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Abstract 

This Ph. D. study investigates the importance of vegetation mappings (as proposed by Braun-

Blanquet, 1964), in differentiating the type of dynamics of vegetation succession (non-

disturbed/naturally determined vs. disturbed/anthropo-zoogenically determined) taking place in a 

newly forested surface at the Alpine timber line in the Grindelwald region. Non-disturbed and 

disturbed areas differ in their vegetation structure and phyto-diversity, as proved by previous 

studies. In this study we test these statements at the timber-line ecotone, which is an ecologically 

sensitive area and therefore well-suited for investigating changes in vegetation development, caused 

by non-disturbed (e.g., site conditions with intact ecological balance) and disturbed (e.g., site 

conditions with disturbed ecological balance) processes. For this purpose, we have chosen a site 

located in the region of Grindelwald that has shown the largest increases in forest cover at the 

timber line over the past 100 years.  

Our results show that phyto-diversity is more meaningful than plant structure when determining 

a surface area of progressing forest vegetation at the timber-line ecotone by its non-disturbed 

character, in probable response to global warming.  

We find a tendency for large parts of the current timber line to be anthropo-zoogenically 

determined, whereas non-disturbed/naturally shaped current timber line is limited to some local 

areas, as known from other Alpine regions. However, in the majority of studied areas the cause of 

current vegetation succession at the timber-line ecotone is unclear, neither attributable to the 

impact of possible global warming nor pasture reduction. These results reinforce the observations of 

previous studies that the timber line is unlike the snow line suited to showing the effects of 

evolutionary climate change as a global relation and that the spatial pattern of vegetation at the 

Alpine timber line is expected to behave non-synchronously with ongoing global climate change in 

the coming century. 
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Zusammenfassung 

Diese Ph. D. Studie untersucht die Bedeutung der Vegetationskartierung nach Braun-Blanquet 

(1964), um innerhalb eines neu bewaldeten Gebietes entlang der Waldgrenze, natürliche von 

anthropo-zoogenen Einflüssen zu unterscheiden. Wie bereits aus früheren Untersuchungen bekannt, 

unterscheidet sich die natürliche und anthropo-zoogene Vegetationsdynamik in ihrer 

Pflanzenstruktur und Phytodiversität. In der vorliegenden Studie testen wir diese Aussagen im 

Waldgrenzökoton, welches ein ökologisch sensitives Gebiet darstellt. Deswegen ist diese Methode 

geeignet für Aussagen über die aktuelle Vegetationsdynamik, die von natürlichen Prozessen  

(z.B. Standortfaktoren mit intaktem ökologischem Gleichgewicht), von anthropo-zoogenen Prozessen 

(z.B. Standortfaktoren mit gestörtem ökologischem Gleichgewicht) oder einer Kombination davon 

entstehen. Dazu wurde ein Standort in der Region Grindelwald ausgewählt, wo sehr grosse 

Zunahmen von Waldflächen an der Waldgrenze seit den letzten 100 Jahren festgestellt wurden.  

Die Resultate betonen die Bedeutung der Phytodiversität im Vergleich zur Pflanzenstruktur, 

um Bereiche fortschreitender Waldvegetation im Waldgrenzökoton zu bestimmen, die 

wahrscheinlich durch die globale Klimaerwärmung hervorgerufen werden.  

Wir erwarten, dass grosse Bereiche der aktuellen Waldgrenze anthropo-zoogen bedingt sind, 

wohingegen die Proportion der natürlich geformten aktuellen Waldgrenze sich auf ein paar wenige 

lokale Standorte konzentriert, wie bereits bekannt aus anderen alpinen Regionen. Dennoch gibt es 

für die Mehrheit der untersuchten Gebiete keine klaren Ursachen als Auslöser der aktuellen 

Vegetationsdynamik, d.h. kann weder der globalen Klimaerwärmung noch der nachlassenden 

Landnutzung zuordnet werden. Somit stimmen die vorliegenden Resultate mit den Untersuchungen 

früherer Studien überein, welche festgestellt haben, dass die Waldgrenze nicht gleich der 

Schneegrenze für den globalen Zusammenhang des Klimawandels herbeigezogen werden kann und 

sich bei anhaltender globaler Klimaänderung auch im kommenden Jahrhundert nichtsynchron 

verhalten wird. 
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1 Introduction 

1.1 Changes in the environmental conditions over the past 100 years 

Over the past 100 years, global warming (ca. + 0.6 °C) has strongly affected landscape and vegetation 

in many regions of the Earth (IPCC 2013, 2014). The most drastic changes have been reported in high 

mountain ecosystems, which are more exposed to atmospheric oscillation and have therefore been 

identified as an important habitat for inferring primary signals of climate change (Beniston 2005, 

2006). In response to climate warming, glaciers have decreased in surface area (30-40%) and lost 

around 50% of their original volume (Haeberli & Beniston 1998; Burga et al. 2003; Holzhauser & 

Zumbühl 2003; Holzhauser et al. 2005; Haeberli et al. 2007; IPCC 2013). In our study region in the 

Northern Swiss Alps, for example, the Lower Grindelwald Glacier (Northern Swiss Alps) has shown 

reductions of around 10% in surface area and of over 2 km in length over the past 150 years 

(Glaciological reports 1881-2009; Zumbühl et al. 2008; Figure A 3). The highest glacier area losses per 

decade were recorded during the period from 1985 to 1998/99, because climate warming was then 

most pronounced and enhanced the melt of glaciers by a factor of seven compared to the period 

1850-1973 (Paul et al. 2007). As a consequence, extreme events such as landslides  

(Haeberli & Burn 2002) and rock falls (Gruber et al. 2004) have increased in frequency and severity 

(Davis et al. 2001; Beniston & Stephenson 2004; Beniston et al. 2011). In accordance with the global 

warming effect over the past 100 years, different plant species of the subalpine and alpine belt have 

migrated upslope by an average of 200 m and have caused: (a) an increase in plant species diversity 

on high summits, (b) a process of thermophilization of the vegetation at high elevation and  

(c) a change in the phyto-diversity and ecological behavior of a habitat (Braun-Blanquet 1957; Hofer 

1992; Burga & Perret 1998; Carraro et al. 2001; Grabherr et al. 2001; Theurillat and Guisan 2001; 

Walther et al. 2001; Burga et al. 2003, 2007; Körner 2011; Gottfried et al. 2012; Pauli et al. 2012;  

Wipf et al. 2013). Similarly, the upslope shift of alpine treelines (approx. 30-80 m over the past 100 

years) has been shown to be in direct response to global warming (Burga & Perret 1998;  

Harsch et al. 2009; Körner 2012). However, high mountain ecosystems, particularly the European 

Alps, have also been heavily affected by anthropo-zoogenic impacts. For example, during the 

Neolithic when settlement took place, anthropo-zoogenic impacts (e.g., cattle grazing) strongly 

modified the landscape of high mountain ecosystems (Burga 1988; Burga & Perret 1998, 2001a;  

Wick et al. 2003; Figure A 4). In this context, there are many other facets, besides only global 

warming, which seem to be perhaps more severe and responsible for high mountain ecosystems 

following an uncertain future, because not only large-scale average values of warming impact must 

be considered, but also the ecology – organisms, population and communities – on a regional level 

(Walther et al. 2002; Burga et al. 2003; Gruber & Haeberli 2007; Kullmann 2007b).   
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High mountain ecosystems are well-suited for inferring primary signals of climate change 

(Beniston 2005) because their steep thermal gradients produce a range of climatic regimes over 

short horizontal distances, similar to latitudinal biomes (Theurillat 1995). Elevation is one of the most 

fundamental determinants shaping mountain climates, because the decrease of the partial air 

pressure with elevation (about 1% per 100 m) leads to an adiabatic decrease of temperature (about 

0.58°C per 100 m) (Körner 2003). Furthermore, the topography of high mountain ecosystems creates 

diverse ecological conditions within a small area and hence a wide variety of habitats suitable for 

plant life (Pauli et al. 2001, 2003; Walther et al. 2002). Approximately 4500 vascular plant species are 

found in the European Alps, which is more than a third of the entire European flora (west of the 

Urals) and could be affected by climate change (Theurillat et al. 1998). The European Alps are by far 

the best-studied high mountain areas of the world in terms of weather, climate and vegetation 

development and flora history, with a long tradition of floristic surveys and vegetation analysis 

(Ozenda 1988; Burga 1993; Lang 1994; Beniston et al. 1997; Burga & Perret 1998; Kullmann 2000; 

Beniston 2003, 2004, 2005, 2006; Tinner & Theurillat 2003; Tinner et al. 2003; Burga et al. 2004; 

Barry 2008; Aeschimann et al. 2011, 2013). Thus, a rich source of data reaching far back into the last 

century is available (e.g. Switzerland Heer 1884; Lüdi 1921; Hess 1923; Braun-Blanquet 1957, 1964; 

Welten & Sutter 1982; Walther et al. 2005a, b).  

The study of plant species migration to higher elevations is relevant to understanding the 

effect of global climate warming because plant growth is strongly dependent on temperature  

(Körner 1998, 2003, 2007b; Grabherr et al. 2001). Climate warming has caused changes in: (a) plant 

species distribution (e.g., altitudinal shifts), (b) growing season length (e.g., changes in plant 

phenological cycle), and (c) phytodiversity of a habitat (e.g., changes in vegetation pattern)  

(Gottfried et al. 1994, 1999, 2012; Defila and Clot 2001, 2005; Grabherr et al. 2001;  

Menzel & Estrella 2001; Kullmann 2002; Walther et al. 2005a, b; Burga et al. 2007; Kullmann 2010). 

The most pronounced response of plant species to global warming has been their shift in elevation 

since glaciers reduction in the second half of the 19th century. Different plant species of the subalpine 

and alpine belt have migrated upslope by an average of 200 m as air temperatures have increased 

(Braun-Blanquet 1957; Hofer 1992; Kullmann 2001; Theurillat & Guisan 2001; Pauli et al. 2003b; 

Kullmann 2007a; Gottfried et al. 2012; Pauli et al. 2012; Wipf et al. 2013). Trends first suggested in 

1957 by Braun-Blanquet, who noted increased plant species presence above 3000 m in 1947-1955 

compared with 1812-1835, have been confirmed and investigated in detail by subsequent studies 

(Walther et al. 2005a; Burga et al. 2007). Global warming has also affected the growing season length 

(Walther et al. 2001; Sparks & Menzel 2002; Walther 2003). There are observations showing the 

onsets of spring events in Europe to have advanced by an average of 2.5 days during the decades 

between 1971 and 2000 (Menzel et al. 2006) and the growing season in Switzerland to have 
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lengthened by 13.3 days between 1951 and 1998 (Defila & Clot 2001). In response to the earlier 

onset of spring and the longer growing season, changes in the structure and diversity of vegetation 

have contributed to an increase in the plant species richness observed at several alpine summits 

(Theurillat & Guisan 2001; Walther et al. 2005b; Kullmann 2007a; Pauli et al. 2007, 2012). Upslope 

shifts in the lower altitude vegetation have, however, caused the shrinkage of nival plant species and 

other less competitive alpine plant species have been obliged to follow the shifting climate or have 

even disappeared, and thus high-mountain populations are threatened with losing their terrain and 

are suffering from increased habitat fragmentation (Gottfried et al. 1999; Walther et al. 2005b; 

Erschbamer 2006). In particular, endemic plant species must compete with plant species from lower 

elevations and are predicted to disappear (Burga et al. 2003). Ongoing climate warming is also being 

accompanied by a gradual transformation of plant communities (Gottfried et al. 2012), for instance, 

in the Southern Swiss Alps, where the amount of thermophilous plant species has increased in the 

understory of forests (Carraro et al. 2001; Walther et al. 2001).  

 The shift of timber lines has been used in multiple studies to analyze the impact of global 

warming (e.g., Burga & Perret 1998, 2001a; Körner 1998, 2003, 2007b, 2012; Kullmann 2000, 2007b; 

Kullmann & Öberg 2009; Grace et al. 2002; Holtmeier et al. 2003; Moiseev & Shiyatov 2003; Körner & 

Paulsen 2004; Van der Meer et al. 2004; Hoch & Körner 2005, 2009, 2012; Holtmeier & Broll 2005, 

2007, 2010; Körner and Hoch 2006; Butler et al. 2009; Holtmeier 2009). Timber lines mark areas of 

marginal tree growth due to shortage of meristemic activity when shoots emerge into a cold 

atmosphere (sink-limitation-hypothesis, Körner 1998). Changes in timber lines can be observed on 

timescales of around 100 years and can be used to compare past and present climate conditions 

(Körner 2012). Pollen analysis (micro and macrofossil analysis) has been used to infer the altitudinal 

variation of timber lines over timescales of thousands of years, and to show its accordance to glacial 

development and climate change (Burga & Perret 1998; Tinner & Kaltenrieder 2005; Lotter et al. 

2006). In the Central Alps the timber line reached its Holocene maximum average elevation approx. 

