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Parental investment matters for maternal
and offspring immune defense in the
mouthbrooding cichlid Astatotilapia burtoni
Isabel S. Keller1, Walter Salzburger2 and Olivia Roth1*

Abstract

Background: Parental care, while increasing parental fitness through offspring survival, also bears cost to the care-giving
parent. Consequentially, trade offs between parental care and other vitally important traits, such as the immune system
seem evident. In co-occurring phases of parental care and immunological challenges negative consequences through a
resource allocation trade off on both the parental and the offspring conditions can be predicted. While the immune
system reflects parental stress conditions, parental immunological investments also boost offspring survival via
the transfer of immunological substances (trans-generational immune priming).
We investigated this relationship in the mouthbrooding East African cichlid Astotatilapia burtoni. Prior to mating, females
were exposed to an immunological activation, while others remained immunologically naïve. Correspondingly, the
immunological status of females was either examined directly after reproduction or after mouthbrooding had ceased.
Offspring from both groups were exposed to immunological challenges to assess the extent of trans-generational
immune priming. As proxy for immune status, cellular immunological activity and gene expression were determined.

Results: Both reproducing and mouthbrooding females allocate their resources towards reproduction. While upon
reproduction the innate immune system was impeded, mouthbrooding females showed an attenuation of inflammatory
components. Juveniles from immune challenged mouthbrooding females showed downregulation of immune and life
history candidate genes, implying a limitation of trans-generational plasticity when parents experience stress during the
costly reproductive phase.

Conclusion: Our results provide evidence that both parental investment via mouthbrooding and the rise of the immunological
activity upon an immune challenge are costly traits. If applied simultaneously, not only mothers seem to be impacted in their
performance, but also offspring are impeded in their ability to react upon a potentially virulent pathogen exposure.

Keywords: Parental care, Sexual dimorphism, Trans-generational immune priming, Immune system, Teleosts, Phenotypic plasticity,
Gene expression

Background
Males and females differ in their strategies of how to
transfer genetic material to the next generation during
reproduction [82]. Males produce mobile sperm just big
enough to carry the genetic material, while females produce
comparably large eggs that contain all necessities for
embryogenesis [84]. Important consequences of this
anisogamy are a higher maternal investment per reproduct-
ive unit and sex-specific evolutionary best reproductive

strategies [49, 93]. Because male fitness is limited by the
number of mating events, males tend to primarily invest
into the display of sexual signals such as ornaments to en-
hance their attractiveness [36]. Female fitness, on the other
hand, is limited by the number of reproductive units [7].
According to Bateman’s principle, females are thus selected
to prolong their life span [7, 20, 93], which can be achieved
by a more efficient immune defence and pathogen evasion
strategy [48, 65, 71, 75, 80]. This, in turn, leads to a sexual
immune dimorphism, since the males’ investment into sec-
ondary sexual signals is often at the expense of investing
into immune defense (in the form of a resource allocation
trade-off) [10, 72, 78, 85].
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Sex-specific evolutionary strategies also exist for the
extent of parental care [49]. This can additionally challenge
or, alternatively, compensate the imbalance in investment
per reproductive unit between females and males. An
increased parental investment reduces the prospect of
remating and therefore impedes the overall reproductive
success of males and females alike [34, 93]. Importantly,
the caregiving sex is more limited in the number of repro-
ductive units during its lifetime [93]. This implies that
sexual immune dimorphism and parental investment, both
fitness related traits, are intermingled. As consequence,
parents face a resource allocation trade-off between invest-
ment in future reproduction and investment in self-
maintenance and immune defense [47, 71]. Due to high
energy expenditure during parental care, most vertebrates
show immunosuppression, loss of energy stores, micronu-
trient depletion, glucocorticoid stress response and/or
oxidative stress [13, 29, 66].
Parents may also transfer non-genetic information about

their environmental experience to their offspring, which
provides the opportunity for adaptive trans-generational
phenotypic plasticity [46, 60]. Such parental effects can in-
fluence offspring development, and induce epigenetic
changes triggering differential gene expression in the off-
spring [4, 41, 98]. As a cross-generational inducible defense
strategy, parents transfer information about the concurrent
pathogen assembly in the environment (trans-generational
immune priming (TGIP)) [1, 33]. In vertebrates, TGIP
enables coping with pathogens when the offspring immune
system is not yet fully functional [32, 38]. This can induce
a faster maturation and thereby enhance fitness [95].
Mechanisms how parents prime their offsprings’ immune
system are manifold [88]. Transfer of immune compo-
nents, such as immunoglobulin M (IgM), complement
components, proteins and enzymes via the egg has already
been shown in fishes [3, 11, 59, 87, 89].
In addition to a direct immunological transfer via the

egg, immunological information can also be transferred
from parent to offspring through intimate contact with
immune reactive tissues, such as mucus [31, 67, 79]. In
cichlid fishes such as the discus fish or tilapia, offspring
are micro nipping mucus from the parental epidermis
during the entire free-swimming stage [18, 44]. Transfer
of immunity to the next generation may explain the
induced immunological activity (IgM and antimicrobial
peptides) in the parental mucus. In line with this,
immune relevant components are passed on via mouth-
brooding in tilapia [79] when eggs and fry are guarded
in the buccal cavity of the parents in close contact with
the parental mucosa [44]. Mouthbrooding is a rather
costly parental investment trait, as it challenges the par-
ental cardiac and the ventilation system resulting in
higher osmoregulation [68] followed by a drop of paren-
tal body condition [35]. Mouthbrooding fishes are thus

hypothesized to face a resource allocation trade-off be-
tween brooding and other life-history traits, among them
the immune system. The close contact between parents
and offspring and limited options for food-uptake during
mouthbrooding makes cichlids an excellent system to
study the costs of parental care for the parents’ immune
system and the possibility for TGIP via the eggs and via
the buccal mucosa.
In this study, we investigated the trade-off between par-

ental care and immunological activation in the East African
cichlid Astatotilapia burtoni, a maternal mouthbrooder
inhabiting Lake Tanganyika and its surroundings [26, 90,
91]. A. burtoni is a model species for various questions in
the field of evolutionary biology and development (brain
and eye development [56]; hormonal, behavioral and
phenotypic adaptation [23, 24, 39, 40, 42, 45, 92]; immune
gene expression analysis upon challenge with Vibrio
anguillarum [22]; as well as genomics and transcriptomics
[5, 14, 76, 77].
The first part of this study was designed to assess the

costs associated with mouthbrooding and reproduction
and its effect on the capability of mounting an immune
response in adults. Therefore, we assigned immune chal-
lenged and immunologically naïve female A. burtoni to
either mouthbrooding, only reproduction without
mouthbrooding, or neither reproduction nor brooding
(‘no reproduction’). Immune challenged females are
hypothesized to suffer a severe resource allocation trade-off
between mounting an immune response and investing in
reproduction and brooding. We thus expected a gradually
decreasing immune response from ‘no reproduction’ over
‘reproduction only’ to ‘mouthbrooding’. To evaluate how
maternal investment affects sexual immune dimorphism
also naïve male immune status was examined. Males were
hypothesized to having a lower immune competence than
non-brooding females, however, with rising costs of paren-
tal investment (i.e. reproduction and mouthbrooding),
whereas female immunological activity was expected to
decrease, diminishing the difference between the sexes.
In the second part of the study, we focused on the

offspring from immunologically challenged and naïve
mothers. To this end, offspring were either artificially
raised or mouthbred and then examined for their immuno-
logical activity to address the existence and specificity of
TGIP via the buccal mucosa during mouthbrooding. We
hypothesized that immune components are transferred
from the mother to the offspring not only directly via the
egg but also additionally during mouthbrooding. Juveniles
raised in the absence of the female were supposed to be
less immune competent than juveniles bred within the
buccal cavity of the female. To assess if parents can transfer
specific immune components about the concurrent patho-
gens in the environment, juveniles were vaccinated with ei-
ther the same (homologous), a distinct (heterologous), or no
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bacteria isolate as their mothers were already immunologic-
ally exposed to. If TGIP is specific, offspring from challenged
females should show a higher immune competence after
challenge with the homologous bacteria than heterologous
challenged offspring and offspring from naïve females.
Mouthbrooding provides the opportunity for a prolonged
transfer of immune components through the buccal mucosa
during the whole larval development. Therefore, mouthbred
offspring were supposed to show a higher immunological ac-
tivity than artificially raised offspring.

