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Abstract
The aim of machine learning and statistics is to learn and predict from data. With the
introduction of copulas, probabilistic models and algorithms can benefit from the separation
of dependency and marginals. The additional flexibility allows to generalise better and
increase the prediction accuracy. Based on this observation, this work enlightens different
models within the framework of a semi-parametric Gaussian copula model.

The first model we consider is archetypal analysis. We show that the Gaussian copula
approximates the dependency structure of the generative model we consider. With copula
archetypal analysis, we present a new model, which extends the applicability of the original
model. Our second contribution refers to the semi-parametric Gaussian copula extension of
principal component analysis. We consider the model in the context of parametric appearance
models for facial appearance. We show, that the copula relaxation leads ultimately to a higher
specificity and provide a unifying way of combining different data. The third contribution
is Bayesian sub-network estimation within the framework of Gaussian graphical models. We
show that the Markov blanket of a set of query variables has analytical form and can be
efficiently estimated. Our last contribution is the motivation of time-resolved information
flows in the context of directed information and Pearlian graphs. We show, how to discover
information flows in non-stationary time series and give a convenient estimator.

At the core of these models lies the semi-parametric Gaussian copula model. In this work
we show how it allows to relax certain assumptions in the aforementioned models. Ultimately,
this leads to non-Gaussian and latent linear models, which better apply to real-world data
sets.
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Bouabene, Andreas Forster, Thomas Gerig, Adam Kortylewski, Jasenkov Žianov, Andreas
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and Ronan Zimmermann, Paul Jenö, and Pankaj Shende. Many thanks also to Jürgen Dölz,
Monica Bugeanu, Dennis Trönde, Claudiu Tanase, Nenad Stojnic, Filip-Martin Brinkmann,
Ivan Giangreco, and Manolis Sifalakis for giving me an enjoyable time in Basel.

I am grateful to my family, Megumi and Hanstoni, René and Natalie, and Christian for
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Symbols and Notation

Symbol Description Format

Scalar, Vector,
and Matrix

x scalar 1 × 1
x, xp column vector p × 1
x⊺ row vector 1 × p
X matrix p × n
X⊺ transpose of matrix X p × n
X−1 inverse of matrix X n × p
0p column vector of 0s p × 1
0p×n matrix of 0s p × n
1p column vector of 1s p × 1
Ip×n matrix of 1s p × n

Random
Variables

X random variable 1 × 1
x realisation of X 1 × 1
X,Xp random vector p × 1
x realisation of X p × 1
X random matrix p × n
X realisation of X p × n
E[] expectation
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Symbol Description

Distributions F probability distribution

f , p probability density

C copula

c copula density

N normal distribution

MN matrix normal distribution

W,Wc central Wishart distribution

Wnc non-central Wishart distribution

W−1 inverse Wishart distribution

Γ Gamma distribution

IG inverse Gaussian distribution

MGIG matrix generalised inverse Gaussian

Information
Theory

H, h entropy

I mutual information

M multiinformation

DKL(⋅∣∣⋅) KL-divergence

I(Xn → Y n) directed information

I(Xn ↔ Y n) instantaneous coupling

Graphs G graph

V set of vertices

E set of edges

Sets N set of all natural numbers {1,2,3, . . .}
Z set of all integers {. . . ,−1,0,1, . . .}
R set of all real numbers

[n] the set {1, . . . , n}
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1. Introduction

Machine learning and statistics address the problem of learning and prediction from data
which comes from a complex system or unknown phenomenon. In a supervised setting, the
data is recorded at the input and output of the system and the goal is to understand or learn
the systems behaviour as well as to predict its outcome for an unseen input. In an unsuper-
vised setting, where only data from the output is available, the goal is to infer patterns in the
data. Learning from data means finding regularities in the data which generalise well for the
observed system. Despite the identical goal of statistics and machine learning communities,
Breiman et al. (2001) identified two different cultures of how the data is addressed to infer
conclusions. On one hand, the statistics community uses (parametric) models to represent
the system. The output of the system is generally modelled as a parametrised function of the
input and is observed subject to random noise. Learning then corresponds to fitting the pa-
rameters of the function. The applied models are generally very well known and this leads to
properly understood conclusions. Such an approach may simplify learning substantially, since
a model abstracts from the potentially complex system and only represents the mechanisms
of interest with a limited set of parameters. However, for complex systems, this modelling
approach requires prior knowledge of the data-generating process or imposes assumptions on
it. Often, these assumptions are idealised and oversimplifying or do not reproduce correctly
the nature of the system. Thus, the machine learning approach keeps the system as a black
box, and the primary goal is to predict accurate outputs for unseen inputs. Here, the models
are often more complex and interpretation of the results are in general harder.

However, learning and prediction are impossible if there are no regularities in the data. A
fundamental role for the discovery of such regularities are dependency concepts, since they
allow to understand associations in the data. In this thesis, we will look at a specific model
for multivariate distributions, namely at the Gaussian copula model. For any multivariate
distribution, a copula is a stochastic function for modelling the dependency between random
variables. Moreover, a copula is invariant against the marginal distributions. In this way,
a copula abstracts the dependency between the random variables and only describes a pure
association pattern. In the sequel, we will use a parametrised copula which is called a Gaus-
sian copula. It is the inherent copula of the multivariate Gaussian distribution. However,
being invariant against the marginal distributions, the Gaussian copula can also be used with
non-Gaussian data. By this means, the model assumptions are weaker and the applicability
of a Gaussian copula model is broadened substantially.

Models from statistics and machine learning have contrary assumptions: Typically, models
from statistics are associated with low-dimensions (number of samples is much larger than
number of dimensions) and the data is assumed to be generated from a given stochastic
model. The goal is then to infer the parameters in the model. In the simplest case, a
parametric linear model with Gaussian marginals will meet the requirements. On the other
hand, approaches from machine learning treat the data mechanism as unknown and use
algorithmic models in order to learn from data. This led to concepts like regularisation,
bagging, boosting, neural networks and kernel machines. These concepts are very general
in the sense that they are non-parametric, non-linear, and non-Gaussian and also fit well in
the high-dimensional setting, where the number of samples are much lower than the number
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Introduction

of dimensions. Between these opposite cultures, a Gaussian copula model might be seen as
a model which lies between these extremes and takes a relevant role in statistics as well as
machine learning: it is a semi-parametric, latent linear model which fits to non-Gaussian
data.

In the light of these considerations, we will extend various established models with the
Gaussian copula and see that it improves learning and prediction. This thesis builds around
four contributions which all are based on the Gaussian copula model. In particular, we
discuss

� copula archetypal analysis (Kaufmann et al., 2015),

� copula eigenfaces: an application of copula principal component analysis to facial
appearance (Egger et al., 2016)

� sub-network estimation in a probabilistic graphical model (Kaufmann et al., 2016),
and

� causal information flows in time series.

The first two topics are related, since they concern dimensionality reduction algorithms
and thus play a central role in the representation of data. Copula archetypal analysis and
extends archetypal analysis to a Gaussian copula model. We show that the dependency
pattern of the generative model of archetypal analysis can be approximated with a Gaussian
copula.

The second topic considers principal component analysis (PCA) in the framework of a
Gaussian copula. Here, the extension to the Gaussian copula model is simple since PCA
assumes that the data is Gaussian distributed. In the context of facial appearance, we apply
the relaxed model to parametric appearance models. The increased flexibility of the Gaussian
copula model allows to increase the specificity: the non-Gaussian distributed colour is better
captured by the model and a unifying combination with different data modalities like shape
is possible.

The third topic focuses on estimating a undirected graphical model. We consider the
Bayesian view of discovering a sub-network and focus on estimating the neighbourhood of
a set of query variables. We show that the posterior conditionals have analytic form and
propose an efficient Gibbs sampler. While this framework is valid for Gaussian distributed
data, the Gaussian copula extension provides an elegant way that allows to apply it to non-
Gaussian distributed data. We further extend the real world applicability by allowing mixed
discrete and continuous non-Gaussian distributed data.

The fourth topic considers causal information flows between time series. We propose esti-
mators which quantify the causal associations between time series in a non-stationary setting.
Analogously to directed information and transfer entropy, these estimators are motivated as
being defined as an difference between an oberservational and an interventional distribution.
We apply the model to electroencephalogram data, and show how non-stationary information
flows can be discovered.

Before we delve deeply into those topics, we provide some basics about probability the-
ory, copulas, and information theory: they form the foundation for modelling random phe-
nomenons and quantifying the information which is contained in an actual data sample.

1.1. Probability Theory

Statistics and machine learning use the language of probability theory to model the non-
determinism or random phenomenons of the observed system. In the model, each mea-

2
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surement corresponds to a random variable, and interactions between random variables are
modelled with specific mechanisms. We start to describe, how the non-determinism of ob-
servations is modelled.

The non-determinisms in a model are described with a triple (Ω,F , P ) which is called a
probability space. Thereby, Ω is the sample space which contains all possible outcomes ω of
the model. F is a σ-algebra, meaning that it is a collection of subsets A ⊆ Ω, which satisfy
the following properties:

1. the empty set as well as the full set are elements of the σ-algebra, i.e. ∅ ∈ F and Ω ∈ F

2. closed under the complement, i.e. if A ∈ F , then Ac ∈ F

3. closed under countable unions, i.e. if Ai ∈ F , i = 1,2, . . ., then ⋃iAi ∈ F .

Finally, P ∶ F ↦ R is a probability measure that assigns a probability to each subset in F .
The properties of the probability measure P are

1. normalisation, i.e. P (∅) = 0 and P (Ω) = 1

2. non-negativity, i.e. P (A) ≥ 0,∀A ∈ F

3. countable additivity, i.e. for n disjoint sets A1, . . . ,An, P (⋃n
i=1Ai) = ∑n

i=1 P (Ai) .

A real-valued random variable X ∶ Ω ↦ R is a mapping from the sample space Ω to the
real line R, such that ∀x ∈ R ∶ {ω∣X(ω) ≤ x} ∈ F . The condition is a mesurability condition
which stems from measure theoretic considerations. However, we forgo such considerations
since they won’t impair our results. Instead, we use random variables as quantities, whose
values are described by probability distributions. Thus, a random variable is just a mapping
from the sample space to the domain of a probability distribution.

1.1.1. Univariate Distribuitons

Let X ∶ Ω ↦ R be a random variable. A cumulative distribution function (cdf) FX(x) ∶ R ↦
[0,1] assigns a probability to each value x ∈ R, such that

FX(x) = P (X ≤ x) = P ({ω ∈ Ω ∶ X(ω) ≤ x}). (1.1)

We distinguish a random variable depending on whether x is allowed to take value on a
discrete or a continuous subset of R.

Let X ∶ Ω↦ S be a discrete random variable with S ⊆ R being a discrete subset of R. The
probability mass function (pmf) fX(x) ∶ S ↦ [0,1] assigns a probability to each value in S,
such that

fX(x) = P (X = x), ∀x ∈ S. (1.2)

A continuous random variableX ∶ Ω↦ R exists, if it can be written in terms of a probability
density function (pdf) fX(x), such that

FX(x) = P (X ≤ x) = ∫
x

−∞
fX(t)dt (1.3)

Note that fX(x) = 0 for any given value x ∈ R, but ∫ b
a fX(x)dx = P (a ≤ X ≤ b) ∈ [0,1] for

a < b, and that the derivative d
dx
FX(x) = fX(x).

3
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Normal Distribution

The normal (or Gaussian) distribution is often used for describing distributions which are
not known. A normal distributed random variable X is denoted as

X ∼ N (µ,σ2) = 1
√
2πσ2

exp− (x − µ)
2

2σ2
, (1.4)

where µ is the mean, and σ2 > 0 is the variance. The cdf has no analytical form and is

FX(X) = Φµ,σ2(x) = 1
√
2π
∫

x−µ
σ

−∞
exp(− t

2

2
)dt. (1.5)

Due to its frequent occurence, the cdf of a normal distribution is denoted as Φµ,σ2 , and the

cdf of the standard normal distribution (µ = 0, σ2 = 1) is often denoted without subscript as
Φ(x).

The normal distribution has several amenities.

� Central limit theorem: averages of mutually independent random variables with con-
strained variance converge in distribution to the normal distribution Lyon (2014).

� Many derived expressions have analytic form (Roweis, 1999).

� The normal distribution is the maximum entropy distribution with a specified mean
µ and variance σ2 (Cover and Thomas, 2012).

Inverse Gaussian Distribution

Let X > 0 be a random variable which is inverse Gaussian distributed with mean µ > 0, and
shape λ > 0, then

X ∼ IG(µ,λ) = ( λ

2πx3
)

1
2

exp(−λ(x − µ)
2

2µ2x
) . (1.6)

Uniform Distribution

The uniform distribution is used to model a random variable with equiprobable outcomes
with a limited support. If X is uniform distributed, then

X ∼ U(a, b) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 x < a
x−a
b−a

x ∈ [a, b)
1 x ≥ b

(1.7)

where a and b define the lower and upper limit of its support. The pdf is

f(x) =
⎧⎪⎪⎨⎪⎪⎩

1
b−a

x ∈ [a, b]
0 otherwise

(1.8)

The uniform distribution is the maximum entropy distribution for a random variable under
the sole constraint of the distribution’s support (Park and Bera, 2009).

4
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Gamma Distribution

Let X > 0 be a random variable which is Gamma distributed with shape α > 0, and scale
β > 0, then

X ∼ Γ(α,β) = βα

Γ(α)
xα−1 exp (−βx) , (1.9)

where Γ(z) = ∫ ∞0 xz−1e−xdx denotes the gamma function.

Probability Integral Transform

Theorem 1 (Probability Integral Transform). If the random variable X has a continuous
cdf FX(x), then the random variable Y = FX(X) follows the uniform distribution U(0,1).

Proof.
FY (y) = P (Y ≤ y)

= P (FX(X) ≤ y)
= P (X ≤ F−1X (y))
= FX(F−1X (y))
= y

(1.10)

which is the uniform distribution on the unit interval.

For a more general proof, see Angus (1994).

1.1.2. Multivariate Distributions

Whenever modelling a system with more than one random variable, it is meaningful to
consider their interactions as well. In order to do so, we define multivariate distributions
which describe multiple random variables jointly.

Let X = (X1, . . . ,Xp), p ≥ 2 be a real-valued random vector. A multivariate cumulative
distribution function (multivariate cdf) FX(x) ∶ Rp ↦ [0,1] assigns a probability to each
vector x ∈ Rp, such that

FX(x) = P (X1 ≤ x1, . . . ,Xp ≤ xp) (1.11)

If the cdf is continuous everywhere, there exists a density

fX(x) =
∂p

∂x1⋯∂xp
FX(x)∣

x

(1.12)

A conditional distribution is the distribution of a random vector, when a subset of random
variables are set to fixed values. In a multivariate distribution, where the dependencies
between random variables are modelled as well, the fixed values provide some information
about the other variables. The conditional distribution takes account of this information and
provides an adjusted distribution for the other variables. In the case, where we set Y = y,
the conditional distribution of X is

fX(x∣y) =
fX,Y (x,y)
fY (y)

(1.13)

whenever fX(x) > 0.

5
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In contrast to the conditional distribution, where we set Y = y to fixed values, the marginal
distribution provides the distribution of X without refering to the values of Y . The random
variables in Y are called marginalised. The marginal distributions of X is denoted as

fX(x) =∑
Y

fX,Y (x,y)

fX(x) = ∫
Y
fX,Y (x,y),

(1.14)

for a discrete and continuous random vector, respectively.
Whenever the variables have no influence on each other, these variable are called indepen-

dent, and the joint distribution of X and Y can be factorised as

fX,Y (x,y) = fX(x)fY (y). (1.15)

Some random variables become independent when conditioned on other random variables.
This concept called conditional independence is beneficial in analysing and describing com-
plex distributions. If X is conditionally independent of Y given Z, the joint distribution of
X and Y factorises according to

fX,Y ∣Z(x,y∣z) = fX∣Z(x∣z)fY ∣Z(y∣z) (1.16)

and is denoted as X á Y ∣Z.
In the same way as fX(x∣y) is defined in Eq. 1.13, the conditional distribution fY (y∣x)

can be defined. This leads to the following equation which is known as the Bayes’ theorem

fX∣Y (x∣y) =
fY ∣X(y∣x)fX(x)

fY (y)
. (1.17)

Multivariate Normal Distribution

Let X follow a multivariate normal distribution with mean µ ∈ Rp and covariance Σ ∈ Rp×p,
then

X ∼ Np (µ,Σ) =
1

(2π)
p
2 det(Σ) 12

exp(−1
2
(x −µ)TΣ−1(x −µ)) . (1.18)

Matrix Normal Distribution

Let X ∈ Rn×p follows a Matrix Normal distribution with mean M ∈ Rn×p, row covariance
Ω ∈ Rn×n, and column covariance Σ ∈ Rp×p, then

X ∼MNn×p (M,Σ,Ω)

= 1

(2π)
pn
2

det(Ω)−
p
2 det(Σ)−n

2 exp(−1
2
tr (Ω−1(X −M)Σ−1(X −M)T)) . (1.19)

(Central) Wishart Distribution

Let xi ∼ N (0 ,Σ), i = 1, . . . , n, X = (x1, . . . ,xn)T , and the sample covariance S = XTX.
Then S ∈ Rp×p is Wishart distributed, i.e.

S ∼Wp (Σ, n) =
det(S)

n−p−1
2

2
np
2 det(Σ)n2 Γp (n2 )

exp(−1
2
tr(Σ−1S)) , (1.20)
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where n > p − 1 are degrees of freedom, Σ ∈ Rp×p is a positive defininte scale matrix, Γp =
π

p(p−1)
4 ∏p

j=1 Γ (
n
2
+ 1−j

2
) is the multivariate gamma function, Γ(z) = ∫ ∞0 xz−1 exp(−z)dz is

the Gamma function, and tr is the trace function.

Non-Central Wishart Distribution

Let X ∼MNn×p(M, In,Σ), and the sample covariance S = XTX. Then S ∈ Rp×p is non-
central Wishart distributed, i.e.

S ∼Wnc (n,Σ,Θ)

= det (S)
n−p−1

2

2
np
2 det (Σ)

n
2 Γp(n2 )

0F 1 (
n

2
;
1

4
ΘΣ−1S) exp(−1

2
tr (Σ−1S +Θ)) ,

(1.21)

where Σ ∈ Rp×p is a positive defininte scale matrix, Θ = Σ−1MTM is the non-centrality
parameter matrix, and 0F 1 is the hypergeometric function (Bessel function). If Θ = 0, the
non-central Wishart distribution reduces to the central Wishart distribution.

1.1.3. Notation

We use simplified notation to prevent clutter: we overload the symbol f for a pmf and a pdf,
since it should be clear from the context, if it refers to a discrete or continuous variable. We
also omit the subscript of fX and FX , whenever it is clear, to which random variable the
probability distribution refers to.

1.2. Copulas

It is always possible to write a multivariate cdf as in 1.11, however, there is only a limited
set of distributions for jointly modelling multiple random variables. In many cases, the
analytic form of these distributions forces to accept questionable approximations. Assume
for example the use of the multivariate normal distribution for modelling a multivariate data
set: the actual data distribution may completely mismatch the modelling assumptions due
to non-Gaussian marginals and non-linear dependencies. In such situations, considering a
copula model can be meaningful. A copula (Nelsen, 2013; Joe, 1997) is a function which
links a multivariate joint distribution function to its univariate maginals.

Suppose having p random variables X1, . . . ,Xp with univariate marginals F (xi), i =
1, . . . , p which follow a joint distribution F (x1, . . . , xp). If the random variables are inde-
pendent, the joint distribution can be written as the product of the marginals

F (x1, . . . , xp) = F (x1)⋯F (xp) (1.22)

However, if the random variables depend on each other, the joint distribution has not anymore
this simple form. In order to account for the interactions, a copula C links the univariate
marginals to the joint distribution as follows

F (x1, . . . , xp) = C (F (x1), . . . , F (xp)) . (1.23)

This expression can be interpreted as follows: by the univariate distributions, each value
xi corresponds to a value ui = F (xi) = P (Xi ≤ xi) ∈ [0,1] which lies in the unit interval.
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In the same way, the joint distribution associates the values (x1, . . . , xp) with a probability
u = F (x1, . . . , xp) = P (X1 ≤ x1, . . . ,Xp ≤ xp) ∈ [0,1]. In this sense, the copula relates
the outcomes from the individual random variables to the probability, that these outcomes
occur jointly. Thus, the copula defines how the marginal distributions are coupled to a joint
distribution.

A different view makes things even more clear. By the probability integral transform, the
variables Ui = F (Xi) ∼ U(0,1) follow uniform distributions on the unit interval. The copula
is then defined as a multivariate cdf of marginally uniform distributed random variables, i.e.

C(U1, . . . , Up) = P (U1 ≤ u1, . . . , Up ≤ up). (1.24)

Definition 1 (Copula). An d-dimensional copula is a function C ∶ [0,1]d ↦ [0,1] with the
following properties:

1. C is grounded, i.e. for every u ∈ [0,1]d, C(u) = 0 if at least one coordinate of u is 0.

2. C has uniform margins, i.e. C(u) = uk if all coordinates of u ∈ [0,1]d are 1 except
uk.

3. C is d-increasing, i.e. the C-volume VC([u,v]) ≥ 0 for u ≤ v.

Here, B = [a,b] = [a1, b1] × ⋯ × [ad, bd] is a d-box, the Cartesian product of d intervals.
For a ≤ b, meaning that ak ≤ bk,∀k, the C-volume of B is given by VC(B) = ∆b

aC(u) =
∆

bd
ad
⋯∆b1

a1
C(u) which is an nth order difference of C on B.

Up to here, it is not yet clear, what form a copula is of and how it links a joint distri-
bution function to its marginals. However, the highly celebrated theorem of Sklar clarifies
the ambiguity. The theorem states the existence and uniqueness of a copula C for a joint
distribution FX1,...,Xp with given marginals FXi

, i = 1, . . . , p.

Theorem 2 (Sklar). Let X and Y be random variables with (marginal) cdfs FX(x) and
FY (y), respectively, and joint distribution function FX,Y (x, y). Then, there exists a copula
C such that for all x ∈ R and y ∈ R

FX,Y (x, y) = C(FX(x), FY (y)) (1.25)

If FX(x) and FY (y) are continuous cdfs, then C is unique. Otherwise, C is uniqueliy
determined on range(FX) × range(FY ).

Conversely, if C is a copula and FX(x) and FY (y) are probability distribution functions,
then the function FX,Y (x, y) as defined in Eq. 1.25 is a joint distribution function with
margins FX(x) and FY (y).

Proof. See (Sklar, 1959), (Nelsen, 2013)[Theorem 2.3.3 and Theorem 2.4.3]

In this spirit, a copula links a multivariate joint distribution to its univariate marginals.
Sklar’s theorem can be interpreted in the following ways:

� a copula is a multivariate distribution with uniform marginal distributions, or

� a multivariate distribution is composed of a copula and marginal distributions.

