Sensitivity of serum concentration of cartilage biomarkers to 21-days of bed rest

Dr. Anna-Maria Liphardt¹,²,³
PD Dr. Annegret Mündermann⁴,⁵
Prof. Dr. Thomas P. Andriacchi⁶
Dr. Silvia Achtzehn¹
Prof. Dr. Martina Heer⁷
Prof. Dr. Joachim Mester¹

¹German Sport University Cologne (DSHS Köln), Training Science and Sport Informatics, Köln, Germany
²German Sport University Cologne (DSHS Köln), Biomechanics and Orthopaedics, Köln, Germany
³Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
⁴University Hospital Basel, Clinic for Orthopaedics and Traumatology, Basel, Switzerland
⁵Department of Biomedical Engineering, University of Basel, Basel, Switzerland
⁶Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
⁷University of Bonn, Department of Department of Nutrition and Food Science, Nutrition Physiology, Bonn, Germany

Original Research Article

October 2017

Corresponding Author: Dr. Anna-Maria Liphardt
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Internal Medicine 3 - Rheumatology and Immunology
Ulmenweg 18, 91054 Erlangen, Germany
Email: anna-maria.liphardt@uk-erlangen.de
Phone: +49 9131 85-43206, Fax: +49 9131 85-35784

Word count abstract: 237 words
Word count text: 3072 words
Running headline: Cartilage biomarkers to 21-days of bed rest

Author's contributions: AML conceived the study and was responsible for study design, data collection, analysis and interpretation and wrote the manuscript. AM was involved in
study design, data analysis and interpretation, and wrote the manuscript; TPA contributed to study design and data interpretation; SA performed biochemical analysis of the samples; MH and JM contributed to study design and data interpretation. All authors have read and approved the final submitted manuscript.
Abstract

The objective of the study was to test the hypothesis that serum levels of cartilage oligomeric matrix protein (COMP) would decrease and serum levels of tumor-necrosis factor alpha (TNF-α) and selected matrix metalloproteinases (MMPs) would increase in response to bed rest (BR) and that these changes are unaffected by the intake of potassium bicarbonate or whey protein. Seven and 9 healthy male subjects participated in two 21-day 6° head down tilt crossover BR-studies with nutrition interventions. Serum samples were taken before, during, and after BR and biomarker concentrations were measured using commercial enzyme-linked immunosorbent assays. MMP-3 during BR was significantly lower than at baseline (reduction greater 20%; P<0.001). MMP-3 increased significantly from 14 to 21 days of BR (+7%; P=0.049). COMP during BR was significantly lower than at baseline (reduction greater 20%; P<0.001). MMP-3 and COMP returned to baseline within one day after BR. MMP-9 on day 3 of BR was significantly lower than at baseline (-31%; P<0.033) and on days 3, 5 and 14 of BR significantly lower than at the end of and after BR (reduction greater 35%; P<0.030). The nutritional countermeasures did not affect these results. The observed changes in cartilage biomarkers may be caused by altered cartilage metabolism in response to the lack of mechanical stimulus during BR and inflammatory biomarkers may play a role in changes in biomarker levels. Clinical relevance: Immobilization independently from injury can cause altered cartilage biomarker concentration.

Key words: immobilization, cartilage health, cartilage biomarkers, metalloproteinases, tumor necrosis factor, nutritional supplements,
Introduction

Research in the space flight context enables us to use unique unloading models in healthy individuals to better understand the effect of physical activity or inactivity on cartilage health especially because anticipated times for tissue adaptation for bradytrophic tissue such as cartilage are longer than for instance for muscle or bone. Bed rest in a 6°-head-down-tilt (6°HDT BR) position is commonly used as a gold standard to simulate the effects of microgravity on the human body.1 This model simulates many physiological effects of space flight including a reduced mechanical stimulus of the lower extremity and a fluid shift towards the head.2 Previous studies have investigated the effects of nutritional supplements such as different proteins or bicarbonate on bone and muscle during bed rest.3,4 The only nutritional supplements discussed in osteoarthritis research are chondroitin and glucosamine but their effects on cartilage are inconclusive.5 To date, the effects of protein or bicarbonate supplements on articular cartilage have not been explored.