8500-5500 years ago, i.e., during the Hypsithermal period, at 2450 m a.s.l. in the Swiss Central Alps, 

and then declined due to several climatic deteriorations between 4700 and 4000 years ago (Burga 

1988; Burga & Perret 1998; Tinner & Theurillat 2003; Figure A 4). During the last 100 years, the 

Alpine timber line has climbed in several mountain regions in response to human impact and possibly 

global warming. In the Russian Ural-mountains, for example, where human impact is low, the timber 

line has climbed by 60-80 m in the South Ural and 20-40 m in the Polar Ural (Devi et al. 2008; 

Hagedorn et al. 2014). In the Swiss Alps, however, large areas have been affected by wood clearing 

due to land-use changes such as pasture and mining activity. During the late Holocene, 4500 years 

ago, and also during the Bronze Age, the Alpine timber line retreated to 300-400 m below its 

maximum Holocene position (Hegg 1984a, b; Burga 1988; Burga & Perret 1998;  
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Tinner & Theurillat 2003; Wick et al. 2003; Perret 2005; Heiri et al. 2006; Figure A 4). South-facing 

slopes with a smooth topography have been most strongly influenced by human impact. The present 

elevation of the timber line in the northern Swiss Alps, at 1800-2000 m a.s.l., is mainly determined by 

mechanisms of anthropo-zoogenical effects (e.g., cattle grazing & browsing, wood clearing) that 

shape the distribution of the timber line (Burga & Perret 2001a). It therefore no longer reaches its 

potential maximum elevation, but is determined by the plant physiology, topography, 

morphodynamics and local climate of the region (Holtmeier 2009). Changes in the elevation of Alpine 

timber lines are, in this context, often caused more by forest ingrowth into abandoned areas that are 

poorly accessible, and less by climate warming (Tasser & Tappeiner 2002; Tinner et al. 2003; Gehrig-

Fasel et al. 2007; Tasser et al. 2007). 

1.2 Study region and main objective  

The motivation of this Ph. D. thesis is to extend the findings of my master thesis (Strähl 2006) for two 

reasons: First, to further investigate how differences in the vegetation structure and phyto-diversity 

at the timber-line ecotone of the Lauterbrunnen valley (see Tables A 45-48) reveal different dynamics 

of vegetation succession caused by natural or anthropo-zoogenic processes, and second, to 

understand the dynamics of vegetation succession on a local level where trees and other plant 

species develop. My research project shows the importance of vegetation mappings prescribed by 

Braun-Blanquet (1964) in understanding the potential impact of global warming on a subalpine 

ecosystem at the scale where trees and other plant species develop.  

Our research question and thesis are: Can the impacts of changes in land-use activity or 

climate change be differentiated by means of vegetation mappings according to Braun-Blanquet 

(1964)? 
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For the purpose of this current study, we chose the region of Grindelwald, since it neighbors 

the Lauterbrunnen valley, and therefore its landscape is similar in its genesis and anthropo-zoogenic 

influences, and thus, well-suited to extending the findings of my master thesis. Furthermore, the 

region of Grindelwald (Northern Swiss Alps) provides a large amount of detailed data analysis from 

previous investigations (Kienholz 1977; Holzhauser & Zumbühl 2003; Holzhauser et al. 2005;  

Zumbühl et al. 2008). Data includes: (1) climate change data reaching back to the Holocene, (2) a 

detailed map of natural hazards in mountainous regions, and (3) the oldest reliable geo-referenced 

map in the Alps (Bundesamt für Landestopographie 1899). Moreover, Grindelwald’s geological and 

glacial history, as well as current landscape-forming processes, have produced a large set of complex 

landscape features (Collet et al. 1938), where the pattern of soils and vegetation are not only 

determined by global effects responding to climate conditions, but also by local effects responding to 

the changing bedrock components. In addition, the Grindelwald region has been modified by human 

land-use practices (Naegeli-Oertle 1986) and areas of timber line that have advanced in response to 

global warming may not be frequent. Our study site was selected between Alpiglen (1616 m a.s.l.) 

and Kleine Scheidegg (2061 m a.s.l.) because it has shown one of the largest proportions of forest 

cover increases at the timber line over the past 100 years (Providoli & Kuhn 2012; Figure 1).  
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1.2.1 Study region 

Geographic overview: The study region is located near the village of Grindelwald (46°37’33’’N, 

8°02’00’’E / 1050 m a.s.l., Northern Swiss Alps) and belongs to the world heritage site of the Jungfrau 

Region, surrounded by the famous mountain peaks of the Eiger (3970 m a.s.l.), Mönch (4107 m a.s.l.) 

and Jungfrau (4158 m a.s.l.). The community covers more than 17,000 ha and has a population of 

around 4000 inhabitants. More than half of the community area is considered as unproductive 

(glaciers, rocks etc.) and almost one third of it is agricultural land (Liechti et al., in prep.; SFSO 2014). 

The western boundary of the research area is near Kleine Scheidegg (2061 m a.s.l.) and the eastern 

boundary is near Alpiglen (1616 m a.s.l.). The study region covers a surface of around 4 km2  

(Figure 1). 

 

 

 
Figure 1 Index map of the study region 
Source: Contours: Digitales Geländemodell 2m © swisstopo; site Grindelwald: © GADM database; largest forest cover 
increases and forest cover increases at the upper timber line: Providoli & Kuhn 2012 

 

 

contour 100 m study region 

largest forest cover increases 1899-2005 at the upper timber line 

forest cover increases 1899-2005 at the upper timber line 
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Climate: Like several regions in the Northern Alps, Grindelwald is characterized by a subalpine-alpine 

humid climate, and different wind systems are of great importance for the region’s microclimate. 

Mean annual temperature is 6.1 °C in Grindelwald (1158 m a.s.l.) and -7.6 °C at the Jungfraujoch  

(3580 m a.s.l.). Mean annual precipitation ranges between 1575 mm at Grindelwald (1158 m) and 

1800-2000 mm at Kleine Scheidegg (2061 m). The Federal Office for Meteorology offers air 

temperature data for Grindelwald only between 1966 and 1989. The weather stations at 

Jungfraujoch and Meiringen (595 m a.s.l.), both located near Grindelwald, have made long term 

measurements of air temperature that show an increase in the decadal mean air temperature of  

0.9 °C since the beginning of the 19th century, in accordance with the warming observed in other high 

mountain regions (Meteo Swiss 2010, 2014; Providoli & Kuhn 2012). 

 Geology and Geomorphology: The landscape features in the study region are a result of 

complex ancient geological and tectonic structures. According to the geological atlas of Switzerland 

(1938), the following tectonic units are dominant: (1) the Autochthonous Aar massif (crystalline 

bedrock): summits of Jungfraujoch and Mönch, deep carvings of Lower and Upper Grindelwald 

glacier, SW flank of Mettenberg and east slope of Eiger; (2) the Parautochthonous imbrication 

(massive limestone rocks of Tertiary): steep north-falling base of Eiger, Mettenberg, Wetterhorn, 

Wellhorn and Engelhörner; and (3) the Mesozoic limestone sediments of: (a) the Helvetic nappes 

(Wildhorn-nappe): mountain chains of Faulhorn, Lauberhorn, Männlichen, Wetterhorn and some 

parts of Schilthorn, as well as (b) the Ultrahelvetic nappes (Doldenhorn-nappe), subsidence zone 

between Kleine Scheidegg, Grindelwald and Grosse Scheidegg (Collet et al. 1938; Labhart 2001; 

Figure 2; Table A 40). 
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Figure 2 Tectonic overview of the Grindelwald region 1:200’000 
Source: Collet et al. 1938, unchanged reprint in 1985 

  



Ph. D. Sarah C. Strähl 

 

11 

The geomorphology of the region shows strong contrasts caused by: (1) the geology of the 

underlying bedrock, (2) fluvial processes (Lütschine river), and (3) glacial processes (Lower and Upper 

Grindelwald Glacier), but also (4) recent processes of landscape evolution (rock-fall and landslide 

activity). Therefore, wide and smooth slopes, which are predominated by schists of the Wildhorn- or 

Doldenhorn-nappe (between Kleine Scheidegg, Grindelwald and Grosse Scheidegg), alternate with 

steep, partly glaciated walls of the high-elevation mountain chains of the Eiger, Mönch, Jungfrau, 

Mettenberg and Wetterhorn, which are predominated by tough material, such as igneous rocks and 

limestone breccias. The wide basin of the Grindelwald valley was formed firstly during the 

Quaternary period by glacial activity of the Lower and Upper Grindelwald glaciers and in more recent 

times by the Lütschine River (Table A 41). The Lower and Upper Grindelwald glaciers are among the 

most famous glaciers in the Bernese Oberland and along with the Great Aletsch and Gorner glaciers 

have been the subject of scientific as well as artistic interest for many centuries  

(Holzhauser et al. 2005). Especially the Lower Grindelwald glacier (length: 8.85 km, area: 20.6 km2, 

see Holzhauser & Zumbühl 2003; Figure A 3) is one of the best-documented glaciers in the Swiss Alps, 

indeed the world, because of the easy access accorded by its extraordinary low position at 1297 m 

a.s.l., below the timber line (Zumbühl 1980; Zumbühl et al. 2008). Continuous glacier and permafrost 

ice melting have enhanced rock-fall and landslide activity within the study region in the recent years 

(Keusen 2006; Oppikofer et al. 2008; Wagner & Saurer 2008; Huggel et al. 2010, 2011; Werder et al. 

2010). The current landscape-forming processes are determined by the composition of bedrock, and 

thus the smooth slope between Kleine Scheidegg and Grindelwald shows a tendency for landslide 

activity, because schists show a low permeability and are therefore very moist. In contrast, the 

coarser grained fraction of the tough rock walls rather shows a tendency for rock fall activity (Collet 

et al. 1938; Kienholz 1977; Tables A 41-42). 

 Soils and vegetation: Soil type is determined by the bedrock material, vegetation type and 

microclimate, as well as the climate conditions that change with elevation. The complex geology 

gives rise to a wide distribution of soil types. The solid and steep rock walls show a high content of 

soil skeleton with a large fraction of coarse grained components (blocks and stones: 2-6.3 dm grain 

diameter; see Table A 42) that weather only slowly, whereas, in contrast, the smoother material 

formed by schists show a low content of soil skeleton with a large fraction of finer grained 

components, which are highly erodible and weather more easily. Since limestones are dominant, 

cambisols with high chalk content are widespread. Vegetation type and microclimate are 

determinants that can cause soils of forests to differ from those of grassland areas. Soils of forests 

and subalpine dwarf shrub heath are composed of acid podsols, whereas grasslands and the 

calcareous debris slopes are dominated by several types of cambisols with varying acidity 

(Käsermann 2007; Table A 41). 
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The region of Grindelwald shows a very diverse vegetation pattern with broadleaved and 

coniferous forests (21%), shrubs and dwarf shrub heath (7%), peat bogs and swamps (2%), cultivated 

fields (24%), pastures, meadows and grassland (20%). The remaining herbaceous vegetation of 7% 

comprises richly manured alpine pastures and snow pocket vegetation. 16% is allotted to rock and 

debris vegetation and in 3% of the region vegetation units have not been defined. Those areas 

mostly belong to settlement areas (Hegg & Schneiter 1988; Figure A 1; Table A 38). The vegetation of 

the region is similar to that of other regions in the Northern Swiss Alps, being characterized by:  

(1) a mountain belt (600-1500 m) with limestone fir-beech forests (Piceo-Abietion); (2) a subalpine 

belt (1500-1850 m resp. 2000 m) with Norway spruce forests (Vaccinio-Piceion); (3) a timber-line 

ecotone (1800-2200 m) with ericaceous dwarf shrubs (Rhododendro-Vaccinion, Rhododendro-

Vaccinietum); (4) a subalpine and lower alpine belt (2200-2850 m) with Nardus-grassland (Nardion,  

Geo montani-Nardetum) and (5) a snow or nival belt (> 2850 m) with cushion plants,  

mosses and lichens (see Figure A 2; Lüdi 1948; Braun-Blanquet 1948/1949; Schweingruber 1972;  

Keller et al. 1998; Delarze & Gonseth 2008).  

Land-use practices: Grindelwald has been affected by anthropo-zoogenic impacts, and the 

Alpine timber line has been strongly modified by human land use, for several hundred years  

(Naegeli-Oertle 1986; Hegg & Schneiter 1988; Liechti et al., in prep.). According to the latest 

measurements given by the statistical assessments of 2004/2009, the majority of the area is 

unproductive (53%) and comprizes glaciers and rocks (SFSO 2014). The agricultural land is mainly 

used for dairy husbandry and comprises intensively-used agricultural land (i.e., all rich meadows, rich 

pastures and nutrient rich moist grass), covering around 24% of the community area and extensively-

used subalpine, alpine meadows and grassland that are occasionally grazed by goats and cattle, 

covering around 14% of the community area. The rough climate conditions mean that arable land is 

presently unimportant (Hegg & Schneiter 1988; Käsermann 2007; Table A 39). The commune of 

Grindelwald shows a well-organized human-environment system that regulates land-use intensity 

and therefore pastures have for centuries been protected from being overused. The whole area of 

the commune is divided into seven Alpine corporations that are involved in organizing and 

structuring all collective work related to livestock herding and the use of common-property summer 

pastures. As in many Swiss mountainous regions, land-use practices are focused on the high 

production potential that is guaranteed in easily accessible areas, so formerly-held extensive 

pastures along isolated, inaccessible and steep slopes have been completely abandoned and are 

prone to shrub encroachment (Liechti et al., in prep.). 
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1.2.2 Main objective  

Worldwide treelines follow a common isotherm that was approximated by several older studies (e.g., 

Imhof 1900; Brockmann-Jerosch 1919; Däniker 1923; Hermes 1955; Troll 1973a, b; Tranquillini 1979). 

