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A B S T R A C T

Proteins are key players in the complex world of living cells. No
matter whether they are involved in enzymatic reactions, inter-
cell communication or numerous other processes, knowledge of
their structure is vital for a detailed understanding of their func-
tion. However, structure determination by experiment is often a
laborious process that cannot keep up with the ever increasing
pace of sequencing methodologies. As a consequence, the gap
between proteins where we only know the sequence and the
proteins where we additionally have detailed structural infor-
mation is growing rapidly. Computational modelling methods
that extrapolate structural information from homologous struc-
tures have established themselves as a valuable complement to
experiment and help bridging this gap. This thesis addresses
two key aspects in protein modelling.

(1) It investigates and improves methodologies that assign
reliability estimates to protein models, so called quality estima-
tion (QE) methods. Even a human expert cannot immediately
detect errors introduced in the modelling process, thus the im-
portance of automated methods performing this task.

(2) It assesses the available methods that perform the mod-
elling itself, discusses solutions for current shortcomings and
provides efficient implementations thereof.

When detecting errors in protein models, many knowledge
based methods are biased towards the physio-chemical proper-
ties observed in soluble protein structures. This limits their ap-
plicability for the important class of membrane protein models.
In an effort to improve the situation, QMEANBrane has been
developed. QMEANBrane is specifically designed to detect lo-
cal errors in membrane protein models by membrane specific
statistical potentials of mean force that nowadays approach sta-
tistical saturation given the increase of available experimental
data.

Considering the improvement of quality estimation for solu-
ble proteins, instead of solely applying the widely used statis-
tical potentials of mean force, QMEANDisCo incorporates the
observed structural variety of experimentally determined pro-
tein structures homologous to the model being assessed. Valu-
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able ensemble information can be gathered without the need of
actually depending on a large ensemble of protein models, thus
circumventing a main limitation of consensus QE methods.

Apart from improving QE methods, in an effort of imple-
menting and extending state-of-the-art modelling algorithms,
the lack of a free and efficient modelling engine became obvi-
ous. No available modelling engine provided an open-source
codebase as a basis for novel, innovative algorithms and, at the
same time, had no restrictions for usage. This contradicts our
efforts to make protein modelling available to all biochemists
and molecular biologists worldwide. As a consequence we im-
plemented a new free and open modelling engine from scratch -
ProMod3. ProMod3 allows to combine extremely efficient, state-
of-the-art modelling algorithms in a flexible manner to solve
various modelling problems.

To weaken the dogma of one template one model, basic al-
gorithms have been explored to incorporate structural informa-
tion from multiple templates into one protein model. The al-
gorithms are built using ProMod3 and have extensively been
tested in the context of the CAMEO continuous evaluation plat-
form. The result is a highly competitive modelling pipeline that
excels with extremely low runtimes and excellent performance.
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1
I N T R O D U C T I O N

1.1 protein structure

An average human cell contains several billion proteins which
is in the same order of magnitude than the total number of nu-
cleotides encoding the full human genome [118]. Proteins do
not just shine with their tremendous abundance but also with
their enormous functional complexity ranging from structural
support and movement towards enzymatic activity as well as
interaction with the outside world [4]. All this are achieved by
polymers emerging from a limited alphabet of building blocks
with varying properties - the amino acids. 20 amino acids are
directly encoded in the genome and follow a common chem-
ical scheme, where a Cα carbon is linked to an amino acid
specific sidechain and flanked by an amine (-H2N) and car-
boxyl (-COOH) functional group. Nucleotides in RNA are also
known to exhibit catalytic activity [44] but their wide range of
chemical characteristics make amino acids more versatile. The
desired polymer is formed by connecting amino acids through
condensation reactions resulting in a peptide bond between the
carboxyl carbon of amino acid at position i with the amine ni-
trogen at position i + 1. The result is a continuous backbone
with a repetitive pattern of the heavy atoms N, Cα and C for
each amino acid, with a carbonyl oxygen bound to C and the
amino acid specific sidechain to Cα. Assuming constant bond
lengths and bond angles, the overall fold of such a polymer can
be characterized by a triplet of dihedral angles for every amino
acid AAi:

• ω: Cαi−1, Ci−1, Ni, Cαi

• φ: Ci−1, Ni, Cαi, Ci

• ψ: Ni, Cαi, Ci, Ni+1

The degrees of freedom are largely reduced by resonance ef-
fects that give the peptide bond a partial double bond character.
As a consequence, the plane defined by ω is mostly planar and
the peptide bond can either adopt cis or trans conformation
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2 introduction

with a large preference for trans [72]. In the case of proline, cis
conformations are not very uncommon and occur in a notewor-
thy fraction [125]. Not only the ω angle is restricted, but also
φ and ψ show clear preferences that have first been analysed
statistically by Ramachandran and co-workers [130]. The visu-
alisation of the φ / ψ backbone dihedral angles, the so called
Ramachandran plot, looks similar for most amino acids but can
in some cases have very characteristic properties (Figure 1).

1.2 from primary to quaternary structure

In Section 1.1 we discussed that a protein is a polymer of amino
acids. The exact sequence of amino acids is often referred to as
the protein’s primary structure.

A protein’s secondary structure already jumps into 3D space
and describes reoccurring local arrangements of amino acids
that are energetically favourable. Without having structural data
for a full protein, Pauling and Corey postulated the two most
common secondary structure elements, the α-helix and the β-
sheet, already in 1951 [123, 124]. The key to success was the as-
sumption of constant bond lengths / bond angles as well as a
planar peptide bond. The aforementioned secondary structure
elements were then a result of finding conformations given con-
straints that were stereochemically feasible and had a favourable
hydrogen bond pattern (illustrated in Figure 1b). In detail:

• α-helix: CO of amino acid at position i forms a hydrogen
bond with NH of amino acid at position i + 4

• β-sheet: Connects stretches of amino acids. The stretches
are extended and form hydrogen bonds towards neigh-
bouring stretches involving NH and CO groups. The neigh-
bouring stretches can either run parallel or anti-parallel.

The well defined secondary structure elements prefer very
characteristic pairs of φ/ψ backbone dihedral angles that oc-
cupy specific regions in the aforementioned Ramachandran plot
(Figure 1a). The observed distributions in the Ramachandran
plot are therefore not only driven by valid stereochemistry but
are a direct consequence of preferred secondary structure ele-
ments. With increasing experimental data of full protein struc-
tures, the existence of α-helices and β-sheets were confirmed
and new, less frequent, secondary structure elements have been
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(a) Ramachandran Plot (b) Secondary Structure Elements

(c) Ramachandran Plot - Only PRO (d) Ramachandran Plot - Only GLY

Figure 1: Ramachandran plots showing φ/ψ dihedral angle pairs for
all (a) or for amino acids exhibiting characteristic properties
(c, d). (b): α-helix (black) and β-sheet (orange) with hydro-
gen bonds highlighted light green. The φ/ψ dihedral pairs
of involved residues are plotted in (a). (c): Proline is the only
proteinogenic amino acid with a secondary amine. It cova-
lently links the Cα carbon to its N, resulting in decreased
flexibility of φ. (d): Glycine has only a hydrogen as its side-
chain, resulting in an increased structural flexibility.

observed. In an effort of standardisation, Kabsch and Sander in-
troduced a vocabulary of secondary structures distinguishing
between 8 elements with clear defined rules based on hydro-
gen bond patterns [79].

The full 3D arrangement of the secondary structure elements
is the result of a folding process and is referred to as the ter-
tiary structure of a protein. The main driving forces of folding
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are hydrophobic effects, van der Waals forces, ionic interactions
and hydrogen bonds. They all oppose the reduction in entropy
of the amino acid polymer that comes with folding and lead
to a fold that is determined by the primary structure [7]. Ex-
ceptions to that statement include prions [129] or proteins that
require the help of chaperones to fold [62]. In the case of water
soluble proteins this typically leads to compact globular struc-
tures with hydrophilic sidechains pointing towards the solvent
and hydrophobic sidechains buried in a hydrophobic core.

A significant fraction of the protein chains in a cellular en-
vironment have been found to be in direct contact and there-
fore build higher order complexes, so called oligomers [55, 76].
As an analogy to the previously discussed primary, secondary
and tertiary structure, the term quaternary structures is used
to describe the arrangement of protein chains into higher or-
der complexes. If the complex is comprised by n copies of the
same protein chain, we speak of a homo-oligomer. A hetero-
oligomer is a combination of protein chains with different pri-
mary structure. Oligomerization allows evolution to explore an
additional layer of functionality. A first example are allosteric
interactions among subunits as they occur in haemoglobin [2]
or GPCRs [51]. Another example demonstrating the importance
of oligomerization is its role in building dynamic structures in
the cytoskeleton [49] or when full viral capsids are built using
dozens of protein chains as building blocks.

1.3 experimental methods

The wold wide protein data bank (wwPDB) [15] is a database
of structural information for large biological molecules, such as
proteins and nucleic acids. The methods used to generate the
deposited data can mostly be reduced to three: X-ray crystallog-
raphy, NMR (Nuclear Magnetic Resonance) and EM (Electron
Microscopy). As of May 9 2017, these methods contributed a
total of 129’739 entries with almost 90% originating from X-ray
crystallography. Most of the other entries come from NMR and
only a tiny fraction of around 1.1% comes from EM. Neverthe-
less, technological advances in the field of EM have resulted in
a massive increase of contributions in recent years. This section
is intended to give a brief introduction to structure determina-
tion with these methods.



1.3 experimental methods 5

1.3.1 X-ray Crystallography

X-ray crystallography consists of growing a diffracting crystal,
data acquisition, and solving the phase problem to obtain an
electron density. A protein with known amino acid sequence is
then fitted into the density with the help of automated compu-
tational methods.

In detail: monochromatic X-ray waves are elastically scattered
upon interaction with electrons (scatterer), resulting in spheri-
cal wave fronts emerging at the locations of the scatterers. Most
of these waves cancel each other out by destructive interfer-
ence. However, if the scatterers are ordered in a lattice, con-
structive interference occurs at well defined directions depend-
ing on the lattice and the X-ray wavelength as described by
Braggs law [24]. The observed diffraction pattern can be related
to the underlying electron density using the Fourier transform.
Since only intensities of the diffraction pattern can be measured
and not the phase, the recorded information is incomplete. A
problem known as the phase problem in crystallography. Di-
rect methods to estimate phases only exist when the number of
heavy atoms in the investigated protein is very low. Approaches
to solve the phase problem therefore include the introduction
of anomalies, solving the substructure of those anomalies us-
ing direct methods and use this information to infer the miss-
ing phases. Established techniques for this task are multiple
isomorphous replacement (MIR), multi-wavelength anomalous
dispersion (MAD) or single-wavelength anomalous dispersion
(SAD) [3]. A widely used alternative is to guess initial phases
given a protein structures that is likely to be structurally very
similar (molecular replacement, [1]).

The phasing problem is indeed a key problem in the process
of structure determination with X-ray crystallography. How-
ever, one should not forget that an actual protein crystal is
needed in the first place. Even though many standardised pro-
tocols for crystal growing exist, this is often a laborious process
[112].

1.3.2 NMR

In contrast to X-ray crystallography, nuclear magnetic resonance
(NMR) spectroscopy is based on measurements in aqueous so-
lution and therefore does not require crystals. While the struc-
ture determination aspect of NMR is limited to relatively small
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proteins, many NMR experiments exist to gain insights into the
dynamics of proteins [85]. NMR exploits quantum mechanical
properties of nuclei with non-zero spin, e.g. 1H or 13C, leading
to an intrinsic magnetic moment. The application of a strong
external magnetic field leads to an alignment of the magnetic
moments that can be perturbed by a radio frequency pulse. As
a consequence, the moments start to resonate in a measurable
frequency. One could think that the resonance frequency is the
same for all nuclei. This is not the case. As a result of the nu-
cleus specific electronic environment, the magnetic field acting
on each nucleus is modulated resulting in a shift (a so called
chemical shift) of its resonance frequency. This effect is known
as nuclear shielding. The measured signal that decays over time
is the sum of all resonance frequencies and can be separated
into its single frequency components using the Fourier trans-
form. If the number of nuclei is small enough, each nucleus can
be assigned a resonance frequency. Using complex patterns of
radio pulses allows to exploit various types of interdependen-
cies between nuclei from which constraints can be constructed
[80]. Subsequent model building typically generates an ensem-
ble of models satisfying the input constraints with decreasing
variations as the number and the quality of input constraints
increases [59].

1.3.3 Electron Microscopy

The main limitation of resolution in light microscopy is the
wavelength of visible light (around 400-700nm). Atomic resolu-
tion would be three to four orders of magnitude smaller, hence
out of reach. The wave particle dualism offers a viable alterna-
tive in the form of electrons that, according to de Broglie, have
a wavelength that is inversely proportional to their velocity.
Modern electron microscopes easily achieve wavelengths in the
range of Å and, as an alternative to optical lenses, use magnetic
lenses for magnification. While nanomaterials, e.g. metallic sur-
faces, can be imaged at subangstrom resolution, biological sam-
ples are much more sensitive to radiation damage [154]. Lower
doses of electrons must be used instead, resulting in lower sig-
nal to noise ratios. Another challenge to overcome is the high
vacuum environment in an electron microscope, requiring fix-
ation for biological samples. A task for which Cryo-EM has
established itself as a de facto standard to obtain images of bio-
logical samples [8]. Currently, the most often used approach for
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structure determination is single particle imaging. From every
acquired image, subimages are extracted that contain exactly
one protein. The proteins in a sample are randomly oriented
which requires the classification of thousands of subimages into
classes that represent the view onto the protein from a partic-
ular direction. Under the assumption of randomly distributed
noise, class averaging increases the signal to noise ratio and al-
lows the construction of a 3D density using the Fourier slice the-
orem [127]. Up to a few years ago, achieving atomic resolution
with cryo-EM was limited to highly symmetric structures such
as viral capsids due to advantages in class averaging. However,
the introduction of direct electron detectors for image acqui-
sition is currently revolutionising the field and starts to make
such resolutions obtainable for smaller and lower symmetry
proteins [98].

1.4 sequence , structure and function

The primary sequence of proteins is subject to change as a di-
rect consequence of evolution. With the assumption of tertiary
structure and consequently also function being fully encoded
by the primary sequence (Anfinsen Dogma, [7]), the capabil-
ity to fold directly acts on evolution as selection criteria. How-
ever, protein structure has proven to be astonishingly robust to-
wards mutation end even distantly related proteins often show
high structural similarity. This fact has manifested itself as more
structural information became available and has been shown by
the work of Chothia & Lesk (Figure 2, [33]). This observation
highlighted the importance of detecting evolutionary relation-
ships and its value to infer structure and function. Advances in
this field are among the great achievements in computational
biology and current life science research could not be imagined
without tools like BLAST (Basic Local Alignment Search Tool)
[5] or the various databases provided by the computational bi-
ology community. This section gives an overview over homol-
ogy detection methodologies that will be of crucial importance
throughout the whole thesis.

1.4.1 Pairwise Sequence Alignments

The goal of aligning two sequences A and B is to capture evo-
lutionary events and to generate a residue to residue relation-
ship. The alignment itself can be interpreted as a chain of events
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Figure 2: Relation between sequence identity and structural similarity
of core residues. The results of the work from Chothia &
Lesk suggest that similar sequence implies similar structure
([33], Reprinted by permission of John Wiley & Sons, Inc.).

that consists of matches (a residue in A is aligned with a resi-
due in B), insertions in sequence A or insertions in sequence
B. From a computational point of view this is an optimisa-
tion problem to find the optimal chain of events given some
scoring scheme. In its simplest form, substitution matrices are
used to score match events, i.e. matrices from the widely used
BLOSUM (Block SUbstitution Matrix) family [67]. Insertions
on the other hand result in predefined penalty values. A pop-
ular algorithm to find the optimal full alignment between se-
quences A and B is the Needleman-Wunsch algorithm [120]. A
variation thereof is the Smith-Waterman algorithm [148] that
does not give a full global alignment but rather optimal local
alignments. Both algorithms scale with a complexity of O(nm),
where n and m represent the lengths of A and B. With increas-
ing amount of available sequence data, the main application of
sequence alignments shifted from actual pairwise alignments to
database searches in order to identify evolutionary related se-
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quences. The complexity of the described pairwise algorithms
was the main bottleneck and led to the development of more
efficient heuristics in the early 1990’s which resulted in the
still widely used BLAST algorithm [5]. Instead of performing
full blown sequence alignments to all sequences in a database,
the query sequence is split into short words that are used to to
search for high scoring matches in the database. High scoring
matches are then used as seed and extended to the left and to
the right to generate HSPs (High Scoring segment Pairs). In a
final step, neighbouring HSPs are combined to generate even
longer alignments if certain scoring thresholds are fulfilled.

1.4.2 From Substitution Matrices to Statistical Models

BLAST in its initial form is still widely used today and good
results can be obtained for closely related sequences. However,
sensitivity declines quickly with evolutionary distance. The sit-
uation improved with the introduction of PSSMs (Position Spe-
cific Substitution Matrix), with PSI-BLAST (Position Specific
Iterative BLAST) [6] as the most prominent algorithm using
them. In a first round, a sequence search is performed by stan-
dard BLAST using the classical substitution matrix approach.
The identified sequences with their pairwise alignments are
used to estimate amino acid frequencies for every position in
the query sequence. The frequencies can be transformed to po-
sition specific substitution scores to finally obtain a PSSM. In-
stead of the original substitution matrix of size 20*20 (assum-
ing 20 standard amino acids), the PSSM is a matrix of size
20*L with L being the length of the query sequence. The se-
quence database is searched again but now with the scores
of the generated PSSM. The PSSM can iteratively be updated
with newly found sequences until a maximum number of it-
erations is reached or no new sequences can be found. Using
this approach, conservation patterns and the exact variation of
amino acids at every position in the query sequence are im-
plicitly considered. As a consequence, sensitivity for more dis-
tantly related sequences increases and the quality of the corre-
sponding pairwise alignments is improved [6]. The drawback
of this approach is that insertions are still handled heuristically
by assigning constant penalty values. HMMs (Hidden Markov
Models) offer a way to describe insertions in a position spe-
cific manner and are able to incorporate all the advantages of
a PSSM with a well understood probabilistic framework. Simi-
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lar to a PSSM, HMMs are built iteratively. They finally contain
position specific probabilities for all amino acids. But, addition-
ally, also contain position specific probabilities for insertion and
deletion events [88]. By not aligning HMMs to single sequences
in a database anymore, but rather developing a formalism to
align HMMs with other HMMs, sensitivity and alignment qual-
ity has been enhanced even further and represent the current
state-of-the-art in homology detection [29]. But all this comes
with the cost of increased computational complexity. Represen-
tatives of this class of algorithms are HHsearch [149] and HH-
blits [134].

1.5 protein modelling

The ever increasing improvement of DNA sequencing method-
ologies has lead to an explosion with regard to sequence infor-
mation [65] as more and more full genomes become available.
Despite the increasing number of experimentally determined
protein structures, the amount of protein coding sequences with-
out coverage of 3D structural data increases [141]. An estab-
lished technique to increase this coverage and gain valuable
structural insights is homology modelling [141]. Homology mod-
elling exploits Cothia & Lesk’s finding of structural similarity
if two proteins are evolutionary related (Section 1.4) and has a
wide range of applications including drug design [140], molec-
ular docking [47], molecular replacement in X-ray crystallogra-
phy [1], analysis of protein-protein interactions [169] and many
more. Before giving a comprehensive description of all steps
of a typical homology modelling procedure, we introduce the
concept of a modelling engine. A modelling engine is a soft-
ware package that builds 3D coordinates of a protein model
given one or several homologues as template. Prominent exam-
ples are the MODELLER [158], Rosetta [151] or I-Tasser [167]
software packages.

1.5.1 Homology Detection and Homology Transfer

Databases of known protein structure are queried for homolo-
gous entries (templates) given a desired target sequence. Meth-
ods performing this task have comprehensively been discussed
in Section 1.4.1 and Section 1.4.2. For a particular template, co-
ordinates are transferred based on the underlying pairwise se-
quence alignment. It’s essentially copying over all residues that

https://www.ncbi.nlm.nih.gov/genome
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are aligned, even in case of a sequence mismatch. Every inser-
tion leads to a chain break and requires attention in the sub-
sequent loop modelling procedure. If the insertion happens in
the template sequence, we speak of a deletion instead.

1.5.2 Loop Modelling

Every chain break is flanked by two stems that need to be con-
nected. In case of an insertion, residues need to be added be-
tween stems that have originally been connected in the template
structure. In a deletion, the stems need to be connected with no
residues to do that. In any case, the stems are wrong by defi-
nition and every loop modelling algorithm must therefore han-
dle the stems with a certain degree of flexibility. Assuming this
problem as not existing, loop modelling consists of (1) generat-
ing candidate loops and (2) the selection of one of them. MOD-
ELLER generates initial loop conformations by simply placing
all loop atoms on a line between the stem residues, randomis-
ing them a bit and applying a molecular mechanics minimiza-
tion to obtain stereochemically feasible loop candidates. Rosetta
and I-Tasser on the other hand implement sophisticated Monte-
Carlo techniques to explore the available conformational space.
All three engines therefore mainly rely on ab initio techniques.
With the increasing amount of structural data that has exper-
imentally been determined, database approaches gain impor-
tance and provide a viable alternative. The idea is to construct a
database of observed structural conformations and query it for
candidate loop conformations. Candidates with stems similar
to the loop modelling problem of interest are extracted and un-
dergo further scoring procedures. Prominent database methods
include SuperLooper [68] or FREAD [32]. Whether choosing ab
initio or database based methods, scoring is absolutely vital to
either select a loop candidate or guide Monte Carlo procedures.
Scoring can go from measures of valid stereochemistry over ar-
bitrary energy functions towards knowledge based terms and
will further be discussed in Section 1.5.5.

1.5.3 Sidechain Modelling

Many modelling tasks only consider backbone atoms and ei-
ther completely neglect sidechains or use reduced representa-
tions thereof. As soon as sidechains are required, the already
huge conformational space experiences another explosion. Due
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to almost constant bond lengths / angles [41], amino acid side-
chains can approximately be described by dihedral angles, so
called rotamers. They cluster around preferred conformations
largely determined by their stereochemical properties [74]. Li-
braries compiled from structural analysis of high resolution X-
ray structures can therefore reduce the available conformational
space and serve as a starting point in the sidechain modelling
problem by proposing rotamers for each amino acid. The lo-
cal backbone conformation also has an influence on rotamer
preference and the resulting backbone dependent rotamer li-
braries are considered to contain even more accurate rotamers
[77]. Assuming a constant protein backbone, the sidechain mod-
elling procedure starts with gathering a set of rotamers R =

[r1, r2, ..., rn] for all l residues. The goal is to find X = [x1, x2, ..., xl]
that minimizes:

F(X) =
∑
i

Eself(Ri[xi]) +
∑
i

∑
j>i

Epair(Ri[xi],Rj[xj]) (1)

where Eself evaluates the energy of a rotamer itself and with
respect to the constant environment. Epair evaluates pairwise
energies in between rotamers. For this formalism to hold, the
underlying energy function must fulfil two properties:

1. Pairwise Decomposable: The energy function must allow
to split between contributions towards the constant envi-
ronment and contributions from pairwise interactions be-
tween rotamers.

2. Symmetric: Epair(Ri[xi],Rj[xj]) = Epair(Rj[xj],Ri[xi]) must
hold to be independent from evaluation order.

Only pairwise energies with nonzero components have to be
evaluated. An energy function with a quick convergence to-
wards zero is therefore beneficial and leads to a problem com-
plexity that relates roughly linear with the number of residues.

