DNA assemblies are structurally well defined and well characterized. Such a system is ideal for electron transfer study because presents the advantage of locating precisely where the electron transfer starts and where it ends.

5.8 Further work and outlook

In the course of our assay development we found out that our phenol nucleoside 100 had to be replaced due to the fluorescence problem from the pivaloyl group at 410 nm where the phenoxy radical absorbs. The 2,4,6 trimethoxybenzene radical cation absorbs at 450 nm. At this wavelength the fluorescence of the pivaloyl doesn’t interfere anymore on the rate measurement. In order to test the system, a simple dimer model was designed before applying the technique to the more expansive DNA (Figure 5.16). Dimer 145 containing both electron donor, the 2,4,6 trimethoxybenzene and radical cation precursor, the C4’-pivaloyl abasic nucleoside was synthesized in the Giese group by Amiot.149

![Figure 5.16 The 2,4,6 trimethoxy-nucleoside dimer](image)
Laser irradiation of dimer 145 at $\lambda = 308$ nm (XeCl-excimer, citrate buffer pH 5.0) was followed by transient absorption spectroscopy. Figure 5.17B shows the formation and decay of the transient absorption signal obtained at 450 nm. The short-lived transient at 450 nm corresponds to the generated 2,4,6 trimethoxybenzene radical cation, where an absorbance maximum is observed (OD = 0.31).149

After this preliminary results were obtained we are confident that the replacement of the phenol by a trimethoxybenzene will lead to an excellent assay to study electron transfer into DNA using the technique of laser photolysis coupled with transient absorption spectroscopy. We are still currently working on the development of this assay.
Experimental Part
6. Instruments and materials

6.1 Physical Data

6.1.1 NMR Spectroscopy

\(^1\)H - NMR

Instruments: *Varian Gemini 300* (300 MHz), *Varian Gemini VXR 400* (400 MHz), *Bruker DRX500* (500 MHz).

The chemical shifts (δ) are given in ppm, referred to the internal standard tetramethylsilane (δ = 0.0) or to the partially deuterated nucleus of d\(_1\)-chloroform (δ = 7.26), or to the partially deuterated methyl groups of d\(_4\)-methanol (δ = 3.34). All spectra are interpreted by first order, and the coupling constants (J) are given in Hertz. Split signals with defined multiplicity were characterized by the arithmetic middle of the signal lines. Multiplets are given as region in one-dimensional spectroscopy, but as value of the maximum in two-dimensional spectroscopy. Free hydroxy groups are assigned by proton-deuterium-exchange due to the addition of D\(_2\)O. When necessary, the classification of the signals was done by COSY and NOESY measurements. The signals were abbreviated as follow: s = singlet, bs = broad singlet, d = doublet, t = triplet, m = multiplet, ar = aromatic.

\(^{13}\)C-NMR

Instruments: *Varian Gemini VXR 400* (101.0 MHz), *Bruker DRX500* (125.8 MHz).

The chemical shifts (δ) are given in ppm and are referred to the signals of the solvents d\(_1\)-chloroform (δ = 77.0) or d\(_4\)-methanol (δ = 49.9). The spectra are proton broad band decoupled. When necessary the classification of the signals was done by APT or DEPT experiments. When carbon-deuterium coupling appeared, the chemical shifts (δ) are characterized by the arithmetic middle of the signal lines. The signals were abbreviated as follow: C\(_p\) = primary C-atom, C\(_s\) = secondary C-atom, C\(_t\) = tertiary C-atom, C\(_q\) = quarternary C-atom, C\(_{ar}\) = aromatic C-atom.
31P-NMR

Instrument: *Varian Gemini VXR 400 (162.0 MHz)*

The chemical shifts (δ) are given in ppm and are referred to the spectra reference of the external standard of 58% triphenylphosphate in chloroform (δ = -18 Hz). The spectra are proton broadband decoupled.

Numbering of the nuclei

The protons in the 1H-NMR spectra are numbered with the same numbers as the related carbon atoms (Figure 6.1). If geminal hydrogen atoms show two distinguished signals, the high-field and the low-field shifted nuclei are told apart by an additional “a” or “b”. In compound 100e, the protons of the nucleobase are listed with H-1 to H-n and the protons of the sugar with H-1’ to H-n’ according to the nomenclature of nucleosides.

![Scheme 6.1 Numbering of the atoms of compound 50 and 100e](image)

6.1.2 Mass Spectroscopy

EI and FAB - Mass Spectroscopy

Instrument: *Mass spectrometer VG70-250 and Finnigan MAT 312.*

Mass spectra were carried out by Dr. H. Nadig at the Departement of Chemistry at the University of Basel. The ion generation resulted via electron ionization (EI) or bombardment with fast xenon atoms (FAB), and the use of nitrobenzyl alcohol as matrix and sodium chloride as additive. The data are given in mass units per charge (m/z, intensity), and the intensities of the signals are indicated in percent of basis ion in brackets.
Electrospray - Mass - Spectrometry

Instrument: Finnigan MAT LCQ, Octapole Mass-Spectrometer.

The samples are directly injected in solution. The ion source resulted via electron ionization. All data refer to the atomic mass units per elemental charge \((m/z, \text{intensity})\). The intensities of the signals are indicated in percent of basis ion in brackets.

MALDI - TOF - Mass – Spectroscopy

Instrument: Voyager Elite, Biospectrometry Research Station by Vestec. Flight tube 2 m.

\(\text{N}_2\) –Lazer (337 nm, 3 ns pulse duration, 0,2 mJ/pulse, accumulation of 10-100 puls). Acceleration voltage 25 kV, negative-ion mode.

Signals fit to unfragmented deprotonated molecule ion \((M-H)\). All data refer to the atomic mass units per elemental charge \((m/z, \text{intensity})\).

6.1.3 UV/Vis – Spectroscopy

Instrument: Perkin Elmer UV/Vis Spectrometre Lambda 2

Extinction coefficients \((\epsilon)\) are given in \(\text{M}^{-1}.\text{cm}^{-1}\).

6.1.4 Elemental Analysis

Instruments: Leco CHN-900 (C-, H-, N-detection), Leco RO-478 (O-detection).

The elemental analyses were carried out by W. Kirsch at the Departement of Chemistry at the University of Basel. The data are indicated in mass percents.
6.2 Chromatographic Methods

6.2.1 Thin Layer Chromatography (TLC)

Material: Silica gel 60 F$_{254}$ aluminum sheets by *Merck* with a layer thickness of 0.2 mm.

The detection of UV-inactive compounds was carried out by dipping in:

- a solution of ceric ammonium sulfate dihydrate (10 g ceric (IV) sulfate tetrahydrate, 25 g ammonium molybdate tetrahydrate, 100 ml concentrated sulfuric acid and 900 mL water) and subsequent heating;

or

- a solution of permanganate (3 g potassium permanganate, 5 mL 5% sodium hydroxide, 20 g potassium carbonate and 300 ml water) and subsequent heating;

6.2.2 Flash Column Chromatography (FC)

Flash Column Chromatography was performed under high pressure (~1.5 bar, membrane pump) on silica gel C 560 KV (35-70 µm) by *Uetikon* or on silica gel 60 (40-63 µm) by *Merck*.

The solvents were distilled before use. The ratio of the solvents in mixture is referred to the parts of the volume (v/v).

6.2.3 High Pressure Liquid Chromatography (HPLC):

Instrument: for strands purification: *Hewlett Packard 1050 Series*

for analytical: *Waters Alliance (2690 Separations Module) 2680 Dual Mode Detector.*

Column:

- **normal phase:** *Merck LiChroCART 250-4 LiChrospher Si60 (5µm), dimension: 250 mm x 4 mm, flow: 1mL/min;*

- **reversed phase:** *Merck LiChroCART 250-4 LiChrospher 100 RP-18 (5µm), dimension: 250 mm x 4 mm, flow: 1 mL/min*
6. Instruments and materials

6.3 Irradiation instruments

- For analytical irradiation: Irradiation bench by Oriel 68810, with mercury high pressure lamp by Osram 500 W, with 320 or 305 nm cut-off filter (2mm x 50 mm x 50 mm) by Schott. At given wavelength light transmittance is about 50% (Figure 6.2).

![Figure 6.2](image)

A) Osram 500 W lamp spectra. **B**) Light transmittance of a 320 nm cut-off filter.

- For laser irradiation: laser irradiations were carried out in the group of Prof J. Wirz (University Basel) with a COMPex 205 XeCl-Excimer Laser ($\lambda = 308$ nm, Laser power 100-150MJ/pulse, pulse duration 25 ns) from Lambda Physik. The samples were irradiated at RT in a quartz cuvette (4.5 cm x 1 cm x 1 cm). Before irradiation the samples were degassed by repeated freezing in liquid nitrogen followed by evaporation of the solvent with a diffusion pump. A monochromator xenon lamp (1P28 photomultiplier) was employed for kinetic measurements at the observed wavelength. Detection was performed with a iStar 720 ICCD Detector from Andor. The measuring data were analyzed with MacFitFlash 2.0.1.
6.3 DNA instruments

DNA synthesiser

Expedite 8909 by *Perspective Biosystems*. The reagents for the DNA synthesizer were ordered from *Glenresearch*.

Thermomixer and Vortexer

Thermomixer 5436 from *Eppendorf* and vortexer Genie 2 from *Bender&Holbein AG*.

Lyophilisator

Speed Vac Plus from the firm *Savant*.

Centrifuge

Centrifuge 5415 C from *Eppendorf*; Picofuge by *Stratagene*.

6.5 Chemicals and solvents

Chemicals: The reagents for the DNA synthesizer were ordered from *Eurogentech*. All other commercial substances were ordered from *Fluka Chemie AG* or *Aldrich* and applied without further purification if not specially mentioned.

Solvents: Diethyl ether and tetrahydrofurane were freshly absoluted over sodium following the standard procedures. Other absolute solvents were bought from *Fluka Chemie AG*, *Rog mil Chemicals*, *Machler* and *J.T.Baker*, and used directly without further cleaning. Technical solvents for flash chromatographic separation procedures were distilled before use.
7. **General methods**

7.1 **Synthesis**

All the reactions were carried out under standard conditions in appropriate laboratory glassware. Reactions that were sensitive to water and oxygen were performed under argon atmosphere.

7.2 **General oligonucleotide procedures**

7.2.1 **Synthesis**

Synthesis:
The modified oligonucleotides were synthesized using an automated DNA solid-phase synthesizer. The oligonucleotides were assembled from 3’-terminal to 5’-terminal using a 0.2 µM mass column (see Chapter 5.4.1). Amino derivatized borsilicate (Controlled Pore Glas: CPG) with a pore size of 1000 Å were used a solid phase support. The first nucleotide (in all cases thymidine) was already covalently attached at its 3’ hydroxyl group to the solid-phase through a base labile succinyllinker. The syntheziser was set to standard Trityl-on mode. The modified nucleotides T* and phenol, which were before dried under high vaccum for 24 h, were dissolved in dry acetonitrile (0.08-0.1M) and the coupling times were enhanced from 2 min to 15 min for their incorporation.

Solid phase cleavage and deprotection:
Once the synthesis finished, the solid phase was dried under argon and the solid phase pores were added to 1 ml concentrated ammonia (32%) and stirred at 55°C overnight to remove the oligonucleotide from the solid phase. Ammonia treatment also removes the cyanoethyl phosphate protecting groups and the protecting groups on amines of the adenine, cytidine and guanine bases. The oligonucleotide was lyophilized and dissolved in 0.1 M TEAA-Buffer (pH 7.0) and further purified using RP-18 HPLC.
7.2.2 Purification

The oligonucleotides were purified by RP-18 HPLC. A RP-18 column from Merk (see Chapter 6.2.3) was used to separate the strands (Flow 1 ml/min). The column temperature was set at 55°C and the detection was made by UV-absorption at 260 nm. The oligonucleotides were eluted using an acetonitrile gradient composed by eluent A: 0.1 M triethylammoniumacetate buffer (TEAA) pH 7 and eluent B: Acetonitrile 190.

Trityl-on purification:
As the oligonucleotide synthesis was accomplished in Trityl-on mode, the last nucleotide of the sequence kept its 5’-trityl protecting group on. This helps to separate the incomplete, capped oligonucleotides which are primarily eluted by this first purification (trityl-on). An acetonitrile gradient of 15% to 40% in 30 minutes was used to isolate the modified strand which did generally eluate between 12 and 20 minutes.

Removal on the 5’ trityl group:
The isolated fractions were lyophilized and then left to stand in 80% AcOH (200 µl) solution for 20 minutes at RT. After neutralizing with 3 M sodium acetate solution (50 µl) the dissolved strand was then placed in isopropanol (800 µl) and left standing over night at –20°C to precipitate the oligonucleotide. After centrifugation for 10 minutes at 10 000 rpm (14 000 g), the solution was decanted off.

Trityl-off purification:
The precipitate was then dissolved in nano-pure water and purified again by RP-18 HPLC. A typical gradient was 6% to 20% acetonitrile in 40 minutes (trityl-off), in order to achieve an optimal retention time of 13 to 18 minutes. The purity of the oligonucleotides was checked by MALDI-ToF MS.

7.2.3 Unmodified strands

All the unmodified oligonucleotides were purchased from Microsynth and Qiagen/Operon with beforehand PAGE - purification. Their purity was checked by RP-18 HPLC (Trityl-off mode) and MALDI-ToF MS.
7.2.4 Mass analysis

All mass analyses of oligonucleotides single strands were done by MALDI-ToF MS. To do so, 1 µl of the trityl-off purified solution was taken with a micropipette and mixed with 1 µl of the matrix solution (0.5 M 2,4-dihydroxyacetophenone and 0.3M ammoniumtartrate in nanopure water/acetonitrile 3/1) and placed on the metal plate to dry. After the sample has crystallized, the sample plate is placed into the mass spectrometer for analysis.

7.2.5 Quantification by UV-absorption

The molar extinction coefficient of the oligonucleotides were calculated using the increment values of the next formula:

\[
\varepsilon_{260} = (\varepsilon_A \times N_A + \varepsilon_C \times N_C + \varepsilon_G \times N_G + \varepsilon_T \times N_T) \times 0.9 + \varepsilon_{\text{modification}}
\]

\text{Eq. 7.1}

\(N\) is the number of each bases in the oligonucleotide and \(\varepsilon\) its corresponding molar extinction coefficient. The following standard \(\varepsilon_{260}\) values were used for each base (the values were determined using absorption of 260 nm)\(^81\) and the \(\varepsilon\) value for the phenol was determined experimentally at 260 nm with the compound 92.

<table>
<thead>
<tr>
<th>Nucleobases</th>
<th>(\varepsilon_{260}) (in M(^{-1}).cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenine</td>
<td>15400</td>
</tr>
<tr>
<td>Guanine</td>
<td>11500</td>
</tr>
<tr>
<td>Cytosine</td>
<td>7400</td>
</tr>
<tr>
<td>Thymine</td>
<td>8700</td>
</tr>
<tr>
<td>Phenol (92)</td>
<td>195</td>
</tr>
</tbody>
</table>

Table 7.1 Increment values of the nucleobases
Oligonucleotide solution was placed in a plastic cuvette (1 ml, 1cm) and absorption was measured at 260nm. The concentration of the nucleotide was determined using the Beer-Lambert law (7.2):

\[A = \varepsilon_{260} \times C \times l \]

Eq. 7.2

A is the measured absorbance at 260 nm, \(\varepsilon_{260} \) the molar extinction coefficient at 260 nm (M\(^{-1}\).cm\(^{-1}\)), C the concentration (mol.l\(^{-1}\)) and l the path length of the cuvette (cm).

7.2.6 Hybridization

The double strands were annealed by placing the modified strand (1 nmol) and its complementary strand (1.1-1.2 nmol) in a citrate buffer solution (pH 5.0, in addition to 100 mM NaCl, 200 µl) for 3 minutes at 80°C and then letting slowly cool down to RT for 3 hrs.

7.2.7 Melting point determination by UV/Vis - Spectroscopy

The measurement of the melting point was carried out at 260 nm with a temperature gradient of 1°C/min. The modified strand (1 nmol) and its complementary strand (1.1-1.2 nmol) were dissolved in a citrate buffer solution (pH 5.0, in addition to 100 mM NaCl, 1000 µl). The melting point (\(T_m \)) is given as a mean value of the heating and cooling down temperature curves (first order derivative).

7.2.8 Photolysis

The strands, both double and single, were dissolved in a citrate buffer (200 µl, 20 mM sodium citrate, 100 mM NaCl, pH 5.0) in a 1.5 ml polymethylmethacrylate cuvette from Semadeni containing a rubber septum. Argon was bubbled though the solution for 15 min under low pressure to degas the solution. The cuvettes, still under an argon atmosphere, were placed on the appropriate position and irradiated behind a cut-off filter (320 nm) with a 500 W mercury high-pressure lamp for 5 min. The thermostat set at 15 °C to keep any evaporation to a minimum. After the photolysis was finished, the solvent was evaporated in vacuum, and the residue purified with HPLC.
7.3 Quantification of the photolysis products by HPLC

7.3.1 Ferrocene derivatives photolysis

The photolysis products were isolated by RP-18 HPLC using an acetonitrile gradient 70% to 100% in 25 min (solvent A: TEAA-Buffer, solvent B: Acetonitrile) and quantified by using the area factor F_p given in Eq. 7.3:

$$F_X = \frac{n(X) \times \text{area}(S)}{n(S) \times \text{area}(X)} \quad \text{Eq. 7.3}$$

$n(X)$: mol quantity of the educt before photolysis.

area (X): chromatogram peak area of the educt.