Potential cartilage biomarkers include structural proteins or enzymes that reflect cartilage metabolism. MMPs are a multi-member family of proteases with a wide range of substrates including extracellular components, cytokines, receptors, and cell motility factors.6,7 For instance, MMP-1 (or stromelysin-1) is produced by chondrocytes, osteoblasts and synovial cells that degrades collagen types I, II, and III in the extracellular matrix, and mediates cartilage destruction.8,9 In pathological conditions such as osteoarthritis (OA), MMP-1 is expressed at higher levels by OA chondrocytes than by normal chondrocytes suggesting a predominant role of MMP-1 in OA pathogenesis.10,11 MMP-3 is in part responsible for the degradation of non-collagen matrix proteins in cartilage in rheumatoid arthritis (RA) and OA8 and increased levels of MMP-3 and MMP-10 are found in articular cartilage and synovium of these patients.12-14 Cartilage collagen breakdown and aggrecan is coordinated by MMP-9 and MMP-13. Serum MMP-9 levels are increased in several
rheumatic diseases such as RA15 and systemic sclerosis.16 Native Collagen 2 (Coll-2) is degraded by matrix metalloproteinases (MMPs)-1, -8, -13 and -14 and partially degraded Coll-2 is then further degraded by gelatinases, namely MMP-2 and MMP-9 and stromelysin-1 (MMP-3).17 These enzymes represent the main proteolytic enzyme group involved in remodeling the extracellular matrix and modifying cell-cell and cell-matrix interactions.

Tumor necrosis factor alpha (TNF-\(\alpha\)) is an inflammatory factor and serves as one of the cytokines that can activate other cells to produce MMPs.18-20 It is also involved in the proteoglycan release from cartilage tissue21 and thus contributes to catabolic processes in osteoarthritis. Serum levels of TNF-\(\alpha\) have been associated with the prevalence of joint space narrowing and prediction of knee cartilage loss.22,23 Cartilage oligomeric matrix protein (COMP), also known as thrombospondin 5, is one of the non-collagenous, non-proteoglycan proteins of cartilage and has been associated with cartilage degradation in OA.24 Serum COMP concentration is sensitive to physiological loading which has been shown in different settings such as running and walking.25-27 A previous bed rest study has shown that serum COMP concentration decreases during 14 days of immobilization.28 However, to date the effects of bed rest on other cartilage biomarkers and the effect of bed rest exceeding 14 days on COMP is unknown.

The purpose of this study was to determine the effect of 21-days of unloading and nutritional supplements using the HDT-bed rest model on serum concentrations of MMP-1, MMP-3, MMP-9, TNF-\(\alpha\), and COMP in healthy male individuals. We hypothesized that serum levels of COMP would decrease and serum levels of TNF-\(\alpha\) and selected MMPs would increase in response to bed rest and that these changes are unaffected by the intake of potassium bicarbonate or whey protein.
Materials and Methods

We conducted two 21-days 6°HDT bed rest studies, the Nutritional Countermeasure Study (NUC-Study (Medium-term bed rest, potassium bicarbonate [KHCO3]) supplementation: Study 1; ClinicalTrials.gov Identifier: NCT01509456) and the Medium-term-bed rest Whey Protein study 2011/2012: Evaluation of whey protein and potassium bicarbonate to counteract effects of bed rest (MEP-Study) (Medium-term bed rest, whey protein and KHCO3 supplementation: Study 2; ClinicalTrials.gov Identifier: NCT01655979), at the clinical research center of the Institute of Aerospace Medicine, German Aerospace Center (DLR) (Cologne, Germany) in compliance with the Declaration of Helsinki and after approval of the Ärztekammer Nordrhein (Düsseldorf, Germany). A detailed description of the study designs can be found elsewhere. Briefly, participants were included in the respective studies after medical and psychological screening with the following exclusion criteria:

- history of hypertension, diabetes, obesity, rheumatic disease, hyperlipidemia, hepatic disease, bone disease, physical exercise more than four times per week, smoking, consumption of drugs, or alcohol excess, inconspicuous thrombophilia screening panel (AT III, S-Akt, Lupus-PTT, ferritin, Factor V Leiden, Factor IV, and Factor II). All participants provided written informed consent prior to participation. The studies had randomized cross-over designs with two 34-day phases, each divided into 7 days adaptation (baseline data collection, BDC), 21 days HDT bed rest and 6 days recovery (R). Environmental conditions, daylight conditions, study protocol and diet were controlled and identical in all phases. Participants were allowed to freely move around the ward in the adaptation and the recovery periods but physical exercise during these periods was omitted. During the intervention periods, participants were in 6°HDT bed rest for 24 h every day and not allowed to elevate their upper body. All activities, including eating, showering, and weighing, were carried out in the 6°HDT position. Physiotherapy sessions consisting of passive treatment were scheduled every 3 to 5 days. During the immobilization period in both studies, participants were quasi randomized.
alternatively by enrolment (1:1) to receive the standard meal plus the countermeasure (Study 1, potassium bicarbonate [KHCO3]; Study 2, 0.6 g whey protein/kg body weight/d) + potassium bicarbonate (90 mmolKHCO3/d) supplementation) in phase 1 and only the standard meal in phase 2, or vice versa.