The most quantitative analysis of the altitudinal position of climatic treelines, carried out by Hermes 

(1955), also includes snow-line elevations, which are relevant to showing the correlation of treeline 

elevation with temperature. 

 

Figure 3 The latitudinal position of treeline and snow-line taken from a worldwide survey by Hermes (1955), 
supplemented by data from various other sources. Green dots mark points of measured treeline elevations while the 
white dots indicate points of measured snow-line elevations 
Source: Modified from Körner (1998). 

The studies by Körner (1998, 2003 and 2007b) and co-authors are particularly important, because 

they illustrate the effect of heat deficiency on tree physiology and morphology and demonstrate that 

treelines follow a global thermal boundary. Evidence for treelines following a worldwide position was 

presented by Körner (1998), who took the worldwide positions of treelines and snow-lines recorded 

by Hermes (1955) and conducted a polynomial regression analysis with a total of 150 treeline entries 

to confirm that treeline and snow-line elevations correlate with one another as a function of latitude 

across the globe (Figure 3). In addition, root-zone temperature measurements with data loggers that 

were taken at 46 treeline sites between 68 °N and 42 °S evidenced the importance of heat deficiency 

controlling the growth of trees (Körner & Paulsen 2004). Heat deficiency results by the limited 

investment of carbon used for structural plant growth, i.e., a carbon sink (Körner 2003) rather than a 

limited production of assimilates, i.e., a carbon source (Tranquillini 1979). 
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In reality, high mountain ecosystems usually react to climate and environmental changes in a 

more complex way and the average values provided by the global-scale latitudinally averaged 

measurements of treeline position are unlikely to be accurate enough to quantify changes at the 

local-scale where trees develop (Burga et al. 2003; Beniston et al. 2011). On the one hand, these 

conditions are triggered by the unpredictable interactions between surface cover and topography 

that cause non-linear and unknown responses to climate change (Haeberli & Burn 2002; Alftine & 

Malanson 2004; Kuhn & Yair 2004; Beniston 2005; Gruber & Haeberli 2007; Haeberli 2007; Kullmann 

2007b; Zeng et al. 2007; Kuhn et al. 2011). On the other hand, most plant temperature responses 

(physiological and biological processes) are non-linear and therefore difficult to compare with 

temperature and precipitation means (Körner 1998, 2003). 

The Braun-Blanquet (1964) vegetation mapping method coupled with long-term observation 

of permanent plots of plant communities has been shown to be effective for measuring changes in 

environmental conditions (biotic and abiotic) at the scale where trees and other plant species 

develop. Previous studies have monitored the mountain flora at several mountain peaks by 

comparing old and new vegetation records, and showed this method to be important for 

determining the impact of global warming at the scale of plant species development (e.g., Lüdi 1945, 

1955; Braun-Blanquet 1957; Perret 2005; Burga & Frey 2007; Burga et al. 2010). In addition, other 

studies have shown that the timber-line ecotone is well-suited to exploring the response of trees to 

changes in environmental conditions at the scale of plant species development (i.e., plant structure 

and phyto-diversity), because it characterizes an ecologically sensitive area (Burga & Perret 2001a, b; 

Walther et al. 2001). Trees growing at the timber-line ecotone respond to environmental change in 

different ways (e.g., growth, growth forms, production of viable seeds and distribution pattern of 

plant communities), because several factors, such as global warming, precipitation distribution, slope 

erosion, snow avalanches, grazing, and wood clearing, may interact (Holtmeier & Broll 2005).  

An important pioneer in vegetation science was W. Lüdi, who introduced plant succession as 

a genetic-dynamic principal to illustrate changes taking place in the ecosystem over a certain time 

period and was one of the first scientists who published vegetation maps for the Lauterbrunnen 

valley in 1921 on the basis of vegetation mappings (Lüdi 1921). This detailed vegetation study of the 

1920s (Lüdi 1921), makes it possible not only to study the dynamics of vegetation boundaries over 

the last 100 years, a period when climate warming has taken effect, but also to distinguish changes 

attributable to land use from those attributable to climate warming (Strähl & Burga, in prep.). 

However, these possibilities have not yet been exploited. 
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My Ph. D. project investigates the effectiveness of vegetation mappings proposed by Braun-Blanquet 

(1964), in identifying differences in dynamics of vegetation succession at the Alpine timber line and 

determining their probable driving process, whether land-use changes or climate warming, and will 

give answers to the following questions:  

(1) Does the vegetation mapping method according to Braun-Blanquet (1964) distinguish the 

impacts of global warming and changes in land-use activity in relevés taken at the timber-line 

ecotone?  

(2) Which mapping variable (plant structure or phyto-diversity) is best suited to inferring an 

initial sign of warming impact in a newly forested area at the Alpine timber line?  

(3) Are the results given by the relevés significant enough to assess what percentage of the 

Alpine timber line that has locally advanced to higher elevations has advanced in response to 

global warming and what percentage has advanced in response to land-use changes? 

(4) Where do we expect changes in the timber line to be driven by global warming and where 

not? 

(5) Where do we expect an upward shift in the timber line and where not? 

To perform this study, we implemented the vegetation mapping method of Braun-Blanquet (1964) in 

32 selected sites within the newly forested area at the timber-line ecotone, in which differences 

between signs of a possible warming impact and signs of reduction in pasture activity can be most 

reliably detected; and where other impacts (e.g., topography, substrate, surface processes etc.) are 

as much as possible excluded or kept constant. Vegetation mappings were conducted in areas where 

subalpine dwarf shrub heath, subalpine and alpine grassland communities interact. Because the 

habitat-forming capacity is lower in these communities than in forest communities, subalpine dwarf 

shrub and grassland communities are well-suited to studying the cause of changes in dynamics of 

vegetation succession over time and therefore often show a relationship to each other (Braun-

Blanquet 1964; Glavac 1996; Begon et al. 1999). 

Statistical tests were implemented to assess the effectiveness of vegetation mappings 

proposed by Braun-Blanquet (1964) in identifying differences in the dynamics of vegetation 

succession in different places at the Alpine timber line and determining whether the probable driving 

process was land-use changes or climate warming. Statistical tests were also used to judge which 

vegetation mapping variable, plant structure or phyto-diversity, is more effective at marking initial 

signs of warming impact in the distribution pattern of plant species at the timber-line ecotone. 
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2 Forest and plant succession in the timber-line ecotone 

The timber line is the most conspicuous vegetation limit in high-mountain areas and has long 

attracted research for both scientific and practical reasons (Holtmeier 2009).  

Timber lines and treelines are natural boundaries that are defined by convention because their 

borderline strongly depends on the spatial resolution at which they are considered  

(Armand 1992; Camareo et al. 2000; Körner 2012). In contrast to the snow line, they do not follow a 

horizontal or vertical distribution along a specific isotherm and are therefore well suited to studying 

the effects of evolutionary climate change over short spatial distances (Troll 1961; Körner 2007a, b). 

2.1 Definition and terminology 

The timber line is termed an ecological boundary and shows the upper limit of continuous closed 

forest (Table 1). In the present study the terms timber line, treeline, krummholz line and timber-line 

ecotone are applied according to the definitions given by Holtmeier (2009) and Körner (2012)  

(see Figure 4; Table 2). The rough climate conditions cause a clearly altitudinal zoning of vegetation, 

because heat deficiency restricts plants from investing enough carbon for their structural growth 

(Körner 1998). As a result, trees become marginal when low temperatures, below 5 °C during the 

growing season, limit the investment of carbon required for structural plant growth. Furthermore, 

increasingly harsh climate conditions cause a reduction in nutrient supply, hence trees are required 

to spread over a wider area in order to compensate for the loss in nutrient supply and therefore 

grow less densely (Körner 2003).  

Vegetation displays a pattern that changes with increasing elevation, forming several distinct 

belts that surround the mountains in a roughly circular fashion (Landolt 2003; Figure 10). In the Swiss 

Alps, altitudinal belts are represented by the mountainous belt, subalpine belt, alpine belt and nival 

belt (Table 1). 
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Table 1 Characteristics of each altitudinal belt in the Northern Swiss Alps 

vegetation  

belt 

elevation 

[m a.s.l.] 
climate soil vegetation utilization 

forest and  

non-forest surface  

nival belt  
> approx.  
3000 m 

permanent  

snow cover, 
locally melting in 

summer 

immature soils  
locally distributed  

pioneer vegetation, 

e.g. cushion plants 

no land-use rock and debris 

alpine belt  
2000-approx.  

3000 m 

vegetation 
period approx. 

60-80 days 

rendzina, regosol, 
cambisol 

scree vegetation, 
perennial herbs, 

cushion plant, lichen, 
moss, dwarf shrub 

heath and 

krummholz-forms 

dairy 

husbandry 
during summer, 

pastures 

grassland 

timber line 

subalpine belt 
(Picea abies 

boundary) 

1400-approx.  
1850 m, 

occasionally 
-2000 m 

mean annual 
temperature 

0-5 °C, 

vegetation 
period > 100 

days 

cambisol, podsol  

coniferous forests 
Picea-Abies, Acer 
pseudoplatanus, 

Pinus, Picea, Larix 

dairy 
husbandry 

during summer 

forest surface 

mountainous 
belt 

(Picea-Fagus 
boundary) 

800-1400 m  
(N-exposition),  

-1500 m  
(S-exposition) 

mean annual 

temperature 
5-8 °C 

cambisol, podsol  

beech-fir-mixed 

forests 
Abies alba, Picea-
Abies-beech forest 
and Picea-Abies-fir 

forest 

agriculture 

livestock 
management 

Source: Modified from Ellenberg (1996), Veit (2002) and Landolt (2003) 

The timber line forms the boundary between the subalpine and alpine belts (Table 1). Determined 

according to the definition of Körner (1998) and Körner and Paulsen (2004), i.e., by low temperatures 

that restrict tree growth, the timber line occurs over a worldwide range, where the seasonal mean 

air temperature is between 5.5 and 7.5 °C and the mean soil temperature is 6.7 °C ± 0.8 °C at a 10 cm 

depth. 

Table 2 Definition of terms (timber line, treeline, krummholz line, timber-line ecotone). Values expressing elevation refer 
to the potential natural/non-disturbed limit for the Northern Alps. 

  

elevation  
[ m a.s.l.] 

description 

Forest limit /  

Timber line 
1800-2000 

− upper limit of conXnuous closed forest 

− boundary with gradual decline in tree size and opening of the canopy 
− tall growing trees with a minimum tree height of 2 m 
− minimum tree stand cover 30-40 % 

− minimum distance between the trees ≤ 30 m 

Tree limit /  

Tree line 
2200-2300 

− highest elevaXon of upright growing trees 
− trees with a minimum height of 2 m 
− minimum distance between the trees > 30 m 

Krummholz line 2000-2400 
− upper limit of tree existence 
− dwarfed trees with a height below 2 m 

Timber-line  

ecotone 

1800-2200 

(2300) 

− ecologically sensiXve area  

− transiXonal zone describing the direcXon of forest progress  

Source: Definition of terms is according to Holtmeier 2009 and Körner 2012. Values expressing elevation are according to 
Imhof 1900, Brockmann-Jerosch 1919, Däniker 1923 and Landolt 2003. Forest definition is according to the LFI  
(Brändli 2010), see Figure A 5.   
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Figure 4 Definition of terms (forest limit / timber line, tree limit / treeline, krummholz line, timber-line ecotone) 
Source: Modified from Tranquillini (1979) 

Trees are identified as woody, upright-growing plants with a dominant above-ground stem. They 

form the most obvious vegetation boundary that can be observed by a change in the size and 

structure of trees (Figure 4; Körner 2012). The critical minimum height for defining a tree ranges 

from 2 to 8 m and is dependent on the type of tree because each species adapts differently to the 

harsh climatic conditions at high elevations. On temperate mountains, 2 m is usually used to define 

the altitudinal limit of tree species, since in that climate and ecological situation taller trees are more 

exposed to the harsh climate influences above the winter snow cover, whereas smaller individuals 

are better protected (Holtmeier 2009).  

Krummholz species may be either genetically determined or a response to locally 

deteriorated environmental influences (natural or anthropo-zoogenic). Genetically-determined 

Krummholz species include all taxa with bush-like growth-forms (e.g., mat growth), such as Pinus 

mugo s. str. or Alnus viridis, and are genetically different to tree species. Other Krummholz species, 

or crippled trees, have forms determined by locally deteriorated environmental influences, displaying 

the tree-like features (e.g., having a crown, being single- or multi-stemmed) seen in those species 

that occur in the upper montane forest, but being shorter than the minimum height required to be 

identified as a tree (Holtmeier 1981). 
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The timber-line ecotone is designated as the “battle zone” of the forest (Figures 4 and 5; Table 2). 

Trees are either reinvading their former terrain after forest clearance, as soon as pasture activity 

reduces (anthropo-zoogenically/disturbed conditions), or invading a new terrain beyond their 

potential limit (natural/non-disturbed conditions), as global warming allows dispersed diaspores of 

trees to germinate at a higher elevation beyond the potential current timber line (Holtmeier 2009; 

Figure 5). 