Finding the optimal solution on the other hand is more prob-
lematic. Crambin (46 residues) with 10 rotamers for every res-
idue would already have 10

46 possible rotamer combinations
which makes a full enumeration of the solution space impos-
sible. More sophisticated algorithms are required instead. No
matter what algorithm is used in the end, the Goldstein crite-
rion [54] has established itself as an efficient initial complexity
reduction and is the basis for DEE (Dead End Elimination). If
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there are two rotamers a and b at position i, a can be neglected
if the following inequality holds:

Eself(Ri[a]) − Eself(Ri[b])+∑
j!=i

mink(Epair(Ri[a],Rj[k]) − Epair(Ri[b],Rj[k])) > 0 (2)

In words: no matter what rotamers are set at any location j! = i,
a is dominated by b and can therefore not be part of the over-
all optimum. Note, that only locations j in close proximity to i
with non zero pairwise energies have to be evaluated. Despite
reduced complexity, a full enumeration is still not possible and
many methods rely on a graph G = (N,V) to perform the fi-
nal optimization, with various versions of SCWRL [27, 87] as
an example. A set of rotamers at location i is represented by a
node ni ∈ N. If there is a non zero interaction between any of
the rotamers in ni and nj, a vertex vij gets added to V . Different
graph decompositions can be exploited to split the overall prob-
lem into smaller subproblems, solve them separately and merge
the local solutions into the global solution [27, 166]. Alternative
approaches exploit integer programming [84] or Monte Carlo
techniques [69, 99]. However, the latter does not guarantee to
find the overall optimum for a sidechain modelling problem at
hand.

1.5.4 Energy Minimization

As a result of the approximative nature of many modelling al-
gorithms, protein models contain stereochemical irregularities
and clashes. Methods for their detection exist (Section 1.5.5.1),
but resolving them requires more elaborate techniques. The
method of choice is energy minimization using physics based
molecular mechanics forcefields. A forcefield is a functional
form and a set of parameters to describe the potential energy
of a macromolecular system. The functional form is typically
a set of functions describing covalent bonds, bond angles, di-
hedral angles and nonbonded terms such as Lennard-Jones
and Coulomb interactions. The according parameters are de-
rived from experiment or quantum mechanical calculations and
prominent examples include the CHARMM [71] or AMBER
[28] forcefields. The main application of such a forcefield is to
parameterize a macromolecular system and, by solving New-
tons’ equations of motion, move it through time step by step
to get insights into the dynamics of the system. This is not
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required for energy minimization. In terms of modelling, the
system typically consists of the protein model in a vacuum en-
vironment and instead of solving Newtons’ equations of mo-
tion, the atom positions in the system are altered to minimize
the potential energy. Typical minimizers apply steepest descent
or conjugate gradient approaches and are capable of resolving
most of the common stereochemical irregularities.

1.5.5 Quality Estimation

Every protein structure, no matter whether it is a homology
model or even a model constructed from high resolution X-ray
data, contains errors. Quality estimation tools are developed
to quantify these errors. This is particularly important, but also
increasingly difficult, when more and more remote homologues
are used as an underlying template in homology modelling.
The range of possible applications goes from selecting the best
model in a set of alternatives towards absolute quality estimates
and finally the detection of local errors. The tools can largely be
divided in plausibility checks, physics based, knowledge based
and consensus based.

1.5.5.1 Plausibility Checks

Protein structures closely follow the rules of physics and chem-
istry that can be examined to assess the plausibility of a protein
model. Various tools are routinely applied on models based
on experimental data [133] and also gained importance in the
field of homology modelling [81]. Examples are MolProbity
[30], WHAT_CHECK [70] or PROCHECK [94]. They all pro-
vide slight variations of several stereochemistry checks. The
match of of bond lengths / bond angles can be compared with
reference values, e.g. from the work of Engh and Huber [41].
Also backbone dihedral angles show clear preferences and φ/ψ
backbone dihedral pairs that violate the observations from the
Ramachandran plot (Figure 1) are a strong indication for lo-
cal distortions. Other checks can include the planarity of rings
in amino acid sidechains or the detection of clashes, i.e. non-
bonded atoms that are closer than the sum of their van der
Waals radii. Despite the importance of a valid stereochemistry
for structural analysis or further processing, i.e. molecular me-
chanics procedures, valid stereochemistry does not automati-
cally imply an accurate protein model close to the desired na-
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tive structure. The same is true for the other way around. Prob-
lems with stereochemistry can also occur in protein models that
would be close to native.

1.5.5.2 Physics Based Quality Estimation

Given the thermodynamics hypothesis (Anfinsen dogma [7]),
the native structure of a protein is determined by its free en-
ergy minimum. It should therefore be possible to detect a native
structure among a set of alternatives given an accurate physics
based free energy calculation. One possibility is to use a mo-
lecular mechanics forcefield such as CHARMM [71] or AMBER
[28]. However, their successes in the task of quality estimation
is controversial [95, 164] as the potential function can be very
sensitive to small structural changes.

1.5.5.3 Knowledge Based Quality Estimation

Knowledge based quality assessment can include arbitrary mea-
sures of what is known from protein structures. This can be
radius of gyration, secondary structure content, atom packing
and many more [83]. One particularly important class of knowl-
edge based quality estimation tools are statistical potentials of
mean force. Their importance in the field of protein modelling
makes it necessary to describe them in detail. The increasing
amount of available structural data made it possible to statisti-
cally analyse certain types of interactions. In an effort to con-
struct a scoring function for protein models, Sippl and cowork-
ers assumed interatomic distances in a protein structure to be
Boltzmann distributed [145]. The probability of a certain con-
formation ci ∈ C can be related to an energy E(ci) using the
Boltzmann equation, where kB is the Boltzmann constant and
T the temperature of the system:

p(ci) =
1

Z(C)
e
−
E(ci)
kBT with Z(C) =

∑
j

e
−
E(cj)

kBT (3)

⇒ E(ci) = −kBTln(p(ci)) − kBTln(Z(C)) (4)

Instead of evaluating absolute energies, the energy difference
with respect to some reference energy is more tractable. This
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allows to introduce the dependency on a sequence si that gives
raise to the observed conformation ci.

∆E(ci|si) = E(ci|si) − E(ci) (5)

= −kBTln

(
p(ci|si)

p(ci)

)
+ kBTln

(
Z(C)

Z(C|S)

)
(6)

Assuming Z(C|S) = Z(C) we get:

∆E(ci|si) = −kBTln

(
p(ci|si)

p(ci)

)
(7)

We can now evaluate the energy of observing a single confor-
mation ci given si, i.e. the identity of the interacting particles,
with respect to the energy of observing ci at all. In case of a
full protein model with conformation C and an amino acid se-
quence S we can also estimate the total difference in energy by
summing up all single contributions considering them as addi-
tive "microstates":

∆E(C|S) = −
∑
i

kBTln

(
p(ci|si)

p(ci)

)
(8)

This formalism is not limited to interatomic distances but has
found to be applicable to many other structural features that
can be described probabilistically. One example is the quality
estimation tool QMEAN [13] that linearly combines the out-
come of several different statistical potentials to evaluate the
quality of a protein model. The underlying statistical potentials
do not only consider interatomic distances, but also backbone
dihedral angles and protein packing.

A remaining question is how exactly to derive the required
probability distributions p(ci|si) and p(ci). The first distribution
is typically extracted from experimentally determined struc-
tural information. The second distribution, the so called refer-
ence distribution, is more controversial and the literature de-
scribes different approaches to construct it. Many tools use ex-
perimental data [105, 138, 146]. Others construct reference dis-
tributions from theoretical considerations [144, 170]. There is
no consensus on what works best [38] but looking at the prob-
lem from a Bayesian point of view sheds some light on what
the reference distribution actually is. The probability of observ-
ing a conformation ci given a sequence si is proportional to the
likelihood of observing this sequence given this conformation
times the prior knowledge we have about the conformation:

p(ci|si) =
p(si|ci)p(ci)

p(si)
∝ p(si|ci)p(ci) (9)
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Note, that p(si) is considered to be constant. Under the assump-
tion that all interactions are independent, we can express the
likelihood for the sequence S of a full protein model with con-
formation C as:

p(S|C) ∝
∏
i

p(ci|si)

p(ci)
(10)

The goal is to find C that maximises p(S|C) which is equivalent
to maximizing its logarithm:

ln(p(S|C)) ∝
∑
i

ln

(
p(ci|si)

p(ci)

)
(11)

We can immediately see the similarities to Equation 8 that is
minimized by maximising the expression in Equation 11. From
a Bayesian point of view, the previously discussed reference
distribution is the prior knowledge we have about a conforma-
tion ci. If applied on fairly accurate homology models, Samu-
drala & Moult consequently argued that this prior distribu-
tion is reasonably well approximated by experimentally deter-
mined structural information [138]. Another advantage of us-
ing a probabilistic formalism is to evade the dispute about the
physical meaning of statistical potentials of mean force derived
from the Boltzmann distribution [12, 155].

1.5.5.4 Consensus Based Quality Estimation

Consensus methods do not take into account any physical in-
teraction. A quality estimate is predicted by assessing the con-
sistency in an ensemble of conformations. Following Levinthals
paradox [97] we can say: There is only one way of doing it right
but an infinite number of ways of doing it wrong. If the confor-
mations are not completely random, at least some of them are
expected to be close to the native structure, hence similar. This
makes consensus methods particularly successful in the con-
text of the CASP experiments where a large amount of alter-
native conformations are available [89–91]. Another ideal appli-
cation of consensus methods is when thousands of alternative
ab initio conformations are generated using Monte Carlo pro-
cedures. However, in a classical homology modelling approach,
the number of alternative conformations is limited. This ham-
pers the practicability of consensus methods.
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1.6 objectives

The main objective of this thesis is to advance various aspects of
protein modelling. Two main parts can be distinguished. First,
tools and algorithms are presented to improve and extend the
protein model quality estimation tool QMEAN. Second, the
problem of protein modelling itself is discussed and ways to
improve the general model accuracy in the context of SWISS-
MODEL are implemented. This leads to a total of four chapters.

First, QMEAN is extended to handle the very specific case of
local membrane protein model quality assessment, leading to a
novel method: QMEANBrane. The original statistical potentials
of mean force are retrained to faithfully reflect the large varia-
tion of molecular properties that act on a protein in a membrane
environment.

Second, the power of consensus is applied to the problem
of local quality assessment for soluble protein models. Instead
of relying on an ensemble of models, ensemble information in
form of distance constraints is extracted from the ever increas-
ing amount of experimentally determined structures. The ex-
tracted distance constraints give a novel score for local quality
assessment: DisCo. In combination with QMEAN, this gives
QMEANDisCo.

Third, the requirements for modelling engines in the context
of the SWISS-MODEL webserver are discussed. A lack of a free,
efficient and state-of-the-art modelling engine is identified and
the solution in form of ProMod3 is presented.

The fourth and last chapter is a direct continuation of the
third and extends the implemented algorithms in ProMod3 to
combine structural information from multiple templates to ob-
tain one single protein model.
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Motivation: Membrane proteins are an important class of bio-
logical macromolecules involved in many cellular key processes
including signalling and transport. They account for one third
of genes in the human genome and > 50% of current drug tar-
gets. Despite their importance, experimental structural data are
sparse, resulting in high expectations for computational mod-
elling tools to help fill this gap. However, as many empirical
methods have been trained on experimental structural data,
which is biased towards soluble globular proteins, their accu-
racy for transmembrane proteins is often limited.
Results: We developed a local model quality estimation method
for membrane proteins (‘QMEANBrane’) by combining statisti-
cal potentials trained on membrane protein structures with a
per-residue weighting scheme. The increasing number of avail-
able experimental membrane protein structures allowed us to
train membrane-specific statistical potentials that approach sta-
tistical saturation. We show that reliable local quality estima-
tion of membrane protein models is possible, thereby extending
local quality estimation to these biologically relevant molecules.
Availability: Source code and datasets are available on request.
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As of May 2017, QMEANBrane is available at:
https://swissmodel.expasy.org/qmean/

2.1 introduction

Protein modelling plays a key role in exploring sequence struc-
ture relationships when experimental data are missing. Mod-
elling techniques using evolutionary information, in particular
homology/comparative modelling, developed into standardized
pipelines over recent years. An indispensable ingredient of such
a pipeline is the accuracy estimation of a protein model, di-
rectly providing the user with information regarding the range
of its possible applications [9, 141, 142]. In this context, global
model quality assessment tools are important for selecting the
best model among a set of alternatives, whereas local model
estimates assess the plausibility and likely accuracy of individ-
ual amino acids [13, 43]. Various techniques have been devel-
oped to address this question, with consensus methods and
knowledge-based approaches showing best results in blind as-
sessments [90]. Consensus approaches require an ensemble of
models with structural variety, reflecting alternative conforma-
tions [135, 147].

in contrast, knowledge-based methods (such as statistical po-
tentials) can be applied to single models but are in general
less accurate than consensus methods and exhibit strong de-
pendency on the structural data they have been trained on.

The unique physicochemical properties of biological mem-
branes give rise to interactions that are energetically discour-
aged in soluble proteins, and vice versa [160]. However, most
scoring functions using knowledge-based methods [13, 107, 132,
146, 171] have been trained on soluble proteins. Thus, they per-
form poorly when applied to models of membrane proteins.
This specific, but highly relevant, important aspect of protein
model quality assessment has received only little attention in
recent years [66, 131]. With the growing amount of available
high resolution membrane protein structures [52, 159] the tem-
plate situation for homology modelling procedures is improv-
ing quickly and, even more important for this work, it is grad-
ually becoming possible to adapt knowledge-based methods to
this class of models.

As a result of such efforts, we present QMEANBrane, a com-
bination of statistical potentials targeted at local quality estima-
tion of membrane protein models in their naturally occurring

https://swissmodel.expasy.org/qmean/
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Figure 3: Difference between membrane predictions of our algorithm
and the predictions of OPM on the 200 high-resolution struc-
tures used to train membrane-specific statistical potentials.

oligomeric state: after identifying the transmembrane region
using an implicit solvation model, specifically trained statisti-
cal potentials get applied on the different regions of a protein
model (Figure 3, Figure 4). To overcome statistical saturation
problems, a novel approach for deriving statistical potentials
from sparse training data has been devised. We have bench-
marked the performance of the approach on a large heteroge-
neous test set of models and illustrate the result on the example
of alignment errors in a transmembrane model.

2.2 materials & methods

2.2.1 Target Function

The similarity/difference between a model and a reference struc-
ture can be expressed in the form of distances between corre-
sponding atoms in the model and its reference structure after
performing a global superposition. However, this global super-
position approach fails to give accurate results in case of do-
main movements. To overcome such problems, e.g. in the con-
text of the CASP [119] experiments, the structures are manu-
ally split into so-called assessment units and evaluated sepa-
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rately [153]. This manual procedure is time consuming and not
suitable for automate large-scale evaluation, e.g. such as per-
formed by CAMEO [60]. Alternatively, similarity/difference be-
tween a model and reference structure can be expressed in the
form of superposition-free measures such as the local Distance
Difference Test (lDDT) score [109] assessing the differences in
interatomic distances between model and reference structure.
In this work, the lDDT inclusion radius is set to 10Å to en-
sure local behaviour. See Figure 9 for a comparison of different
structural similarity measures (Cα-distance, dRMSD, lDDT and
CAD score [121]).

2.2.2 Membrane segment definition

The OPM database [103] applies minimization of a free energy
expression to predict the transmembrane part of a protein struc-
ture [102]. In this work, we use a similar but simplified ap-
proach, still resulting in a robust approximation of the mem-
brane segment definition. The energy expression is defined as

∆G =
∑
i

σwat→bilf(zi)ASAi (12)

with σwat→bil representing the transfer energy from water to
decadiene for atom i per Å2 [101], f(zi) the hydrophobicity as
a function of the distance to the membrane centre zi and ASAi
the accessible surface area of atom i in Å2 as calculated with
NACCESS (www.bioinf.manchester.ac.uk/naccess). Not all at-
oms facing the surface, as determined by NACCESS are in con-
tact with the membrane, even if they fall in between the lipid
bilayer, e.g. as is the case for hydrophilic pores. To determine
the subset of surface atoms in direct contact with the lipid bi-
layer, the protein structure surface as calculated by MSMS [139]
is placed onto a 3D grid, marking every cube in the grid con-
taining surface vertices. The application of a flood fill algorithm
(http://lodev.org/cgtutor/floodfill.html) on every layer along
the z-axis then allows the generation of a subset of potentially
membrane facing atoms.

The parameters describing the membrane (i.e. tilt angle rela-
tive to z-axis, rotation angle around z-axis, membrane width
and distance of membrane centre to origin) first undergo a
coarse grained sampling to identify the 10 best parameter sets
for further refinement using a Levenberg–Marquardt minimizer.

http://www.bioinf.manchester.ac.uk/naccess
http://lodev.org/cgtutor/floodfill.html
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This procedure is repeated several times with different initial
orientations of the structure to find the set of parameters lead-
ing to the lowest total free energy.

The bilayer consists of a hydrocarbon core flanked by inter-
face regions with a large chemical heterogeneity [161]. It is
known that the properties of a membrane protein are strongly
influenced by the interaction with the phospholipid bilayer, and
a simple split into a membrane and soluble part would not
faithfully reflect the variation of molecular properties along
the membrane axis [17]. To catch these variations along the
membrane axis, we split the transmembrane proteins into three
parts, which are treated separately: an interface part consisting
of all residues with their Cα atom positions within 5Å of the
membrane defining planes, a core membrane part consisting of
all residues with their Cα atom positions in between the two
membrane defining planes not intersecting with the interface
residues and finally, a soluble protein part consisting of all re-
maining residues.

Figure 4: Local QMEANBrane scores mapped on the best performing
model (mod9jk) regarding RMSD of the GPCR Dock exper-
iment 2008. Reference structure (2.6 Å crystal structure of a
human A2A ad- enosine receptor bound to ZM241385, PDB:
3eml) and membrane-defining planes are shown in white
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2.2.3 Model quality predictors

To assess the membrane protein models quality, we mainly rely
on statistical potential terms, combined with the relative sol-
vent accessibility of each residue as calculated by DSSP [79].
The four statistical potential terms (their exact parameteriza-
tions are described in the Section 2.6.3), are the following:

1. All-atom interaction Term: Pairwise interactions are con-
sidered between all chemically distinguishable heavy at-
oms. A sequence separation threshold has been introduced
to allow focusing on long-range interactions and reduce
the influence of local secondary structure. Interactions orig-
inating from atoms of residues closer in sequence than
this threshold are neglected.

2. Cβ interaction Term: This term assesses the overall fold
by only considering pairwise interactions between Cβ po-
sitions of the 20 standard amino acids. In case of glycine,
a representative of the Cβ position gets constructed using
the backbone as anchor. The same sequence separation as
in the all-atom interaction is applied.

3. Solvation Term: Statistics are created by counting close
atoms around all chemically distinguishable heavy atoms
not belonging to the assessed residue itself.

4. Torsion Term: The central φ/ψ angles of three consecu-
tive amino acids are assessed based on the identity of the
involved amino acids using a grouping scheme described
by Solis and Rachovsky [150].

The torsion term trained on soluble structures is applied to
the whole membrane protein model. Conversely, solvation and
interaction terms are specifically trained for and applied to the
soluble, membrane and interface segments with different po-
tentials for α-helical and β-barrel transmembrane structures. A
residue belonging to one of these parts ‘interacts’ with all at-
oms in the full model, and a final score is assigned by averag-
ing all scores originating from interactions associated with this
specific residue. For the solvation and torsion terms, we use a
formalism closely related to the statistical potentials of mean
force [145]. However, instead of referring to an energy expres-
sion, we rather look at the problem as a log odds score between
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the probability of observing a particular interaction between
partner s with conformation c relative to some reference state:

S(c|s) = −ln

(
p(c|s)

p(c)

)
(13)

In case of sparse data, p(c|s) cannot be expected to be satu-
rated. Sippl and co-workers have proposed to use a combina-
tion of the extracted sequence-specific probability density func-
tion (pdf) and the reference state. The influence of the reference
state vanishes at a rate determined by the newly introduced
parameter σ towards large numbers of interactions (N) with
sequence s:

p(c|s) ≈ 1

1+Nσ
p(c) +

Nσ

1+Nσ
p(c|s) (14)

Using the aforementioned formalism, this leads to

S(c|s) ≈ ln(1+Nσ) − ln
(
1+Nσ

p(c|s)

p(c)

)
(15)

Because of the increased abundance of structural information
for soluble protein structures during the last decades, the use
of the σ parameter has become largely unnecessary. However,
for membrane proteins, data scarcity is still an issue and needs
to be handled accordingly. In Figure 2.6.1, an analysis of the
saturation behaviour of the different statistical potential terms
is provided, suggesting a sufficient amount of training data for
the solvation term, whereas the two interaction terms require
more data to be fully saturated (Figure 8). For these cases, we in-
troduced a treatment for sparse data by assuming that the statis-
tics for soluble proteins are fully saturated. In other words, if
there are no sufficient data available from membrane structures,
we refer to the information we have from all protein structures
to get a hybrid score:

HS(c|s) = −ln

(
1

1+Nσ
f1 +

Nσ

1+Nσ
f2

)
= ln(1+Nσ) − ln(f1 +Nσf2)

(16)

With f1 representing the fraction of the probabilities of sequence-
specific interactions and a reference state, where the pdfs of
the specific interactions are saturated, and f2 the fraction be-
tween the probabilities of sequence-specific interactions and a
reference state, where the pdfs of the specific interactions are
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not necessarily saturated, as it may occur for membrane- and
interface-specific cases. For regions of the pdf with zero prob-
ability as they, for example, occur at low distances in pairwise
interaction terms, we applied a constant cap value to avoid in-
finite scores.

2.2.4 Training datasets for statitical potentials

The pdfs to calculate the statistical potentials for the soluble
part are built using statistics extracted from a non-redundant
set of high resolution X-ray structures. PISCES [157] has been
used with the following parameters: sequence identity thresh-
old 20%, resolution threshold 2 Å and R-factor threshold 0.25.
Because only standard amino acids can be handled by QMEAN-
Brane, a prior curation of the training structures is necessary.
Non-standard amino acids such as phospho-serine or seleno-
methionine have therefore been mapped to their standard par-
ent residues. For the selection of appropriate membrane protein
structures, we rely on the OPM database [103]. As of October
2013, OPM contained 746 unique PDB IDs of structures with
transmembrane segments. Applying a resolution threshold of
2.5 Å, removing all chains with <30 membrane-associated resi-
dues and considering only one chain in case of homo-oligomers
results in 283 remaining chains from 200 structures. Clustering
the chains based on their SEQRES sequences with kClust [63]
using a sequence identity threshold of 30% resulted in 187 clus-
ters, 140 of them from helical transmembrane structures and
47 from β-barrel structures. All entries are used in the calcula-
tion of the pdfs, where a chain originating from a cluster with
n members is downweighted and contributes with a weight
of 1/n to the final distributions. These final distributions have
then been extracted by considering the corresponding chains,
using the full protein structure in the oligomeric state as as-
signed by OPM as environment.