$n(S)$: mol quantity of the co-injected standard.

area (S): chromatogram peak area of the co-injected standard.

The yield (%) of the photolysis product Y is given by Eq. 7.4:

$$Y(\%) = F_Y \times \frac{n(S) \times \text{area}(Y)}{\text{area}(S)} \quad \text{Eq. 7.4}$$

7.3.2 Phenol oligonucleotides photolysis

The photolysis products Y were isolated by RP-18 HPLC using an acetonitrile gradient 6% to 20% in 40 min (solvent A: TEAA-Buffer, solvent B: Acetonitrile) and quantified by dividing the peak areas by their calculated extinction coefficients (see 7.2.5) and internal calibration:

$$Y(\%) = \frac{\text{area}(Y)}{\varepsilon(Y)} \times \frac{n(S) \times \varepsilon(S)}{\text{area}(S)} \quad \text{Eq. 7.5}$$

area (Y): chromatogram peak area of the photolysis product.

$\varepsilon(Y)$: extinction coefficient of the photolysis product.

$n(S)$: mol quantity of the co-injected standard, generally the counter strand.

$\varepsilon(S)$: extinction coefficient of the co-injected standard.

area (S): chromatogram peak area of the co-injected standard.
8 Synthesis of the ferrocenyI derivatives

8.1 Synthesis of the ferrocenyl linker, the 4-Ferrocenylbutanol (49)

3-Ferrocenoxypropionic acid (46)

A mixture of ferrocene 36 (2.51 g, 13.5 mmol) and glutaric acid anhydride (1 g, 10 mmol) in dichloromethane (50 ml) was added dropwise to aluminium trichloride (1.73 g, 13 mmol) in anhydrous dichloromethane (50 ml). The yellow solution turns violet. After refluxing for 3 h, the batch was hydrolysed (100 ml water) and the resulting solution was filtered through frit to remove reaction products which are not soluble in either aqueous phase or organic phase. The aqueous phase was separated and the organic phase was washed with water (3 x 50 ml), dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (Dichloromethane/Methanol 95/5) to give 2.24 g (7.83 mmol, 58%) of pure product 46 as an orange powder.

C₁₄H₁₄FeO₃; 286.11 g.mol⁻¹

R_f (Dichloromethane/Methanol 95/5) = 0.26

¹H-NMR (400 MHz, CDCl₃, δ/ppm):
4.11 (s, 5H, Fc); 4.05 (s, 4H, Fc); 2.72 (t, J = 6.6 Hz, 2H, Fc-CO-CH₃); 2.36 (t, J = 6.4 Hz, 2H, CH₂COOH).
13C-NMR (101 MHz, CDCl3, δ/ppm):
198.8 (Cq, C=O); 180.2 (Cq, COOH); 87.9 (Cq,Fc); 68.9 (C, 5 CH Fc); 68.5, 67.8 (C, 4 CH Fc); 34.1 (C, Fc-CO-CH2); 29.8 (C, CH2COOH).

MS (ESI, MeOH/ CH2Cl2 1/1) : 309.5 [M + Na]⁺

4-Ferrocenylbutyric acid (47)

To a solution of compound 46 (286 mg, 1 mmol) and tetrabutylammonium borohydride (257 mg, 1 mmol) in dichloromethane (3 ml) cooled in an ice-water bath was added slowly a 1.0 M ZnCl₂ solution in ether (2.1 ml, 2.1 mmol). The mixture was stirred at RT for 1 h and poured into water (5 ml). The organic layer was separated, dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column (Dichloromethane/Methanol 95/5) to afford 177 mg (0.65 mmol, 65%) of product 47 as an orange solid.

C₁₄H₁₆FeO₂: 272.13 g.mol⁻¹

Rₚ (Dichloromethane/Methanol 95/5) = 0.49

1H-NMR (400 MHz, CDCl₃, δ/ppm):
4.12 (s, 5H, Fc); 4.03 (s, 4H, Fc); 2.37 (m, 4H, Fe-CH₂, CH₂COOH); 1.87 (m, 2H, CH₂).

13C-NMR (101 MHz, CDCl₃, δ/ppm):
179.9 (Cq, COOH); 87.9 (Cq,Fc); 68.8 (C, 5 CH Fc); 68.1, 67.2 (C, 4 CH Fc); 33.6 (C, CH₂COOH); 28.6 (C, Fe-CH₂); 26.0 (C, CH2-CH₂-CH₂).

MS (ESI, MeOH/ CH₂Cl₂ 1/1) : 272.3 [M]⁺
4-Ferrocenylbutyric acid methyl ester (48)

Acid 47 (252 mg, 0.93 mmol) was dissolved in methanol (5 ml) and *p*-toluene sulfonic acid was added (catalytic amount). The reaction mixture was stirred for 4 h at RT under argon, then concentrated under reduced pressure and chromatographed directly on a silica gel column (Dichloromethane). The desired product 48, 254 mg (0.89 mmol, 96%), was isolated as an orange oil.

C_{15}H_{18}FeO_2: 286.16 g.mol

R_f (Dichloromethane) = 0.38

^1H-NMR (400 MHz, CDCl_3, δ/ppm):
4.12 (s, 5H, Fc); 4.06 (s, 4H, Fc); 3.68 (s, 1H, OCH_3); 2.38 (m, 4H, Fc-CH_2, CH_2COOH); 1.86 (m, 2H, CH_2).

^13C-NMR (101 MHz, CDCl_3, δ/ppm):
174.0 (C_q, COOH); 88.1 (C_q, Fc); 68.5 (C_v, 5 CH); 68.1, 67.2 (C_v, 4 CH Fc); 51.5 (C_p, OCH_3); 33.7 (C_v, CH_2COOH); 29.0 (C_v, Fc-CH_2); 26.1 (C_v, CH2-CH_2-CH_3).

MS (ESI, MeOH/ CH_2Cl_2 1/1): 286.3 [M]^+
LiAlH₄ (50 mg, 1.32 mmol) was added to a stirred solution of compound 48 (340 mg, 1.19 mmol) in diethylether (18 ml) cooled to 0°C. The reaction mixture was stirred for 1h at RT under argon and the batch was slowly hydrolysed (20 ml water). Dichloromethane was added (40 ml) and the mixture was neutralized with a 2 M solution of hydrochloric acid (15 ml). The organic layer was separated, washed 3 times with water (3 x 30 ml), dried over Na₂SO₄ and concentrated. Column chromatography over silical gel (Pentane/AcOEt 2/1) afford 291 mg (1.13 mmol, 95%) of the desired alcohol 48 as an orange solid.

C₁₄H₁₈FeO: 258.15 g.mol⁻¹

Rᵣ (Pentane/ AcOEt 2/1) = 0.34

¹H-NMR (400 MHz, CDCl₃, δ/ppm):
4.11 (s, 5H, Fc); 4.05 (s, 4H, Fc); 3.55 (t, J = 6.15 Hz, 2H, CH₃OH); 2.35 (t, J = 7.2 Hz, 2H, Fc-CH₂); 1.58 (m, 4H, CH₂); 1.33 (s, 1H, OH).

¹³C-NMR (101 MHz, CDCl₃, δ/ppm):
89.0 (C₄,Fc); 68.5 (C₅, 5 CH Fc); 68.1, 67.1 (C₆, 4 CH Fc); 62.8 (C₇, CH₃OH); 32.6, 29.4, 27.2 (3C₈, 3 x CH₂).

MS (ESI, MeOH/ CH₂Cl₂ 1/1): 258.3 [M]⁺

found: C 66.33, H 6.12, O 5.75.
8.2 Synthesis of the radical injector (53)

(rac)-8,8-Dimethyl-6-hydroxy-7-oxo-6-[(tetrahydro-2H-pyranoyloxy) methyl] nonanoic acid-methyl ester (51)

To a solution of alcohol 5085 (200 mg, 0.77 mmol) and dihydropyran (174 μl, 1.92 mmol) in dichloromethane (6 ml) was added pyridinium p-toluenesulfonate (48 mg, 0.192 mmol) and the mixture was stirred at RT for 1.5 h. Saturated NaHCO\textsubscript{3} solution was added (15 ml) and the aqueous layer was extracted with dichloromethane (3 x 10 ml). The collected organic layer was dried over MgSO\textsubscript{4}, filtered and concentrated. The crude product was purified by flash chromatography on a silica gel column (Pentane/AcOEt 4/1) to afford 224 mg (0.65 mmol, 85%) of the product 52 as a colorless oil.

\[C_{18}H_{32}O_6: 344.45 \text{ g.mol}^{-1} \]

\[R_f \text{ (Pentane/ AcOEt 4/1)} = 0.28 \]

1H-NMR (400 MHz, CDCl\textsubscript{3}, δ/ppm):
mixture of both diastereoisomers : 4.59 (dd, 1H, THP); 4.02 (d, \(J = 10.1 \text{ Hz} \), 1H, CH\textsubscript{3}H\textsubscript{2}OTHP); 3.95 (d, \(J = 10.1 \text{ Hz} \), 1H, CH\textsubscript{3}H\textsubscript{2}OTHP); 3.65 (s, 3H, OCH\textsubscript{3}); 3.55 (d, \(J = 10.12 \text{ Hz} \), 2H, THP); 2.28 (t, \(J = 7.5 \text{ Hz} \), 2H, H-2); 1.76 -1.48 (m, 12H, 6H THP, 2 x H-3, 2 x H-4, 2 x H-5); 1.25 (s, 9H, H-9).

13C-NMR (101 MHz, CDCl\textsubscript{3}, δ/ppm):
mixture of both diastereoisomers : 218.5 (C\textsubscript{q}, C-7); 173.9 (C\textsubscript{q}, C-1); 99.8 (C\textsubscript{r}, THP); 84.0 (C\textsubscript{q}, C-6); 74.5 (C\textsubscript{r}, CH\textsubscript{2}OTHP); 63.3 (C\textsubscript{r}, THP); 51.4 (C\textsubscript{p}, OCH\textsubscript{3}); 44.7 (C\textsubscript{q}, C-8); 36.9 (C\textsubscript{r}, C-5) ; 33.9 (C\textsubscript{r}, C-2); 30.7 (C\textsubscript{r}, THP); 27.1 (C\textsubscript{p}, 3 x C-9); 25.7 (C\textsubscript{r}, THP); 25.4 (C\textsubscript{r}, C-3); 23.2 (C\textsubscript{r}, C-4); 19.8 (C\textsubscript{r}, THP).

\textbf{MS (ESI, MeOH/ CH\textsubscript{2}Cl\textsubscript{2} 1/1):} 367.3 [M+Na]+
(rac)-8,8-Dimethyl-6-methoxy-7-oxo-6-[(tetrahydro-2H-pyranoxy) methyl] nonanoic acid-methyl ester (52)

A mixture of alcohol 51 (200 mg, 0.58 mmol) and natriumhydride (60% in mineral oil, 46 mg, 1.16 mmol) in diethylether (8 ml) was stirred for 3 h at RT and trifluoromethane sulfonic acid methyl ester (127 µl, 1.16 mmol) was added. The reaction mixture was stirred for 20 min under argon at RT. Water (10 ml) was then added as well as diethylether (20 ml). The organic layer was washed with saturated NaHCO₃ solution (20 ml), with saturated NH₄Cl solution (20 ml) and with brine (20 ml). The organic phase was then dried over MgSO₄, filtered and the solvents were removed. The residue was purified by flash chromatography on a silica gel column (Pentane/AcOEt 4/1) to afford 152 mg (0.42 mmol, 73%) of the desired methyl ether 52 as a colorless oil.

C₁₉H₃₄O₆: 358.47 g.mol⁻¹

Rf (Pentane/ AcOEt 4/1) = 0.40

¹H-NMR (400 MHz, CDCl₃, δ/ppm):
mixture of both diastereoisomers: 4.59 (dt, 1H, THP); 3.92 (d, J = 10.6 Hz, 1H, CH₃H₅OTHP); 3.82 (d, J = 10.6 Hz, 1H, CH₃H₅OTHP); 3.65 (s, 3H, OCH₃ ester); 3.43 (d, J = 10.6 Hz, 2H, THP); 3.28 (s, 3H, OCH₃ ether); 2.27 (t, J = 7.9 Hz, 2H, H-2); 1.69 -1.47 (m, 12H, 6H, THP, 2 x H-3, 2 x H-4, 2 x H-5); 1.21 (s, 9H, H-9).

¹³C-NMR (101 MHz, CDCl₃, δ/ppm):
mixture of both diastereoisomers: 217.7 (Cₜ, C-7); 173.9 (Cₜ, C-1); 99.1 (Cₓ, THP); 89.9 (Cₓ, C-6); 69.7 (Cₓ, CH₂OTHP); 61.5 (Cₓ, THP); 51.4 (Cₚ, OCH₃ ester); 49.4 (Cₚ, OCH₃ ether); 45.1 (Cₚ, C-8); 33.8 (Cₓ, C-5); 31.8 (Cₓ, C-2); 30.7 (Cₓ, THP); 26.9 (Cₚ, 3 x C-9); 25.4 (Cₓ, THP); 25.2 (Cₓ, C-3); 23.1 (Cₓ, C-4); 18.8 (Cₓ, THP).

MS (ESI, MeOH/ CH₂Cl₂ 1/1): 381.3 [M+Na]⁺
(rac)-8,8-Dimethyl-6-methoxy-7-oxo-6-[(tetrahydro-2H-pyran-2-yl oxy) methyl] nonanoic acid (53)

Ester 52 (152 mg, 0.42 mmol) was dissolved in a mixture of methanol/H₂O 3/1 (4 ml) and lithium hydroxide (53 mg, 1.27 mmol) was added. The reaction mixture was stirred for 4 h at RT under argon, then concentrated under reduced pressure and chromatographed on a silica gel column (Pentane/AcOEt 1/1 + 0.1 % AcOH) to afford 118 mg (0.34 mmol, 81%) of the acid 53 as a colorless oil.

C₁₈H₃₂O₆: 344.45 g.mol⁻¹

R_f (Pentane/ AcOEt 1/1) = 0.31

¹H-NMR (400 MHz, CDCl₃, δ/ppm):
mixture of both diastereoisomers : 4.56 (dt, 1H, THP); 3.92 (d, J = 10.6 Hz, 1H, CH₂H₅OTHP); 3.82 (d, J = 10.6 Hz, 1H, CH₂H₅OTHP); 3.43 (d, J = 10.8 Hz, 2H, THP); 3.29 (s, 3H, OCH₃ ether); 2.31 (t, J = 7.5 Hz, 2H, H-2); 1.72 -1.49 (m, 12H, 6H THP, 2 x H-3, 2 x H-4, 2 x H-5); 1.21 (s, 9H, H-9).

¹³C-NMR (101 MHz, CDCl₃, δ/ppm):
mixture of both diastereoisomers : 217.7 (C_q, C-7); 179.1 (C_q, C-1); 98.5 (C_t, THP); 89.9 (C_q, C-6); 69.7 (C_s, CH₂OTHP); 61.5 (C_s, THP); 49.4 (C_p, OCH₃ ether); 45.2 (C_q, C-8); 33.8 (C_s, C-5); 31.8 (C_s, C-2); 30.7 (C_s, THP); 26.9 (C_p, 3 x C-9); 25.4 (C_s, THP); 25.2 (C_s, C-3); 23.1 (C_s, C-4); 18.8 (C_s, THP).

MS (ESI, MeOH/ CH₂Cl₂ 1/1): 367.4 [M+Na]⁺
8.3 Synthesis of the ferrocenyl precursor (42)

(rac)-8,8-Dimethyl-6-methoxy-7-oxo-6-[(tetrahydro-2H-pyran-2-yl)oxy]nonanoic acid-4-(ferrocenyl)butyl ester (54)

To a solution of alcool 49 (39 mg, 0.15 mmol) and acid 53 (57 mg, 0.165 mmol) in abs. THF (4 ml) EDC (38 mg, 0.2 mmol) and DMAP (9 mg, 0.075 mmol) were added. The mixture was stirred under argon at RT for 17 h and saturated NaHCO$_3$ solution (10 ml) was added. The mixture was extracted with AcOEt (3 x 10 ml) and the combined organic layers were washed with saturated NH$_4$Cl solution (2 x 10 ml), dried over MgSO$_4$ and concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column (Pentane/AcOEt 4/1 v/v) to give 78 mg (0.13 mmol, 89%) of the desired ester 54 as a yellow oil.

