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A recent experiment reported the first violation of a Bell correlation witness in a many-body system
[Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the
statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such
experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of
measurement settings, two outcomes per party and one- and two-body correlators only. Based on these
inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body
systems using two collective measurements only. These witnesses can potentially detect Bell correlations in
states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics
needed to convincingly conclude that a measured state is Bell correlated.
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Introduction.—Bell nonlocality, as revealed by the vio-
lation of a Bell inequality, constitutes one of the strongest
forms of nonclassicality [1,2]. However, its demonstration
has long been restricted to systems involving few particles
[3–7]. Recently, the discovery of multipartite Bell inequal-
ities that only rely on one- and two-body correlators opened
up newpossibilities [8]. Although these inequalities have not
yet lead to the realization of amultipartite Bell test, they have
been used to derive witnesses able to detect Bell correlated
states, i.e., states capable of violating aBell inequality [9,10].
These witnesses have triggered two experiments [9,11]

which successfully detect the presence of Bell correlations
in a many-body system under the assumption of Gaussian
statistics [12,13]. The witness used in Refs. [9,11] involves
one- and two-body correlation functions and takes the form
W ≥ 0, where the inequality is satisfied by measurements
on states that are not Bell correlated. Observation of a
negative value for W then leads to the conclusion that the
measured system is Bell correlated. However, reaching
such a conclusion in the presence of finite statistics requires
special care [14,15]. In particular, an assessment of the
probability with which a non-Bell-correlated state could be
responsible for the observed data is required before con-
cluding about the presence of Bell correlations without
further assumptions.
Concretely, the witness of Refs. [9] has the property of

admitting a quantum violation lower bounded by a constant
Wopt < 0, while the largest possible value Wmax > 0 is
achievable by a product state and increases linearly with the
size of the system N. These properties imply that a small
number of measurement rounds on a state of the form

ρ ¼ ð1 − qÞjψihψ j þ qðj↑ih↑jÞ⊗N; ð1Þ
whereWðjψiÞ ¼ Wopt,Wðj↑i⊗NÞ ¼ Wmax and q is small,
is likely to produce a negative estimate of W, even though

the state is not detected by the witness in the limit of
infinitely many measurement rounds [9]. This state thus
imposes a lower bound on the number of measurement
rounds required to exclude, through such witnesses, all
non-Bell-correlated states with high confidence. Contrary
to other assessments, this lower bound increases with the
number of particles involved in the many-body system.
Therefore, it is not captured by the standard deviation of
one- and two-body correlation functions (which on the
contrary decreases as the number of particles increases).
For small systems, this dependence of the number of

measurement rounds on the size of the measured system
merely represents a technical overhead: a conclusion may
still be obtained at the price of performing few more
measurements. For large systems, however, any bound on
the number of measurements that can be performed
imposes a hard limit on the maximal size of systems on
which a reliable conclusion can be drawn. The question
of statistical significance thus constitutes a fundamental
question for many-body systems.
It is worth noting that states of the form (1) put similar

bounds on the number of measurement rounds required to
perform any hypothesis tests in a many-body system
satisfying the conditions above. This includes in particular
tests of entanglement [16–19] based on the entanglement
witnesses of Ref. [20–22].
In this Letter, we address this statistical problem in the

case of Bell correlation detection by providing a number
of measurement rounds sufficient to exclude non-Bell-
correlated states from an observed witness violation. Let us
mention that in Refs. [9,11], this finite statistics issue is
circumvented by the addition of an assumption on the set of
local states being tested. This has the effect of reducing the
scope of the conclusion: the data reported in Refs. [9,11],
are only able to exclude a subset of all non-Bell-correlated
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states (as pointed out in the references). Here, we show that
such additional assumptions are not required in experi-
ments on many-body systems, and thus argue that they
should be avoided in the future.
In order to minimize the amount of statistics required to

reach our conclusion, we start by investigating improved
Bell correlation witnesses. For this, we first derive Bell
inequalities with two-body correlators and an arbitrary
number of settings. This allows us to obtain Bell correlation
witnesses that are more resistant to noise compared to the
one known to date [9]. We then analyse the statistical
properties of these witnesses and provide an upper bound
on the number of measurement rounds needed to rule out
all local states in a many-body system. We show that this
upper bound is linear in the number of particles, hence
demonstrating the possibility of reliable detection of Bell
correlations in systems with a large number of particles.
Symmetric two-body correlator Bell inequalities with an