Methods
I. Cost of mouthbrooding on Astatotilapia burtoni females
immune defence & II. Cost of reproduction and influence
on sexual immune dimorphism in Astatotilapia burtoni
This experiment was designed to assess the costs of
reproduction and mouthbrooding on the immune compe-
tence of females, and the impact of reproduction and
mouthbrooding on a potential sexual immune dimorphism
in the cichlid fish Astatotilapia burtoni. We immunologic-
ally challenged 35 female Astatotilapia burtoni by
peritoneal injection of 50 μl of either 108 heat-killed (65 °C
for 60 min) Vibrio anguillarum (strain S6 M4, isolated from
pipefish gut; (JQ598664 recombinase A (recA) gene partial
cds) [73] diluted in PBS) (+, n = 18) or PBS (−, n = 17) as
control. As the injected bacteria were heat-killed, this treat-
ment served as an immunological activation similar to a
vaccination. Hence, no clinical symptoms were observed
and no animal died after the challenge. According to their
immune challenge, females were tagged subcutaneously
with Visible Implant Elastomer Tags (VIE; Northwest
Marine Technology, Inc.; red and green fluorescent tags).
After challenge and tagging, females were randomly placed
in groups of three to four animals independent of their
challenge in 80 l aquaria (from here on named “mating
tanks”). Fish were held in in a circulation system at 26 °C
with a 12 h day/12 h night light regime and fed daily with
thawed out brine shrimp nauplii. One male per tank (1:3–
4, male to female ratio) was introduced after allowing the
females to acclimatize for one week. In the reproduction
treatment (R), females were allowed to reproduce, but
eggs were stripped the day after fertilization (6 females
with priming (R+), 5 females naïve (R-)). In the control
treatment (C), females were prevented from reproduction
(7 females with priming (C+), 7 naïve females (C-)). In the
brooding treatment (B), females were allowed to breed
naturally until juveniles left the mouth of the female (7
females with priming (B+); 7 naïve females (B-)). At the
first sign of egg uptake after fertilization, females were
transferred to 10 l aquaria with one fish per tank in a cli-
mate chamber (set to 28 °C air temperature and resulting
in 26 °C water temperature) and randomly assigned to
one of three treatments: Females of the reproduction
treatment (R) were immediately stripped off their eggs,

challenged and sampled 24 h after challenge. Females of
the brooding treatment (B) were kept in the 10 l aquaria
until the free-swimming juveniles were released from the
buccal cavity after about 14 days, challenged and sampled
24 h later. Four females (2× B- / 2× B+) lost their eggs
during brooding and were excluded from the experiment,
thus lowering sample size to 31 females (´reproduction´: 6
females with priming (R+), 5 females naïve (R-)), ´control´
(C): 7 females with priming (C+), 7 naïve females (C-), ´
brooding´ (B) 5 females with priming (B+); 5 naïve
females (B-)). Females of the control treatment were
randomly chosen and transferred to the climate chamber
and either sampled 24 h after transfer (control for the
reproduction females) or 14 days after transfer (control
for the brooding females). Males were sampled after the
last female of the tank had been transferred to the climate
chamber (Fig. 1 a and b, roman letters (I., II. & III.) guide
through results and discussion).

III. Impact of maternal immune challenge on mouthbreed
Astatotilapia burtoni
Here, we examined the effects of mouthbrooding on the
immune system of the offspring and tested for the exist-
ence and specificity of trans-generational immune prim-
ing (TGIP) in A. burtoni via the eggs and via the buccal
mucosa during mouthbrooding. To examine TGIP, we
vaccinated virgin females with either Phosphate buffered
saline (PBS) (−) or heat-killed Vibrio anguillarum in PBS
(+). The latter induces the maternal immune system
simulating a potential infection. Juveniles from the
brooding treatment (B) were naturally bred until they
left the buccal cavity of the female after about 14 days.
Clutches from females of the reproduction treatment
were raised separately in a breeding apparatus designed
to keep the eggs in motion and aerated through an indir-
ect water flow until the yolk sack was used up com-
pletely (after about 14 days). All breeding chambers
were located in the same 10 l aquaria. Both, artificially
raised and naturally bred juveniles were grown for two
weeks post fertilization and were then randomly divided
in three groups for immune challenge by pricking them
with a syringe. To test for possible effects of the maternal
challenge (+/−) or the maternal treatment (R/B) on the ju-
venile immune gene expression, juveniles from each batch
were split into three groups. Group one was pricked,
homologously to the maternal challenge, with drops of
1010 heat-killed (65 °C for 60 min) Vibrio anguillarum
(strain S6 M4 diluted in PBS); group two was challenged
heterologous to the maternal challenge with drops of 1010

heat-killed (65 °C for 60 min) Tenacibaculum maritimum
(diluted in PBS), and group three with 1 μl of PBS (Fig. 1 a
and b, roman letters guide through results and discussion).
As juveniles were too small to be tagged, they were held in
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Fig. 1 Experimental setup and timeline for adult and juvenile A.burtoni: a Experimental Setup. Challenged females (−) in red, naïve females (+) in blue,
males wear a hat. Mouthbrooding females (B) carry eggs, reproducing-only females (R) are accompanied by a flask. Control females (C) are placed in
between mouthbrooding and reproducing females. Smaller icons depict juveniles, color codes juvenile challenge (red: V.anguillarum, violet: T.maritinum,
blue: PBS). Underlying color fit the respective statistics part: blue for cost of mouthbrooding on females (I.), red for cost of reproduction and sexual
immune dimorphism (II.), violet for impact of female and juvenile challenge on mouthbred offspring (III.), green for comparison of artificially raised to
mouthbred juveniles. b Timeline of the experiment. Color code, icons and roman lettering as above, controls are excluded. Letters show different time
points of the experiment. A: Challenge of females, B: Introduction of males, C: Detection of brooding, split in either I. or II. D: Dissection of females from II.
E: Release and challenge of juveniles, F: Dissection of females from I. and all juveniles
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2 l aquaria according to their treatment and sampled the
next day.

Fish handling
All fish were killed by bathing in an overdose of MS222
(according to animal welfare permit MELUR V 312–72
24.121-19 (67–5/13), “komparative Vergleichsstudie von
Immunantwort-Transfer von Eltern zu Nachkommen in
Fischarten mit extremer Brutpflege”). In adult fish, we
measured total length (TL), standard length (SL), and
weight (W) of all adult fish in order to calculate a condi-
tion factor as a proxy for fitness (K=W/TL3). For the adult
gene expression analyses gills were dissected and stored in
RNAlater. The three main immunological organs of fish
[96] were used for the assessment of the cellular immune
measurements: blood was taken as a proxy for systemic
infections and transportation way of pathogens; the head
kidney as main lymphocyte proliferation organ; and the
spleen as blood filtration and pathogen neutralization
organ. Juvenile fish were measured for total length and
weight. For the gene expression analysis, the head was sep-
arated from the rest of the body and stored in RNAlater.
We could not measure cellular immune parameters in
juveniles, as they were too small for organ dissection.