C$_{32}$H$_{48}$FeO$_6$: 584.59 g.mol$^{-1}$

R_f (Pentane/AcOEt 5/1) = 0.34

1H-NMR (400 MHz, CDCl$_3$, δ/ppm):
mixture of both diastereoisomers: 4.61 (dt, 1H, THP); 4.08 (s, 5H, Fc); 4.04 (s, 4H, Fc); 3.92 (d, J = 10.6 Hz, 1H, CH$_2$O_THP); 3.83 (d, J = 10.6 Hz, 1H, CH$_2$_OH_THP); 3.42 (d, J = 10.8 Hz, 2H, THP); 3.3 (s, 3H, OCH$_3$ ether); 2.35 (t, J = 7.7 Hz, 2H, H-2); 2.27 (t, J = 6.8 Hz, 2H, Fc-CH$_2$); 1.72 -1.49 (m, 16H, 6H THP, 2 x H-3, 2 x H-4, 2 x H-5, 4 x H CH$_2$ Fc); 1.23 (s, 9H, H-9).

13C-NMR (101 MHz, CDCl$_3$, δ/ppm):
mixture of both diastereoisomers: 217.7 (C$_q$, C-7); 173.5 (C$_q$, C-1); 98.6 (C$_r$, THP); 89.9 (C$_q$, C-6); 88.7 (C$_q$, Fc); 69.8 (C$_r$, CH$_2$O_THP); 68.5 (C$_r$, 5 CH Fc); 68.0, 67.1 (C$_r$, 4 CH Fc); 64.1 (C$_s$, CH$_2$OC=O); 61.1 (C$_s$, THP); 49.4 (C$_p$, OCH$_3$ ether); 45.1 (C$_q$, C-8); 34.1 (C$_s$, C-5); 32.5 (C$_s$,
Compound 54 (39 mg, 67 µmol) was dissolved in ethanol (0.5 ml) together with pyridinium p-toluenesulfonate (2 mg, 7 µmol) and the reaction mixture was stirred at 55°C for 4 h. The solution was then treated with water (2 ml) and the mixture was extracted with dichloromethane (3 x 5 ml). The combined organic extracts were dried over MgSO₄ and concentrated, yielding an oil that was purified by flash chromatography on silica gel (Pentane/AcOEt 3/1) to give 30 mg (60 µmol, 90%) of compound 55 as a yellow oil.

C₂₇H₄₀FeO₅: 500.47 g·mol⁻¹

Rᶠ (Pentane/AcOEt 3/1) = 0.31

¹H-NMR (400 MHz, CDCl₃, δ/ppm):
4.09 (s, 5H, Fc); 4.05 (s, 4H, Fc); 3.70 (dd, 2H, CH₂OH); 3.3 (s, 3H, OCH₃ ether); 2.35 (t, J = 7.6 Hz, 2H, H-2); 2.28 (t, J = 7.4 Hz, 2H, Fc-CH₂); 1.75 -1.50 (m, 10H, 2 x H-3, 2 x H-4, 2 x H-5, 4 x H CH₃, Fc); 1.22 (s, 9H, H-9).
13C-NMR (101 MHz, CDCl$_3$, δ/ppm):
217.9 (C$_q$, C-7); 173.4 (C$_q$, C-1); 90.4 (C$_q$, C-6); 88.7 (C$_q$,Fc); 68.7 (C$_r$, 5 CH Fc); 67.8 (C$_s$, CH$_2$OH); 65.0 (C$_r$, 4 CH Fc); 63.2 (C$_s$, CH$_2$OC=O); 49.9 (C$_p$, OCH$_3$ ether); 45.2 (C$_q$, C-8); 34.4 (C$_s$, C$_5$); 33.0 (C$_s$, Fc-C$_H$$_2$); 32.0 (C$_s$, C-2); 29.6 (C$_s$); 27.2 (C$_p$, 3 x C-9); 25.6 (C$_s$, C-3); 23.8 (C$_s$, C-4).

MS (ESI, MeOH/CH$_2$Cl$_2$ 1/1): 500.4 [M]$^+$

Elemental analysis: calculated: C 61.72, H 4.71, O 7.47
found: C 61.66, H 4.65, O 7.44

(rac)-8,8-Dimethyl-6-methoxy-7-oxo-6-[(diphenylphosphoryloxy)methyl] nonanoic acid-4-(ferrocenyl)butyl ester (42)

To a solution of 55 (15 mg, 30 µmol) and N-methylimidazole (14 µl, 180 µmol) in dichloromethane (0.2 ml) under argon was added diphenyl phosphochloridate (16 µl, 75 µmol). The mixture was stirred at RT for 18 h. The reaction was then quenched with a 10% tartric acid solution in water (2 ml). The aqueous layer was extracted with dichloromethane (3 x 5 ml). The organic phase was dried over MgSO$_4$, filtered and the solvent removed under reduced pressure. The residue was purified by column chromatography on silica gel (Pentane/AcOEt 3/1) to afford 20 mg (27 µmol, 91%) of compound 42 as a yellow oil.

$C_{39}H_{50}FeO_8P$: 732.65 g.mol$^{-1}$

R_f (Pentane/AcOEt 3/1) = 0.26
Synthesis of the ferrocenyl precursor

1H-NMR (400 MHz, CDCl$_3$, δ/ppm):
7.20 (m, 4H$_{ar}$, Ph); 7.18 (m, 6H$_{ar}$, Ph); 4.33 (d, $J = 4.6$ Hz, 2H, CH$_2$OP); 4.14 (bs, 11H$_{ar}$, Fc); 3.21 (s, 3H, OCH$_3$ ether); 2.25 (m, 4H, 2 x H-2, 2 x H Fc-CH$_2$); 1.55 (m, 10H, 2 x H-3, 2 x H-4, 2 x H-5, 4 x H CH$_2$ Fc); 1.17 (s, 9H, H-9).

13C-NMR (101 MHz, CDCl$_3$, δ/ppm):
215.6 (C$_q$, C-7); 173.3 (C$_q$, C-1); 150.4 (C$_q$, Ph); 129.8 (C$_t$, 4 CH$_{ar}$ meta Ph); 125.4 (C$_t$, 2 CH$_{ar}$ para Ph); 120.05 (C$_t$, 4 CH$_{ar}$ ortho Ph); 89.0 (C$_q$, C-6); 88.9 (C$_q$, Fc); 69.4 (C$_t$, 9 CH Fc); 69.3 (C$_s$, CH$_2$OP); 64.2 (C$_s$, CH$_2$O Fc); 49.9 (C$_p$, OCH$_3$ ether); 45.2 (C$_q$, C-8); 33.9 (C$_s$, C-5); 31.2 (C$_s$, CH$_2$ Fc); 29.2 (C$_s$, C-2); 28.4 (C$_s$); 27.4 (C$_s$); 26.8 (C$_p$, 3 x C-9); 25.1 (C$_s$, C-3); 23.1 (C$_s$, C-4).

31P-NMR (162 MHz, CDCl$_3$, δ/ppm):
-15.35

MS (ESI, MeOH/CH$_2$Cl$_2$ 1/1): 755.3 [M + Na]$^+$
8.4 Synthesis of the ketone reference (58)

6-Oxoheptanoic acid-4-(ferroceny1) butyl ester

\[
\text{Fe}\quad\text{OH}\quad+\quad\text{OH}\quad\text{O}\quad\text{Fe}\quad\text{O}\quad\text{Fe}\quad\text{O}\quad\text{Fe}\quad\text{O}
\]

\[
\text{49} + \text{57} \rightarrow \text{EDC, DMAP} \quad \text{THF, RT} \quad \text{58}
\]

To a solution of alcohol 49 (52 mg, 0.2 mmol) and 6-oxoheptanoic acid 57 (35 mg, 0.24 mmol) in abs. THF (5 ml) was added EDC (54 mg, 0.28 mmol) and DMAP (10 mg, 0.08 mmol). The mixture was stirred under argon at RT for 18 h and saturated NaHCO₃ solution (10 ml) was added. The mixture was extracted with AcOEt (3 x 10 ml) and the combined organic layers were washed with saturated NH₄Cl solution (2 x 10 ml), dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column (Pentane/AcOEt 3/1) to give 60 mg (0.15 mmol, 78%) of the desired ester 58 as a colorless oil.

C_{21}H_{38}FeO₃: 384.31 g.mol⁻¹

\[R_f \text{ (Pentane/AcOEt 3/1)} = 0.44 \]

\[^1H\text{-NMR} (400 \text{ MHz, CDCl}_3, \delta/\text{ppm}): \]
4.08 (s, 5H, Fc); 4.04 (s, 4H, Fc); 2.37 (t, \(J = 6.8 \text{ Hz} \), 2H, CH₂COCH₃); 2.35 (t, \(J = 7.6 \text{ Hz} \), 2H, OCOCH₂); 2.30 (t, \(J = 7.1 \text{Hz} \), 2H, Fc-CH₂); 2.12 (s, 3H, COCH₃); 1.61 (m, 8H, CH₂).

\[^{13}C\text{-NMR} (101 \text{ MHz, CDCl}_3, \delta/\text{ppm}): \]
208.4 (C_q, CO ketone); 173.4 (C_q, CO ester); 88.7 (C_q, Fc); 69.8 (C_s, CH₂OTHP); 68.4 (C_r, 5 CH Fc); 68.0, 67.1 (C_r, 4 CH Fc); 64.2 (C_r, CH₂OC=O); 43.2 (C_s, CH₂COCH₃); 34.0 (C_s, OCOCH₂); 29.8 (C_r, COCH₃); 29.1(C_r); 28.5 (C_s, Fc-CH₂); 27.4, 24.4, 23.2 (C_s).

\[\text{MS (ESI, MeOH/ CH}_2\text{Cl}_2 1/1): \text{384.5} [\text{M}]^+ \]
8.5 Synthesis of the phenyl derivatives for the blind test

(rac)-8,8-Dimethyl-6-methoxy-7-oxo-6-[(tetrahydro-2H-pyran-2-yloxy)methyl] nonanoic acid-4-(phenyl)butyl ester (60)

![Chemical structure of the reaction](image)

To a solution of 4-phenylbutanol 59 (30 mg, 0.2 mmol) and acid 53 (69 mg, 0.2 mmol) in abs. THF (4 ml) was added EDC (42 mg, 0.22 mmol) and DMAP (12 mg, 0.1 mmol). The mixture was stirred under argon at RT for 17 h and saturated NaHCO₃ solution (10 ml) was added. The mixture was extracted with AcOEt (3 x 10 ml) and the combined organic layers were washed with saturated NH₄Cl solution (2 x 10 ml), dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash chromatography on a silica gel column (Pentane/AcOEt 4/1) to give 58 mg (0.12 mmol, 60%) of the desired ester 60 as a colorless oil.

C₂₈H₄₄O₆: 476.65 g·mol⁻¹

Rᶠ(Pentane/AcOEt 5/1) = 0.31

¹H-NMR (400 MHz, CDCl₃, δ/ppm):
mixture of both diastereoisomers: 7.25 (m, 5H, Ph); 4.61 (dt, 1H, THP); 4.08 (t, J = 6.3 Hz, CH₂OC=O); 3.94 (d, J = 10.6 Hz, 1H, CH₂OCH₂OTHP); 3.89 (d, J = 10.6 Hz, 1H, CH₂OCH₂OTHP); 3.42 (d, J = 10.7 Hz, 2H, THP); 3.24 (s, 3H, OCH₃ ether); 2.61 (t, J = 6.8 Hz, 2H, Ph-CH₂); 2.26 (t, J = 7.7 Hz, 2H, H-2); 1.72-1.49 (m, 16H, 6H THP, 2 × H-3, 2 × H-4, 2 × H-5, 4 × H Ph linker); 1.20 (s, 9H, H-9).

\[^{13}\text{C-NMR} \] (101 MHz, CDCl\textsubscript{3}, δ/ppm):
mixture of both diastereoisomers: 217.3 (C\textsubscript{q}, C-7); 173.5 (C\textsubscript{q}, C-1); 142.0 (C\textsubscript{q}, Ph); 128.3, 127.5, 125.8 (C\textsubscript{s}, Ph); 98.8 (C\textsubscript{s}); 90.0 (C\textsubscript{q}, C-6); 69.8 (C\textsubscript{s}, CH\textsubscript{2}OTHP); 64.1 (C\textsubscript{s}, CH\textsubscript{2}OC=O); 61.1 (C\textsubscript{s}, THP); 49.6 (C\textsubscript{s}, OCH\textsubscript{3} ether); 45.2 (C\textsubscript{q}, C-8); 35.4 (C\textsubscript{s}, Ph-CH\textsubscript{3}); 34.1 (C\textsubscript{s}, C-2); 31.7 (C\textsubscript{s}, C-5) 28.4 (C\textsubscript{s}, THP); 27.7 (Cs, THP); 26.9 (C\textsubscript{s}, 3 × C-9); 25.4 (Cs, THP); 25.2 (C\textsubscript{s}, C-3); 23.2 (C\textsubscript{s}, C-4); 18.9 (C\textsubscript{s}, THP).

MS (ESI, MeOH/CH\textsubscript{2}Cl\textsubscript{2} 1/1): 476.6 [M]⁺

(rac)-8,8-Dimethyl-6-hydroxymethyl-6-methoxy-7-oxo-nonanoic acid-4-(phenyl)butyl ester (61)

![Diagram showing the reaction between compounds 60 and 61](image)

Compound 60 (55 mg, 114 µmol) was dissolved in ethanol (1 ml) together with pyridinium p-toluenesulfonate (catalytic amount) and the reaction mixture was stirred at 55°C for 4 h. The solution was then treated with water (2 ml) and the mixture was extracted with dichloromethane (3 × 5 ml). The combined organic extracts were dried over MgSO\textsubscript{4} and concentrated, yielding an oil that was purified by flash chromatography on silica gel (Pentane/AcOEt 4/1) to give 38 mg (97 µmol, 85%) of 61 as a yellow oil.

\[\text{C}_{23}\text{H}_{36}\text{O}_5: 392.53 \text{ g.mol}^{-1} \]

R\textsubscript{f} (Pentane/AcOEt 4/1) = 0.18
8. Synthesis of the ferrocenyl precursor

1H-NMR (400 MHz, CDCl$_3$, δ/ppm):
7.25 (m, 5H, Ph); 4.08 (t, $J = 6.3$ Hz, CH$_2$OC=O); 3.68 (dd, 2H, CH$_2$OH); 3.28 (s, 3H, OCH$_3$, ether); 2.58 (t, $J = 7.0$ Hz, 2H, Ph-CH$_2$); 2.32 (t, $J = 7.5$ Hz, 2H, H-2); 1.75 -1.50 (m, 10H, 2 x H-3, 2 x H-4, 2 x H-5, 4 x H Ph linker); 1.22 (s, 9H, H-9).

13C-NMR (101 MHz, CDCl$_3$, δ/ppm):
217.8 (C$_{q}$, C-7); 173.4 (C$_{q}$, C-1); 142.1 (C$_{q}$, Ph); 128.3,127.4, 125.6 (C$_{r}$, Ph); 90.2 (C$_{q}$, C-6); 67.9 (C$_{s}$, CH$_2$OH); 63.2 (C$_{s}$, CH$_2$OC=O); 49.9 (C$_{p}$, OCH$_3$, ether); 45.2 (C$_{q}$, C-8); 35.4 (C$_{r}$, Ph-CH$_2$); 34.2 (C$_{s}$, C-2); 32.0 (C$_{s}$, C-5); 27.2 (C$_{p}$, 3 x C-9); 25.6 (C$_{s}$, C-3); 23.8 (C$_{s}$, C-4).

MS (ESI, MeOH/ CH$_2$Cl$_2$ 1/1): 415.5 [M+Na]$^+$

(rac)-8,8-Dimethyl-6-methoxy-7-oxo-6-[(diphenylphosphoryloxy)methyl] nonanoic acid-4-(phenyl)butyl ester (62)

![Chemical structure](https://example.com/structure.png)

To a solution of 61 (21 mg, 53 µmol) and N-methylimidazole (25 µl, 317 µmol) in dichloromethane (0.5 ml) under argon was added diphenyl phosphochloridate (28 µl, 132 µmol). The mixture was stirred at RT for 18 h. The reaction was then quenched with a 10% tartric acid solution in water (2 ml). The aqueous layer was extracted with dichloromethane (3 x 5 ml). The organic phase was dried over MgSO$_4$, filtered and the solvent removed. The residue was purified by column chromatography on silica gel (Pentane/AcOEt 3/1) to afford 21 mg (34 µmol, 65%) of compound 62 as a colorless oil.

