edoc

The Long Tail of Web Video

Rossetto, Luca and Schuldt, Heiko. (2018) The Long Tail of Web Video. In: MultiMedia Modeling. MMM 2018., 10705.

[img] PDF - Accepted Version
4Mb

Official URL: http://edoc.unibas.ch/58216/

Downloads: Statistics Overview

Abstract

Web Video continues to gain importance not only in many areas of computer science but in society in general. With the growth in numbers, both of videos, viewers, and views, there arise several technical challenges. In order to address them effectively, the properties of Web Video in general need to be known. There is however comparatively little analysis of these properties. In this paper, we present insights gained from the analysis of a data set containing the meta data of over 100 million videos from YouTube. We were able to confirm common wisdom about the relationship between video duration and user engagement and show the extreme long tail of the distribution of video views overall. Such data can be beneficial in making informed decisions regarding strategies for large scale video storage, delivery, processing and retrieval.
Faculties and Departments:05 Faculty of Science > Departement Mathematik und Informatik > Informatik > Datenbanken (Schuldt)
UniBasel Contributors:Schuldt, Heiko and Rossetto, Luca
Item Type:Conference or Workshop Item, refereed
Conference or workshop item Subtype:Conference Paper
Publisher:Springer
ISBN:978-3-319-73599-3
e-ISBN:978-3-319-73600-6
Series Name:Lecture Notes in Computer Science
ISSN:0302-9743
Note:Publication type according to Uni Basel Research Database: Conference paper -- The final publication is available at Springer, see DOI link.
Language:English
Identification Number:
Last Modified:09 Mar 2018 15:38
Deposited On:09 Mar 2018 15:38

Repository Staff Only: item control page