Cellular immune parameter analysis
In order to compare immune dynamics and activation of
immune response among the different female treatments
and challenges, Flow Cytometric measurements of cell
population and adaptive immune cell proliferation were
conducted. Measurements were done with a BD Accuri
C6 Flow Cytometer® following the protocols described in
Roth et al. [72] with modifications for cichlids described
in Diepeveen et al. [22]. After dissection, spleen and
head kidney were individually smashed through 40 μm
cell sieves (Falcon) and suspended in 500 μl RPMI-1640
cell medium (Sigma-Aldrich, diluted with 5% distilled
H2O). Blood was collected from the caudal vein and di-
luted in 500 μl RPMI-1640 cell medium. For cell popula-
tion measurement, 75 μl of live cells in suspension were
mixed with 50 μl Propidium Iodide (20 μg/ml, Roth) and
measurements were taken immediately after. Cell size
(Forward scatter, FSC) and cell complexity (Side scatter,
SSC) of up to 10′000 life cell counts per sample were re-
corded on slow flow rate. Lymphocytes (smaller cells with
low complexity) and monocytes (larger cells with higher
complexity) were distinguished based on their scatter pic-
tures on the basis of their distinct morphology. For cell
cycle analysis, 75 μl of living cells in suspension were
killed with 75 μl of 70% EtOH and stained with 50 μl Pro-
pidium Iodide. The cell mixture was measured for up to
20′000 individual cell counts on medium flow rate. Cells
in a dividing stage of the cell cycle (S- or G2/M-phase)

have approximately double the DNA content than cells in
a resting stage of the cell cycle (G1-phase), allowing the
discrimination of active and resting cells according to the
measured emission of red fluorescence of the Propidium
Iodide binding to the cellular DNA of each cell. Flow
cytometric measurements were analysed using predefined
gating in the BD Accuri C6 Software (Version 1.0.264.21).

Gene expression assays
RNA from juveniles and adult gill samples were extracted
with RNeasy 96 Universal Tissue Kit (Qiagen) following
the manufacturers protocol for vacuum extraction. RNA
yield was measured by spectrometry (NanoDrop ND-1000;
peQLab) and 300 ng/μl was used for reverse transcription
with QuantiTect®Reverse-Transcription Kit (Qiagen). Some
samples (adults: 2 females B+, 1 female R+, 2 females B-,
juveniles: 2 juveniles V+ from V+ females, 2 juveniles V+
from naïve females, 2 T+ juveniles from naïve females, 8
naïve juveniles from naïve females) were excluded from the
gene expression analysis due to low RNA yields. In order
to design cichlid specific primers for immune genes, we
blasted immune relevant teleost gene sequences against an
Astatotilapia burtoni reference transcriptome [5].
Sequences of those genes were then uploaded in the web
based Primer3 software (Version 4.0.0) for primer picking.
Primers were tested for specificity and efficiency with RT
qPCR using 5× HOT FIREPol® EvaGreen® qPCR Mix Plus
(ROX) (Solis BioDyne). 48 specific primer pairs with
efficiencies above 90% and standard curves with slopes of
log quality vs. threshold cycle (Ct) between −3.5 and 3.2
were then selected for further analyses (list of all primers
see Additional file 1: Table S1).
The gene-expression patterns of 48 immune-related

genes were measured using a Fluidigm-BioMarkTM
system based on 96.96 dynamic arrays (GE-Chip). For
pre-amplification of target cDNA a mix of 2.5 μl TaqMan
PreAmp Master Mix (Applied Biosystems), 0.5 μl of
500 nM combined primer pairs (diluted with TE Buffer)
and 0.75 μl HPLC H2O was used for 1.4 μl of cDNA.
Mixture was pre-amplified (1 × 10 min; 95 °C; 16× (15 s;
95 °C, 4 min; 60 °C)) and diluted 1:10 with low EDTA-TE
Buffer. For the chip run a sample mix with 3.5 μl 2× SSo
FastEvaGreen Supermix with low Rox (BioRad) and
0.37 μl 20× DNA binding Dye sample loading reagent
(Fluidigm) on 3.3 μl of pre-amplified 1:10 diluted cDNA
and an assay mix with 3.5 μl 2× Assay loading reagent
(Fluidigm) and 3.15 μ 1× low EDTA-TE Buffer on 0.7 μl
of 50 μM Primer mix have been prepared. 5 μl of each
mix were loaded on a GE-chip, and measured with the
GE-fast 96.96 PCR protocol in the BioMarkTM system ac-
cording to Fluidigm instructions. In each Chip run we in-
cluded two technical replicates, a negative control (HPLC
H2O) and a –RT control to test for residual gDNA.
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Data management & statistics
All statistical analyses were done in R version 3.1.3. GUI
1.65 Snow Leopard built (6912). All data were checked
for normality and variance homoscedasticity. Wherever
needed flow cytometric data were log transformed and
gene expression data were cos (+20) transformed to
fulfill assumptions for parametric testing.
When analyzing the adult data, we revealed differences

among control animals kept in the climate chamber for
short term (24 h; controls of the reproduction treatment)
and those kept in the climate chamber for longer term
(~14 days; controls of the brooding treatment). We thus
had to split the adult data (flow cytometric measurements
and gene expression of the gills) according to the location
where the brooding (B)/ non-brooding (C) (I.) and
reproduction (R)/ no reproduction (C) (II.) animals were
kept. The controls for the brooding treatment and the
mouthbrooding females (I.) were therefore analysed separ-
ately from the controls for the reproduction treatment
and the reproduction only females and males (II.). All
females used as control (C) were neither reproducing nor
brooding. Our analysis is thus restricted to interpretations
regarding ‘mouthbrooding’ versus ‘brooding control’ and
‘reproduction’ versus ‘reproduction control’, while mouth-
brooding females cannot be directly compared to the
reproduction only females. Males were sacrificed 24 h
after their last reproductive event, handling was thus most
similar to the reproduction females. Males are thus in the
statistical comparison included in the comparison
between reproduction and no reproduction (II.).
Due to high mortalities in juveniles reared artificially

and descending from naïve reproduction only females (R-)
(only 1 juvenile survived), we had to exclude all juveniles
reared artificially from the analysis even though survival
rate did not differ between the treatments (ANOVA of
total juvenile number per female (naïve or challenged) at
the end of two weeks mouthbrooding or artificial raising;
F3/17 = 1.701, p = 0.205). Thus in the juvenile data set (III.),
we only compared mouthbred juveniles from challenged
females to those from naïve females, which permitted to
determining the effect of maternal immune challenge on
juvenile condition and to assessing the transfer of
immunological information.
Cellular immune parameter data were composed to

flow cytometric measurements of cell populations and
cell proliferation of adult fish (I. & II.). Cell populations
were measured as the relative proportion of lymphocyte
(l) and monocyte (m) counts to the total of live cells.
Cell proliferation shows the relative proportion of cells
in dividing- (s) or in resting phase (r) to single cells in
total. We calculated the proportion of both lymphocytes
to monocytes (l/m) and dividing- to resting phase (s/r)
for statistical analysis. Samples with a live cell count
lower than 10% of total events were removed from the

analysis. Data were analysed using an ANCOVA with the
two factors treatment and challenge and the condition fac-
tor (K) as a covariate (aov(x~treatment*challenge + K)).
For both adult datasets (I. & II.), the same model was
used. Whether the random factor “mating tank” influences
the results was tested in an initial ANOVA model. As the
random factor was not significant, it was excluded from
the final model. Tukey HSD (95% family-wise confidence
levels) served as post hoc test if necessary.
Data from the gene expression analysis were processed