The first interpretation reveals the connection to analysis of dependence between random
variables. With this in mind, copulas can be analysed with respect to the dependency
structure which may be non-linear, asymmetric, or exhibits tail dependence. This leads to
the notion of scale-free measures of dependence.
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The second interpretation gives rise to constructions of multivariate distributions. Specif-
ically, analytic forms for multivariate distributions with arbitrary dependency and marginals
are possible.

From a machine learning point of view, copula models are interesting because the decou-
pled modelling of copula and marginals leads to increased flexibility or reduced assumptions
in a stochastic model (Elidan, 2013). Keeping in mind the ultimate goal of machine learning,
namely to learn and predict form data, the relaxed model assumption can improve prediction
substantially. Not alone the modelling side takes advantage from copula models, but also al-
gorithms: recently, variational Bayesian methods derived benefit from the copula framework
by preserving structure in the variational model (Tran et al., 2015; Han et al., 2015).

Independence

An important special case of a copula is independence. The copula for independent random
variables is

C(u1, . . . , ud) = Π(u1, . . . , ud) = u1⋯ud (1.26)

and is called the independent or product copula. For random variables, Eq. 1.22, where the
joint distribution factorises into the product of its marginals, follows directly.

Fréchet-Hoeffding Copula Bounds

The Fréchet-Hoeffding copula bounds describe limiting cases of copulas in terms of a min-
imum and a maximum copula. Random variables X and Y with a minimum copula are
called comonotonic, in the sense that X is (almost surely) an increasing funciton of Y . For
U = FX(X), and V = FY (Y ), the comonotonicity also means P [U = V ] = 1. Random vari-
ables with a maximum copula are called countermonotonic in the sense that X is (almost
surely) a decreasing function of Y , or that P [U + V = 1] = 1.

The Fréchet-Hoeffding lower bound, defining the maximum copula, is

W (u1, . . . , ud) =max(1 − d +
d

∑
i=1

ui,0), (1.27)

the Fréchet-Hoeffding upper bound, defining the minimum copula, is

M(u1, . . . , ud) =min(u1, . . . , ud), (1.28)

and, the Fréchet-Hoeffding copula bounds are

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤M(u1, . . . , ud). (1.29)

As a direct consequence of Sklar’s theorem, the Fréchet-Hoeffding copula bounds can be
written for random variables as follows

max(1 − d +
d

∑
i=1

F (xi),0) ≤ F (X1, . . . ,Xd) ≤min(F (x1), . . . , F (xd)). (1.30)

Scale Invariance

An important property of copulas is scale invariance. Random variables under strictly
monotone increasing transformations still have the same copula. In other words, a copula
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is invariant to strictly monotone increasing transformations. For strictly monotone func-
tions g and h with domains range(X) and range(Y ), and transformed random variables
F̃ (x) = P (g(X) ≤ x) = P (X ≤ g−1(x)) = F (g−1(x)), and F̃ (y) = F (h−1(y)), respectively,

Cg(X),h(Y )(F̃ (x), F̃ (y)) = P (g(X) ≤ x,h(Y ) ≤ y)

= P (X ≤ g−1(x), Y ≤ h−1(y))
= CX,Y (F (g−1(x)), F (h−1(y)))
= CX,Y (F̃ (x), F̃ (y))

(1.31)

Copula Density

If the copula C and the marginals Fi are continuous, then the joint pdf f can be written in
terms of the copula density c(u1, . . . , ud) as

f(x1, . . . , xd) =
∂d

∂x1⋯∂xd
C (F1(x1), . . . Fd(xd))

= c(u1, . . . , ud)
d

∏
j=1

fj(xj)
(1.32)

Conditional Density

For random variables X ∶ Rp ↦ [0,1] and Y ∶ Rq ↦ [0,1], and Ui = F (Xi), Vj = F (Yj), the
conditional distribution of X given Y is

f(x∣y) = f(x,y)
f(y)

=
c(u1, . . . , up, v1, . . . , vq)∏p

i=1 f(xi)∏
q
j=1 f(yi)

c(v1, . . . , vq)∏q
j=1 f(yi)

= c(u1, . . . , up∣v1, . . . , vq)
p

∏
i=1

f(xi)

= c(u∣v)
p

∏
i=1

f(xi)

(1.33)

The conditional copula density has following form

c(u∣v) = c(u,v)
c(v)

= c(u,v)
∫X c(F (x1), . . . , F (xp),v)∏p

i=1 f(xi)dX

= c(u,v)
∂q

∂v
C(1p,v)

.

(1.34)

As elaborated in (Elidan, 2010), the final derivative form of the conditional copula has a
more useful form than the integral from. This is because the integral term depends on both,
the copula and the univariate marginals, and thus is generally difficult to compute. On the
other hand, the derivative form has an explicit form for many copula distributions.
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1.2.1. Gaussian Copula

The Gaussian copula is defined as

CNR (u) = ΦR (Φ−1(u1), . . . ,Φ−1(ud)) . (1.35)

where Φ−1 is the inverse cdf of the standard normal distribution, and ΦR is the joint cdf of a
zero-mean multivariate normal distribution parametrised by a correlation matrix R ∈ Rd×d.
The correlation matrix R is the only parameter of a Gaussian copula model.

The copula density of the Gaussian copula is

cNR (u) =
∂d

∂u1⋯∂ud
ΦR (Φ−1(u1), . . . ,Φ−1(ud))

= ∂d

∂z1⋯∂zd
ΦR (z1, . . . , zd)

d

∏
i=1

∂

∂ui
Φ−1(ui)

=
φR (Φ−1(u1), . . . ,Φ−1(ud))

∏d
i=1 φ(Φ−1(ui))

= 1
√
detR

exp

⎛
⎜⎜
⎝
−1
2

⎛
⎜⎜
⎝

Φ−1(u1)
⋮

Φ−1(ud)

⎞
⎟⎟
⎠

T

(R−1 − I)
⎛
⎜⎜
⎝

Φ−1(u1)
⋮

Φ−1(ud)

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠
,

(1.36)

where we used the chain rule and the inverse function derivative theorem, φ is the pdf
of a standard normal distribution, and φR is the pdf of a zero-mean multivariate normal
distribution with correlation R.

Latent Space

By construction, the Gaussian copula model inherently implies a latent space by the trans-
formation

Zi = Φ−1(Ui) = Φ−1(Fi(Xi)) (1.37)

and the copula is defined as

CNR (z) = ΦR (Φ−1(u1), . . . ,Φ−1(ud))
= ΦR (z1, . . . , zd) .

(1.38)

This is just the cdf of a zero-mean multivariate normal distribution with correlation matrix
R, thus

Z ∼ N (0d,R). (1.39)

In practice, when using a Gaussian copula, it is meaningful to always going through calcu-
lation in the latent space, since the Gaussian distribution allows to use the many derived
expressions in analytic form, see e.g. (Roweis, 1999). Fig. 1.1 gives a graphical summary of
the spaces involved in a Gaussian copula.
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Accordinlgy, the density has following form.

cNR (u) =
φR (Φ−1(u1), . . . ,Φ−1(ud))

∏d
i=1 φ(Φ−1(ui))

= φR (z1, . . . , zd)
∏d

i=1 φ(zi)

= 1
√
detR

exp

⎛
⎜⎜
⎝
−1
2

⎛
⎜⎜
⎝

z1
⋮
zd

⎞
⎟⎟
⎠

T

(R−1 − I)
⎛
⎜⎜
⎝

z1
⋮
zd

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

(1.40)

Z U

Φ(zi)
X

F (xi)
latent copula data

N (0 ,R) CNR F (x)

N (0,1) U(0,1) F (xi)

Figure 1.1.: Spaces, random variables, multivariate distributions, marginal dis-
tributions (from top to bottom), and mappings (on arrows) of a
Gaussian copula model.

Semi-parametric Inference

A semi-parametric model is noteworthy for inference in multivariate distributions when the
data is non-Gaussian distributed and contains a moderate amount of outliers. In a semi-
parametric copula model, a parametric copula is used for modelling the associations within
the data, whereas the non-parametric part is related to the marginal distributions. In this
thesis, we use a semi-parametric Gaussian copula model, where we focus on analysing the
associations in the data without imposing assumptions on the marginal distributions.

Motivated by the Gaussian distributed latent space in a Gaussian copula model, the
approach for analysis of dependence is as follows:

1. Estimate the parameters of the Gaussian copula, namely the latent correlation matrix
R.

2. Compute the measure of your choice, using the convenient analytic forms and methods
which were devised with the assumption of the multivariate normal distribution.

Using non-parametric marginals has implications on inference in a Gaussian copula model.
In particular, the correlation matrix is computed on the ranks of the data only. The corre-
lation between random variables X and Y is the Gaussian rank correlation

ρG(X,Y ) =
∑n

i=1 Φ
−1 (R(xi)

n+1
)Φ−1 (R(yi)

n+1
)

∑n
i=1 Φ

−1 ( i
n+1
)2

, (1.41)
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where R(xi) and R(yi) are the ranks of xi and yi respectively. Note, the denominator does
not depend on the data. An interpretation of this expression is as follows: the probability
integral transform is approximated by the ranks which were rescaled to lie between 0 <
R(xi) < 1, i.e.

u(xi) = F (xi) ≈
R(xi)
n + 1

. (1.42)

with subsequent transformation to the latent space zi = Φ−1 (u(xi)). The Gaussian rank
correlation is then just the Pearson’s correlation in the latent space.

Though, the Gaussian rank correlation is not the only choice for estimating the correlation
matrix in a non-parametric way. Depending on the actual data distribution, Kendall’s τK
and Spearman’s ρS are suitable alternatives (Liu et al., 2012; Xue et al., 2012). Nonetheless,
the Gaussian rank correlation has appealing properties (Boudt et al., 2012) which were
summarised as

� consistency: Compared to Kendall’s τK and Spearman’s ρS , no transformation is
needed to obtain consistency for the correlation coefficient of a bivariate normal dis-
tribution. This allows for estimating a correlation matrix of a multivariate normal
distribution by estimating each element by its bivariate Gaussian rank correlation
coefficient.

� positive-definiteness: The resulting correlation matrix is always positive definit.

� complexity: O(d2n logn) fast to compute, also in high dimensions

� robustness: a breakdown point of 12.4%, showing robustness to small amounts of
outliers

In chapters 2 - 5, we investigate the implications of the Gaussian copula under different
models.

1.3. Information Theory

Intuitively, information refers to facts, knowledge, and data about a system. Information
can be gained by receiving a message or by observing anything. When observing a system,
information can be gained by observing the random variables and recording the outcomes.
The outcomes of random variables provide information about the configuration of the system.
Thus, information reduces the uncertainty about a system.

When quantifying information, a lot of information corresponds to surprise or the unex-
pected. No information corresponds to what is deterministic or already known. Analogously,
an outcome with low probability conveys a lot of information, and an outcome with high prob-
ability conveys few information. Thus, information is inverse proportional to probability of
an outcome and is directly related to the distribution of a random variable. Information is a
quantity that measures the uncertainty in the outcome of a random variable or an experiment
to be performed.

Information theory goes back to Shannon (1948), who devised methods to send messages
over noisy communication channels, such that the information content of the messages is
optimised. This notion of optimal channel capacity is strongly related to statistical depen-
dence. Later, Massey (1990) devised causal quantities which measure the increase of the
capacity of a communication channel, when feedback is present. Nonetheless, information
theory is not limited to the analysis of communiction channels, but rather is a more general
concept (Brillouin, 1962) which is used in different areas such as statistics (Kullback, 1997;

13



Introduction

Akaike, 1998), statistical mechanics (Jaynes, 1957) , and quantum computation and quantum
information (Nielsen and Chuang, 2002). In the following, we briefly define the most relevant
terms and refer to Cover and Thomas (2012) for a comprehensive work of the topic. We put
more emphasis on the recent results which are relevant for this thesis.

1.3.1. Entropy

Entropy refers to the amount of uncertainty of a random variable. Let X ∈ X and Y ∈ Y be
discrete random variables. The entropy of X is

H(X) = − ∑
x∈X

f(x) log f(x) = −E[log f(x)]. (1.43)

The joint entropy is
H(X,Y ) = − ∑

x∈X

∑
y∈Y

f(x, y) log f(x, y). (1.44)

For a joint distribution f(X,Y ), the conditional entropy is

H(X ∣Y ) = − ∑
x∈X

∑
y∈Y

f(x, y) log f(x∣y). (1.45)

The chain rule for entropy states that

H(X1,X2, . . . ,Xn) =
n

∑
i=1

H(Xi∣X1,X2, . . . ,Xi−1). (1.46)

1.3.2. Entropy Rate

Let {Xi}ni=1 ∈ Xn be a stochastic process. The entropy rate of the stochastic process {Xi}ni=1
is

H({Xi}) = lim
n→∞

1

n
H(X1,X2, . . . ,Xn). (1.47)

One can also show that the entropy of the stochastic process {Xi}ni=1 is

H({Xi}) = lim
n→∞

H(Xn∣Xn−1, . . . ,X1). (1.48)

1.3.3. Differential Entropy

Let X ∈ X and Y ∈ Y be continuous random variables. The entropy of X is

h(X) = −∫
X
f(x) log f(x)dx. (1.49)

The joint differential entropy of a set X1,X2, . . . ,Xn is defined as

h(X1,X2, . . . ,Xn) = −∫
X
f(xn) log f(xn)dxn. (1.50)

For a joint distribution f(X,Y ), the conditional differential entropy of is defined as

h(X ∣Y ) = −∫
X
f(x, y) log f(x∣y)dxdy. (1.51)
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The chain rule for differential entropy states that

h(X1,X2, . . . ,Xn) =
n

∑
i=1

h(Xi∣X1,X2, . . . ,Xi−1). (1.52)

The relation between entropy and differential entropy is somewhat complicated. There
is an analogy in the notation of both measures, since the sum for the support of a discrete
random variable is replaced by an integral for a continuous random variable. However, the
interpretation is different: whereas the description of a discrete random variable requires
maximally H(X) = log(n) bits, the description of a n-bit quantised continuous random
variable requires h(X) + n bits. Thus, a continuous analog of discrete entropy would assign
an entropy of ∞ to every infinitely resolved continuous random variable. Note, differential
entropy can also become negative, whenever f(x) > 1. Hence, attention is required, when
comparing entropy and differential entropy, since they do not have the same intuition.

Pleasingly, these laborious circumstances vanish when considering relative entropy mea-
sures: the intuition for discrete as well as continuous random variables are equal. Thus,
the formal separation of the discrete and continuous case is not anymore necessary. In the
following, the integral form is used for both, discrete and continuous random variables.

1.3.4. Relative Entropy

Let f and g be probability density functions. The relative entropy or Kullback-Leibler
divergence of f with respect to g is

DKL(f(x)∣∣g(x)) = ∫
X
f(x) log f(x)

g(x)
dx. (1.53)

The conditional relative entropy is

DKL(f(x∣y)∣∣g(x∣y)) = ∫
Y
f(y)∫

X
f(x∣y) log f(x∣y)

g(x∣y)
dxdy. (1.54)

The chain rule for relative entropy is

DKL(f(x, y)∣∣g(x, y)) =DKL(f(x)∣∣g(x)) +D(f(y∣x)∣∣g(y∣x)). (1.55)

Mutual Information

The mutual information between X and Y is

I(X;Y ) =DKL (f(x, y)∣∣f(x)f(y))

= ∫
X
∫
Y
f(x, y) log f(x, y)

f(x)f(y)
dxdy.

(1.56)

Conditional mutual information is

I(X;Y ∣Z) =DKL (f(x, y∣z)∣∣f(x∣z)f(y∣z))

= ∫
Z
f(z)∫

X
∫
Y
f(x, y∣z) log f(x, y∣z)

f(x∣z)f(y∣z)
dxdydz.

(1.57)

The chain rule for mutual information is

I(X1,X2, . . . ,Xn;Y ) =
n

∑
i=1

I(Xi;Y ∣X1,X2, . . . ,Xi−1). (1.58)
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Multivariate Mutual Information

Multivariate mutual information (Jakulin and Bratko, 2003a,b) is a multivariate generalisa-
tion of mutual information. The recursive definition is given by

I(X1; . . . ;Xn) = I(X1; . . . ;Xn−1) − I(X1; . . . ;Xn−1∣Xn). (1.59)

Let V = {X1, . . . ,Xn}, and T ⊆ V, then, an alternating inclusion-exclusion definition of
multivariate mutual information is given by

I(V) = − ∑
T ⊆V

(−1)∣V ∣−∣T ∣H(T ). (1.60)

Multiinformation

Multiinformation1 (Studenỳ and Vejnarová, 1999) quantifies the dependency or redundancy
among a set of random variables and is defined as the Kullback-Leibler divergence be-
tween the joint distribution f(x1, . . . , xd) and the componentwise independent distribution
f(x1)⋯f(xd)

M(X1,X2, . . . ,Xd) =DKL (f(x1, . . . , xd)∣∣f(x1)⋯f(xd))

= ∫
x1

⋯∫
xd

f(x1, . . . , xd) log
f(x1, . . . , xd)
f(x1)⋯f(xd)

dx1⋯dxd.
(1.61)

Factorising the logarithm, multiinformation reduces to a differences of entropies

M(X1,X2, . . . ,Xd) =
d

∑
i=1

H(Xi) −H(X1, . . . ,Xd). (1.62)

A decomposition similar to a chain rule (Slonim et al., 2005) for multiinformation is

M(X1,X2, . . . ,Xd) =
d

∑
i=2

I(Xi−1;Xi, . . . ,Xd). (1.63)

For any V = {X1, . . . ,Xn}, and T ⊆ V, it is possible to express multiinformation in terms
of multivariate mutual information

M(V) = ∑
T ⊆V ∶∣T ∣≥2

(−1)∣T ∣I(T ), (1.64)

as well as multivariate mutual information in terms of multiinformation

I(V) = ∑
T ⊆V ∶∣T ∣≥2

(−1)∣V ∣−∣T ∣M(T ). (1.65)

This decomposition also generalises to sets of variables. For two sets Xp and Y q , the decom-
position is

I(Xp;Y q) =M(Xp, Y q) −M(Xp) −M(Y q) (1.66)

and provides a useful decomposition of mutual information in terms of multiinformation.

1Multiinformation is also known as total correlation (Watanabe, 1960) and multivariate
constraint (Garner and Carson, 1960). It should not be confused with multivariate mutual
information.
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1.3.5. Gaussian Random Variables

Let X ∼ N (µ,σ2) be a Gaussian distributed random variable, then, the entropy of X is

h(X) = 1

2
log (2πeσ2) . (1.67)

Let X ∼ N (µ,Σ) be a multivariate Gaussian distributed random vector, then the entropy
of X is

h(X) = 1

2
log ((2πe)d det (Σ)) .. (1.68)

Let A be a matrix, then

H(AX) = h(X) + log ∣det(A)∣. (1.69)

1.3.6. Relation between Copulas and Multiinformation

Since the copula is a probability distribution, the entropy of the copula is well defined and
is called copula entropy

Hc(x) = −∫
u
c(u) log (c(u))du. (1.70)

The following theorem is a direct application of Sklar’s theorem to multiinformation. The
theorem states that multiinformation depends on the copula only but not on the marginals
of a joint distribution.

Theorem 3 ((Ma and Sun, 2011)). Multiinformation is equivalent to negative copula en-
tropy:

M(X1, . . . ,Xd) = −Hc(X1, . . . ,Xd) (1.71)

Proof.

M(X1, . . . ,Xd) = ∫
X
f(X1, . . . ,Xd) log(

f(X1, . . . ,Xd)
f(X1)⋯f(Xd)

)dX

= ∫
X
c(U1, . . . , Ud)

d

∏
i=1

f(Xi) log c(U1, . . . , Ud)dX

= ∫
U
c(U1, . . . , Ud) log c(U1, . . . , Ud)dU

(1.72)

where we changed variables Ui = F (Xi) such that dU =∏d
i=1 f(Xi)dX .
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For a Gaussian copula, multiinformation is

M(X1, . . . ,Xd)

= ∫
U
c(U1, . . . , Ud) log c(U1, . . . , Ud)dU

= ∫
U

φR (Φ−1(u1), . . . ,Φ−1(ud))
∏d

i=1 φ(Φ−1(ui))
log
⎛
⎝
φR (Φ−1(u1), . . . ,Φ−1(ud))

∏d
i=1 φ(Φ−1(ui))

⎞
⎠
dU

= ∫
Z
φR (z1, . . . , zd) log(

φR (z1, . . . , zd)
∏d

i=1 φ(zi)
)dZ

= ∫
Z
φR (z1, . . . , zd) log (φR (z1, . . . , zd))dZ −

d

∏
i=1
∫
Zi

φ(zi) logφ(zi)dZi

= −1
2
log ((2πe)d det(R)) + d

2
log(2πe)

= −1
2
log det(R),

(1.73)

where we changed variables Ui = Φ(Zi) such that dU =∏d
i=1 φ(zi)dZ.

1.3.7. Directed Information Theory

Causal conditioning builds the foundation of directed information theory. Assume two se-
quences of random variables Xn = (X1, . . . ,Xn) and Y n = (Y1, . . . , Yn) with temporally
aligned indices, such that a random variable is associated for every time point in every time
series. Then, the joint distribution of Xn and Y n can be factorised as follows:

p(Xn, Y n)

=
n

∏
i=1

p(Xi, Yi∣Y i−1,Xi−1)

=
n

∏
i=1

p(Xi∣Xi−1, Y i−1)p(Yi∣Y i−1,Xi)

=
n

∏
i=1

p(Xi∣Xi−1, Y i−1)p(Yi,Xi∣Y i−1,Xi−1)
p(Xi∣Y i−1,Xi−1)

=
n

∏
i=1

p(Xi∣Xi−1, Y i−1)p(Yi∣Y
i−1,Xi−1)p(Xi∣Y i,Xi−1)
p(Xi∣Y i−1,Xi−1)

=
n

∏
i=1

p(Xi∣Xi−1, Y i−1)p(Yi∣Y i−1,Xi−1) p(Yi,Xi∣Y i−1,Xi−1)
p(Yi∣Y i−1,Xi−1)p(Xi∣Y i−1,Xi−1)

=
n

∏
i=1

p(Xi∣Xi−1, Y i−1)p(Yi∣Y i−1,Xi−1)c(Yi,Xi∣Y i−1,Xi−1)

= p(Xn∣∣Y n−1)p(Y n∣∣Xn−1)c(Xn, Y n∣∣Xn−1, Y n−1),

(1.74)

where the first and second equation follow from the chain rule. The third equation fol-
lows from conditioning. Note that the terms are asymmetric in the second argument of
the conditionings. In the communication literature, this was interpreted as that due to
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propagation delays in a physical channel, the transmitted symbol Xi is slightly prior to
the received symbol Yi. However, in the following, we will rigorously use the the idea of
causal conditioning (Massey, 1990; Kramer, 1998), such that the conditioning of a random
variable at time i is only allowed for random variables which are prior to time i. The
fourth equation follows from the chain rule, the fifth equation from conditioning. This elim-
inates the asymmetry and reveals a symmetric instantaneous term instead (Amblard and
Michel, 2012). In the sixth equation, the instantaneous term is identified as a conditional
copula. The last equation follows by defining groups of the individual terms over time.
We use the notion for causal conditioning, i.e. p(Xn∣∣Y n−1) = ∏n

i=1 p(Xi∣Xi−1, Y i−1), and
c(Xn, Y n∣∣Xn−1, Y n−1) = ∏n

i=1 c(Yi,Xi∣Y i−1,Xi−1). The first term is associated to feed-
forward information, the second to feedback, and the third to instantaneous coupling.