 

Figure 5 Upper limit of forests under natural/non-disturbed conditions (left picture) and anthropo-zoogenic/ disturbed 
conditions (right picture). 
Source: Modified from Holtmeier (2009) 

Hence, there are a large number of environmental factors (e.g., climate, relief, soil, human and 

cattle) at play here, which drive intense competition between species and result in high dynamics of 

vegetation succession (Burga & Perret 2001b). Vegetation in the ecotone is fragmented, because 

individual trees compete with groups of trees as well as dwarf shrubs and herb species. Diversity is 

therefore high, comprising approximately 100 different plant species (Burga & Perret 1998).  

The shape and maximum altitudinal width of the timber-line ecotone (i.e., from tree to shrub-like 

growth forms) is determined by the shape of landscape. In steep terrain the ecotone is narrow, 

compressed into as little as a few hundred meters or less in the temperate high mountains, whereas 

in flat terrain it may stretch as wide as 10-100 km in subarctic lowlands (Holtmeier & Broll 2010).  

The ecotone is narrower where plant species react more sensitively to the environmental gradient, 

whereupon the boundary approaches a line. Steep mountain slopes, for example, compress climatic 

gradients and therefore produce a narrow transition zone of tree decline near the distribution limit 

(Körner 2012). 
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In contrast to the irregular natural boundaries formed by the timber line and treeline, as a 

thermal boundary, the snow line appears as an abrupt line, because it connects points above which 

the ground remains snow-covered for most of the year and precipitation falls as snow. The 

climatically-driven snow line is dependent on the mean summer temperature and the amount of 

precipitation. It corresponds to the elevation at which the mean air temperature of the warmest 

month of the year is 0 °C (Troll 1961; Körner 1998). 

In Grindelwald the altitudinal variation of timber line, treeline, krummholz line and timber-line 

ecotone behaves in the same manner as in other northern Alpine regions (Figure 7; Table 2).  

The current timber line shows a non-continuous shape in the study region and is partly interrupted. 

The upper limit of continuous closed forest is characterized by ribbons of forest trees forming groups 

or troops (Figure 6). 

 

Figure 6 The current timber line in the study region is characterized by ribbons of forest trees forming groups or troops. 
This photo was taken from a site near the Kleine Scheidegg with view to the summits of Eiger and Mönch as well as the 
Eiger north wall. Photo: S.C. Strähl, August 2009 

Dominant timber line-forming tree species are Picea abies and Pinus mugo ssp. uncinata, whereas 

Larix decidua is less frequent. As in other northern Alpine regions, Pinus cembra shows a fragmented 

distribution (Hegg & Schneiter 1988; Käsermann 2007). The main distributional range of Swiss stone 

pine forests are usually in areas with a climate of extremely continental character, such as the 

Central Swiss Alps. Swiss stone pine forests may exceptionally also occur in northern alpine regions, 

especially in rear valley sections, i.e., isolated high-lying valleys, where soil conditions favour its 

development. Because of its valuable wood, Swiss stone pine forests were cleared in several areas of 

the Northern Swiss Alps, and tall examples found nowadays are relicts of these former forests (Imhof 

1900; Rikli 1909; Schweingruber 1972; Keller 1998; Steiger & Carraro 2010). A large population of 

Pinus cembra is located on the eastern flank of the Kleine Scheidegg. This area includes forests of the 
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upper Wärgistal, e.g., Itramenwald, that form loose stocks extending between 1650 and 2000 m a.s.l. 

(Rikli 1909). Like in several northern alpine regions, areas of former Pinus cembra forests are 

currently being invaded by Picea abies, which has similar ecological preferences, but is more 

competitive than Pinus cembra, because of its ability to reproduce by layering (Käsermann 2007; 

Holtmeier 2009). Picea abies forms denser stands and more abrupt timber lines than Pinus cembra, 

which influences both changes in the pattern shape at the timber-line ecotone (distribution of dwarf 

shrub and grassland vegetation) and ecological behaviour of the habitat (Ellenberg 1996; Holtmeier 

2009). 

The elevation of the potential timber line is between 1800 and 2000 m a.s.l. (Figure 7) and 

has increased by approximately 30 m over the past 100 years. Major changes have been largely 

attributed to reduction in land-use activity and effects of surface morphology, with only minor 

changes related to global warming (Providoli & Kuhn 2012). The current timber line is anthropo-

zoogenically determined to a large extent and is therefore situated far below the potential  

timber line of Northern Swiss Alps, at an elevation of approximately 1643 m a.s.l. (Bundesamt für 

Landestopographie 1861, 1899; Office of Geoinformation 2007; Providoli & Kuhn 2012). 

 

Figure 7 Extent of timber line, tree and krummholz line and timber-line ecotone for Grindelwald (Northern Swiss Alps). 
Photo: S.C. Strähl, October 2011 
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2.2 Crucial factors controlling tree growth dynamics at the timber line 

 

Figure 8 Flowchart expressing the factors crucial for tree growth at the timber line 
Source: Modified from Holtmeier & Broll 2010 

Tree growth at the timber line varies drastically. This is due to a wide range in microhabitats over 

short distances that interact with each other and together at several scales (global and local)  

(Figure 8; Landolt 1977, 2003; Ellenberg 1996; Burga & Perret 2001a,b; Holtmeier & Broll 2005, 2010; 

Malanson et al. 2009).  
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2.2.1 Climatic factors 

In high mountain ecosystems, the weather and climate are complex and often show extremes. This is 

due to interactions between mountains (topography) and the general circulation of the atmosphere 

(changes in air pressure and solar radiation) (Figure 8; Beniston 2005, 2006). Mountain climates are 

characterized by important parameters such as air temperature, precipitation and wind, and these in 

turn strongly depend on elevation. As a consequence, climatic conditions increasingly deteriorate as 

elevation increases: temperature drops of 0.55 °C per 100 m, precipitation increases of 100 mm per 

100 m and growing season length reductions of 9 days per 100 m (Theurillat et al. 1998; Menzel & 

Estrella 2001; Landolt 2003). Changes occur rapidly and systematically over very short distances.  

At higher elevations, tall-growing plant species like trees are more exposed to the prevailing 

atmospheric conditions than short-growing plant species. Therefore, the potential of trees to invest 

assimilates for growth is strongly reduced when temperatures decline (Hoch & Körner 2003, 2009, 

2012; Körner & Hoch 2006). In addition, trees growing near treelines must be highly adapted in order 

to persist against the harsher climatic conditions at higher elevations. They are forced to develop 

special growth forms with reduced height, such as mat growth, where trees resemble stunted shrubs 

just a few cm tall and less than 1 m long that help them to profit from the more favorable climatic 

conditions that exist near the ground. Furthermore, they must show a high degree of frost resistance 

in their plant cells in order to tolerate low temperatures. For example, Picea abies and Pinus 

sylvestris survive temperatures of down to -40 °C when needles are fully developed. Pinus cembra is 

known to be the most frost-resistant tree species in the European Alps. It can tolerate temperatures 

as low as -70 °C (Tranquillini 1979). In contrast to upright trees, prostrate shrubs and herbs are, 

owing to their short growth, especially when they are covered by snow in winter, less exposed to the 

prevailing atmospheric conditions. They therefore reach higher elevations. Moreover, some of them 

may be also more adapted in their physiology to survive the rougher climate conditions at high 

elevations (Figure 9). Apart from temperature reduction with elevation, changes in precipitation 

intensity also strongly affect vegetation succession dynamics at the timber line. The amount of 

precipitation is responsible for the availability of moisture, which is as important as heat deficiency 

for survival, especially when considering the local-scale of plant species development. Snow cover 

protects plants from freezing damages and is important for the plant-available soil moisture. At the 

same time, snow pack increases soil temperatures in winter, which increases nutrient availability and 

has a positive feedback on plant growth. Therefore, a lack of plant-available soil moisture may 

impede germination, seedling establishment and survival at the timber line (Holtmeier 2009; 

Hagedorn et al. 2014). 
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Figure 9 Flowchart showing crucial adaptation mechanisms of alpine plants to high mountain climate  
Source: Modified from Körner 2003 

2.2.2 Relief and soil 

Relief is an influential factor in high mountain ecosystems that creates distinct local environments 

that interact with other factors, such as temperature, moisture and nutrient availability, wind 

exposure, seasonal snow cover, geological substrata and soil forming processes (Figure 8). Relief may 

modify and locally overrule climate factors, for instance, by affecting the amount of rainfall, the 

proportion of rain to snow, persistence of snow, temperature, exposure to sunshine, also insolation 

intensity and growing season length (Beniston et al. 1997; Grabherr et al. 2003). The duration and 

depth of snow varies between convex- and concave-shaped sites: Concave-shaped sites may be 

covered by snow until the beginning or middle of July, occasionally even until early August. In 

contrast, convex topography is mostly devoid of snow in the winter and also becomes snow-free 

earlier in spring. A deep and long-lasting snow cover negatively affects and pressurizes trees in 

mountain forests, especially during restocking. Snow fungus is mainly harmful for young growth of 

coniferous trees, such as Picea abies, Pinus cembra and Pinus mugo ssp. uncinata, as long as their 

crowns remain covered by snow until spring. Damage from snow fungus is mainly observed in areas 

with high humidity and late snow melt, such as in topographical depressions, e.g., dells and gullies, 

where young dwarfed trees restricted to heights below 1 m are unable to break out of the maximal 

snow cover (Ott et al. 1997).  
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In areas protected by a favorable topography, the growing season length may be prolonged. 

Habitats shaped by rocks may be free of snow almost two months earlier, which allows plants to 

flower earlier in a warmer climate (Keller et al. 2005). Spring-flowering vascular plants (flowering 

individuals of Gentiana verna as well as Viola calcarata and Anthyllis alpestris) have been observed in 

blossom as early as November in wind-sheltered areas at 2000 m a.s.l. in the Avers valley in the 

Eastern Swiss Alps (Burga 2014, oral communication). 

Relief controls insolation intensity and surface heating, so creating climate differences 

between central and outer mountain ranges. Therefore, the elevation of vegetation boundaries 

varies considerably between the Northern, Central and Southern Alps (Figure 10). This effect of  

mass elevation was already applied by Brockmann-Jerosch in 1919 to explain that the worldwide 

elevation of timber lines strongly correlates with mass elevation, the highest timber line elevations 

corresponding to areas with the highest mass elevation. Mass elevation is defined as the mean 

elevation of a mountain massif and can be calculated by transforming the mountain massif into a 

plateau without changing the mountain’s basal area and volume. Large mountain massifs serve as a 

heating surface, which causes day-time summer temperatures to be higher in the central than in the 

outer mountain ranges. In response, vegetation boundaries (e.g., mountainous boundary, subalpine 

boundary) are higher in the inner ranges than in the outer ranges and the vegetation shows a 

different character (Figure 10). Similarly, the elevation of the timber line is higher in the Central Alps 

(2200-2400 m) than in the Northern Alps (around 2000 m). Moreover, mass elevation determines the 

energy used for snowmelt and evaporation, which is less in the central than in the outer mountain 

ranges. Snow cover duration is therefore shorter in the Central Alps (200 days) than in the Northern 

Alps (280 days), and the growing season is subsequently longer. Furthermore, the elevation of the 

snow line can be assumed to be dependent on mass elevation (Brockmann-Jerosch 1919), because 

the snow line in the Northern Alps (2400 and 2700 m a.s.l.) is at a lower elevation than in the Central 

Alps (2700-3200 m a.s.l.) (Landolt 2003). Mass elevation is also responsible for the climate to be 

more continental in the Central Alps, because sunshine hours are higher and precipitation is lower 

(Burga and Perret 2001b; Holtmeier 2009). 
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Figure 10 The effect of relief on the elevation of boundaries between the Northern, Central and Southern Swiss Alps. 
Source: Modified from Ott et al. 1997 

Tree development also depends on relief (Nagy et al. 2003; Batlori et al. 2009). Trees can establish 

and grow better in areas showing a stable substrate (i.e., where grain size is optimal for soil and 

vegetation to develop), or between blocks where organic matter and fine mineral matter accumulate 

and provide more moisture and nutrient supply (Holtmeier et al. 2003; Burga et al. 2010; Vitasse et 

al. 2012). Rugged topography and areas with a protective snow cover, such as concave or wind-

sheltered slopes with locally optimized microclimates or edaphic conditions, also favor tree growth 

and govern the structure of treeline vegetation (Kullmann 2001, 2002, 2007b; Kullmann & Öberg 

2009). Relief, however, also prevents trees from developing and reaching their potential climatic 

altitudinal limit (orographic timber lines, see Figure 8). Most notably, this occurs in areas dominated 

by bedrock geomorphic units, steep rock walls, slopes with mass wasting or covered by debris, talus 

cones and avalanche tracks, but convex topography allowing strong winds and wind-exposed slopes, 

also restricts the development of trees or causes injuries in existing trees (Holtmeier et al. 2003; 

Kullmann 2005; Holtmeier & Broll 2010; Marcias-Fauria & Johnson 2013).  