2.2.5 Datasets for training linear combinations

A set of 3745 models for soluble proteins was generated by se-
lecting a set of non-redundant high-resolution reference struc-
tures from the PDB using PISCES (maximum 20% sequence
identity, resolution better 2Å, X-ray only), extracting their amino
acid sequences and building models using the automated SWISS-
MODEL pipeline [82] by excluding templates with a sequence
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identity >90% to the target (P. Benkert, personal communica-
tion). OPM was used to identify reference structures (resolution
<3.0 Å) to generate membrane protein models. Structures with
<30 membrane-associated residues and hetero-oligomeric com-
plexes were excluded. In all, 132 unique PDB IDs, which had
more than one suitable template, have been selected as targets
for modelling. Templates identified with HHblits [134] showing
a sequence alignment coverage >50% served as input for MOD-
ELLER [137] and resulted in 3226 models with oligomeric states
equivalent to the template structure. Removal of redundancy,
i.e. models originating from templates with same sequence, and
removal of obvious incorrect oligomeric states upon visual in-
spection resulted in a set of 557 models, 386 with helical trans-
membrane parts and 171 β-barrels.

2.2.6 Spherical smoothing for noise reduction

Averaging/smoothing can reduce noise introduced by quality
predictors on a per-residue level, resulting in single residue
scores, which more accurately reflect the local model quality.
Smoothing in space tends to outperform sequential smoothing.
In the proposed algorithm, every residue gets represented by
its Cα position. The final quality predictor score for a residue is
calculated as a weighted mean of its own value and the values
associated to surrounding residues:

si =
∑
j

wjsj (17)

with si representing the final score at position i, wj the weight
of score at position j and sj the score at position j. The weights
are calculated in a Gaussian-like manner and normalized, so
they sum up to one:

wj =

 1

Z
√
2πσ2

e
0.5
(
dij
σ

)2
if dij < 3σ

0 else
(18)

with wj representing the weight of score at position j, dij the
distance from position i to position j, σ the standard deviation
of the Gaussian-like formalism to control how fast the influence
of a neighbouring score vanishes as a function of the distance
(5 Å turned out to be a reasonable σ) and Z as normalization
factor.
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2.2.7 Per amino acid weighting scheme

QMEANBrane uses a linear model fitted on the per-residue
lDDT score to combine the single quality predictors. To remove
amino acid-specific biases, such a linear model is trained for
every standard amino acid:

si =
∑
j

wjsij (19)

si is the combined score of residue at position i, wj the weight
of quality predictor j and sij the score of quality predictor j at
position i.

2.2.8 Implementation

QMEANBrane is designed on a modular basis, implementing
computationally expensive tasks in a C++ layer. All function-
ality is made fully accessible from the Python language and
can directly be embedded into the computational structural bi-
ology framework OpenStructure [20, 21], allowing to assemble
custom assessment pipelines to address more specific require-
ments.

2.3 results and discussion

2.3.1 Membrane prediction accuracy

To evaluate the performance of our membrane finding algo-
rithm, a comparison with the result obtained by OPM has been
performed on the 200 structures used to train the membrane-
specific statistical potentials. At this point, OPM is assumed
to be the gold standard, even though it is a calculation by it-
self. By further considering the membrane width as the main
feature of accuracy, 95% of the absolute width deviations are
<4Å. In terms of translational distances, this corresponds to a
‘misprediction’ of 2–3 residues for helices and about 1–2 resi-
due for sheets (Figure 3). Interestingly, using this approach, it
is not only possible to automatically detect transmembrane re-
gions but also to distinguish between transmembrane and sol-
uble structures in general (Figure 10).
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2.3.2 Performance on the test dataset

For a first analysis of performance on predicting local scores of
membrane-associated residues in transmembrane protein mod-
els, we used the previously described model set for training the
linear weights. Clusters have been built by applying kClust on
the target sequences with a sequence identity threshold of 30%.
The local scores for the membrane-associated residues of one
cluster have then been predicted using linear models trained
on all residues from models not belonging to that particular
cluster (Table 1, Figure 13).

Quality Predictor Helical structures β-barrel structures

exposed 0.39 0.15

Torsion 0.43 0.47

Cβ interaction 0.51 0.49

Solvation 0.55 0.51

All atom interaction 0.63 0.58

All predictors combined 0.71 0.67

Table 1: Performances of single quality predictors and their combina-
tion on membrane-associated residues in our test set, mea-
sured as Pearsons’ r between predicted score and actual local
lDDT

2.3.3 Independent performance evaluation on models of the GPCR
Dock experiments

Not many independent compilations of membrane protein mod-
els with known target structures exist. For a performance eval-
uation and comparison with other widely used quality assess-
ment tools, we rely on the models generated during the GPCR
Dock experiments 2008/2010 [92, 117] (Figure 4). A total of 491

models for three different targets, the human dopamine recep-
tor, the human adenosine receptor and the human chemokine
receptor were available. Receiver operating characteristic (ROC)
analysis with the local lDDT as target value has been performed
on all membrane-associated residues as defined by OPM, show-
ing a clear superiority of QMEANBrane over other methods
such as ProQ2 [132], QMEAN [13], ProQM [131], Prosa [162],
Verify3D [107] or DFire [170] (Figure 5). Removing all GPCR/
Rhodopsin structures from the training data has only a minor



30 qmeanbrane

Figure 5: ROC analysis of all membrane-associated residues of the
models of the GPCR Dock experiments with local lDDT as
target value and a class cutoff of 0.6

effect. See Figure 11 for a more detailed performance analy-
sis taking other measures of similarity into account. Because
ProQM is the only other method specifically developed for the
particular case of membrane protein model quality assessment,
we also performed a direct comparison of QMEANBrane and
ProQM on the dataset used to test/train ProQM in Figure 12.

2.3.4 Retrospective analysis of modelling examples

To illustrate the usefulness of QMEANBrane in tackling prob-
lems as they occur in real modelling cases, two targets with
known structures have been selected for a more detailed analy-
sis using the recently released SWISS-MODEL workspace [22].
The H+ translocating pyrophosphatase from Vigna radiata (PDB
ID: 4A01) and a dopamine transporter of Drosophila melanogaster
(PDB ID: 4M48). Models based on different target-template align-
ments have been compared to test QMEANBrane’s capability of
detecting incorrect alignments, particularly alignment shifts in
transmembrane helices. (Alignments are available in the Sup-
plementary Materials.)

The pyrophosphatase has, with the sodium translocating py-
rophosphatase from Thermotoga maritima (PDB ID: 4AV3), a quite
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Figure 6: Difference of QMEANBrane scores of three dopamine trans-
porter models with modified alignments versus the model
built with the initial HHblits alignment, represented by the
first horizontal bar. Insertions are marked black, and dele-
tions are marked white. Second bar: shift of the insertion
towards the N-terminus in front of helix 4, third bar: shift of
insertion towards the N-terminus in between helices 4 and
5, fourth bar: shift of the insertion towards the C-terminus

close homologue (sequence identity >40%). Nevertheless, the
alignments provided by BLAST [5] and HHblits differ signifi-
cantly. Because the BLAST alignment has a lower coverage, not
including the first transmembrane helix, only the part covered
by both alignments is considered. Figure 14 shows a compar-
ison of the QMEANBrane scores from the two models built
with the different alignments. Two transmembrane helices con-
tain an alignment shift of three residues, resulting in a clear
local increase of the QMEANBrane scores of the model built
with the HHblits alignment relative to the model built with the
BLAST alignment. The higher quality of the HHblits model gets
confirmed by its global lDDT of 0.63 versus 0.59 of the BLAST
model.

For the dopamine transporter example, we chose an amine
transporter from Aquifex aeolicus VF5, identified by HHblits with
a sequence identity of ∼24%, as the primary template. Despite
the good coverage, a major problem occurs in transmembrane
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helix 5. The initial HHblits alignment has an insertion of three
residues enforcing a helix break and an unnatural bulge within
the transmembrane part. To analyse possible modifications of
the initial alignment, we rely on QMEANBrane to compare the
relative differences in the models with alternative alignments
with the initial model (Figure 6, Figure 7).

Figure 7: Structural effects of the alignment modifications shown in
Figure 6. The model based on the initial HHblits alignment
is coloured white; the other models are coloured according
to the horizontal bar alignment representation in Figure 6

Three different alternative alignments were considered: the
first is to shift the helix insertions towards the C-terminus. De-
spite the increase of the QMEANBrane score at the location of
the alignment modification, the scores in helix 5 towards the C-
terminus drop significantly, suggesting no improvement of the
overall model quality. As second alternative, the insertion has
been shifted into the loop connecting transmembrane helices 4

and 5. Because of their proximity, a distortion of both involved
helix endings was inevitable, thus unfavourable. The third al-
ternative, shift of the insertion towards the N-terminus before
helix 4, and introducing an additional deletion in the aforemen-
tioned loop increasing the local sequence identity in helix 4,
consistently increases the QMEANBrane scores in helices 4 and
5, as well as the helices close in space. These findings are con-
firmed by the global lDDT scores of the models built based on
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those alignments (initial alignment: 0.54, shift into middle: 0.54,
shift towards C-terminus: 0.53, shift towards N-terminus: 0.57).

2.4 conclusion

Investigating function and interactions in membrane proteins is
an active field of research, with modelling techniques as an im-
portant tool to bridge the gap when structural data are missing.
Comparative modelling methods automatically profit from the
increased number of available experimental membrane struc-
tures, which can be used to build models for membrane pro-
teins [50]. However, most knowledge-based approaches fail in
assigning reliable local quality estimates when confronted with
the unique structural features and interactions resulting from
direct contact with the phospholipid bilayer.

With QMEANBrane, we present a framework that widely
covers the aspects of membrane protein model quality assess-
ment. In a first step, our membrane detection method allows
to reliably locate the transmembrane part of the model. We in-
troduce an interface region to account for the non-isotropy of
protein properties along the z-axis. Statistical potential terms
were trained specifically for these three regions, introducing a
new hybrid potential formalism to circumvent problems aris-
ing from a lack of sufficient training data. The final local scores
are then calculated using linear models trained for all 20 stan-
dard amino acids. We could show a clear improvement in accu-
racy over widely used quality assessment methods when con-
sidering alpha-helical transmembrane structures. It is possible
to detect errors introduced in the modelling procedure such as
incorrect alignments, which would facilitate the visual explo-
ration of alternative alignments, e.g. as suggested previously in
MODalign [11].

Despite similar observed overall performance for β-barrel
structures, problems arise with shifted alignments, as they can
occur when aligning sequences from remote homologues. The
low number of pairwise atomic interactions in combination
with the regular hydrophobicity pattern often observed in align-
ment shifts by two residues hamper the reliable detection of
such errors and require further investigation.
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2.6 supplemental materials

2.6.1 Saturation of Membrane Specific Statistical Potentials

The question at hand is, whether there is enough data to train
membrane specific statistical potentials. This problem gets even
more pressing upon separate treatment of membrane and inter-
face part. Of all 3 affected statistical potential terms, a total of
360 secondary structure specific potentials have been trained
with varying amount of soluble training data. Upon spherical
smoothing, the local data of 2000 randomly picked structures
of the soluble test set has been gathered for every single poten-
tial. To remove amino acid specific biases, one half of the data
has been used to train the amino acid specific linear models on
the one single feature of interest. The application of these lin-
ear models on the other half of the data then gives insights into
the saturation behaviour and is further illustrated in Figure 8.
In all cases the performances rapidly increase when more and
more training data is provided, but the speed of asymptotic
convergence is term specific. The solvation term seems to sat-
urate fast, whereas the pairwise interaction terms need more
data to be fully saturated.

2.6.2 dRMSD Definition Used in This Work

For some performance analysis, a local distance RMSD is used
in the supplemental part of this work. In contrary to the classi-
cal RMSD approach, the dRMSD is superposition independent
and represents the root mean square deviation of the difference
in distance between all pairs of atoms, either on a per residue
or full structure basis. To emphasize local behaviour, only dis-
tances below 10Å in the reference structure are considered in
the calculation. In case of large distance differences, but also in
case of missing distances, a cap value of 5Å for the difference
in distance has been introduced.

dRMSD =

√√√√ 1

N

∑
i,j

(
min(|di,j,ref − di,j,model|, cap)

)2 (20)
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(a) Helical Residues

(b) Extended Residues

Figure 8: Local performance of statistical potential terms when
trained and applied on soluble structures and the amount of
training data is varied. Every data point represents a single
potential trained on a random subset of the soluble training
structures.
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2.6.3 Parametrization of Statistical Potential Terms

The pdfs of the statistical potential terms are based on his-
tograms with following parametrization:

Soluble Potentials:

• All Atom Interaction Term: minimal distance: 0.0Å, max-
imal distance: 10.0Å, bin size: 0.5Å, sequence separation:
4 residues

• Cβ Interaction Term: minimal distance: 0.0Å, maximal
distance: 12.0Å, bin size: 0.5Å, sequence separation: 4 res-
idues

• Solvation Term: inclusion radius: 5.0Å, bin size: 1 count,
max counts: 32

• Torsion Term: bin size: 20◦

Membrane Potentials:

• All Atom Interaction Term: minimal distance: 0.0Å, max-
imal distance: 10.0Å, bin size: 1.0Å, sequence separation:
4 residues

• Cβ Interaction Term: minimal distance: 0.0Å, maximal
distance: 12.0Å, bin size: 1.0Å, sequence separation: 4 res-
idues

• Solvation Term: inclusion radius: 5.0Å, bin size: 1 count,
max counts: 32

• Torsion Term: the torsion potential trained on soluble
structures is applied on the transmembrane residues.
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2.6.4 Training data

pdb id chain weight pdb id chain weight pdb id chain weight pdb id chain weight pdb id chain weight

4dx5 A 1.0 3b9y A 1.0 1ymg A 0.167 1kqf C 1.0 2a06 G 0.25

3ar2 A 0.2 2r9r B 1.0 3gd8 A 0.167 4jq6 A 1.0 4f4s A 1.0

2agv A 0.2 4k1c A 1.0 3m9i A 0.167 2fyu E 0.2 1v55 I 1.0

3n5k A 0.2 2j58 A 1.0 2j8d H 0.2 1l0l E 0.2 2x2v A 1.0

2zbd A 0.2 1u19 A 1.0 1dxr H 0.2 1pp9 E 0.2 3arc h 1.0

1su4 A 0.2 2z73 A 1.0 1l9b H 0.2 2a06 E 0.2 2yev C 1.0

2zxe A 1.0 4ezc A 1.0 2j8c H 0.2 3cx5 E 0.2 3arc z 1.0

2yev A 1.0 3arc d 1.0 1eys H 0.2 2nr9 A 0.2 1pp9 J 0.2

3ayf A 1.0 3arc a 1.0 1m56 B 1.0 2xow A 0.2 2a06 W 0.2

4a01 A 1.0 3k3f A 1.0 3kly A 0.5 3zeb A 0.2 2fyu J 0.2

1jb0 A 0.5 3spc A 0.5 3kcu A 0.5 2xtv A 0.2 1l0l J 0.2

1jb0 B 0.5 2qks A 0.5 2qjy B 1.0 2irv A 0.2 3cx5 I 0.2

1wpg A 1.0 1dxr M 0.2 2bs2 C 1.0 4dve A 1.0 1h2s B 1.0

3s8g A 1.0 1eys M 0.2 1ldf A 1.0 2qjy C 1.0 1v55 J 1.0

1m56 A 0.5 2j8d M 0.2 3ddl A 1.0 3rlb A 1.0 1lgh A 1.0

1v55 A 0.5 2j8c M 0.2 1z98 A 0.333 3s8g B 1.0 2fyu K 0.5

2a65 A 1.0 1l9b M 0.2 3d9s A 0.333 2bl2 A 1.0 1l0l K 0.5

2wsw A 1.0 2yev B 1.0 3cll A 0.333 1jb0 L 1.0 1nkz A 1.0

3arc b 1.0 3m73 A 1.0 2vpz C 1.0 2uuh A 1.0 1v55 K 1.0

4iky A 0.333 2nq2 A 1.0 4fc4 A 1.0 4al0 A 1.0 1hgz A 1.0

4ikv A 0.333 3zuy A 1.0 3cx5 D 0.2 2j7a I 1.0 1jb0 K 1.0

4ikx A 0.333 3odu A 1.0 2fyu D 0.2 1v55 D 1.0 1v55 L 1.0

3puw F 1.0 3v5u A 1.0 1pp9 D 0.2 1jb0 F 1.0 1lgh B 1.0

3arc c 1.0 1okc A 1.0 2a06 D 0.2 1yq3 C 0.5 1m56 D 1.0

4jkv A 1.0 1kqf B 1.0 1l0l D 0.2 1zoy C 0.5 1v55 M 1.0

4mlb C 0.5 3puw G 1.0 2f2b A 1.0 1ors C 1.0 1jb0 J 1.0

3wbn A 0.5 3vw7 A 1.0 3c02 A 1.0 2ahy A 0.5 1nkz B 1.0

2rh1 C 1.0 2j8d L 0.2 2ei4 A 0.125 3ouf A 0.5 3arc x 1.0

3gia A 1.0 2j8c L 0.2 1vgo A 0.125 1r3j C 0.5 2zxe G 1.0

2qjy A 0.167 1l9b L 0.2 2zzl A 0.125 1s5h C 0.5 3arc i 1.0

3cx5 C 0.167 1eys L 0.2 1py6 A 0.125 1zoy D 0.5 3arc J 1.0

2fyu C 0.167 1dxr L 0.2 1h2s A 0.125 1yq3 D 0.5 1jb0 I 1.0

1l0l C 0.167 3ug9 A 1.0 1m0l A 0.125 3cx5 H 1.0 3arc l 1.0

1pp9 C 0.167 2zxe B 1.0 1ap9 A 0.125 3e86 A 1.0 3arc k 1.0

2a06 C 0.167 1m56 C 0.5 1h68 A 0.125 3zk1 A 0.333 3arc m 1.0

2qts A 1.0 1v55 C 0.5 4hyj A 1.0 1yce L 0.333 3arc f 1.0

3tij A 1.0 2w2e A 1.0 1rc2 B 0.5 2xqu A 0.333 3s8g C 1.0

2ns1 A 0.333 3vvk A 0.333 3llq A 0.5 1v55 G 1.0 1jb0 M 1.0

2b2f A 0.333 3a7k A 0.333 3tx3 A 1.0 3ldc A 1.0 3arc t 1.0

1u7g A 0.333 1e12 A 0.333 1v55 B 1.0 3arc e 1.0 3arc y 1.0

3hd6 A 1.0 2b6p A 0.167 1q16 C 1.0 1l0l G 0.25 1jb0 X 1.0

4kpp A 1.0 1j4n A 0.167 2bhw A 1.0 2fyu G 0.25 3bkd E 0.5

4eiy A 1.0 2b6o A 0.167 1xio A 1.0 1pp9 G 0.25 3lbw A 0.5

Table 2: Structural data used to train alpha helix specific transmem-
brane statistical potentials. GPCR and Rhodopsin related
structures are marked bold. The effect of removing them
from the training data is shown in the GPCRDock perfor-
mance evaluation in Figure 11
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2.6.5 Comparison of Different Measures of Similarity

(a) lDDT vs Cα dist (b) lDDT vs dRMSD

(c) lDDT vs CAD (d) dRMSD vs CAD

(e) CAD vs Cα dist (f) dRMSD vs Cα dist

Figure 9: The data of the membrane associated residues of the GPCR
Dock experiments is used to show the differences in the
measurements of local similarities. All atom based measures
seem to agree well (b,c,d), whereas the Cα distance corre-
lates poorly with them (a,e,f).
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2.6.6 Discrimination of Membrane and Soluble Structures

Figure 10: Calculated (pseudo) energies for 200 membrane protein
structures used to generate membrane specific statistical
potentials vs. the energies of 200 randomly selected solu-
ble structures. A clear discrimination is possible.

2.6.7 ROC Analysis on GPCRDock Test Set Using Different Mea-
sures of Similarity

Method AUC lDDT AUC Cα AUC dRMSD AUC CAD

QMEANBrane 0.85 0.80 0.85 0.83

QMEANBraneNoGPCR 0.85 0.79 0.84 0.83

ProQ2 0.74 0.79 0.76 0.69

QMEAN 0.70 0.75 0.72 0.67

ProQM 0.69 0.74 0.71 0.66

Prosa 0.72 0.72 0.66 0.63

Verify3D 0.60 0.64 0.60 0.59

DFire 0.60 0.63 0.62 0.56

Table 3: Raw data considering all membrane associated residues as
defined by OPM.
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(a) ROC analysis with local lDDT as
target value, class cutoff: 0.6

(b) ROC analysis with Cα-distance as
target value, class cutoff: 2.8Å

(c) ROC analysis with local dRMSD as
target value, class cutoff: 2.5

(d) ROC analysis with local CAD-
score as target value, class cutoff:
0.5

Figure 11: ROC analysis considering all membrane associated resi-
dues as defined by OPM. The black curves indicate the
effect of removing all GPCR/Rhodopsin related structures
as defined in Table 1 from the training data.
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2.6.8 Head to Head comparison with ProQM on the testset used to
test/train ProQM

Method AUC lDDT AUC Cα AUC dRMSD AUC CAD

QMEANBrane 0.78 0.70 0.77 0.77

ProQM 0.73 0.80 0.74 0.70

Table 4: Areas under the curve for QMEANBrane and ProQM using
different measures of similarity. Despite decrease in perfor-
mance, QMEANBrane is superior regarding all atom mea-
surements. In terms of Cα distances, ProQM clearly outper-
forms QMEANBrane.

(a) ROC analysis with local lDDT as
target value, class cutoff: 0.6

(b) ROC analysis with Cα-distance as
target value, class cutoff: 2.8Å

(c) ROC analysis with local dRMSD as
target value, class cutoff: 2.5

(d) ROC analysis with local CAD-
score as target value, class cutoff:
0.5

Figure 12: ROC analysis on membrane associated residues as defined
by OPM of the testset used to test/train ProQM.
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2.6.9 Performance on Our Test Set

Performance on our test set has been measured by a leave one
out strategy. Upon clustering with a sequence identity thresh-
old of 30%, the linear weights applied on the targets of one par-
ticular cluster are trained on all other clusters. Despite similar
observed overall performance for β-barrel structures, problems
arise with shifted alignments as they can occur when aligning
sequences from remote homologues. The low level of pairwise
interactions in combination with the regular hydrophobicity
pattern often observed in alignment shifts by two residues ham-
per the reliable detection of such errors, and will require further
investigations in the future.

(a) QMEANBrane score vs. local
lDDT for alpha helical transmem-
brane residues on our own test-
set. Pearsons r: 0.71

(b) QMEANBrane score vs. local
lDDT for β barrel transmem-
brane residues on our own test-
set. Pearsons r: 0.67

(c) ROC analysis on alpha helical
transmembrane residues on our
own testset with lDDT as target
function and a class cutoff of 0.6.
AUC: 0.89

(d) ROC analysis on β barrel trans-
membrane residues on our own
testset with lDDT as target func-
tion and a class cutoff of 0.6.
AUC: 0.85

Figure 13: Local performances of QMEANBrane on membrane asso-
ciated residues as defined by OPM on our own testset.
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2.6.10 Retrospective Modelling Analysis

2.6.10.1 H+ Translocating Pyrophosphatase

Figure 14: Comparison of QMEANBrane scores of a model built with
the HHblits alignment vs. a model built with the BLAST
alignment. The first horizontal bar represents the HHblits
alignment with insertions marked in black and deletion
marked in white, the second bar is the same for the BLAST
alignment. The third bar highlights regions, where the two
alignments differ.
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Figure 15: BLAST alignment for H+ Translocating Pyrophosphatase

Figure 16: HHblits alignment for H+ Translocating Pyrophosphatase
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2.6.10.2 Dopamine Transporter

Figure 17: Local QMEANBrane scores of reference structure (black),
as well as the scores from the model built with the initial
HHblits alignment (red). The horizontal bar represents the
alignment with insertions in black and deletions in white.