Directed Information

Applying the same reasoning to entropy and mutual information the following quantities can
be defined: Causal conditional entropy is

H(Y n∣∣Xn) =
n

∑
i=1

H(Yi∣Y i−1,Xi), (1.75)

which also follows the causality principle of only conditioning on variables which are prior in
time. From the same principle, Massey (1990) generalised the symmetric mutual information
to a asymmetric quantity called directed information

I(Xn → Y n) =DKL (p(Xn, Y n)∣∣p(Xn∣∣Y n−1)p(Y n))
=H(Y n) −H(Y n∣∣Xn)

=
n

∑
i=1

I(Xi;Yi∣Y i−1),
(1.76)

which is, in case of a system with feedback, a more useful quantity, since it only measures the
mutual information in one direction. Instantaneous coupling, on the other hand, measures
the remaining contemporaneous mutual information and thus might be seen as a non-causal
coupling. It is defined as

I(Xn ↔ Y n) =
n

∑
i=1

I(Xi;Yi∣Xi−1, Y i−1). (1.77)

Including instantaneous coupling, Amblard and Michel (2012) showed that mutual informa-
tion decomposes into the sum of directed informations and instantaneous coupling. This
fundamental decomposition is

I(Xn;Y n) = I(Xn−1 → Y n) + I(Y n−1 →Xn) + I(Xn ↔ Y n). (1.78)

Side Information

Accounting for side information, i.e. a third time series Zn which acts as a confounder or
mediator, the corresponding conditional form of the aforementioned quantities can be defined
(Amblard and Michel, 2012).

Causal conditional directed information is

I(Xn → Y n∣∣Zn) =H(Y n∣∣Zn) −H(Y n∣∣Xn, Zn)

=
n

∑
i=1

I(Xi;Yi∣Y i−1, Zi).
(1.79)
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Causal conditional instantaneous coupling is

I(Xn ↔ Y n∣∣Zn) =
n

∑
i=1

I(Xi;Yi∣Y i−1,Xi−1, Zi). (1.80)

The fundamental decomposition of mutual information in the conditional form is

I(Xn;Y n∣∣Zn−1)
= I(Xn−1 → Y n∣∣Zn−1) + I(Y n−1 →Xn∣∣Zn−1) + I(Xn ↔ Y n∣∣Zn−1).

(1.81)

Transfer Entropy

Transfer entropy, as defined by Schreiber (2000); Amblard and Michel (2012), implicitly
assumes stationarity and thus is defined as a rate. It explicitly does not contain the instan-
taneous coupling term

I∞(Xn−1 → Y n) = lim
n→∞

1

n

n

∑
i=1

I(Xi−1;Yi∣Y i−1)

= lim
n→∞

I(Xn−1;Yn∣Y n−1).
(1.82)

Causally conditioned transfer entropy is

I∞(Xn−1 → Y n∣∣Zn−1) = lim
n→∞

1

n

n

∑
i=1

I(Xi−1;Yi∣Y i−1, Zi−1)

= lim
n→∞

I(Xn−1;Yn∣Y n−1, Zn−1).
(1.83)

Analogously, a directed information rate, which includes instantaneous coupling, is defined
as

I∞(Xn → Y n) = lim
n→∞

1

n

n

∑
i=1

I(Xi;Yi∣Y i−1)

= lim
n→∞

I(Xn;Yn∣Y n−1),
(1.84)

and the causal conditioned directed information rate is

I∞(Xn → Y n∣∣Zn) = lim
n→∞

1

n

n

∑
i=1

I(Xi;Yi∣Y i−1, Zi)

= lim
n→∞

I(Xn;Yn∣Y n−1, Zn).
(1.85)

Note, the conditioning sets of causally conditioned transfer entropy and causally condi-
tioned directed information rate differ.
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2. Copula Archetypal Analysis

In machine learning, many problems are approached by the paradigm of collecting as much
evidence as possible. Often the number of observations is limited but it is possible to collect
many features from the phenomenon of interest. For example in neurophysiology, the cohorts
are limited, but collecting many clinical variables and combining them with high-dimensional
time series from magnetic resonance imaging (MRI) as well as electroencephalography (EEG)
or magnetoencephalography (MEG) are possible. Also in gene expression analysis, the num-
ber of patients is limited, but next generation sequencing allows to sequence the whole human
genome with reasonable costs. Nevertheless, finding structure in heterogeneous and high-
dimensional data sets can still be challenging and thus, basis transformations to compact
representations often facilitate the analysis of data. Archetypal analysis suits this need as it
is a data-adaptive technique which represents the data in a lower dimensional manifold. As a
special virtue, archetypal analysis represents the data while keeping extremal characteristics
of the data set.

However, combining different data sources is still a difficult task, since different modalities
are quantified on different scales. As a workaround, the data is often transformed or nor-
malised to enable a meaningful analysis. Though, finding suitable transformations can be
demanding because structure within the data set vanish or emerge depending on the trans-
formations. In this chapter, we will use the copula framework to give a principled way to
approach this problem and we will show the benefits which come with a relaxation from a
Gaussian to a Gaussian copula model.

Before we deepen into the copula version of archetypal analysis, we will introduce classical
archetype analysis. Several algorithms for basis transformations to data-adaptive compact
representations are outlined. Subsequently, copula archetypal analysis is presented as pro-
viding a unified method for absorbing monotone transformations. Moreover, the Gaussian
copula is motivated to be a justified approximation for the probabilistic and generative model
we consider. Finally, we highlight additional benefits which come with the copula extension
and conclude with an example in computational biology.

2.1. Archetypal Analysis

Archetypal analysis is an unsupervised learning concept in machine learning. Given a data
sample in a multi-dimensional space, archetypal analysis tries to find a lower-dimensional
manifold which approximates the data by representing it with respect to convex mixtures
of itself. By the nature of the problem, the new representation will be in terms of extremal
vertices, the so-called archetypes which lie close to the convex hull of the data sample.

An example from biology, presented by Shoval et al. (2012), makes this concept intuitively
comprehensible: from a total of 108 species, Norberg and Rayner’s study of bat wings (Nor-
berg and Rayner, 1987) identified K = 3 archetypes which explain – to some degree – almost
all different species. The archetypal bats were found as to outperform all other bats at a
single given task, see Fig. 2.1.
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Figure 2.1.: Wing aspect ratio of bats versus their body mass (Shoval et al.,
2012). Three archetypes were identified; their inferred tasks are
listed in the table above. The convex hull is the border of the light
blue area. Figure from (Shoval et al., 2012).

Cutler and Breiman (1994) introduced archetypal analysis with the intention that “archety-
pal analysis represents each individual in a data set as a [convex] mixture of individuals of
pure type or archetype.” In more precise terms, let the data xi ∈ Rp, i = 1, . . . , n be in an
p-dimensional space, and zk ∈ Rp, k = 1, . . . ,K, be the archetypes of cardinality K. The data
is approximated as a convex combination of the archetypes, i.e.

xi ≈
K

∑
k=1

aikzk, s.t. aik ≥ 0, and
K

∑
k=1

aik = 1, i = 1, . . . , n (2.1)

and the archetypes are convex combinations of the data itself, i.e.

zk =
n

∑
i=1

bkixi, s.t. bki ≥ 0, and
n

∑
i=1

bki = 1, k = 1, . . . ,K (2.2)

where aik are the convex coefficients of the data with respect to the archetypes and bki are
the coefficients of the archetypes with respect to the data. Eq. 2.1 describes the p-dimensional
data xi in new coordinates a⊺i with respect to a K-dimensional basis zi, i = 1, . . . ,K. Given
the data xi, i = 1, . . . , n, the goal of archetypal analysis is to find all coefficients aik, bki,
and the archetypes zk, k = 1, . . . ,K. The corresponding optimisation problem minimises the
representation error in terms of residual sum of squares

RSS =
n

∑
i=1

∣∣xi −
K

∑
k=1

aik
n

∑
j=1

bkjxj ∣∣22 (2.3)

under the constraints of Eqs. 2.1 and 2.2.
For notational simplicity, we repeat the above optimisation problem in matrix form: the

data is represented as the rows of matrix X ∈ Rn×p and are convex combinations of the
archetypes which are the rows of matrix Z ∈ RK×p. Then, the optimisation problem is

argmin
A,B

∣∣X −ABX∣∣2F

s.t. aik ≥ 0, A1K = 1n, and

bki ≥ 0, B1n = 1K ,

(2.4)
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where A ∈ Rn×K and B ∈ RK×n are row stochastic matrices.

Cutler and Breiman (1994) also introduced an elegant way for inferring the coefficients
A and B. The optimisation problem is convex in A if we fix B as well as in B if we fix
A. This leads to an alternating optimisation algorithm which is outlined in Alg. 1. Each
iteration consists of two constrained least squares problems which are solved by minimising a
penalised version of the non-negative least squares algorithm of Lawson and Hanson (1974).

Algorithm 1 Alternating non-negative least squares algorithm for archetypal
analysis.

Require: Data X
Result: Archetypes Z, coefficients A, B
Initialise: Z
1: while not converged do
2: A← argminA ∣∣X −AZ∣∣2F s.t. aik ≥ 0, A1K = 1n

3: Z = (ATA)−1ATX
4: B← argminB ∣∣Z −BX∣∣2F s.t. bkj ≥ 0, B1n = 1K

5: Z =BX
6: end while

Hitherto, many advances were proposed to accelerate the optimisation problems. Among
those, one important idea is to pre-select points on the convex hull by computing the convex
hull in two-dimensional projections (e.g. by pairwise PCA projections or random projections),
cf. (Thurau et al., 2009; Bauckhage and Thurau, 2009; Kersting et al., 2010; Bauckhage,
2014). Further advances in convex optimisation allowed to accelerate the constrained least
squares problems. Mørup and Hansen (2010) proposed a projected gradient descent approach
where the non-negativity constraints were satisfied with (costly) back-projections into the
feasible set. Preventing the projections was possible by noting that the constraints force the
rows of coefficient matrices A and B to reside in the standard simplicies, i.e. the update
steps are constituted of convex minimisation problems over convex sets. This enabled the
use of more elegant techniques. Prabhakaran et al. (2012) proposed the use of monotone
increasing forward stagewise regression (MIFSR), a monotone LASSO approach, cf. Hastie
et al. (2007). Later on, we will look at an other detail of this approach.

For the same reason, Bauckhage et al. (2015) proposed to use the Frank-Wolfe procedure.
In each iteration, this algorithm only solves a linear approximation of the problem, but with
the same set of constraints. By construction, the algorithm will automatically satisfy the
constraints. Expanding the residual sum of squares

RSS = ∣∣X −ABX∣∣2F
= tr ((X −ABX)T(X −ABX))

= tr (XTX − 2XTABX +XTBTATABX)

(2.5)

and ignoring the constraints, the linear approximations are given by the gradients with
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respect to A and B are

∇ARSS = −2 (XXTBT −ABXXTBT)

= −2 (XZT −AZZT)

∇BRSS = −2 (ATXXT −ATABXXT)

(2.6)

The advantage of this approach lies in guarantees for fast achievement of ϵ-approximations
of the optimal solution that are provably sparse, cf. e.g. Jaggi (2013). The algorithm is
outlined in Alg. 2. Here, ej is a unit vector with component j having value 1. Note, if ai

and bj are initialised such that they meet the convexity constraints, then they also fulfill the
constraints after an update.

Algorithm 2 Frank-Wolfe for archetypal analysis.

Require: Data X
Result: Archetypes Z, coefficients A, B
Initialise: A, B, Z
1: while not converged do
2: while not converged do
3: G = ∇ARSS = −2 (XZT −AZZT)
4: for i ∈ {1, . . . , n} do
5: j = argminlGil

6: ai ← ai + 2/(t + 2)(ej − ai)
7: end for
8: end while
9: while not converged do

10: G = ∇BRSS = −2 (ATXXT −ATABXXT)
11: for j ∈ {1, . . . ,K} do
12: i = argminlGjl

13: bj ← bj + 2/(t + 2)(ei − bj)
14: end for
15: end while
16: Z =BX
17: end while

The general optimisation problem of archetypal analysis, the trade-off between the rep-
resentation error (in terms of e.g. RSS) and the complexity of the model (in terms of e.g.
number of parameters or compression) is not fully solved in the aforementioned algorithms:
all these models work with a predefined number of archetypes K and model selection is
often done a posteriori by cross-validation. Prabhakaran et al. (2012) slightly changed the
optimisation problem in Eq. 2.4 and introduced an intermediate step in order to determine
the number of archetypes. One change concerns the dimensions of matrices A and B which
are fixed to Rn×n, and Z ∈ Rn×p, such that every single observation is a candidate for being
an archetype. Model selection is then performed by introducing another constraint in the
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optimisation problem, in particular

zGL ← argmin
zGL

∣∣xGL −AzGL∣∣22, s.t.
n

∑
j=1

∣∣zGL
j ∣∣1,2 ≤ κ (2.7)

where

xGL =
⎛
⎜⎜
⎝

x1

⋮
xn

⎞
⎟⎟
⎠
, A =

⎛
⎜⎜⎜⎜
⎝

a1 0n ⋯ ap 0n ⋯ 0n

0n a1 ⋯ 0n ap ⋯ 0n

⋱ ⋯ ⋱
0n ⋯ a1 0n 0n ⋯ ap

⎞
⎟⎟⎟⎟
⎠
, zGL =

⎛
⎜⎜
⎝

z1
⋮
zn

⎞
⎟⎟
⎠
. (2.8)

are the expanded observation vector, the expanded weighting matrix, and the expanded
archetype vector, respectively. Then, the Group-Lasso is used for sparse selection of archetypes
and the Bayesian Information Criterion (BIC) for model selection. Solving the Group-Lasso
optimisation problem is approached with an active-set algorithm (Roth and Fischer, 2008)
which samples the solution path at discrete sets of regularisation parameter κ. Since no ad-
ditional costs emerge in computing the BIC scores over the entire solution path, the method
proves to be computationally efficient. The algorithm is outlined in Alg. 3.

Algorithm 3 Group-Lasso extension for model selection archetypal analysis.

Require: Data X
Result: Archetypes Z, coefficients A, B
Initialise: A, B, Z
1: while not converged do
2: A← argminA ∣∣X −AZ∣∣2F s.t. aik ≥ 0,A1n = 1n ▷ using MIFSR
3: zGL ← argminzGL ∣∣xGL −AzGL∣∣22, s.t. ∑n

j=1 ∣∣zGL
j ∣∣1,2 ≤ κ

4: B← argminB ∣∣Z −BX∣∣2F s.t. bkj ≥ 0,B1n = 1n ▷ using MIFSR
5: Z = BX
6: end while

Archetypal analysis extends rather trivially to non-linear kernel models, since the data
X only occurs as Gram matrices XXT in the optimisation problem, cf. Eq. 2.6, where the
inner products x⊺i xj can be replaced by any kernel function K(xi,xj). This extensions
have been proposed in (Mørup and Hansen, 2010) and (Bauckhage and Manshaei, 2014),
efficient methods, where the Gram matrix is approximated by the Nyström method, have
been proposed in (Zhao et al., 2016).

The probabilistic interpretation of archetypal analysis (Seth and Eugster, 2013, 2016)
may be the closest related work to ours. From a probabilistic viewpoint, classical archetypal
analysis can be seen as a linear latent variable model: The n observations are described
as convex mixtures of K archetypes arranged as the rows of the matrix Z, thus the mixing
components sum to one, i.e. ∑K

k=1 ak = 1T
Ka = 1. In a probabilistic archetype model we might

assume that ai ∼ DirK(α), and that the observations xi ∈ Rp scatter around the means ZTai

according to isotropic Gaussian noise with variance η, such that we arrive at the generative
model

ai ∼ DirK(α), i = 1, . . . , n
xi∣Z,ai ∼ Np(ZTai, ηIp).

(2.9)
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Thus, identifying the archetypes can be probabilistically formulated as minimising the neg-
ative log-likelihood

n

∑
i=1

(xi −ZTai)2 = ∥X −AZ∥2F (2.10)

Seth and Eugster (2013) noticed that the model in Eq. 2.9 approximates the convex hull in the
parameter space under a Gaussian observation model. This observation can be generalised
to other observation models. In this way, they provided efficient optimisation methods for
observation models having Bernoulli, multinomial, and Poisson distribution. In Seth and
Eugster (2016), the model is further extended to nominal observations and a variational
Bayes inference scheme which selects a suitable number of archetypes, at least as for a
moderate number of archetypes (K < 6).

Several variations of archetypal analysis have been successfully applied to e.g. image
collections (Thurau and Bauckhage, 2009; Ebert and Schiele, 2013), document collections
(Canhasi and Kononenko, 2014), economic market studies (Li et al., 2003), game strategies
(Sifa and Bauckhage, 2013), and audio dictionary learning (Diment and Virtanen, 2015).

2.2. Copula Archetypal Analysis

Remark

The sequel closely follows Kaufmann et al. (2015).

Finding the archetypes is a geometric concept that crucially depends on the representation
of the observations in Rp. One major problem in classical archetypal analysis, which we like
to address, is its sensitivity to monotone transformations of the coordinate axes: it can make
a huge difference if one measures a certain property for example in meters or log(meters).
This problem is illustrated in Fig. 2.2: After a transformation of the original data by a
strictly monotone increasing transformation, the lower left panel would suggest a total of
four archetypes, one located at each corner. Whereas the lower right panel, reconstructed
by a semi-parametric copula, identifies approximately the same three archetypes as in the
original data.

As long as only Euclidean lengths are concerned, one might argue that the sensitivity to
monotone transformations is a problem of somewhat artificial nature, but in high-dimensional
real-world applications with features of different types and different domains, the representa-
tion problem from above indeed defines an inherent limitation of classical archetypal analysis.

As a means for overcoming this representational problem we introduce a copula based
preprocessing step thus making archetypal analysis invariant against all (strictly) monotone
increasing transformations: being inherently invariant against such strictly monotone in-
creasing transformations, copula densities prove to be exactly the invariance class needed for
this task.

Presumably the most elegant solution for the problem of inferring the archetypes would be
to complement the model with priors over all (hyper-) parameters and analyse the posterior
distribution of the archetypes in a fully Bayesian fashion. In general, we think this would
be feasible but this is not the main focus of this work. Instead, we would like to maintain a
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probabilistic “flavour”, but we still want to make use of existing highly efficient algorithms
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Figure 2.2.: Scale invariance of copula archetypal analysis. Upper left panel:
200 points sampled as (noisy) convex mixtures of 3 archetypes
(triangle symbols) in two dimensions. Upper right: Strictly mono-
tone transformation applied to each dimension. Lower left: Trans-
formed data points and location of the original archetypes after
transformation. Lower right: Reconstruction of the transformed
dataset by copula-PCA.
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which we introduced in the previous section.

2.2.1. Model

X → XTX ∼Wnc

Z αη

Y

h

≈
Eq. 2.18

X̃ → X̃TX̃ ∼Wc

Σ

Y

h

Figure 2.3.: Probabilistic graphical models of Archetypal Analysis (left) and
Gaussian Copula (right).

In this section we show how to overcome the representational problem by embedding
archetypal analysis in a copula framework (Nelsen, 1999; Joe, 1997). The framework includes
a strictly monotone increasing mapping h: y = h(x), Rp ↦ Rp, thereby treating X as latent
variables which are estimated on the observations Y , as shown in the probabilistic graphical
model in Fig. 2.3. The formulation with latent variables allows to re-use existing algorithms
for recovering the archetypes.

Sklar’s theorem (Sklar, 1959) allows the decomposition of every continuous multivariate cu-
mulative distribution function (cdf) F (Y1, . . . , Yp) into it’s univariate marginals F1(Y1), . . . , Fp(Yp)
and a copula C comprising the dependency pattern only. More precisely, the theorem states
the existence and uniqueness of a copula C such that

F (Y1, . . . , Yp) = C(U1, . . . , Up), (2.11)

where the uniformly distributed Uj = Fj(Yj) are generated with the probability integral
transformation of the univariate marginal cdfs. In the following, we will look for a parametric
copula C which suitably represents the dependency structure in the space of U .

2.3. Inference

2.3.1. Special Case: Continuous Observations Without
Missing Values.

If all observations Y are continuous and if there are no missing values, the simplest way
of estimating each column X●,j , j = 1, . . . , p is to compute the normal scores based on the

empirical marginal cdfs Femp and the standard normal inverse cdf: Û●,j = Femp(Y●,j) =
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ranks(Y●,j)/(n+1) is a uniformly distributed random variable, and X●,j = Φ−1(Û●,j) further
transforms the density (element-wise) to standard normal. Given the normal scores, the
correlation matrix Σ which fully parametrises the Gaussian copula, is then just the expected
covariance of the normal scores.

Using the empirical marginals Femp, corresponds to the non-parametric part in the infer-
ence, since only the ranks are used in the transformation. This establishes invariance against
arbitrary continuous cdfs F and also against their composition with an arbitrary strict mono-
tone increasing transformation (F ○ g)(y). This makes inference invariant against different
representations as well as insensitive against outliers. Note that we might have different cdfs
and transformations in every component of y.

The algorithm, outlined in Alg. 4, now proceeds by estimating the latent X based on
the Gaussian copula model, and then calling an arbitrary function FindArchetypes(X) that
minimises Eq. 2.10 and returns archetypes Z and mixing coefficients A. We assume that
this function implements some classical archetype reconstruction algorithm, together with
some mechanism for selecting the number of archetypes. In practice, we use the group-Lasso
based algorithm proposed in (Prabhakaran et al., 2012) which uses the Bayesian Information
Criterion (BIC)-score for automatically choosing an appropriate number of archetypes.

Algorithm 4 Copula archetypal analysis for continuous observations.

Require: Observations Y
Result: Archetypes Z
1: for all dimensions do
2: Compute normal scores X●,j = Φ−1 ( ranks(Y●,j)n+1

)
3: end for
4: Z ← FindArchetypes(X)

2.3.2. General Case: Mixed Data and Missing Values.

In general, however, we allow the observations to be continuous and/or discrete (ordered
factors), and we also allow missing values. For discrete observations, the ranks in the em-
pirical cdf contain ties that might be broken in some arbitrary way. However, the resulting
cdf-mapping will not make the marginal densities uniform, since transformations of discrete
random variables do not change the distribution, but affect only the sampling space.