Soil, which serves as an important water and nutrient reservoir for plant growth, is on the 

one hand dependent on the form and texture of relief and on the other hand by climate. Climate 

controls the soil forming processes performed by decomposers (microbial activity). The time during 

which soil genesis is optimal, i.e., soil temperature ≥ 5°C, is limited to about 45 to 110 days, and thus 

plant and animal life cycles, which have the most obvious effects on soil decomposition and genesis, 

are reduced or even prohibited. Soils accumulate a large amount of organic matter at the surface 

horizons, develop only very slowly in the upper 20-25 cm and, as presented in studies that were 

carried out in the Rocky Mountains, alpine soils need about 10,000 years to reach a thickness of  

30 cm. In contrast, most leaf litter at low elevations is recycled within a year. As a consequence, soils 

at the tree limit (Ah- and Bv-horizon between 10-20 cm) and forest limit (Ah- and Bv-horizon 
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between 30-40 cm) are shallower than in lowland areas (Ah- and Bv-horizon approx. 1 m)  

(Retzer 1974; Larcher 1977; Körner et al. 1996; Ott et al. 1997; Körner 2003; Kammer 2006). In 

treeline soils the Bv-horizon is usually not completely developed or even missing. Soils above the 

timber line are shallow, show a high amount of coarser grained components (e.g., blocks with grain 

diameter of 2-6.3 dm), vary over very short distances and display the form of the relief. The uptake of 

water and nutrients required for plant growth is better provided in deeper soils (90-120 cm depth) 

than in shallow soils (15-30 cm depth) because deeper soils are better decomposed, but also the 

intensity of root penetration is optimized in deeper soils (Ott et al. 1997). Soils therefore influence 

the type of vegetation, whereas missing soil cover or shallow soils restrict tree growth (edaphic 

timber lines) and prevent trees from reaching their possible climatic altitudinal limit. However, also 

areas with waterlogged soils, such as hollows, gullies or other depressions collect a large amount of 

moisture due to longer lasting or deeper snow cover and may remain treeless as well. 

2.2.3 Impacts of land-use changes 

The anthropo-zoogenic impact is a further important factor for the timber line, because population 

growth and changes in life style have been the main drivers of the activities of humans and animals in 

several high mountain regions of the world, like the European Alps, for thousands of years. Until the 

mid-19th century or even earlier, settlements took place in several easily accessible areas near the 

timber line and forests were cleared, because the production of cheese and charcoal required a large 

amount of wood and thus, forested areas were converted to settlement areas, pastures and 

meadows. In contrast, inaccessible steep and shaded slopes remained free from settlers or were little 

used (e.g., for hay cropping), and in these places the potential timber line was preserved (Burga & 

Perret 1998).  

During the mid-twentieth century, modernisation of agriculture has led to a fundamental 

change in agricultural land in mountainous regions (Rey Benayas et al. 2007). The intensity of land-

use activity, which is dependent on both physiogeographic or abiotic drivers (e.g., topography, 

elevation, geological substrate, slope, aspect, fertility, soil depth, soil erosion, climate and climate 

change) and socio-economic drivers (e.g., degree of access and stability of slope) (Figure 8), has 

caused and continues to cause, on the one hand, an intensification of agricultural land-use along easy 

accessible slopes with high profitability. On the other hand, poorly accessible slopes, far from cattle 

sheds, which are not profitable for agricultural land-use, have been less intensively used and have 

been completely abandoned (Tasser & Tappeiner 2002; Tasser et al. 2007). Since abandoned areas 

are most prone to shrub invasion or reforestation, the dramatic decrease in the areas of montane 

and alpine pastures in the Swiss Alps during the past 150 years has resulted in an increase in the 

forest area of about 40% (Peter et al. 2006; Gellrich et al. 2007, 2008; Brändli 2010).  
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The current Alpine timber line is almost entirely anthropo-zoogenically determined (Figure 8) 

and is sometimes located far below the elevation to which forest would advance in the given climatic 

conditions. Therefore, the observed forest surface often shows the marks of previous anthropo-

zoogenic activities, such as forest clearings and fire disturbances, overgrazing and trampling by cattle 

grazers, but also the effects of wild ungulates (e.g. Cervus elaphus) as well as winter and summer 

tourism (Nagy et al. 2003; Pauli et al. 2003a; Rixen et al. 2003). As a result, anthropo-zoogenic timber 

lines may be abrupt (e.g., due to man-induced forest fires), but can also show a wide transition zone 

(e.g., abandoned pasture surfaces), and thus there is no general characteristic shape common to all 

anthropo-zoogenic timber lines (Holtmeier 2009). 
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2.3 Plant succession processes at the timber line 

In response to climate, relief, soil and anthropo-zoogenic impacts, the position and spatial pattern of 

timber lines characterizes a dynamic phenomenon that can be described by plant succession 

processes (Figures 8 and 11). In the Alps several scientists have shown that plant succession 

processes are important for studying initial changes in the biotic/abiotic conditions of a habitat by 

analyzing the behavior of plant communities at the level of association (Dierschke 1994). This is 

because when plant species move from a certain location, as occurs when the timber line advances 

or recedes, the ecology of the invaded habitat is transformed. High mountain regions like the Alps 

also provide a rich source of micro habitats within short distances, in which initial changes in the 

dynamics of vegetation succession can be well analyzed (Ellenberg 1996).  

Lüdi (1921) applied plant succession to study the dynamics of vegetation boundaries in the 

Lauterbrunnen valley and introduced plant succession as a genetic-dynamic principal to illustrate 

changes taking place in the ecosystem over a certain time period. He was one of the first scientists to 

describe an Alpine valley according to the genetic-dynamic principal and the genetic-dynamic 

vegetation map of plant communities for the Lauterbrunnen valley (northern Swiss Alps) that was 

published in 1921 is an early study of plant sociology in the Alps (Lüdi 1921). Lüdi (1921) analyzed 

initial changes in the elevation of the Alpine timber line by studying the effect of invasive plant 

species in several plant communities using vegetation mapping (e.g., invasion by plant species of 

ericaceous dwarf shrub communities of the Rhododendro-Vaccinion into grassland communities of 

the Geo montani-Nardetum). In addition, he investigated the vegetation development of several 

Swiss glacier forelands (e.g., Lüdi 1945, 1955). Lüdi based his work on previous studies by American 

scientists, who had already asserted the genetic-dynamic principle to be an important discipline in 

geobotany. Lüdi established the genetic-dynamic principle by comparing the importance of soil and 

climate for plant succession processes, as suggested by Ramann (1918), and applied the model of 

plant succession processes that was developed by Cowles (1911). 
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Plant succession follows a cycle of four important stages (Figure 11), during which vegetation 

changes in structure (i.e., the vertical and horizontal layer of a population) and diversity (i.e., number 

of different plant species) (Dierschke 1994; Ellenberg 1996). 

 

Figure 11 The cycle of plant succession at the timber line. For details see Table 3 on page 32. 
Source: Modified from Dierschke (1994) 

Plant succession processes are initiated as soon as diaspores of trees are dispersed to a certain 

habitat and are able to germinate. Diaspores get dispersed either by wind (anemochorous) or by 

animals (zoochorous). Tree diaspores may be dispersed into a newly exposed land surface without 

developed soil and initiate the process of primary plant succession. Elsewhere, tree diaspores may 

get dispersed into an already vegetated land surface with a more- or less-developed soil containing 

diaspores from the preexisting vegetation and initiate the process of secondary plant succession 

(Dierschke 1994). Primary plant succession processes are only observable along areas covered by 

rocks or scree, or on the moraines of shrinking glaciers. However, in most cases where the shifting 

timber line is observable, plant succession processes are a result of secondary processes. In this case, 

an already vegetated area at the opening of forests (i.e., transition from forest to subalpine dwarf 

shrub heath, subalpine and alpine grassland) gets transformed in its structure and diversity in a way 

that depends on whether conditions are non-disturbed/naturally determined (e.g., climate warming) 

or disturbed/anthropo-zoogenically determined (e.g., changes in land-use practices). The cycle 

through which plant succession proceeds is strongly dependent on the germination capacity, as well 

as the amount and quality of dispersed diaspores (Frey & Lösch 2010). 
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2.3.1 Natural/non-disturbed versus anthropo-zoogenically/disturbed plant succession 

processes 

Plant succession under natural/non-disturbed conditions:  

At the subalpine boundary excessively low temperatures reduce, on the one hand, the number of 

seed-producing years, and most seeds produced at the timber line are either empty or do not fully 

mature. On the other hand, excessively low temperatures restrict plant tissue development and 

maturation and so reduce the rate of growth; indeed, growth can only proceed at all when the root 

system is sufficiently developed and forms robust shoots that enable an upright growth  

(Körner 1998, 2003; Holtmeier 2009).  

The upper limit of produced viable seeds is usually located below the physiological limit of 

tree growth, and unfavorable climatic and environmental conditions are the main reason why tree 

seedling establishment takes place only episodically and trees cannot mature fully when approaching 

the upper limit of viable seeds. Trees can only develop if viable seeds are produced at sufficiently 

short intervals. At the timber line, good seed production can only be expected every 9-11 years, and 

most tree species growing at the timber line reproduce at a relatively old age. For example, Pinus 

cembra reproduces only slowly, since it depends on spotted nutcrackers (Nucifraga caryocatactes) 

for seed dispersal and therefore reaches its reproductive age at 70 or 80 years. While seeds are not 

always dispersed to suitable seedbeds and microsites (i.e., optimal microclimate, sufficient 

illumination, soil moisture, soil acidity and other), germination and seed survival may not always be 

guaranteed for plant succession to follow a continuous process. Similarly, the slow growth rates of 

trees at the subalpine belt delay the process of plant succession and hinder it from following a 

continuous process. While the optimal root growth in Picea abies trees occurs at a temperature of 

around 14 °C, whereas in the subalpine belt the above-ground temperature in the shade generally 

remains between 8 and 12 °C, trees found at the elevation of the timber line may take 50 years  

(e.g., Picea abies) or even longer to reach a height of about 100 cm. In this context, the development 

sequence of a settlement of initial tree seedlings into the climax forest stage may be either impeded 

or only completed after several centuries. Many areas at the timber line therefore bear plant 

communities whose form has adapted to the deteriorated climate and environmental conditions of 

the habitat and that are likely to remain in this adapted form (Table 3; Leibundgut 1986;  

Dierschke 1994; Ott et al. 1997; Holtmeier 2009; Burga et al. 2010). 

  



Ph. D. Sarah C. Strähl 

 

32 

Table 3 Natural/non-disturbed plant succession processes at the timber line in the European Mountains (Swiss Alps) 

  

Initial stage 

(approx. 30 years) 

Transitional stage 

(approx. 200 years) 

Climax stage 

(150-450 years) 

Fragmentation stage 

(400-600 years) 

vegetation structure − low cover (mosses, 
herbs & dwarf 
shrubs) 

− dispersion of 
diaspores of trees  

→ short growth  
(Ø 10 cm) 

− increasing cover 
(shrubs & trees) 
− germinaXon & tree 

growth 
 

→ plant growth  
(Ø 100 cm) 

− dense cover (trees) 
− tall-growing trees building 
forests 

 
 

→ plant growth  
(Ø 20 m) 

− exhausted habitat 
resources 
− fragmented vegetaXon  

− opening cover 
 

→ reduced plant growth  
(Ø 10 m) 

phyto-biodiversity − low number of 

plant species 
− short living 
− light loving 

− highly reproducXve 
− flexible 

 
→ vegetaHon cover 
changes 

− increasing  

number of plant 
species 
− adjusXng to  

environment & 
ressources of habitat 

 
 
→ vegetaHon cover 
changes 

− highest number of plant 

species 
− well adapted to the habitat  
− highest reproducXon & 

development 
− steady state of exogenous & 

endogenous factors 
 
→ vegetaHon cover remains 
steady 

− destrucXve processes  

− reducing number of  
plant species 
− increase of 

decomposing plant 
species, e.g., young trees 

within shrub layers 
 
→ vegetaHon cover 
changes 

soil − immature soils 

− gravel or scree  
substratum 
 

→ iniHal soil 
development 

− altered depth 

− e.g. Ranker or 
Rendzina 
 

→ development 
adjusted to habitat  

− well developed  

& deep 
− e.g., Cambisols or Podsols 
 

→ soil formaHon processes 
remain steady 

− open soils 

− exposed to increased  
soil erosion  
 

→ soil degradaHon 

Source: Characteristics of vegetation structure, phyto-diversity and soil forming processes during each successional stage 
under natural undisturbed conditions are according to Dierschke (1994); Ott et al. (1997) and Holtmeier (2009) 

Under natural/non-disturbed conditions, the process of shifting timber line can be described by the 

following: As soon as trees reach their thermal threshold, the pattern of vegetation shows a gradual 

opening up of forests towards their upper limit. The opening of the tree canopy provides opportunity 

for plant species typical of forests, shrubs and ericaceous dwarf shrub heath to invade the surface of 

grassland. At the timber-line ecotone, interactions between plant species originating from forest, 

shrub, ericaceous dwarf shrubs and grassland communities take place (Ellenberg 1996).  

The initial tree and shrub invaders are of great importance for the onset of a forest’s 

progression into a new habitat, because on the one hand they are adapted to wind dispersion, and 

on the other hand they produce a humus layer by shedding their leaves and needles, which serves as 

an important nutrient supply basis for plant species with higher environmental requirements.  