using the Fluidigm-integrated software (Fluidigm Real--
Time PCR analysis; BioMark Version 4.1.2). Samples
with melt curves that deviated in mean temperature
from the mean melt curve per gene were excluded.
Mean cycle threshold (Ct), standard deviation (SD), and
coefficient of variance (CV) were calculated for each
remaining sample duplicate. Samples with a CV lower than
4% were replaced by the mean value over all samples per
gene. One gene (HA_PCAF; histone acetyltransferase) was
removed, as too many samples did not sufficiently match
the criteria mentioned above. HIVEP 3b and ADNPB had
the lowest geNorm (qbase + version 3.0, biogazelle) values,
which indicates that they were most constant over all treat-
ments, and were thus chosen as reference genes. For
relative gene expression, the geometric mean of these
two reference genes (HIVEP 3b and ADNPB) was
subtracted from the mean Ct value of the gene of
interest per sample resulting in ΔCt values. This was
done for the gene expression data from juveniles and
adults in the same way. Genes were grouped accord-
ing to their function (GO terms; UniProt [6]) for
multivariate statistics (Table 1).
Statistical analysis of adult gene expression was done

calculating a PERMANCOVA with challenge and treat-
ment as factors and condition factor (K) as covariable
for each gene group (adonis(x~treatment*challenge + K,
method = “euclidean”, permutations = 1000)). The same
formula was applied for all adult datasets (brooding/
non-brooding gills (I.) & reproduction/no reproduction
gill (II.)). For significant PERMANCOVA factors, uni-
variate analyses served as post hoc tests to identify the
impact on each gene. These ANCOVAs used the same
model (aov(x~treatment*challenge + K)) and a Tukey
HSD test if necessary, to depict the direction of the dif-
ferences among treatments (as done in [9]). To address
the gene expression of juvenile cichlids (III.), we in-
cluded family in the model, as some of the samples are
siblings and therefore not independent we performed a
nested MANOVA with female treatment nested in
family [74]. Significant data were then post hoc tested
in a nested ANOVA with the same factors as for the
MANOVA (anova(x~jtreatment*ftreatment + ftreatmen-
t%in%family)). Further post hoc testing was done with
Tukey HSD.
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Results
I. Cost of mouthbrooding on Astatotilapia burtoni female
immune defence
To assess costs of mouthbrooding, challenged and naïve
mouthbrooding females were compared to challenged and
naïve control females, which were neither brooding nor
reproducing. Brooding was successful in five of seven
naïve and five of seven Vibrio challenged females (four fe-
males (2× B- /2× B+) lost their brood within two weeks).
Mouthbrooding influenced both the proportion of adap-
tive to innate immune cells and the activity of the adaptive
immune system in the head kidney. Brooding females had
a higher proportion of adaptive to innate immune cells,
whereas the proportion of active adaptive immune cells
was lowered during brooding. Immune challenge had no
effect on both cellular immune parameters (Table 2; Fig. 2 a
and b).
Overall gene expression of the gill tissue was affected in

three gene groups; inflammation genes (univariate effects
in lectine, chemokine receptor 9 & thrombin receptor),

general innate immune system genes (univariate effects in
catalase) and genes involved in stress response (univariate
effects in glucocorticoid receptor). The interaction of
mouthbrooding and immune challenge downregulated the
expression of lectine and chemokine receptor 9 compared
to the naïve treatments (C- & B-) (Fig. 3a). Challenge
alone (C+) had no effect on the expression of both lectine
and chemokine receptor 9. Mouthbrooding females have a
lower expression of both thrombin receptor like 1 and
glucocorticoid receptor (Fig. 3b). Immune challenge with
Vibrio downregulated the expression of thrombin receptor
like 1 and catalase (Multivariate: Table 3; Fig. 3c;
Univariate Additional file 2: Table S2, Tukey HSD:
Additional file 3: Table S3).

II. Cost of reproduction and influence on sexual immune
dimorphism in Astatotilapia burtoni
Comparing immune challenged and naïve reproducing
with immune challenged and naïve non-reproducing
control females allows assessing the cost of reproduction

Table 1 Division of candidate genes in functional groups

Gene Group Gene Name Gene Group Gene Name

All Immune System
genes

Adaptive Immune
System

Fibronectin beta antigen CD29 Metabolism Proprotein convertase subtilisin

Fibronectin beta antigen CD81 Elongation Factor 1

Ig light chain Ribosomal protein A3

Interleukin 10 Sex related genes Androgen receptor A

Integrin alpha 2 Androgen receptor B

MHC I antigen F10 alpha chain Aromatase B

MHC II b Epigenetic genes DNA methyltransferase 1

Lymphocyte cytosolic factor I Histone acetyltransferase

IgG FC binding protein Histone deacetylase

Innate immune
system

Inflammation Allograph inflammation factor Histone demethylase

Coagulation factor II /Thrombin histone lysine methyltransferase

Chemokine receptor 9 Lysine specific demethylase

Lectine Development Myogenic regulatory factors

Tumor necrose factor beta Early growth response 1

Oxidative Stress Catalsase Growth hormone rh

Copper zink dismutase Opsin 1

Trypsin I Stress Heat shock protein 70

Various innate IS Calreticulin 3 Heat shock protein 90

Calreticulin 1 Glucocorticoid receptor

FAM60 A Protein Heat shock protein 60

Pentraxin 4 Reference Activity-dep neuroprotector

Serum amyloid A Hivep 3b

Complement
Components

Complement component 1q

Complement component 9

Antimicrobial Peptides Hepcidin

Latescidin 2
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and simultaneous immune challenge in A. burtoni
females. By including naïve males in this comparison we
are able to determine the influence of reproduction and
female challenge on sexual immune dimorphism. The
proportion of adaptive to innate immune cells in the
blood of reproducing females was lower than in non-
reproducing females and males. Females that had repro-
duced featured a lower proportion of resting cells in the
head kidney than both non-reproducing females and
males. The proportion of dividing cells, as well as the div-
iding to resting cell ratio in the head kidney did not differ
between the two female treatments, but between reprodu-
cing females and males. A higher ratio of active to inactive

adaptive immune cells indicates that reproduction induces
the adaptive immune cell proliferation. Vibrio challenge
had no effect on cellular immune parameters (Table 4;
Fig. 4; Posthoc: Additional file 4: Table S4).
Multivariate analyses reflected that gene expression of

the gill tissues was affected by reproduction but not by
immune challenge in seven gene groups: “all genes”,
“innate immune system genes & complement genes”,
“adaptive immune system genes”, “antimicrobial genes &
oxidative stress genes”, “developmental genes” and
“metabolism genes”. In the following univariate analysis,
15 of 45 genes of interested showed differential expression
between the treatments. In more detail, the univariate

Fig. 2 Immune cell measurements of brooding versus non-brooding females: Bars and error bars show group means with SE. Brown for control
females; turquoise for mouthbrooding females. All shown differences are significant (p < 0.05). a Proportion of adaptive to innate immune cells of
the head kidney. b Proportion of active to resting adaptive immune cells of the head kidney

Table 2 Two-way ANCOVA results of cellular immune parameter from brooding vs. non-brooding females: Significant p values (p < 0.05)
are marked in bold letters. Results from Tukey HSD posthoc tests can be found in Additional file 2: Table S2

Blood Spleen Head Kidney

Df SS MS F value Pr(>F) SS MS F value Pr(>F) SS MS F value Pr(>F)