arbitrary number of settings.—Multipartite Bell inequal-
ities that are symmetric under exchange of parties and
which involve only one- and two-body correlators have
been proposed in scenarios where each party uses two
measurement settings and receives an outcome among two
possible results [8]. Similar inequalities were also obtained
for translationally invariant systems [23], or based on
Hamiltonians [24]. Here, we derive a similar family of
Bell inequalities that is invariant under arbitrary permuta-
tions of parties but allows for an arbitrary number of
measurement settings per party.
Let us consider a scenario in which N parties can

each perform one of m possible measurements MðiÞ
k

(k ¼ 0;…; m − 1; i ¼ 1;…; N) with binary outcomes
�1. We write the following inequality:

IN;m ¼
Xm−1

k¼0

αkSk þ
1

2

X
k;l

Skl ≥ −βc; ð2Þ

where αk ¼ m − 2k − 1, βc is the local bound, and the
symmetrized correlators are defined as

Sk ≔
XN
i¼1

hMðiÞ
k i; Skl ≔

X
i≠j

hMðiÞ
k MðjÞ

l i: ð3Þ

Let us show that Eq. (2) is a valid Bell inequality for
βc ¼ bðm2N=2Þc, where bxc is the largest integer smaller or
equal to x. Below, we assume thatm is even; see Appendix A
in the Supplemental Material [25] for the case of odd m.
Since IN;m is linear in the probabilities and local

behaviors can be decomposed as a convex combination
of deterministic local strategies, the local bound of Eq. (2)
can be reached by a deterministic local strategy [1]. We thus
restrict our attention to these strategies and write

hMðiÞ
k i ¼ xik ¼ �1 ⇒ Skl ¼ SkSl −

XN
i¼1

xikx
i
l; ð4Þ

where xik is the (deterministic) outcome party i produces
when asked question k. This directly leads to the following
decomposition:

IN;m ¼
Xm2−1
k¼0

αkðSk − Sm−k−1Þ þ
1

2
B2 −

1

2
C ≥ −βc; ð5Þ

with B ≔
P

m−1
k¼0 Sk and C ≔

P
N
i¼1 ð

P
m−1
k¼0 x

i
kÞ2. Because of

the symmetry under exchange of parties of this Bell
expression, it is convenient to introduce, following
Ref. [8], variables counting the number of parties that
use a specific deterministic strategy:

aj1<…<jn ≔ #fi ∈ f1;…; Ngjxik ¼ −1iffk ∈ fj1;…; jngg;
āj1<…<jn ≔ #fi ∈ f1;…; Ngjxik ¼ þ1iffk ∈ fj1;…; jngg;

n ≤
m
2
; āj1;…;jm

2

≡ 0; ð6Þ
where # denotes the set cardinality. Since each party has to
choose a strategy, the variables sum up to N:

X
all variables

¼
Xm

2

n¼0

X
j1<…<jn

ðaj1…jn þ āj1…jnÞ ¼ N: ð7Þ

The correlators can now be expressed as

Sk ¼
Xm

2

n¼0

X
j1<…<jn

ðaj1…jn − āj1…jnÞyj1…jn
k ; ð8Þ

with yj1…jn
k ¼ −1 if k ∈ fj1;…; jng, and þ1 otherwise.

The first term of (5) concerns the difference between two
correlators. Let us see how this term decomposes as a
function of the number of indices present in its variables.
From Eq. (8), it is clear that a variable with n indices only
appears in the difference Sk − Sl if y

j1:::jn
k ≠ yj1:::jnl . But the

corresponding strategy only has n differing outcomes
and each correlator in this term only appears once, so a
variable with n indices appears in at most n of these
differences. Moreover, if it appears, it does so with a factor
�2. The coefficient in front of a variable with n indices in
the first sum of Eq. (5) thus cannot be smaller than
−2

P
n−1
k¼0 αk ¼ 2nðn −mÞ.