Figure 18: Initial HHblits Alignment
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Figure 19: Insertion Shifted Towards C-Terminus

Figure 20: Insertion Shifted in Between Helix 4 and 5

Figure 21: Insertion Shifted Towards N-Terminus in Fromt of Helix 4
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This chapter has been a collaborative effort between Christine
Rempfer, Gabriel Studer, Andrew Waterhouse and Rafal Gumi-
enny. Title of the Manuscript:

QMEANDisCo – Distance Constraints Applied on the Local
Quality Estimation Problem

Author Contributions: CR implemented DisCo, compiled the
SWISS-MODEL based test-/training sets, trained the score com-
bination with QMEAN and helped setting up the manuscript.
GS implemented QMEAN, retrained all potentials, gathered
the CAMEO and CASP training data, performed the evaluation
and wrote the manuscript. AW, GS, RG and CR implemented
the webserver (initials ordered by amount of contributions).

Motivation: Quality estimation methods are an indispensable
ingredient in any modelling pipeline. Global quality estimates
give a general impression of a model’s applicability or allow se-
lecting a model in a set of alternatives. Local quality estimates
on the other hand assess the reliability of individual amino
acids, opening a full range of possible applications. We there-
fore aim to extend the local quality estimation capabilities of
QMEAN by harnessing ensemble information in form of dis-
tance constraints extracted from the rapidly increasing amount
of experimentally determined structural information.
Results: We improved the established quality estimation tool
QMEAN and enhanced its local quality estimation capabili-
ties with a new term based on distance constraints - DisCo.
QMEAN and QMEANDisCo have been successfully tested and
compared to other state of the art local quality estimation tools
on a wide variety of test sets. Careful data analysis revealed that
both methods particularly stand out in distinguishing wrongly
from correctly modelled residues in models of reasonable over-
all fold.
Availability: https://swissmodel.expasy.org/qmean/
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3.1 introduction

Modelling methods, in particular homology/comparative mod-
elling, have established themselves as a valuable complement
for structural analysis when experimental data are missing [140].
While such methods have matured into pipelines that can gen-
erate models for almost any protein automatically, the quality
of the generated models can be highly variable and hard to pre-
dict in the absence of experimental observables. This is a major
concern as the range of applications for which the model can
be used directly depends on its quality [9, 141], hence the im-
portance of quality estimation methods. Quality estimates can
be of a global nature, i.e. to pick the best model in a set of
alternatives, or of a local nature. The latter allows for a more
specific model selection in cases where only one particular part
of the protein is of interest, for example a domain containing an
active site. It can also guide the modelling process itself, such
as detecting regions requiring further refinement or choosing
from alternative local conformations.

Currently, two very distinct approaches exist to successfully
tackle the quality estimation problem: single model methods
and consensus methods. Most single model methods use knowl-
edge based approaches such as statistical potentials of mean
force, to express the expected similarity to the actual native
structure with a numeric value [13, 132, 146, 170]. Such meth-
ods have the advantage of only requiring a single model as
input, but they tend to be outperformed by consensus methods
that base their prediction on a full ensemble of models [89–91].
Model quality is estimated from the variability of the models
in the ensemble, assuming that correct structural features will
tend to be more conserved [53, 110, 147]. Nevertheless, their ap-
plication is somewhat limited as a set of models is not always
available in many applied cases. This led to the development
of the so called quasi-single model methods [110], which try
to combine the predictive power of consensus with the conve-
nience of taking a single model as input by using alternative
sources of ensemble information.

One established classical single model method is QMEAN
[13, 14]. QMEAN uses statistical potentials of mean force and
the consistency of a model with structural features predicted
from sequence to generate quality estimates on a global and
local scale. A specialized version “QMEANBrane” was also de-
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Figure 22: The central model visualizes the goal of assigning per resi-
due quality estimates with a colour gradient. QMEAN ap-
proaches the problem with a combination of several terms:
a) pairwise terms with one term considering all atoms and
another term only considering Cβ positions, b) solvation
term, c) backbone torsion term, d) terms assessing the con-
sistency of the model with profile based predictions (sec-
ondary structure and solvent accessibility).

veloped, employing statistical potentials specifically trained to
assess the local quality of membrane protein models [152].

In this work we improve QMEANs capabilities for provid-
ing local quality estimates (Figure 22). We introduce a new dis-
tance constraint (DisCo) score that assesses the agreement be-
tween observed pairwise distances in a model with an ensem-
ble of constraints extracted from experimentally determined
structures with sequences homologous to the model being as-
sessed. Adding this score to QMEAN (QMEANDisCo) there-
fore leads to a quasi-single model method. Using the homolo-
gous structures directly when generating the set of constraints,
allows us to keep the computation time low by avoiding a full
blown model building process to generate a structural ensem-
ble. We show that adding DisCo to QMEAN significantly in-
creases the reliability in estimating local qualities on a wide
variety of test sets.
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3.2 materials & methods

In order to approach the local quality estimation problem, we
first defined an appropriate target value that expresses the sim-
ilarity of a model to the native structure on a local scale. We
carefully compiled a set of models to train the newly developed
methods towards this target value and test it towards models
from various sources. The evaluation has then been targeted at
the discrimination of correct from poorly modelled residues in
models of reasonable overall fold.

3.2.1 Target Value

As a target value for local quality estimates, we use the all atom
based lDDT score [109]. lDDT is a superposition free score and
assesses the differences in pairwise interatomic distances be-
tween model and reference structure. Only pairwise distances
up to a certain cutoff are considered, reducing the influence of
domain or hinge movement events. The authors of lDDT recom-
mend a 15Å cutoff for global full model scores. For per residue
scores, this cutoff has been decreased to 10Å to emphasize lo-
cal behaviour. To avoid overtraining towards a certain target
value and allow for a general interpretation of the predicted
local score values we repeat all evaluations of local quality es-
timation performance with CAD score [121] and dRMSD (Sec-
tion 3.6.1). All three scores evaluate models on an all atom basis
with lDDT and dRMSD additionally considering stereochemi-
cal issues and clashes. We deliberately avoid any local target
value based on reduced structural representations since they
do not reflect the wide variety of local interactions in great de-
tail. One representative of this category would be the widely
used Cα distances between residues in model and target after
a global superposition. Section 3.6.4 gives further details about
potential issues with this target value.

3.2.2 Training and Test set

Training and testing have been performed on a large set of mod-
els generated by the SWISS-MODEL modelling webserver [22].
Further testing and evaluation have been performed on inde-
pendent test sets provided by the CAMEO continuous evalua-
tion platform [60] and the CASP XI experiment [91].
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For our own training-/test set generated with SWISS-MODEL
we rely on a set of non-redundant entries from the PDB as
culled by PISCES [157] to serve as targets for the model build-
ing process (sequence identity cutoff: 20%, resolution cutoff:
1.8Å, R-factor cutoff: 0.25). The returned list contained 5302 en-
tries. On one hand we used the full list to train the statistical
potential of mean force terms, on the other hand we used a
randomly selected subset of 2500 items as targets to generate
a large set of models for training and testing purposes. For ev-
ery modelled target, a maximum of 10 models have been built
by randomly selecting templates with sequence identity below
90% to the target and an alignment coverage of at least 50%. The
number of models per target has further been reduced, such
that no pair of models has a sequence identity above 90% con-
sidering their underlying templates. To get the desired sets of
models a further split was necessary.

• Models from 625 targets (2456 models) to train linear score
combinations for the local and global QMEAN scoring
functions.

• Models from 1250 targets (4886 models) to train random
forest regressor to combine the local QMEAN scoring func-
tion with DisCo.

• Models from 625 targets (2471 models) for testing pur-
poses, which we will refer to as the SWISS-MODEL test
set.

A CASP XI test set has been compiled by downloading pub-
licly available models submitted for the QA2 Model 2 category
[91], resulting in a total of 13,077 models.

A CAMEO test set has been compiled by downloading all
the QE predictions from CAMEO in a timeframe of 3 months
(2016.12.24 – 2017.03.18), resulting in a total of 2289 models.

One issue of the training / test set compilation is that the
statistical potential of mean force terms are trained and tested
on the same structural data. Due to the saturation behaviour
of the underlying probability density functions, this is not a
problem [152].

3.2.3 QMEAN

QMEAN is a combination of four statistical potential of mean
force terms, as well as two terms comparing secondary structure-
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and solvent accessibility predictions by PSIPRED [75] and AC-
CPRO [31] with their actual outcome in the model (Figure 22).

Compared to the 2011 version of QMEAN, which we refer to
as QMEAN_OLD, QMEANBrane already introduced improve-
ments in the statistical potential terms that are further described
in Section 2.2.3. QMEANBrane employs specifically trained po-
tentials for three different segments in a transmembrane pro-
tein model with segments being defined as membrane, inter-
face and soluble. The potentials applied on the soluble segment
are now also in use for QMEAN and have been retrained for the
use as local and global quality predictors with the exact param-
eterization described in Section 3.6.2.

No changes have been made regarding the predicted sol-
vent accessibility term, it is still a binary classification whether
prediction and model match on a per residue basis. However,
the predicted secondary structure term has been improved. In-
stead of simply checking for a match between prediction and
outcome, QMEAN now incorporates all available information
from DSSP as well as PSIPRED. A log-odds score relates the
probability of observing a certain DSSP state in combination
with a PSIPRED prediction with the probability of observing
the two events independently of each other [149] (Equation 21).
The required probabilities have been extracted from the same
structural information already used to train the statistical po-
tential terms.

S(d,p, c) = log
(
p(d,p, c)
p(d)p(p, c)

)
(21)

with d representing a DSSP state in [G,H,I,E,B,T,S,C], p a PSI-
PRED state in [H,E,C] and c a PSIPRED confidence value in
[0-9].

Despite having distinct statistical potentials optimized for lo-
cal and global scoring, all quality predictors are evaluated on
a per residue basis. The results are further processed to obtain
per residue or global scores.

3.2.3.1 Local Quality Estimates

Having calculated all the scores on a per residue basis, a spher-
ical smoothing is applied to reduce noise [152]. A subsequent
amino acid dependent linear combination of the scores gives
per residue quality estimates [152] with linear weights trained
on the specified SWISS-MODEL training set.
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3.2.3.2 Global Quality Estimates

Despite small changes in the single quality predictors, there is
no conceptual difference to QMEAN_OLD. For every quality
predictor, the per residue scores are averaged in order to nor-
malize for size. A linear combination of all four statistical poten-
tial terms gives the QMEAN4 score and additionally using the
two predicted sequence feature terms gives the QMEAN6 score
with linear weights trained on the specified SWISS-MODEL
training set.

To relate these scores to what one would expect from high
resolution X-ray structures, QMEAN still provides them as Z-
scores given the corresponding score distribution from high res-
olution X-ray structures of similar size.

3.2.4 DisCo

DisCo is the successor of QMEANDist [19], a quasi-single model
method that participated in the CASP IX experiment as a global
quality predictor [89]. We revisited the approach of assessing
the agreement of pairwise residue-residue distances with en-
sembles of distance constraints extracted from structures ho-
mologous to the assessed model. Instead of generating global
quality estimates, DisCo aims to predict local per residue qual-
ity estimates. After extracting the target sequence of the model
to be assessed, structural homologues are identified using HH-
blits [134]. For each homologue k, all Cα positions are extracted
and mapped onto the target sequence using the HHblits align-
ment. Gaussian-like distance constraints gijk(dij) are constructed
for all observed pairwise Cα-Cα distances µijk below 15Å:

gijk(dij) = exp

[
−
1

2
(dij − µijk)

2

]
(22)

The goal is to construct a pairwise scoring function sij(dij),
that assesses the consistency of a particular pairwise Cα-Cα
distance dij from the model with all corresponding constraints
gijk(dij). For that matter it has to be considered that HHblits
may return redundant results. In order to avoid biases intro-
duced by over-represented protein families, all found homo-
logues are hierarchically clustered based on their normalized
pairwise sequence similarity as estimated with the BLOSUM62
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Figure 23: Example DisCo scoring function representing the Cα-Cα
distance between residues i and j. The underlying tem-
plates appear in two clusters with avg. sequence similarity
(SSc) 0.276 (orange cluster) and 0.273 (blue cluster). Shown
are the cluster scoring functions scaled by the cluster de-
pendent weights wchijc(dij) (coloured lines) and the re-
sulting DisCo scoring function sij(dij) (black line).

substitution matrix. For every cluster c, a cluster specific scor-
ing function hijc(dij) is constructed:

hijc(dij) =
1

nijc

∑
k∈c

gijk(dij) (23)

with nijc being the number of the underlying constraints gijk(dij)
in that particular cluster. Note, that not every template k must
necessarily contribute a constraint for a particular pair i, j. nijc
can therefore potentially be zero, the full cluster is omitted
in this case. To get our desired function sij(dij) we combine
hijc(dij) from each cluster c in a weighted manner, such that
clusters expected to be closely related to the target sequence
contribute more than others:

sij(dij) =
∑
c

wchijc(dij) (24)

with weights wc defined as exp[γSSc] and normalized, so that
the weights of all clusters in which the Cα-Cα pair is present,
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sum up to one. SSc is the average normalized sequence similar-
ity towards the target sequence of cluster c and γ is considered
to be a constant that controls how fast the influence of a cluster
vanishes as a function of SSc . Best performance was observed
when taking a value of 70 for γ and Figure 23 illustrates an
example function. The DisCo score of a single residue of the
model at position i then gets determined by averaging the out-
come of all n pairwise scoring functions sij(dij) towards other
residues j with their Cα positions within 15Å:

DisCoi =
1

n

∑
j

sij(dij) (25)

3.2.5 Score Combination - QMEANDisCo

A simple linear model to combine QMEAN and DisCo would
not faithfully reflect DisCo’s dependency on the situation of
found homologues. In case of many homologues with high se-
quence similarity to the target, the DisCo score is likely to be
reliable and should have a large contribution to QMEANDisCo.
However if there are only remote homologues available, QME-
ANDisCo should more closely, completely in the case of no
homologues, rely on the statistical potentials of QMEAN. To
handle these dependencies, a random forest regressor has been
trained on the specified training data [126]. Besides QMEAN
and DisCo, the random forest takes the following features as
input to estimate the QMEANDisCo score for one particular
residue i:

• Average number of cluster scoring functions towards all
residues j within 15 Å

• Average of highest sequence similarities among the clus-
ters towards all residues j within 15 Å

• Average of highest sequence identities among the clusters
towards all residues j within 15 Å

• Average variance towards all residues jwithin 15 Å, where
one variance is calculated using all observed µijk

• Number of other residues within 15Å in the model. Only
residues being covered together with residue i in at least
one template are considered.

• global QMEAN4 score
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3.2.6 Evaluation Methods

We define the local quality estimation problem we want to
tackle as the ability to discriminate poorly from well modelled
residues assuming an overall correct fold. For evaluation we
use a receiver operation characteristic (ROC) analysis, which is
common in the field [90, 91]. ROC allows one to visualize a pre-
dictors’ capability of distinguishing positively from negatively
classified data points and quantify the outcome with the area
under the curve (AUC). Based on local lDDT as the target value,
the data points of all single residues in a test set are divided into
positives/negatives using a cutoff of 0.6, considering residues
with local lDDT below that cutoff as positives. This reflects our
definition of the quality assessment problem. In a first step we
perform the ROC analysis on all described test sets by pooling
all single residue predictions, which mainly analyses the capa-
bility of assigning absolute quality estimates. In a second step
we perform the ROC analysis on a per model basis. To quan-
tify the outcome, we generate a probability density function
from all resulting per model AUC values of a test set using a
Gaussian kernel density estimate. The expectation value of this
distribution, the expected AUC when looking at one particular
model, then allows a direct comparison to other predictors. For
the alternative evaluations available in the supplemental mate-
rials we use a cutoff of 0.5 for CAD score and a cutoff of 2.0Å
for dRMSD to classify the data points.

3.3 results and discussion

The SWISS-MODEL test set is mainly intended to directly com-
pare the performances of QMEAN [13] (QMEAN_OLD) to the
current improved version of QMEAN and finally QMEANDisCo.
To allow a comparison of the latter two to other publicly avail-
able local quality estimation tools, this analysis has been ex-
tended towards the test sets from CAMEO and CASP XI. In case
of CAMEO, QMEAN and QMEANDisCo have been registered
as participating servers and all predictions in the specified time
range have been downloaded from the official website. A blind
prediction is therefore guaranteed. In the case of CASP XI, the
predictions of the CASP XI participants have been downloaded
from the official data archive and complemented by QMEAN
and QMEANDisCo calculated locally. No structural informa-
tion published after April 2014 has been used to obtain DisCo.
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3.3.1 Overall AUC Analysis

Applying QMEAN_OLD and QMEAN on the SWISS-MODEL
test set gives significant changes of overall AUC in favor of
the current version (0.80 vs 0.87). Incorporating DisCo (QME-
ANDisCo) increases the performance even further to 0.93 (Fig-
ure 24, Table 5). When comparing QMEAN to other methods
in the CAMEO test set, QMEAN reaches an overall AUC of
0.88. The performance compared to ProQ2 [156] (0.87) and the
quasi-single model methods ModFold4/ModFold6 [110] (0.89 /
0.89) differs only marginally. QMEANDisCo on the other hand
clearly outperforms all other methods participating in CAMEO
with an overall AUC of 0.93 (Figure 24, Table 6). While the
overall AUC for QMEAN and QMEANDisCo slightly decreases
when analysing the CASP XI test set (0.84 and 0.88), the previ-

Figure 24: Evaluation of local quality estimation performance on
SWISS- MODEL test set (A) and CAMEO test set (B) with
local lDDT as target value. Squares represent performance
in terms of overall AUC and circles the expected per model
AUC. In the SWISS-MODEL test set, there is a steady
increase of prediction accuracy from QMEAN_OLD, the
current QMEAN and QMEANDisCo. QMEANDisCo per-
forms best among the participants of the CAMEO continu-
ous evaluation platform.
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ously mentioned methods ProQ2 and ModFold4 (represented
by its successor ModFold5_single) have an increased overall
AUC value (0.86 and 0.88). The best consensus based predictors
even reach overall AUC values up to 0.90 (Figure 25, Table 7).

3.3.2 Global Effect on Overall AUC

Because of the large number of quality estimation tools that
can directly be compared, the most valuable test set used in
this work clearly is the one from CASP XI. A possible problem
is the substantially different single residue target value distri-
bution compared to the other two test sets used in this work
(Figure 26). The SWISS-MODEL and CAMEO test sets exhibit
a unimodal distribution largely originating from models with
reasonable overall fold. In contrast to that, the distribution of
the CASP XI test set is bimodal. The lower quality distribution
originates from a large number of random coil models that do
not match with our definition of the local quality estimation
problem. This gives rise to the hypothesis that most of the local
quality estimation performance could already be retrieved by
detecting those random coils and predicting all their residues
to be of low quality. To test this hypothesis, a naive predictor
has been implemented. It is based on the Davis-QAconsensus
baseline predictor from the official CASP XI QE evaluation. For
all residues of a particular model, the global score of the full
model was assigned. Detecting random coils and scoring their
residues accordingly is not necessarily a bad idea but this im-
plementation has the obvious flaw of not being able to discrim-
inate correctly from wrongly modelled residues in one particu-
lar model. Nevertheless, the naive predictor performs surpris-
ingly well with an overall AUC value of 0.83 (Figure 25, Table 7).
This observation clearly highlights that a good performance in
terms of overall AUC is not necessarily the result of assigning
meaningful per residue scores but rather a global effect. This
makes a complementary per model analysis necessary and in-
formative.

3.3.3 Per Model AUC

Since a ROC analysis requires data points classified as posi-
tives and negatives, particularly good or particularly bad mod-
els cannot be assessed in a per model analysis. In the case
of local lDDT as target value this leaves 2421 models for the
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Figure 25: Evaluation on CASP XI test set (orange) and a subset of
high quality models (blue) with local lDDT as target value.
Squares represent performance in overall AUC and circles
in expected per model AUC. For the naive predictor, the
overall AUC is displayed only. The expected per model
AUC tends to increase when only considering high qual-
ity models. This unveils general difficulties in discriminat-
ing correctly from wrongly modelled residues in models of
low quality. Nevertheless, much of the overall AUC perfor-
mance seems to originate from exactly that kind of models
in many local quality estimation methods.

SWISS-MODEL test set (-2.0%), 2225 for the CAMEO test set
(-2.8%) and 12506 models for the CASP XI test set (-4.4%). In
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the SWISS-MODEL and CAMEO test sets, the ranking regard-
ing the expected per model AUC does not change significantly
compared to the overall AUC. In both cases QMEANDisCo per-
forms best with a general trend of the expected per model AUC
being lower than the overall AUC (Figure 24; Table 5, Table 6).
The situation changes for the CASP XI test set. The difference
between overall AUC and expected per model AUC is rather
small for QMEAN and QMEANDisCo (-0.06, -0.08 respectively)
but much larger for many other methods. This hints to a possi-
ble influence of the previously described global effect. In a per
model analysis, QMEANDisCo takes the lead with an expected
per model AUC of 0.80. QMEAN comes second with 0.78 (Fig-
ure 25, Table 7).

3.3.4 Analysis on High Quality Models for the CASP XI Test Set

To simulate the situation of only having models with a reason-
able overall fold, the evaluation was repeated on the CASP XI
test set only considering models with at least 50% of their resi-
dues classified as correctly modelled. Only 4789 models of the
original set remain (36.6%). The expected per model AUC in-
creases for almost all evaluated methods (Figure 25, Table 10).
Discriminating correctly from wrongly modelled residues in
low quality models is therefore problematic in general. Another
observation is the complete breakdown in performance of the
naive predictor when looking at the overall AUC. Simply detect-
ing random coils doesn’t work in this setup because they’re not
present anymore. While QMEAN and QMEANDisCo achieve
a similar overall AUC as in the overall CASP XI test set (0.84,
0.87 respectively), most other methods also significantly break
down.