Lymphocyte/Monocyte

Treatment 1 0.017 0.017 0.89 0.378 0.70 0.70 2.11 0.190 4.30 4.30 5.62 0.050

Challenge 1 0.008 0.008 0.43 0.531 0.07 0.07 0.20 0.667 0.07 0.07 0.09 0.775

Condition factor 1 0.018 0.018 0.94 0.364 0.01 0.01 0.03 0.861 0.10 0.10 0.13 0.733

Treatment*Challenge 1 0.006 0.006 0.34 0.580 0.07 0.07 0.21 0.660 0.02 0.02 0.02 0.887

Residuals 7 0.132 0.019 2.32 0.33 5.37 0.77

Active/Inactive Cells

Treatment 1 0.000 0.000 3.32 0.1113 0.51 0.51 0.54 0.488 0.00 0.00 7.29 0.031

Challenge 1 0.000 0.000 0.00 0.9643 0.23 0.23 0.24 0.638 0.00 0.00 0.08 0.783

Condition factor 1 0.000 0.000 0.13 0.7311 1.10 1.10 1.17 0.316 0.00 0.00 5.84 0.046

Treatment*Challenge 1 0.000 0.000 0.01 0.9433 0.05 0.04 0.05 0.834 0.00 0.00 0.40 0.546

Residuals 7 0.000 0.000 6.63 0.95 0.00 0.00
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analysis revealed that the expression of latescidin 2, hepci-
din, trypsin 1, myogenic regulation factor, opsin 1 and an-
drogen receptor B were downregulated in reproducing
females compared to both other treatment groups. Expres-
sion of CD81 antigen, involved in cell proliferation and
maturation of T- and B- cells, was upregulated during
reproduction. Furthermore, reproducing females had a
higher expression of thrombin receptor like I, elongation
factor 1 and DNA methyltransferase but a lower expression
of the serum amyloid A5 protein gene, than males but not
than control females. Males showed a lower expression of
MHC2b, heat shock protein 70, calreticulin 3 and interleu-
kin 10 than reproducing and non-reproducing females
(Multivaraiate: Table 5; Fig. 5 A & B; Univariate: Additional
file 5: Table S5; Tukey HSD: Additional file 6: Table S6).

III. Impact of immune challenge on mouthbred offspring
To determine the existence and specificity of trans gener-
ational immune priming via buccal mucosa in A. burtoni
mouthbreed juveniles from either immune challenged

(Vibrio) or naïve (PBS) females where challenged with the
same (Vibrio, homologous challenge) or a different
(Tenacibacter, heterologous challenge) heat-killed bacteria
than the maternal challenge or left naïve in a fully recipro-
cal design. Both female and juvenile challenge impacted,
in mouthbred offspring, the expression of genes involved
in the innate immune system & complement component
system, the adaptive immune system, but also epigenetic,
sex related and developmental genes (Multivariate:
Table 6).
Single gene univariate analyses of those gene groups

showed interactive effects of both female and juvenile
immune challenge on lysine specific demethylase and
Aromatase B. In both genes Vibrio challenged juveniles
from Vibrio challenged females (fV:jV) had a lower ex-
pression than other juveniles (fN:jN, fN:jV, fV:jN) except
those being challenged with Tenacibaculum (fN:jT &
fV:jT). The expression of complement component 1q
(C1q) was also lower in Vibrio challenged juveniles from
Vibrio challenged females (fV:jV) as compared to all but

a

b c

Fig. 3 Gene expression of brooding versus non-brooding females: All graphs show relative expression of Ct values (-ΔCt), bars and error bars show
group means with SE. Lettering denotes significance; only genes with effects (p > 0.05) are shown. Graphs are sorted according to the significant factor.
a Interaction of treatment (brooding (B) and control (C)) and challenge (Vibrio (+) and naïve (−)) b Treatment effects of brooding (in turquoise) versus
non-brooding (brown) c Challenge effects of Vibrio (red) and PBS (blue) challenge
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Tenacibaculum challenged juveniles from naïve females
(fN:jT) (Fig. 6). Juvenile challenge with Vibrio downregu-
lated the expression of calreticulin 1 (innate immune
system) and early growth factor (developmental genes)
compared to naïve juveniles (PBS) (Fig. 7a). Effects of
female challenge on juvenile gene expression could be
shown in 12 of 45 genes of interest. Juveniles of challenged
females show a lower expression of chemokine, interleukin

10, ig light chain, tumor necrosis factor b, integrin a2,
pentraxin 4, myogenic regulation factors, early growth
factor, histone lysine methyltransferase, aromatase B and
androgen receptor B. Only the expression protein FAM
60A was upregulated in juveniles from challenged females
compared to juveniles from naïve females (Fig. 7b; Univar-
iate: Additional file 7: Table S7; Tukey HSD: Additional
file 8: Table S8).

Table 4 Two-way ANCOVA results of cellular immune parameter from males, reproducing and non-reproducing females: Significant
p values (p < 0.05) are marked in bold letters. Results from Tukey HSD posthoc tests can be found in Additional file 4: Table S4

Blood Spleen Head Kidney

Df SS MS F value Pr(>F) SS MS F value Pr(>F) SS MS F value Pr(>F)

Lymphocyte/Monocyte

Treatment 2 14.50 7.25 12.25 <0.01 1.85 0.92 2.71 0.093 1.73 0.87 1.79 0.194

Challenge 1 0.60 0.60 1.01 0.33 0.01 0.01 0.03 0.859 0.14 0.14 0.29 0.594

Condition factor 1 1.06 1.06 1.79 0.20 0.40 0.40 1.17 0.295 0.12 0.12 0.24 0.629

Treatment*Challenge 1 0.77 0.77 1.30 0.27 0.06 0.06 0.17 0.681 0.39 0.39 0.81 0.378

Residuals 19 11.24 0.59 6.12 0.34 9.17 0.48

Active/Inactive Cells

Treatment 2 2.08 1.04 2.11 0.15 13.05 6.53 1.82 0.188 1.48 0.74 4.65 0.023

Challenge 1 0.73 0.73 1.47 0.24 10.32 10.32 2.87 0.106 0.00 0.00 0.02 0.887

Condition factor 1 1.23 1.23 2.50 0.13 4.62 4.62 1.29 0.270 0.48 0.48 2.99 0.100

Treatment*Challenge 1 0.37 0.37 0.75 0.40 1.12 1.12 0.31 0.582 0.05 0.05 0.33 0.570

Residuals 19 8.38 0.49 71.78 3.59 3.02 0.16

Table 3 Two-way PERMANCOVA results of candidate gene expression from brooding vs. non-brooding females: PERMANCOVA to
asses effects of treatment, challenge and their interaction on the relative expression of candidate genes (ΔCt values). A condition
factor (K=W/TL3) was included as covariable. Significant results are marked in bold letters. Results of the univariate posthoc analyses
(ANCOVA & Tukey HSD) can be found in Additional file 2: Table S2 and Additional file 3: Table S3

Gene categories Model Treatment (T) Challenge (C) K T*C

R2 F Model Pr (>F) F Model Pr (>F) F Model Pr (>F) F Model Pr (>F)