In order to deal with such situations, it has been proposed to use the extended rank
likelihood (Hoff, 2007). The elementary observation is that for non-decreasing marginal cdfs,
yi,j < yk,j implies xi,j < zk,j . For the entire set of observations Y, this generalises such that
X must lie in the set

D = {X ∈ Rn×p ∶max(xk,j ∶ yk,j < yi,j) < xi,j <min(xk,j ∶ yi,j < yk,j)} (2.12)

This enables us to see the marginal cdfs Fj as nuisance parameters in the likelihood and
hence to estimate the correlation matrix Σ on D.

Bayesian inference forΣ includes an inverse-Wishart prior distribution p(Σ) ∼W−1(ν0, ν0V0),
with degrees of freedom v0 and scale V0. It can be achieved by constructing a Markov chain
having its stationary distribution at Σ’s posterior distribution p(Σ∣X ∈ D) ∝ p(Σ)p(X ∈
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D∣Σ). Sampling is done in a Gibbs fashion, alternating between X∣Σ,Y and Σ∣X, as out-
lined in Alg. 5.

Resampling the latent variable X∣Y,Σ corresponds to sampling from a truncated normal

xi,j ∼ Ntrunc (µi,j , σ2
j , lo, up) , (2.13)

where the lower truncation lo = max(xi,j ∶ yi,j < unique(yn,j , . . . , yn,j) and the upper trun-
cation up = min(xi,j ∶ yi,j > unique(yn,j , . . . , yn,j) are determined by the set D in Eq. 2.12.

Thereby, the mean µi,j =Xi,−j (Σj,−jΣ
−1
−j,−j)

T
and the variance σ2

i,j = Σj,j−Σj,−jΣ
−1
−j,−jΣ−j,j

are conditioned on the remaining variables.

Resampling the correlation matrix Σ∣X means drawing from the inverse-Wishart, aug-
mented with the data term XTX

Σ ∼W−1 (v0 + n, voVo +XTX) . (2.14)

In order to accommodate for missing values yi,j , the step in Eq. 2.13 is adjusted to use
the unconstrained (i.e. untruncated) normal distribution.

Now, in every Gibbs iteration, we run an existing algorithm for drawing a set archetypes.
For every object x, we update a score S(X), measuring the average proximity to the closest
archetypes. Clustering of the score landscape and, within each cluster, selecting the objects
with the highest score, finalises the algorithm. An example is given in Fig. 2.4.

Algorithm 5 Copula archetypal analysis for mixed observations and missing
values.

Require: Observations Y
Result: Archetypes Z
Initialise: (X,Σ)
1: for N Gibbs sweeps do
2: for all observations do
3: for all dimensions do
4: conditioned on (Y,X), compute bounds {lo, up}
5: conditioned on (Σ,X), compute conditional mean µi,j and con-

ditional variance σ2
i,j

6: draw xi,j ∼ Ntrunc(µi,j , σ
2
i,j , lo, up) from truncated normal;

7: end for
8: end for
9: conditioned on X, draw Σ from inverse Wishart

10: A← FindArchetypes(X)

11: update average archetypal scores in S(X)
12: end for
13: find clusters in set {x∣S(x) > 0}
14: return in every cluster the object with highest score S
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2.4. Motivation for Gaussian Copula

A parametric copula C is used in order to define a likelihood l(θ;{yi}ni=1) which makes
it possible to estimate the latent vectors xi. Subsequently these are used as input for
classical archetype reconstruction. A particularly simple choice of a dependency structure
is a Gaussian copula model CΣ which inherently implies a latent space by transforming
X̃j = Φ−1(Uj) with the standard normal inverse cdf, i.e. the quantile function. The latent

space X̃ ∼ N (0 ,Σ) is jointly normal distributed with zero mean and correlation Σ. A
probabilistic graphical model is given in Fig. 2.3, right panel. Clearly, the latent sample
covariance

X̃TX̃ ∼Wc (n,Σ) (2.15)

is central Wishart. In general, Gaussian copulas are very restrictive examples of copulas,
in particular if a certain application domain requires proper modelling of tail-dependencies.
For the purpose of reconstructing archetypes, however, the Gaussian copula is highly suited,
because in the generative archetype model outlined in Eq. 2.9, the dependency structure is
indeed approximately Gaussian. To see this, it is useful to rewrite Eq. 2.9 in matrix form:

X∣Z,A ∼MN (AZK×p, In, ηIp), (2.16)

where X ∈ Rn×p contains the observations xi as rows, A ∈ Rn×K contains the mixing com-
ponents α as rows and MN (M,Ω,Σ) denotes the matrix normal distribution with mean
matrix M, row covariance Ω and column covariance Σ. Since in Eq. 2.9, the individual com-
ponents of x are independent given the means, we might say that the means M capture the
full dependency structure of x. This interpretation can be formally expressed by analysing
the covariance structure of the observations xi. Since X follows the matrix normal distri-
bution from Eq. 2.16, it follows that the sample covariance S =XTX is non-central Wishart
with non-centrality matrix η−1MTM, where M =AZ, i.e.

S∣Z,A ∼Wnc (n, ηIp, η−1MTM) . (2.17)

Moreover, the non-central Wishart distribution can be approximated with a central Wishart,
because the first order moments of the distribution are identical and the second order mo-
ments differ in terms of order O(n−1) only. This approximation, derived via moment match-
ing (Steyn and Roux, 1972), allows to write

S∣Z,A ∼Wnc(n, ηIp, η−1MTM) ≈Wc(n,
1

n
MTM + ηIp) (2.18)

Comparing Eq. 2.15 with Eq. 2.18 shows that under the generative archetype model in
Eq. 2.9, the covariance structure of the observed vectors x is approximately Gaussian which,
in turn, formally justifies the use of a Gaussian copula model for estimating the latent space.

2.5. Demo-Application in Computational Biology

We applied the Copula archetype model to analyse the genetic stress response induced by
heat shock in Saccharomyces cerevisiae (yeast). Two different information sources are used:
(i) time-resolved gene expression measurements of yeast genes under heat shock conditions,
i.e. temporal changes in the process of synthesizing gene products under heat stress. (ii)
Binding affinity scores for certain stress-related transcription factors. A transcription factor
(TF) is a protein that binds to DNA sequences near genes and regulates gene expression. The
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first dataset has been published in (Gasch et al., 2000) and can be downloaded from their
web supplement, the second one refers to (Harbison et al., 2004) and can be downloaded at
http://fraenkel.mit.edu/Harbison/release_v24/ as p-values for TF binding events. Probe
names in this dataset are matched to genes in order to combine the TF data with the gene
expression data. The p-values are exponentially transformed to a binding affinity score
on [0,1] such that the upper half of the unit interval is associated with highly significant
bindings with p < 5⋅10−3. Combination of both datasets leads to a 10-dimensional description
of 6105 yeast genes, expression values at 4 different time points and binding affinities to the
6 transcription factors ADR1, GAT1, HSF1, MSN2, SKN7, YAP1.

In the context of archetypal analysis, we look for a few genes that show prominent ex-
pression/binding patterns that explain all observed patterns as convex mixtures in the latent
copula space. Since roughly 13% of the genes contain missing values in one or more dimen-
sions, we use the Gibbs-sampling strategy in Alg. 5 for inferring archetypal genes. Fig. 2.5
summarises the result of this analysis. Copula archetypal analysis identified 6 archetypal gene
clusters that roughly correspond to the following patterns. Stress response (genes near the
green diamond): these are known heat-stress response genes, they are highly over-expressed
and have high binding affinity to the stress-related transcription factor SKN7 which is one
of the two major transcriptional stress-response regulators in yeast. Ribosomal RNA pro-
cessing (red): these genes play an essential role in protein synthesis. As expected, they
are down-regulated under heat stress, and this regulatory process is mediated by binding to
YAP1 which is the second major regulator, cf. (Lee et al., 1999). Two archetypes, depicted
by the magenta and blue diamond, represent genes with mainly catalytic function that are
regulated by exactly these two different stress response regulons, and two further archetypes
(cyan and yellow diamond) have opposite binding affinity to the transcriptional activator
ADR1. For further details see Fig. 2.5. Note that our findings nicely corroborate the results
in (Shoval et al., 2012), where essentially the same major groups of archetypal genes have
been identified under environmental stress conditions but in a different organism. Classical
archetypal analysis has severe problems on this dataset: first, genes with missing values have
to be removed, and second, several archetypes that have a clear biological interpretation (like
the magenta one) could not be found by the classical algorithm, see Fig. 2.6.

2.6. Conclusion

We introduced copula archetypal analysis which wraps classical archetypal analysis into a
copula framework. This ensures invariance of archetypal analysis against the class of strictly
monotone increasing functions. We think, this is the largest invariance class since it only
keeps the rank relation of the data, while the representation of the data can change. Fur-
thermore, we devised the possibility to include mixed data and missing values. This is an
important property, since in many real world datasets, mixed data and missing values are
very common. Moreover, our algorithm is formulated as a preprocessing step, such that
established algorithms can be re-used in order to efficiently recover the archetypes. Lastly,
we have demonstrated that our model works well on both simulated data and in a real world
application.
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Figure 2.4.: Copula archetypal analysis for general case with discrete data.
Left: 400 data points sampled as (noisy) convex mixtures of
3 archetypes in 10 dimensions, monotonically transformed (beta
marginal densities) and linearly quantised into 10 levels. Shown
is the projection on the first two principal components, the re-
constructed archetypes (red circles) and the original archetypes
after transformation (triangles). Middle: reconstruction with cop-
ula archetypal analysis. The size of the blue circles indicates
the archetype score for each data point. Points with a non-zero
archetype score are hierarchically clustered. The coloured dia-
monds show the highest-scoring data point in every cluster found
by cutting the dendrogram in the right panel.
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Figure 2.5.: Yeast genes under heat stress, characterised by gene expression
values and binding affinity scores to stress-related transcription
factors. Top left: PCA-plot of archetype reconstruction with
our copula model. Coloured diamonds show genes with high-
est archetype score in each of the clusters found by cutting the
dendrogram in the top right panel (the boxes indicate clusters
with significantly enriched gene functions represented by Gene On-
tology (GO) terms). Middle row: enrichment analysis of genes
in the cluster indicated by the green, red, and magenta boxes
in the dendrogram, computed with the GOrilla software http:

//cbl-gorilla.cs.technion.ac.il/. Color encodes p-values of
enriched GO-term: yellow = 10−3 to 10−5, orange = 10−5 to 10−7,
dark-orange = 10−7 to 10−9. Bottom row: archetype-specific gene-
expression and binding pattern (schematic).
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Figure 2.6.: Comparison of standard and copula archetypal analysis. Left: 1st
principal component (PC) vs. 2nd one, Right: 1st PC vs. 3rd
PC. The red circles indicate the location of the archetypes. For
comparison, the coloured diamonds show the archetypal objects
identified by copula archetypal analysis. The projection in the
right panel reveals that there is no archetype in close proximity of
the magenta- and yellow-coloured diamonds.
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3. Copula Eigenfaces

In computer vision and graphics, principal component analysis (PCA) is a ubiquitous method
for describing dependency and variance in a data set (Jolliffe, 2002). The probabilistic
formulation of PCA (Tipping and Bishop, 1999) assumes that the observed data is Gaussian
distributed. We show that this assumption is not fulfilled in the context of facial appearance.
The model mismatch leads to unnatural artefacts which are severe to human perception. In
order to prevent these artefacts, we propose to use a semi-parametric Gaussian copula for
modelling the colour distribution of faces. Our extension relaxes the Gaussian assumption
of the PCA model and allows us to apply the model to non-Gaussian distributed data.

Remark

The sequel closely follows Egger et al. (2016).

3.1. Introduction

Parametric Appearance Models (PAM) describe objects in an image in terms of pixel in-
tensities. In the context of faces, the Eigenfaces approach (Sirovich and Kirby, 1987; Turk
et al., 1991) is a PAM of high renown. The approach uses aligned facial images to analyse
and synthesize faces. Since then, many advances were introduced to bring forward facial
PAMs. Among those, Active Appearance Models (Cootes et al., 1998) add a shape compo-
nent which allows to model the shape independently from the appearance. 3D Morphable
Models (Blanz and Vetter, 1999) uses a dense registration and extend the shape model to
3D and add camera and illumination parameters. 3D Morphable Models allow handling
appearance independently from pose, illumination and shape. Photo-realistic face synthesis
methods like Visio-lization (Mohammed et al., 2009) uses PCA as a basis for example-based
photo-realistic appearance modelling. All these models are established PAMs that have a
common core: the dominant method for learning the parameters of a PAM is principal com-
ponent analysis (Jolliffe, 2002). PCA is used to describe the variance and dependency in the
data.

In general, a PAM which uses PCA is a generative model that is also able to synthesize
new random instances. However, the ability to synthesize natural random instances is a
challenging task, cf. (Mohammed et al., 2009) and in face manipulation (Walker and Vetter,
2009). This is because human perception is very sensitive to unnatural variability in a face.
On the other hand, PCA face models are also used as strong priors in probabilistic facial
image interpretation algorithms (Schönborn et al., 2013). Hence, such applications put high
demands on PCA and require a prior which follows the underlying distribution as closely as
possible and are highly specific to faces.
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Using PCA to model facial appearance leads to models which synthesize instances which
appear unnaturally. This is due to the assumption that the colour intensities or, in other
words, the marginals at a pixel are assumed to be Gaussian distributed. We show that this
is a severe simplification: the pixel intensities of new samples will follow a joint Gaussian
distribution. This approximation is far from the actual observed distribution of the training
data and leads to unnatural artefacts in appearance. In order to enhance the specificity of a
PCA-based model, an obvious improvement would be the extension to a Gaussian mixture
model (Rasmussen, 1999). Here, each colour channel at a pixel is modelled with an (infinite)
mixture of Gaussians. However, we skip this step and propose to use a semi-parametric
copula model directly. A copula model provides the decomposition of the dependency and
the marginal distributions such that the copula contains the dependency structure only.
This separate modelling allows us to drop the parametric Gaussian assumption on the colour
channels and to replace them with non-parametric empirical distributions. We keep the
parametric dependency structure; in particular, we use a Gaussian copula because of its
inherent Gaussian latent space. PCA can then be applied in the latent Gaussian space and
is used to learn the dependencies of the data independently from the marginal distribution.

A semi-parametric Gaussian copula model provides us with a new flexibility which results
in more natural images generated images. Using the model provides us with additional
benefits:

1. Learning is robust to outliers and scale-invariant. Moreover, the scale-invariance makes
possible a principled way of combining facial appearance and shape data.

2. Implementation in existing pipelines is simple: the additional overhead for using the
semi-parametric copula model can be implemented as simple pre- and post-processing
steps of PCA. The copula model transforms the non-Gaussian data into a latent space
which is Gaussian distributed. PCA is then performed on the transformed data.
Generating data is possible by simply reversing this pipeline.

3. The model also allows for changing the colour space. For facial appearance modelling,
the HSV colour space is more appropriate than RGB. The HSV colour space is moti-
vated by the separation of the hue and saturation components and brightness value.
On the other hand, without adaptation, PCA is not applicable to facial appearance in
the HSV colour space because of its sensitivity to differently-scaled colour channels.

In summary, those benefits are general and all PAMs on the basis of a PCA model can easily
benefit from these advantages to improve their performance.

In the remainder, we discuss the model and the benefits: The next section explains the
copula extension for PCA and presents the theoretical background and practical information
for an implementation is provided. Finally, we show qualitatively and quantitatively that
the proposed model leads to a facial appearance model which is more specific to faces.

3.2. Methods

3.2.1. PCA for Facial Appearance Modelling

Let x ∈ R3n describe a zero-mean vector representing 3 colour channels of an image with
n pixels. In an RGB image, the colour channels and the pixels are stacked such that x =
(r1, g1, b1, r2, b2, b3, . . . , rn, gn, bn)T . We assume that the mean of every dimension is already
subtracted. The training set of m images is arranged as the data matrix X ∈ R3n×m.
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PCA (Jolliffe, 2002) aims at diagonalizing the sample covariance Σ = 1
m
XXT , such that

Σ = 1
m
US2UT (3.1)

where S is a diagonal matrix and U contains the transformation to the new basis. The
columns of matrix U are the eigenvectors of Σ and the corresponding eigenvalues are on the
diagonal of S.

PCA is usually computed by a singular value decomposition (SVD). In case of a rank-
deficient sample covariance with rank m < n we cannot calculate U−1. Therefore, SVD leads
to a compressed representation with a maximum of m dimensions. The eigenvectors in the
transformation matrix U are ordered by the magnitude of the corresponding eigenvalues.

When computing PCA, the principal components are guided by the variance as well as
the covariance in the data. While the variance captures the scattering of the intensity value
of a pixel, the covariance describes which regions contain similar colour. This mingling of
factors leads to results which are sensitive to different scales and to outliers in the training
set. Regions with large variance and outliers could influence the direction of the resulting
principal components in an undesired manner.

We uncouple variance and dependency structure such that PCA is only influenced by the
dependency in the data. Our approach for uncoupling is a copula model which provides an
analytical decomposition of the aforementioned factors.

3.2.2. Copula Extension

Copulas (Nelsen, 2013; Joe, 1997) allow a detached analysis of the marginals and the depen-
dency pattern for facial appearance models. We consider a relaxation to a semi-parametric
Gaussian copula model (Genest et al., 1995; Tsukahara, 2005). We keep the Gaussian copula
for describing the dependency pattern, but we allow non-parametric marginals.

Let x ∈ R3n describe the same zero-mean vector as used for PCA, representing 3 colour
channels of an image with n pixels. Sklar’s theorem allows the decomposition of every
continuous and multivariate cumulative probability distribution (cdf) into its marginals
Fi(Xi), i = 1, . . . ,3n and a copula C. The copula comprises the dependency structure, such
that

F (X1,⋯,X3n) = C (W1, . . . ,W3n) (3.2)

where Wi = Fi(Xi). Wi are uniformly distributed and generated by the probability integral
transformation1.

For our application, we consider the Gaussian copula because of its inherently implied
latent space

X̃i = Φ−1 (Wi) , i = 1, . . . ,3n (3.3)

where Φ is the standard normal cdf. The multivariate latent space is standard normal-
distributed and fully parametrized by the sample correlation matrix Σ̃ = 1

m
X̃X̃T only. PCA

is then applied on the sample correlation in the latent space X̃. Such a model is analytically
analysed in (Han and Liu, 2012) and is called Copula Component Analysis (COCA).

The separation of dependency pattern and marginals provides multiple benefits: First,
the Gaussian copula captures the dependency pattern invariant to the variance of the colour

1The copula literature uses U instead ofW . We changed this convention due to the singular
value decomposition which uses X = USV T .
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space2. Second, whilst PCA is distorted by outliers and is generally inconsistent in high
dimensions, the semi-parametric copula extension solves this problem (Han and Liu, 2012).
Third, the non-parametric marginals maintain the non-Gaussian nature of the colour distri-
bution. Especially when generating new samples from the trained distribution, the samples
do not exceed the colour space of the training set.

3.2.3. Inference

We learn the latent sample correlation matrix Σ̃ = 1
m
X̃X̃T in a semi-parametric fashion using

non-parametric marginals and a parametric Gaussian copula. Compared to Han and Liu
(2012), we use the Gaussian rank correlation to estimate latent sample correlation matrix.

Thus, we compute ŵij = F̂emp,i(xij) =
rij(xij)

m+1
using empirical marginals F̂emp,i, where

rij(xij) is the rank of the data xij within the set {xi●}. Then, Σ̃ is simply the sample
covariance of the normal scores

x̃ij = Φ−1 (
rij(xij)
m + 1

) , i = 1, . . . ,3n, j = 1, . . . ,m. (3.4)

Equation (3.4) contains the non-parametric part, since Σ̃ is computed from the ranks rij(xij)
solely and contains no information about the marginal distribution of the x’s. Note, x̃ ∼
N (0, Σ̃) is standard normal distributed with correlation matrix Σ̃. Subsequently, an eigen-
decomposition is applied on the latent correlation matrix Σ̃.

Algorithm 6 Learning.

Require: Training set {X}
Result: Projection matrices U , S
1: for all dimensions do
2: for all samples do

3: x̃ij = Φ−1 ( rij(xij)

m+1
)

4: end for
5: end for
6: find Ũ , S̃ such that Σ̃ = 1

m
Ũ S̃2ŨT (via SVD)

Generating a sample using PCA then simply requires a sample from the model parameters

h ∼ N (0, I) (3.5)

which is projected to the latent space

x̃ = Ũ S̃
√
m
h (3.6)

and further transformed component-wise to

wi = Φ (x̃i) , i = 1, . . . ,3n. (3.7)

2More general, a copula model is invariant against all monotonic transformations of the
marginals.
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Algorithm 7 Sampling.

Result: Random sample x
1: h ∼N (0, I)
2: x̃ = Ũ S̃

√
m
h

3: for all dimensions i do
4: wi = Φ (x̃i)
5: xi = F̂emp,i(wi)
6: end for

Finally, the projection to the colour space requires the empirical marginals

xi = F̂emp,i(wi), i = 1, . . . ,3n. (3.8)

It is also possible to smoothen the empirical marginals with a kernel k and replace Equa-
tion (3.8) by xi = k(wi,Xi●), i = 1, . . . ,3n. All necessary steps are summarized in Algo-
rithms 6 and 7.

3.2.4. Implementation

The additional effort for using COCA can be implemented as simple pre- and post-processing
steps to PCA. Basically the data is mapped into a latent space where it is Gaussian dis-
tributed. The mapping is performed in two steps. First, the data is transformed to an
uniform distribution by ranking the intensity values. Then it is transformed to a standard
normal distribution. On the transformed data, we perform PCA to learn the dependency
structure in the data. To generate new instances from the model, all steps have to be re-
versed. The following listings give an overview of all necessary adaptations to an existing
PCA pipeline in MATLAB.

% calculate empirical cdf
[empCDFs, indexX] = sort(X, 2);

% transform emp. cdf to uniform
[~, rank] = sort(indexX, 2);
uniformCDFs = rank / (size(rank, 2)+1);

% transform uni. cdf to std. normal cdf
normCDFs = norminv(uniformCDFs',0,1)';

% calculate PCA
[U,S,V] = svd(normCDFs, 'econ');

Listing 3.1: Learning

To generate an image from model parameters, the following steps are necessary:
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% random sample
m = size(normCDFs, 2);
h = random('norm' ,0 ,1 ,m ,1);
sample = U * S / sqrt(m) * h;

% std. normal to uniform
uniformSample = normcdf(sample, 0, 1) * (m - 1) + 1;

% uniform to emp. cdf
empSample = empCDFs(sub2ind(size(empCDFs), 1:size(data, 1), ...

round(uniformSample')))';

Listing 3.2: Sampling

These are the additional steps which have to be performed as pre- and post-processing for
the analysis of the data and the synthesis of new random samples. In terms of computing
resources we have to consider the following: The empirical marginal distributions Femp are
now part of the model and have to be kept in memory. In the learning part, the complexity
of sorting the input data is added. In the sampling part, we have to transform the data back
by looking up their values in the empirical distribution.