3.4 conclusions

The local quality estimation problem remains an important as-
pect of protein structure modelling from a user perspective but
also as a tool to improve the modelling process itself. We suc-
cessfully evaluated the incorporation of distance constraints ex-
tracted directly from experimentally determined structures ho-
mologous to the model to be evaluated. This led to an enhanced
version of QMEAN, QMEANDisCo. The overall AUC and ex-
pected per model AUC evaluations show that QMEAN and
QMEANDisCo particularly stand out when assessing models
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with reasonable overall fold. The remaining question is whether
local quality estimation on low quality models is meaningful at
all. Training and testing on such data might be far from reality
and introduce unnecessary biases. Detection of correct overall
folds should rather be delegated to global quality estimation
methods. Local quality estimation methods could then concen-
trate on what they’re supposed to do: detecting local errors.
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3.6 supplemental materials

3.6.1 dRMSD as a target value for local accuracy

In contrary to the classical RMSD, the dRMSD (distance-RMSD)
is superposition free and represents the root mean square de-
viation of the difference in distance between all pairs of atoms,
either on a per residue or full structure basis. The dRMSD of
a certain residue i can be calculated by first gathering the pair-
wise distances of all its atoms a towards other atoms b from
residues j 6= i below a cutoff radius in the reference structure.
This gives N distances, which is then compared to the ones ex-
tracted from the model:

dRMSDi =

√√√√ 1

N

∑
a,b

min(|da,b,ref − da,b,model|, cap)2 (26)

To emphasize local behaviour, the cutoff radius has been set
to 10 Å. In the case of large or missing distance differences, a
cap value of 5Å for the difference in distance has been intro-
duced. The implementation in this work also considers stere-
ochemical issues and clashes by a preprocessing step as de-
scribed in the lDDT paper. If an atom of a sidechain is stere-
ochemically problematic or involved in a clash, the entire side-
chain is removed. If this is the case for a backbone atom, the
entire residue is removed. This automatically leads to an in-
creased dRMSD score due to nonexistent atoms and therefore
missing distances.
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3.6.2 Parameterization of statistical potentials

The probability density functions of the statistical potential terms
are based on histograms with the following parameterization:

• local All atom interaction term: minimal distance: 0.0Å,
maximal distance: 10.0Å, bin size: 0.5Å, sequence separa-
tion: 4 residues

• local Cβ interaction term: minimal distance: 0.0Å, max-
imal distance: 12.0Å, bin size: 0.5Å, sequence separation:
4 residues

• local Solvation term: inclusion radius: 5.0Å, max counts:
32

• global All atom interaction term: minimal distance: 0.0Å,
maximal distance: 12.0Å, bin size: 0.5Å, sequence separa-
tion: 4 residues

• global Cβ interaction term: minimal distance: 0.0Å, max-
imal distance: 12.0Å, bin size: 0.5Å, sequence separation:
4 residues

• global Solvation term: inclusion radius: 4.0Å, max counts:
20

• Torsion term (both local and global): bin size: 20◦

3.6.3 Target value distribution of different test sets

The test sets used in this work vary significantly regarding the
quality of their underlying protein structure models. We high-
light this fact by a more detailed analysis based on lDDT scores.
While the SWISS-MODEL and CAMEO test sets largely consist
of high quality models, the CASP test set exhibits a clear ten-
dency towards lower quality models (Figure 26).
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(a) local lDDT distribution - The peaks at 0.0 for local lDDT arise from res-
idues with stereochemical issues / clashes with the backbone atoms in-
volved

(b) distribution of per model averages of local lDDT values

Figure 26: Target value distribution of the different test sets
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3.6.4 Why you should not use Cα distances as a target value for
local quality estimates anymore

The Cα distance of a residue in a model and its target structure
after a global superposition, is an often used measure of local
model accuracy. Obvious problems include:

• The measure neglects 90% of the atoms in a protein struc-
ture. Interatomic interactions are simply neglected. This
can be stereochemical issues, but also favourable interac-
tions such as electrostatic interactions, hydrogen bonds
etc.

• The measure does not account for the environment of a
residue. The score of a completely buried residue does not
get penalized if the entire environment actually making it
a buried residue is completely missing.

• The measure is superposition dependent. This leads to
two problems.

[1] Especially in low quality models, different tools can
create different global superpositions. The score is there-
fore only reproducible with exactly the same superposi-
tion algorithm.

[2] Domain / hinge movements make it impossible to es-
timate accurate scores.

The CASP experiment typically uses Cα distances as target
value for QE evaluation. We therefore take a closer look at the
models of the CASP XI test set with superpositions and lo-
cal score data provided by the official assessors (LGA output
[168] on split domains). For a direct comparison, we also calcu-
lated the superposition free all atom scores used in this work
(dRMSD, lDDT, CAD). While those three scores show a good
pairwise agreement, they correlate poorly with Cα distances
(Figure 27).

For further analysis we concentrate on the direct comparison
between Cα distance and local lDDT score. The most disturb-
ing observation is the large number of residues being "good" in
terms of Cα distance but "bad" in terms of local lDDT. "Good"
in terms of Cα distance means a Cα distance below 3.8Å (CASP
terminology). "Bad" in our terminology means a local lDDT
score below 0.6. It is easy to find many examples, where the Cα
distance is obviously flawed and the superposition free scores
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show a more robust behaviour (Figure 28, Figure 29). The same
is true for the opposite scenario, a large number of residues be-
ing "bad" in terms of Cα distances but "good" in terms of local
lDDT. Many of those data points can be explained by the sus-
ceptibility of Cα distances to domain- and hinge movements
(Figure 30, Figure 31). Again, superposition free scores show a
more robust behaviour.

We therefore believe that the use of Cα distances not only
introduces unnecessary noise in the evaluation of quality as-
sessment performance, but also hinders machine learning ap-
proaches to unfold their full power when used as target value
in training. Superposition free all atom scores should be used
instead.
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(a) lDDT vs Cα distance (b) dRMSD vs Cα distance

(c) CAD vs Cα distance (d) lDDT vs dRMSD

(e) lDDT vs CAD (f) CAD vs dRMSD

Figure 27: Data from the CASP XI (Model2) test set. Every data point
compares two scores for the same residue. The Cα dis-
tances have been capped at 15 Å and correlate poorly with
the superposition free all atom scores used in this work.
While lDDT and dRMSD match almost perfectly, the corre-
lation of lDDT and dRMSD towards CAD score is poorer
but still good.
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(a) T0814TS448_3 D2 (b) 21 of 116 residues are "good"
(CASP terminology)

(c) T0781TS436_4 D1 (d) 23 of 200 residues are "good"
(CASP terminology)

Figure 28: (a),(c): Models (red) superposed onto their corresponding
targets (green) with superpositions from the official CASP
assessors. (b),(d): corresponding per residue lDDT vs Cα
distance plots with overall distribution as background.
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(a) T0793TS436_4 D4 (b) 27 of 85 residues are "good" (CASP
terminology)

(c) T0767TS466_3 D1 (d) 21 of 76 residues are "good" (CASP
terminology)

Figure 29: (a),(c): Models (red) superposed onto their corresponding
targets (green) with superpositions from the official CASP
assessors. (b),(d): corresponding per residue lDDT vs Cα
distance plots with overall distribution as background.
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(a) T0821TS454_4 D1 (b) lDDT values are mostly in the
"good" range, whereas Cα dis-
tances are pretty much random

Figure 30: (a): Model (red) superposed on target (green) with super-
position from the official CASP assessors. Even though the
global superposition is bad, the relative orientations of the
single helices in the model are largely correct. (b): corre-
sponding per residue lDDT vs Cα distance with overall
distribution as background

Figure 31: While Figure 30 looks at one model, this plot shows the
local lDDT values vs Cα distances for all 150 models of the
target T0821. Many data points agree, low Cα distances re-
sult in high local lDDT values. But many other data points
show the susceptibility of Cα distances to domain-/hinge
movements that are particularly pronounced in this target.
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3.7 evaluation of local qe performance

Method Target Pearson r Spearman r AUC per model AUC

QMEAN_OLD lddt 0.569 0.590 0.802 0.790

QMEAN lddt 0.730 0.743 0.874 0.823

QMEANDisCo lddt 0.857 0.865 0.929 0.869

QMEAN_OLD cad 0.445 0.450 0.746 0.709

QMEAN cad 0.626 0.630 0.827 0.759

QMEANDisCo cad 0.716 0.720 0.861 0.781

QMEAN_OLD drmsd 0.551 0.567 0.776 0.747

QMEAN drmsd 0.696 0.705 0.849 0.777

QMEANDisCo drmsd 0.819 0.827 0.910 0.817

Table 5: Evaluation on the SWISS-MODEL test set
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Method Target Pearson r Spearman r AUC per model AUC

Verify3d smoothed lddt 0.484 0.438 0.747 0.640

Dfire v1.1 lddt 0.264 0.285 0.673 0.666

Prosa2003 lddt 0.408 0.371 0.733 0.614

Naive PSIBlast lddt 0.284 0.322 0.673 0.617

ModFOLD4 lddt 0.672 0.702 0.885 0.817

ProQ2 lddt 0.610 0.642 0.865 0.786

EQuant 2 lddt 0.410 0.331 0.687 0.709

VoroMQA_v2 lddt 0.573 0.562 0.819 0.768

ModFOLD6 lddt 0.678 0.712 0.893 0.827

QMEAN lddt 0.727 0.705 0.879 0.826

QMEANDisCo lddt 0.837 0.839 0.932 0.864

Verify3d smoothed cad 0.411 0.364 0.724 0.611

Dfire v1.1 cad 0.183 0.199 0.645 0.609

Prosa2003 cad 0.359 0.331 0.724 0.592

Naive PSIBlast cad 0.231 0.257 0.642 0.580

ModFOLD4 cad 0.552 0.583 0.842 0.749

ProQ2 cad 0.513 0.520 0.824 0.718

EQuant 2 cad 0.324 0.240 0.654 0.661

VoroMQA_v2 cad 0.469 0.446 0.780 0.705

ModFOLD6 cad 0.557 0.582 0.848 0.756

QMEAN cad 0.647 0.610 0.856 0.780

QMEANDisCo cad 0.736 0.717 0.895 0.804

Verify3d smoothed drmsd 0.479 0.429 0.729 0.622

Dfire v1.1 drmsd 0.248 0.266 0.647 0.629

Prosa2003 drmsd 0.396 0.362 0.705 0.592

Naive PSIBlast drmsd 0.267 0.301 0.658 0.610

ModFOLD4 drmsd 0.665 0.677 0.858 0.766

ProQ2 drmsd 0.600 0.620 0.835 0.739

EQuant 2 drmsd 0.397 0.311 0.663 0.669

VoroMQA_v2 drmsd 0.556 0.541 0.790 0.723

ModFOLD6 drmsd 0.670 0.686 0.864 0.776

QMEAN drmsd 0.698 0.670 0.849 0.781

QMEANDisCo drmsd 0.809 0.808 0.909 0.814

Table 6: Evaluation on the CAMEO test set
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Method Pearson r Spearman r AUC per model AUC

MULTICOM-CONSTRUCT 0.143 0.257 0.636 0.491

VoroMQA 0.493 0.496 0.752 0.696

LNCCUnB 0.126 0.130 0.566 0.539

ModFOLDclust2 0.672 0.734 0.891 0.756

MULTICOM-REFINE 0.280 0.307 0.664 0.487

FUSION 0.139 0.080 0.546 0.510

Pcons-net 0.662 0.738 0.893 0.765

Wang_deep_1 0.501 0.519 0.763 0.622

MULTICOM-NOVEL 0.331 0.365 0.688 0.626

ProQ2-refine 0.523 0.675 0.857 0.708

ModFOLD5 0.679 0.733 0.890 0.755

DAVIS-QAconsensus 0.532 0.733 0.890 0.758

Wallner 0.668 0.754 0.900 0.772

MULTICOM-CLUSTER 0.195 0.262 0.640 0.494

Wang_deep_2 0.479 0.541 0.780 0.654

Wang_deep_3 0.539 0.579 0.802 0.664

myprotein-me 0.324 0.662 0.857 0.686

PconsD 0.581 0.711 0.877 0.748

ProQ2 0.523 0.673 0.856 0.708

Wang_SVM 0.452 0.497 0.754 0.660

ModFOLD5_single 0.677 0.720 0.883 0.740

QMEAN 0.639 0.664 0.842 0.782

QMEANDisCo 0.704 0.713 0.878 0.798

Naive 0.614 0.619 0.830 nan

Table 7: lDDT Evaluation on the CASP XI test set (Model2)
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Method Pearson r Spearman r AUC per model AUC

MULTICOM-CONSTRUCT 0.111 0.197 0.599 0.494

VoroMQA 0.421 0.425 0.715 0.641

LNCCUnB 0.113 0.106 0.555 0.533

ModFOLDclust2 0.491 0.553 0.784 0.669

MULTICOM-REFINE 0.207 0.231 0.617 0.491

FUSION 0.105 0.072 0.533 0.523

Pcons-net 0.478 0.551 0.782 0.669

Wang_deep_1 0.376 0.391 0.692 0.582

MULTICOM-NOVEL 0.265 0.291 0.647 0.587

ProQ2-refine 0.387 0.506 0.759 0.633

ModFOLD5 0.499 0.554 0.784 0.669

DAVIS-QAconsensus 0.389 0.551 0.783 0.670

Wallner 0.492 0.570 0.792 0.676

MULTICOM-CLUSTER 0.143 0.200 0.601 0.496

Wang_deep_2 0.361 0.407 0.710 0.601

Wang_deep_3 0.410 0.442 0.727 0.608

myprotein-me 0.251 0.502 0.756 0.628

PconsD 0.440 0.538 0.776 0.665

ProQ2 0.388 0.505 0.758 0.632

Wang_SVM 0.354 0.380 0.694 0.609

ModFOLD5_single 0.501 0.547 0.779 0.662

QMEAN 0.526 0.561 0.779 0.714

QMEANDisCo 0.584 0.603 0.800 0.725

Naive 0.457 0.467 0.739 nan

Table 8: CAD Evaluation on the CASP XI test set (Model2)
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Method Pearson r Spearman r AUC per model AUC

MULTICOM-CONSTRUCT 0.142 0.258 0.638 0.485

VoroMQA 0.470 0.471 0.741 0.676

LNCCUnB 0.128 0.135 0.566 0.535

ModFOLDclust2 0.683 0.737 0.888 0.726

MULTICOM-REFINE 0.284 0.310 0.666 0.479

FUSION 0.133 0.088 0.554 0.518

Pcons-net 0.665 0.735 0.889 0.732

Wang_deep_1 0.497 0.508 0.758 0.607

MULTICOM-NOVEL 0.323 0.353 0.680 0.609

ProQ2-refine 0.520 0.668 0.855 0.681

ModFOLD5 0.690 0.735 0.887 0.722

DAVIS-QAconsensus 0.542 0.736 0.888 0.727

Wallner 0.671 0.751 0.895 0.738

MULTICOM-CLUSTER 0.197 0.265 0.642 0.487

Wang_deep_2 0.467 0.524 0.770 0.627

Wang_deep_3 0.528 0.565 0.793 0.639

myprotein-me 0.331 0.664 0.856 0.666

PconsD 0.595 0.724 0.881 0.718

ProQ2 0.521 0.667 0.854 0.681

Wang_SVM 0.436 0.477 0.741 0.635

ModFOLD5_single 0.688 0.721 0.881 0.709

QMEAN 0.605 0.626 0.830 0.748

QMEANDisCo 0.673 0.677 0.872 0.768

Naive 0.643 0.642 0.841 nan

Table 9: dRMSD Evaluation on the CASP XI test set (Model2)
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Method Pearson r Spearman r AUC per model AUC

MULTICOM-CONSTRUCT 0.032 0.070 0.544 0.520

VoroMQA 0.411 0.387 0.722 0.709

LNCCUnB 0.154 0.085 0.569 0.556

ModFOLDclust2 0.544 0.565 0.837 0.843

MULTICOM-REFINE 0.087 0.077 0.549 0.518

FUSION 0.107 0.074 0.526 0.509

Pcons-net 0.568 0.572 0.834 0.844

Wang_deep_1 0.325 0.354 0.711 0.709

MULTICOM-NOVEL 0.320 0.284 0.673 0.664

ProQ2-refine 0.487 0.503 0.797 0.803

ModFOLD5 0.545 0.573 0.835 0.840

DAVIS-QAconsensus 0.431 0.557 0.834 0.843

Wallner 0.573 0.583 0.840 0.849

MULTICOM-CLUSTER 0.091 0.073 0.546 0.522

Wang_deep_2 0.377 0.361 0.724 0.723

Wang_deep_3 0.410 0.386 0.739 0.737

myprotein-me 0.307 0.524 0.806 0.803

PconsD 0.421 0.446 0.785 0.844

ProQ2 0.487 0.502 0.795 0.803

Wang_SVM 0.394 0.361 0.715 0.708

ModFOLD5_single 0.539 0.568 0.824 0.826

QMEAN 0.632 0.633 0.835 0.838

QMEANDisCo 0.716 0.728 0.871 0.872

Naive 0.165 0.174 0.603 nan

Table 10: lDDT Evaluation on the CASP XI test set (Model2) - only
considering models with 50% of their residues having a lo-
cal lDDT > 0.6
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Method Pearson r Spearman r AUC per model AUC

MULTICOM-CONSTRUCT 0.020 0.044 0.529 0.507

VoroMQA 0.342 0.312 0.701 0.674

LNCCUnB 0.113 0.058 0.563 0.557

ModFOLDclust2 0.390 0.401 0.778 0.772

MULTICOM-REFINE 0.056 0.049 0.534 0.507

FUSION 0.093 0.057 0.527 0.521

Pcons-net 0.405 0.408 0.773 0.769

Wang_deep_1 0.236 0.240 0.673 0.663

MULTICOM-NOVEL 0.243 0.213 0.648 0.632

ProQ2-refine 0.362 0.355 0.746 0.735

ModFOLD5 0.393 0.408 0.778 0.770

DAVIS-QAconsensus 0.302 0.395 0.775 0.771

Wallner 0.413 0.414 0.780 0.774

MULTICOM-CLUSTER 0.057 0.046 0.531 0.508

Wang_deep_2 0.273 0.246 0.683 0.673

Wang_deep_3 0.304 0.273 0.698 0.684

myprotein-me 0.229 0.389 0.756 0.739

PconsD 0.301 0.331 0.739 0.774

ProQ2 0.364 0.357 0.746 0.734

Wang_SVM 0.292 0.247 0.674 0.658

ModFOLD5_single 0.392 0.407 0.770 0.760

QMEAN 0.534 0.509 0.806 0.789

QMEANDisCo 0.595 0.572 0.834 0.815

Naive 0.129 0.131 0.587 nan

Table 11: CAD Evaluation on the CASP XI test set (Model2) - only
considering models with 50% of their residues having a lo-
cal lDDT > 0.6
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Method Pearson r Spearman r AUC per model AUC

MULTICOM-CONSTRUCT 0.027 0.065 0.538 0.516

VoroMQA 0.391 0.367 0.700 0.694

LNCCUnB 0.161 0.087 0.563 0.554

ModFOLDclust2 0.548 0.535 0.800 0.803

MULTICOM-REFINE 0.080 0.069 0.543 0.511

FUSION 0.097 0.069 0.527 0.508

Pcons-net 0.564 0.539 0.797 0.803

Wang_deep_1 0.311 0.327 0.685 0.683

MULTICOM-NOVEL 0.309 0.269 0.651 0.641

ProQ2-refine 0.472 0.471 0.766 0.769

ModFOLD5 0.547 0.542 0.799 0.799

DAVIS-QAconsensus 0.442 0.528 0.797 0.802

Wallner 0.568 0.547 0.803 0.809

MULTICOM-CLUSTER 0.085 0.068 0.540 0.518

Wang_deep_2 0.360 0.332 0.693 0.692

Wang_deep_3 0.390 0.354 0.708 0.707

myprotein-me 0.311 0.486 0.769 0.765

PconsD 0.430 0.435 0.757 0.804

ProQ2 0.472 0.469 0.764 0.770

Wang_SVM 0.374 0.333 0.685 0.680

ModFOLD5_single 0.539 0.536 0.788 0.786

QMEAN 0.591 0.579 0.802 0.805

QMEANDisCo 0.672 0.678 0.841 0.837

Naive 0.181 0.184 0.605 nan

Table 12: dRMSD Evaluation on the CASP XI test set (Model2) - only
considering models with 50% of their residues having a lo-
cal lDDT > 0.6
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(a) ROC analysis on the SWISS-
MODEL test set

(b) ROC analysis on CAMEO test set

(c) ROC analysis on the CASP XI test
set

(d) ROC analysis on CASP XI test set
- high quality

Figure 32: Raw curves for overall ROC analysis with lDDT as target
value
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(a) Per model ROC analysis on the
SWISS-MODEL test set

(b) Per model ROC analysis on
CAMEO test set

(c) Per model ROC analysis on the
CASP XI test set

(d) Per model ROC analysis on CASP
XI test set - high quality

Figure 33: Raw curves for per model ROC analysis with lDDT as tar-
get value
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(a) ROC analysis on the SWISS-
MODEL test set

(b) ROC analysis on the CAMEO test
set

(c) ROC analysis on the CASP XI test
set

(d) ROC analysis on the CASP XI test
set - high quality

Figure 34: Raw curves for overall ROC analysis with CAD as target
value
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(a) Per model ROC analysis on the
SWISS-MODEL test set

(b) Per model ROC analysis on the
CAMEO test set

(c) Per model ROC analysis on the
CASP XI test set

(d) Per model ROC analysis on the
CASP XI test set - high quality

Figure 35: Raw curves for per model ROC analysis with CAD as tar-
get value
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(a) ROC analysis on the SWISS-
MODEL test set

(b) ROC analysis on the CAMEO test
set

(c) ROC analysis on the CASP XI test
set

(d) ROC analysis on the CASP XI test
set - high quality

Figure 36: Raw curves for overall ROC analysis with dRMSD as target
value
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(a) Per model ROC analysis on the
SWISS-MODEL test set

(b) Per model ROC analysis on the
CAMEO test set

(c) Per model ROC analysis on the
CASP XI test set

(d) Per model ROC analysis on the
CASP XI test set - high quality

Figure 37: Raw curves for per model ROC analysis with dRMSD as
target value
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P R O M O D 3 - A V E R S AT I L E H O M O L O G Y
M O D E L L I N G T O O L B O X

This chapter has been a collaborative effort between Gabriel
Studer, Gerardo Tauriello, Stefan Bienert and Niklaus Johner.

Author Contributions: GS, GT and SB implemented the soft-
ware (initials ordered by amount of contributions). GS made
major contributions to the modelling pipeline, performed the
research related to sidechain modelling, loop / fragment detec-
tion, performed all evaluations and wrote the manuscript. GT
made major contributions to the modelling pipeline and trained
the linear weights for the linear score combination in loop mod-
elling. NJ trained a first set of linear weights for loop scoring.

Motivation: Protein models that extrapolate structural informa-
tion from evolutionary related proteins are an attractive alterna-
tive when experimental data are missing. The underlying com-
putational methods have therefore received great attention in
the last decades. Nevertheless, the field is lacking a free, effi-
cient, state-of-the-art modelling engine.
Results: A complete modelling engine has been developed that
can perform all steps required to generate a protein model by
homology - ProMod3. Its modular design aims at implement-
ing flexible modelling pipelines and fast prototyping of novel
algorithms. All modelling tasks, such as loop modelling, side-
chain modelling or generating a full protein model by homol-
ogy have extensively been tested and compared to state-of-the-
art methods. In all aspects, ProMod3 has proven to be highly
accurate while being extremely performant with respect to com-
putation time.
Availability: ProMod3 is available through the SWISS-MODEL
webserver: https://swissmodel.expasy.org

4.1 introduction

The Schwede lab provides services such as SWISS-MODEL [22]
and the associated SWISS-MODEL repository [23] with the pur-
pose of making protein modelling accessible to all biochemists

87
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and molecular biologists worldwide. This leads to several thou-
sand requests to model a tertiary / quaternary protein struc-
tures per day with the goal of providing feedback to the user
within a few minutes. Given all this information we can define
specifications that the SWISS-MODEL modelling pipeline must
fulfill:

1. The pipeline must provide state of the art algorithms that
are flexible and extensible to fulfil evolving requirements

2. Building the models must be computationally efficient (re-
turning a result within a few minutes)

3. Given the limited runtime, the generated models must be
as accurate as possible

4. The models must be free for everybody, no licencing con-
straints

The first step concerning homology detection can be achieved
by using the extremely efficient tools BLAST and HHblits [6]
[134]. These tools have proven themselves to be fast and accu-
rate and thus will not be changed in the scope of this project.
The second step of generating an actual model has been per-
formed by the ProMod2 modelling engine [58] until recently.
ProMod2 is implemented in efficient but hard to maintain C
code. Improving the modelling algorithms by including the lat-
est developments in the field has proven itself to be difficult.
ProMod2 furthermore failed on certain loop modelling prob-
lems, not returning any modelling result in those cases. The
first and most important point in the specifications is therefore
clearly not fulfilled and we needed a replacement. One obvi-
ous choice would have been the widely used modelling engine
MODELLER [158]. However, the licencing is restrictive and the
source code is not fully available. A clear contradiction to point
one and four of our specifications. Another option that has been
evaluated was the use of the homology modelling capabilities
of the Rosetta [151] or I-Tasser [167] software packages but they
both failed to fulfil our requirements regarding point two and
four. We therefore decided to implement a modelling engine
from scratch - ProMod3. As we demonstrate in this work, the
modelling engine is capable of generating highly accurate mod-
els of protein structures using limited computational resources.
It provides efficient data structures that can be manipulated
with state-of-the-art algorithms and allows the implementation
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of flexible pipelines to solve modelling problems at hand. Af-
ter obtaining excellent results in an extensive testing phase in
the CAMEO continuous evaluation platform [60], the engine
has been deployed as default modelling engine in the SWISS-
MODEL pipeline as of June 2016 and has ever since generated
thousands of homology models for the scientific community
worldwide.