Study specific details: Study 1

The NUC-Study investigated the effect of a balanced acid-base ratio by potassium bicarbonate treatment (nutritional countermeasure, daily dose: 90 mmol potassium bicarbonate) on the effects of bed rest on bone turnover, protein metabolism and the immune system in seven healthy male participants (Table 1). In addition, the effect of the nutrition countermeasure on body composition, muscle performance and the cardiovascular- and neurovestibular systems were tested. NUC phase 1 was conducted from February to April 2010 followed by a wash out period of 4 months before NUC phase 2 (August to October 2010). In both phases, blood samples were taken on days BDC-6, BDC-2, HDT2, HDT6, HDT10, HDT14, HDT21, R+2 and R+5. Serum was analyzed for COMP concentration.

Study specific details: Study 2

The MEP-Study examined the influence of 0.6 g whey protein (WP)/kg body mass (BM) and alkaline salt administration (90 mmol potassium bicarbonate (KHCO3)) supplementation as a potential nutritional countermeasure in multiple physiological systems in 10 healthy male subjects (Table 1). MEP phase 1 was conducted in September/October 2011 followed by a wash out period of 4 months before MEP phase 2 (February/March 2012). In both phases, blood samples were taken on days BDC-2, BDC-1, HDT2, HDT3, HDT5, HDT7, HDT14, HDT21, R+1 and R+5. Serum was analyzed for COMP, MMP-1, MMP-3, MMP-9 and TNF-α concentration.
Blood samples and biomarker analysis

In both studies, fasting (9 h) blood samples were collected shortly after waking up (~6:30 am) with the subject in the supine 6°HDT position over night (at least 8 h in the ambulatory study periods), according to the study period. Samples were drawn from the antecubital vein by a physician using a short catheter and serum monovettes (Sarstedt, Germany). 150 ml serum was aliquoted in 200µl volumes into Eppendorf tubes and frozen at -80°C until analysis. Serum MMP-1, MMP-3, MMP-9, TNF-α, and COMP concentrations were analyzed using commercial enzyme-linked immunosorbent assays (ELISA) (MMP-1: Quantikine®, Human Pro-MMP-1Immunoassay; MMP-3: Quantikine®, Human Total MMP-3 Immunoassay; MMP-9: Quantikine®, Human MMP-9 Immunoassay; TNF-α: Quantikine® HS, Human TNF-α Immunoassay, all Quantikine® Assays from R&D Systems INC., Minneapolis, MN, US, COMP® ELISA; AnaMar Medical AB, Lund Sweden;). Biomarker analysis was performed according to the manufacturer’s manuals and on ELISA plates from the same batch of each respective marker in order to avoid inter-assay variation. All analysis was done in duplicates with all samples of both phases for each participant on the same assay plate.

Strict standardization of bed rest studies within the European Space Agency (ESA) program allows for pooling data from different studies with the same study length and sample collection on identical study days. Thus, COMP concentration data from study 1 and 2 were pooled resulting in a greater sample size for the analysis of changes in COMP concentration during the bed rest periods. Overall, COMP concentration values of 16 subjects were pooled for study days BDC -2, HDT 2, HDT7 (HDT6), HDT 14, HDT21, R+1.

Statistical analysis
All statistical analyses were performed in SPSS version 21.0 (IBM Corporation, Amonk, NY, USA). Descriptive statistics were calculated for all parameters (mean, standard deviation, and 95% confidence interval (CI)). Data were tested for normality using Shapiro Wilks tests. Linear mixed models were used to detect significant changes in biomarker concentrations with time and intervention as within subject factors and paired least square distance tests for posthoc analysis. Linear regression analysis was used to detect significant associations among bed rest-induced changes in biomarkers. The significance level was set a priori to .05.