C$_{35}$H$_{46}$O$_8$P: 624.71 g.mol$^{-1}$
8. Synthesis of the ferrocenyl precursor

\(R_f \) (Pentane/AcOEt 3/1) = 0.20

\(^1\)H-NMR (400 MHz, CDCl\(_3\), \(\delta/\text{ppm} \)):

7.18 (m, 15H, Ph); 4.34 (d, \(J = 4.5 \text{ Hz} \), 2H, CH\(_2\)OP); 4.06 (t, \(J = 6.4 \text{ Hz} \), CH\(_2\)OC=O); 3.21 (s, 3H, OCH\(_3\) ether); 2.65 (t, \(J = 7.0 \text{ Hz} \), 2H, Ph-CH\(_2\)); 2.26 (t, \(J = 7.5 \text{ Hz} \), 2H, H-2); 1.66 (m, 10H, 2 \times H-3, 2 \times H-4, 2 \times H-5, 4 \times H Ph linker); 1.16 (s, 9H, H-9).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\), \(\delta/\text{ppm} \)):

217.6 (C\(_q\), C-7); 173.3 (C\(_q\), C-1); 150.4 (C\(_q\), Ph); 142.1 (C\(_q\), Ph); 129.7, 128.4, 127.4, 125.8, 125.4, 120.1 (C\(_t\), Ph); 89.0 (C\(_q\), C-6); 69.3 (C\(_s\), CH\(_2\)OP); 64.2 (C\(_s\), CH\(_2\)OC=O); 49.5 (C\(_p\), OCH\(_3\) ether); 45.2 (C\(_q\), C-8); 35.4 (C\(_s\), Ph-CH\(_2\)); 33.9 (C\(_s\), C-2); 31.2 (C\(_s\), C-5); 26.8 (C\(_p\), 3 \times C-9); 25.1 (C\(_s\), C-3); 23.0 (C\(_s\), C-4)

\(^31\)P NMR (162 MHz, CDCl\(_3\), \(\delta/\text{ppm} \)): -15.35

MS (ESI, MeOH/CH\(_2\)Cl\(_2\) 1/1): 647.4 [M + Na]\(^+\)

6-Oxo-heptanoic acid-4-(phenyl)butyl ester (64)

\[
\begin{align*}
\text{59} & \quad \text{HO} \quad \text{57} \\
\text{EDC, DMAP} & \quad \text{THF, RT} \\
\text{64} & \quad \text{HO}
\end{align*}
\]

To a solution of alcool 59 (45 mg, 0.3 mmol) and 6-oxoheptanoic acid 57 (52 mg, 0.36 mmol) in abs. THF (5 ml) was added EDC (75 mg, 0.39 mmol) and DMAP (18 mg, 0.15 mmol). The mixture was stirred under argon at RT for 18 h and saturated NaHCO\(_3\) solution (10 ml) was added. The mixture was extracted with AcOEt (3 \times 10 ml) and the combined organic layers were washed with saturated NH\(_4\)Cl solution (2 \times 10 ml), dried over MgSO\(_4\) and concentrated. The crude product was purified by flash chromatography on a silica gel column (Pentane/AcOEt 9/1) to give 76 mg (0.27 mmol, 92\%) of the desired ester 64 as a colorless oil.
8. Synthesis of the ferrocenyl precursor

C_{17}H_{24}O_3: 276.37 g mol\(^{-1}\)

\(R_f\) (Pentane/AcOEt 3/1) = 0.40

\(^{1}\text{H-NMR}\) (400 MHz, CDCl\(_3\), \(\delta/\text{ppm}\)):
- 7.20 (m, 5H, Ph);
- 4.06 (t, \(J = 6.4\text{Hz}\), CH\(_2\)OC=O);
- 2.65 (t, \(J = 7.0\text{Hz}\), 2H, CH\(_2\)COCH\(_3\));
- 2.45 (t, \(J = 6.8\text{Hz}\), 2H, OCOCH\(_3\));
- 2.29 (t, \(J = 7.1\text{Hz}\), 2H, Ph-CH\(_3\));
- 2.11 (s, 3H, COCH\(_3\));
- 1.59 (m, 8H, CH\(_2\))

\(^{13}\text{C-NMR}\) (101 MHz, CDCl\(_3\), \(\delta/\text{ppm}\)):
- 208.4 (C\(_q\), CO ketone);
- 173.4 (C\(_q\), CO ester);
- 141.9 (C\(_q\), Ph);
- 128.3, 125.7 (C\(_p\), Ph);
- 64.2 (C\(_s\), CH\(_2\)OC=O);
- 43.2 (C\(_s\), CH\(_2\)COCH\(_3\));
- 35.6 (C\(_s\), Ph-CH\(_3\));
- 34.0 (C\(_s\), OCOCH\(_3\));
- 29.8 (C\(_s\), COCH\(_3\));
- 29.1, 27.4, 24.3, 23.1 (C\(_s\))

MS (ESI, MeOH/ CH\(_2\)Cl\(_2\) 1/1): 299.3 [M+Na]^\(+\)
9. Synthesis of the phenol nucleoside

9.1 The benzyl approach

3',4',5'-Tris-O-(tert-butyldimethylsilyl)-D-ribofuran-1’-one (78)

Ribonolactone 77 (3.56 g, 24 mmol) was dissolved in abs. N,N-dimethylformamide (50 mL). Imidazole (13.9 g, 204 mmol) as well as n-butyldimethylsilylchloride (12.7 g, 82 mmol) were added. The reaction was stirred for 1h at 70°C and then overnight at RT. The reaction mixture was then diluted with diethylether (100 ml) and washed with water (50 ml). The aqueous layer was then extracted with diethylether (2 x 50 ml). The collected organic phase was dried over MgSO$_4$, filtered and the solvent removed. The residue was crystallized with methanol to give 10.95 g (22.3 mmol, 93%) of compound 78 as white crystals.

C$_{23}$H$_{50}$O$_5$Si$_3$: 490.90 g.mol$^{-1}$

R_f(Dichloromethane/Acetone 98/2) = 1

1H-NMR (300 MHz, CDCl$_3$, δ/ppm):
4.56 (d, $J = 4.95$ Hz, 1H, H-2’); 4.28 (m, 2H, H-3’, H-4’); 3.82 (m, 2H, H-5’); 0.91(m, 27H, t-BuSi); 0.01-0.19 (6s, 18H, MeSi).

13C-NMR (101 MHz, CDCl$_3$, δ/ppm):
175.5 (C$_q$, C=O); 86 (C$_v$, C-2’); 72.3 (C$_v$, C-4’); 71 (C$_v$, C-3’); 62.8 (C, C-5’); 26.2 (C$_p$, 9C, SiC(CH$_3$)$_3$); 18.7 (C$_q$, 3C, SiC(CH$_3$)$_3$); -4.17 to -5.3 (C$_p$, 6C, SiCH$_3$).

MS (FAB, KCl): 491 [M+H]$^+$; 529 [M+K]$^+$
1-O-Benzyl-4-bromophenol (102)

4-Bromophenol 101 (1g, 5.78 mmol) was dissolved in dimethylformamide (20 ml) and the temperature was cooled down to 0°C. Natriumhydride (60% in mineral oil, 277 mg, 6.94 mmol) was added and the reaction mixture was stirred for 15 min. Benzylbromide (0.8 ml, 6.94 mmol) was then added and the ice bath was removed. The reaction mixture was stirred for 15 h under argon at RT. Water (10 ml) was added to destroy the excess of natriumhydride and the reaction mixture was diluted with diethylether (50 ml) and washed with water (50 ml). The aqueous layer was then extracted with diethylether (3 x 50 ml). The collected organic phase was dried over MgSO₄, filtered and the solvent removed. The residue was crystallized in methanol to give 0.75 g (2.85 mmol, 49%) of compound 102 as white crystals.

C_{13}H_{11}BrO: 263.13 g.mol⁻¹

R_f (Toluene) = 0.77

\(^1^H\text{-NMR}\) (400 MHz, CDCl₃, \(\delta/\text{ppm}):
7.42-7.31 (m, 7H, Hₐr); 6.85 (d, \(J = 9.2\) Hz, 2H, Hₐr); 5.28 (s, 2H, CH₂Bn).

\(^{13}\text{C-NMR}\) (101 MHz, CDCl₃, \(\delta/\text{ppm}):
159.2, 137.8, 114.2 (Cₚ; 3 Cₐr); 133.5, 129.8,129.3, 128.6, 117.8 (Cₚ, 9 Cₐr); 71.1 (Cₚ, CH₂Bn).
9. Synthesis of the phenol nucleoside

4-O-(Benzyl)-1-[3’,4’,5’-tris-O-(tert-butyldimethylsilyl)-β-D-ribofuranosyl] phenol (103)

Reaction 1

1-O-Benzyl-4-bromophenol 102 (429 mg, 1.63 mmol) was dissolved in THF abs. (10 ml) and the temperature was cooled down to –78°C. n-Butyllithium (1 ml, 1.96 mmol) was added and the reaction mixture was stirred for 30 min at –78°C. To the previously prepared solution of aryllithium compound 78 (490 mg, 1 mmol) in THF (10 ml) was added and the reaction mixture was stirred for 1 h at –78°C. The reaction was quenched at –78°C with aqueous saturated NH₄Cl solution (10 ml). The organic layer was diluted with diethylether (50 ml) and washed with saturated NH₄Cl solution (100 ml), then water (100 ml) and brine (100 ml). The organic phase was dried over MgSO₄, filtered and the solvent removed.

Reaction 2

The thus obtained residue was dissolved in dichloromethane (15 ml), the solution was cooled to –78 °C and Et₃SiH (0.48 ml, 3 mmol) as well as BF₃.OEt₂ (0.39 ml, 3 mmol) were added. The reaction mixture was stirred for 6 h at –78°C. A saturated solution of NaHCO₃ in water was added (10 ml) and the solution was warmed up to RT. The reaction mixture was diluted with diethylether (50 ml) and washed with aqueous saturated NaHCO₃ solution (20 ml), then water (20 ml) and brine (20 ml). The organic phase was dried over MgSO₄, filtered and the solvent removed. The residue was purified by column chromatography on silica gel (toluene) to give 408 mg (0.62 mmol, 62%) of compound 103 as a colorless oil.

C₃₆H₆₂O₇Si₃: 659.14 g.mol⁻¹
9. Synthesis of the phenol nucleoside

\[R_f \text{ (Toluene)} = 0.64 \]

\[^1\text{H-NMR} \text{ (400 MHz, CDCl}_3\text{, }\delta/\text{ppm):} \]

7.44-7.15 (m, 7H, H\text{ar}); 6.91 (d, \text{ }J = 9.6 \text{ Hz, 2H, H}_2\text{ar}); 5.07 (s, 2H, CH\text{Bn}); 4.71 (d, \text{ }J = 7.8 \text{ Hz, 1H, H-1'}); 4.12 (dd, \text{ }J = 2.0, 4.3 \text{ Hz, 1H, H-3'}); 4.00 (m, 1H, H-4'); 3.82 (dd, \text{ }J = 4.3, 7.8 \text{ Hz 1H, H-2'}); 3.76 (d, \text{ }J = 3.8 \text{ Hz, 2H, H-5'}); 0.94 (s, 18H, 6Me-t-BuSi); 1.78 (s, 9H, 3Me-t-BuSi); 0.11 (m, 12H, 4MeSi); -0.14 (s, 3H, MeSi); -0.44 (s, 3H, MeSi)

\[^{13}\text{C-NMR} \text{ (101 MHz, CDCl}_3\text{, }\delta/\text{ppm):} \]

158.4, 137.2, 133.1 (C\text{q}, 3 C\text{q}); 128.5, 128.2, 127.8, 127.4 (C\text{r}, 9 C\text{r}); 85.7 (C\text{r}, C-1'); 82.7 (C\text{r}, C-4'); 79.5 (C\text{r}, C-3'); 73.9 (C\text{r}, C-2'); 70 (C\text{r}, CH\text{Bn}); 63.8 (C\text{r}, C-5'); 25.9 (C\text{p}, 9C, SiC(CH\text{3})\text{3}); 18.4, 18.1, 18 (C\text{q}, 3C, SiC(CH\text{3})\text{3}); -4.5 (C\text{p}, 6C, SiCH\text{3})

\text{MS (FAB, KCl): 660 [M+H]^+; 698 [M+K]^+}

\text{4-O-(Benzyl)-1-(\beta-D-ribofuranosyl)phenol (104)}

A mixture of 103 (366 mg, 0.55 mmol) and tetrabutylammoniumfluoride (1M in THF, 0.9 ml, 0.9 ml) in THF (15 ml) was stirred at RT for 2 h. A 1N solution of natriumhydroxide (0.5 ml) was added and the solvent was removed and coevaporated with ethanol. After purification by flash chromatography on silica gel (Dichloromethane/Methanol, gradient to 9/1) 128 mg (0.40 mmol, 74%) pure product 104 was isolated as a white solid.

\text{C}_{18}\text{H}_{20}\text{O}_5: 316.35 \text{ g.mol}^{-1}

\[R_f \text{ (Dichloromethane/Methanol, 95/5)} = 0.23 \]
Synthesis of the phenol nucleoside

1H-NMR (400 MHz, CD$_3$OD δ/ppm):
7.42-7.28 (m, 7H, H$_{ar}$); 6.95 (d, $J = 9.6$ Hz, 2H, H$_{ar}$); 5.08 (s, 2H, CH$_2$Bn); 4.64 (d, $J = 6.8$ Hz, 1H, H-1’); 4.03 (dd, $J = 4.0$, 5.6 Hz, 1H, H-3’); 3.94 (dd, $J = 4.0$, 8.6 Hz 1H, H-4’); 3.85 (dd, $J = 5.8$, 6.8 Hz 1H, H-2’); 3.73 (m, 2H, H-5’).

13C-NMR (101 MHz, CD$_3$OD, δ/ppm):
137.8, 133 (C$_q$, 2 C$_{ar}$); 128.5, 127.8, 127.5, 114.8 (C$_r$, 9 C$_{ar}$); 85.3 (C$_r$, C-1’); 84.3 (C$_r$, C-4’); 77.9 (C$_r$, C-3’); 72 (C$_r$, C-2’); 70 (C$_r$, CH$_2$Bn); 62.7 (C$_s$, C-5’).

4-O-(Benzyl)-1-[3’,5’-O-(tetraisopropylsilyl)-β-D-ribofuranosyl]phenol (105)

Triol 104 (1.55g, 4.90 mmol) was dissolved in dry pyridine (40 ml) and dichloro 1,1’,3,3’-tetraisopropyl disiloxane (1.9 ml, 5.88 mmol) was added. The reaction mixture was stirred at RT under argon for 18 h. Methanol was added to quench the reaction and the solvent was co-evaporated with toluene until no more pyridine is detected. The residue was purified by column chromatography on silica gel (Pentane/AcOEt 8/1 + 0.5% Et$_3$N to afford 2.74 g (4.90 mmol, 100%) of compound 105 as a colorless oil, 2.74 g.

C$_{30}$H$_{46}$O$_6$Si$_2$: 558.86 g.mol$^{-1}$

R_f(Pentane/AcOEt 8/1) = 0.28

1H-NMR (400 MHz, CDCl$_3$, δ/ppm):
7.34-7.44 (m, 7H, H$_{ar}$); 6.96 (d, $J = 8.8$ Hz, 2H, H$_{ar}$); 5.06 (s, 2H, CH$_2$Bn); 4.80 (d, $J = 3.8$ Hz, 1H, H-1’); 4.39 (dd, $J = 6.3$, 6.6 Hz, 1H, H-3’); 4.00-4.14 (m, 3H, H-2’, H-5’); 3.94 (m, 1H, H-4’); 2.99 (d, $J = 3.8$ Hz, 1H, OH); 1.03-1.28 (m, 28 H, 4x(i-Pr)$_2$Si).
Synthesis of the phenol nucleoside

\[\text{C}-\text{NMR} \ (101 \text{ MHz, CDCl}_3, \delta/\text{ppm}): \]
158.3, 137,132.3 (C₃, 3 C₄); 128.5, 128, 127.4,127.1, 114.7 (C₉, 9 C₉); 85.6 (C₁, C-1'); 82.8 (C₃, C-4'); 77.6 (C₁, C-3'); 72(Cₙ, C-2'); 70.4 (C₇, CH₂Bn); 62.9 (C₅, C-5'); 17.4-16.9 (Cₚ, 8C, SiCH(CH₃)₂); 13.3, 13.1, 12.8, 12.6 (C₉, 4C, SiCH(CH₃)₂).