All genes 0.62 0.93 0.507 0.93 0.499 1.28 0.261 1.11 0.326

All IS genes 0.62 0.74 0.608 0.94 0.453 1.45 0.208 1.08 0.349

Adaptive IS 0.67 0.57 0.619 0.48 0.708 1.68 0.216 0.76 0.489

All innate IS 0.50 1.46 0.186 2.42 0.033 1.50 0.188 1.71 0.117

Inflammation 0.19 6.92 0.015 12.28 0.001 4.09 0.044 5.69 0.022

Oxidative Stress 0.73 0.34 0.725 0.27 0.767 1.07 0.358 0.92 0.403

Various innate IS 0.59 0.22 0.796 1.97 0.178 1.25 0.303 1.33 0.280

Antimicrobial Peptides 0.52 2.59 0.101 1.04 0.421 1.76 0.207 1.21 0.374

Metabolism genes 0.70 0.88 0.431 0.87 0.463 0.52 0.666 0.69 0.555

Epigenetic genes 0.71 1.76 0.182 0.32 0.884 0.09 0.964 0.62 0.672

Developmental genes 0.66 0.68 0.519 0.45 0.616 0.82 0.376 1.60 0.235

Stress related genes 0.41 4.79 0.005 2.57 0.074 1.33 0.299 1.28 0.312

Complement Component 0.56 1.03 0.411 1.69 0.133 1.08 0.371 1.59 0.175

Sex related genes 0.71 1.76 0.182 0.32 0.884 0.09 0.964 0.62 0.672

Df Residuals / Model 7 1 1 1 1

Df Total 11
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Discussion
While, to our knowledge, previous studies on TGIP have
exclusively focused on either the parental costs or the
offspring benefits [8, 18, 31, 67, 74, 79], this study aimed
to illuminate the impact and the interaction of parental

investment on the parental and the offspring immune
system. The integration of both sides, parents and
offspring, allows drawing conclusions about trade-offs in
reproduction and immune defense. By enlightening
consequences on both the parental and the offspring

Fig. 4 Immune cell measurements of males and reproducing versus non-reproducing females: Both graphs show bars and error bars with group
means and SE. Lettering denotes significant differences. Females are shown in violet (dark for control, and light for reproduction) and males are
shown in green. a Proportion of adaptive to innate immune cells of the blood. b Proportion of active to resting adaptive immune cells in the
head kidney

Table 5 Two-way PERMANCOVA results of candidate gene expression from males, reproducing and non-reproducing females: PERMANCOVA
to asses effects of treatment, challenge and their interaction on the relative expression of candidate genes (ΔCt values). A condition factor
(K=W/TL3) was included as covariable. Significant results are marked in bold letters. Results of the univariate posthoc analysis (ANCOVA & Tukey
HSD) can be found in Additional file 5: Table S5 and Additional file 6: Table S6

Permancova

Gene categories Model Treatment (T) Challenge (C) K T*C

R2 F. Model Pr (>F) F. Model Pr (>F) F. Model Pr (>F) F. Model Pr (>F)

All genes 0.64 3.23 0.002 0.76 0.649 0.62 0.755 1.05 0.351

All IS genes 0.62 3.37 0.003 0.77 0.633 0.81 0.565 1.29 0.243

Adaptive IS 0.58 3.48 0.001 0.85 0.534 1.39 0.229 2.18 0.062

All innate IS 0.64 3.46 0.003 0.71 0.685 0.46 0.852 0.78 0.581

Inflammation 0.74 1.87 0.105 1.01 0.404 0.10 0.971 0.03 0.999

Oxidative Stress 0.66 2.92 0.031 0.77 0.480 0.34 0.736 0.88 0.423

Various innate IS 0.61 4.46 0.003 0.51 0.708 0.44 0.675 0.50 0.651

Antimicrobial Peptides 0.49 6.58 0.011 0.69 0.535 1.62 0.205 1.56 0.218

Metabolism genes 0.69 3.49 0.049 0.13 0.939 0.03 0.941 0.19 0.741

Epigenetic genes 0.70 0.93 0.493 2.16 0.063 0.22 0.918 0.88 0.464

Developmental genes 0.58 5.41 0.006 0.10 0.997 0.06 0.981 1.49 0.230

Stress related genes 0.75 1.19 0.331 0.98 0.398 0.89 0.457 0.36 0.811

Complement Component 0.65 3.31 0.001 0.72 0.663 0.48 0.840 0.79 0.559

Sex related genes 0.55 4.88 0.003 1.55 0.223 0.19 0.885 0.98 0.384

Df Residuals / Model 17 2 2 1 1

Df Total 23
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side, we can add to the understanding of costs and bene-
fits of parental investment, immune response and the
evolution of mouthbrooding in particular.

I. Cost of mouthbrooding on Astatotilapia burtoni female
immune defense
The first part of this study was designed to assess the costs
associated with mouthbrooding and reproduction and
their effect on the capability of mounting an immune
response in adults. To this end, females of A. burtoni being
challenged with heat-killed Vibrio bacteria or left naïve
(challenge with PBS) were either allowed to complete
mouth brooding (I.) or were stripped off their brood after
reproduction (II.). Both treatment groups were then
compared to non-reproducing individuals.
Mouthbrooding females showed a lowered activity

of adaptive immune cells and their ratio of adaptive
to innate immune cells was higher in the head kidney
(Fig. 2); inflammation genes were downregulated, whereas
stress related genes were upregulated (Fig. 3). Two genes,
chemokine receptor 9 (CCR9) and lectin were downregu-
lated in females that had to pay the dual costs of mouth-
brooding and activation of the immune system upon
immune challenge. CCR9 is involved in T-cell maturation
and migration [94] and upregulated after Vibrio anguil-
larum infection in sea bass [30]. Lectin enhances the anti-
bacterial and antifungal properties of mucus [54]. A

downregulation of CCR9 and lectin upon mouthbrooding
in combination with immune challenge indicates a
resource-allocation trade-off between parental care and
the immune system. Thrombin receptor (TR) that is
closely associated with the lectin activated complement
pathway was downregulated during brooding and upon an
immune challenge (Fig. 3). In previous studies with rock
bream, higher TR expression has been found upon
immune challenge with Vibrio [17].
Brooding and immune challenge may induce different

stress responses. Moutbrooding led to a downregulation
of glucocorticoid receptor. A correlation between reduction
of glucocorticoid receptors and increased corticosterone se-
cretion was identified in prenatally challenged rats [69].
Downregulation of glucocorticoid receptor could thus
indicate higher cortisol levels. To our knowledge, cortisol
levels during mouthbrooding has not yet been measured
in cichlids. In Oreochromis mosambicus, a mouth brood-
ing tilapine cichlid, treatment with cortisol decreased
oozyte size and parental growth, indicating a trade-off
between reproduction and somatic maintenance induced
by cortisol [28]. Despite the fact that evidence of elevated
stress in the parental phase of cichlids exists [43] conclud-
ing from reduced glucocorticoid receptor expression in
the gills to higher general stress levels could be mislead-
ing. Nevertheless, glucocorticoid receptors are known to
be involved in the anti-inflammatory response [16, 86].

Fig. 5 Gene expression of males and reproducing versus non-reproducing females: All graphs show relative expression of Ct values (-ΔCt), bars
and error bars show group means with SE. Lettering denotes significance; only significantly different genes are shown. Females in violet (dark for
control, and light for reproduction) and males in green. Graphs are sorted according to candidate gene function. a Genes of the immune system.
b Genes from other gene groups
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Immune challenge led to a downregulation of catalase, an
oxidative stress related gene. Low catalase levels may indi-
cate lower antioxidant capacities, which could raise add-
itional costs for the female, as brooding and reproduction
were previously shown to elevate oxidative stress and
lower the antioxidant capacities of the immune system in
many organisms [2, 61].