Results

Demographic data for participants in Study 1 and Study 2 are provided in Table 1.

Eight healthy young male participants were included in Study 1. One participant dropped out after phase 1 for personal reasons, thus blood samples of seven participants were analyzed.

Ten healthy young male participants were included in Study 2. One subject dropped out after phase 1 for personal reasons, and thus blood samples of nine participants were analyzed. The two populations did not differ in age, height or body mass (Table 1).

Table 1

| Biomarker data at all time points were normally distributed. MMP-3 and MMP-9 concentrations differed significantly between time points (repeated measures ANOVA: P<.001 and P=.005, respectively; Figure 1). There was no significant time effect for MMP-1 and no significant time × intervention interaction was observed for MMP-1, MMP-3, MMP-9 or TNF-α. MMP-3 levels during bed rest were significantly lower than at baseline (95% CI HDT-BDC: HDT2 [-3.48; -1.49] ng/mL; HDT7 [-3.90; -1.90] ng/mL; HDT14 [-4.34; -1.61] |
ng/mL; HDT21 [-3.8; -0.61] ng/mL; all P<.012; Figure 1). MMP-9 levels on day 3 during bed rest were significantly lower than at baseline (95% CI HDT-BDC: HDT-3 [-9.42; -172.16] ng/mL). TNF-α levels on days 14 and 21 during bed rest and on day 1 after bed rest were significantly higher than at baseline (95% CI HDT-BDC: HDT-14 [0.083; 0.392] pg/mL; HDT-21 [0.064; 0.512] pg/mL; R+1-BDC [0.170; 0.593] pg/mL).

MMP-3 levels increased significantly from 14 to 21 days of bed rest (95% CI HDT21-HDT14: [0.00; 1.76] ng/mL; P=0.50). MMP-9 levels on days 3, 7, and 14 were significantly lower than at the end of bed rest and after bed rest (95% CI HDT-R+1: HDT2 [-176.86; -40.55] ng/mL; HDT7 [-204.44; -32.88] ng/mL; HDT14 [-164.10; -35.47] ng/mL; HDT21-HDT14: [-163.54; -14.14]; all P<.025). MMP-3 levels returned to baseline levels within one day after bed rest (Table 2).

Table 2

COMP concentrations

COMP data at all time points in both studies were normally distributed. COMP concentrations differed significantly between time points (repeated measures ANOVA: P<.001; Figure 2). No significant time × study interaction was observed. Hence, COMP data from both studies were pooled for further analysis. COMP levels during bed rest were significantly lower than at baseline (95% confidence interval (CI) HDT-BDC: HDT2 [-1.31; -0.69] U/L; HDT7 [-1.64; -0.63] U/L; HDT14 [-1.63; -0.54] U/L; HDT21 [-1.59; -0.84] U/L; all P<.002) and returned to baseline levels within one day after bed rest (Table 3).
Discussion

The purpose of this study was to determine the effect of 21-days of unloading using the HDT-bed rest model on serum concentrations of MMP-1, MMP-3, MMP-9, TNF-α, and COMP in healthy male individuals. We observed reduced COMP levels in both bed rest studies. Moreover, MMP-3 but not MMP-1 or TNF-α were lower during bed rest than at baseline independent on the intervention, and MMP-9 was lower at 3 days into bed rest independent on the intervention. These results partially confirmed our hypothesis that serum levels of COMP would decrease and serum levels of TNF-α and selected MMPs would increase in response to bed rest and that the nutritional supplements included in this study are irrelevant for cartilage metabolism.

The results of our study support previous findings that HDT-BR leads to an immediate reduction in serum COMP concentration. COMP levels recovered to baseline immediately after the unloading period during 21 days of HDT-BR. As suggested previously, this finding may reflect a change in diffusion patterns due to reduced mechanical loading of the lower limb in HDT-BR. Previous studies have shown that serum COMP levels are sensitive to the loading mode of physical activity and that, for instance, slow but deep knee bends do not affect COMP levels. Moreover, COMP levels remain elevated after intense and prolonged physical activities such as a marathon or ultramarathon. In situ
experiments have shown that moderate cyclic tensile strain alters the extracellular matrix organization and composition.32 Such adaptations have been observed in animal models during 6 weeks of running training33 and in obese patients with knee osteoarthritis after a 16-week weight loss.34 These results suggest that COMP is sensitive to the magnitude of load and that adaptations may occur within the time frame of the current bed rest study.