MS (FAB, KCl): 559 [M+H]⁺; 597 [M+K]⁺

4-O-(Benzyl)-1-[3',5'-O-(tetraisopropylsilyl)-2'-O-(p-tolyl thionoformate)-β-D-ribofuranosyl]phenol (106)

To a mixture of 105 (2.74 g, 4.90 mmol), 4-dimethylaminopyridine (1.32g, 10.78 mmol) and 4 Å molecular sieve (2 spatules) in acetonitrile (50 ml) was added p-tolyl chlorothionoformate (1.185 ml, 7.84 mmol) and the reaction was stirred overnight under argon. The reaction mixture was filtered through celite and the solid was washed with dichloromethane (300 ml). The solvent was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (Pentane/AcOEt 95/5 + 0.5% Et₃N) to give 2.69 g (3.79 mmol, 77%) of compound 106 as a colorless smelly oil.

\[C_{38}H_{52}O_7SSi_2 \]: 709.05 g.mol⁻¹

\(R_f \) (Pentane/AcOEt 9:1) = 0,59.
1H-NMR (400 MHz, CDCl\textsubscript{3}, δ/ppm):
6.87-7.48 (m, 13H, H\textsubscript{ar}); 5.66 (dd, \(J = 1.6, 4.5\) Hz, 1H, H-2'); 5.17 (d, \(J = 1.6\) Hz, 1H, H-1'); 5.07 (s, 2H, CH\textsubscript{2}Bn); 4.59 (dd, \(J = 4.8, 8.5\) Hz, 1H, H-3'); 4.2 (dd, \(J = 3.3, 13.9\) Hz, 1H, H-4'); 4.06 (m, 2H, H-5'); 2.37 (s, 3H, CH\textsubscript{3} toluene); 0.82-1.15 (m, 28 H, 2x(i-Pr)\textsubscript{2}Si).

13C-NMR (101 MHz, CDCl\textsubscript{3}, δ/ppm):
194.9 (C\textsubscript{q}, C=S); 159.7, 151.6, 136.7, 134.5, 131.5 (C\textsubscript{q}, 5 C\textsubscript{ar}); 130.6, 129.2, 129, 127.7, 127.1, 121.8, 114.2 (C\textsubscript{r}, 12 C\textsubscript{ar}); 88.5 (C\textsubscript{p}, C-4'); 83.2 (C\textsubscript{r}, C-1'); 82 (C\textsubscript{r}, C-2'); 70.9 (C\textsubscript{r}, CH\textsubscript{2}Bn); 69.5 (C\textsubscript{r}, C-3'); 61.2 (C\textsubscript{s} C-5'); 21.4 (C\textsubscript{p}, CH\textsubscript{3} toluene); 17.9-17.4 (C\textsubscript{p}, 8C, SiCH(CH\textsubscript{3})\textsubscript{2}); 13.8-13.1 (C\textsubscript{r}, 4C, SiCH(CH\textsubscript{3})\textsubscript{2}).

MS (FAB, KCl): 710 [M+H]+; 748 [M+K]+

4-O-(Benzyl)-1-[2'-deoxy-3';5'-O-(tetraisopropylsilyl)-\(\beta\)-D-ribofuranosyl] phenol (107)

A solution of 106 (243 mg, 0.342 mmol), Bu\textsubscript{3}SnH (134 ml, 0.528 mmol) and AIBN (6 mg, 0.034 mmol) in toluene (5 ml) was degassed and argon was bubbled through the solution for 30 min. The reaction mixture was then stirred at 80°C for 3 h. After the resulting solution was cooled down to RT, ethylacetate was added (30 ml) and the organic layer was washed with 0.1M NaOH solution (30 ml). The aqueous layer was extracted with AcOEt (3 x 30ml). The organic layer was dried over MgSO\textsubscript{4}. Removal of solvent followed by column chromatography on silical gel (Pentane/AcOEt 97/3 + 0.5% Et\textsubscript{3}N) gave 160 mg (0.295 mmol, 86%) of compound 107 as colorless oil.
9. Synthesis of the phenol nucleoside

\[
C_{30}H_{46}O_5Si_2: 542.86 \text{ g.mol}^{-1}
\]

\(R_f\) (Pentane/AcOEt, 9/1) = 0.63

\(^1\text{H-NMR}\) (400 MHz, CDCl\(_3\), \(\delta/\text{ppm})

7.43-7.27 (m, 7H, H\(_{\text{ar}}\)); 6.96 (d, \(J = 8.8\) Hz, 2H, H\(_{\text{ar}}\)); 5.06 (s, 2H, CH\(_2\)Bn); 5.04 (dd, \(J = 7.1\) Hz, 1H, H-1’); 4.56 (m, 1H, H-3’); 4.15 (dd, \(J = 2.8, 10.6\) Hz 1H, H-4’); 3.91 (m, 2H, H-5’); 2.35 (m, 1H, Ha-2’); 2.08 (m, 1H, Hb-2’); 1.08-1.12 (m, 28H, 2x(i-Pr)\(_2\)Si).

\(^{13}\text{C-NMR}\) (101MHz, CDCl\(_3\), \(\delta/\text{ppm})

158.2, 137, 134.2 (C\(_q\), 3 C\(_{\text{ar}}\)); 128.5, 128, 127.4, 127.2, 114.7 (C\(_r\), 9 C\(_{\text{ar}}\)); 86.4 (C\(_r\), C-4’); 78.8 (C\(_r\), C-1’); 73.5 (C\(_s\), C-3’); 69.9(C\(_s\), CH\(_2\)Bn); 63.8 (C\(_s\), C-5’); 43.0 (C\(_s\), C-2’); 17.5-17(C\(_p\), 8C, SiCH(CH\(_3\))\(_2\)); 13.5, 13.4, 13, 12.5 (C\(_p\), 4C, SiCH(CH\(_3\))\(_2\)).

1-[2’-Deoxy-3’,5’-O-(tetraisopropylsilyl)-\(\beta\)-D-ribofuranosyl]phenol (108)

To a solution of 107 (160 mg, 0.295 mmol) in ethanol (5 ml) was added palladium on active carbone (catalytic amount) and the reaction mixture was placed under argon. The argon was replaced three times and hydrogen was introduced over the solution. The reaction mixture was stirred for 3 h under hydrogen and then filtered through celite. The solid was washed with AcOEt and the solvent was evaporated. Product 108 was obtained as a colorless oil, 98 mg (0.217 mmol, 74%) and was used without further purification in the next step.

\[
C_{23}H_{40}O_5Si_2: 452.74 \text{ g.mol}^{-1}
\]
R_f (Pentane/AcOEt 80/20) = 0.53

1H-NMR (400 MHz, CDCl$_3$, δ/ppm):
7.20 (d, $J = 8.6$ Hz, 2H, H_{ar}); 6.76 (d, $J = 8.6$ Hz, 2H, H_{ar}); 5.02 (t, $J = 7.3$ Hz, 1H, H-1'); 4.52 (m, 1H, H-3'); 4.12 (m, 1H, H-4'); 3.87 (m, 2H, H-5'); 2.32 (m, 1H, Ha-2'); 2.07 (m, 1H, Hb-2'); 1.06 (m, 28 H, 2x(i-Pr)$_2$Si).

13C-NMR (101MHz, CDCl$_3$, δ/ppm):
155.1, 133.9 (C$_q$, 2 C$_{ar}$-ortho), 115.2 (C$_r$, 2 C$_{ar}$-meta); 86.3 (C$_r$, C-4'); 78.9 (C$_r$, C-1'); 73.4 (C$_r$, C-3'); 63.7 (C$_r$, C-5'); 43.0 (C$_r$, C-2'); 17.6-17 (C$_p$, 8C, SiCH(CH$_3$)$_2$); 13.5, 13.4, 13, 12.5 (C$_t$, 4C, SiCH(CH$_3$)$_2$).

Elemental analysis: calculated: C 61.02, H 8.91.
found: C 60.72, H 8.87.

4-0-(Allyloxycarbonate)-1-[2'-deoxy-3',5'-O-(tetraisopropylsilyl)-β-D-ribofuranosyl]phenol (110)

To a solution of compound 108 (165 mg, 0.365 mmol) and pyridine (0.5 ml, 0.42 mmol) in THF (4 ml) was added dropwise with vigorous stirring allylchloroformate (46 µl, 0.73 mmol) at 0°C. The temperature was raised up to RT and the reaction mixture was stirred for 2 h and the resulting precipitates were removed by filtration and washed with ether (3 x 15 ml). The filtrate and washings were collected and evaporated. The residue was purified by column chromatography on silica gel (Pentane/AcOEt 9/1) to give 169 mg (0.315 mmol, 86%) of pure product 110 as a colorless oil.

C$_{27}$H$_{44}$O$_7$Si$_2$: 536.81 g.mol$^{-1}$
9. Synthesis of the phenol nucleoside

\[R_f (\text{Pentane/AcOEt } 4/1) = 0.79 \]

\[^1\text{H-NMR}\ (400\ \text{MHz, CDCl}_3, \delta/\text{ppm}):\]

7.23 (d, \(J = 8.56 \) Hz, 2H, H\(_{\text{ar}}\)); 6.82 (d, \(J = 8.6 \) Hz, 2H, H\(_{\text{ar}}\)); 6.01 (m, 1H, H\(_{\text{AOC(2)}}\)); 5.32 (d, \(J = 16.5 \) Hz, 1H, H\(_{\text{AOC(3)}}\)); 5.25 (d, \(J = 11.4 \) Hz, 1H, H\(_{\text{AOC(3')}}\)); 5.02 (dd, \(J = 6 \) Hz, 1H, H-1’); 4.68 (d, \(J = 5.2 \) Hz, 2H, 2H\(_{\text{AOC(1)}}\)); 4.43 (m, 1H, H-4’); 3.92 (m, 1H, H-3’); 3.73 (m, 2H, H-5’); 2.25 (m, 1H, Ha-2’); 2.02 (m, 1H, Hb-2’); 1.1 (m, 28 H, 2x(i-Pr)\(_2\)Si).

\[^13\text{C-NMR}\ (101\ \text{MHz, CDCl}_3, \delta/\text{ppm}):\]

159.1 (C\(_q\), C\(_{\text{ar}}\)); 154.2 (C\(_q\), C=O); 135.3 (C\(_q\), C\(_{\text{ar}}\)); 131.4 (C, C\(_{\text{AOC(2)}}\)); 128.5 (C, 2 C\(_{\text{ar}}\)-ortho); 116.9 (C, C\(_{\text{AOC(3)}}\)); 115.5 (C, 2 C\(_{\text{ar}}\)-meta); 88.4 (C, C-4’); 80.1 (C, C-1’); 74.4 (C, C-3’); 69.7 (C, C\(_{\text{AOC(1)}}\)); 63.8 (C, C-5’); 44.2 (C, C-2’); 17-17.5 (C, 8C, SiCH(CH\(_3\))\(_2\)); 13.6, 13.5, 13, 12.6 (C, 4C, SiCH(CH\(_3\))\(_2\)).

4-O-(Allyloxycarbonate)-1-(2’-deoxy-β-D-ribofuranosyl)phenol (111)

Compound 110 (106 mg, 0.2 mmol) was dissolved in tetrahydrofuran (5 ml) and Et\(_3\)N.3HF (0.33 ml, 2.25 mmol) was added. The solution was stirred at RT, under argon for 16 h. The reaction mixture was cooled down to 0°C and silica gel was added. The solvent was removed under vacum with water bath at RT. Flash column chromatography on silica gel (Dichloromethane/Methanol, 95/5) gave 50 mg (0.17 mmol, 85 %) of the pure product 111 as colourless oil.

C\(_{15}\)H\(_{18}\)O\(_6\): 294.3 g.mol\(^{-1}\)
Synthesis of the phenol nucleoside

\(R_f \) (Dichloromethane/Methanol, 95/5) = 0.19

\(^1H\text{-NMR}\) (400 MHz, CDCl\(_3\), \(\delta/\text{ppm}\)):
7.24 (d, \(J = 8.6\) Hz, 2H, \(H_{\text{ar}}\)); 6.82 (d, \(J = 8.6\) Hz, 2H, \(H_{\text{ar}}\)); 6.02 (m, 1H, \(H_{\text{AOC(2)}}\)); 5.36 (d, \(J = 16.6\) Hz, 1H, \(H_{\text{AOC(3)}}\)); 5.25 (d, \(J = 11.4\) Hz, 1H, \(H_{\text{AOC(3')}}\)); 5.01 (dd, \(J = 6\) Hz, 1H, H-1'); 4.68 (d, \(J = 5.2\) Hz, 2H, \(2H_{\text{AOC(1)}}\)); 4.44 (m, 1H, H-4'); 3.92 (m, 1H, H-3'); 3.73 (m, 2H, H-5'); 2.21 (m, 1H, H-a2'); 2.02 (m, 1H, H-b2').

\(^13C\text{-NMR}\) (101 MHz, CDCl\(_3\), \(\delta/\text{ppm}\)):
159.5 (C\(_q\), C\(_{\text{ar}}\)); 153.1 (C\(_q\), C=O); 135.6 (C\(_q\), C\(_{\text{ar}}\)); 133.2 (C, C\(_{\text{AOC(2)}}\)); 128.5 (C, 2 C\(_{\text{ar}}\)-ortho); 117.1 (C, C\(_{\text{AOC(3)}}\)); 115.4 (C, 2 C\(_{\text{ar}}\)-meta); 88.4 (C, C-4'); 80.4 (C, C-1'); 74.4 (C, C-3'); 69.9 (C, C\(_{\text{AOC(1)}}\)); 63.9 (C, C-5'); 44.4 (C, C-2').

MS (ESI, MeOH/CH\(_2\)Cl\(_2\) 1/1): 317.4 [M + Na]\(^+\)

Elemental analysis:

<table>
<thead>
<tr>
<th></th>
<th>Calculated</th>
<th>Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>61.22</td>
<td>61.31</td>
</tr>
<tr>
<td>H</td>
<td>6.16</td>
<td>6.18</td>
</tr>
</tbody>
</table>
Compound 111 (60 mg, 0.2 mmol) was co-evaporated two times with pyridine (3 ml) and then dissolved in pyridine (1.5 ml). 4,4’-Dimethoxytritylmethylchloride (98 mg, 0.30 mmol) was added as well as DMAP (5 mg, 0.041 mmol). The mixture was stirred for 2.5 h at RT under argon and methanol (1ml) was added to quench the reaction. Saturated NaHCO₃ solution was added (20 ml) and the aqueous layer was extracted with dichloromethane (3 × 20 ml). The collected organic layer was dried over MgSO₄ and the solvent was removed. The residue was purified by column chromatography on silica gel (Hexane/AcOEt 1/1 + 0.1% Et₃N) to give 79 mg (0.13 mmol, 66%) of pure product 112 as a slightly yellow oil.

C₃₆H₅₆O₈: 596.67 g·mol⁻¹

Rᵣ (Hexane/AcOEt 1/1) = 0.24

¹H-NMR (400 MHz, CDCl₃, δ/ppm):
7.16-7.51 (m, 11H, Hₘ); 7.02 (d, J = 8.8 Hz, 2H, Hₙ); 6.82 (d, J = 10.2 Hz, 4H, Hₘ); 5.93 (m, 1H, HₐOC(2)); 5.32 (d, J = 16.9 Hz, 1 H, HₐOC(3)); 5.24 (d, J = 11.5 Hz, 1H, HₐOC(3’)); 5.08 (dd, J = 5.4 Hz, 1H, H₋1’); 4.69 (d, J = 5.2 Hz, 2H, 2HₐOC(1)); 4.41 (m, 1H, H₋4’); 3.96 (m, 1H, H₋3’); 3.76 (s, 6H, 2x OCH₃ trityl); 3.71 (m, 2H, H₋5’); 2.24 (m, 1H, Ha₋2’); 2.02 (m, 1H, Hb₋2’); 1.90 (bs, 1H, OH).

¹³C-NMR (101MHz, CDCl₃, δ/ppm):
159.5 (C₀, Cₓ); 151.8 (Cₓ, C=O); 150.8, 146.2, 141.1, 136.1 (Cₓ, 6Cₓ); 133.3 (Cₓ, CₐOC(2)); 130.2, 128.6, 128.3, 127.8, 127.3, 121.8, 113.5 (Cₓ, 17 Cₓ); 116.4 (Cₓ, CₐOC(3)); 88.8 (Cₓ, C₋4’); 80.7 (Cₓ, C₋1’); 74.3 (Cₓ, C₋3’); 70.1 (Cₓ, CₐOC(1)); 63.9 (Cₓ C₋5’); 55.5 (Cₓ, 2x OCH₃ trityl); 44.2 (Cₓ, C₋2’).
9. Synthesis of the phenol nucleoside

MS (ESI, MeOH/CH₂Cl₂ 1/3): 619.7 [M + Na]^+

4-O-(Allyloxycarbonate)-1-[3'-O-(2-cyanoethyl-N,N-diisopropyl-phosphoramidite)-2'-deoxy-5'-O-(dimethoxytrityl)-β-D-ribofuranosyl] phenol (100c)

To a solution of 160 (79 mg, 0.13 mmol) and ethyl-diisopropylamine (139 µl, 0.78 mmol) in CH₂Cl₂ (1.5 ml) under argon was added 2-cyanoethyl-N,N-diisopropylchloro-phosphoramidite (104 µl, 0.46 mmol). The mixture was stirred at RT for 2.5 h. Saturated NaHCO₃ solution was added (10 ml) and the aqueous layer was extracted with dichloromethane (4 x 25 ml). The collected organic layer was dried over MgSO₄ and the solvent was removed. The residue was purified by column chromatography on silica gel (hexane/AcOEt gradient 8/2 to 5/5 + 0.1% Et₃N) to give 70 mg (0.088 mmol, 67%) of the pure phosphoramidite 100c as a colorless oil.