The second term of Eq. (5) can be bounded as B2 ≥ 0,
while the third one can be expressed as

C ¼
Xm

2

n¼0

X
j1<…<jn

ðaj1…jn þ āj1…jnÞðm − 2nÞ2: ð9Þ

Putting everything together and using property (7), we
arrive at

IN;m ≥
Xm2−1
k¼0

αkðSk − Sm−k−1Þ −
1

2
C

≥ −
m2

2

X
all variables

¼ −
m2N
2

¼ −βc; ð10Þ

which concludes the proof.
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Note that this bound is achieved for a01…ðm=2Þ−1 ¼ N,
i.e., when for each party exactly the first half of the m
measurements yields the result −1. Note also that the Bell
inequality (2) does not reduce to Eq. (6) of Ref. [8] when
m ¼ 2. Indeed, while none of these inequalities is a facet of
the local polytope, the latter one is a facet of the
symmetrized 2-body correlator local polytope [8,30].
From Bell inequalities to Bell-correlation witnesses.—

Let us now derive a set of Bell-correlation witnesses
assuming a certain form for the measurement operators.
Here, no assumptions are made on the measured state.
Following Ref. [9], we start from inequality (2)

and introduce spin measurements along the axes d⃗k,
k¼0;…;m−1, as well as the collective spin observables Ŝk:

MðiÞ
k ¼ d⃗k · σ⃗ðiÞ; Ŝk ¼

1

2

XN
i¼1

MðiÞ
k ; ð11Þ

where σ⃗ is the Pauli vector acting on a spin-1
2
system. The

correlators can be expressed in terms of these total spin
observables and the measurement directions [8]:

Sk¼2hŜki; Skl¼2½hŜkŜliþhŜlŜki�−Nd⃗k · d⃗l: ð12Þ
This defines the Bell operators

ŴN;m ≔ 2
Xm−1

k¼0

αkŜk þ 2
X
k;l

ŜkŜl −
N
2

X
k;l

d⃗k · d⃗l þ
�
m2N
2

�
;

ð13Þ
whose expectation values are positive for states that are not
Bell correlated. Note that the expectation value of these
operators need not be negative for all Bell correlated states
and every choice of measurement directions, though.
A negative value may only be achieved for specific choices
of states and measurement settings.
We now consider measurement directions d⃗k ¼

a⃗ cosðϑkÞ þ b⃗ sinðϑkÞ lying in a plane spanned by two
orthonormal vectors a⃗ and b⃗, with the antisymmetric
angle distribution ϑm−k−1 ¼ −ϑk. Note that the coefficients
αk share the same antisymmetry. Defining Wm ≔
hŴN;m=ð2N̂Þi for even m, we arrive at the following family
of witnesses:

Wm ¼ Cb
Xm2−1
k¼0

αk sinðϑkÞ − ð1 − ζ2aÞ
�Xm2−1

k¼0

cosðϑkÞ
�2

þm2

4
;

ð14Þ
with Wm ≥ 0 for states that are not Bell correlated. These
Bell correlation witnesses depend on m=2 angles ϑk and
involve just two quantities to be measured: the scaled
collective spin Cb ≔ hŜb⃗=ðN̂=2Þi and the scaled second

moment ζ2a ≔ hŜ2a⃗=ðN̂=4Þi.
The tightest constraints on Cb and ζ2a that allow for a

violation of Wm ≥ 0 are obtained by minimizing Wm over

the angles ϑk. Solving ∂Wm=∂ϑk ¼ 0 yields (see
Appendix B in the Supplemental Material [25]):

ϑk ¼ − arctan½λmðm − 2k − 1Þ�; ð15Þ
Cb

2λmð1 − ζ2aÞ
¼

Xm2−1
k¼0

cosðϑkÞ: ð16Þ

Equation (16) is a self-consistency equation for λm that has
to be satisfied in order to minimize Wm.
Using these parameters, we can rewrite our witness in

terms of the physical parameters Cb and ζ2a only. For two
measurement directions (m ¼ 2), we find that states which
are not Bell correlated satisfy