Contrary to our hypothesis, we observed a decrease in MMP-3 and MMP-9 levels during bed rest. MMPs degrade the cartilage matrix. For instance, native collagen II is degraded by matrix MMP-1, -8, -13 and -14 and partially degraded collagen II is then further degraded by gelatinases, namely MMP-2 and MMP-9 and stromelysin (MMP-3)17. A presumably detrimental effect of immobilization on articular cartilage would be expected to be associated with increased levels of catabolic MMPs. The observed decrease in MMP-3 and MMP-9 levels at or close to the beginning of the HDT-BR period may be – similar to COMP explained by a reduced diffusion of molecules from the joint because of the lack of movement35 or by generally lower metabolic activity of chondrocytes during bed rest. Moreover, MMP-3 gene-expression is reduced in osteoarthritic hip joints.36

Interestingly, MMP-9 increased significantly on day 5 of HDT-BR, then returned to levels below baseline and showed a second increase above baseline on day 21 of HDT-BR. TNF-\textgreek{a} increased above baseline on day 14 of HDT-BR and remained elevated into the recovery phase. These changes were observed in both study phases and hence were consistent for the nutrition intervention and the control interventions suggesting that these changes are reproducible and did not occur by chance. Moreover, all participants completed exactly the same daily routine on all days of the HDT-BR. This phenomenon has not been previously reported for cartilage. This change in MMP-9 levels during the immobilization period may indicate a delayed effect of immobilization on tissue metabolism potentially representing
increased cartilage degradation after a prolonged time of bed rest that may be triggered by
inflammatory component37 indicated by elevated TNF-\textalpha\ levels as observed in the second half
of bed rest in our study. This result is particularly relevant for space flight because monitoring
inflammatory markers during space flight may be a potent measure for detecting initiation of
degenerative processes.

MMP-1 levels were unaffected by bed rest and by the nutrition interventions. This
result suggests that 21-day HDT-BR did not initiate cartilage changes similar to osteoarthritic
changes because in pathological conditions such as OA, MMP-1 is expressed at higher levels
by OA chondrocytes than by normal chondrocytes suggesting a predominant role of MMP-1
in OA pathogenesis.10,11 Moreover, MMP-1 appears not to be sensitive to loading suggesting
that pathways unrelated to mechanical load may affect MMP-1 expression.

The finding that MMP-3 and MMP-9 but not MMP-1 or TNF-\textalpha\ were lower during bed
rest than at baseline suggests that these biomarkers reflect different physiological pathways
affecting cartilage with a possible influence of microgravity on other tissues. Bed rest is
associated with different physiological changes including redistribution of fluids, lack of load
of the cardiovascular system and lack of gravitational load and movement associated cyclic
loads on musculoskeletal structures. It appears that the effects of these factors on a specific
tissue such as cartilage are complex. Nonetheless, the results of this study clearly showed that
bed rest does affect cartilage biomarkers, although the long-term consequences of these
changes remain unknown. Although the investigated enzymes and cytokines are not specific
to cartilage, altered loading may affect cartilage metabolism directly by their production by
chondrocytes or indirectly by systemic presence by production of other cells. These different
mechanisms cannot be elucidated from blood samples. However, the correlation of bed rest-
induced changes in MMP-9 and COMP levels and evidence of cartilage adaptation in studies
on extreme loading shown by changes in the same biomarkers31 and changes in the T2
relaxation times in magnetic resonance image sequences of articular cartilage38 strongly
suggest cartilage adaptation through altered metabolism during periods of bed rest. These
results also support the theory that pathological pathways of degenerative disease are
multifaceted and cannot be attributed solely to mechanical factors.

Similar to other physiological aspects, the response of cartilage biomarkers to bed rest
was not affected by the nutrition interventions. For instance, in the NUC study the nutrition
intervention did not affect glucose intolerance39, intervertebral disc properties and spine
muscle performance4 while potassium bicarbonate supplementation led to higher levels of
interleukin (IL)-240. In the MEP study, the nutrition countermeasure did not affect atrophy
and fiber type transition of the soleus and vastus lateralis muscles.3 Hence, the benefit of these
nutritional interventions on muscle and cartilage must be questioned.