C₄₅H₅₃N₂O₉P: 796.89 g.mol⁻¹

Rₚ(Hexane/AcOEt 1/1) = 0.57

¹H-NMR (400 MHz, CDCl₃, δ/ppm):
mixture of both diastereoisomers: 7.18-7.50 (m, 11H, H₉); 7.02 (d, J = 8.8 Hz, 2H, H₈); 6.81 (d, J = 10.3 Hz, 4H, H₆); 5.94 (m, 1H, H₉OAc(2)); 5.29 (d, J = 16.8 Hz, 1H, H₈OAc(3)); 5.22 (d, J = 11.5 Hz, 1H, H₈OAc(3′)); 5.11 (dd, J = 5.5, 10.4 Hz, 1H, H-1′); 4.69 (d, J = 5.2 Hz, 2H, 2H₈OAc(1)); 4.50 (m, 1H, H-4′); 4.02 (m, 1H, H-3′); 3.76 (s, 6H, 2x OCH₃ trityl); 3.25-3.66 (2m, 4H, CH₂CN); 2.46-2.62 (m, 2H, N(CH(CH₃)₂)); 2.18 (m, 1H, Ha-2′); 1.98 (m, 1H, Hb-2′); 1.16-1.28 (m, 12H, N(CH(CH₃)₂)).
13C-NMR (101 MHz, CDCl3, δ/ppm):
mixture of both diastereoisomers: 159.1 (C\textsubscript{q}, C\textsubscript{ar}); 152.4 (C\textsubscript{q}, C=O); 150.4, 145.8, 140.7, 136.1 (C\textsubscript{q}, 6C\textsubscript{ar}); 133.5 (C\textsubscript{q}, C\textsubscript{AOC(2)}); 130.4, 128.6, 128.3, 127.5, 127.2, 121.6, 113.5 (C\textsubscript{q}, 17 C\textsubscript{ar}); 116.3 (C\textsubscript{s}, C\textsubscript{AOC(3)}); 88.1 (C\textsubscript{s}, C-4'); 80.5 (C\textsubscript{s}, C-1'); 74.8 (C\textsubscript{s}, C-3'); 70.2 (C\textsubscript{s}, C\textsubscript{AOC(1)}); 64.7 (C\textsubscript{s}, C-5'); 58.9 (C\textsubscript{s}, CH\textsubscript{2}OP); 55.6 (C\textsubscript{p}, 2x OCH\textsubscript{3} trityl); 44.3 (C\textsubscript{p}, C-2'); 43.4 (C\textsubscript{t}, 2C, N(CH\textsubscript{3})\textsubscript{2}); 20.8, 20.6, 20.5, 20.4 (C\textsubscript{p}, 4C, N(CH\textsubscript{3})\textsubscript{2}); 18.4 (C\textsubscript{s}, CH\textsubscript{2}CN).

31P-NMR (162MHz, CDCl3, δ/ppm):
mixture of both diastereoisomers: 145.3, 147.7

MS (ESI, MeOH/ CH\textsubscript{2}Cl\textsubscript{2} 1/1): 819.6 [M + Na]+

4-O-(Acetyl)-1-(2'-deoxy-β-D-ribofuranosyl)phenol (113)

Reaction 1

Compound 108 (75 mg, 0.17 mmol) was dissolved in a mixture pyridine/acetic anhydride, 1/1, v/v (2ml) and the reaction mixture was stirred for 2 h. Methanol was added to quench the reaction and the solvent was co-evaporated with toluene until no more pyridine is detected. The thus obtained residue was used without further purification.

Reaction 2

The crude residue was dissolved in tetrahydrofuran (5 ml) and Et\textsubscript{3}N.3HF (0.25 ml, 1.7 mmol) was added. The solution was stirred at RT, under argon overnight. The reaction mixture was cooled down to 0°C and silica gel was added. The solvent was removed under reduced pressure.
Flash column chromatography on silica gel (Dichloromethane/Methanol, 95/5) gave 35 mg (0.139 mmol, 97%) of the pure product 113 as white oily solid.

\[
\text{C}_{11}\text{H}_{14}\text{O}_{4}: 210.23 \text{ g.mol}^{-1}
\]

\[
R_f (\text{Dichloromethane/Methanol 95/5}) = 0.23
\]

\(^1\text{H}-\text{NMR} (400 \text{ MHz, CDCl}_3, \delta/\text{ppm}):\]

- 7.34 (d, \(J = 9 \text{ Hz}, 2\text{H}, \text{H}_2\));
- 7.07 (d, \(J = 8.9 \text{ Hz}, 2\text{H}, \text{H}_2\));
- 5.14 (dd, \(J = 5.6, 10.1 \text{ Hz}, 1\text{H}, \text{H}-1'\));
- 4.38 (m, 1H, \text{H}-3');
- 3.97 (m, 1H, \text{H}-4');
- 3.79 (m, 2H, \text{H}-5');
- 2.64 (bs, 1H, \text{OH});
- 2.42 (bs, 1H, \text{OH});
- 2.29 (s, 3H, \text{CH}_3 \text{acetate});
- 2.21 (m, 1H, \text{H}-a');
- 1.98 (m, 1H, \text{H}-b').

\(^1\text{C}-\text{NMR} (101 \text{ MHz, CDCl}_3, \delta/\text{ppm}):\]

- 170.08 (C_4, \text{C}=\text{O});
- 150.5, 139.3 (C_{2', 2'} \text{C}_{ar});
- 127.6 (C_{1', 2' \text{C}_{ar}}-\text{ortho});
- 122 (C_{1', 2' \text{C}_{ar}}-\text{meta});
- 87.7 (C_{1', \text{C}-4'});
- 80.0 (C_{1', \text{C}-1'});
- 74.0 (C_{1', \text{C}-3'});
- 63.8 (C_{1', \text{C}-5'});
- 44.2 (C_{1', \text{C}-2'});
- 21.5 (C_{p', \text{CH}_3 \text{acetate}}).

\text{4-O-(Acetyl)-1-[2'-deoxy-5'-O-(dimethoxytrityl)-\beta-D-ribofuranosyl]phenol (114)}

113 (35 mg, 0.167 mmol) was co-evaporated two times with pyridine (2 ml) and then dissolved in pyridine (2 ml). 4,4'-Dimethoxytriphenylmethyl chloride (79 mg, 0.23 mmol) was added as well as DMAP (4 mg, 0.033 mmol). The mixture was stirred for 2.5 h at RT under argon. The reaction was quenched by addition of methanol (1 ml). Saturated NaHCO\(_3\) solution was added (2 ml) and the aqueous layer was extracted with dichloromethane (3×10 ml). The collected organic layer was dried over MgSO\(_4\) and the solvent was removed. The residue was purified by column chromatography on silica gel (Pentane/AcOEt 7/3 + 0.1% Et\(_3\)N to 5/5 + 0.1% Et\(_3\)N) to give 59 mg (0.11 mmol, 66%) of pure product 114 as a white oily residue.
Synthesis of the phenol nucleoside

\[\text{C}_{34}\text{H}_{34}\text{O}_7 \]: 554.64 g.mol\(^{-1}\)

\[R_f \text{(Pentane/AcOEt 2/1)} = 0.13 \]

\(^1\)H-NMR (400 MHz, CDCl\(_3\), \(\delta/\text{ppm})\):

7.18-7.49 (m, 11H, H\(_a\)); 7.04 (d, \(J = 8.9\) Hz, 2H, H\(_a\)); 6.81 (d, \(J = 10.3\) Hz, 4H, H\(_a\)); 5.16 (dd, \(J = 5.6, 10.1\) Hz, 1H, H-1'); 4.41 (m, 1H, H-3'); 4.06 (m, 1H, H-4'); 3.78 (s, 6H, 2x OC\(_3\)H\(_3\)trityl); 3.35 (dd, \(J = 4.5, 9.9\) Hz, 1H, H-5'a); 3.26 (dd, \(J = 5.3, 9.8\) Hz, 1H, H-5'b); 2.27 (s, 3H, CH\(_3\)acetate); 2.21 (m, 1H, Ha-2'); 2.01 (m, 1H, Hb-2'); 1.92 (bs, 1H, OH).

\(^13\)C-NMR (101MHz, CDCl\(_3\), \(\delta/\text{ppm})\):

170 (C\(_q\), C=O); 158.9; 150.3, 150.3, 145.2, 139.8, 136.4 (C\(_q\), 7C\(_a\)); 130.5, 128.6, 128.3, 127.5, 127.3, 121.8, 113.5 (C\(_r\), 17 C\(_a\)); 86.7 (C\(_r\), C-4'); 79.9 (C\(_r\), C-1'); 75.0 (C\(_r\), C-3'); 64.8 (C\(_r\), C-5'); 55.6 (C\(_p\), 2x OCH\(_3\)trityl); 44.3 (C\(_r\), C-2'); 21.6 (C\(_p\), CH\(_3\)acetate).

MS (ESI, MeOH/ CH\(_2\)Cl\(_2\) 1/3): 577.3 [M + Na]^+

Elemental analysis: calculated: C 73.63, H 6.18
found: C 73.36, H 6.37

4-O-(Acetyl)-1-[3'-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite)-2'-deoxy-5'-O-(dimethoxytrityl)-β-D-ribofuranosyl]phenol (100d)

To a solution of **161** (59 mg, 0.106 mmol) and ethyl-diisopropylamine (75 µl, 0.425 mmol) in CH\(_2\)Cl\(_2\) (2 ml) under argon was added 2-cyanoethyl-N,N-(diisopropyl)chboro-phosphoramidite (60
µl, 0.265 mmol). The mixture was stirred at RT for 1.5 h. The reaction mixture was then added directly to a silica gel chromatography column (Pentane/AcOEt 2/1) to give 60 mg (0.080 mol, 75%) of the pure phosphoramidite 100d as a white foam.

C₄₃H₅₁N₂O₈P: 754.86 g.mol⁻¹

Rₛ(Pentane/AcOEt 2/1) = 0.4

¹H-NMR (400 MHz, CDCl₃, δ/ppm):
mixture of both diastereomers: 7.18-7.50 (m, 11H, H¿); 7.02 (d, J = 8.9 Hz, 2H, H¿); 6.81 (d, J = 10.3 Hz, 4H, H¿); 5.18 (dd, J = 5.5, 10.2 Hz, 1H, H-1'); 4.52 (m, 1H, H-3'); 4.11 (m, 1H, H-4'); 3.78 (s, 6H, 2x OC₃H₃ trityl); 3.22-3.58 (2m, 4H, H-5',CH₂CN); 2.48-2.63 (m, 2H N(CH(CH₃)₂)); 2.28 (s, 3H, CH₃ acetate); 2.20 (m, 1H, Ha-2'); 2.00 (m, 1H, Hb-2'); 1.17-1.28 (m, 12H N(CH(CH₃)₂)).

¹³C-NMR (101MHz, CDCl₃, δ/ppm):
mixture of both diastereoisomers: 170.1 (Cₚ, C=O); 158.9, 150.4, 145.3, 139.8, 136.4 (Cₚ, 7Cₚ) ;130.4, 128.7, 128.3, 127.5, 127.3, 121.8, 113.4 (Cₜ, 17 Cₜ); 119.9 (Cₚ, CN); 86.7 (Cₜ, C-4'); 80.0 (Cₚ, C-1'); 75.1 (Cₜ, C-3'); 64.8 (Cₜ, C-5'); 58.8 (Cₚ, CH₂OP); 55.6 (Cₚ ,2x OC₃H₃ trityl); 44.3 (Cₜ, C-2'); 43.8 (Cₜ, 2C, N(CH(CH₃)₂)); 21.6 (Cₚ, CH₃ acetate); 20.8, 20.7, 20.6, 20.5 (Cₚ, 4C, N(CH(CH₃)₂)); 18.2 (Cₚ, CH₂CN).

³¹P NMR (162, CDCl₃, δ/ppm):
mixture of both diastereoisomers:147.9, 149.9

MS (ESI, MeOH/ CH₂Cl₂ 1/1): 777.5 [M + Na]⁺
9.2 The methoxy approach

The synthesis of compound 88 was already described in the literature143

1-[2’-Deoxy-3’, 5’-O-(diacetyl)-β-D-ribofuranosyl]anisole (91)

\[
\begin{align*}
\text{88} & \quad \text{Ac}_2\text{O, pyridine} \\
\text{RT} & \quad \text{91}
\end{align*}
\]

Compound 88 (172 mg, 0.8 mmol) was dissolved in a mixture of pyridine/acetic anhydride, 1/1 (4 ml) and the solution was stirred for 4 hrs at RT under argon. The reaction mixture was then cooled down to 0°C and methanol was added. The solvent was evaporated and co-evaporated with toluene (3 x 5 ml) until no more pyridine is detected to give 236 mg (0.77 mmol, 96 %) of 91 a colorless oil was used without further purification.

\[\text{C}_{16}\text{H}_{20}\text{O}_6; 308.33 \text{ g.mol}^{-1}\]

\[R_f (\text{Hexane/AcOEt 7/3}) = 0.46\]

\(^1\text{H-NMR} (400 \text{ MHz, CDCl}_3, \delta/\text{ppm}):\]
7.27 (d, \(J = 8.5 \text{ Hz}, 2\text{H}, \text H_{a2}\)); 6.88 (d, \(J = 8.5 \text{ Hz}, 2\text{H}, \text H_a\)); 5.21 (d, \(J = 6.3 \text{ Hz}, 1\text{H}, \text H-1’\)); 5.04 (dd, \(J = 5.1, 10.8 \text{ Hz}, 1\text{H}, \text H-3’\)); 4.36 (dd, \(J = 3.76, 11 \text{ Hz}, 1\text{H}, \text H-4’\)); 4.25 (m, 2H, H-5’); 3.8 (s, 3H, CH$_3$, OMe); 2.38 (dd, \(J = 5.1, 6.4 \text{ Hz}, 1\text{H}, \text Ha-2’\)); 2.11 (s, 3H, CH$_3$ acetate); 2.08 (s, 3H, CH$_3$ acetate); 2.04 (m, 1H, Hb-2’).

\(^{13}\text{C-NMR} (101\text{MHz, CDCl}_3, \delta/\text{ppm}):\]
171.0, 170.8 (C$_q$, 2 x C=O); 159.2, 132.6 (C$_q$, 2 C$_a$); 128.1 (C$_p$, 2 C$_{\alpha}$-ortho); 114.3 (C$_p$, 2 C$_{\alpha}$-meta); 82.9 (C$_p$, C-1’); 80.8 (C$_p$, C-4’); 76.8 (C$_p$, C-3’); 65.0 (C$_s$, C-5’); 55.9 (C$_p$, OCH$_3$); 41.7 (C$_s$, C-2’); 21.8, 21.4 (C$_p$, 2 x CH$_3$ acetate).
1-[2’-Deoxy-3’, 5’-O-(diacetyl)-β-D-ribofuranosyl]phenol (92)

Compound 91 (530 mg, 1.72 mmol) was dissolved in anhydrous dichloromethane (30 ml) and the temperature was cooled down to -78°C. A 1M solution of BBr₃ in dichloromethane (17.2 ml, 17.2 mmol) was added slowly and the reaction mixture was stirred for 30 min at -78°C under argon. The temperature was raised up to -12°C and the reaction mixture was stirred again for 6 h. Diethylether (10 ml) was added very slowly at -12°C and then water (50 ml) also at -12°C. The mixture was stirred for 30 min and allowed to come back to RT. The aqueous layer was extracted with dichloromethane (3 x 30 ml). The collected organic phase was dried over MgSO₄, filtered and the solvent removed. The residue was purified by column chromatography on silica gel (Pentane/AcOEt 1/1) to give 430 mg (1.462 mmol, 85 %) of compound 92 as a colorless oil.

C₁₅H₁₈O₆: 294.30 g.mol⁻¹

Rᵣ (Pentane/AcOEt 1/1) = 0.25

¹H-NMR (400 MHz, CDCl₃, δ/ppm):
7.17 (d, J = 8.5 Hz, 2H, H₆); 7.07 (d, J = 8.5 Hz, 2H, H₆); 6.47 (bs, 1H, OH); 5.20 (d, J = 6.3 Hz, 1H, H-1’); 5.02 (dd, J = 5.0, 10.9 Hz, 1H, H-3’); 4.37 (dd, J =3.8, 11 Hz, 1H, H-4’); 4.22 (m, 2H, H-5’); 2.38 (dd, J = 5.1, 6.4 Hz, 1H, Ha-2’); 2.13 (s, 3H, CH₃ acetate); 2.10 (s, 3H, CH₃ acetate); 2.02 (m, 1H, Hb-2’).

¹³C-NMR (101MHz, CDCl₃, δ/ppm):
171.1, 170.8 (Cₐ, 2 x C=O); 155.9, 131.6 (Cₐ, 2 Cₐ-ortho); 127.4 (Cₐ, 2 Cₐ-meta); 82.3 (C₉, C-1’); 80.5 (C₉, C-4’); 75.6 (C₉, C-3’); 64.3 (C₉, C-5’); 40.9 (C₉, C-2’); 21, 20.9 (C₉, 2 x CH₃ acetate).