ζ2a ≥ Z2ðCbÞ ¼
1

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − C2b

q �
: ð17Þ

This recovers the bound obtained from a different inequal-
ity in Ref. [9]. Note that in the present case, the argument is
more direct since it does not involve Ca, the first moment of
the spin operator in the a direction.
Increasing the number of measurement directions allows

for the detection of Bell correlations in additional states.
In the limit m → ∞, we find (see Appendix B in the
Supplemental Material [25])

ζ2a ≥ Z∞ðCbÞ ¼ 1 −
Cb

artanhðCbÞ
: ð18Þ

Figure 1 shows the two witnesses (17) and (18) together
with the one obtained similarly for m ¼ 4 settings in the
Cb − ζ2a plane. The curve Z∞ reaches the point Cb¼ζ2a¼1,
therefore allowing, in principle, for the detection of Bell
correlations in presence of arbitrarily low squeezing. It is
known, however, that some values of Cb and ζ2a can only be
reached in the limit of a large number of spins [31]. For any
fixed N, a finite amount of squeezing is thus necessary in

FIG. 1. Plots of the critical lines Z2, Z4, and Z∞. The witness
obtained from the Bell inequality with 4 settings already provides
a significant improvement over the case of 2 settings. The black
point in the inset shows the data point from Ref. [9], with
N ¼ 476� 21.
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order to allow for the violation of our witness (see
Appendix C in the Supplemental Material [25]). The
corresponding upper bound on ζ2a is shown in Fig. 2.
Points below the curve Zm in Fig. 1 indicate a violation

of the witnessWm ≥ 0 obtained from the correspondingm-
settings Bell inequality. Violation of any such bound
reveals the presence of a Bell correlated state. However,
as discussed in the introduction, conclusions in the pres-
ence of finite statistics have to be examined carefully, since
in practice, one can never conclude from the violation of a
witness that the measured state is Bell correlated with 100%
confidence. The point shown in the inset of Fig. 1
corresponds to the data reported in Ref. [9] from measure-
ments on a spin-squeezed Bose-Einstein condensate. This
point clearly violates the witnesses for m ¼ 2; 4;∞ by
several standard deviations, although the number of meas-
urement rounds is too small to guarantee that the measured
state is Bell correlated without further assumptions [9].
Finite statistics.—In this section, we put a bound on the

number of experimental runs needed to exclude with a
given confidence that a measured state is not Bell corre-
lated. Note that such a conclusion does not follow
straightforwardly from the violation of the witness by a
fixed number of standard deviations. Indeed, standard
deviations inform on the precision of a violation, but fail
at excluding arbitrary local models [15], including, e.g.,
models which may show non-Gaussian statistics with rare
events. We thus look here for a number of experimental
runs which is sufficient to guarantee a p value lower than a
given threshold for the null hypothesis “The measured state
is not Bell correlated.” Since we are concerned with the
characterization of physical systems in the absence of an
adversary, we assume that the same state is prepared in each
round (i.i.d. assumption).
For this statistical analysis, let us consider a different

Bell correlation witness than Eq. (18). Indeed, we derived
this inequality in order to maximize the amount of violation
for given data, but here we rather wish to maximize the
statistical evidence of a violation. For this, we take Eq. (14)
and consider the representation of the angles given in

Eq. (15), but without taking Eq. (16) into account. In the
limit of infinitely many measurement settings, we find (see
Appendix B in the Supplemental Material [25])

Wstat ¼ −CbΔν − ð1 − ζ2aÞΛ2
ν þ

1

4
≥ 0; with ð19Þ

Δν ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p

4ν
−
arsinhðνÞ

4ν2
; Λν ¼

arsinhðνÞ
2ν

; ð20Þ

where ν ¼ limm→∞λmm is a free parameter that fully
specifies the set of measurement angles.
In order to model the experimental evaluation of Wstat,

we introduce the following estimator:

T ¼ χðZ ¼ 0Þ
q

X þ χðZ ¼ 1Þ
1 − q

Y þ
�
1

4
− Δν − Λ2

ν

�
: ð21Þ

Here, χ denotes the indicator function and the binary
random variable Z accounts for the choice between the
measurement of either Cb or ζa. Each measurement round
thus allows for the evaluation of the corresponding random
variables X ¼ Δνð1 − CbÞ or Y ¼ Λ2