The observed reduction in COMP, MMP-3 and MMP-9 but not in TNF-\textalpha and MMP-1
may be caused by altered cartilage metabolism in response to the lack of mechanical stimulus
during HDT-BR. Increases during bed rest in MMP-9 but not in MMP-3 or COMP suggest
that serum biomarker concentrations are not only affected by the lack of diffusion caused by
the immobilization but that the tissue metabolism changes with prolonged immobilization
shifting the balance between anabolic and catabolic processing towards net tissue loss. This
may reflect an inflammatory component independent of the nutrition intervention. Future
research should investigate the effects of exercise countermeasures on cartilage metabolism
with the ultimate goal to minimize negative effects of bed rest or spaceflight on cartilage
health.
Funding source

This study was mostly funded by the German Space Agency (Raumfahrtagentur Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V. Projekt 50WB0913), the European Space Agency (contract # 4000105103) and in part by the Swiss National Science Foundation (SNSF #32003B_159871/1). The funding bodies did not have any involvement in the study design, collection, analysis and interpretation of data; in the writing of the manuscript; or in the decision to submit the manuscript for publication.

Competing interests

The authors declare no competing interest.

References

19. van den Berg, WB. 1999. The role of cytokines and growth factors in cartilage
destruction in osteoarthritis and rheumatoid arthritis. Zeitschrift für Rheumatologie 58:
136-141.
collagen breakdown: novel synergistic effects in combination with proinflammatory
proteoglycan degradation is mediated by aggrecanase. Osteoarthritis and Cartilage 6:
214-228.
are associated with knee radiographic osteoarthritis and knee cartilage loss in older
cartilage turnover detectable in synovial fluid and blood. British Journal of
Rheumatology 31: 583-591.
25. Mundermann, A, Dyrby, CO, Andriacchi, TP, King, KB. 2005. Serum concentration of
cartilage oligomeric matrix protein (COMP) is sensitive to physiological cyclic loading
collagenous matrix proteins (cartilage oligomeric matrix protein and melanoma
protocols influence serum cartilage oligomeric matrix protein levels in young healthy
maintain cartilage thickness and serum concentrations of cartilage oligometric matrix
protocols influence serum cartilage oligomeric matrix protein levels in young healthy

Kevorkian, Y, Shirley, DJ, Shen, A. 2015. Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie.

Figure Legends

Figure 1. Changes in MMP-1, MMP-3, MMP-9 and TNF-α with and after 21-day bed rest in the MEP study (N=9). MEP – medium-term bed rest whey protein; BDC – baseline data collection; HDT – head down tilt; R – recovery; MMP – metalloproteinases; TNF – tumor necrosis factor. a – significantly different from BDC; b – significantly different from R+1; c – significantly different from HDT7; d – significantly different from HDT14; e – significantly different from HDT21.

Figure 2. Changes in serum COMP with and after 21-day bed rest in the NUC (N=7) and MEP (N=9) studies. NUC – nutritional countermeasures; MEP – medium-term bed rest whey protein; BDC – baseline data collection; HDT – head down tilt; R – recovery; COMP – cartilage oligomeric matrix protein. a – significantly different from BDC; b – significantly different from R+1; c – significantly different from HDT7; d – significantly different from HDT14.
Table 3. Mean (1 standard deviation) absolute serum concentrations of the biomarkers in the NUC study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Phase</th>
<th>Control</th>
<th>BDC-2</th>
<th>HDT6</th>
<th>HDT10</th>
<th>HDT14</th>
<th>HDT2</th>
<th>R+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP (U/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intervention</td>
<td></td>
<td></td>
<td>4.73 (0.66)</td>
<td>3.93 (0.49)</td>
<td>4.43 (1.47)</td>
<td>4.16 (1.37)</td>
<td>4.23 (2.08)</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td></td>
<td></td>
<td>4.41 (1.13)</td>
<td>3.81 (0.90)</td>
<td>3.79 (0.89)</td>
<td>3.84 (1.01)</td>
<td>3.71 (1.15)</td>
</tr>
</tbody>
</table>

NUC - nutritional countermeasures; BDC-2 - baseline data collection; HDT - head down tilt; R+2 - recovery; COMP - cartilage oligomeric matrix protein; MMP - metalloproteinases; TNF - tumor necrosis factor.