In summary, our results suggest that parental care pro-
vided during mouthbrooding may be traded off with in-
vestment into the immune system. Mouthbrooding
decreased the expression of glucocorticoid receptor thus
possibly inducing the level of the stress hormone cortisol.
Immune challenge elevated the extent of oxidative stress
as reflected by a lower expression of catalase. Both,

Table 6 nested MANOVA results of gene expression analysis of mouthbred juveniles: nested MANOVA to asses effects of maternal
challenge, juvenile challenge and their interaction on the relative expression of candidate genes (ΔCt values) in mouthbred
juveniles. Female challenge was nested in family. Significant results are marked in bold letters. Results of the univariate posthoc
analysis (ANCOVA & Tukey HSD) can be found in Additional file 7: Table S7 and Additional file 8: Table S8

nested MANOVA All genes All immune genes Adaptive genes

Factors DF Pillai F n Df d Df Pr(>F) Pillai F n Df d Df Pr(>F) Pillai F n Df d Df Pr(>F)

Juvenile Challenge (jC) 2 1.98 5.35 90 4 0.055 1.16 1.11 52 42 0.362 0.37 0.97 18 76 0.497

Maternal Challenge (mC) 1 1.00 2972.31 45 1 0.015 0.86 4.67 26 20 < 0.001 0.28 1.60 9 37 0.152

jC * mC 2 1.92 1.03 90 4 0.571 1.20 1.21 52 42 0.263 0.31 0.77 18 76 0.726

mC in family 4 3.95 6.87 180 16 0.000 2.85 2.20 104 92 < 0.001 1.24 2.01 36 160 0.002

Residuals 45

All innate IS Inflammation Oxidative Stress

Factors DF Pillai F n Df d Df Pr(>F) Pillai F n Df d Df Pr(>F) Pillai F n Df d Df Pr(>F)

Juvenile Challenge (jC) 2 0.75 1.27 30 64 0.211 0.34 1.72 10 84 0.089 0.19 1.50 6 88 0.188

Maternal Challenge (mC) 1 0.80 8.45 15 31 < 0.001 0.28 3.25 5 41 0.015 0.05 0.68 3 43 0.568

jC * mC 2 0.58 0.88 30 64 0.643 0.25 1.18 10 84 0.318 0.13 1.05 6 88 0.398

mC in family 4 1.90 2.06 60 136 < 0.001 0.50 1.26 20 176 0.212 0.39 1.66 12 135 0.082

Residuals 45

Various innate IS Antimicrobial Peptides Complement Components

Factors DF Pillai F n Df d Df Pr(>F) Pillai F n Df d Df Pr(>F) Pillai F n Df d Df Pr(>F)

Juvenile Challenge (jC) 2 0.29 1.84 8 86 0.080 0.22 2.84 4 90 0.029 0.77012 1.105 34 60 0.361

Maternal Challenge (mC) 1 0.15 1.88 4 42 0.132 0.06 1.30 2 44 0.283 0.80387 6.992 17 29 < 0.001

jC * mC 2 0.14 0.84 8 86 0.571 0.05 0.59 4 90 0.667 0.64951 0.8487 34 60 0.693

mC in family 4 0.61 2.04 16 180 0.013 0.25 1.58 8 90 0.143 2.19249 2.2833 68 128 < 0.001

Residuals 45

Epigenetic genes Developmental genes Stress related genes

Factors DF Pillai F n Df d Df Pr(>F) Pillai F n Df d Df Pr(>F) Pillai F n Df d Df Pr(>F)

Juvenile Challenge (jC) 2 0.25 1.19 10 84 0.306 0.23 1.40 8 86 0.208 0.28 1.76 8 86 0.097

Maternal Challenge (mC) 1 0.31 3.73 5 41 0.007 0.16 1.93 4 42 0.122 0.01 0.13 4 42 0.972

jC * mC 2 0.37 1.90 10 84 0.056 0.21 1.27 8 86 0.268 0.19 1.10 8 86 0.374

mC in family 4 0.70 1.88 20 176 0.017 0.54 1.74 16 180 0.042 0.29 0.89 16 180 0.586

Residuals 45

Metabolism genes Sex related genes

Factors DF Pillai F n Df d Df Pr(>F) Pillai F n Df d Df Pr(>F)

Juvenile Challenge (jC) 2 0.13 1.02 6 88 0.418 0.29179 2.5053 6 88 0.027622

Maternal Challenge (mC) 1 0.17 2.91 3 43 0.045 0.2595 5.0231 3 43 0.004501

jC * mC 2 0.06 0.49 6 88 0.816 0.12935 1.0142 6 88 0.421418

mC in family 4 0.32 1.35 12 135 0.196 0.20872 0.8412 12 135 0.608014

Residuals 45
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glucocorticoid receptor and catalase activity might
additionally modulate the female immune system [37, 97].

II. Cost of reproduction and influence on sexual immune
dimorphism
We hypothesized a trade-off between investment in im-
mune defense and reproduction in female mouthbrooding
cichlid fish in the form of immune suppression during
reproduction, as has previously been demonstrated in vari-
ous vertebrate species [12, 21, 58, 63, 81]. To this end, we
compared immune gene expression and cellular immune
parameters of reproducing and non-reproducing females
after either being challenged with V. anguillarum or left
naïve. We indeed observed a reduced proportion of adap-
tive immune cells in the blood of reproducing females, ir-
respective of whether or not an immune challenge had
taken place (Fig. 4), accompanied by the downregulation of
genes of the innate immune system (trypsin, latescidin 2,
hepcidin), some metabolism genes (opsin 1, myogenic
regulation factor) and a hormone receptor (androgen recep-
tor B) compared to non reproducing females (Fig. 5). How-
ever, we also found that the stress responsive heat shock
protein 70 (HSP70) and the transmembrane protein CD81
(CD81) were upregulated in reproducing females. In the
case of mouthbrooding cichlid fish, HSP70 – on the basis
of its protein chaperoning functions [19, 57, 70] – might
be responsible for the transport of proteins into the buccal
mucus to support brooding. In mouse it has been shown
that HSP70 plays an important role in the maturation of
dendritic cells and stimulates cytotoxic T-cell maturation
via MHC class I [57]. Upregulation of HSP 70 might pos-
sibly be triggered by a general physiological stress response,

such as reproduction. CD81 is a transmembrane protein,
in complex with other responsible for both B- and T-cell
maturation and proliferation (reviewed in Lewi et al. [50]).
In mice it has been found to be expressed on MHC I mole-
cules [15]. Due to the very diverse function of CD81, an
upregulation can have several effects, depending on tissue
and costimulatory molecules [50].
Regardless of their reproductive state, females showed a

higher expression of adaptive immune genes, when com-
pared to males (Fig. 5). This suggests that also haplo-
chromine cichlid fishes exhibit a sexual immune
dimorphism, with females having an elevated adaptive im-
munological baseline activity prolonging their lifespan to
reach a similar reproductive output as males [71]. On the
other hand, our data are in contrast to the resource alloca-
tion hypothesis, as we found that reproducing females
have a higher adaptive immune cell activity (Fig. 4) and a
higher expression of innate, developmental and epigenetic
genes combined with a lower expression of acute phase
protein (Serum Amyloid A5 (SAA)) than males but not
than non-reproducing ‘control’ females. This contradicts
previous results, where differences between reproductive
and non-reproductive females were observed [12, 21, 25,
63]. One explanation for the induced adaptive immune re-
sponse at reproduction could be that females invest into
offspring immunity via TGIP, e.g. via the aggregation of
proteins advantageous for the offspring in the newly
formed egg [100]. The synthesis of such proteins could in-
duce gene expression in the female. An interactive effect
of reproduction and challenge on female gene expression,
showing a clear pattern of TGIP or resource allocation
trade-off, was not observed in the gill tissue.