The copula extension comes with low additional effort: it is easy to implement and has
only slightly higher computing costs. We encourage the reader to implement these few steps
since the increased flexibility in the modeling provides a valuable extension.

3.3. Experiments and Results

For all our experiments, we used the texture of 200 face scans used for building the Basel
Face Model (BFM) (Paysan et al., 2009). The scans are in dense correspondence and were
captured under an identical illumination setting. We work on texture images and use a
resolution of 1024x512 pixels. Our experiments are based on the appearance information
only, the last experiment merging the appearance and shape to a combined model. We
used the empirical data directly as marginal distribution. The results are rendered with an
ambient illumination on the mean face shape of the BFM.

3.3.1. Facial Appearance Distribution

In a first experiment we investigate if the colour intensities in our face data set are Gaussian
distributed. We followed the protocol of the Kolmogorov-Smirnov Test (Massey Jr, 1951).
We estimate a Gaussian distribution for every colour channel per pixel and compare it to
the observed data. The null hypothesis of the test is that the observed data is drawn by the
estimated Gaussian distribution. The test measures the maximum distance of the cumulative
density function of the estimated Gaussian Φµ̂,σ̂2 and the empirical marginal distribution
Femp of the observed data:

d = sup
x
∥Femp(x) −Φµ̂,σ̂2(x)∥ (3.9)

Here, µ̂ and σ̂2 are maximum-likelihood estimates for the mean and variance of a Gaussian
distribution respectively. In Figure 3.1 we visualize the maximal distance value over all colour
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channels per point on the surface.

Figure 3.1.: The result of the Kolmogorov-Smirnov Test to compare the empir-
ical marginal distribution of colour values from our 200 face scans
with a Gaussian-reference probability distribution. We plot the
highest value of the three colour channels per pixel, because the
values for the individual colour channels are very similar. We show
two exemplary marginal distributions in the eye and temple region.
They are not only non-Gaussian but also not similar.

We assume a significance level of 1−α = 0.05. The critical value dα is approximated using
the following formula (Lothar Sachs, 2006):

dα =

√
ln( 2

α
)

√
2n

(3.10)

With n = 200 training samples we get a critical value of 0.096. Non-Gaussian marginal
distributions of colour intensities are present in the region of the eyebrows, eyes, chin and
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hair, where multi-modal appearance is present. In total for 49% of the pixels over all colour
channels, the null hypothesis has to be rejected. In simple monotonic regions, like the cheek,
the marginal distributions are close to a Gaussian distribution. In more structured regions
like the eye, eyebrow or the temple region, the appearance is highly non-Gaussian. This leads
to strong artefacts when modelling facial colour appearance using PCA (see Figure 3.2 and
Figure 3.3). Since those more structured regions are fundamental components of a face, it is
important to model them properly.

3.3.2. Appearance Modelling

We evaluate our facial appearance model by its capability to synthesize new instances. We
measured this capability by comparing the major eigenmodes, random model instances, the
sample marginal distributions and the specificity of both models. The specificity is measured
qualitatively by visual examples and quantitatively by a model metric.

Model Parameters

The first few principal components store the strongest dependencies. We visualize the first
two components by setting their value hi to σ = 3 standard deviations and show the result in
Figure 3.2. The first parameters of PCA and COCA appear very similar in the variation of
the data they model. The second principal component of PCA causes artefacts in the temple
region. These artefacts are caused by the linearity of PCA. COCA is a non-linear method
and therefore, the artefacts are not present.

Random Samples

The ability to generate new instances is a key feature for generative models. A model
which can produce more realistic samples is desirable for various applications. For example,
the Visio-lization method to generate high resolution appearances is based on a prototype
generated with PCA (Mohammed et al., 2009).

Another field of application for the generative part of models are Analysis-by-Synthesis
methods based on Active Appearance Models (AAM) or 3D Morphable Models (3DMM).
They can profit from a stronger prior which is more specific to faces and reduces the search
space (Schönborn et al., 2013).

Generating a random parameter vector leads to a random face from our PCA or COCA
model. We sample h according to Equation (3.5) independently for all 199 parameters
and project them via PCA or COCA on the colour space following Equation 3.6. Random
samples using COCA contain fewer artefacts and, therefore, appear much more natural (see
Figure 3.3). These artefacts are caused by the linearity of PCA. For non-Gaussian distributed
marginals, PCA does not only interpolate within the trained colour distribution but also
extrapolates to colour intensities not supported by the training data.

The most obvious problem is the limited domain of the colour channels: using PCA,
colour channels have to be clamped. The linearity constraint of PCA leads to much brighter
or darker colour appearance than those present in the training data in regions which are not
Gaussian distributed. In the next experiment, we show that the higher specificity is not only
a qualitative result but can also be measured by a model metric.

Few samples of COCA contain artefacts arising from outliers in the training data which
appear at the borders of the empirical cdfs. Those artefacts can be removed by slightly
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Figure 3.2.: PCA and COCA are compared by visualizing the first two eigen-
vectors with 3 standard deviations on the mean. The components
look very similar, except that the PCA artefacts on the temple
(arrows) in the second eigenvector do not appear using COCA.
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Figure 3.3.: The first and second row show random samples projected by PCA
and COCA respectively. Using PCA, we can observe strong arte-
facts in the regions where the marginal distribution is not Gaussian
(see Figure 3.1). The improvement of COCA can be observed in
the temple region, on the eyebrows, around the nostrils, the eyelids
and at the border of the pupil. We chose representative samples
for both methods.
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cropping the marginal distributions (removing the outliers) or by applying COCA in the
HSV colour space.

3.3.3. Appearance Marginal Distribution

We analyse the marginal distributions of our random faces at a single point at the border
between the pupil and the sclera of the eye. In this region the Kolmogorov-Smirnov Test
rejected the null hypothesis. We show the empirical intensity distribution of a single colour
channel at this point in Figure 3.4a. We compare this distribution to the sample marginal
distribution of the PCA model in Figure 3.4b which was generated from 1000 random in-
stances. Whilst COCA respects the empirical distribution, PCA is approximating a Gaussian
distribution which is inaccurate in a lot of facial regions.

(a) Empirical marginal distribution

(b) PCA sample marginal distribution

Figure 3.4.: The marginal distribution of the red colour intensity of a single
point in the eye region. (a) shows the distribution observed in the
training data, (b) shows the distribution of samples drawn from
a PCA model. This distribution shows a clear discrepancy to the
true marginal distribution.
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Specificity and Generalization

Figure 3.5.: The specificity shows how close generated instances are to instances
in the training data. The average distance of 1000 random sam-
ples to the training set (mean squared error per pixel and colour
channel) is shown. A model is more specific if the distance of the
generated samples to the training set is smaller. We observe that
COCA is more specific to faces (lower is better).

To measure the quality of the PCA and COCA models, we use model metrics motivated by
the shape modelling community (Styner et al., 2003). The first metric is specificity: Instances
generated by the model should be similar to instances in the training set. Therefore, we
draw 1000 random samples from our model and compare each one to its nearest neighbour
in the training data. We measure the distance using the mean absolute error over all pixels
and colour channels in the RGB-colour space. The COCA model is more specific to facial
appearance (see Figure 3.5). This corresponds to our observation of a more realistic facial
appearance (Figure 3.3).

Specificity should always be used in combination with the generalization model metric
(Styner et al., 2003). The generalization measures how exactly the model can represent
unseen instances. We measure the generalization ability of both models using a test set and
use the same distance measure as for specificity. The test data consists of 25 additional face
scans not contained in the training data. We observe that both models generalize well to
unseen data. PCA generalizes slightly better, see Figure 3.6.

The third model metric is compactness - the ability to use a minimal set of parameters
(Styner et al., 2003). The compactness can be measured directly by the number of used
parameters. In our experiments, the number of parameters is always the same for both
models.

There is always a tradeoff between specificity and generalization. Whilst PCA performs
slightly better in generalization, COCA performs better in terms of specificity. The better
generalization ability of PCA comes at the price of a lower specificity and clearly visible
artefacts.
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Figure 3.6.: The generalization ability shows how exactly unseen instances can
be represented by a model. The lower the error, the better a model
generalizes. As a baseline, we present the generalization ability of
the average face. We observe that PCA generalizes slightly better
(lower is better).

Combined Shape and Colour Model

Colour appearance and shape are modelled independently in AAMs and 3DMMs. Recently,
it was demonstrated that facial shape and appearance are correlated (Schumacher and Blanz,
2015) and those correlations were investigated using Canonical Correlation Analysis on sep-
arate shape and appearance PCA models.

The main reason to build separate models is a practical one - shape and colour values are
not in the same range. Some approaches accommodate this issue by normalization (Edwards
et al., 1998). However, this approach is highly sensitive to outliers. Since Copula Component
Analysis is scale invariant, we can directly apply it to the unscaled data.

We learned a COCA model combining the colour and shape information (see Figure 3.8
and Figure 3.7). Shape and texture vectors are combined by simply concatenating them.
By integrating this additional dependency information, the model becomes more specific
(Edwards et al., 1998).

As a future extension, COCA allows us to also integrate attributes like age, weight and size
or even social attributes like trustworthiness or social competence directly into the model.

3.4. Conclusions

We showed that the marginal distribution of facial colour is not Gaussian distributed for
large parts of the face and that PCA is not able to model facial appearance properly. In a
statistical appearance model, this leads to unnatural artefacts which are easily detected by
human perception. To avoid such artefacts, we propose to use PCA in a semi-parametric
Gaussian copula model which allows to model the marginal colour distribution separately
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Figure 3.7.: Random samples projected by a common shape and appearance
model using COCA.

from the dependency structure. In this model, the parametric Gaussian copula describes
the dependency pattern in the data and the non-parametric marginals relax the restrictive
Gaussian requirement of the data distribution.

The separation of marginals and dependency pattern enhances the model flexibility. We
showed qualitatively that COCA models facial appearance better than PCA. This finding is
also supported by a quantitative evaluation using specificity as a model metric. Moreover,
the COCA model enables to add further data to the model: Age, weight, size, and other data
like social attributes living on different scales can be incorporated in the model in an unified
way. To demonstrate this feature, we showed that the inclusion of shape also increased the
specificity of the model.

The computer graphics and vision community is heavily modelling and working with colour
intensities. We believe that these intensities are most often not Gaussian distributed and,
therefore, our findings can be transferred to a lot of applications. Finally, we again want
to encourage the reader to replace PCA with a COCA model, since the additional model
flexibility comes with almost no implementation effort.
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+2σ-2σ

1st

2nd

3rd

Figure 3.8.: We learned a common shape and appearance model using COCA.
We visualize the first eigenvectors with 2 standard deviations which
show the strongest dependencies in our training data. Whilst the
first parameter is strongly dominated by appearance the later pa-
rameters are targeting shape and appearance. Since the model is
built from 100 females and 100 males, the first components are
strongly connected to sex.

51





4. Bayesian Markov Blanket
Estimation

Probabilistic graphical models (Koller and Friedman, 2009) are a ubiquitous tool for repre-
senting dependencies among several random variables. In a typical application, the network
of dependencies is unknown and the goal is to identify the dependencies from observations.
Modern data analysis scenarios are often confronted with high-dimensional data, where the
number of observations n is typically in the same order of magnitude or less than the num-
ber of dimensions p. In this setting, identifying the full network can be difficult due to the
stability and complexity of estimators, and it is important to introduce sparsity. In other
cases, identifying the full network may be undesirable, since the number of variables is that
high, such that relevant structures are blurred, and/ or when estimating the whole network
is just irrelevant because one is not interested in parts of the network. In such situations it is
advisable to reduce the focus on estimating a sub-network. In this part of the thesis, we are
looking at undirected networks and focus on a specific sub-network, namely on the Markov
blanket of a limited set of query variables. The goal is to identify the Markov blanket, i.e.
the nodes among a large set of candidates which are the neighbours of the query variables.

We first give a short introduction into Gaussian graphical models and present the most
related algorithms, namely the graphical lasso and its Bayesian interpretation. These algo-
rithms are devised to estimate a full network. Subsequently, the model for estimating the
Markov blanket is presented, including an extension to non-Gaussian data using the Gaussian
copula. The chapter is then concluded with experiments on artificial and real data.

4.1. Gaussian Graphical Models

Estimating a network of dependencies among a set of objects is a difficult problem in statis-
tics and machine learning, especially in high-dimensional settings or where the observed
measurements are noisy. Gaussian graphical models are a ubiquitous tool for representing
such relationships in an interpretable way. For a multivariate Gaussian distributed random
vector X ∼ N (0 ,Σ) ∈ Rp parametrised with covariance Σ, the zero pattern of the inverse
covariance matrix W = Σ−1 encodes the conditional independences between the variables,
i.e. if wij = 0, then Xi á Xj ∣X∖ij , and we say that Xi and Xj are conditionally indepen-
dent given X∖ij , where X∖ij denotes the set {Xk ∣k ≠ i, j}. By way of illustration, we relate
this correspondence directly to a graph G = (V,E) with vertices V = {X[p]} and edge set
E = {(Xi,Xj)∣wij ≠ 0}. We illustrate this relation in Fig. 4.1.
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X1 X2

X3

X4X5

X6

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

X1 X2 X3 X4 X5 X6

X1 w11 w12 w13 0 w15 w16

X2 w21 w22 0 0 0 0

X3 w31 0 w33 w34 0 0

X4 0 0 w43 w44 0 0

X5 w51 0 0 0 w55 w56

X6 w61 0 0 0 w65 w66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Figure 4.1.: Graph G = (V,E) and exemplary inverse covariance matrix.

4.2. Graphical Lasso and its Bayesian Formulation

In a typical application setting, the aim is to estimate the structure of graph G from n
realisations of the random vector X ∈ Rp. The data consists of a matrix X ∈ Rn×p. If we
have at n ≥ p independent observations and x ∈ Rp is normally distributed, it can be shown
that the sample covariance S = XTX follows a Wishart distribution S ∼ Wp (n,Σ), with n
degrees of freedom, i.e.

p(S∣Σ)∝ det(Σ)−n
2 det(S)

n−p−1
2 exp tr(−1

2
Σ−1S)

= det(W)n2 det(S)
n−p−1

2 exp tr(−1
2
WS) .

(4.1)

Whenever we are located in a high dimensional setting, i.e. the number of observations
n are in the same order of magnitude or even less than the number of dimensions p, the
sample covariance gets ill-conditioned and the maximum likelihood estimate of W becomes
error-prone. Consequently, various estimators have been proposed that reduce the number
of parameters by imposing sparsity constraints on W. Among these, the popular graphical
lasso procedure (Meinshausen and Bühlmann, 2006; d’Aspremont et al., 2008; Friedman
et al., 2008; Banerjee et al., 2008; Hastie et al., 2015) computes a point estimate of the graph
by minimizing the penalised log-likelihood

Ŵ = argmin
W

log det(W) − tr (S̄W) − ρ∣∣W∣∣1, (4.2)

where ρ ≥ 0 is a shrinkage parameter, and ∣∣W∣∣1 = ∑i≠j ∣ωij ∣ denotes the L1 norm of the non-
diagonal elements of W. The L1 norm penalty can be interpreted as a convex relaxation
of a L0 norm penalty, which is related to selection in a graphical model. Here S̄ = 1

n
XTX

is a scaled sample covariance matrix1. Now, Eq. 4.2 is a convex problem and sub-gradient
methods can be used to find the solution of the penalised log-likelihood. More precisely, the
sub-gradient to Eq. 4.2 is

W−1 − S̄ − ρΨ = 0, (4.3)

where Ψ is a symmetric matrix having diagonal elements equal to zero, and ψij = sgn(wij)
if wij ≠ 0, and ψij ∈ [−1,1] if wij = 0. Minimising the likelihood can be done with block-wise

1To remain as close as possible to the literature, we introduce the scaled sample covariance
S̄ = 1

n
XTX with a bar, while the unscaled sample covariance S =XTX is denoted without

bar.
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coordinate descent, where block k ∈ {1, . . . , p} is established by fixing all but row and column

k. For k = 1 the partitioning of the matrices is

S̄ =
⎛

⎝

1 p − 1

1 s̄11 s̄12

p − 1 s̄21 S̄22

⎞

⎠

, W =

⎛

⎝

1 p − 1

1 w11 w12

p − 1 w21 W22

⎞

⎠

, Ψ =
⎛

⎝

1 p − 1

1 0 ψ12

p − 1 ψ21 Ψ22

⎞

⎠

,

(4.4)

and we can use this partitioning without loss of generality for all k ∈ {1, . . . , p}.
Using the inverse of the partitioned matrix W, the sub-gradient of equation of
Eq. 4.2 for the partitioned problem becomes

Σ̂22β − s̄12 + ρψ12 = 0, (4.5)

where Σ̂ is a current estimate of W−1 2, and β = −w12/w11. The algorithm is
outlined in Alg. 8.
In summary, the graphical lasso computes a point estimate of the network

of dependencies among a set of variables in a high-dimensional setting. More
specifically, it efficiently computes a L1-penalised maximum likelihood estimate
of the inverse covariance matrix.

Algorithm 8 Graphical Lasso.

Require: Scaled sample covariance matrix S̄
Result: Inverse covariance Ŵ
Initialise: Ŵ = S̄
1: while not converged do
2: for k = 1, . . . , p do
3: Partition matrix according to Eq. 4.4.
4: Solve the subgradient equations Eq. 4.5 using a pathwise coordinate-

descent algorithm.
5: ŵ12 ← Ŵ11β̂
6: end for
7: end while
8: for k = 1, . . . , p do
9: Solve ŵ12 = −β̂ŵ11, with 1/ŵ = ŵ11 − ŵT

12β̂
10: end for

A Bayesian interpretation of the graphical lasso is presented by Wang et al.
(2012). This approach also uses the partitioning of Eq. 4.4 with a block-wise

2i.e. Σ̂W = I
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but Bayesian inference scheme. The approach also uses the Wishart likelihood
from Eq. 4.1 for W but adds a hierarchical prior

p(W∣T, λ) = p(W∣T, λ)p(T∣λ), (4.6)

where the first part is a double exponential/ Laplace prior on the non-diagonal
elements, represented as a scale mixture of Gaussians, multiplied with a product
of exponential densities for the diagonal elements

p(Wi≤j ∣T, λ)∝ ∏
wi≤j

⎛
⎝

1√
2πtij

exp(−
w2

ij

2tij
)
⎞
⎠

p

∏
i=1

λ

2
exp(−λ

2
wii) . (4.7)

This prior enforces sparsity on the non-diagonal elements of W. Here, T =
(ti≠j) are latent scale parameters. The second part in the hierarchy defines the
mixing density for the scale mixtures

p(T∣λ)∝∏
i<j

λ2

2
exp(−λ

2

2
tij) , (4.8)

which couples the non-diagonal elements such that they meet the positive-
definit constraint. This term also ensures that the marginal distribution of
individual non-diagonal elements wij follow the double exponential prior, for
details c.f. Wang et al. (2012). Then, the posterior is

p(W,T∣X, λ)∝ det(W)n
2 exp tr(−1

2
SW)

×∏
i<j

(t−
1
2

ij exp(−
w2

ij

2tij
) exp(−λ

2

2
tij))

×
p

∏
i=1

exp(−λ
2
wii) .

(4.9)

Posterior inference involves iterating through the dimensions k ∈ {1, . . . , p}
to estimate the entire network in a block Gibbs sampling manner. For the
posterior conditionals, the matrices W and S are partitioned into blocks by
fixing all but row and column k. Without loss of generality, the partitioning
for the first row and column as in Eq. 4.4 is sufficient for the description of the
sampler. The posterior conditional for k = 1 is

p(w11,w12∣W22,T, λ)∝ (w11 −w12W
−1
22w

T
12)

n
2

× exp(−1
2
w12D

−1
T1
wT

12 + 2sT12w12 + (s11 + λ)w11) ,
(4.10)
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where Dt = diag(t) is a diagonal matrix containing the values of t12. The
transformation (w11,w12 ↦ δ = w11−w12W

−1
22w

T
12,β =w12) helps in identifying

the distributions to draw of. Finally,

p(β, δ∣W22,T, λ)∝ δ
n
2 exp(−1

2
(s11 + λ)δ)

× exp(−1
2
(βT (D−1t + (s11 + λ)W−1

22)β + 2s12β))
(4.11)

and

(δ,β∣X,W22,T, λ) ∼ Γ(n
2
+ 1, s11 + λ

2
)N (−CsT12,C) , (4.12)

where Γ(a, b) is the Gamma distribution with shape parameter a and scale

parameter b, and C = ((s11 + λ)W−1
22 +D−1t )

−1
. We conclude the description

of the Bayesian graphical lasso with the block Gibbs sampler in Alg. 9. For
details of the tij ’s, we refer to Wang et al. (2012).

Algorithm 9 Bayesian Graphical Lasso.

Require: Sample covariance matrix S
Result: Inverse covariance Ŵ
Initialise: Ŵ = S
1: while not converged do
2: for j = 1, . . . , p do
3: Partition matrices W, S, and T according to Eq. 4.4.
4: δ ∼ Γ (n/2 + 1, (s11 + λ)/2)
5: β ∼N (−CsT12,C), where C = ((s11 + λ)W−1

22 +D−1t )
−1

6: w11 ← δ + βTW−1
22β, w12 ← β

7: end for
8: for i < j do

9: t−1ij ∼ IG(
√

λ2/w2
ij , λ

2)
10: end for
11: end while

4.3. Motivation

We now introduce a methodology for instances, where it is more interesting
to only estimate a sub-network as opposed to estimating an entire network of
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all the associations. Consider the example in gene analysis where the depen-
dency between only a few clinical factors and thousands of genetic markers is
required. Here, it is important to limit the focus on the clinical factors and
only estimate the Markov blanket of the variables we are interested in. This is
the set of variables that, when conditioned on, render the variables of interest
conditionally independent of the rest of the network. In this context, a ques-
tion of fundamental importance arises: can we estimate the Markov blanket
directly as opposed to estimating the entire network with subsequent pruning
to the variables of interest? We thus approach the problem in the spirit of
Vapnik (2013): “When solving a given problem, try to avoid solving a more
general problem as an intermediate step.”

Remark

The sequel closely follows Kaufmann et al. (2016), but adds further
details.

In the following, we provide a Bayesian perspective of estimating the Markov
blanket of a set of p query variables in an undirected network. The Bayesian
view enables the computation of a posterior distribution and thus offers a
means of assessing the (un-)certainty of an estimate. This contrasts with the
maximum likelihood approach of the graphical lasso which only provides a
point estimate of the network. The approach is closely related to the Bayesian
graphical lasso (Wang et al., 2012) introduced beforehand in Section 4.2. This
approach partitions the matrix W as shown on the left in Fig. 4.2 and fixes
all but one row and column. Posterior inference involves iterating through the
individual variables to estimate the entire network. In particular, inference of
the w12 block relies on estimating both w11 and W22. However, the coupling
of w12 and W22 is a limiting factor that can be avoided in the context of
Markov blanket estimation. This is the crucial idea which forms the basis in
what follows. The approach follows the partitioning as shown on the right in
Fig. 4.2, where we consider p > 1 query variables, and estimating the Markov
blanket implies to estimate the block W12.