In addition, their adjustment to vegetative reproduction by layering builds surface stability, which is 

important for tree species that are more sensitive to environmental conditions, such as Abies alba, 

Picea abies or Pinus cembra (Leibundgut 1986; Ott et al. 1997; Steiger & Carraro 2010). Calluna 

vulgaris, Empetrum hermaphroditum, Erica carnea, Rhododendron ferrugineum, R. hirsutum, 

Vaccinium myrtillus and V. vitis-idaea are among the most important initial shrub invaders, while 

Betula pendula, Larix decidua, Pinus mugo ssp. uncinata and Sorbus aucuparia are among the most 

important initial tree invaders. The dwarf shrub species Empetrum hermaphroditum is known to be 

highly competitive in shallow areas where soil is at its initial stage of development, because the rapid 
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shoot growth of this non-rooting espalier favors the development of soil (Schweingruber 1972). The 

tree species Pinus mugo ssp. uncinata is most adaptable to climate and environmental changes and is 

best-adapted to thrive in unfavorable habitats with extreme environmental conditions (steep and 

windy slopes, shallow, moist and nutrient poor areas) (Schweingruber 1972). This is due to its high 

root depth value (WT 5), which makes Pinus mugo ssp. uncinata resistant to uprooting in areas with 

harsh climate and unfavorable environmental conditions (e.g., strong winds, landscape instability) 

(Landolt et al. 2010). Similarly, Betula pendula, Larix decidua, Sorbus aucuparia, but also the shrub 

species Alnus viridis, are able to create surface stability, because their highly flexible stems and roots 

produce a compact and well connected structure (Steiger & Carraro 2010). Larix decidua, in 

particular, is equipped for surviving in unfavorable areas where seed production and dispersion are 

limited, by too low temperatures or high risk potential, due to its ability to vegetative reproduction 

by layering (Frey & Lösch 2010). Vegetative reproduction is effected by the formation of adventitious 

roots that usually develop in the organic soil layer where highest soil moisture occurs. Under 

vegetative production, trees form a compact and well connected structure of clonal groups, troops or 

tussocks that help them survive in areas subjected to frequent disturbances and unfavorable climate 

conditions, e.g., at locations that are exposed to permanent winds. Picea abies similarly switches to 

vegetative reproduction by layering as soon as environmental conditions become unfavorable for 

successful seed dispersion (Holtmeier 2009).  

Trees that establish themselves and adapt to the given abiotic/biotic conditions of a habitat 

can reach remarkably old age. Picea abies may reach an age of more than 400 years and Pinus 

cembra even more than 1000 years at the climatic treeline. Pinus cembra, which is highly frost 

resistant and usually found in areas with the highest climatic timber line line in the Swiss Alps, e.g., 

Saas valley, Central Swiss Alps (2370 m a.s.l.), may therefore be a relic of a former climatic optimum 

(Figure 12; Leibundgut 1986; Steiger & Carraro 2010). 

 

Figure 12 Pinus cembra solitary tree at timber-line ecotone near Kleine Scheidegg. Photo: S.C. Strähl, August 2009 

  



Ph. D. Sarah C. Strähl 

 

34 

Plant succession under disturbed conditions (anthropo-zoogenical practices): 

At the timber line, anthropo-zoogenically driven plant succession processes have diverse causes, 

such as: (a) forest clearings and fire disturbances, (b) overgrazing and trampling by cattle or other 

domesticated grazers, (c) overfertilization; e.g., herbal layer of Alnetum viridis, (d) grazing and 

trampling by wild ungulates; e.g., Cervus elaphus, (e) winter and summer tourism, as well as  

(f) abandoned pastures. As a result, several surfaces have become impoverished due to soil 

exhaustion (Table 4; Lüdi 1948; Hegg 1984a, b; Hegg et al. 1992; Spielberger et al. 2006).  

Table 4 Anthropo-zoogenic dynamics of vegetation succession at the timber line (Northern Swiss Alps) 

impacts anthropo-zoogenic vegetation dynamics 

(a) forest clearings & fire disturbances climax forest communities → replaced by secondary communiXes:  

− meadows, hay meadows  
− hedges   

− marshes 
− pasture 
− hay crop 

(b) overgrazing and trampling by  
cattle grazers 

impoverishment of grassland communities, e.g., of Geo montani-Nardetum: 
− dissapearance of low compeXXve plant species, e.g., orchids: Gymnadenia 
conopsea, Nigritella rhellicani & Pseudorchis albida 
− replacement by trivial plant species of rich meadow communities  

(Poa alpina, Deschampsia cespitosa or Leontodon helveticus) 
− selecXve feeding & increasing density of pasture weeds (e.g., Nardus stricta)  
− reducXon of plant species diversity 

(c) overfertilization, e.g., herbal layer of 
Alnetum viridis 

development of richly manured alpine pasture (Rumicetum alpini) dominated by: 
− Rumex alpestris  

− Senecio alpinus 

(d) wild ungulates such as red deer  

(Cervus elaphus) 

inhibiting rejuvenation by:  

− browsing fresh annual shoots 
− bark stripping 
− trampling of tree seedlings 

(e) winter and summer tourism winter tourism: 

− injuries & death of ericaceous dwarf shrubs (Rhododendron ferrugineum, 
Vaccinium gaultherioides or Loiseleuria procumbens) 
− arXficial snow producXon by snow cannons → soil degradation & 

impoverishment 
summer tourism: 

− mountain hikers → plant species distribuXon & diversity 

(f) pasture reduction & abandonment − increasing density of ericaceous dwarf shrub heath  
(e.g., Calluna vulgaris, Rhododendron ferrugineum, Vaccinium myrtillus and V. 
uliginosum aggr.) 

− spruce young growth & shrub species (Pinus mugo & Alnus viridis) 
− transformaXon & degradaXon of surface → reducXon of plant species diversity 

Source: Anthropo-zoogenic dynamics of vegetation succession are described according to Lüdi (1921, 1948), Braun-
Blanquet (1964), Hegg (1984a, b), Hegg et al. (1992, 1993), Runge (1994), Ellenberg (1996) and Burga & Perret (2001b) 

  



Ph. D. Sarah C. Strähl 

 

35 

In areas of artificial lowering of the timber line (i.e., either produced by forest clearance or fire 

disturbances), there is a wide presence of plant communities which are undemanding, such as 

grassland communities of the alpine belt that invade areas of former forests. As soon as the 

grassland community has adapted to the degraded conditions of the invaded habitat, the vegetation 

that becomes established lacks character species and species richness (Hegg et al. 1993).  

Geo montani-Nardetum is a dominant grassland community of the subalpine and alpine 

boundary on acid soil and is therefore widespread in areas of alpine grassland as well as in Vaccinio-

Piceion spruce forests. Geo montani-Nardetum communities are mainly anthropo-zoogenically 

shaped and seldom naturally determined. However, its natural diversity can be inferred from the 

intensity of land-use in the places where it is found (Hegg et al. 1993). In areas of extensive and 

moderate traditional grazing with cattle and sheep, Geo montani-Nardetum is able to maintain its 

potential natural vegetation pattern and therefore shows, like other alpine grassland communities, a 

high presence of orchids and character species, such as Pseudorchis albida, Geum montanum, 

Gentiana acaulis, Ajuga pyramidalis, Campanula barbata, Arnica montana, which are accompanied 

by other important accessory plant species. In such areas spurs of ericaceous dwarf shrubs  

(e.g., Calluna vulgaris, Rhododendron ferrugineum or Vaccinium myrtillus) are also found. In 

overgrazed areas, some species, mainly orchids (e.g., Pseudorchis albida) are missing. Overgrazing 

has a destructive impact on vegetation, and orchids, in particular, react sensitively to the effects of 

overgrazing, because they are less competitive than undemanding trivial plant species of rich 

meadow communities, like Leontodon helveticus, Poa alpina, Rumex alpestris or Deschampsia 

cespitosa, which become dominant (Figure 14). Overgrazing causes on the one hand mechanical 

damage, such as trampling of the plants themselves, but also soil compaction that increases runoff 

and may massively reduce highland productivity. On the other hand, overgrazing also changes plant 

communities through preference-driven biomass consumption, where selective feeding encourages 

the growth of avoided pasture weeds, such as Nardus stricta, which has low nutrient values. 

Moreover, cattle manure promotes Nardus stricta (Braun-Blanquet 1948/1949; Edwards et al. 2004; 

Delarze & Gonseth 2008; Aguilar 2011).  

In areas of overfertilization, such as herbal layers of Alnetum viridis, richly manured alpine 

pastures (Rumicetum alpini) develop that are dominated by Rumex alpinus or Senecio alpinus  

(Hegg et al. 1993).  

Wild ungulates, such as red deer (Cervus elaphus), contribute to a similar destructive effect 

on the vegetation pattern of a surface as cattle or other domesticated grazers. Notably, browsing of 

fresh annual shoots and bark stripping are dangerous for tree seedlings and small trees and may 

impede rejuvenation of forests (Ellenberg 1996). 
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Similarly, the impacts produced by winter and summer tourism are as noticeable in the 

vegetation pattern at the timber-line ecotone as for agricultural land use. Winter tourism endangers 

the existence of several dwarf shrub species, such as Rhododendron ferrugineum, Vaccinium 

gaultherioides or Loiseleuria procumbens, since ski edges cause injuries that can kill dwarf shrub 

species. Furthermore, the fertilization effect of artificial snow is likely to account for soil degradation 

and impoverishment, because more water and harmful additives are input (Rixen et al. 2003). 

Summer tourism may be responsible for changes in the range and diversity of certain plant species, 

notably at several mountain peaks, but also at the timber-line ecotone. Mountaineers may 

contribute to the colonization process through aiding species dispersal, since seed and nutrients are 

occasionally accidentally redistributed. But at the same time, mountaineers cause disturbance and 

damage by trampling (Pauli et al. 2003a; Wipf et al. 2013). 

Pasture reduction and abandonment cause the penetration of competitive invasive plant 

species, such as herbaceous (e.g., Calamagrostis villosa) and shrubby vegetation (e.g. Calluna 

vulgaris, Rhododendron ferrugineum, Vaccinium myrtillus, V. uliginosum aggr. and V. vitis-idaea), 

which profit first from the enhanced light levels in the forest openings, into areas of grassland 

vegetation. One result is an increase of unaltered litter on the ground, which leads to worsening of 

the pasturing qualities (Rey Benayas et al. 2007). At the same time, the grazing cattle promote the 

growth of dwarf shrubs is by avoiding them as pasture weeds and by fertilizing them with their 

manure. Hence, many of the formerly forested areas show extended patches of ericaceous dwarf 

shrub heath that transform the grassland surface into heathland. Geo montani-Nardetum invaded by 

dense patterns of ericaceous dwarf shrubs is frequent in disturbed areas of the timber-line ecotone 

that show reduction in pasture activity and represents a transition form to a potential coniferous 

forest. The higher the density of Geo montani-Nardetum that has been transformed into heathland, 

the longer the time that has passed since abandonment (Braun-Blanquet 1948/1949;  

Hegg et al. 1993; Tasser & Tappeiner 2002; Peter et al. 2006; Delarze & Gonseth 2008). The same 

applies to Rhododendro-Vaccinion, where dense patterns at the timber-line ecotone, correspond to 

degraded areas of former forests. Rhododendro-Vaccinion is a sub-cohort of Vaccinio-Piceion, 

because it has a similar potential natural vegetation pattern, but lower plant species richness 

(Schweingruber 1972; Ellenberg 1982, 1996; Delarze & Gonseth 2008). Hence, the upper occurrence 

of Rhododendron ferrugineum has been used to indicate the potential limit of former forests  

(Hager 1916; Landolt 2003; Holtmeier 2009). Former forests, having been cleared for pastures that 

have now been abandoned, are not only being invaded by dense patterns of dwarf shrub heath but 

also being recaptured by single trees or tree hordes, such as Norway spruce (Picea abies), larch (Larix 

decidua) or pine tree (Pinus mugo, particularly at sun-exposed and dry sides). Therefore, the number 

of invasive tree species increases in areas where pasture activity reduces (Bischof 1984).  
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Furthermore, shrub species (Alnus viridis, particularly at shaded and moist slopes) are also invading 

large areas in the Alps that were formerly pastured. Alnus viridis is able to symbiotically fix nitrogen, 

and hence grows more rapidly than most other woody plant species, spreading at a rate two to three 

times faster than the current forest expansion in Switzerland (Brändli 2010; Bühlmann et al. 2014). 

The invasion of Alnus viridis into areas of former pasture causes a loss in phyto-diversity, which is 

enhanced by the excessive nitrogen input of the Alnus-Frankia symbiosis. Increased nitrogen 

availability leads to a decline in plant species richness, because nitrophilic, fast-growing plant species 

suppress slow-growing plant species and only a few plant species can cope with the shady, cool and 

moist conditions beneath the Alnus canopy. Nitrogen enrichment and dense canopy reduce phyto-

diversity and hamper vegetation succession towards coniferous forest (Bühlmann et al. 2014).  

Forests are usually unsuccessful when regenerating on an abandoned surface. This is due to 

the dense growth pattern and foliage of competitive shrub and dwarf shrub species, which smother 

less competitive plant species, prevent other plants from germinating, and increasingly acidify the 

soil. Especially light wind-dispersed seeds of the initial tree species invaders suffer from this 

situation, because those seeds may either get caught in the dense shrub layer, suffer from lack of 

light or be pressed and buried in the ground by snow or the foliage of shrubs. Hence, the presence of 

dense shrub and dwarf shrub patterns delays the establishment of tree seeds and may impede 

rejuvenation of forests (Ott et al. 1997; Holtmeier & Broll 2007). 