4.2 materials & methods

4.2.1 Architecture

ProMod3 can considered to be an extension to the OpenStruc-
ture software framework [21], which is specifically tailored to
homology modelling. Its modular design aims at implementing
flexible modelling pipelines and fast prototyping of novel algo-
rithms. The loop module provides algorithms and data struc-
tures designed to generate and manipulate short peptide seg-
ments to model target regions without direct template infor-
mation. To generate all atom representations of peptide seg-
ments, sidechain can be used. scoring is concerned with the se-
lection of alternative conformations and measuring model re-
liability in general. Specific modelling tasks that use the afore-
mentioned modules, are gathered in modelling. Molecular me-
chanics tasks to regularize structures or segments thereof are
not directly implemented in ProMod3 but the functionality of
OpenStructure has been extended to provide wrappers around
the OpenMM molecular mechanics library [40]. To ensure ef-
ficiency, most tasks and algorithms have been implemented
in C++ and made available to the Python scripting language.
This allows for rapid prototyping of novel algorithms in Python
with the option to easily port them to C++ if execution speed
matters. The following sections summarize the implementation
details of the individual ProMod3 modules.

4.2.2 The Loop Module

OpenStructure provides a flexible object for representing and
editing structural information called the EntityHandle. It’s flex-
ibility comes at the cost of efficiency in terms of structural ma-
nipulations or memory usage. This can be problematic in case
of expensive sampling approaches or when large numbers of
conformations have to be processed. The loop module there-
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fore provides optimized data structures representing peptide
segments differentiating between backbone only and all atom
representations. They can be created efficiently from an Open-
Structure EntityHandle or merged back in. Alternatively, they
can be created from scratch. Several objects / algorithms are
available for this task. There is a database providing structural
information from non-redundant high-resolution X-ray struc-
tures (Section 4.2.2.1) and two objects to actually access it: the
fragment database that extracts fragments based on geometric
criteria (Section 4.2.2.2) and the Fragger that extracts fragments
based on sequence derived scores (Section 4.2.2.3). The struc-
tural database and fragment database have their origin in the
Fragra method [19] but both have massively been refactored to
increase accuracy and information content.

4.2.2.1 Structural Database

To generate meaningful structural fragments, an efficient ap-
proach is to rely on the fact that the available conformational
space for short fragments is largely covered by high resolution
structures [45, 46] (Section 4.6.1). The loop module contains a
database to serve as a source for structural information that
can be extracted by arbitrary accessors. The information stored
in the database is similar to the Rosetta Vall database [56] and
is optimized for fast access speed and low memory usage. For
every added protein chain we store the amino acid sequence,
coordinates of the backbone atoms (N, Cα, C, O), the DSSP
[79] secondary structure assignments including the matching
DSSP solvent accessibilities, the φ/ψ backbone dihedral angles,
the sequence profiles derived from HHblits [134] and sequence
profiles derived from structural data [171]. A linear memory
layout guarantees fast access to the stored information and
makes it possible to generate keys to uniquely identify any
fragment from the database by only 3 integer values: an entry
index, the offset from the start of that entry and the fragment
length. Arbitrary accessor objects can be built on top of the
structural database that relate fragment keys to arbitrary crite-
ria. The default database shipped with ProMod3 contains a non-
redundant set of protein chains as generated with the PISCES
webserver [157] using a sequence identity threshold of 90% and
a resolution threshold of 2.5Å. This gives ∼24 000 chains with
>5 000 000 residues and requires about 550MB of memory.
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4.2.2.2 Fragment Database

Figure 38: The FragDB accesses an underlying StructureDB using a
description of the relative orientation of two stem residues,
represented by their N, Cα and C atoms. Descriptors are:
number of residues in between (l, not shown), distance
from N-stem C to C-stem N (d) and 4 angles. α and β

describe the position of the C-stem N relative to N-Stem N,
Cα, C. Accordingly, γ and δ define the N-stem C relative
to C-stem N, Cα, C (not shown).

A typical loop modelling problem involves providing struc-
tural candidates for a loop that are geometrically constrained by
two stem residues [32, 115, 116]. ProMod3 implements a frag-
ment database that accesses the previously described structural
database based on geometric criteria. The fragment database re-
duces the relative orientation of two stem residues to 6 numer-
ical descriptors as visualised in Figure 38. Given a structural
database, one can build a fragment database by grouping all
possible fragments from the structural database with similar
stem geometry. To avoid redundancy, a Cα-RMSD threshold
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can be enabled. Lightning fast access is guaranteed by the sim-
ple stem geometry description and the organization of the frag-
ment database as a hash map. Given 2 stem residues as input
query, the description of their relative orientation generates a
key in the hash map and gives instant access to all structural
fragments with similar stem geometries. The default fragment
database shipped with ProMod3 is based on the underlying de-
fault structural database and contains information for ∼21 000

000 fragments of length 1-12 with ∼3 400 000 different stem
geometries and requires about 260MB of memory.

4.2.2.3 Fragger

The Fragger object provides another way to access the struc-
tural database and makes use of the fact that sequence based
properties exhibit preferences for local structural conformations
[25, 163]. This allows one to massively reduce the immense
conformational space to locally preferred regions by querying
the structural database for fragments of matching properties.
This fact is widely used to propose conformations to sample
loop regions or complete peptides without template informa-
tion [136, 165]. The Fragger object provides a variety of scoring
functions to evaluate all possible fragments of a certain length
in the structural database for their match towards a query se-
quence. They are further discussed in Section 4.6.3. Due to the
linear memory layout of the structural database, a sliding win-
dow approach allows for an extremely efficient search for a list
of fragments optimizing a certain score or a linear combination
thereof.

4.2.3 The Scoring Module

Accurate scoring capabilities are absolutely crucial in many
modelling tasks such as the selection of alternative local con-
formations, guidance of sampling procedures or measuring the
general local or global reliability of a protein model. Scorer ob-
jects in ProMod3 range from stereochemistry related scorers
such as clash scorers [26] to knowledge based scorers imple-
menting statistical potentials of mean force [145]. Additional
scorers allow the user to correlate local structural segments to
density information or allow to incorporate arbitrary constraint
functions between residue pairs. All available scorers are opti-
mized to efficiently assess local structural stretches given a con-
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stant environment and are further discussed in Section 4.6.4.
From a design point of view, ProMod3 separates between scorer
and environment. In order to get access to model-specific data,
every scorer requires to be attached to an environment object
that can be updated as the modelling proceeds. While scoring
of backbone-only segments is straightforward, ProMod3 recon-
structs all sidechains of the segment to be scored as well as
the residues being close in the scoring environment if a certain
scorer requires all heavy atoms to be present.

4.2.4 The Sidechain Module

ProMod3 comes with state-of-the-art sidechain modelling algo-
rithms to generate full atom representations of protein models.
They are inspired by SCWRL4 [87] but the design of the module
allows for interference with the sidechain modelling process at
several stages. ProMod3 provides rotamer libraries with access
to rotamers with or without dependency on the backbone. It is
possible to build custom libraries, although the backbone inde-
pendent Penultimate [104] and the backbone dependent Dun-
brack 2010 [143] libraries are directly provided to the user in
binary format.

The rotamers can be represented by their heavy atoms and
polar hydrogens as rigid rotamers (Rigid Rotamer Model →
RRM). An alternative are flexible rotamers. The same set of
atoms builds the basis for an ensemble of conformations, so
called sub-rotamers, exhibiting small variations around the side-
chain χ dihedral angles to better express the flexibility of side-
chains (Flexible Rotamer Model → FRM) [114]. In both cases,
RRM and FRM, ProMod3 employs the SCWRL4 energy func-
tion to estimate the pairwise energies between rotamers and to-
wards parts of the protein model that are kept rigid. In case of
RRM, this is simply summing up all pairwise energies, whereas
FRM exploits a thermodynamics based formalism [114].

Having rotamers and all required energies, the optimal com-
bination of rotamers minimizing Equation 1 has to be found.
This is extremely complex and a full enumeration of the solu-
tion space is computationally not feasible. Preprocessing steps
in the form of dead end elimination [54] or edge decomposi-
tion [87] are implemented to reduce the problem size so it can
finally be decomposed and solved by the graph based TreePack
algorithm [166].
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As an alternative, ProMod3 also allows searching for a set of
suboptimal solutions regarding the energy function using the
A* algorithm [96]. The rational behind considering suboptimal
solutions is based on the fact, that the energy difference to the
optimal solution might well be within the accuracy limit of the
applied energy function.

4.2.5 The Modelling Module

Efficient development of pipelines and new functionality is im-
possible when reoccuring tasks repeatedly have to be reimple-
mented from scratch. The modelling module overcomes this draw-
back by providing higher level functionality that operates on
the data structures from the previously described modules. This
can be the adaptation of loop structures on stem residues with
CCD [26] / KIC [108], interfaces to the molecular mechanics
functionality in OpenStructure for relaxation / minimization,
or pipelines to perform full modelling tasks. These pipelines in-
clude detection of fragments based on sequence features, loop
modelling, sidechain modelling or a full homology modelling
pipeline.

4.2.5.1 Loop Closing

The task of loop closing is to fit a loop conformation onto the
target stem residues that need to be connected. In the con-
text of ProMod3, this is necessary to ensure valid stereochem-
istry after extraction of loop conformations from the fragment
database (Figure 39a) or in the process of Monte Carlo sam-
pling. A first possibility is to run an energy minimization on
the loop conformation and enforce matching stems by adding
harmonic position constraints accordingly. A drawback of this
approach are the computational costs if thousands of loop con-
formations have to be closed as it is often the case in a typi-
cal homology modelling scenario. For computational efficiency,
two algorithms were implemented that are both inspired by the
field of robotics. The CCD (Cyclic Coordinate Descent) [26] and
KIC (Kinematic Closure) [108] algorithms. The idea of CCD is
to first superpose the N-stem of the loop conformation onto the
target N-stem and then iteratively alter φ/ψ backbone dihedral
angles to minimize the RMSD of the loop C-stem and the tar-
get C-stem until convergence is reached. This is achieved by
describing the RMSD between C-stem and target C-stem as a
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(a) Loop candidates extracted from
the structural database using the
fragment database

(b) Randomly selected loop candi-
date from Figure 39a (white)
closed with CCD (blue) and all
possible solutions found by KIC
(orange)

Figure 39: Illustration of loop candidates and their fit onto the desired
stem residues using CCD / KIC

function of the dihedral angle to be altered. The optimal angle
can then analytically be derived. Optionally one can activate a
filter to avoid movements resulting in unfavourable backbone
dihedral angles. Given a probability density function for the
involved amino acid A one can estimate p1 = p(φ,ψ|A) and
p2 = p(φnew,ψnew|A) from which an acceptance probability
paccept = min(1,p2/p1) can be derived. If a random number r
in range [0, 1] fulfils r < paccept, the suggested change of the
dihedral angles is applied, the next dihedral angles are subject
to change otherwise. Despite increased runtime and a lower
probability of convergence, ProMod3 uses this filter by default.

In contrary to CCD, the second loop closing algorithm, KIC,
is not an iterative approach. It requires to specify 3 pivot Cα
atoms that lead to a fragmentation of the loop conformation
into 4 rigid pieces. KIC estimates solutions for the φ/ψ angles
flanking the pivot atoms that lead to loop closure under the
constraint that the bond lengths and angles of the pivot atoms
remain constant. The constraints can be formulated as three
polynomials where common zeros define valid solutions that
can be found with the approach of polynomial resultants [35].
This gives up to 16 valid solutions for a certain loop closing
problem and requires a selection procedure if only one solu-
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tion is requested. To summarize: CCD returns exactly one so-
lution per loop closing problem, where changes of backbone
dihedral angles are distributed over the whole loop, whereas
KIC returns up to 16 solutions but only 3 φ/ψ dihedral angle
pairs are touched. As a direct consequence, CCD usually only
introduces small changes to a loop conformation if the stems
already approximately match as it is the case in our structural
database / fragment database approach, whereas KIC can alter
the complete loop orientation (Figure 39b). CCD should there-
fore be preferred in the context of the database approaches in
ProMod3 to stay as close to the original database loop as possi-
ble. For ab initio sampling approaches, KIC should be favoured
as it has been shown to improve the exploration of the confor-
mational space available to a given loop modelling problem
[108].

4.2.5.2 Fragment Detection Pipeline

Given a secondary structure prediction and a sequence profile,
the goal is to find n structural fragments of length l as close to
the native structure as possible for every location in the query
sequence. The default fragment detection pipeline in ProMod3

uses a Fragger object (Section 4.2.2.3) parametrized with the
SSAgreement, TorsionProbability, SeqProfile and StructProfile
terms (Section 4.6.3). For optimal performance, a heuristic de-
scribed in Section 4.6.5.1 is applied on the TorsionProbability
term.

To obtain an optimal linear combination of all involved terms,
test and training sets have been generated on the basis of 500

randomly selected protein chains present in the default struc-
tural database. For each fragment length l ∈ (5, 7, 9, 11, 15), a
set of 1000 fragments has been created by random selection of
structural fragments in those 500 protein chains. For each set,
40% are considered for training and 60% for testing. To avoid re-
dundancy, all subsequent training / testing has been performed
by querying a new structural database with no structural chains
having a sequence identity above 90% to any of the 500 chains
selected before.

For every target fragment, n fragments can be extracted from
the structural database. A possible measure of success is to eval-
uate the Cα-RMSDs with respect to the target fragment and esti-
mate the fraction being below a certain threshold. A continuous
curve is the result of varying this threshold (in this case 0-3Å)
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and gives the precision characteristics of a fragment detection
method [18, 122]. The area under the curve (AUC) breaks this
characteristic down to one number and the average AUC across
a whole training set has proven to be a good measure of accu-
racy to optimize for the desired linear weights.

A problem with this measure is the fact that fragments with
common local conformations as native structures, e.g. α-helices,
tend to exhibit better performance. This is simply because of the
higher probability to select a similar fragment by pure chance.
For every target fragment, one can estimate a performance curve
resulting from selecting m fragments randomly in the database
with m >> n in order to reduce noise. From the original per-
formance curve, this random curve can be subtracted to correct
for conformational bias and measure the performance relative
to random. For every fragment length we started with initial
guesses of the linear weights and performed a conjugate gradi-
ent optimization with the average AUC on the corresponding
training sets as target value. The test sets have then been used
to assure consistency in performance and a direct comparison
to the widely used Rosetta fragment picker [56] (Rosetta 3.7)
with the underlying Vall jul19.2011 database.

4.2.5.3 Loop Modelling Pipeline

The loop module provides the capabilities for generating loop
candidates based on the structural / fragment databases. Given
the observed structural coverage in the structural database Ta-
ble 4.6.1, high quality candidates can be expected up to a loop
length of around 12 residues with the fragment database ap-
proach. This satisfies most needs in realistic homology mod-
elling scenarios (Figure 43) and therefore received our main
attention for solving loop modelling problems. The goal of the
loop modelling pipeline is to (1) propose structural candidates
for a certain loop modelling problem and (2) select one of them
by employing the scoring module. Only in the rare case of longer
loops, a Monte Carlo sampling procedure is used as fallback.
The parameterization of the sampling is chosen to solve the
loop modelling problem in a matter of seconds with the main
attention on providing a stereo-chemically valid loop. This does
not automatically imply accuracy.

generating loop candidates As a consequence of ho-
mology transfer based on a sequence alignment, it is impos-
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sible to directly propose structural candidates bridging a gap
between stem residues enclosing insertion / deletion events. In
case of an insertion, the stems have been connected by a pep-
tide bond in the template structure and one or more residues
need to be modelled in this non existent gap. A deletion on the
other hand results in a gap with no residues to fill it. In any
case, template information must be omitted to allow an exten-
sions of the original gap by shifting the stem residues in order
to find stereochemically viable structural candidates. Given the
initial stems, a simple elongation schema can be defined accord-
ing to algorithm 1. Structural candidates can now be found by
iterating over the resulting gap extensions and query the in-
ternal databases. The iteration stops, as soon as enough candi-
dates have been found, introducing a direct dependency of the
found structural candidates on the elongation schema. A varia-
tion has therefore been introduced by first generating all possi-
ble gap extensions and subsequently apply a scoring based re-
ordering of the found gap extensions before any structural can-
didates are extracted. Every residue in the target structure gets
assigned a penalty if it is part of the gap extension and there-
fore omitted. The score of a gap extension is then the sum of
the penalties from omitted residues plus an additional penalty
per elongation. The underlying idea is to give a high penalty
for residues that are likely to be structurally conserved in order
to first process gap extensions that affect more variable regions.
Currently, a penalty of 1.0 is assigned if a residue has been in-
volved in a secondary structure element in the template struc-
ture, 0.0 otherwise. Given these values, an elongation penalty
of 0.8 per elongation step has been found to give optimal mod-
elling performance (data not shown). Having reordered the ex-
tensions, loop candidates are extracted from the databases and
fitted onto the target structure using the CCD loop closing al-
gorithm. The processed loop candidates are subject to scoring
to decide for one final candidate.

scoring and candidate selection All structural can-
didates undergo a scoring procedure that linearly combines
different scores available from the scoring module. To avoid any
size effects, the maximal observed extension of the stems to-
wards their corresponding termini is estimated to determine
the full scoring range. The scores for every candidate are cal-
culated by merging the candidate into the target structure and
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calculating all scores for the full scoring range, even though
certain candidates might not fully cover it.

To obtain a set of linear weights for any possible combination
of scores, a large training set has been generated. From 4000 ran-
domly selected chains in the default structural database, 5000

target loops have randomly been selected for all loop lengths
in the range [3, 12] with the only requirements being: no termi-
nal loops and more than 50% of the residues assigned as coil
by DSSP. The 4000 chains have then been removed from the
default structural database and a new fragment database has
been built to query for non redundant candidates for all target
loops. A total of 8’185’642 candidates have been found and fit-
ted onto their corresponding stem residues with CCD. In order
to find optimal linear weights for any combination of scores, we
have defined the target function as follows: the integral (area
under the curve) of the cumulative distribution for the proba-
bility of the selected candidates for all the target loops being be-
low xÅ in a range of 0-3Å. The resulting optimization problem
turned out to be rather complex and a simple conjugate gradi-
ent approach showed poor convergence behaviour, CMA [34] as
an alternative optimization strategy significantly improved the
situation and allowed to estimate weights for different score
combinations. As a compromise between speed and accuracy,
the default for the database approach is to use backbone only
scores (CBPackingScore, CBetaScore, ClashScore, HBondScore,
ReducedScore, TorsionScore), complemented by database spe-
cific scores that compare the sequence / structure profiles from
the loop candidate with the target sequence profile as well as
the stem RMSD before applying CCD. The application of all

Algorithm 1: Gap Elongation Procedure

n_stem_orig and c_stem_orig are the initial stems;

for elongation← 1 to max_elongation do
n_stem← n_stem_orig - elongation;
c_stem← c_stem_orig;
for shift← 0 to elongation do

ProcessGap(n_stem, c_stem);
n_stem← n_stem+1;
c_stem← c_stem+1;

end
end
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atom scores (AllAtomInteractionScore, AllAtomPackingScore,
AllAtomClashScore) can be enabled but significantly increases
runtime, as the sidechains for every candidate as well as the
sidechains in close proximity have to be constructed. Bench-
marks have shown, that this further improves loop modelling
performance when loops in experimentally determined struc-
tures are remodelled. However, the effects for the case of ho-
mology modelling have been found to be marginal (data not
shown).

Performance of the full loop candidate selection procedure
in combination with the subsequent default scoring has been
tested on a benchmark used to evaluate FREAD [32], a database
driven loop modelling method. For every loop length within
four and twenty residues, there are 30 loops to model in ex-
perimentally determined structures. To avoid redundancy, all
chains in the structural database with sequence identity above
90% to any of the chains in the loop test set have been removed.
The data extracted from the FREAD publication allows for di-
rect comparison to other widely used methods such as MOD-
ELLER [48], Rapper [10, 36], PLOP [73] and FREAD itself.

4.2.5.4 Sidechain Modelling Pipeline

ProMod3 provides a default sidechain modelling pipeline that
follows exactly the same steps as SCWRL4 but adds a post-
processing step in the end. It takes an input structure, uses ro-
tamers with sub-rotamers (FRM) and solves the sidechain mod-
elling problem using the described graph algorithms. Note, that
every rotamer in the FRM gets represented by an ensemble of
sub-rotamers to express the variability around the χ dihedral
angles. By default, one central sub-rotamer is considered to be
the representative. That is the one being enabled when the ro-
tamer is set in the target structure. Instead, as a post-processing
step, every rotamer that is part of the solution is transformed
to a set of rigid rotamers representing all of its sub-rotamers.
Those sets re-enter the pairwise energy calculation and graph
solving to decide on the optimal sub-rotamer of each set. The
resulting optimal sub-rotamers are considered as a final solu-
tion and inserted in the input structure.

To ensure state of the art performance, the set of structures
used to test SCWRL4 has been used. It consists of 379 experi-
mentally determined structures. All sidechains of the full asy-
metric units have been removed and reconstructed. In case of
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several chains with the same sequence, only the first is consid-
ered for evaluation. The main criteria for reconstruction per-
formance is the fraction of χ1 angles being within 20º of the
reference value given by the crystal structure. This is a widely
used measurement in the field [27, 87, 99, 106].

4.2.5.5 Homology Modelling Pipeline

The default homology modelling pipeline is fully customizable
and is intended to serve as a starting point for custom ver-
sions. Given an alignment and a template structure, all con-
served structural information is transferred to an initial model
of the target sequence. In the first step, small deletions are pro-
cessed by relaxing neighbouring residues and closed if a non-
clashing solution can be found. Non-closed deletions from now
on get treated as normal insertions and enter the loop mod-
elling procedure. Once the model has a continuous backbone,
sidechains are reconstructed using the default reconstruction
pipeline. Please note that conserved sidechains that have never
been touched in the modelling process are kept rigid. Energy
minimization resolves stereochemical irregularities and clashes
introduced in the modelling process. Short steepest descent and
conjugate gradient minimization runs are iteratively applied on
the model until all stereochemical problems are resolved or an
upper bound of iterations is reached. Once this is completed,
the final model is ready to be used.