*Significantly different from BDC-2; **Significantly different from R+2.
Table 2. Mean (± standard deviation) absolute serum concentrations of the biomarkers in the MEP study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Phase</th>
<th>BDC</th>
<th>HDT2</th>
<th>HDT3</th>
<th>HDT5</th>
<th>HDT7</th>
<th>HDT14</th>
<th>HDT21</th>
<th>R+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP-1 (ng/mL)</td>
<td>Control</td>
<td>5.08 (2.43)</td>
<td>3.80 (1.96)</td>
<td>3.76 (2.00)</td>
<td>4.56 (2.71)</td>
<td>4.25 (2.57)</td>
<td>4.21 (2.68)</td>
<td>3.66 (1.92)</td>
<td>3.85 (2.51)</td>
</tr>
<tr>
<td>MMP-3 (ng/mL)</td>
<td>Intervention</td>
<td>3.33 (1.74)</td>
<td>3.39 (1.93)</td>
<td>3.31 (2.29)</td>
<td>3.68 (1.80)</td>
<td>3.61 (1.91)</td>
<td>3.76 (1.80)</td>
<td>3.66 (1.92)</td>
<td>3.29 (1.59)</td>
</tr>
<tr>
<td>MMP-9 (ng/mL)</td>
<td>Control</td>
<td>278.57 (153.31)</td>
<td>210.55 (103.31)</td>
<td>193.48 (71.59)</td>
<td>269.22 (116.40)</td>
<td>197.63 (81.32)</td>
<td>232.86 (100.70)</td>
<td>330.03 (188.10)</td>
<td>321.45 (196.60)</td>
</tr>
<tr>
<td>COMP (U/L)</td>
<td>Control</td>
<td>5.98 (0.92)</td>
<td>4.88 (0.95)</td>
<td>4.33 (0.95)</td>
<td>4.51 (1.04)</td>
<td>4.51 (0.92)</td>
<td>4.78 (0.91)</td>
<td>4.75 (0.57)</td>
<td>6.11 (0.63)</td>
</tr>
<tr>
<td>MEP – medium-term bed rest</td>
<td>Whey protein;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMP – head down tilt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Control</td>
<td>1.61 (b,0.42)</td>
<td>1.73 (b,0.44)</td>
<td>1.63 (b,0.43)</td>
<td>1.67 (b,0.54)</td>
<td>1.67 (b,0.53)</td>
<td>1.95 (b,0.51)</td>
<td>2.00 (b,0.66)</td>
<td>1.98 (b,0.37)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Intervention</td>
<td>1.52 (b,0.27)</td>
<td>1.67 (b,0.48)</td>
<td>1.87 (0.95)</td>
<td>1.54 (b,d,0.31)</td>
<td>1.53 (b,d,0.28)</td>
<td>1.66 (b,0.38)</td>
<td>1.71 (b,0.49)</td>
<td>1.92 (b,0.57)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Control</td>
<td>1.69 (0.92)</td>
<td>1.71 (0.95)</td>
<td>1.73 (0.95)</td>
<td>1.76 (1.04)</td>
<td>1.76 (0.92)</td>
<td>1.93 (0.91)</td>
<td>2.00 (0.57)</td>
<td>2.22 (0.63)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Intervention</td>
<td>1.52 (b,0.27)</td>
<td>1.67 (b,0.48)</td>
<td>1.87 (0.95)</td>
<td>1.54 (b,d,0.31)</td>
<td>1.53 (b,d,0.28)</td>
<td>1.66 (b,0.38)</td>
<td>1.71 (b,0.49)</td>
<td>1.92 (b,0.57)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Control</td>
<td>1.69 (0.92)</td>
<td>1.71 (0.95)</td>
<td>1.73 (0.95)</td>
<td>1.76 (1.04)</td>
<td>1.76 (0.92)</td>
<td>1.93 (0.91)</td>
<td>2.00 (0.57)</td>
<td>2.22 (0.63)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Intervention</td>
<td>1.52 (b,0.27)</td>
<td>1.67 (b,0.48)</td>
<td>1.87 (0.95)</td>
<td>1.54 (b,d,0.31)</td>
<td>1.53 (b,d,0.28)</td>
<td>1.66 (b,0.38)</td>
<td>1.71 (b,0.49)</td>
<td>1.92 (b,0.57)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Control</td>
<td>1.69 (0.92)</td>
<td>1.71 (0.95)</td>
<td>1.73 (0.95)</td>
<td>1.76 (1.04)</td>