2.3.2 Plant succession processes in the study region 

In the study region, like in most northern Alpine regions, the Alpine timber line has been strongly 

affected by human and cattle activities. Anthropo-zoogenic dynamics of vegetation succession are for 

the most part a response to former forest clearings (Figure 13; Table 4). Several climax forest 

communities were cleared to provide areas for settlement and agricultural land, and formerly 

forested areas were subsequently replaced by modified secondary communities such as meadows, 

hedges or marshes (Hegg & Schneiter 1988). Similarly important are anthropo-zoogenic dynamics of 

vegetation succession in response to overgrazing, which have affected the composition of plant 

species of the dominant grassland community of the study region (Geo montani-Nardetum).  

In addition, a wide part of anthropo-zoogenic dynamics of vegetation succession at the Alpine  

timber line of Grindelwald have been produced by pasture reduction, especially along isolated 

slopes, which are prone to the effects of increasing landscape instability (Huggel et al. 2010, 2011; 

Werder et al. 2010). As a result, the total area of abandoned pastures has increased (Hegg & 

Schneiter 1988; Käsermann 2007; Liechti et al., in prep.). Last, but not least, the impacts of winter 

and summer tourism, have left noticeable traces in the vegetation pattern at the Alpine timber line 

of Grindelwald. Most evident are the injuries and deaths of several ericaceous dwarf shrubs, as has 

been observed in other alpine regions (Rixen et al. 2003). 
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Figure 13 Forest patches and single spruces invading the surface of former pastures near Kleine Scheidegg (left picture). 
Abandoned pastures near Kleine Scheidegg being invaded by dense patches of ericaceous dwarf shrubs and single 
spruces (right picture). Photos: S.C. Strähl, August 2009 

Plant succession at the current timber line is therefore driven more by anthropo-zoogenically 

disturbed processes than by naturally/non-disturbed processes, the latter expected to occur only in a 

few local areas with poor accessibility. In the study region, the progressing forest can be described as 

follows: several plant species belonging to the dominant plant communities of Vaccinio-Piceion 

forests, Rhododendro-Vaccinion ericaceous dwarf shrub heath and Geo montani-Nardetum grassland 

interact at the timber-line ecotone (Figure 14). 
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Figure 14 Identification key for natural/non-disturbed progression and anthropo-zoogenic/disturbed regression of 
Vaccinio-Piceion forests at the timber-line ecotone of the study region. Plant species marked in bold refer to dominant 
plant species of the vegetation layer. Plant species marked in red refer to characteristic species of the plant community. 
Source: Classification of plant species for Vaccinio-Piceion and Rhododendro-Vaccinion: Delarze & Gonseth 2008; 
classification of plant species for Geo montani-Nardetum grassland: Braun-Blanquet 1948/1949, Delarze & Gonseth 2008. 
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3 Methods 

Non-disturbed (naturally determined) and disturbed (anthropo-zoogenically determined) dynamics 

of vegetation succession differ in their vegetation structure and phyto-diversity, as is well known 

from previous studies (Lüdi 1921, 1948; Braun-Blanquet 1964; Hegg 1984 a, b; Hegg et al. 1992, 

1993, Burga & Perret 2001b; Perret 2005; Strähl & Burga in prep.). We therefore applied those 

differences to identify areas of the timber-line ecotone where climate warming is the driving factor 

and areas where land-use change is the driving factor. We chose a site at the timber line where the 

proportion of forest cover has shown one of the largest increases since 1899 and have selected our 

relevés (a total of 32) in the field to observe most clearly the distinction between timber lines 

responding to climate warming and those responding to land-use change. To test the differences in 

vegetation records between locations where climate warming is the driving factor and locations 

where land-use change is the driving factor, 16 relevés were chosen above the 1899 timber line, i.e., 

in areas likely to be responding to the impact of climate warming, and 16 relevés were chosen below 

the 1899 timber line, i.e., likely to be responding to the impact of land-use practices. 

In a first step, we recorded the current vegetation pattern in the timber-line ecotone at the 

selected test sites in the field, using vegetation mappings as prescribed by Braun-Blanquet (1964); 

and in a second step the recorded patterns of vegetation were analyzed and statistically tested. 

Vegetation mappings and vegetation pattern analysis were used to show: (a) the differences in the 

current vegetation structure and phyto-diversity between relevés located below and above the 1899 

timber line, (b) how significant the results recorded by means of vegetation mappings are, in order to 

determine the differences in vegetation structure and phyto-diversity and (c) which vegetation 

mapping variable (plant structure or phyto-diversity) is best suited to inferring an initial sign of 

warming impact in a newly forested area at the timber-line ecotone, at the local scale where plant 

species develop. In a final step we used these results to estimate: (a) the proportion of current 

timber line that we expect to exhibit signs of a warming impact and (b) the proportion of current 

timber line that we expect to exhibit an upward shift using the results obtained in the study region. 
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3.1 Vegetation mappings according to Braun-Blanquet (1964) 

In reality, any natural boundary is impossible to locate precisely, since vegetation cover in any 

landscape exhibits heterogeneous dynamics as a result of different plant layers and plant 

communities. Hence, the dynamics of vegetation succession are difficult to define for research 

purposes, because there are no standard guidelines for analyzing the complex behavior of 

vegetation. Dissection of vegetation layers is difficult, and therefore even accurate measurements 

and counting of certain single vegetation forms may not give an exact representation of the 

dynamics of vegetation succession. More reliable results are provided by assessments made in 

selected relevés, like vegetation mappings, where a large reduction of attributes takes place and 

reduce the complexity of vegetation cover by averaging over large areas (Glavac 1996).  

The Braun-Blanquet (1964) vegetation mapping method is a well-known method that is 

applied to understand dynamics of vegetation succession on a local level, where trees and other 

plant species develop. This is due to the fact that plant species are strongly bound to their abiotic and 

biotic environments and therefore not randomly distributed within a certain habitat. Each plant 

species shows values for climate (L: light, T: temperature and K: continentality) and soil (F: moisture, 

R: soil reaction, N: nutrients, H: humus and D: aeration), and thus, every habitat expresses the 

relationship between the physical and living environments (Ellenberg 1996; Landolt et al. 2010).  

In this context, the study of dynamics of vegetation succession requires a combined approach 

including both habitat factors (i.e., climate, geology, relief, soil, and anthropo-zoogenic influences) 

and plant sociological aspects.  

Plant communities are an important subject of terrestrial ecosystem research because they 

display the current living conditions of a habitat, which is a result of the interactions of plant species 

with their physical environment (Braun-Blanquet 1964; Theurillat 1995; Glavac 1996;  

Begon et al. 1999). Braun-Blanquet (1921) developed a syntaxonomic classification system that 

shows a hierarchic classification for plant communities. The association is defined as the basic unit of 

a plant community, which consists of particular species with a characteristic structure in a typical 

habitat. According to Braun-Blanquet (1964) a plant association is determined by a set of character 

species, in addition to differentiating species and other accessory plant species. A change in habitat 

factors affects the plant communities at the level of an association. Anthropo-zoogenic impacts, for 

instance caused by grazing activity, may produce noticeable changes in the distribution pattern of 

plant species within plant communities, where character species tend to disappear first, since they 

react most sensitively to environmental changes (Lüdi 1948; Hegg et al. 1992, 1993; Dierschke 1994). 
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3.2 Selection of study region 

 

 

 

 

 

 

 

Figure 15 The study region selected is situated between Alpiglen and Kleine Scheidegg. The study region has been 
selected on the basis of the GIS-forest-cover analysis by Providoli & Kuhn (2012), which have shown areas of forest cover 
increase at the timber line between 1899 and 2005 and could indicate the areas with the largest forest cover increases. 
The map has been generated with ArcGIS. 
Source: Hillshade and contours: Digitales Geländemodell 2m © swisstopo; watercourse, river system, settlement area, 
forest area of the year 2007, glacier debris and glacier area: VECTOR25 © swisstopo; forest limit for the year 1861: 
DUFOUR © swisstopo; average potential timber line elevation: Landolt 2003, Holtmeier 2009; largest forest cover 
increases and forest cover increases at the upper timber line: Providoli & Kuhn 2012 
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We fixed our study region to one of the areas in the region of Grindelwald, between Alpiglen and 

Kleine Scheidegg, where the GIS-forest-cover-analysis by Providoli & Kuhn (2012) identified the 

largest proportion of forest cover increases between the years 1899 and 2005 (Figure 15).  

For our analysis we selected sites that satisfied the following two criteria: (1) the locations must 

show the best possible contrast in the dynamics of vegetation succession between non-disturbed 

areas, most probably responding to climate warming, and disturbed areas, likely responding to 

changes in land-use activity and (2) the locations must have smooth topography, where impacts such 

as surface processes and landscape instability have least influence on the current dynamics of 

vegetation succession. These criteria were fulfilled at 32 sites, at which we arranged our relevés in 

the field. 

We used the altitudinal limit of the timber line for the year 1899, at 2021 m a.s.l., as a 

reference value to identify areas of the current timber line that are most likely responding to changes 

in land use (below the 1899 timber line) from areas that are possibly responding to climate warming 

(above the 1899 timber line) (Figures 16 and 17; Table A 11). This altitude of 2021 m a.s.l. is an 

interpolated value, namely the average elevation given by all highest located closed forest covers 

calculated for the year 1899 (Providoli & Kuhn 2012).  

We mapped equal numbers of relevés above (i.e., 16 relevés: 4-6, 8-9, 11, 19-20, 23, 25 and 

27-32, with probable response to global warming) and below 2021 m a.s.l. (i.e., 16 relevés: 1-3, 7, 10, 

12-18, 21-22, 24 and 26, most responsive to land-use activity) and calculated the appropriate size of 

each relevé according to the concept of minimum area (Braun-Blanquet 1921). Transitional areas, 

such as timber-line ecotones comprising forest, dwarf shrub heath and grassland communities, 

require a relevé size of approximately 100 m2, whereas pure grassland communities require a much 

smaller relevé size of about 1-4 m2. Our vegetation relevés were selected in areas where subalpine 

dwarf shrub heath (mainly Rhododendro-Vaccinion) and subalpine meadows (mainly Geo montani-

Nardetum) interact (Figure 18). Hence, we used an area of 100 m2 for all vegetation relevés, in order 

to gather sufficient data to analyze current vegetation succession at the timber-line ecotone and to 

allow statistical comparisons. The division of vegetation relevés into sets below and above the 1899 

timber line was applied not only to analyze differences in vegetation succession between disturbed 

and undisturbed areas, but also to identify which vegetation mapping variable (plant structure or 

phyto-diversity) is best suited to inferring initial signs of a warming impact in a newly forested area at 

the timber-line ecotone.  
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Figure 16 Study region located near Kleine Scheidegg (Grindelwald, Switzerland). Vegetation relevés (nos. 1 to 32) are situated in areas of the timber-line ecotone where forest cover increased 
between the years 1899 and 2005. The potential timber line shows the limit of expansion of forest trees for the northern Swiss Alps, located at 2000 m a.s.l. The map has been generated with 
ArcGIS. 
Source: Topographical map: PK25 © 2006 swisstopo; average potential timber line elevation: Landolt 2003, Holtmeier 2009; largest forest cover increases and forest cover increases at the upper 
timber line: Providoli & Kuhn 2012 
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Prior to the fieldwork, the study region was thoroughly reconnoitred, in order to gather as accurate 

results as possible regarding the habitat properties. In this preparation work, mapping the geology 

and substrate, as well as the plant communities, served as an important basis for the plot selection, 

fieldwork and subsequent data analysis.  

 

 

 

 

 

 

 

Figure 17 Substrate type in the study region corresponding to the geological bedrock components. The map has been 
generated with ArcGIS. 
Source: Topographical map: PK25 © 2006 swisstopo; average potential timber line elevation: Landolt 2003, Holtmeier 
2009; substrate type: Collet et al. 1938; largest forest cover increases and forest cover increases at the upper timber line: 
Providoli & Kuhn 2012 

In the selected study region, the predominant substrate types allow the formation of deep soils. 

Moraines (44%) cover the largest part, followed by Mesozoic Aalenian schists (25%) and Mesozoic 

iron sandstones (16%). Less frequent are substrate types with coarser-grained components (blocks 

and stones: 2-6.3 dm grain diameter; see Table A 42) of the Tertiary (6%) that do not allow deep soils 

to develop. Some parts of the area are covered by slope debris (6%) (Figure 17). 
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Figure 18 Plant communities in the study region corresponding to the type of substrate. The map has been generated 
with ArcGIS. 
Source: Topographical map: PK25 © 2006 swisstopo; average potential timber line elevation: Landolt 2003, Holtmeier 
2009; extend of each plant community: Hegg & Schneiter 1988; nomenclature of plant communities: Braun-Blanquet 
1948/1949, Hegg & Schneiter 1988, Delarze & Gonseth 2008; pioneer communities of all altitudinal boundaries: Lüdi 
1921; largest forest cover increases and forest cover increases at the upper timber line: Providoli & Kuhn 2012 
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In correspondence to the locally changing type of substrate, plant communities in the study region 

display a heterogeneous pattern. Most dominant are forests (Vaccinio-Piceion) and subalpine dwarf 

shrub heath (Rhododendro-Vaccinion) that together cover 43% of the study region (Figure 18). Most 

of the forested area is covered by the association Homogyno-Piceetum, although Larici-Pinetum 

cembrae, which generally dominates in central alpine regions, cover around 10%. Among the 

subalpine dwarf shrub heath, the major part is allotted to the association Rhododendro-Vaccinietum. 