To test the performance, a realistic homology modelling sce-
nario has been created by selecting 226 target sequences from
3 months of the CAMEO continuous evaluation platform [60].
The templates with the corresponding alignments exhibiting
the best HHblits [134] e-value have been searched in the SWISS-
MODEL template library [22] at the day of the CAMEO sub-
mission before the according target structures got released to
the public. The extracted information allows ProMod3 to run
in parallel to the widely used MODELLER tool given the ex-
actly same HHblits profile, template structure and the target-
template sequence alignment as input. The goal was to build
models as close to native as possible, measured by the super-
position free all atom based lDDT score [109]. The MolProbity
overall score [30] evaluates stereochemistry as an additional but
equally important measure. To avoid unrealistic terminal tail
conformations, all models have been trimmed to the region ac-
tually covered by the provided template structure.
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4.3 results

4.3.1 Fragment Detection Performance

Figure 40 shows similar overall performance in fragment detec-
tion between ProMod3 and the Rosetta fragment picker with
default parameterization. While being worse when consider-
ing fragments of helical target structure, ProMod3 does bet-
ter at fragments with extended target structures. Conceptually
equal terms to the four that are used in ProMod3 are also
in use in the Rosetta fragment picker, the two terms consid-
ering sequence profiles even share the exact same mathemati-
cal formalism. They both outperform their Rosetta counterparts
when in use as single terms (Figure 47). Assuming similar se-
quence profile quality (ProMod3 used HHblits, Rosetta uses
PsiBlast [6]), the difference in performance must come from the
increased amount of data in the structural database in ProMod3.
Consequently, ProMod3 also outperforms the Rosetta fragment
picker when only the four equivalent scores get used(Figure 46).

Figure 40: Fragment detection performance on fragments of length
9 relative to random. Solid lines: ProMod3, dotted lines:
Rosetta fragment picking protocol. Secondary structure
definitions are based on DSSP assignments on native
structure. >50% helical residues→helical, >50% extended
residues→extended, coil otherwise.



4.3 results 103

Rosetta can only catch up because of incorporating additional
terms including solvent accessibility and backbone dihedral an-
gle predictions [42]. This leads to the conclusion that the Pro-
Mod3 performance could further be improved by adding addi-
tional terms and Rosetta could profit from a larger Vall database.
Besides prediction accuracy, computation time is of great inter-
est for many applications. A speed benchmark further speci-
fied in Section 4.6.8.2 gives a speedup of ∼6.0x in favour of
ProMod3.

4.3.2 Loop Modelling Performance

In case of the FREAD benchmark, ProMod3 clearly outperforms
all methods it has been compared against (Table 13). This is
especially true for shorter loops that predominantly need to
be modelled in realistic homology modelling scenarios (Fig-
ure 43). The improvements described in the cited FREAD ar-
ticle could unfortunately not be considered. The reason is that

Length MODELLER Rapper PLOP Original FREAD ProMod3

4 1.73 1.10 1.79 1.29 0.60

5 2.30 1.23 2.76 2.19 0.66

6 2.38 1.92 3.25 1.79 0.98

7 3.44 2.60 3.73 2.53 1.43

8 4.25 2.88 4.34 2.88 1.89

9 4.31 3.03 5.58 3.08 1.51

10 5.69 3.90 6.41 4.25 2.15

11 5.34 4.63 6.52 4.55 1.93

12 7.18 5.10 6.86 3.99 3.65

13 6.96 5.72 7.86 5.54 2.56

14 7.24 6.02 8.37 6.07 5.21

15 7.93 6.41 9.60 6.41 3.99

16 8.65 7.29 9.86 7.50 4.50

17 9.61 7.35 9.00 7.84 6.28

18 7.64 7.56 10.54 5.48 6.61

19 10.52 9.10 11.51 7.67 7.04

20 10.49 10.64 11.14 7.64 9.23

Table 13: Loop Modelling Performance Analysis - Comparing average
backbone RMSD (N, CA, C, O) for each loop length in the
FREAD benchmark set with data extracted from the FREAD
publication
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the described method did not return results for all loops in the
test set and the reported RMSD values for each loop length
are based only on a subset (typically around 60%). FREAD is
therefore represented by the Original FREAD column [37]. As
the benchmark only considers loops in high resolution X-ray
structures, it doesn’t reflect a realistic homology modelling sce-
nario. Consider this missing aspect to be covered in the overall
homology modelling performance analysis.

4.3.3 Sidechain Modelling Performance

The similarity of the algorithms in ProMod3 and SCWRL4 leads
to comparable sidechain reconstruction performance when us-
ing rotamers with sub-rotamers (average fraction of correct χ1:
82.30% (ProMod3), 82.18% respectively; Table 16, Table 18). This
fraction slightly increases for ProMod3 when applying the de-
scribed post-processing of selecting the optimal sub-rotamers
(82.52%; Figure 41, Table 15). When analyzing the performance
increase on a per amino acid basis, bulky sidechains profit most
(PHE 92.09%→93.85%, TRP 87.13%→89.38, TYR 90.66%→92.33%;

Figure 41: Comparison of sidechain modelling performance with
SCWRL4 by measuring the fraction of χ1 angles being
within 20º of the reference angles observed in the SCWRL4

test set.
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Table 15, Table 16). Even with post-processing, a speedup of
∼2.8x (4.5x when not using sub-rotamers (RRM)) compared to
SCWRL4 can be observed on a speed benchmark further de-
scribed in Section 4.6.8.3.

4.3.4 Homology Modelling Performance

Given the analysis on the generated models, ProMod3 shows
an average lDDT score increase of 1.68 (Figure 42). Also re-
garding MolProbity overall scores, ProMod3 produces signifi-
cantly better results by an average decrease of 1.27 (Figure 42).
Note that the MolProbity overall score is intended to relate
with X-ray resolution, lower is therefore better. The decomposi-
tion of the MolProbity overall score into its single components
(Clashscore, Ramachandran not favored and percentage bad
sidechain rotamers; Figure 50) reveals MODELLERs inability to
resolve clashes when default settings are used. The situation for
MODELLER models only slightly improves with increased re-

Figure 42: Comparison of overall homology modelling performance
with MODELLER. Exactly the same alignment and tem-
plate serve as input to model a total of 226 targets. The
similarity to the native structure is measured by the lDDT
score (higher is better) and stereo-chemistry by the Mol-
Probity score (lower is better).
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finement level (automodel.md_level set to refine.very_slow) at
high cost of computation time (Figure 51). When using the de-
fault settings in MODELLER, ProMod3 has a moderate increase
of modelling speed of a factor 1.4x in a benchmark further spec-
ified in Section 4.6.8.4. With the increased md refinement, this
factor increases to 7.2x.

4.4 discussion

ProMod3 has matured to a competitive homology modelling
engine implementing state of the art algorithms with tricks
and tweaks to make them as efficient as possible. Accurate
protein loops can be modelled within seconds given the pre-
sented database approach in combination with a wide variety
of scoring functions. If one is willing to spend more compu-
tational time, structural fragments open up the space for fully
customizable sampling procedures. All this gets complemented
by highly accurate and fast sidechain modelling algorithms
that not only allow the construction of all atom protein mod-
els but also extend the loop modelling capabilities by feeding
back the all atom information into the available all atom scor-
ers. In combination with the OpenMM wrappers provided by
OpenStructure, ProMod3 also gains highly customizable molec-
ular mechanics capabilities and can therefore considered to be
a complete modelling engine. The combination of state of the
art algorithms with the flexibility that comes with exporting all
functionality to the Python programming language helps im-
plementing and testing of new approaches. ProMod3 can there-
fore considered to be the basis and a promise for the future.
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4.6 supplemental materials

4.6.1 Structural Coverage in Structural Database

Fragment based approaches rely on the fact that the structural
space for fragments up to a certain length is fully covered. This
section evaluates the current state of structural coverage in the
default structural database in ProMod3. To represent the ob-
served conformational space for every fragment length between
3 and 15, empty sets have been created. For every set, all pos-
sible fragments of according length in the structural database
have been iterated and added, if no similar fragment was al-
ready present (no other fragment with Cα-RMSD below 3Å).
In a second step, every fragment in all of the sets has been
checked for similarity to any fragment of same length in a dif-
ferent entry of the structural database (with a stringent defini-
tion of similarity of Cα-RMSD below 1Å).

Length Unique Fragments Covered Fraction Covered

3 1 1 1.00

4 1 1 1.00

5 2 2 1.00

6 3 3 1.00

7 6 6 1.00

8 15 15 1.00

9 27 26 0.96

10 53 50 0.94

11 114 102 0.89

12 237 182 0.77

13 495 350 0.71

14 1016 650 0.64

15 2124 1292 0.61

Table 14: Structural Coverage in Structural Database
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4.6.2 Relevant Loop Lengths

Loop modelling accuracy decreases with increasing loop lengths,
as can be seen in the loop modelling performance analysis. This
is a result of the increasing conformational space. In case of
database approaches, this space is less and less covered and in
case of de novo or sampling approaches it gets increasingly ex-
pensive to explore it. To get an idea of the general difficulty of
the problem, it is worth analyzing loop lengths as they occur
in typical homology modelling scenarios. For that we analyzed
all inserted loops when running the default pipeline in Pro-
Mod3 on the full homology modelling benchmark. Modelling
all 226 targets required to model a total of 1018 loops. Figure 43

clearly shows, that short loops dominate. 978 loops (96.1%) are
of length 12 or less.

Figure 43: Observed lengths of loops inserted in the full homology
modelling benchmark using the default ProMod3 pipeline.
From a total of 1018 loops, 978 are of length 12 or shorter.
6 loops longer than 30 residues are not shown in the plot.

4.6.3 Fragger Scores

All scores implemented in the Fragger object (Section 4.2.2.3)
are listed here with a detailed description:
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• SeqID: Fraction of identical amino acids to the query se-
quence.

• SeqSim: Avg. substitution score to the query sequence as
estimated by any substitution matrix available in Open-
Structure, e.g. BLOSUM62.

• TorsionProbability: Avg. probabilities of φ/ψ dihedral
angles in the structural database given the input sequence.
The probabilities also consider the identity of the flank-
ing residues. Instead of generating distributions for all
possible combinations of flanking residues, the flanking
residues can be grouped arbitrarily. The default group-
ing scheme follows Solis & Rachovsky [150]. Default dis-
tributions are available to the user, but custom distribu-
tions can be generated with custom grouping schemes
and training data.

• SSAgreement: Avg. secondary structure agreement score
given a PSIPRED [75] prediction and the observed second-
ary structure in the structural database as estimated with
DSSP. The used formalism is probabilistic [149]:

S(d,p, c) = log
(
p(d,p, c)
p(d)p(p, c)

)
(27)

where d is the secondary structure assignment by DSSP, p
the secondary structure prediction from PSIPRED and c
the according PSIPRED confidence. The exact same distri-
butions are also in use in the QMEAN scoring function.

• SeqProfile: Avg. L1 distance of profile columns in query
sequence profile and the sequence profiles present in the
structural database. The same formalism is used in the
Rosetta fragment picking protocol [56]:

S(p,q) =
20∑
i=1

|p(i) − q(i)| (28)

where p(i) represent the probabilities of the 20 standard
amino acids in the query sequence profile and q(i) the



110 promod3 - a versatile homology modelling toolbox

same in the target sequence profile. Another formalism as
it is in use in HHblits would be:

S(p,q) = log

(
20∑
i=1

p(i)q(i)

f(i)

)
(29)

where f additionally represents a reference distributions.
This is computationally more expensive but did not im-
prove performance in fragment detection (data not shown).

• StructProfile: Same as SeqProfile, but the query profile
is compared to the structural profiles in the structural
database.

4.6.4 Scorers of the Scoring Module

Many of the scorers in the scoring module are based on statis-
tical potentials of mean force. They are only containers and in-
ternally operate on lookup tables. These need to be filled upon
parameterization. For all of them, ProMod3 provides default
versions that can be loaded from disk. Available scorers are:

• CBPackingScore: Statistical potential that evaluates the num-
ber of other Cβ positions within a certain cutoff radius of
the Cβ position of the residue to be evaluated.

The calculated scores are summed and normalized by the
number of scored residues.

• CBetaScore: Statistical potential that evaluates pairwise in-
teractions between Cβ atoms which are located within a
cutoff and that are at least seq_sep residues apart. A score
is assigned to each distance using equally sized bins and
distinguishing all possible pairs of amino acids.

Every pairwise interaction within the loop and towards
the environment is evaluated, summed up and finally nor-
malized by the number of evaluated interactions.

• ReducedScore: Statistical potential that evaluates pairwise
interactions between the reduced representation of resi-
dues with Cα distance< cutoff and that are at least seq_sep
residues apart. Every residue gets represented by its Cα
position p and a directional component v = norm(ca_pos−
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n_pos) +norm(ca_pos− c_pos). For interacting residues
r1 and r2, we can define a line l between p1 and p2. The
statistical potential then considers:

– dist: distance between p1 and p2

– α: angle between v1 and l

– β: angle between v2 and l

– γ: dihedral between (p1+ v1,p1,p2,p2+ v2)

A score is assigned to each combination of parameters
using equally sized bins and distinguishing all possible
pairs of amino acids.

Every pairwise interaction within the loop and towards
the environment is evaluated, summed up and finally nor-
malized by the number of evaluated interactions.

• HBondScore: Statistical potential that evaluates hydrogen
bonds similar to the one defined in the Rosetta energy
function [86]. It considers the Cα, C and O positions from
backbone hydrogen bond acceptors in interaction with the
N and H positions from the backbone hydrogen bond
donors. Four Parameters describe their relative orienta-
tion:

– dist: H-O distance

– α: O-H-N angle

– β: C-N-H angle

– γ: Cα-C-O-H dihedral angle

A scoring function with equally sized bins for all com-
binations of these parameters for three different states is
generated. State 1 for helical residues, state 2 for extended
residues and state 0 for all other residues. If the state of
two interacting residues is the same, that is the one from
which the score is extracted. In all other cases, the energy
is extracted from the 0 state.

Every pairwise interaction within the loop and towards
the environment is evaluated, summed up and finally nor-
malized by the number of residues in the loop.

• TorsionScore: Statistical potential that evaluates φ/ψ back-
bone dihedral angles taking into account the identity of
the scored residue, but also its flanking residues. Instead
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of generating a scoring function with equally sized φ and
ψ bins for all possible combinations of flanking residues,
the flanking residues can be grouped arbitrarily. The de-
fault grouping scheme follows Solis & Rachovsky [150].

All evaluated scores are summed and normalized by the
number of residues in the loop. The first φ and last ψ an-
gle of the loop are determined with the help of the scoring
environment if set.

• AllAtomInteractionScore: Statistical Potential that evalu-
ates pairwise interactions between all atoms that are lo-
cated within a cutoff and that are at least seq_sep res-
idues apart. A score is assigned to each distance using
equally sized bins and distinguishing all possible pairs of
chemically distinguishable atoms.

Every pairwise interaction within the loop and towards
the environment is evaluated, summed up and finally nor-
malized by the number of evaluated interactions.

• AllAtomPackingScore: Statistical potential that evaluates
the number other heavy atoms within a certain cutoff ra-
dius around all heavy atoms of a residue not belonging to
the assessed residue itself.

The calculated per atom scores are summed and normal-
ized by the number of atoms being assessed.

• ClashScore: Calculates a simple clash score between all
pairs of atoms among the evaluated residues and towards
the set environment. There is no need to define any pa-
rameters here as all interaction energies are fixed [27].

All calculated scores are summed and normalized by the
number of residues in the loop.

• AllAtomClashScore: Same as ClashScore but considering
all atoms.

The calculated score is normalized by the number of at-
oms being assessed.

• DensityScore: Given an input structure, the scorer gener-
ates a density map of the loop to be scored [39] and esti-
mates the normalized cross correlation to a user defined
target map.
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• SSAgreementScore: Evaluates a secondary structure agree-
ment score as it is already defined as Fragger score. In ev-
ery score evaluation, the secondary structure of the loop
is estimated by searching for hydrogen bonds leading to
a secondary structure as defined by DSSP. The hydrogen
bonds are searched internally in the loop as well as to-
wards the environment.

The final per residue scores are summed and normalized
by the number of residues in the loop.

• PairwiseScore: Evaluates a list of generic pairwise func-
tions. They are user defined and can either be simple con-
tact functions (evaluate to x if dist < max_dist, 0.0 other-
wise) or arbitary lookup tables.

When evaluating a loop, the scores of all pairwise func-
tions that involve a residue in the loop are summed up
(the other residue can be either in the loop or in the scor-
ing environment) and normalized by the number of resi-
dues in the loop.

4.6.5 Fragment Detection Performance

4.6.5.1 Torsion Score Heuristic

The outcome of the torsion score in fragment detection is highly
dependent on the secondary structure of the target fragment
and the used torsion probability distributions. The top scoring
fragments typically represent the secondary structure that dom-
inates the data those distributions have been trained on (Fig-
ure 44a, Figure 44b, Figure 45a). To reduce this effect, ProMod3

incorporates the secondary structure prediction from PSIPRED
in the default torsion score term and assigns torsion probability
distributions on a per residue basis. If the PSIPRED prediction
for a certain residue is helical or extended with a confidence of
>= 6, the applied torsion probability distributions are trained
on residues with the according secondary structure. In all other
cases, the distributions are trained on coiled residues. Using
this heuristic, the secondary structure dependency of the the
torsion score is reduced (Figure 45b).
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(a) Torsion probability distributions trained on helical residues

(b) Torsion probability distributions trained on extended residues

Figure 44: Comparison of fragment detection performance of Tor-
sionProbability term on fragments of length 9 relative to
random. The secondary structure specific performance is
highly dependent on the underlying probability distribu-
tions.
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(a) Torsion probability distributions trained on coiled residues

(b) Per residue torsion probability distributions selected according described
heuristic

Figure 45: Continuation of Figure 44 and the result of the described
torsion heuristic.
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4.6.5.2 Comparison to Rosetta

Figure 46: Comparison of fragment detection performance on frag-
ments of length 9 relative to random. The performance of
the default ProMod3 pipeline is compared to the Rosetta
fragment picking protocol when only the subset of the
four equivalent scores is used (ProfileScoreL1, ProfileScore-
StructL1, SecondarySimilarity, RamaScore).
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(a) SeqProfile vs Rosetta ProfileScoreL1

(b) StructProfile vs Rosetta ProfileScoreStructL1

Figure 47: Comparison of the fragment detection performance on
fragments of length 9 relative to random. The performance
of the two profile dependent terms used in the default
fragment detection pipeline of ProMod3 (solid lines) are
compared to their equivalend in the Rosetta fragment pick-
ing protocol (ProfileScoreL1, ProfileScoreStructL1; dotted
lines). ProMod3 and Rosetta use exactly the same underly-
ing mathematical formalism for scoring.
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(a) SSAgreement vs Rosetta SecondarySimilarity

(b) TorsionProbability vs Rosetta RamaScore

Figure 48: Continuation of Figure 47. The performance of the
SSAgreement and TorsionProbability terms used in the de-
fault fragment detection pipeline of ProMod3 (solid lines)
are compared to their equivalend in the Rosetta fragment
picking protocol (SecondarySimilarity, RamaScore; dotted
lines)
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4.6.6 Sidechain Performance Analysis

This section provides further details regarding sidechain mod-
elling performance in ProMod3 and SCWRL4 with different set-
tings. Additionally to only provide the fraction of correct χ1

angles, further analysis is performed regarding χ2 angles and
average RMSD calculated on the heavy atoms of the sidechains
(not including Cβ atoms).

AA num χ1 correct (%) χ2 correct (%) χ2 correct given χ1 (%) avg RMSD

ARG 3638 72.54 67.92 74.04 1.97

ASN 2883 82.48 45.47 52.44 0.64

ASP 4019 81.04 58.87 68.35 0.81

CYS 1001 87.31 0.19

GLN 2512 74.12 61.86 70.73 1.15

GLU 4644 70.00 63.95 70.84 1.50

HIS 1543 84.51 48.48 52.38 0.90

ILE 3968 95.16 84.48 86.52 0.28

LEU 6558 87.28 84.54 94.55 0.35

LYS 3901 73.14 73.98 77.95 1.16

MET 1410 79.22 70.78 79.59 0.77

PHE 2717 93.85 85.94 88.43 0.62

PRO 3233 81.13 79.77 98.25 0.13

SER 4107 68.10 0.33

THR 3790 89.34 0.21

TRP 979 89.38 76.71 83.89 1.00

TYR 2346 92.33 83.33 86.47 0.74

VAL 5019 92.69 0.25

Table 15: SCWRL4 test set - ProMod3 flexible rotamer model (FRM)
with optimal subrotamer selection (default).
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AA num χ1 correct (%) χ2 correct (%) χ2 correct given χ1 (%) avg RMSD

ARG 3638 72.51 70.09 75.89 1.98

ASN 2883 82.34 45.33 52.32 0.65

ASP 4019 81.04 58.90 68.13 0.81

CYS 1001 87.11 0.19

GLN 2512 74.44 61.86 70.37 1.15

GLU 4644 70.00 65.40 72.29 1.50

HIS 1543 84.25 48.48 52.08 0.91

ILE 3968 95.04 84.45 86.53 0.28

LEU 6558 87.13 84.58 94.52 0.35

LYS 3901 73.21 74.03 77.94 1.16

MET 1410 79.57 71.28 79.50 0.78

PHE 2717 92.09 85.17 87.65 0.67

PRO 3233 81.13 79.77 98.25 0.13

SER 4107 68.01 0.33

THR 3790 89.26 0.21

TRP 979 87.13 75.49 82.53 1.08

TYR 2346 90.66 83.21 86.27 0.80

VAL 5019 92.67 0.25

Table 16: SCWRL4 test set - ProMod3 flexible rotamer model (FRM,
no subrotamer selection).

AA num χ1 correct (%) χ2 correct (%) χ2 correct given χ1 (%) avg RMSD

ARG 3638 70.62 68.55 74.58 2.05

ASN 2883 81.27 43.36 50.49 0.67

ASP 4019 79.07 56.21 66.39 0.88

CYS 1001 87.41 0.19

GLN 2512 74.28 61.46 69.45 1.16

GLU 4644 68.11 64.06 71.07 1.56

HIS 1543 83.15 44.13 47.62 0.96

ILE 3968 94.53 83.92 85.98 0.30

LEU 6558 86.29 83.42 94.06 0.37

LYS 3901 72.16 73.39 77.16 1.18

MET 1410 79.57 70.21 78.79 0.81

PHE 2717 90.76 81.82 85.48 0.74

PRO 3233 80.30 78.94 98.23 0.14

SER 4107 67.71 0.33

THR 3790 89.10 0.22

TRP 979 86.01 72.32 79.57 1.18

TYR 2346 89.05 79.54 84.20 0.90

VAL 5019 92.13 0.26

Table 17: SCWRL4 test set - ProMod3 rigid rotamer model (no subro-
tamers, RRM).
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AA num χ1 correct (%) χ2 correct (%) χ2 correct given χ1 (%) avg RMSD

ARG 3638 73.53 70.40 76.34 1.96

ASN 2883 81.10 47.35 55.22 0.68

ASP 4019 81.19 60.34 69.94 0.83

CYS 1001 87.21 0.20

GLN 2512 74.80 62.78 71.26 1.15

GLU 4644 68.60 65.35 73.20 1.51

HIS 1543 83.15 45.37 49.26 0.96

ILE 3968 95.11 84.45 86.38 0.27

LEU 6558 87.19 84.93 94.84 0.36

LYS 3901 73.29 73.88 77.51 1.17

MET 1410 80.57 71.42 78.79 0.79

PHE 2717 91.24 84.95 87.78 0.76

PRO 3233 80.58 79.18 98.20 0.14

SER 4107 68.79 0.33

THR 3790 89.31 0.21

TRP 979 86.62 75.18 81.84 1.13

TYR 2346 89.86 82.48 86.34 0.89

VAL 5019 92.61 0.26

Table 18: SCWRL4 test set - SCWRL4 flexible rotamer model (FRM).