MS (ESI, MeOH/ CH₂Cl₂ 1/1): 317.2 [M + Na]⁺
4-(O-Benzoyl)-1-[2’-deoxy-3’, 5’-O-(diacetyl)-β-D-ribofuranosyl]phenol (93)

Compound 92 (49 mg, 0.17 mmol) was dissolved in pyridine (2 ml) and DMAP (catalytic amount) was added as well as benzoylchloride (25 µl, 0.20 mmol). The reaction mixture was stirred for 18 h at RT under argon and methanol (2 ml) was added. The solvents were evaporated and co-evaporated with toluene (4 x 5 ml) and dichloromethane (5 ml). The residue was purified by preparative Thin Layer Chromatography (TLC) (Hexane/AcOEt 7/3) to give 51 mg (0.128 mmol, 77%) of compound 93 as a colorless oil.

C_{22}H_{22}O_{7}: 398.41g.mol^{-1}

R_f (Hexane/AcOEt 7/3) = 0.33

^1H-NMR (400 MHz, CDCl_{3}, δ/ppm):
7.38 – 8.15 (m, 5H, H_{ar} benzoyl); 7.21 (d, J = 8.6 Hz, 2H, H_{ar}); 7.06 (d, J = 8.6 Hz, 2H, H_{ar}); 5.18 (d, J = 6.8 Hz, 1H, H-1’); 5.02 (dd, J = 5 , 10.7 Hz, 1H, H-3’); 4.39 (dd, J = 4.4, 10.2 Hz, 1H, H-4’); 4.25 (m, 2H, H-5’); 2.39 (dd, J = 5.0, 6.6 Hz, 1H, Ha-2’); 2.13 (s, 3H, CH_{3} acetate); 2.11 (s, 3H, CH_{3} acetate); 2.06 (m, 1H, Hb-2’).

^13C-NMR (101MHz, CDCl_{3}, δ/ppm):
171.2, 170.8 (C_q, 2 x C=O acetate); 166.1 (C_q, 2 x C=O benzoyl); 155.8, 131.5, 130.4 (C_q, 3C_ar); 134.8 (C_p, C_ar); 131 (C_r, 2C_ar); 129.1 (C_r, 2C_ar); 127.4 (C_r, 2C_ar-ortho); 115.2 (C_p, 2C_ar-meta); 82.2 (C_r, C-1’); 80.5 (C_r, C-4’); 75.7 (C_r, C-3’); 63.9 (C_s, C-5’); 40.6 (C_s, C-2’); 21, 20.7 (C_p, 2 x CH_{3} acetate).
4-(O-Benzoyl)-1-(2’-deoxy-β-D-ribofuranosyl)phenol (94)

Compound 93 (85 mg, 0.21 mmol) was dissolved in a solution of 1.25 M HCl in methanol (1 ml) and the reaction mixture was stirred for 4 h under argon at RT. The solvent was evaporated and the residue was purified by column chromatography on silica gel (Dichloromethane/Methanol 95/5) to give 57 mg (0.18 mmol, 85 %) of compound 94 as a colorless oil.

C_{18}H_{18}O_{5}: 314.34 g.mol^{-1}

R_{f} (Dichloromethane/Methanol 95/5) = 0.28

^{1}H-NMR (400 MHz, CDCl_{3}, δ/ppm):
7.40 – 8.15 (m, 5H, H_{ar} benzoyl); 7.19 (d, J = 8.6 Hz, 2H, H_{ar}); 7.08 (d, J = 8.6 Hz, 2H, H_{ar}); 5.16 (d, J = 6.8 Hz, 1H, H-1’); 5.02 (dd, J = 5.2, 11Hz, 1H, H-3’); 4.38 (dd, J = 4.4, 10.3 Hz, 1H, H-4’); 4.22 (m, 2H, H-5’); 2.38 (dd, J = 5.1, 6.6 Hz, 1H, Ha-2’); 2.06 (m, 1H, Hb-2’); 2.0 (2bs, 2H, 2 \times OH).

^{13}C-NMR (101 MHz, CDCl_{3}, δ/ppm):
166 (C_{q}, 2 \times C=O benzoyl); 155.8, 131.4, 130.2 (C_{q}, 3C_{ar}); 134.6 (C_{r}, C_{ar}); 131 (C_{r}, 2C_{ar}); 129.1(C_{r}, 2C_{ar}); 127.5 (C_{r}, 2C_{ar}-ortho); 115.4 (C_{r}, 2C_{ar}-meta); 82.6 (C_{r}, C-1’); 80.5 (C_{r}, C-4’); 74.9 (C_{r}, C-3’); 62.8 (C_{s}, C-5’); 40.6 (C_{s}, C-2’).

MS (ESI, MeOH/ CH_{2}Cl_{2} 1/1): 337.8 [M + Na]^{+}
4-(O- Allyl)-1-[2'-deoxy-3', 5'-O-(diacetyl)-β-D-ribofuranosyl]phenol (96b)

To a solution of 92 (94 mg, 0.32 mmol) and tetrabutyl ammonium iodide (130 mg, 0.35 mmol) in DMSO (2 ml) was added allyl bromide (34 µl, 0.41 mmol). The reaction mixture was stirred for 5 min under argon at RT. While the solution was vigorously stirred, lithium bis(trimethylsilyl)amide (320 µl, 1.7 mmol) was added at once. The reaction was complete within 45 min. The yellow reaction mixture was then diluted with AcOEt (30 ml) and washed with 1N HCl (2 x 20 ml), saturated NaHCO₃ (2 x 20 ml), water (2 x 20 ml) and saturated brine (20 ml). The organic phase was then dried over MgSO₄ and filtered. The filtrate was evaporated under reduced pressure containing a mixture of the α-anomer 96a and the β-anomer 96b. These anomers were separated by column chromatography on silica gel (Pentane/AcOEt 3/1). The desired β-compound 96b was isolated as a colorless oil, 70 mg (0.21 mmol, 65 %).

C₁₈H₂₂O₆: 334.36 g.mol⁻¹

R’ (Pentane/AcOEt 3/1) = 0.22

¹H-NMR (400 MHz, CDCl₃, δ/ppm):
7.27 (d, J = 8.5 Hz, 2H, Hʻᵣ); 6.89 (d, J = 8.6 Hz, 2H, Hʻᵣ); 6.06 (m, 1H, H_all(2)); 5.42 (d, J = 16.8 Hz, 1H, H_all(3)); 5.26 (d, J = 10.4 Hz, 1H, H_all(3′)); 5.20 (m, 1H, H-1’); 5.05 (dd, J = 5.0, 10.8 Hz, 1H, H-3’); 4.53 (d, J = 5.3 Hz, 2H, 2H_all(1)); 4.37 (m, 1H, H-4’); 4.22 (m, 2H, H-5’); 2.27 (m, 1H, Ha-2’); 2.11 (s, 3H, CH₃ acetate); 2.10 (m, 1H, Hb-2’); 2.09 (s, 3H, CH₃ acetate).

¹³C-NMR (101 MHz, CDCl₃, δ/ppm):
170.7, 170.5 (C_q, 2 x C=O); 158.4, 133.2 (C_q, 2 Cₜₚ); 132.6 (C, C_all(2)); 127.2 (Cᵣ, 2 Cₜₚ-ortho); 117.6 (C, C_all(3)); 114.7 (Cᵣ, 2 Cₜₚ-meta); 82.5 (Cᵣ, C-1’); 80.4 (Cᵣ, C-4’); 75.6 (Cᵣ, C-3’); 68.8 (Cₜ, C_all(1)); 64.5 (C_q C-5’); 41.1 (C_q, C-2’); 21, 20.8 (C_p, 2 x CH₃ acetate).
9. Synthesis of the phenol nucleoside

4-(O-Allyl)-1-(2′-deoxy-β-D-ribofuranosyl)phenol (98)

To a solution of 96b (55 mg, 0.16 mmol) in methanol (2 ml) was added K$_2$CO$_3$ (catalytic amount). The reaction mixture was stirred for 4 h at RT and the solvent was removed under reduced pressure. The residue was purified by preparative TLC (Hexane/AcOEt 1/1) to give 31 mg (0.125 mmol, 78%) of the desired product 98 as a white foam.

C$_{14}$H$_{18}$O$_4$: 250.24 g.mol$^{-1}$

R_f (Hexane/AcOEt 1/1) = 0.26

1H-NMR (400 MHz, CDCl$_3$, δ/ppm):
7.30 (d, $J = 8.6$ Hz, 2H, H$_{ar}$); 6.88 (d, $J = 8.6$ Hz, 2H, H$_{ar}$); 6.04 (m, 1H, H$_{all(2)}$); 5.40 (d, $J = 17.2$ Hz, 1H, H$_{all(3)}$); 5.23 (d, $J = 10.4$ Hz, 1H, H$_{all(3)}$); 5.05 (dd, $J = 5.3$, 10.8 Hz, 1H, H-1'); 4.52 (d, $J = 5.3$ Hz, 2H, 2H$_{all(1)}$); 4.31 (m, 1H, H-4'); 3.92 (m, 1H, H-3'); 3.65 (m, 2H, H$_{all(5)}$); 2.12 (m, 1H, Ha-2'); 1.93 (m, 1H, Hb-2').

13C-NMR (101 MHz, CDCl$_3$, δ/ppm):
159.6, 136.0 (C$_q$, 2 C$_{ar}$); 134.9 (C, C$_{all(2)}$); 128.5 (C$_r$, 2 C$_{ar}$-ortho); 117.4 (C, C$_{all(3)}$); 115.5 (C$_r$, 2 C$_{ar}$-meta); 89.0 (C$_r$, C-4'); 81.4 (C$_r$, C-1'); 74.4 (C$_v$, C-3'); 69.7 (C$_s$, C$_{all(1)}$); 64.0 (C$_s$, C-5'); 44.7 (C$_v$, C-2').

MS (ESI, MeOH/CH$_2$Cl$_2$ 1/1): 273.4 [M + Na]$^+$
Synthesis of the phenol nucleoside

4-O-(Allyl)-1-[2'-deoxy-5'-O-(dimethoxytrityl)-β-D-ribofuranosyl]phenol (99)

Diol 98 (95 mg, 0.38 mmol) was co-evaporated with pyridine (2 x 3 ml) and then dissolved in pyridine (5 ml). 4,4’-Dimethoxytriphenylmethylchloride (193 mg, 0.57 mmol) was added as well as DMAP (9 mg, 0.076 mmol). The mixture was stirred for 3 h at RT under argon. Methanol (5 ml) was added to quench the reaction and the solution was evaporated and co-evaporated with toluene. The residue was purified by column chromatography on silica gel (Pentane/AcOEt, 2/1 + 1% Et3N) to give 138 mg (0.25 mmol, 65%) of pure product 99 as a colorless oil.

C35H36O6: 552.66 g.mol⁻¹

Rf (Pentane/AcOEt 2/1) = 0.23

¹H-NMR (400 MHz, CD3OD, δ/ppm):
7.16-7.47 (m, 13H, Hₐr); 6.85 (d, J = 8.6 Hz, 2H, Hₐr); 6.81 (d, J = 8.6 Hz, 2H, Hₐr) 6.02 (m, 1H, Hₐll(2)); 5.35 (d, J = 17.1 Hz, 1H, Hₐll(3)); 5.20 (d, J = 10.6 Hz, 1H, Hₐll(3’)); 5.08 (dd, J = 5.2, 10.7 Hz, 1H, H-1’); 4.48 (d, J = 5.04 Hz, 2H, Hₐll(1)); 4.31 (m, 1H, H-4’) ; 4.03 (m, 1H, H-3’); 3.72 (s, 6H, 2 x OC₃H₃); 2.14 (m, 1H, Ha-2’); 1.97 (m, 1H, Hb-2’).

¹³C-NMR (101 MHz, CD3OD, δ/ppm):
173.8, 160.9, 160.5, 147.3, 138.2, 135.8 (Cₐ, 7 Cₐr); 134.0 (C, Cₐll(2)); 130.4, 128.4, 127.8, 127.7, 127.6, 126.8 (Cₐ, 13 Cₐr); 116.5 (Cₐ, Cₐll(3)); 114.6, 113.1 (Cₐ, 4 Cₐr); 86.9 (Cₐ, C-4’); 80.5 (Cₐ, C-1’); 73.9 (Cₐ, C-3’); 68.8 (Cₐ, Cₐll(1)); 64.8 (Cₐ, C-5’) 54.7 (Cₐ, 2 x OCH₃); 43.9 (Cₐ, C-2’).

MS (ESI, MeOH/ CH₂Cl₂ 1/1): 575.2 [M + Na]⁺
4-O-(Allyl)-1-\{3’-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite)-2’-deoxy-5’-O-(dimethoxytrityl)-\beta-D-ribofuranosyl\}phenol (100b)

To a solution of 99 (65 mg, 117 \(\mu\)mol) and ethyl-diisopropylamine (82 \(\mu\)l, 470 \(\mu\)mol) in dichloromethane (2 ml) 2-cyanoethyl-N,N-diisopropylchlorophosphoramidite (52 \(\mu\)l, 234 \(\mu\)mol) was added. The mixture was stirred at RT under argon for 3 h. Saturated NaHCO\(_3\) (10 ml) was added and the mixture was diluted with dichloromethane (10 ml). The aqueous layer was extracted with dichloromethane (3 \(\times\) 20 ml). The organic phase was dried over MgSO\(_4\), filtered and the solvent removed. The residue was purified by column chromatography on silica gel (Pentane/AcOEt 2/1 + 1\% Et\(_3\)N) to give 72 mg (95 \(\mu\)mol, 85 \%) of compound 100b as a colorless oil.

\(\text{C}_{44}\text{H}_{52}\text{N}_2\text{O}_7\text{P}\): 751.88 \(\text{g.mol}^{-1}\)

\(R_f\) (Pentane/AcOEt 2/1) = 0.35

\(^1\text{H-NMR}\) (400 MHz, CDCl\(_3\), \(\delta/\text{ppm}\)):

mixture of both diastereoisomers: 7.19-7.50 (m, 13H, H\(_{ar}\)); 6.79-6.88 (m, 4H, H\(_{ar}\)); 6.04 (m, 1H, H\(_{all(2)}\)); 5.40 (d, \(J = 17.1\) Hz, 1H, H\(_{all(3)}\)); 5.28 (d, \(J = 10.4\) Hz, 1H, H\(_{all(3')}\)); 5.10 (m, 1H, H-1’); 4.52 (m,1H, H-3’); 4.10 (m, 1H, H-4’); 3.76 (s, 6H, 2 x OCH\(_3\)); 3.23-3.45 (2m, 4H, H-5’,CH\(_2\)CN); 2.43-2.58 (m, 2H N(CH(CH\(_3\))(CH\(_3\)))); 2.18 (m, 1H, Ha-2’); 2.05 (m, 1H, Hb-2’); 1.13-1.26 (m, 12H N(CH(CH\(_3\))(CH\(_3\)))

\(^{13}\text{C-NMR}\) (101MHz, CDCl\(_3\), \(\delta/\text{ppm}\)):

mixture of both diastereoisomers: 160.0, 159.7, 146.3, 137.3 (C\(_\text{q}\), 7C\(_\text{a}\)); 133.9, 130.4, 128.4, 127.7, 126.8 (C\(_\text{r}\), 13 C\(_\text{a}\)); 119.9 (C\(_\text{q}\), CN); 117.4 (C\(_\text{r}\), C\(_\text{all(3)}\)); 115.6, 114.0 (C\(_\text{r}\), 4 C\(_\text{a}\)); 87.4 (C\(_\text{r}\), C-4’); 81.6
(C\textsubscript{r}, C-1’); 78.8 (C\textsubscript{r}, C-3’); 69.7 (C\textsubscript{s}, C\textsubscript{all(1)}); 65.4 (C\textsubscript{s}, CH\textsubscript{2}OP); 55.7 (C\textsubscript{p}, 2 x OCH\textsubscript{3}); 44.4 (C\textsubscript{s}, C-2’); 44.2 (C\textsubscript{r}, 2C, N(CH\textsubscript{3})\textsubscript{2}); 25.1, 24.9, 20.9 (C\textsubscript{p}, 4C, N(CH(CH\textsubscript{3})\textsubscript{2}); 14.4 (C\textsubscript{s}, CH\textsubscript{2}CN).