<td>1.76 (0.92)</td>
<td>1.93 (0.91)</td>
<td>2.00 (0.57)</td>
<td>2.22 (0.63)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Intervention</td>
<td>1.52 (b,0.27)</td>
<td>1.67 (b,0.48)</td>
<td>1.87 (0.95)</td>
<td>1.54 (b,d,0.31)</td>
<td>1.53 (b,d,0.28)</td>
<td>1.66 (b,0.38)</td>
<td>1.71 (b,0.49)</td>
<td>1.92 (b,0.57)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Control</td>
<td>1.69 (0.92)</td>
<td>1.71 (0.95)</td>
<td>1.73 (0.95)</td>
<td>1.76 (1.04)</td>
<td>1.76 (0.92)</td>
<td>1.93 (0.91)</td>
<td>2.00 (0.57)</td>
<td>2.22 (0.63)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Intervention</td>
<td>1.52 (b,0.27)</td>
<td>1.67 (b,0.48)</td>
<td>1.87 (0.95)</td>
<td>1.54 (b,d,0.31)</td>
<td>1.53 (b,d,0.28)</td>
<td>1.66 (b,0.38)</td>
<td>1.71 (b,0.49)</td>
<td>1.92 (b,0.57)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Control</td>
<td>1.69 (0.92)</td>
<td>1.71 (0.95)</td>
<td>1.73 (0.95)</td>
<td>1.76 (1.04)</td>
<td>1.76 (0.92)</td>
<td>1.93 (0.91)</td>
<td>2.00 (0.57)</td>
<td>2.22 (0.63)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Intervention</td>
<td>1.52 (b,0.27)</td>
<td>1.67 (b,0.48)</td>
<td>1.87 (0.95)</td>
<td>1.54 (b,d,0.31)</td>
<td>1.53 (b,d,0.28)</td>
<td>1.66 (b,0.38)</td>
<td>1.71 (b,0.49)</td>
<td>1.92 (b,0.57)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>Control</td>
<td>1.69 (0.92)</td>
<td>1.71 (0.95)</td>
<td>1.73 (0.95)</td>
<td>1.76 (1.04)</td>
<td>1.76 (0.92)</td>
<td>1.93 (0.91)</td>
<td>2.00 (0.57)</td>
<td>2.22 (0.63)</td>
</tr>
<tr>
<td>MEP – significantly different from BDC;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Mean (1 standard deviation) absolute serum concentrations of the biomarkers in the NUC study.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Phase</th>
<th>Control</th>
<th>BDC-2</th>
<th>HDT-2</th>
<th>HDT-6</th>
<th>HDT-10</th>
<th>HDT-14</th>
<th>R+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP (U/L)</td>
<td>BDC-2</td>
<td>(1.62)</td>
<td>(1.73)</td>
<td>(2.08)</td>
<td>(1.37)</td>
<td>(1.47)</td>
<td>(1.58)</td>
<td>(1.13)</td>
</tr>
<tr>
<td></td>
<td>HDT-2</td>
<td>(3.43)</td>
<td>(3.81)</td>
<td>(3.26)</td>
<td>(3.66)</td>
<td>(3.79)</td>
<td>(3.84)</td>
<td>(3.43)</td>
</tr>
<tr>
<td></td>
<td>HDT-6</td>
<td>(3.93)</td>
<td>(4.43)</td>
<td>(4.23)</td>
<td>(4.16)</td>
<td>(4.23)</td>
<td>(4.16)</td>
<td>(3.81)</td>
</tr>
<tr>
<td></td>
<td>HDT-10</td>
<td>(4.54)</td>
<td>(4.73)</td>
<td>(4.43)</td>
<td>(4.16)</td>
<td>(4.54)</td>
<td>(4.73)</td>
<td>(4.54)</td>
</tr>
<tr>
<td></td>
<td>R+2</td>
<td>(4.34)</td>
<td>(4.54)</td>
<td>(4.23)</td>
<td>(4.16)</td>
<td>(4.23)</td>
<td>(4.16)</td>
<td>(4.34)</td>
</tr>
</tbody>
</table>

NUC – nutritional countermeasures; BDC – baseline data collection; HDT – head down tilt; R – recovery; COMP – cartilage oligomeric matrix protein; MMP – metalloproteinases; TNF – tumor necrosis factor.

*Significantly different from BDC-2.

Table 3. Mean (1 standard deviation) absolute serum concentrations of the biomarkers in the NUC study.