AA num χ1 correct (%) χ2 correct (%) χ2 correct given χ1 (%) avg RMSD

ARG 3638 71.94 68.00 73.67 2.02

ASN 2883 80.71 46.72 54.83 0.68

ASP 4019 79.37 57.55 67.90 0.88

CYS 1001 87.41 0.20

GLN 2512 74.04 62.98 71.13 1.16

GLU 4644 67.38 64.15 71.94 1.55

HIS 1543 83.41 42.51 46.15 0.97

ILE 3968 94.76 83.74 85.93 0.28

LEU 6558 86.38 83.93 94.39 0.38

LYS 3901 72.19 72.88 76.70 1.19

MET 1410 79.08 70.64 78.83 0.83

PHE 2717 90.84 82.08 85.33 0.77

PRO 3233 79.71 78.26 98.10 0.15

SER 4107 67.86 0.34

THR 3790 88.76 0.22

TRP 979 85.90 68.74 76.10 1.23

TYR 2346 88.53 80.18 85.03 0.97

VAL 5019 92.09 0.27

Table 19: SCWRL4 test set - SCWRL4 rigid rotamer model (no subro-
tamers, RRM).
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4.6.7 Homology Modelling Performance - More Details

When using default settings, ProMod3 is clearly betther than
MODELLER in both, the lDDT score as well as MolProbity
overall score (Figure 42). The MolProbity overall score is a com-
position score based on three contributors representing clashes,
Ramachandran- and rotamer outliers. An analysis on the single
scores suggests that MODELLER has issues in resolving clashes
when running with default settings (Figure 49; avg. MolProbity
clash scores: ProMod3: 6.9, MODELLER: 88.9). Also regarding
rotamer outliers, a significant difference can be observed (Fig-
ure 50a; avg. Molprobity rotamer outlier scores: ProMod3: 1.8,
MODELLER: 3.5), whereas the Ramachandran outliers are very
similar (Figure 50b; avg. MolProbity rotamer outliers: ProMod3:
2.1, MODELLER: 1.8). The obvious approach to improve stereo-
chemistry in MODELLER is to increase the refinement. This
has been achieved by remodelling the full test set with the
md_level variable in the automodel class set to refine.very_slow.
Despite small improvements, the stereochemical issues persist
(Figure 51, MODELLER averages: clash score: 81.7, rotamer out-
lier score: 2.6, Ramachandran outlier score: 1.6).

Figure 49: Comparison of MolProbity clash scores on models built
with ProMod3 / MODELLER (default settings) using the
same input. Every dot represents two models of the same
target. If it lies on the dashed line, the scores are equal.
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(a) Rotamer Outlier Scores

(b) Ramachandran Outlier Scores

Figure 50: Continuation from Figure 49, comparing the MolProbity
rotamer / ramachandran outlier scores.
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Figure 51: Comparison of overall modelling performance on models
built with ProMod3 vs MODELLER (with md_level set to
refine.very_slow in the automodel class) using the same
input data.

4.6.8 Speed Benchmarks

4.6.8.1 Setup

All speed benchmarks have been performed on the exactly same
hardware:

• CPU: Intel i7-6600U 2.60GHz

• Memory: 16GB DDR4 2133 MHz

For all benchmarks, ProMod3 has been built with GCC 5.4
and all optimizations turned on. (according cmake Flags:
-DOPTIMIZE=1, -DENABLE_SSE=1)

4.6.8.2 Fragment Detection Speed Benchmark

The runtime is compared with Rosetta 3.7 compiled with GCC
5.4 and all optimizations turned on. The used test set contains
five chains of the test used to measure the fragment detection
performance. The pdb id, chain id and number of fragments
are:
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• 3QWW, A, 425 fragments of length 9

• 4HDH, A, 631 fragments of length 9

• 1WG8, A, 277 fragments of length 9

• 1DEV, B, 33 fragments of length 9

• 2ODI, A, 230 fragments of length 9

This gives a total of 1596 fragments of length 9. In one run,
the top 100 fragments of length 9 are searched for all possible
positions in the target chains. To only consider the raw search
performance, all required input (profiles, PSIPRED predictions,
etc.) is provided.

The average timings over three independent runs on the same
hardware are:

• ProMod3: 1751 s

• Rosetta 3.7: 10446 s

This gives the reported speedup of ∼6.0x in favour of Pro-
Mod3.

4.6.8.3 Sidechain Modelling Speed Benchmark

ProMod3 is compared to the distributed binary of SCWRL4.
Computation time is measured as the average over three in-
dependent runs on the full test set used to measure sidechain
modelling accuracy. The observed timings are:

• ProMod3 with subrotamers (FRM) and post-processing:
555 s

• ProMod3 no subrotamers (RRM): 109 s

• SCWRL4 with subrotamers (FRM): 1563 s

• SCWRL4 no subrotamers (RRM): 495 s

This gives the reported speedups of 2.8x in case of FRM and
4.5x in case of RRM.
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4.6.8.4 Homology Modelling Speed Benchmark

ProMod3 is compared to MODELLER 9.17 from the officially
distributed Linux (Debian/Ubuntu) package. Computation time
is measured as the average over three independent runs on the
full test set used to measure homology modelling accuracy. The
observed timings are:

• ProMod3: 1605 s

• MODELLER default settings: 2196 s

• MODELLER increased refinement: 11548 s

This gives the reported speedups of 1.4x and 7.2x.



5
M U LT I T E M P L AT E M O D E L L I N G

Motivation: Template detection is the first step in a homology
modelling procedure. Especially for well characterized protein
families, hundreds of found templates is no exception. While
most homology modelling methods select one single template
for modelling, multiple templates might contain complemen-
tary information. If combined with clever strategies, model ac-
curacy could be improved.
Results: The default homology modelling pipeline in ProMod3

has been extended to take several templates as input. The pro-
posed algorithms are mainly targeted at increasing the struc-
tural coverage of the target sequence and have extensively been
tested and compared to other state-of-the-art homology mod-
elling methods.

5.1 introduction

The first step of basic homology modelling typically consists of
finding experimentally determined structures that are homolo-
gous to the sequence to be modelled. One of them is selected to
serve as template for the subsequent modelling steps. Despite
often being redundant, structural information from multiple
templates can, in some cases, be complementary and the mod-
elling procedure potentially benefits from the added informa-
tion from alternative templates [93]. Examples include adding
structural information towards N-/C-terminus, i.e. to increase
coverage, or to exploit alternative local conformations.

One form of multitemplate modelling is to represent tem-
plate information as internal constraints, as it is implemented
in the MODELLER [158] software. MODELLER then uses a
maximum likelihood approach to generate 3D-coordinates max-
imizing the agreement with the input constraints. Such internal
constraints can also be combined to include information from
several sources and then be fed into exactly the same maximum
likelihood workflow to obtain a final model. However, contra-
dicting template information has been found to be a major prob-
lem. A possible solution is to start with a single template, the
"seed", and only add additional templates if their structural in-

127
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formation is consistent. Two publicly available methods follow-
ing this approach are HHPred [113] and RaptorX [128].

Another form of multitemplate modelling use fragments ex-
tracted from various templates. This gives two benefits. First,
a model with high coverage can be generated by fragment as-
sembly. Second, local structural variations can be explored by
fragment replacement. Two prominent representatives of this
approach are ITasser [167] and Robetta [151].

The aim of this chapter is to develop an approach to in-
crease the model coverage by exploiting structural information
from various templates with ProMod3. To avoid detrimental
effects from inconsistent internal constraints, fragment assem-
bly will be used instead. The performance increase compared
to the default SWISS-MODEL homology modelling pipeline in
ProMod3 will be analysed and discussed in the context of the
CAMEO continuous evaluation platform [60].

5.2 materials & methods

5.2.1 The SWISS-MODEL pipeline

1. Template Search: The SWISS-MODEL pipeline runs both
BLAST [6] and HHblits [134] against the SWISS-MODEL
template library [22] (SMTL) in order to detect protein
structures homologous to the target sequence. The SMTL
is a curated copy of the protein data bank [16], anno-
tated for the needs of homology modelling with SWISS-
MODEL.

2. Template Ranking: The identified templates are ranked
based on properties extracted from their alignment to the
target sequence. The relevant score used is GMQE (Global
Model Quality Estimate) [19].

3. Template Filtering: In some cases, the number of poten-
tial templates reaches several thousand. The goal of tem-
plate filtering is to remove redundancy and only use a
subset for further processing.

4. Template Selection: The filtered templates are presented
to the user for manual selection. In the case of fully auto-
mated modelling, the list of already filtered templates is
further reduced. The goal is to cover as much as possible
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of the target sequence and to capture structural diversity
[23].

5. Model Building: Build a model for every selected tem-
plate using ProMod3.

6. Model Selection: The GMQE used in the template selec-
tion step gets updated using the QMEAN4 score (Sec-
tion 3.2.3) from the built models. All built models are
ranked according the updated GMQE and presented to
the user. If the modelling task has been submitted by
CAMEO, the finally returned model is selected accord-
ing to an additional scoring step incorporating consensus
information from all built models [19].

5.2.2 Rigid Blocks Algorithm

The motivation of the the rigid blocks algorithm is to identify
structurally consistent regions in two protein structures - rigid
blocks. The first and most important usage of rigid blocks is
to define viable anchor points to connect structural fragments
in assembly procedures. they furthermore allow to define al-
ternative local conformations of structural stretches not being
part of any rigid block, in case both of their stems are part of
the same rigid block. In our case there is no need to define
biologically relevant domains as is the goal in published meth-
ods such as DynDom [64]. Another viable option to achieve
this task would be to use the graph based Domain-Find algo-
rithm [19] that aims to detect and cluster residues with match-
ing structural environments. Despite its elegance, it introduces
unnecessary complexity to the problem, hence the usage of a
simple and fast alternative.

A protein structure is represented by its atoms that have a
defined position in 3D space. If there are two protein structures
with known correspondence for every atom in the first struc-
ture towards the second, their similarity can be expressed as
the root mean square deviation (RMSD):.

RMSD(A,B) =

√
1

N

∑
i

d(ai,bi)2 (30)

with d(ai,bi) being the Cartesian distance between atom i

in the two proteins A and B. For obvious reasons this formal-
ism is only meaningful when the two proteins are optimally
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Figure 52: Adenylate kinase in its open form (pdb id: 4ake) super-
posed onto inhibitor bound form (pdb id: 1ake; white)
using three different algorithms discussed in this chap-
ter. From left to right: Kabsch, iterative Kabsch and rigid
blocks.

superposed. This can be done by first representing the atoms
of the two proteins as lists of positions and directly perform-
ing a translation to move their geometric centre to the origin of
the coordinate system. In a second step, the Kabsch algorithm
returns the optimal rotation matrix leading to the minimal pos-
sible RMSD [78]. Following this procedure therefore not only
results in the minimal possible RMSD between two proteins,
but also the corresponding transformation in space.

For many applications, the transformation resulting from the
Kabsch algorithm is sufficient, but it is highly susceptible to out-
lier positions and cannot deal with hinge-/domain movements
(Figure 52). One possibility to reduce this effect is to perform an
initial superposition and introduce a distance threshold. From
the two position lists originating from the input structures, two
subsets can be created by gathering all positions with pairwise
distances below that threshold. The two subsets are then used
as input for another round of the Kabsch algorithm and two
new subsets are generated based on the distance threshold.
This procedure is iteratively applied until the subsets converge
or a maximum number of iterations is reached. The iterative
superposition largely diminishes the effect of outlier positions
but in case of a hinge-/domain movement, it behaves unpre-
dictably. Despite being deterministic, the converged solution
depends on the initial superposition, which is not optimal. Typ-
ically it just converges towards the largest subsets which are
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structurally consistent (Figure 52). This is exactly what is re-
quired in this work. But instead of only having one consistent
subset (from now on called a rigid block), we want several of
them to identify regions of consistent structure. That is where
the rigid blocks algorithm comes in.

The algorithm requires two protein structures and a sequence
alignment for the residue-residue mapping as input. Two lists
of positions with size L are generated by only extracting the
Cα positions of the L aligned residue pairs. Instead of using
the full lists as starting point of the iterative superposition, a
sliding window of length l is defined. This gives L− l+ 1 con-
secutive slices that can be extracted from the initial position
lists. They all serve as starting point for an iterative superposi-
tion and all unique rigid blocks emerging from this procedure
are stored. Note, that they are potentially overlapping or very
similar. The algorithm thus takes a threshold parameter as in-
put. Two rigid blocks are merged, if their fraction of matching
elements is above that threshold.

The underlying calculations are extremely efficient by not us-
ing the original Kabsch algorithm for minimum RMSD super-
position anymore but the more efficient quaternion characteris-
tic polynomial method [100]. The most expensive computation
reduces to calculating a covariance matrix between the posi-
tion lists [61]. Using Eigen matrices [57] for this task allows to
exploit sophisticated vectorization techniques of modern C++
compilers and reduces the runtime to only a few milliseconds
for a medium sized problem.

5.2.3 Coverage Extension Algorithm

The multitemplate modelling algorithm presented in this sec-
tion replaces step 5 in the SWISS-MODEL pipeline and relies
on extending coverage using two different strategies:

1. overlapping extension strategy

2. linker sampling extension strategy

For every template a model is built. The template serves as
seed and all other templates are considered to be alternative
templates. Starting from the seed, the algorithm tries to itera-
tively extend every chain by 1. and then 2. using the alternative
templates until nothing happens anymore.
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5.2.3.1 Overlapping Extension Strategy

Every alternative template of the current chain in the seed is
checked for increased coverage towards the N- or C-terminus
and whether there is a structural overlap. The rigid blocks al-
gorithm identifies structurally consistent regions in that over-
lap and uses the rigid block with the shortest distance d to
the current terminus as a superposition anchor (if d is smaller
than 30 residues). Every superposable extension is subject to
the default ProMod3 loop closing procedure (Section 4.2.5.3) to
ensure a continuous amino acid chain and is finally checked
for clashes with the seed. Only if potential clashes are close to
the joining region, will a Monte Carlo procedure try to resolve
them. All non-clashing extensions are now subject to a final
scoring using the default loop scoring procedure in ProMod3

(algorithm 4.2.5.3) and the best extension for each terminus is
added to the current chain in the seed.

Figure 53: Server 49 model of CAMEO target 5ftx. Horizontal bars
indicate the target coverage for each of the four input tem-
plates and the colouring their actual contribution to the fi-
nal model. The relative orientation is based on the overlap
strategy.
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5.2.3.2 Linker Sampling Extension Strategy

Every alternative template of the current chain in the seed is
checked to see whether it increases coverage towards the N- or
C-terminus. The found extensions are extracted and undergo
the default ProMod3 loop closing procedure (Section 4.2.5.3)
to ensure a continuous amino acid chain. The optimal relative
orientation is then determined by fragment replacement. A to-
tal of 1000 fragments are searched using the default ProMod3

fragment detection pipeline (Section 4.2.5.2) for the range not
covered (gap between extension and terminus). If there is no
gap between the extension and the associated terminus in the
current chain, the extension is shortened to have a fragment
length of at least 3 residues. The relative orientation of each
extension is determined by inserting each of the found frag-
ments and scoring the full extension in its resulting relative ori-
entation using the default loop scoring procedure in ProMod3

(algorithm 4.2.5.3). Having done that for all extensions, a final
scoring step determines and directly adds the optimal exten-
sion for each terminus in the current chain of the seed.

Figure 54: Server 49 model of CAMEO target 5iku. Horizontal bars in-
dicate the target coverage for the two input templates and
the colouring their actual contribution to the final model.
The relative orientation is based on the linker sampling
strategy.
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5.2.4 Testing Strategies

To test the impact on modelling performance when using the
simple coverage extension, we registered three testing servers
to CAMEO.

• server 54: Baseline to evaluate the modelling performance
when using the default SWISS-MODEL pipeline based
on the ProMod3 modelling engine as described in Sec-
tion 5.2.1.

• server 55: Exactly the same as server 54 but enforcing a
100% target sequence coverage. Each terminus not cov-
ered by the used template is modelled by performing 20

fragment based Monte Carlo runs with 5000 Monte Carlo
steps each. The termini are likely to be of low quality but
allow to evaluate the effect of increased coverage on cov-
erage dependent target scores. The reason for that exten-
sion is the observation that many servers registered to
CAMEO always return models with 100% target sequence
coverage.

• server 49: Same setup as for the other two servers. But
the coverage extension algorithm described in section Sec-
tion 5.2.3 is used for model building. For a direct compar-
ison to server 55, the same termini modelling strategy is
applied to each model to enforce 100% target sequence
coverage.

The performance of all three servers is evaluated on 80 mod-
els submitted by CAMEO in the period of one month (2017.03.11

- 2017.04.01), using the all atom based superposition indepen-
dent lDDT score [109] as target value. As an additional evalu-
ation, the models of server 49 are directly compared to other
widely used modelling services employing multitemplate mod-
elling techniques (Robetta [151], HHPred [113], RaptorX [128]
and IntFold4-TS [111]).
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5.3 results

5.3.1 SWISS-MODEL Server Evaluation

A direct comparison reveals that server 55 always produces
equally good or better results than server 54 in terms of lDDT
score (Figure 55). This is purely a result of adding low qual-
ity termini if they’re not covered by the underlying template
as illustrated in Figure 56. This is expected as the lDDT score
estimates the fraction of differences in interatomic distances be-
low a certain threshold. This fraction can only go up as there
is no punishment for badly modelled interatomic interactions.
The authors of lDDT already discussed this effect by estimat-
ing a nonzero baseline for random structures [109]. Despite not
necessarily being useful, the (close to) random termini are nec-
essary for a direct comparison to the top performing predictors
registered to CAMEO since they almost always return mod-
els with full coverage (Table 20). In some cases, the models of
server 49 experience a significant improvement of lDDT score
relative to server 55.

Figure 55: Per model comparison with server 54 as reference.
CAMEO target 5iku will further be discussed in Figure 56.
CAMEO target 5ihz represents a fail of server 49 due to its
template library exceptionally not being up to date.
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This can largely be attributed to adding full domains and
confirms the observations of Larsson et al. [93]. They state that
coverage extension is the main source of improvements in mul-
titemplate modelling. That is exactly what we do in server 49

with the remaining challenge being to improve relative domain
orientations, especially when no overlap is present in the un-
derlying templates. One case of lower lDDT compared to server
55, CAMEO target 5ihz, is marked in Figure 55. The reason was
that the template library of server 49 was exceptionally not up
to date, which caused an obvious template to be missed.

Figure 56: Alternative models of CAMEO target 5iku. White: target
structure, orange: server54, blue: server 55, red: server 49

5.3.2 Comparison to Other Multitemplate Methods

Server 49 is highly competitive compared to state-of-the-art
multitemplate modelling methods (Table 20). Even though all
SWISS-MODEL related servers return models in a fraction of
the runtime of all other servers, server 49 is only significantly
outperformed by Robetta in terms of lDDT. This is not true any-
more when considering binding sites. The heavy refinement
strategies of Robetta seem to be detrimental to these, often
more conserved parts of a protein model. For a more detailed
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Method Returned Models Runtime (h:min:s) Coverage lDDT lDDT Binding Site

server 54 80 00:09:33 0.87 0.6737 0.7588

server 55 80 00:19:39 1.0 0.6942 0.7842

server 49 80 00:16:41 1.0 0.7076 0.7823

Robetta 79 34:04:36 0.99 0.7306 0.7612

HHPred 79 24:21:09 0.97 0.6679 0.7413

IntFold4-TS 79 17:34:26 1.0 0.7079 0.8011

RaptorX 80 09:35:36 0.95 0.6938 0.7429

Table 20: Per server averages on modelled targets. 32 of the 80 targets
contain a ligand classified as relevant. They contribute to
lDDT binding site and have been modelled by all methods.

analysis, the comparison is extended on a per model basis (Fig-
ure 57). If server 49 generates a high quality model (lDDT >
0.70), it rarely gets outperformed by any of the other methods.
The situation changes for the lower quality range, where espe-
cially Robetta is capable to consistently outperform server 49

(Figure 57a). Since we ruled out the influence of coverage to
overall performance, the cases where Robetta performs better
than server 49 must either come from successful improvement
over the best available single templates, or flaws in the server
49 modelling pipeline. In order to identify cases of the latter op-
tion, we analyze the 10 targets where Robetta shows the largest
improvements compared to server 49 manually. Additionally
to the already discussed template library issue (CAMEO target
5ihz), 4 of the 10 cases are a result of flaws in the current SWISS-
MODEL pipeline and not the multitemplate modelling algo-
rithm itself. The corresponding models consistently stick out
in all comparisons. It’s therefore not something Robetta does
particularly well, but rather something server 49 does wrong:

1. 5go5: Known issue in final consensus based scoring step
to select model returned to CAMEO. A faulty normaliza-
tion tends to prefer oligomers. In this case a low quality
dimer instead of a monomer with much higher quality
(lDDT score 0.414 vs 0.7487) has been selected. Correct
stoichiometry would have been monomeric.

2. 5mkc: The obvious template (sequence identity > 90%)
contained an insertion comprising a full domain with ∼350

residues. The SWISS-MODEL pipeline identified both, the
part towards C-terminus and N-terminus around that in-
sertion as single templates.
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3. 5llx: A small domain with an obvious template has been
neglected due to the template filtering step in the SWISS-
MODEL pipeline.

4. 5ixh: Same issue as 5go5. A low quality dimer instead of
a monomer with much higher quality (lDDT score 0.6081

vs 0.698) has been selected in the final consensus based
scoring step. The correct stoichiometry would have been
monomeric.

(a) Comparison of server 49 to Ro-
betta

(b) Comparison of server 49 to HH-
Pred

(c) Comparison of server 49 to
IntFold4-TS

(d) Comparison of server 49 to Rap-
torX

Figure 57: Direct comparison of server 49 with 4 servers employing
multitemplate modelling. In addition to the model marked
red (see Figure 55), 4 more models are specifically marked
and will further be discussed in Section 5.3.2.

5.4 discussion

This chapter uses the current SWISS-MODEL pipeline and in-
troduces relatively small changes to incorporate information
from multiple templates into one model. The biggest success
comes from adding full additional domains to a seed template,
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with the remaining challenge being to improve the relative ori-
entation. This largely agrees with the findings of Larsson et al.
[93]. They stated that most of the improvements from combin-
ing multiple templates can be expected by extending the cov-
erage of the target sequence. Another finding is the fact that
even extending coverage by low quality termini increases per-
formance in terms of coverage dependent scores such as lDDT.
Even though this does not add any valuable information to a
protein model, this effect must be considered when compar-
ing towards methods that always return full coverage models.
A final analysis using publicly available data from CAMEO,
showed that the presented multitemplate pipeline can gener-
ate competitive models at a fraction of the runtime of all other
methods. Room for improvement has mainly been identified in
the overall SWISS-MODEL pipeline and not the multitemplate
modelling algorithm itself. We are therefore confident to fur-
ther improve modelling performance by tackling the discussed
problems in the SWISS-MODEL pipeline. This would further
strengthen our position of generating high quality models in
very little runtime.
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