νζ
2
a. Assuming that Z is

independent of X and Y and choosing q ¼ P½Z ¼ 0�
guarantees that T is a proper estimator of Wstat, i.e.,
hT i ¼ W. q then corresponds to the probability of
performing a measurement along the b axis. We choose
q ¼ ð1þ ðΛ2

νN=2ΔνÞÞ−1 so that the contributions of both
measurement choices to T have the same magnitude; i.e.,
the maximum values of X=q and Y=ð1 − qÞ are equal
within the domain jCbj ≤ 1 and ζ2a ∈ ½0; N�. This also
guarantees that the spectrum of T matches that of Wstat.
Suppose the measured state is non-Bell correlated, i.e.,

that its mean value μ ¼ hT i ¼ Wstat ≥ 0. We are now
interested in the probability that after M experimental runs
the estimated value T ¼ ð1=MÞPM

i¼1 T i of the witness
Wstat falls below a certain value t0 < 0, with T i being the
value of the estimator in the ith run.
In statistics, concentration inequalities deal with exactly

this issue. In Appendix D in the Supplemental Material
[25], we compare four of these inequalities, namely, the
Chernoff, Bernstein, Uspensky, and Berry-Esseen ones [25]
and show explicitly that in the regime of interest the tightest
and, therefore, preferred bound results from the Bernstein
inequality:

P½T ≤ t0� ≤ exp

�
−

ðμ − t0Þ2M
2σ20 þ 2

3
ðtu − tlÞðμ − t0Þ

�
≤ ε: ð22Þ

Here, t0 is the experimentally observed value of T after M
measurement rounds, tl ¼ 1

4
− Δν − Λ2

ν and tu ¼ 1
4
þ Δν þ

Λ2
νðN þ 1Þ are lower and upper bounds on the random

variable T , respectively, and σ20 is its variance for a
local state.
We show in Appendix D in the Supplemental Material

[25] that the largest p value is obtained by setting μ ¼ 0

and σ20 ¼ −tltu. A number of measurement rounds

a
2

FIG. 2. Upper bound on the value of ζ2a required to see a
violation of the Bell correlation witness (18). The bound depends
on the number of particles N.

PRL 119, 170403 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

27 OCTOBER 2017

170403-4



sufficient to exclude the null hypothesis with a probability
larger than 1 − ε is then given by

M ≥
−2tltu − 2

3
ðtu − tlÞt0
t20

ln

�
1

ε

�
: ð23Þ

This quantity can be minimized by choosing the free
parameter ν appropriately. As shown in Appendix D in
the Supplemental Material [25], optimizing ν at this stage
allows us to reduce the number of measurement rounds by
∼30%. It is thus clearly advantageous not to consider the
witness (18) when evaluating statistical significance.
The number of runs in Eq. (23) depends linearly on tl

and, therefore, also linearly on N. The ratio ðM=NÞ thus
tends to a constant for large N (see Appendix D in the
Supplemental Material [25] for more details). This implies
that a number of measurement rounds growing linearly
with the system size is both necessary and sufficient to
reliably conclude that the measured state is Bell corre-
lated [9].
Figure 3 depicts the required number of measurement

rounds per spin as a function of the scaled collective spin Cb
and the scaled second moment ζ2a. For a confidence level of
1 − ϵ ¼ 99%, between 20 and 500 measurement rounds per
spin are required in the considered parameter region.
Conclusion.—In this Letter, we started by introducing a

class of multipartite Bell inequalities involving two-body
correlators and an arbitrary number of measurement set-
tings. Assuming collective spin measurements, these
inequalities give rise to the witness (18), which can be
used to determine whether Bell correlations can be detected
in a many-body system. This criterion detects states that
were not detected by the previously known witness [9].
We then discussed the role of finite statistics in experi-

ments involving many-body systems.We provided a bound,
Eq. (23), on the number of measurement rounds that
allows one to detect Bell correlated states without further
assumptions. This bound shows that all non-Bell-correlated

states can be convincingly ruled out at the cost of performing
a number of measurement rounds that grows linearly with
the system size. This puts the detection of quantum
correlations in many-body systems on firm grounds and
opens the way for a possible use of many-body systems in
the context of device-independent quantum information
processing.
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