An important observation for the model we present here, is that the Wishart
likelihood may be factorised such that the blocks W11 and W12 are de-coupled
from W22. This result is provided as Lemma 1 in Section 4.4 and is also de-
picted in the difference in the shading of the blocks in Fig. 4.2. The difference in
the shading of W indicates that estimation of W11 and W12 (and hence W21)
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w111

1

w21q

w12

q

W22

W11p

p

W21q

W12

q

W22

Figure 4.2.: Left: factorisation of the (Bayesian) graphical lasso. Right: the
factorisation for the Markov blanket, where the number of query
variables is p > 1.

is invariant of estimating W22. We show that by combining the factorised like-
lihood with an appropriate choice of prior, we obtain a posterior distribution
that preserves this independence structure. Most importantly, this posterior
distribution has an analytic form and can hence be sampled from. We for-
malise this in Section 4.5 as Theorem 5. A further consequence of this result is
formulated in Theorem 6 which demonstrates that sampling from the posterior
distribution can be done efficiently. Overall, this means that the Markov blan-
ket of p query nodes, can be estimated efficiently without explicitly inferring
the entire network. We conclude by summarising the key results in Fig. 4.3.

T1: W11 and W12 are conditionally independent of W22 given S

T2: The posterior conditionals W11∣W12 and W12∣W11 have analytic form

T3: Sampling from the posterior costs O(qp3) per Gibbs sweep

Figure 4.3.: Key results.

The remainder is structured as follows. We begin by exploring the block
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factorization of the Wishart likelihood in Section 4.4. We subsequently derive
the posterior distribution and construct a Gibbs sampler to efficiently sample
from the different blocks in Section 4.5. Section 4.6 describes how Bayesian
Markov blanket estimation can be extended to deal with mixed data types with
the copula framework. Finally, we demonstrate the practical applicability of
the scheme in Section 4.7 with examples of artificial and real data.

4.4. Model

Problem Formulation Let X ∈ Rn×(p+q) be a matrix containing n indepen-
dent observations of p query and q remaining variables. Assume, that each
observation Xi ∼ N (0 ,Σ), i = 1, . . . , n is drawn from multivariate Gaussian
distribution with p + q dimensions with mean 0 and covariance Σ. Then, the
sample covariance S = XTX follows the Wishart distribution S ∼ Wp+q (n,Σ)
with n > p + q − 1 degrees of freedom. That is,

p(S∣Σ)∝ det(Σ)−n
2 det(S)

n−(p+q)−1
2 exp tr(−1

2
Σ−1S)

= det(W)n
2 det(S)

n−(p+q)−1
2 exp tr(−1

2
WS) ,

(4.13)

where W = Σ−1. We are interested in estimating the Markov blanket of the p
query variables with respect to the q remaining variables. Assume that S and
W are partitioned according to

S =
⎛
⎝

p q

p S11 S12

q S21 S22

⎞
⎠
, W =

⎛
⎝

p q

p W11 W12

q W21 W22

⎞
⎠
,

where the matrices have been reordered such that the query variables lie in the
upper left block. Given S, we would like to infer W12, which is the Markov
blanket of the p variables that constitute the block S11. We restrict the problem
to the case where p ≪ q such that S11 is small, corresponding to the few
variables of interest, and S22 is large.

Factorising the Likelihood We begin by showing a block-wise factorisation
of the likelihood, which builds the foundation of the model. Let W22.1 =
W22 −W21W

−1
11W12 be the Schur complement of the block W11 in W.
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Lemma 1. The likelihood of the covariance matrix factorises in terms of W
as follows:

LS(W)∝ L1(W11,W12)L2(W22⋅1).

The proof of this lemma is analogous to Gupta and Nagar (1999) (Chapter
3, pp. 94–95).

Proof. Factorising the Wishart density according to

WS =W11S11 +W12S21 +W21S12 +W22S22

=W11S11 +W12S21 +W21S12+
+ (W22 −W21W

−1
11W12 +W21W

−1
11W12)S22

=W11S11 +W12S21 +W21S12 +W21W
−1
11W12S22 +W22⋅1S22

(4.14)

and

det(W)n
2 = det(W11)

n
2 det(W22⋅1)

n
2 , (4.15)

the independence follows from

p(W∣S) = p(W11,W12∣S)p(W22⋅1∣S), (4.16)

where

p(W11,W12∣S)∝ det(W11)
n
2

exp tr(−1
2
(W11S11 +W12S21 +W21S12 +W21W

−1
11W12S22))

(4.17)

and

p(W22⋅1∣S)∝ det(W22⋅1)
n
2 exp tr(−1

2
(W22⋅1S22)) . (4.18)

Lemma 1 is a pure functional statement without any statistical reasoning.
The factorisation of the likelihood in Lemma 1 then translates to the analo-
gous independence structure in the posterior distribution of W as shown in
Theorem 4.
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4.4.1. Prior

The natural conjugate prior to the likelihood is the Wishart distribution. How-
ever, in order to ensure sparsity, we also use a double exponential prior as in
Wang et al. (2012). Since the focus is on the Markov blanket, we only place
the latter on the block W12. This results in a compound prior:

p(W,T) =W(p + q + 1, I)p (W12∣T)p (T∣λ)

∝ exp tr (− 1
2
IW) ∏

wij∈W12

1
√

2πtij
exp(−

w2
ij

2tij
) λ2

2
exp (−λ2

2
tij) ,

(4.19)

whereT = {tij} are scale parameters introduced byWang et al. (2012). Analysing
the conditional posterior distribution of the t−1ij , we see that

t−1ij ∣wij , λ ∼ IG (
√

λ2/w2
ij , λ

2) (4.20)

where IG denotes the inverse-Gaussian distribution and λ is a hyperparameter.
Most importantly, the compound prior also possesses the factorisation in terms
ofW proved for the likelihood in Lemma 1. This follows from from the element-
wise independence of the prior. Multiplying the compound prior introduced in
Eq. 4.19 by the likelihood yields the posterior distributions for blocks W12 and
W11.

4.4.2. Posterior Distribution

A consequence of the factorisation in Lemma 1 is that the posterior distribu-
tions of the blocks (W11,W12) and W22⋅1 are conditionally independent given
S.

Theorem 4. The posterior distribution of (W11,W12) is conditionally inde-
pendent of W22⋅1 given S.

Proof. The Likelihood, as shown in Lemma 1, as well as the element-wise
independent prior in Eqs. 4.19 and 4.20 factorise according to the blocks W11,
W12, and W22.

Because of the conditional independence proved in Theorem 4, we can infer
the Markov blanket W12 without the need of estimating the big block W22⋅1.
In the next section, we explicitly derive the posterior distribution and show
that it has an analytical form.
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4.5. Posterior Inference

We now state the main result. Specifically, we show that the posterior distribu-
tion required to estimate the Markov blanket can be expressed in an analytical
form. Subsequently, we demonstrate how to efficiently sample from it in Sec-
tion 4.5.1.
Let the Matrix Generalised Inverse Gaussian (MGIG) distribution (Butler,

1998) be defined by the probability density function with parameter γ:

p(M;γ,A,B)∝ det(M)−γ−1 exp tr(−1
2
(AM +BM−1)) . (4.21)

Theorem 5. The posterior conditionals W12∣W11,S,T and W11∣W12,S,T
admit an analytical form:

(1) Vectorised rows of W12 follow a joint normal distribution

vec(WT
12)∣W11,S,T ∼Npq (−Cvec(ST

12),C) , (4.22)

where C = (W−1
11 ⊗ (S22 + I) +D−1)

−1
is the covariance matrix, D =

diag (D1, . . . ,Dp), and Di = diag (Ti⋅) are diagonal matrices containing
Ti⋅ = (ti1, . . . , tiq).

(2) W11 follows the Matrix Generalised Inverse Gaussian (MGIG) distribu-
tion:

W11∣W12,S,T ∼MGIGp×p(
n

2
+ p,W12(S22 + I)W21,S11 + I).

(4.23)

Before we prove Theorem 5, we define the matrix normal distribution and
present a Lemma, where we establish the conditional distribution ofW12∣W11,S.
This Lemma builds as the foundation for the proof of Theorem 5.
Let X ∈ Rp×n follow a matrix normal distribution, that is

X ∼MN p×n (M,Σ,Ω)

∝ 1

(2π)pn/2 det(Σ)−
p
2 det(Ω)−n

2 exp tr(−1
2
Σ−1(X −M)Ω−1(X −M)T)

(4.24)
where mean M ∈ Rp×n, column covariance Σ ∈ Rp×p, and row covariance Ω ∈
Rn×n.
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Lemma 2. Let S ∼ Wp+q (n,Σ) and W ∼ Wp+q (p + q + 1, I) follow Wishart
distributions, then

W12∣W11,S ∼MN p×q (−W11S12(S22 + I)−1,W11, (S22 + I)−1) (4.25)

is matrix normal distributed.

Proof. The proof is similar to (Gupta and Nagar, 1999). Factorising the prod-
uct of the Wishart densities according to

tr (W(S + I))

= tr (W11(S11 + I) +W12S21 +W21S12 +W22(S22 + I))

= tr (W11 ((S11 + I) − S12(S22 + I)
−1S21 + S12(S22 + I)

−1S21) +W12S21 +W21S12

+(W22 −W21W
−1
11W12 +W21W

−1
11W12)(S22 + I))

= tr (W11S11⋅2 +W11S12(S22 + I)
−1S21 +W12S21 +W21S12 +W21W

−1
11W12(S22 + I)

+W22⋅1(S22 + I))

= tr(W11S11⋅2

+ (S22 + I) (W12 +W11S12(S22 + I)
−1
)
T
W−1

11 (W12 +W11S12(S22 + I)
−1
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
MN

+W22⋅1(S22 + I))

(4.26)

where S11⋅2 = (S11 + I) − S12(S22 + I)−1S21 and we changed variables W22⋅1 =
W22 −W21W

−1
11W12 with Jacobian 1. Factorising the determinants according

to
det(W)n

2 = det(W11)
n
2 det(W22⋅1)

n
2

= det(W11)
n+p
2 det(W11)−

p
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
MN

det(W22⋅1)
n
2 (4.27)

and

det(S + I)
n−(p+q)−1

2 = det (S22 + I)
n−p−q−1

2 det (S11⋅2)
n−p−q−1

2

= det(S22 + I)
n−p−2q−1

2 det ((S22 + I)−1)
−

q
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
MN

det(S11⋅2)
n−p−q−1

2

(4.28)
gives the desired result.

Now, having established the conditional distribution of the Markov blanket,
we can prove Theorem 5(1). The idea of the proof is as follows: The posterior
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conditionals maintain the conditional independence structure proved for the
distribution in Theorem 4, i.e.

p(W11,W12,W22⋅1∣S,T) = p(W11,W12∣S,T)p(W22⋅1∣S,T). (4.29)

Derivations of the distributions in Eqs. 4.22 and 4.23 follow from factorising
the posterior and rearranging terms. We formalise the relevant calculations in
the following proof.

Proof. According to Lemma 2, the likelihood in Eq. 4.13 can be expressed as
a matrix normal distribution as in Eq. 4.25. Including the Wishart part of the
prior changes the distribution in Eq. 4.25 to

W12∣W11,S ∼MN p×q (−W11S12(S22 + I)−1,W11, (S22 + I)−1) (4.30)

which is equivalent to

vec(WT
12)∣W11,S ∼Npq (− (W11 ⊗ (S22 + I)−1) vec(ST

12),W11 ⊗ (S22 + I)−1)
(4.31)

where vec(WT
12) are the vectorised rows of matrix W12 and ⊗ denotes the

Kronecker product. For inclusion of the double exponential prior, it has to be
rewritten as

∏
wij∈W12

1√
2πtij

exp(−
w2

ij

2tij
) =

p

∏
i=1

exp(−1
2
(W12)Ti,⋅D−1i (W12)i,⋅)

= exp(−1
2
vec(WT

12)TD−1vec(WT
12)) ,

(4.32)

where (W12)i,⋅ denotes the ith row of W12, D = diag (D1, . . . ,Dp), and Di =
diag (Ti⋅) are diagonal matrices containing Ti⋅ = (ti1, . . . , tiq). The result follows
from multiplying the double exponential part of the prior in Eq. 4.32 by the
expanded density in Eq. 4.31.

Before proving the second part of Theorem 5, we need another Lemma which
characterises the MGIG distribution subjected to a variable transformation.

Lemma 3. Let p(M)∝ det(M)−γ−1 exp tr (− 1
2
(AM +BM−1)) be MGIG dis-

tributed, then W =M−1 is also MGIG distributed:

p(W)∝ det(W)γ−p exp tr(−1
2
(AW−1 +BW)) (4.33)
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Proof. Transforming Eq. 4.21 with W = X−1 and dX = −W−1dWW−1, we

have the Jacobian J = det (W)−(p+1), thus

p(W)∝ det(W)−(p+1) det(W−1)−γ−1 exp tr(−1
2
(AW−1 +BW))

= det(W)γ−p exp tr(−1
2
(AW−1 +BW)) .

(4.34)

We are finally ready for proving Theorem 5(2)

Proof. The proof is similar to (Butler, 1998). Factorising the Wishart density
according to

tr(WS) = tr(W11S11 +W12S21 +W21S12 +W22S22)

= tr (W11S11 +W12S21 +W21S12 + (W22 −W21W
−1
11W12

+W21W
−1
11W12)S22)

= tr(W11S11 +W12S21 +W21S12 + (W22⋅1 +W21W
−1
11W12)S22)

= tr(W11 S11
°
=B

+W12S21 +W21S12 +W12S22W21
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=A

W−1
11 +W22⋅1S22)

(4.35)

and

det(W)n
2 = det(W11)

n
2 det(W22⋅1)

n
2 , (4.36)

where we changed variables W22⋅1 = W22 −W21W
−1
11W12 with Jacobian 1.

Comparing Eq. 4.33 with Eq. 4.35, we can identify A, B, and λ:

n

2

!= λ − p ⇒ λ = n

2
+ p (4.37)

such that

W11∣W12,S ∼MGIGp×p (
n

2
+ p,W12S22W21,S11) . (4.38)

Since the double exponential prior does not affect the distribution of W11, we
only have to include the Wishart prior. The result follows immediately.
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Theorem 5 shows that estimation of the Markov blanket of the p query
variables only requires sampling from the posterior conditionals of W11 and
W12 which both have an analytical form while remaining independent of W22.
Therefore, the amount of parameters in the Markov blanket that need to be
estimated, scales linearly with q. This is an improvement over the Bayesian
graphical lasso (Wang et al., 2012) approach, where this number grows quadrat-
ically with q. Theorem 5 also provides us with the particular distributions to
sample from. Having these distributions, we can construct a Gibbs sampler
which alternatively draws from these conditional distributions while averaging
out the prior. Next, we demonstrate how this sampling can be done efficiently.

Algorithm 10 Block Gibbs sampling scheme for the posterior.

Require: Sample covariance matrix S
Result: Markov Blanket estimate Ŵ12

1: while not converged do

2: T −1ij ∼ IG (
√

λ2/w2
ij , λ

2)
3: vec(WT

12)∣W11,S,T ∼Npq (−Cvec(ST
12),C)

4: W11∣W12,S,T ∼MGIGp×p (− 1
2
(n + p + 1),W12(S22 + I)W21,S11 + I)

5: end while
6: return averaged and thresholded W12

4.5.1. Efficiency of Sampling from the Posterior

The block-wise Gibbs sampling scheme for estimating the Markov blanket is
summarised in Algorithm 10. This sampling scheme consists of iterative resam-
pling of W12∣W11,S,T and of W11∣W12,S,T, according to their definitions in
Theorem 5. The estimate of the Markov blanket Ŵ12 is subsequently computed
based on samples drawn from W12∣W11,S,T following the burn-in period of
the sampler.
The distribution of W12∣W11,S,T is given by Theorem 5(1). The vectorised

rows of W12∣W11,S,T follow a joint normal distribution. For v = vec(ST
12),

the distribution further simplifies to

vec(WT
12)∣W11,S ∼Npq (−Cv,C) . (4.39)

The majority of the computational cost incurred in the method arises from
sampling from this joint normal distribution. Eq. 4.39 requires us to compute
C which is of size pq × pq. Note that C−1 cannot be represented as a covari-
ance tensor of a matrix normal distribution. Therefore, näıve inversion using
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a standard Cholesky decomposition would cost O(p3q3) operations. The effi-
cient sampling strategy exploits the block structure of this matrix. This is the
foundation of Theorem 6.

Theorem 6. Sampling from the distribution in Theorem 5(1) requires O(pq3)
operations.

Proof Sketch. We expand the Kronecker product of matrix C ∈ Rpq×pq which
comprises p blocks of size q × q:

C =
⎛
⎜⎜
⎝

u11(S22 + I) +D−11 u12(S22 + I) ⋯
u21(S22 + I) ⋱

⋮ ⋯ upp(S22 + I) +D−1p ,

⎞
⎟⎟
⎠

−1

(4.40)

where U =W−1
11 is the inverted upper diagonal block. We observe a regular

structure within the blocks in C−1: the matricesD−1i are added to the diagonals
blocks only, and the non-diagonal blocks only differ by scalar factors uij . With
a block-wise Cholesky factorisation, the inversion requires only pq3 operations.
Since the Cholesky decomposition of the blocks also only differs by a factor,
we can store its intermediate result.

Remark If there are further memory constraints, distributed versions of the
Cholesky decomposition should be considered to enhance performance.
Theorem 5(2) states that W11∣W12,S,T follows the MGIG distribution. In

order to sample from this distribution, we make use of a result by Bernadac
(1995). It introduces a representation of an MGIG-distributed random vari-
able as a limit of a random continued fraction of Wishart-distributed random
variables. The interested reader should refer to Letac (2000); Bernadac (1995);
Koudou et al. (2014) for the details. Drawing samples from the MGIG thus
reduces to iterated sampling from the Wishart distribution. In practice, we ob-
serve the convergence of the random continued fraction within few iterations.
The complexity of sampling from the distribution derived in Theorem 5(2) does
not depend on q.

4.5.2. A Note About The Graphical Lasso

A natural question that arises is how the BMB solution presented here compares
to existing frequentist techniques, particularly the classical graphical lasso due
to Friedman et al. (2008). The BMB uses the same likelihood as the graphical
lasso. As a result, comparing both techniques reduces to comparing Bayesian
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inference with maximum likelihood inference. Evidently, such a comparison
reveals that the BMB provides us with a posterior distribution that expresses
the confidence in a solution, while the graphical lasso only returns a point
estimate. It should also be noted that BMB and the graphical lasso are virtually
identical if a highly peaked prior is used.

4.5.3. Regularisation Parameter ρ and λ

We aim to compare the regularisation parameters ρ from the graphical lasso
and λ from the Bayesian graphical lasso and Markov blanket estimate. The
posterior distribution whereof the Bayesian graphical lasso and the Bayesian
Markov blanket estimate draw is composed of the Wishart likelihood and a
double exponential/ Laplace prior. Neglecting all terms not including W, this
results in

p(W∣S)∝ det(W)n
2 exp tr(−1

2
WS)∏

i<j

exp(−λ∣wij ∣)
p

∏
i=1

exp(−λx)x>0.

(4.41)
On the other hand, the graphical lasso is composed of the logarithm of Wishart
likelihood and a L1 regulariser on W, whereas the log-likelihood is reduced to
terms which include W. This results in

log det(W) − tr (S̄W) − ρ∣∣W∣∣1. (4.42)

To compare Eq. 4.41 with Eq. 4.42 the latter is multiplied by n
2
and exponen-

tiated

exp(n
2
det(W) − n

2
tr (S̄W) − n

2
ρ∣∣W∣∣1)

=det(W)n
2 exp tr(1

2
SW) exp(n

2
ρ∣∣W∣∣1)

=det(W)n
2 exp tr(1

2
SW) exp

⎛
⎝
n

2
ρ∑
i≤j

∣wij ∣
⎞
⎠
.

(4.43)

Now, comparing Eq. 4.41 with Eq. 4.43, we conclude that

λ = n

2
ρ. (4.44)

4.6. Extension with Gaussian Copula

We extend the model for non-Gaussian and mixed continuous/discrete data
by embedding it within a copula construction. Copulas describe the depen-
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dency in a r-dimensional joint distribution F (Y1, . . . , Yr) and represent an
invariance class with respect to the marginal cumulative distribution func-
tions (cdf) Fi. In the model, r = p + q. For continuous cdfs, Sklar’s theorem
(Sklar, 1959) guarantees the existence and uniqueness of a copula C, such
that F (Y1, . . . , Yr) = C (F1(Y1), . . . , Fr(Yr)). For discrete cdfs, this leads to
an identifiability problem (Genest and Neslehova, 2007), such that established
methods on empirical marginals (Liu et al., 2009) cannot be used anymore, but
a valid copula can still be constructed (Genest and Neslehova, 2007). For this
purpose, we follow the semi-parametric approach by Hoff (2007) and restrict
the model to the parametric Gaussian copula, but we do not restrict the data
to be Gaussian and treat them in a non-parametric fashion. The Gaussian
copula inherently implies latent variables Xi = Φ−1(Fi(Yi)). The model under
consideration is

(X1, . . . ,Xr)T ∼Nr (0 ,Σ) , Yi = F −1i (Φ(Xi)) , (4.45)

where F −1i denotes the ith generalised inverse of continuous or discrete cdfs, X
are the latent variables, and Y are the observations.
Following Hoff (2007), inference in the latent variables uses the non-decreasing

property of discrete cdfs for transforming the observed variables to the latent
space. This guarantees that for observations yik < yil we also have xik < xil,
and more generally, X must lie in the set

D = {X ∈ Rr×n ∶max(xik ∶ yik < yij) < xi,j <min(xik ∶ yij < yik)}.

The data likelihood can then be written as

p(Y∣Σ, F1, . . . , Fr) = p(X ∈ D,Y∣Σ, F1, . . . , Fr)
= p(X ∈ D∣Σ)p(Y∣X ∈ D,Σ, F1, . . . , Fr)

and estimation of Σ is performed on maximising the sufficient statistics p(X ∈
D∣Σ) only, thus treating the marginals Fi as nuisance parameters. Bayesian
inference for Σ is achieved by a Markov chain having stationary distribution
at the posterior p(Σ∣X ∈ D)∝ p(Σ)p(X ∈ D∣Σ), where a inverse-Wishart prior
p(Σ) is used. Posterior inference can be achieved with a Gibbs sampler which
draws alternately between X∣Σ,Y and Σ∣X. This sampler extends Alg. 10
with an additional outer loop for inferring the latent variables. The Markov
blanket is then iteratively estimated on these variables. The sampling scheme
easily accommodates for missing values, when omitting conditioning on the set
D.
The presented framework is very useful in practice, since the invariance

class of copulas extend the model to non-Gaussian data. With the additional
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stochastic transformation to the latent space, we can use discrete variables and
allow missing values. In real world applications, it becomes apparent that this
is a very valuable extension.