Fig. 6 Gene expression of mouthbred juveniles; maternal challenge x juvenile challenge: All graphs show relative expression of Ct values (-ΔCt), bars and error
bars show group means with SE. Lettering denotes significance; only significantly different genes are depicted. Abbreviation consist of female challenge and
juvenile challenge (maternal challenge: juvenile challenge): fN for naïve maternal challenge, fV for maternal Vibrio challenge, jN for naïve juvenile challenge, jT
for juvenile Tenacibaculum challenge, jN for juvenile Vibrio challenge
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Both, mouthbrooding and reproduction independently
suppress parts of the female immune system and enhance
stress responses in female Astatotilapia burtoni.
Additionally, reproduction accentuates the present sexual
immune dimorphism. Due to experimental constraints,
we were not able to directly compare immune compe-
tence between reproducing and mouthbrooding females.
Nevertheless, it seems that differential limitations are op-
posed on the female immune system during reproduction
and mouthbrooding. Reproduction influenced mainly
genes involved in metabolism and general innate immune
system genes possibly due to extended energy expend-
iture during oogenesis. Mouthbrooding seems to induce
stress reflected in a downregulation of inflammation re-
sponses and an increase of oxidative stress in the females.
Additionally, mouthbrooding and reproduction differen-
tially affect both the proportion and the activity of adap-
tive immune cells. These differences possibly arise due to
differential allocation of resources in egg production and
provisioning of larvae.

III. Impact of immune challenge on mouthbred offspring
We aimed to address the transfer of immune compo-
nents via the buccal mucosa as a potential additional
immunological boost of offspring early life stages to the
transfer via egg, and the specificity of such transferred
immunological information. As opposed to our initial
aim, we could not differentiate among transfer of ma-
ternal immunity via the eggs and via buccal mucosa, as
mortality in the artificially bred offspring was too high.
The much higher rate of survival in the treatment
group where parental investment was provided implies
that mouthbrooding is beneficial. We thus only discuss
the differences in gene expression after homologous or
heterologous immune challenge of offspring being
mouthbred by Vibrio challenged or naïve females. Indi-
cations for such specific trans-generational immune
priming would be identified via the interaction of fe-
male and juvenile challenge effects (Fig. 6). In contrast
to our expectations, the lysine specific demethylase
(LSDM), the complement component 1q (C1q) and

Fig. 7 Gene expression of mouthbred juveniles; maternal challenge and juvenile challenge: All graphs show relative expression of Ct values
(-ΔCt), bars and error bars depict group means with SE. Graphs are sorted according to significant factors. Lettering denotes significance; only
genes with effects are shown. a Genes affected by juvenile challenge. Blue for naïve (PBS), red for Vibrio and violet for Tenacibacter. b Genes
affected by maternal challenge. Light blue; naïve mothers (PBS) and light red; Vibrio challenged mothers
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aromatase (Arom B) were downregulated in juveniles
treated with a challenge homologous to their mothers
compared to the other treatments. LSDM is important
for cell proliferation, embryonic development and tran-
scription activity of T cells [52, 64]. C1q interacts with
pattern recognition, inflammation and activation of the
adaptive immune system [27] and is suggested to play a
role in organ development [96]. Aromatase is respon-
sible for the conversion of testosterone to estradiol and,
if downregulated induces testosterone concentration in
the organism, which potentially can be immune sup-
pressive [55, 58]. This may indicate that females, which
have the dual cost of inducing their immune system
upon an immune challenge and providing parental in-
vestment via mouthbrooding, are limited in the re-
sources they can invest into the eggs and larvae. This
would be in line with the hypothesized resource-
allocation trade-off between reproduction and the im-
mune system and potentially imply that offspring from
challenged females might be of lower quality than off-
spring of naïve females, reflected in their disability of
upregulating gene expression upon an immune chal-
lenge. Alternatively, if females provide all necessary
compounds via the egg or the buccal mucosa to the off-
spring, there may simply not be the need for offspring
to upregulate those genes due to adaptive maternal ef-
fects. Offspring challenged with Vibrio, irrespective of
the maternal challenge, had a lower expression of the
early growth receptor (egr1), important in cell prolifera-
tion and embryogenesis of the gill vessel system [99].
Vibrio challenged offspring also had a lower expression
of calreticulin 1 (calret 1), responsible for protein chap-
eroning as response of oxidative stress [53] (Fig. 7).
These results are in contrast to the current literature,
as in this juvenile developmental stage and under infec-
tion both genes were shown to be upregulated [53, 99].
Downregulation of both genes could be a sign for lower
developmental potential of the juveniles faced with a
Vibrio challenge. FAM60A was upregulated in the off-
spring from the treatment group in which the mothers
were immune challenged (Fig. 7). FAM60A regulates
the expression of the TGF beta signaling pathway, in-
creases cell migration and is, within a histone acetyl-
ation complex, responsible for elevated cell division
during stress [62, 83]. Both the effects of the juvenile
challenge and the maternal challenge on the offspring
gene expression could be a sign of induced stress in the
offspring from challenged mothers, previously shown to
suffering elevated stress levels. Higher levels of stress
hormones possibly suppress the offspring immune
competence [51] and may even impede embryonic de-
velopment. Due to the candidate gene approach taken,
the probability is high that key genes responsible for
both TGIP and specific defenses upon bacterial

exposure were not captured in this study. With the lim-
ited number of genes assessed, we could not detect an
adaptive pattern of trans-generational immune priming,
however an impact of maternal immunological and
stress experience. In contrast to our expectations, hom-
ologous maternal and offspring immunological expos-
ure did not induce but rather downregulate the
expression of genes involved in the complement system
and in epigenetic regulation. This either implies that
previous specific maternal immune challenge boosted
the immunological response in the offspring such, that
juveniles are not in need to induce the expression of
several immune genes. Alternatively, maternal immune
challenge impaired a specific activation of immune re-
sponse, possibly due to a maternal resource allocation
trade-off between reproduction and the maternal im-
mune system. This implies that trans-generational
phenotypic plasticity may be limited if concurrently to
the reproductive event a stressor is met in the parental
generation.

Conclusion
Both the onset of reproduction and the long-lasting
mouthbrooding are stressful for female cichlid fish due to
the costs involved in the extreme parental investment pro-
vided. Shortly after fertilization females of the
reproduction treatment reduce their innate immune re-
sponse, metabolism, and hormone production, whilst
genes involved in immune regulations and stress re-
sponses (e.g. HSP70, CD81) become upregulated. The pos-
sible preparation of the buccal mucosa for later brooding
at this early stage of reproduction might be reflected in an
induced activity of adaptive immune cells, and the en-
hanced expression of developmental and epigenetic genes,
in particular in comparison to the lower immunological
activity of males. However, when faced with an immune
challenge, the investment into the buccal mucosa might
be impeded due to high energy demands of the immune
system, resulting in a resource allocation trade-off be-
tween reproduction and the immune system and poten-
tially even a lower quality of offspring. At the end of
mouthbrooding, when parental investment is ceased, fe-
males seem dissipated, which is reflected in their reduced
expression of inflammation genes and an induced stress
gene expression. The strong effect of maternal challenge
on juveniles suggests the existence of maternal effects;
nevertheless, no signs for adaptive trans-generational im-
mune priming were detected. As a consequence, mothers
exposed to an immune challenge that simultaneously ful-
filled the task of brooding produced offspring with lower
immune gene expression, implying a limited transfer of re-
sources from stressed mothers towards their offspring.
Parental investment boosts offspring survival. However,
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the energy requirements for parental investment are high
and in a situation where other life-history traits may de-
mand a reallocation of resources, the limits of energy
availability seems reached. This may impede both mothers
and offspring simultaneously, resulting in physiological
stress on the maternal side and a reduced ability for acti-
vation of gene expression on the offspring side.
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