31P-NMR (162 MHz, CDCl\textsubscript{3}, \(\delta/\text{ppm}\)):
mixture of both diastereoisomers: 137.3, 145.9

MS (ESI, MeOH/CH\textsubscript{2}Cl\textsubscript{2} 1/1): 752.4 [M +]

1-[2’-Deoxy-5’-O-(dimethoxytrityl)-β-D-ribofuranosyl]anisole (89)

Diol 88 (102 mg, 0.45 mmol) was co-evaporated two times with pyridine (4 ml) and then dissolved in pyridine (4 ml). 4,4’-Dimethoxytriphenylmethylchloride (156 mg, 0.455 mmol) was added as well as DMAP (8 mg, 0.065 mmol). The mixture was stirred for 16 h at RT under argon. Methanol (1 ml) was added to quench the reaction and the solution was evaporated and co-evaporated with toluene. The residue was purified by column chromatography on silica gel (Hexane/AcOEt, gradient to 6/4 + 1% Et\textsubscript{3}N) to give 197 mg (0.37 mmol, 82%) of pure product 89 as a colorless oil.

C\textsubscript{53}H\textsubscript{34}O\textsubscript{6}: 526.62 g.mol-1

\(R_f\) (Hexane/AcOEt 7/3) = 0.26
Synthesis of the phenol nucleoside

\[^{1}H\-\text{NMR}\ (400 \text{ MHz, CDCl}_3, \delta/\text{ppm}):\]

7.21-7.51 (m, 11H, H\text{ar}); 6.84 (d, J = 9.5 Hz, 2H, H\text{ar}); 6.81 (d, J = 10.3 Hz, 4H, H\text{ar}); 5.12 (dd, J = 5.3, 10.8 Hz, 1H, H-1'); 4.42 (bs, 1H, H-3'); 4.04 (m, 1H, H-4'); 3.78 (s, 9H, 3\times \text{OCH}_3); 3.42 (m, 2H, H\text{-5'}); 2.18 (m, 1H, H\text{a-2'}); 2.05 (m, 1H, H\text{b-2'}); 1.82 (bs, 1H, OH).

\[^{13}C\-\text{NMR}\ (101 \text{ MHz, CDCl}_3, \delta/\text{ppm}):\]

159.5, 158.9, 145.3, 136.5, 134 (C\text{g, 7C}\text{ar}); 130.5, 128.6, 128.2, 127.8, 127.2, 114.1, 113.5 (C\text{u, 17 C}\text{u}); 85.6 (C\text{r, C-4'}); 80.2 (C\text{r, C-1'}); 75.2 (C\text{r, C-3'}); 65 (C\text{u, 3 x OCH}_3); 55.6 (C\text{p, 3 x OCH}_3); 44.2 (C\text{r, C-2'})

\text{MS (FAB, KCl): 527 [M+H]+; 565 [M+K]+}

\text{Elemental analysis: calculated: C 75.26, H 6.51}

\text{found: C 75.33, H 6.47}

1-[3'-O-(2-Cyanoethyl-N,N-diisopropylphosphoramidite)-2'-deoxy-5'-O-(dimethoxytrityl)-\beta-D-ribofuranosyl]anisole (100a)

\[\text{To a solution of 89 (100 mg, 0.19 mmol) and ethyl-diisopropylamine (75 \mu l, 1.14 mmol) in dichloromethane (2 ml) under argon was added 2-cyanoethyl-N,N-(diisopropyl)chlorophosphoramidite (148 \mu l, 0.65 mmol). The mixture was stirred at RT for 2.5 h. The reaction was quenched with saturated solution of NaHCO}_3\text{ in water (10 ml) and diluted with dichloromethane (10 ml). The aqueous layer was extracted with dichloromethane (3 \times 20 ml) The organic phase was dried over MgSO}_4\text{, filtered and the solvent removed. The residue was purified by column chromatography on silica gel (Hexane/AcOEt 4/1 + 1% Et}_3\text{N) to give 111 mg (0.153 mmol, 80%) of compound 100a as a colorless oil.}\]
9. **Synthesis of the phenol nucleoside**

\[C_{42}H_{51}N_{2}O_{7}P \]: 726.85 g mol\(^{-1}\)

\[R_f (\text{Pentane/AcOEt 7/3}) = 0.31 \]

\(^1\)H-NMR (400 MHz, CDCl\(_3\), \(\delta/\text{ppm}\)):

mixture of both diastereoisomers: 7.18-7.50 (m, 11H, \(H_a\)); 6.92 (d, \(J = 9.4\) Hz, 2H, \(H_a\)); 6.81 (d, \(J = 10.3\) Hz, 4H, \(H_{ar}\)); 5.18 (dd, \(J = 5.28, 10.2\) Hz, 1H, \(H-1'\)); 4.48 (m, 1H, H-3'); 4.10 (m, 1H, H-4'); 3.78 (s, 9H, 3 x OCH\(_3\)); 3.2-3.55 (2m, 4H, H-5',CH\(_2\)CN); 2.44-2.62 (m, 2H N(CH\(_2\)CN)); 2.22 (m, 1H, Ha-2'); 2.00 (m, 1H, Hb-2'); 1.17-1.28 (m, 12H N(CH\(_2\)CH\(_3\)))

\(^{13}\)C NMR (101 MHz, CDCl\(_3\), \(\delta/\text{ppm}\)):

mixture of both diastereoisomers: 159.9, 158.4, 145.3, 137.2, 134.3 (\(C_q\), 7\(C_{ar}\)); 130.4, 128.8, 128.3, 127.7, 127.2, 114.4, 113.2 (\(C_{ar}\), 17 \(C_{ar}\)); 119.7 (\(C_{q}, CN\)); 85.8 (\(C_{ar}\), C-4'); 80.1 (\(C_{ar}\), C-1'); 75.3 (\(C_{ar}\), C-3'); 64.9 (\(C_{s}\), C-5'); 58.8 (\(C_{s}\), CH\(_2\)OP); 55.5 (\(C_{p}\), 3 x OCH\(_3\)); 44.3 (\(C_{p}\), C-2'); 43.6 (\(C_{p}\), 2C, N(CH\(_2\)CH\(_3\))) 20.5, 20.6, 20.7, 20.8 (\(C_{p}\), 4C, N(CH\(_2\)CH\(_3\))) 18.2 (\(C_{s}\), CH\(_2\)CN)

\(^{31}\)P-NMR (162 MHz, CDCl\(_3\), \(\delta/\text{ppm}\)):

mixture of both diastereoisomers: 147.6, 148.7

MS (ESI, MeOH/CH\(_2\)Cl\(_2\) 1/1): 749.5 [\(M + \text{Na}\)]\(^+\)
10. Deprotection of the allyloxy carbonate protected oligonucleotide (119)

![Diagram showing the deprotection process]

The CPG supports binding the protected oligomer 119 were washed with THF (1 ml) and dried in vacuo. To the resulting polymer were added triphenylphosphine (360 mg, 1.37 mmol), Pd$_2$(dba)$_3$.CHCl$_3$ (140 mg, 0.135 mmol) and a 1.2 M solution of Et$_2$NH/HCOOH 1/1 in THF (6.7 ml, 8.04 mmol). After being vigorously shaken with a mixer, the mixture was heated at 50°C for 0.5-1 h. The supernatant fluid was decanted and the resulting CPG supports were washed successively with THF (2 x 1 ml), acetone (2 x 1 ml), a 0.1 M sodium N,N-diethylthiocarbamate (ddtc) aqueous solution (pH 9.7, 1 ml, 15 min), acetone (3 x 1 ml), and water (1 ml). The ddtc washing was repeated once more. The cleaned CPG supports were then treated with concentrated ammonium hydroxide (1.5 ml) at 25°C to afford the fully deprotected oligonucleotide 121.
11. Oligonucleotide sequences

<table>
<thead>
<tr>
<th>Sequences</th>
<th>[M-H]⁻ Calculated (m/z)</th>
<th>[M-H]⁻ Found (m/z)</th>
<th>ε_{260} (M⁻¹.cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>121: 5'-TATATATATATA(PhOH)ATATATTTTT-3'</td>
<td>7905.14</td>
<td>7906.01</td>
<td>256245</td>
</tr>
<tr>
<td>122a: 5'-GCCTTATAPhOHT*ATAAATCGT-3'</td>
<td>5829.67</td>
<td>5826.98</td>
<td>178845</td>
</tr>
<tr>
<td>122b: 5'-GCCTTATAPhOHTT*ATAAATCGT-3'</td>
<td>6133.87</td>
<td>6136.48</td>
<td>186675</td>
</tr>
<tr>
<td>122c: 5'-GCCTTATAPhOHTTT*ATAAATCGT-3'</td>
<td>6438.07</td>
<td>6441.14</td>
<td>194505</td>
</tr>
<tr>
<td>122d: 5'-GCCTTATAPhOHTTTT*ATAAATCGT-3'</td>
<td>6742.27</td>
<td>6751.37</td>
<td>202335</td>
</tr>
<tr>
<td>132: 5'-TTTTTATA(PhOH)TT*ATAAATAAT-3'</td>
<td>6146.90</td>
<td>6147.84</td>
<td>197205</td>
</tr>
<tr>
<td>133: 5'-TTATATATATATA(PhOH)AT*ATATATTT-3'</td>
<td>7990.14</td>
<td>7991.07</td>
<td>256245</td>
</tr>
<tr>
<td>134: 5'-ACGATTTTATAATATAAGGC-3'</td>
<td>6148.24</td>
<td>6152.82</td>
<td>216090</td>
</tr>
<tr>
<td>134: 5'-ACGATTTTATAACTATAAGGC-3'</td>
<td>6124.21</td>
<td>6127.33</td>
<td>208890</td>
</tr>
<tr>
<td>134: 5'-ACGATTTTATAATTATAAGGC-3'</td>
<td>6139.22</td>
<td>6138.74</td>
<td>210060</td>
</tr>
<tr>
<td>134: 5'-ACGATTTTATAAbTATAAAGGC-3'</td>
<td>6015.12</td>
<td>6012.01</td>
<td>201940</td>
</tr>
<tr>
<td>137: 3'-AAATATATATATAT*ATATATATAAA-5'</td>
<td>8076.54</td>
<td>8075.87</td>
<td>300060</td>
</tr>
</tbody>
</table>
12. Literature

12. Literature

(74) Engtrakul, C.; Sita, L.R. Nano Lett. 2001, 1, 541.

(84) Bhattacharyya S. Synlett, 1998, 8, 837.

(136) Calculated by Stanislav Ivan in the Giese group.
(149) Amiot, N.; Giese, B., unpublished data
13. Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>adenine</td>
</tr>
<tr>
<td>Å</td>
<td>angstrom</td>
</tr>
<tr>
<td>ab</td>
<td>abasic site</td>
</tr>
<tr>
<td>Ac</td>
<td>acetyl, acetate</td>
</tr>
<tr>
<td>AcOH</td>
<td>acetic acid</td>
</tr>
<tr>
<td>AIBN</td>
<td>2,2’-Azo-bis-isobutynitrile</td>
</tr>
<tr>
<td>All</td>
<td>allyl</td>
</tr>
<tr>
<td>AOC</td>
<td>allyloxycarbonate</td>
</tr>
<tr>
<td>APT</td>
<td>attached proton test (NMR)</td>
</tr>
<tr>
<td>ar</td>
<td>aromatic</td>
</tr>
<tr>
<td>Ar</td>
<td>argon</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>bs</td>
<td>broad singulet</td>
</tr>
<tr>
<td>t-Bu</td>
<td>tert-butyl</td>
</tr>
<tr>
<td>BuLi</td>
<td>Butyllithium</td>
</tr>
<tr>
<td>Bz</td>
<td>benzyol</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>C°</td>
<td>degree centigrade</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy (NMR)</td>
</tr>
<tr>
<td>CPG</td>
<td>controlled pore glass</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>D</td>
<td>deuterium</td>
</tr>
<tr>
<td>δ</td>
<td>chemical shift (ppm, NMR)</td>
</tr>
<tr>
<td>dba</td>
<td>dibenzylideneacetone</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-N,N’-dimethylaminopyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N’-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DMTr</td>
<td>4,4’-dimethoxytrityl</td>
</tr>
<tr>
<td>DMTrCl</td>
<td>4,4’-dimethoxytrityl chloride</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>Abbr</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>EDC</td>
<td>1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride</td>
</tr>
<tr>
<td>e.g.</td>
<td>for example</td>
</tr>
<tr>
<td>EPR</td>
<td>electron paramagnetic resonance</td>
</tr>
<tr>
<td>E°ox</td>
<td>oxidation potential</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionization</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>ET</td>
<td>electron transfer</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>FAB</td>
<td>fast atom bombardment</td>
</tr>
<tr>
<td>Fc</td>
<td>ferrocene</td>
</tr>
<tr>
<td>G</td>
<td>guanine</td>
</tr>
<tr>
<td>GGG</td>
<td>triple G unit</td>
</tr>
<tr>
<td>GBr</td>
<td>8-Bromoguanine</td>
</tr>
<tr>
<td>Goxo</td>
<td>8-Oxoguanine</td>
</tr>
<tr>
<td>GZ</td>
<td>7-Deazaguanine</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>hv</td>
<td>light</td>
</tr>
<tr>
<td>i-Pr</td>
<td>isopropyl</td>
</tr>
<tr>
<td>J</td>
<td>coupling constant (Hertz, NMR)</td>
</tr>
<tr>
<td>kET,rel</td>
<td>relative electron transfer rate constant</td>
</tr>
<tr>
<td>kH2O</td>
<td>water addition rate constant</td>
</tr>
<tr>
<td>KI</td>
<td>kalium iodide</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>MALDI-TOF</td>
<td>matrix assisted laser desorption ionisation time-of-flight</td>
</tr>
<tr>
<td>max</td>
<td>maximal</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>m/z</td>
<td>mass unit per charge</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectroscopy</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NMI</td>
<td>N-methylimidazole</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NOE</td>
<td>nuclear overhauser effect</td>
</tr>
<tr>
<td>NOESY</td>
<td>nuclear overhauser and exchange spectroscopy (NMR)</td>
</tr>
<tr>
<td>Pent</td>
<td>pentane</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>PhOH</td>
<td>phenol</td>
</tr>
<tr>
<td>PhOMe</td>
<td>anisole</td>
</tr>
<tr>
<td>ppm</td>
<td>part(s) per million</td>
</tr>
<tr>
<td>PPTS</td>
<td>pyridinium paratoluene sulfonate</td>
</tr>
<tr>
<td>R_f</td>
<td>retention factor (TLC)</td>
</tr>
<tr>
<td>RI</td>
<td>redox-indicator</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RP</td>
<td>reversed phase</td>
</tr>
<tr>
<td>rt</td>
<td>retention time (HPLC)</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>singulet</td>
</tr>
<tr>
<td>SCE</td>
<td>saturated calomel electrode</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>T</td>
<td>thymine</td>
</tr>
<tr>
<td>T*</td>
<td>C4’-pivaloylthymidine</td>
</tr>
<tr>
<td>TBAF</td>
<td>tetrabutlammonium fluoride</td>
</tr>
<tr>
<td>TBDMS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>TEAA</td>
<td>triethylammoniumacetate</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofurane</td>
</tr>
<tr>
<td>TIPS</td>
<td>1,1’,3,3’-teraisopropyl disiloxane</td>
</tr>
<tr>
<td>TIPSCI</td>
<td>dichloro-1,1’,3,3’-teraisopropyl disiloxane</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>T_m</td>
<td>DNA melting temperature</td>
</tr>
<tr>
<td>UV/Vis</td>
<td>ultraviolet/visible spectroscopy</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>vs</td>
<td>versus</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength</td>
</tr>
</tbody>
</table>
Eidesstattliche Erklärung

Ich erkläre, dass ich die Dissertation "Towards a new assay to investigate electron transfer in DNA" selbständig nur mit der darin angegebenen Hilfe verfasst und bei keiner anderen Fakultät eingereicht habe.

Stéphanie Saigne
Curriculum Vitae

Stéphanie Saigne
*August 08, 1974 in Colmar, France
Nationality: French, married (borne Schunck), one child

Academic Education

2000 – 2004 University of Basel, Switzerland
PhD Organic Chemistry in the research group of Prof. Dr. Bernd Giese:
“Towards a new assay to investigate electron transfer in DNA”.

1998 – 1999 University Louis Pasteur (ULP) of Strasbourg, France
Diploma work in Organic Chemistry in the research group of Prof. Dr. D. Uguen.
A “DEA de Chimie Organique Moléculaire et Supramoléculaire” was obtained.

92 – 98 University Louis Pasteur of Strasbourg
Major studies in Chemistry, minor studies in Pharmacy. A master’s degree in
Chemistry (B) was obtained.

89 – 92 Lycée Bartholdi of Colmar, France
Matura (Type C: Mathematics and Physics)

Experience

01 – 03 University of Basel
Assistant in the inorganic-chemical practical training for students with major
studies biology

97 (6 months) University Louis Pasteur of Strasbourg
Training period in electrochemistry laboratory under the supervision of
Prof. R. Louis

Industry

Novartis Pharma A.G. Basel:
98 (6 months) Training period in Research and Development under the supervision of Prof.
Dr. Sedelmeier
The following lecturers contributed to my education:

University of Strasbourg:
R. Weiss, J.P. Lepoittevin, D. Heissler, M. Rohmer, R. Louis.

University of Basel:
B. Giese, H. Wennemers, G.Gescheidt, W.D. Woggon