4.7. Experiments

4.7.1. Artificial Data

As a first experiment, we attempt to highlight the differences in inference
between the Bayesian Markov blanket (BMB) and Bayesian Graphical Lasso
(BGL) procedures. We construct an artificial network with 100 variables, where
the interest is confined to only the Markov blanket between p = 10 query vari-
ables and the q = 90 remaining variables. In order to create networks with a
“small-world” flavour containing hubs, i.e. nodes with very high degree, the
connectivity structure of the inverse covariance matrix W is generated by a
beta-binomial model. Edge weights are sampled uniformly from the interval
[0.3, 1], and edge signs are randomly flipped. Finally, positive definiteness is
guaranteed by adding a suitable constant (related to the smallest eigenvalue)
to the diagonal. This process produces a sparse network structure where the
majority of edges are connected to only a few single nodes. Note that many
real-world networks exhibit such small-world properties. Since we are interested
in estimating the Markov blanket, we require W12 to contain a minimum of 15
non-zero elements (= edges) out of a theoretical maximum of p × q = 900. The
parameters were chosen to produce sparse, but reasonably challenging network
topologies: the full matrix W of size (p + q) × (p + q) is composed of around
100 non-zero entries in total (excluding its main diagonal to ensure positive
definiteness).
Next, we draw n = 1000 independent samples from a zero-mean normal

distribution with covariance matrix W−1 and compute the sample covariance
S. Fig. 4.4 depicts a true Markov blanket and its reconstruction by BGL and
BMB using the same sparsity parameter λ = 200. Both methods were run side-
by-side for 700 MCMC samples after an initial burn-in phase of 300 samples.
From the sampled networks, a representative network structure is constructed
by thresholding based on a 85% credibility interval, which is shown in the
plots in Fig. 4.4. We repeat the above procedure to obtain a total of 100
datasets. The quality of reconstructed networks is measured in terms of f -
score (harmonic mean of precision and recall) between the true and inferred
Markov blanket. When computing precision and recall, inferred edges with edge
weights having the wrong sign are counted as missing. Both models share the
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same sparsity parameter λ, which in this experiment was selected such that
for BMB recall and precision have roughly the same value. The results are
depicted as box plots in Fig. 4.5, from which we conclude that there are indeed
substantial differences in both models. In particular, BGL has the tendency to
introduce many unnecessary edges in comparison to BMB. As a result, BGL
achieves high recall and low f -score. Since both methods are based on the same
likelihood model and (almost) the same prior, the observed differences can only
be attributed to differences in the inference procedure: BGL infers a network
by iterating over all variables and their neighbourhood systems, whereas BMB
only estimates the elements in W11 and W12.
To further study the influence of the different Gibbs sampling strategies, we

examine tracer plots and auto-correlations of individual variables in Fig. 4.6.
In almost all cases, BGL shows significantly higher auto-correlation and poor
convergence. In contrast, Markov chains in the BMB sampler seems to mix
much better, typically leading to posteriors with smaller bias and variance.
While only one example is shown in the figure, similar results can be seen for
basically all variables in the network. Overall, BMB has a significant practi-
cal advantage when only the Markov blanket of a network is required since it
successfully exploits the Wishart factorization to estimate W12 independently
of W22. Further, we experience a substantial decrease in run-time, even for
these relatively small networks: computing 1000 MCMC samples for BMB fin-
ished on average after 100 seconds, while BGL typically consumed around 370
seconds. Since BGL requires an additional sampling loop over all variables,
datasets with large S22 quickly become problematic for BGL. We further ex-
plore these differences in the next section for a large real-world application.

4.7.2. Real Data

To demonstrate the practical significance of Markov blanket estimation, we
turn to the analysis of colorectal cancer which in 2012 ranked among the three
most common types of cancer globally (Stewart and Wild, 2014). The data
set introduced in Sheffer et al. (2009) is publicly available and contains gene
expression measurements from biopsies of n = 260 cancer patients. A separate
table captures discrete/categorical clinical traits such as sex, age or pathological
staging/grading. In this context, one particularly interesting research question
is to identify connections between the p (macroscopic) clinical descriptors and
the q (molecular) gene expression measurements based on n patients which
are treated as realizations. Note that in this setting, a network between only
clinical features or only genes is not of interest and in part already well explored
– instead the analysis specifically targets their interaction, hence the Markov
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Figure 4.4.: One exemplary Markov blanket (p = 10, q = 90) and its reconstruc-
tion by BGL and BMB. Note that the graphs only display edges
between p query and q remaining variables. Red nodes represent
query variables, white nodes represent all other variables. Black
and grey edges correspond to positive and negative edge signs, re-
spectively.
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Figure 4.5.: Performance of inferred Markov blankets from 100 datasets.

blanket.

Among the 13400 genes contained in the dataset, we focus on a specific sub-
set, the so-called “Pathways in cancer” as defined in the KEGG database3.
This particular subset comprises a general class of genes which are known to
be involved in various biological processes linked to cancer. For this experi-
ment, we have q = 312 candidate genes and p = 7 query variables. These are
the age and sex of the patient as well as the TNM classification, cancer group
stage (GS ) and mutation of the tumour suppressor protein p53. Since the ob-
servations have mixed continuous/discrete data types with missing values, the

3Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/pathway.html
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Figure 4.6.: Density and auto-correlation of the Markov chain for a single vari-
able in the Markov blanket. Gray refers to BGL, black to BMB.

Markov blanket estimation is extended by a semi-parametric Gaussian copula
framework (Hoff, 2007). Based on this, we calculate 5 000 MCMC samples, con-
suming just over 2 hours, which finally leads to the Markov blanket in Fig. 4.7.
The red nodes represent the p clinical features under consideration, while the
white nodes represent the q genes. Here, the result is obtained by defining an
80% credibility interval over the full Markov chain after discarding the first
1 500 burn-in samples.
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Figure 4.7.: Sparse Markov blanket between p = 7 clinical features (red nodes)
and q = 312 genes in colorectal cancer (Sheffer et al., 2009).
Overview of all variables/nodes (left) and enlarged, fully labelled
sub-graph (right).
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The resulting network structure confirms some well-known properties like
the confounding effect of the age and sex variables, both of which (correctly)
link to a large number of genes. For example, FGF21 exhibits significant differ-
ences in male and female subjects (Bisgaard et al., 2014), and CTNNA1 shares
connections to survival time in men (Ropponen et al., 1999). Similarly, mTOR,
the mechanistic target of rapamycin, not only represents a key element for cell
signaling that triggers a cascade of immune-related pathways, but its function
also depends heavily on a subject’s age (Johnson et al., 2013). Despite these
age- and sex-related observations being non-trivial, they are not of primary in-
terest, which is why the remaining variables carry more practical insights from
a clinical point view.

Further, we are able to identify a very interesting network structure around
the variable tumour size T : almost all direct neighbours control either cell
growth (EGLN1 (Erez et al., 2003), RELA (Yu et al., 2004), HGF (Renzo
et al., 1995; Date et al., 1998) and others) or cell death (BCL2, FADD). Can-
cer typically affects the balance between these two fundamental processes and
their deregulation eventually leads to tumour development. A second sub-graph
concerns variable N, the degree of spread to regional lymph nodes, which is ex-
pressed in 4 levels N0 to N3. Here, all genes in the neighbourhood correspond
to the lymphatic system and its direct responses to malignant cell growth,
which was confirmed for FGF9 (Deng et al., 2013), MDM2 (Leitea et al., 2001;
Fridman et al., 2003) and TRAF4 (Camilleri-Broet et al., 2007) among oth-
ers. Finally, the following two clinical variables appear to be conditionally
independent from genes, yet they may internally depend on other clinical vari-
ables (i.e., outside of the Markov blanket): binary M (presence of metastasis
in distant organs) and discrete GS (group stage of cancer). Interestingly, the
latter is only a summary function of T, N and M, hence internal links to the
aforementioned variables are very likely.

Despite the study’s focus on colorectal cancer and specifics of the intesti-
nal system, the inferred Markov blanket is able to explain rather general
properties in accordance with findings in the medical literature. Altogether,
this nicely illustrates how the Gaussian copula framework complements the
Bayesian Markov blanket estimation – especially pertaining to the clinical do-
main with mixed observations and missing values.

In contrast to our approach, the high dimensionality of this dataset imposes
severe problems for BGL. For BMB, 5 000 Gibbs sweeps could be computed in
2 hours, and MCMC diagnosis did not show any severe convergence problems.
For BGL, however, the same number of iterations already took 122 hours (≈ 5
days), and we observed similar (and sometimes severe) mixing problems as
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described in the previous section.

4.8. Conclusion

We have presented a Bayesian perspective for estimating the Markov blanket
of a set of query nodes in an undirected network. In our experience, it is often
the case that we estimate a full network but interpret only part of it. This is es-
pecially true in a context where portions of the data are qualitatively different.
Here, we would be more interested in establishing the links between these por-
tions, rather than examining the links within the portions themselves. Markov
blanket estimation is hence an interesting and relevant sub-problem of network
estimation, particularly in high dimensional settings. Existing methods such
as the Bayesian graphical lasso iterate through the individual variables to esti-
mate an entire network. While there are several situations in which inference
of the entire network is required, there are also cases in which we are only
interested in the neighbourhood of a small subset of query variables; for these
instances, iterating through all the variables is unnecessary.
In the preceding, we explored the block-wise factorisation of the Wishart

likelihood in combination with a suitable choice of prior. The primary con-
tribution in Theorem 5 shows that the resulting posterior distribution of the
Markov blanket of a set of query nodes has an analytic form, and is indepen-
dent of a large portion of the network. The analytic form allows us to explore
potentially large neighbourhoods where the Bayesian graphical lasso reaches its
limits. We also demonstrated that sampling from the posterior of the Markov
blanket is more efficient than the Bayesian graphical lasso. Moreover, we ob-
served fast convergence and superior mixing properties of the Markov chain.
We attribute this to the improved flexibility of the sampling strategy.
Including a copula construct in the model further enhances its real world

applicability, where mixed data and missing values are prevalent. A partic-
ular application in a medical setting is the colorectal example we considered
in Section 4.7.2. Using this approach allowed us to make interesting observa-
tions about the interactions between various clinical and genetic factors. Such
insights could ultimately contribute to a better understanding of the disease.
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5. Time-resolved Information Flows

5.1. Introduction

Granger causality (Granger, 1969) is a paradigm to measure causal influence
between time series. In an informal way, a time series Xn Granger-causes time
series Y n, if knowing the past ofXn and Y n helps in predicting the future of Xn

compared to only knowing the past of Y n only. In the context of information
theory, directed information (Massey, 1990) and transfer entropy (Schreiber,
2000) quantify the causal influence between time series in the spirit of Granger.

In order to analyse the entire complexity of causal flows between time series,
we decompose directed information into its building blocks. This leads to
a new notion of time-resolved information flows, which has the capability to
represent the associations within the time series in a non-stationary setting. We
give a new interpretation of time-resolved information flows within the setting
of Pearlian directed acyclic graph (Pearlian DAG) (Dawid, 2010). We show
how to estimate approximate information flows with the Gaussian copula and
apply the method on electroencephalography (EEG) data of visually evoked
potentials (VEP).

It is convenient to use a probabilistic graphical model for representing the
dependencies between time series (Eichler, 2012). There are two principled
possibilities for representing directed information in graphs. A simple approach
is to define a graph G = (V,E), where the vertices v ∈ V each represent a time
series and the edges e ∈ E the associations between the them. Such graphs, an
example is depicted in Fig. 5.1, have appealing properties when the associations
refer to transfer entropy (Quinn et al., 2015). However, a causal interpretation
is limited to the stationary case. In order to represent the entire complexity
of time series, the graph can be unrolled over time so that every time point
of every time series is represented by a vertex. Such a graph is depicted in
Figs. 5.2 and 5.3. A corresponding interpretation of directed information is
presented in (Wieczorek and Roth, 2016), which also covers the non-stationary
case.
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X Y

U Z

V W

Figure 5.1.: Graphical model for a directed acyclic graph.
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Y

time

⋯
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⋯ t − 2 t − 1 t

⋯
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⋯

Figure 5.2.: Template for unrolled directed graphical model.
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Y
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⋯

⋯

⋯ t − 2 t − 1 t

⋯

⋯

⋯

Figure 5.3.: Template for unrolled directed graphical model. Bold arrows rep-
resent a Markov order > 1.
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5.2. Time-resolved Information Flows

In the following, directed information is factorised into time-resolved informa-
tion flows. We start with the definition of directed information

I (Xn → Y n) =
n

∑
i=1

I (Xi;Yi∣Y i−1) (5.1)

in order to expand it into information flows I (Xi;Yi∣Y i−1). We then recursively
use the chain rule on the information flows

I (Xi;Yi∣Y i−1)
= I (Xi−1;Yi∣Y i−1) + I (Xi;Yi, ∣Xi−1, Y i−1)
= I (Xi−2;Yi∣Y i−1) + I (Xi−1;Yi∣Xi−2, Y i−1) + I (Xi;Yi, ∣Xi−1, Y i−1)
= I (X1;Yi∣Y i−1) + I (X2;Yi∣X1, Y

i−1) + . . .+
+ I (Xi−1;Yi∣Xi−2, Y i−1) + I (Xi;Yi, ∣Xi−1, Y i−1)

=
i

∑
k=1

I (Xk;Yi∣Xk−1, Y i−1)

(5.2)

and plug this result into the definition in Eq. 5.1

I (Xn → Y n) =
n

∑
i=1

i

∑
k=1

I (Xk;Yi∣Xk−1, Y i−1) (5.3)

From this expansion, we identify the time-resolved causally conditioned mu-
tual informations I (Xk;Yi∣Xk−1, Y i−1) as the elementary building blocks for
directed information. We call such a building block a fully time-resolved in-
formation flow, since the information flow can be contributed to a causal flow
from time i to k. Having identified such an elementary block, the notion of an
information flow can be generalised in order to construct different information
flows. In order to do so, note that an unrolled information flow I (Xi;Yi∣Y i−1)
is an asymmetric measure of causality: the asymmetry is not only in the di-
rectionality from X to Y , but also from many time points of the past of X to
one time point in the presence of Y . Thus, we will call such an information
flow inflow, an acronym for incoming flow. Now, the motivation is to find its
counterpart. In particular, we will define a quantity, which we call outflow,
short for outgoing flow. An outflow is defined as the information flow from one
time point in the presence of X to many time points in the future of Y , in
particular for time k, an outflow is defined as

I(Xk → Y n) = I (Xk;Y
n
k ∣Xk−1, Y k−1) . (5.4)
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Note, an inflow is a building block for directed information for assessing Granger
causality. Analogously, an outflow is an information theoretic equivalent of a
building block of Sims causality (Sims, 1972; Saito and Harashima, 1981; Flo-
rens and Mouchart, 1982; Kamitake et al., 1984). Sims causality states that
Xn does not cause Y n, if the future of Y n is conditionally independent of the
present of Xn given the past of Xn and the past of Y n. We summarise the
definitions of inflow, instantaneous coupling, fully time-resolved information
flow, and outflow graphically in Figs. 5.4 - 5.7, respectively. The shading in
the figures corresponds to the respective conditioning sets.
In the following, we present the most important properties of outflows,

namely, directed information and transfer entropy can also be expanded in
terms of outflow.

Theorem 7 (directed information as outflow). Let Xn and Y n be two (possibly
non-stationary) time series. Then, directed information I (Xn → Y n) can be
expanded in terms of inflow as well as in terms of outflow. Formally,

n

∑
i=1

I (Xi;Yi∣Y i−1) =
n

∑
k=1

I (Xk;Y
n
k ∣Xk−1, Y k−1) . (5.5)

Proof. We factorise the outflow at time k according to the chain rule for mutual
information

I (Xk;Y
n
k ∣Xk−1, Y k−1)

= I (Xk;Yk ∣Xk−1, Y k−1) + I (Xk;Y
n
k+1∣Xk−1, Y k)

= I (Xk;Yk ∣Xk−1, Y k−1) + I (Xk;Yk+1∣Xk−1, Y k) + I (Xk;Y
n
k+2∣Xk−1, Y k+1)

= I (Xk;Yk ∣Xk−1, Y k−1) + I (Xk;Yk+1∣Xk−1, Y k) + . . .+
+ I (Xk;Yn∣Xk−1, Y n−1)

=
n

∑
ℓ=k

I (Xk;Yℓ∣Xk−1, Y ℓ−1)

(5.6)
Summing the outflow over time k = 1, . . . , n

n

∑
k=1

n

∑
ℓ=k

I (Xk;Yℓ∣Xk−1, Y ℓ−1) (5.7)

and comparing Eq. 5.3 to Eq. 5.7 gives the desired result.

This result forms an information theoretic equivalent to Chamberlain (1982),
who showed a general equivalence of Granger and Sims causality. A similar
theorem can also be stated for transfer entropy.
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Figure 5.4.: Red arrows: inflow I(Xt−1 → Yt).
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⋯

⋯
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⋯

Figure 5.5.: Green edge: instantaneous coupling I(Xt;Yt∣Xt−1, Y t−1).
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⋯

Figure 5.6.: Magenta arrow: fully time-resolved information flow
I(Xt−2;Yt∣Xt−3, Y t−1).
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⋯
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⋯
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⋯

Figure 5.7.: Blue arrows: outflow I(Xt;Y
n
t+1∣Xt−1, Y t).
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Theorem 8 (transfer entropy as outflow). Let Xn and Y n be two stationary
time series. Then, transfer entropy can be expressed in terms of inflow as well
as in terms of outflow. Formally,

lim
i→∞

I (Xi−1;Yi∣Y i−1) = lim
n→∞

I (Xk;Y
n
k+1∣Xk−1, Y k) . (5.8)

More precisely, in the limits, the inflow is equal to the outflow.

Proof. In a strict stationary time series, the fully time-resolved information
flows do not depend on time k, i.e.

I(Xk;Yk+ℓ∣Xk−1, Y k+ℓ−1) = I(Xk+τ ;Yk+τ+ℓ∣Xk+τ−1, Y k+τ+ℓ−1). (5.9)

for all τ ∈ Z. Comparing Eq. 5.2 to Eq. 5.6 in the limits limi→∞ and limn→∞,
respectively, gives the desired result.

Note, as transfer entropy is defined without instantaneous coupling, we also
neglecting the corresponding term. However, it could be included in the theo-
rem as well.

5.2.1. Graphical Interpretation

As mentioned in the beginning of this chapter, a probabilistic graphical model
can be useful for analysing information flows. This section aims at clarifying
the role of time-resolved information flows in a Pearlian DAG.
As stated in (Massey, 1990) for noisy communication channels, mutual in-

formation measures the transmitted information, when no feedback is present.
However, whenever feedback is available, directed information is a more use-
ful quantity, since it quantifies the causal information flow in one direction
only. Raginsky (2011) showed that this notion of causality actually fits into
the framework of interventions by Pearl (2009), thus opening the connections
between graphical models and directed information. This led to a more gen-
eral definition of directed information: for any disjoint sets S,T ∈ V in a graph
G = (V,E), directed information is defined as

I(S → T ) =DKL (PS∣T ∣∣PS∣do(T )∣PT ) . (5.10)

In particular, directed information can be interpreted as the difference be-
tween an observed and an intervened distribution. In words of Pearl, what is
called an observed distribution is the pre-interventional distribution P (S∣T ),
and the intervened distribution corresponds to the post-interventional distribu-
tion P (S∣do(T )). Directed information has an interesting interpretation since
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it compares those distributions and takes the expectation over the distribution
of the intervened variable T . Thus, directed information is the average causal
effect (Angrist et al., 1996) in terms of entropy when observing the data in
the intervened instead of the observed model. The explicit connection for time
series is demonstrated in App. A.3. Note, the KL-divergence emerges naturally
in the setting of information theory.
Building on this result, we provide analogous interpretations for time-resolved

information flows. In particular, the interpretation of time-resolved informa-
tion flows as differences between an observed and an intervened distribution is
as follows: in a Pearlian DAG, an inflow can be interpreted as

I(Xi → Yi) =DKL (PXi∣Y i ∣∣PXi∣Y i−1,do(Yi)∣PY i) , (5.11)

the interpretation of an outflow is

I(Xi → Y n) =DKL (PXi∣Xi−1,Y n ∣∣PXi∣Xi−1,Y i−1,do(Y n
i )
∣PXi−1,Y n) , (5.12)

and the interpretation of a fully time-resolved information flow is

I(Xi → Yk) =DKL (PXi∣Xi−1,Y k ∣∣PXi∣Xi−1,Y k−1,do(Yk)
∣PXi−1,Y k) . (5.13)

The derivation of those expressions is given in App. A.3. Note, contrary to
standard notation (Cover and Thomas, 2012), we made explicit the averaging
over the conditioning sets of the KL-divergences.

5.3. Discovering Information Flows in
Non-Stationary Time Series

We aim at discovering time-resolved information flows in non-stationary time
series. In our view, outflows and inflows provide a useful measures for discov-
ering information flows in a general setting. What we call a general setting is
subject to the following assumptions:

1. the causal information flows are non-stationary

2. the maximal length of a causal flow is limited by the Markov order of the
time series

The first assumption describes that the causal flows do not follow any specific
structure. The causal flows can be asymmetric and vary over time in length
and strength. Thus, arbitrary flows are allowed as long as the network is a
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directed acyclic graph. This also includes configurations like hubs: a nodes
with a high in-degree represents essentially a temporary information sink with
a distributed source, and a node with a high out-degree corresponds generally
to a temporary information source with a distributed sink.
The second assumption is mainly a technical assumption. The direct use of

in- and outflow is computational impractical since such an estimator considers
many variables. Limiting the Markov order as well as maximal length of a
causal flow allows using windows of fixed lengths. For a Markov model of fixed
ordering, the conditioning set for in- and outflow can be fixed accordingly, such
that paths from all potential ancestors are blocked.
The second assumption allows to measure information flows in different seg-

ments of the time series, such that a time-resolved analysis of information flows
is possible. This essentially enables to recover non-stationary information flows
which were described in assumption 1. We define the time-resolved inflow at
time i for a time series of Markov order L as

I (Xi
i−L;Yi∣Y i−1

i−L) . (5.14)

Note, the length of the window is L+1. Analogously, we define the time-resolved
outflow at time k for a time series of Markov order L as

I (Xk;Y
k+L
k ∣Xk−1

k−L, Y
k−1
k−L) . (5.15)

Note that the length of the window is 2L+1. For fully time-resolved information
flows

I (Xi;Yk ∣Xi−1
i−L, Y

k−1
k−L) . (5.16)

These definitions of information flows in windows lead directly to a practical
estimator which estimates non-stationary information flows under assumptions
1 and 2. Whereas the last expression is the most general one, the expressions
for in- and outflow may have the following interpretation which is equivalent
to that of matched filters: in the presence of hub sink and hub sources, they
maximise the signal-to-noise ratio, respectively. In the stationary case, the in-
terpretation of time-resolved in- and outflows changes and they can be consid-
ered as approximations of transfer entropy which can be recovered for infinitely
long windows L→∞.

5.3.1. A Gaussian Copula Estimator for Information Flows

We aim at computing the time-resolved information flows with a Gaussian
copula model. Thus, inflow is decomposed into multiinformations as in A.8
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and limit the indices to the window of length L. This gives

I(Xi
i−L;Yi∣Y i−1

i−L) =M(Xi
i−L, Y

i
i−L) −M(Y i

i−L) −M(Xi
i−L, Y

i−1
i−L) +M(Y i−1

i−L).
(5.17)

Analogously, outflow is decomposed into multiinformations as in A.12 and the
indices are limited to the window of length 2L + 1

I(Xk;Y
k+L
k ∣Xk−1

k−L, Y
k−1
k−L)

=M(Xk
k−L, Y

k+L
k−L ) −M(Xk−1

k−L, Y
k+L
k−L ) −M(Xk

k−L, Y
k−1
k−L) +M(Xk−1

k−L, Y
k−1
k−L)
(5.18)

Those decompositions enable to use the equivalence between multiinformation
and negative copula entropy and the closed-form expression for the entropy of
a Gaussian copula, namely

M(X1, . . . ,Xp) = −H (cNR (U1, . . . , Up)) = −
1

2
log detR. (5.19)

What remains is the correlation matrix R = ZTZ in the latent space. Com-
puting it in a semi-parametric fashion, we use empirical marginals Femp to
estimate the copula with normalized ranks

U●j = Femp(Y●j) =
ranks(Y●j)

n + 1 , (5.20)

and compute subsequently the normal scores

Z●j = Φ−1 (U●j) = Φ−1 (
ranks(Y●j)

n + 1 ) . (5.21)

Using the Gaussian copula for estimating time-resolved information flows
comes with several benefits. First, the semi-parametric approach, namely us-
ing the Gaussian copula with non-parametric marginals, provides a very flexible
model. The model does not impose any assumptions on the marginals, but only
on the dependency structure. Thus, the estimator is invariant against mono-
tone transformations and is robust against outliers. Second, the decomposition
of inflow and outflow into multiinformations and the use of the Gaussian copula
allows to use a convenient closed-form expression. Compared to other methods
(Hlaváčková-Schindler et al., 2007) based on e.g. binning, k-nearest neighbours,
or kernels, the estimator has also amenable properties. First, it only suffers
weakly from the curse of dimensionality, second, the computational complexity
remains low, and third, there are no parameters to tune.
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5.3.2. Application to Visual Evoked Potentials

We present a preliminary result for electroencephalography (EEG) recordings
of visually evoked potentials (VEP). A healthy control was repeatedly visu-
ally stimulated by a colour switching checker board and the electromagnetic
response of the brain was recorded with a 256-channels EEG at a sampling
rate of 1000 Hz (Hardmeier et al., 2014). The signal is bandpass filtered with
passband between 5 and 45 Hz to eliminate high-frequency noise and further
down sampled to 50 Hz according to the uncertainty principle/ Gabor limit.
Independent component analysis (ICA) is used for localisation of responses in
the space of the electrodes. Subsequently, the electrodes in regions with strong
response to the stimulus were pooled. Fig. 5.8 shows inflows and outflows com-
puted according to Eq. 5.14 and Eq. 5.15, respectively, for different window
sizes L. An information flow is visible from the occipital central to the frontal
central region during a period starting at the transition from P100 to N145
and ending at the transition from N145 to P240. Thus, the information flows
occur at transition phases between stable topologies.

5.4. Conclusion

In this chapter, we introduced time-resolved information flows as building
blocks of directed information. Based on this notion, we provide the infor-
mation theoretic interpretation of Granger and Sims causality. In particular,
we showed in Thms. 7 and 8 that directed information and transfer entropy can
be expressed in terms of inflow as well as in terms of outflow. Those expansions
lead to different quantifications of directed information and transfer entropy in
terms of differences of observational and interventional distributions in a causal
graphical model. Motivated on this interpretation, we defined an estimator for
recovering time-resolved information flows and applied it to visually evoked
potentials in EEG recordings.
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(a) Outflow from occipital central to frontal central.
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(b) Outflow from frontal central to occipital central.
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(c) Inflow from occipital central to frontal central.
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(d) Inflow from frontal central to occipital central.

Figure 5.8.: Preliminary results from visually evoked potentials. (a) and (c): information flow from occipital
central to frontal central. (b) and (d): in the opposite direction, no information flow in visible.87





6. Conclusion and Outlook

In this thesis, we enlightened the role of copulas in different probabilistic mod-
els. The inherent scale-invariance of copula models provides an invariance class
which is powerful yet simple and thus extend the applicability of different mod-
els to a much larger class of problems. We focused on the Gaussian copula,
since its Gaussian distributed latent space allows extending established models
to adopt the invariance properties of copulas. Applying a copula model thus
enables a deep understanding of associations in data sets and allows for robust
generalisation.

6.1. Representation of Data

We studied the Gaussian copula extension in dimensionality reduction algo-
rithms. Within the framework of archetypal analysis, we showed that the
dependency structure of the generative model of archetypal analysis is approx-
imately Gaussian. This justifies the use of the Gaussian copula for approxi-
mating the the dependency structure of archetypal analysis.
We studied the Gaussian copula extension of principal component analy-

sis in the context of parametric appearance models for faces. Thereby, the
eigenfaces approach relaxes the assumption of Gaussian distributed colour
marginals. This led to an increased specificity of the model and eliminated
artefacts in random generated faces. Moreover, the copula model enabled to
combine modalities measured on different scales in an unifying way. Thus, the
colour model could be combined with further modalities like shape and other
attributes such that the specificity could be further increased.
The copula extension of principal component analysis and archetypal anal-

ysis extend the applicability of the models substantially. A further advance
could be reached by incorporating neural networks. Combining the invariance
class of copulas with (deep) neural networks can lead to models with interest-
ing properties. In particular, the universal approximation theorem (Cybenko,
1989; Hornik et al., 1989) states that a neural network has the capability of
approximately computing any continuous function. In particular, a neural net-
work is able to model functions which are not monotonic in the dimensions and
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are of deterministic nature. In this way, neural networks are able to extend
copula models in a considerable way.

6.2. Networks

In this thesis, we presented a Bayesian perspective for estimating the Markov
blanket of a set of query nodes in an undirected network. We showed that in the
Bayesian perspective, limiting the focus on the Markov blanket may be advan-
tageous, in particular in the high-dimensional setting, where existing methods
suffer from the curse of dimensionality. The extension to the copula network
provides us with several benefits. Among those, the ability to include discrete
ordered data is of special interest, since it extends the real world applicability
substantially.

In the context of the conjecture that causality is a key for bringing forward
machine intelligence, the incorporation of copula models in causal structure
learning may be beneficial in the sense of providing more robust results than
those of Gaussian models. Examples include a structure learning algorithms
like a copula PC algorithm for nonparanormal graphical models (Harris and
Drton, 2013) with the extension for mixed data (Cui et al., 2016), as well
as intervention calculus when the underlying directed acyclic graph is absent
(Nandy et al., 2014). However, in the case of hidden variables and/ or cycles/
feedback, there are still open questions.

6.3. Time Series

We analysed directed information and transfer entropy to quantify causal ef-
fects in time series. The definition of directed information as a difference be-
tween the observational and interventional distribution is an appealing inter-
pretation which can be generalised to time-resolved information flows. This in-
terpretation motivates to define time-resolved estimators for causal flows which
we applied preliminarily to EEG recordings.

However, there is always a risk of interpreting statistical dependency as
causality and the question arises if it is possible to quantify causal effects from
observational data only. This question has several answers with graphical inter-
pretations, e.g. in terms of the (generalised) back-door/ adjustment criterion
(Pearl, 2009; Maathuis et al., 2015; Perković et al., 2015) and in terms of direct
and indirect or mediated effects (Pearl, 2001, 2014). In the context of time
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series and directed information, this question leads to a non-trivial analysis of
the underlying graph.
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A. Results for Information Theory

A.1. Equivalence of Granger and Sims Causality

We restate (Chamberlain, 1982) in the language of information theory.

We expand directed information in the spirit of Granger causality (Granger,
1969)

I(Xn → Y n) =
n

∑
k=1

I (Xi;Yi∣Y i−1) (A.1)

and recursively use the chain rule on Xi to factorise the inflows

I (Xi;Yi∣Y i−1)
= I (Xi−1;Yi∣Y i−1) + I (Xi;Yi, ∣Xi−1, Y i−1)
= I (Xi−2;Yi∣Y i−1) + I (Xi−1;Yi∣Xi−2, Y i−1) + I (Xi;Yi, ∣Xi−1, Y i−1)
= I (X1;Yi∣Y i−1) + I (X2;Yi∣X1, Y

i−1) + . . . + I (Xi−1;Yi∣Xi−2, Y i−1)+
I (Xi;Yi, ∣Xi−1, Y i−1)

=
i

∑
k=1

I (Xk;Yi∣Xk−1, Y i−1)

(A.2)

and plug this result into the definition

I (Xn → Y n) =
n

∑
i=1

i

∑
k=1

I (Xk;Yi∣Xk−1, Y i−1) . (A.3)

We expand directed information in the spirit of Sims causality (Sims, 1972;
Florens and Mouchart, 1982)

I(Xn → Y n) =
n

∑
k=1

I (Xk;Y
n
k ∣Xk−1, Y k−1) (A.4)
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and recursively use the chain rule on Y n
k to factorise the outflows

I (Xk;Y
n
k ∣Xk−1, Y k−1)

= I (Xk;Yk ∣Xk−1, Y k−1) + I (Xk;Y
n
k+1∣Xk−1, Y k)

= I (Xk;Yk ∣Xk−1, Y k−1) + I (Xk;Yk+1∣Xk−1, Y k) + I (Xk;Y
n
k+2∣Xk−1, Y k+1)

= I (Xk;Yk ∣Xk−1, Y k−1) + I (Xk;Yk+1∣Xk−1, Y k) + . . . + I (Xk;Yn∣Xk−1, Y n−1)

=
n

∑
ℓ=k

I (Xk;Yℓ∣Xk−1, Y ℓ−1)

(A.5)
and plug this result into the definition

I(Xn → Y n) =
n

∑
k=1

n

∑
ℓ=k

I (Xk;Yℓ∣Xk−1, Y ℓ−1) . (A.6)

Comparing Eq. A.3 to Eq. A.6, we recognise that both expansions contain
the same terms.

A.2. Decompositions of Directed Information

Similar to Liu (2012), we decompose directed information to obtain easy to
compute expressions.

I(Xn → Y n) =
n

∑
i=1

I(Xi;Yi∣Y i−1)

=
n

∑
i=1

I(Xi;Y
n
i ∣Xi−1, Y i−1)

=
n

∑
i=1

n

∑
k=i

I (Xi;Yk ∣Xi−1, Y k−1)

(A.7)

In the following, we further decompose inflow, outflow, and fully time-resolved
information flows.
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A.2.1. Decomposition of Inflow

I(Xi;Yi∣Y i−1)
=H(Xi∣Y i−1) −H(Xi∣Y i)
=H(Xi, Y i−1) −H(Y i−1) −H(Xi, Y i) +H(Y i)
=H(Xi, Y i−1) −H(Y i−1) −H(Xi, Y i) +H(Y i) −H(Xi) +H(Xi)
= I(Xi;Y i) − I(Xi;Y i−1)
=M(Xi, Y i) −M(Xi) −M(Y i) −M(Xi, Y i−1) +M(Xi) +M(Y i−1)
=M(Xi, Y i) −M(Y i) −M(Xi, Y i−1) +M(Y i−1).

(A.8)

From the third, fifth, and seventh equation, we get the following decompositions
of directed information in terms of entropy

I(Xn → Y n) =
n

∑
i=1

(H(Xi, Y i−1) −H(Y i−1) −H(Xi, Y i) +H(Y i))

=
n

∑
i=1

(H(Xi, Y i−1) −H(Xi, Y i)) +H(Y n),
(A.9)

in terms of mutual information

I(Xn → Y n) =
n

∑
i=1

(I(Xi;Y i) − I(Xi;Y i−1)) , (A.10)

in terms of multiinformation

I(Xn → Y n) =
n

∑
i=1

(M(Xi, Y i) −M(Y i) −M(Xi, Y i−1) +M(Y i−1))

=
n

∑
i=1

(M(Xi, Y i) −M(Xi, Y i−1)) −M(Y n).
(A.11)

95



Results for Information Theory

A.2.2. Decomposition of Outflow

I(Xi;Y
n
i ∣Xi−1, Y i−1)

=H(Xi∣Xi−1, Y i−1) −H(Xi∣Xi−1, Y n)
=H(Xi, Y i−1) −H(Xi−1, Y i−1) −H(Xi, Y n) +H(Xi−1, Y n)
= I(Xi;X

i−1, Y n) − I(Xi;X
i−1, Y i−1)

=M(Xi, Y n) −M(Xi−1, Y n) −M(Xi, Y i−1) +M(Xi−1, Y i−1).

(A.12)

From the second, third, and fourth equation, we get the following decomposi-
tions of directed information in terms of entropy

I(Xn → Y n) =
n

∑
i=1

(H(Xi, Y i−1) −H(Xi−1, Y i−1) −H(Xi, Y n) +H(Xi−1, Y n))

=
n

∑
i=1

(H(Xi, Y i−1) −H(Xi−1, Y i−1)) +H(Y n) −H(Xn, Y n)

=
n

∑
i=1

(H(Xi, Y i−1) −H(Xi, Y i)) +H(Y n),

(A.13)
in terms of mutual information

I(Xn → Y n) =
n

∑
i=1

(I(Xi;X
i−1, Y n) − I(Xi;X

i−1, Y i−1)) , (A.14)

in terms of multiinformation

I(Xn → Y n) =
n

∑
i=1

(M(Xi, Y n) −M(Xi−1, Y n) −M(Xi, Y i−1) +M(Xi−1, Y i−1))

=
n

∑
i=1

(M(Xi−1, Y i−1) −M(Xi, Y i−1)) −M(Y n) +M(Xn, Y n)

=
n

∑
i=1

(M(Xi, Y i) −M(Xi, Y i−1)) −M(Y n).

(A.15)

Comparing the decompositions of in- and outflow, the final expressions for
entropy and multiinformation are equal.
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A.2.3. Decomposition of Fully Time-Resolved Information
Flows

I(Xi;Yk ∣Xi−1, Y k−1)
=H(Xi∣Xi−1, Y k−1) −H(Xi∣Xi−1, Y k)
=H(Xi, Y k−1) −H(Xi−1, Y k−1) −H(Xi, Y k) +H(Xi−1, Y k)
= I(Xi;X

i−1, Y k) − I(Xi;X
i−1, Y k−1)

=M(Xi, Y k) −M(Xi−1, Y k) −M(Xi, Y k−1) +M(Xi−1, Y k−1).

(A.16)

From the second, third, and fourth equation, we get the following decomposi-
tions of directed information in terms of entropy

I(Xn → Y n)

=
n

∑
i=1

n

∑
k=i

(H(Xi, Y k−1) −H(Xi−1, Y k−1) −H(Xi, Y k) +H(Xi−1, Y k))

=
n

∑
i=1

(H(Xi, Y i−1) −H(Xi, Y n) −H(Xi−1, Y i−1) +H(Xi−1, Y n))

=
n

∑
i=1

(H(Xi, Y i−1) −H(Xi−1, Y i−1)) −H(Xn, Y n) +H(Y n)

=
n

∑
i=1

(H(Xi, Y i−1) −H(Xi, Y i)) +H(Y n),

(A.17)

in terms of mutual information

I(Xn → Y n) =
n

∑
i=1

n

∑
k=i

(I(Xi;X
i−1, Y k) − I(Xi;X

i−1, Y k−1)) , (A.18)

and in terms of multiinformation

I(Xn → Y n)

=
n

∑
i=1

n

∑
k=i

(M(Xi, Y k) −M(Xi−1, Y k) −M(Xi, Y k−1) +M(Xi−1, Y k−1))

=
n

∑
i=1

(−M(Xi, Y i−1) +M(Xi, Y n) +M(Xi−1, Y k−1) −M(Xi−1, Y n))

=
n

∑
i=1

(M(Xi−1, Y i−1) −M(Xi, Y i−1)) +M(Xn, Y n) −M(Y n)

=
n

∑
i=1

(M(Xi, Y i) −M(Xi, Y i−1)) −M(Y n).

(A.19)
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A.3. Directed Information as the Difference
between Observational and Interventional
Distribution

Similar to (Wieczorek and Roth, 2016), we adopt the definition of directed in-
formation form Raginsky (2011), i.e. the definition of directed information as
the KL-divergence between the observational and the interventional distribu-
tion. We derive the equivalence from scratch, but we neglect the instantaneous
terms. For time series Xn and Y n of lengths n

I(Xn−1 → Y n) =
n

∑
i=1

I(Xi−1;Yi∣Y i−1) granger causality

=
n

∑
i=1

I(Xi;Y
n
i+1∣Xi−1, Y i) sims causality

=
n

∑
i=1

H(Xi∣Xi−1, Y i) −
n

∑
i=1

H(Xi∣Xi−1, Y i, Y n
i+1)

=
n

∑
i=1

H(Xi∣Xi−1, Y i) −
n

∑
i=1

H(Xi∣Xi−1, Y n)

=H(Xn∣∣Y n) −H(Xn∣Y n).

(A.20)

In the second equation, we used the result from App. A.1, namely, the equiva-
lence between the Granger and Sims expansion of directed information. Note,
in the sum, no stationarity assumption required for the equivalence of the
expansions. Moreover, this definition is valid for arbitrary disjoint sets of vari-
ables X and Y without any specific ordering. We thus omit the time indices.

I(X → Y ) =H(X ∣∣Y ) −H(X ∣Y )

= ∫
X,Y

P (X,Y )( logP (X ∣Y ) − logP (X ∣do(Y )))

= EPX,Y
log

P (X ∣Y )
P (X ∣do(Y ))

=DKL(PX ∣Y ∣∣PX ∣do(Y )∣PY ),

(A.21)

where we used in the second equation, that causal conditional entropy can
be written in the notation of Pearl’s do-calculus (Pearl, 2009). In the last
equation, we used the definition of conditional relative entropy (Cover and
Thomas, 2012), where, contrary to standard notation, we made explicit the
averaging over the distribution of PY .
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Interventional Distribution

A.3.1. Interventions for Time-Resolved Information Flows

We interpret causal flows as a KL-divergence between the observational and
interventional distribution. We expand the inflow, which is the building block
of directed information in the sense of Granger causality.

I(Xi → Yi)
= I(Xi;Yi∣Y i−1)
=H(Xi∣Y i−1) −H(Xi∣Y i−1, Yi)
=H(Xi∣Y i−1) −H(Xi∣Y i)

= ∫
Xi,Y i

P (Xi, Y i)( logP (Xi∣Y i) − logP (Xi∣Y i−1, do(Yi)))

= EPXi,Y i log
P (Xi∣Y i)

P (Xi∣Y i−1, do(Yi))
=DKL (PXi∣Y i ∣∣PXi∣Y i−1,do(Yi)∣PY i) .

(A.22)

Equivalently, we expand the outflow, which is the building block of directed
information in the sense of Sims causality.

I(Xi → Y n)
= I(Xi;Y

n
i ∣Xi−1, Y i−1)

=H(Xi∣Xi−1, Y i−1) −H(Xi∣Xi−1, Y i−1, Y n
i )

=H(Xi∣Xi−1, Y i−1) −H(Xi∣Xi−1, Y n)

= ∫
Xi,Y n

P (Xi, Y n)( logP (Xi∣Xi−1, Y n) − logP (Xi∣Xi−1, Y i−1, do(Y n
i ))

= EPXiY n log
P (Xi∣Xi−1, Y n)

P (Xi∣Xi−1, Y i−1, do(Y n
i ))

=DKL (PXi∣Xi−1,Y n ∣∣PXi∣Xi−1,Y i−1,do(Y n
i )
∣PXi−1,Y n) .

(A.23)

We also interpret fully time-resolved information flows as the KL-divergence
between an observational and an interventional distribution. We thus expand
a fully time-resolved information flow, which is the the fundamental building
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block of directed information.

I(Xi → Yk)
= I(Xi;Yk ∣Xi−1, Y k−1)
=H(Xi∣Xi−1, Y k−1) −H(Xi∣Xi−1, Y k−1, Yk)
=H(Xi∣Xi−1, Y k−1) −H(Xi∣Xi−1, Y k)

= ∫
Xi,Y k

P (Xi, Y k)( logP (Xi∣Xi−1, Y k) − logP (Xi∣Xi−1, Y k−1, do(Yk)))

= EP
Xi,Y k

log
P (Xi∣Xi−1, Y k)

P (Xi∣Xi−1, Y k−1, do(Yk))
=DKL (PXi∣Xi−1,Y k ∣∣PXi∣Xi−1,Y k−1,do(Yk)

∣PXi−1,Y k) .
(A.24)

A.3.2. Copula Extension

Using the decompositions in multiinformation, directed information has amenable
form in terms copulas (Wieczorek and Roth, 2016). In particular, directed in-
formation can be expressed as the difference between an observational and an
interventional copula. Using Eq. A.8, namely the decomposition of directed
information in terms of multiinformation, directed information can be written
as follows

I(Xn → Y n) =
n

∑
i=1

(M(Xi, Y i) −M(Y i) −M(Xi, Y i−1) +M(Y i−1))

=
n

∑
i=1

(M(Xi, Y i) −M(Xi, Y i−1)) −M(Y n)

=
n

∑
i=2

(M(Xi−1, Y i−1) −M(Xi, Y i−1)) +M(Xn, Y n) −M(Y n)

=M(Xn, Y n) −M(Y n) −
n

∑
i=2

M(Xi∣Xi−1, Y i−1)

=M(Xn∣Y n) −M(Xn∣∣Y n),
(A.25)

where we used the conditional multiinformation M(A∣B) =M(A,B) −M(B),
for any sets of random variables A and B, ∣B∣ ≥ 2, and causally conditioned mul-
tiinformation M(An∣∣Bn) = ∑n

i=2M(Ai∣Ai−1,Bi−1). Omitting the indices and
using that multiinformation is negative copula entropy, directed information
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can be expressed as follows

I(X → Y ) =M(X ∣Y ) −M(X ∣∣Y )

= ∫
U,V

c(U,V ) log c(U ∣V ) − ∫
U,V

c(U,V ) log c(U ∣do(V ))

= ∫
U,V

c(U,V )( log c(U ∣V ) − log c(U ∣do(V )))

= ECU,V
log

c(U ∣V )
c(U ∣do(V ))

=DKL(CU ∣V ∣∣CU ∣do(V )∣CV ),

(A.26)

where we used U = FX(x) and V = FY (y). This copula expression is the most
concise form of directed information, since it does not depend on the marginal
distributions of X and Y but only their copula. Analogously to Raginsky
(2011), this is expression is valid for any sets X and Y and not only for time
series.
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