Subalpine and alpine meadows (Nardion, association Geo montani-Nardetum) account for much of 

the remaining area (22% of the total). Geo montani-Nardetum, which is an association of the cohort 

Nardion, is the most frequent subalpine and alpine meadow in the study region (Figure 18). In some 

parts rich meadows (Poion alpinae) (10%) are widely spread (Figure 18; Hegg & Schneiter 1988; 

Delarze & Gonseth 2008). 

3.3 Field work and data acquisition 

Fieldwork started by selecting the area of each relevé in such a way that the current dynamics of 

vegetation succession could be assessed as accurately as possible. Therefore, each relevé was chosen 

to an area where plant species associated to Rhododendro-Vaccinion and Geo montani-Nardetum 

are dominant (Figure 18). Each relevé was a square of 10 m x 10 m (100 m2) (Figure 19). 

Subsequently, each relevé was located and identified with GPS in x- and y-coordinates given by the 

Geographic Coordinate System GCS_CH1903 in Swiss Grid. 

 

Figure 19 Example of vegetation relevé that was mapped near Kleine Scheidegg (Grindelwald, Bernese Oberland). 
Photos: S.C. Strähl, June 2009 
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In addition, assessments of vegetation cover, phyto-diversity, tree height and tree distribution were 

carried out in the field, in order to determine the current dynamics of vegetation succession at the 

timber-line ecotone, and to relate them to the climate and environmental conditions. The vegetation 

pattern in each relevé was surveyed according to: 

(a) Vegetation cover and phyto-diversity 

(b) Tree height and distribution 

For each vegetation relevé, all flowering plant species, ferns, mosses and lichens were recorded. 

Accurate results can only be achieved when all plant species in the field are recorded, and thus 

vegetation mappings must either be repeated several times or carried out during the season in which 

plant growth is optimal, i.e., when most angiosperms are in blossom. For plant communities at the 

Alpine timber line, most seed-plant species flower during the summer months, between June and 

September, which is the reason why field work took place during several field campaigns between 

June and September in the years 2008, 2009 and 2010. 

(a) Vegetation cover and phyto-diversity 

Plant species were first recorded according to the identification key of Binz & Heitz (1990) and  

Landolt (2003); the present plant species nomenclature follows that of Lauber et al. (2012). Small 

trees and tree seedlings were included within the tree layer, dwarf shrubs and shrublets within the 

shrub layer, pteridophytes within the herb layer and lichens within the moss layer. In the present 

study, we modified the combined cover-abundance index according to Braun-Blanquet, in order to 

estimate the cover of a plant species. 
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The combined cover-abundance index according to Braun-Blanquet (see Table 5) has been criticized 

in plant sociology by several scientists (see Dierschke 1994). One criticism is that each cover-

abundance index covers a wide range of densities (e.g., index 2: a density of 5-25%) and is therefore 

not suitable for giving an accurate estimate of the density of a plant species, especially one with low 

abundance, e.g., index 1 or 2 (Table 5). Therefore, the Braun-Blanquet cover-abundance  

index 2 (5-25%) has often been split up into several sub-cover-abundance index steps  

(Dierschke 1994). For example, Strähl & Burga (in prep.) have split the Braun-Blanquet cover-

abundance index 2 (5-25%) into four sub-cover-abundance index steps, each of 5% (i.e., 20: >5-<10%; 

21: >10-<15%; 22: >15-<20% and 23: >20-<25%). In this present study, we applied individual percent 

scale factors (e.g., 1%, 2% etc.) to estimate the cover of each plant species and to allow statistical 

comparisons of the data (Tables A 1-10 and A 13-17). 

Table 5 Combined cover-abundance index according to Braun-Blanquet (1964). Abundance refers to the number of 
species individuals per area. Dominance refers to the horizontal cover of all species individuals per area. Sociability 
expresses the way plant species are distributed within an area. The mean cover value (m) shows the mean value of the 
amplitude of variation for the column of species abundance and dominance and cannot be calculated for plant species 
with a mass scale “r” 

mass 
scale 

species abundance and dominance 
combined density value [%]  

mean cover value (m) sociability 

r 
rare, 1 individual per 
surface area 

< 1    1 = growing one in a place, singly 

+ 
sparsely or very 
sparsely present; cover 
very small 

≤ 1  0.1% 2 = grouped or tufted 

1 
plentiful but of small 
cover value 

1 - < 5  2.5% 3 = in troops, small patches, or cushions 

2 

very numerous, or 

covering at least 
1
/20 

of the area  
5 - 25  15.0% 

4 = in small colonies, in extensive patches, or 
forming carpets 

3 

any number of 

individuals covering  
1
/4-

1
/2 of the area 

25 - 50  37.5% 
5 = growing in great crowds  
(pure populations) 

4 

any number of 

individuals covering 
1
/2-

3
/4 of the area 

50 - 75 62.5% 

  

5 
covering > 

3
/4 of the 

area 
75 - 100  87.5% 

  

Source: Mass scales, the species abundance and dominance combined density values, and the sociability index are 
according to Braun-Blanquet (1964). The mean cover value is according to Dierschke (1994). 
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(b) Tree height and distribution 

Subsequent to the mapping of vegetation cover and phyto-diversity, an inventory of tree height and 

tree distribution was essential for analyzing the type of forest opening towards the timber line.  

The upper occurrence of single trees or tree hordes have been used as an approximation for showing 

a sign of timber line shift possibly responding to the impact of global warming (Hager 1916;  

Hess 1923; Braun-Blanquet 1964; Delarze 1994; Ellenberg 1996; Landolt 2003; Holtmeier 2009).  

Because of low average annual temperatures, trees are not able to invest in their radial growth, and 

therefore grow shorter and less densely together, whereas forest cover gradually lightens towards 

the timber line (Körner 2003). However, the feature of forest opening can often be misinterpreted 

when human activity and cattle grazing modify the structure and form of forest openings 

(Brockmann-Jerosch 1919). For example, single trees of Norway spruce are usually connected to 

pasture activity and their number increases mainly in areas where pasture activity has reduced 

(Bischof 1984). 

The inventory of tree height and tree distribution considers the following important steps: 

- All trees (including small trees and tree seedlings) within a relevé were localized as x- and 

y-coordinates by means of GPS.  

- Height values were estimated for each tree, small tree and tree seedling separately. 

Additionally, the average height was calculated for each relevé.  

- The number of tall growing trees (height ≥ 2m) was separated from the number of 

krummholz (including all small trees and tree seedings with a height of < 2 m).  

- Distribution was measured by the number of trees, small trees and tree seedlings per 

relevé and the shortest distances between all neighboring trees, small trees and tree 

seedlings. Distance values were calculated with the application of ESRI ArcGIS algorithms. 
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Subsequent to the fieldwork, each relevé was characterized by its: (a) elevation, slope and aspect, 

and (b) surface character (soil and micro relief), type of land use and accessibility. This information 

was important for completing the field work data (Table A 11).  

Elevation, aspect and slope were extracted from the 2 m-DEM (Office of Geoinformation 

2000) based on standard ESRI ArcGIS algorithms. Surface character (soil data and micro relief) was 

interpolated from data collected in a parallel Ph. D. project (by Ulrike Hoffmann) and gathered in 

several transect mappings (Hoffmann et al. 2014). Soil depth is the thickness of the complete soil 

profile that could be mapped down to the bedrock material. In general, soils are required to show at 

least a moderate depth (≥ 30 cm), in order to assure root penetration for trees  

(Lutz & Chandler 1955; Ott et al. 1997). Type of land use was also studied in the transects of soil 

mappings (Hoffmann et al. 2014) and completed with data provided by the Office of Geoinformation 

(1992/1997), which indicates the dominant land cover type for 100 x 100 m grid cells.  

Accessibility, which was measured by a value that considers walking time to closest barns, slope, 

paths (enabling factor) and brooks (hindering factor), was derived from data of the GIS-Cost-

Distance-Model provided by K. Liechti (Centre for Development and Environment, University of Bern)  

(see Liechti et al., in prep.). Values between 0 and 0.5 show areas with walking time from 0-30 min, 

0.5-0.75 indicates areas with 30-45 min walking time and 0.75-1 indicates a walking time from  

45 min-1 h. Therefore, low values represent highly accessible areas. 
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3.4 Data analysis 

3.4.1 Analysis of vegetation pattern 

Subsequent to the data acquisition, the pattern of vegetation was analyzed, in order to determine 

the character of current dynamics of vegetation succession. As in the study of my master thesis 

(Strähl 2006), we analyzed each mapped relevé by its type of impact, by differentiating between:  

(1) non-disturbed, naturally determined vegetation patterns and (2) disturbed vegetation patterns 

caused by anthropo-zoogenic practices (e.g., forest clearance and overgrazing).  

In a first step the structure of the vegetation was assessed: (a) by the cover distribution of 

shrubs and herbs and (b) by the growth and distribution of trees. Cover values were determined for 

each relevé and the mean for all relevés located above and for all relevés below the altitude of the 

1899 timber line. Values for the growth and distribution of trees are given on the one hand by the 

mean height of trees in each relevé and on the other hand by the density of trees in each relevé, i.e., 

the total number of krummholz (< 2 m height) and tall growing trees (≥ 2m height) and the shortest 

distance between all neighboring trees, small trees and tree seedlings. Like cover values, growth 

values are not only determined for each relevee separately, but also as mean values, for all relevés 

located above and for all relevés below the altitude of the 1899 timber line.  

In a second step phyto-diversity was determined, as for vegetation structure, for each relevé 

separately and as a mean value for all relevés located above and for all relevés located below the 

altitude of the timber line in 1899. The surface of each mapped relevé was determined by its  

non-disturbed and degraded vegetation pattern, which we have identified by the effect of shrubby 

and arboreal plant species immigration into Geo montani-Nardetum grassland (Figure 14). This is due 

to the wide occurrence of Geo montani-Nardetum grassland in the study region, as well as the 

frequently observed invasion by ericaceous dwarf shrubs (e.g. Calluna vulgaris, Rhododendron 

ferrugineum and Vaccinium myrtillus) into areas of the timber-line ecotone that show reduction in 

pasture activity and a transition form to the potential coniferous forest (Hegg & Schneiter 1988;  

Hegg et al. 1993). The character of non-disturbed vegetation was derived by the abundance of  

Geo montani-Nardetum character species per relevé, which was determined by the total number and 

density of Geo montani-Nardetum character species. The character of degraded vegetation was 

identified by the intensity of deteriorated Geo montani-Nardetum to heathland per relevé, which 

was determined by the density of all plant species associated with Geo montani-Nardetum grassland 

that are frequent on a deteriorated surface (Figure 14).  
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The classification system of Delarze & Gonseth (2008) was applied, because it allows the 

determination of a plant community at the cohort level and considers plant communities at the scale 

of landscape structures, by showing: (a) the abundance of character species and (b) the abundance 

of other important accessory plant species characterizing the plant community. 
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3.4.2 Statistical analysis 

The statistical analysis was performed in the IBM SPSS-Statistics program. For the purpose of this 

study we have used a statistical test with a pairwise comparison (Paired Samples t-test and Wilcoxon-

signed-rank test) because our aim was to find out whether the same test variables differ between a 

climate or land use surface. The dependent t-test (Paired Samples t-test) is a parametric test, 

therefore, is valid as an important condition that the random check distribution is normal and the 

variances are continuously homogeneous in the data. If these conditions are not fulfilled, a non-

parametric test is used. In non-parametric tests the assumptions are not dependent directly on the 

type of the data because non-parametric tests work after the principle of the rank order of data. The 

raw data are divided in ranks and the analyses are carried out on the base by rank orders and not on 

the basis of the raw data directly. The Wilcoxon-signed-rank test is the non-parametric recompense 

to the dependent t-test. In comparison to the raw data the differences are compared between the 

ranks (Field 2009). 

In order to check the appropriateness of assumptions of parametric and non-parametric 

data, the scores in the gathered data were tested for normality and homogeneity of variances. All 

scores in the recorded data were tested for normality using a Kolmogorov-Smirnov and Shapiro-Wilk 

test, and for differences in variance using Levene’s test (Table A 31).  

For the set of vegetation relevés above 2021 m a.s.l. and the set of relevés below  

2021 m a.s.l. we calculated the mean value of each test variable for cover distribution of shrubs and 

herbs (i.e., pairs of shrub and herb cover), growth and distribution of trees (i.e., pairs of tree height, 

amount of trees ≥ 2 m and < 2 m and shortest tree distance) and phyto-diversity (i.e., pairs of total 

number of Geo montani-Nardetum character species, density of Geo montani-Nardetum character 

species and density of deteriorated Geo montani-Nardetum to heathland) and compared each pair of 

mean values to seek significant differences between the higher and lower relevés. A dependent-t-

test (Paired Samples t-test) was implemented for parametric data and a Wilcoxon-signed-rank test 

for non-parametric data. Since the number of compared differences was 16, i.e., less than 30, the 

Wilcoxon-signed-rank test for non-parametric data was performed for all recorded data. In addition, 

we made simple bar diagrams to visualize means and standard errors. 

The statistical analysis allowed us to assess the significance of our vegetation mapping results 

in differentiating between a non-disturbed/naturally controlled and a disturbed/anthropo-

zoogenically modified vegetation pattern at the timber-line ecotone, and secondly, to assess which 

variable, plant structure or phyto-diversity, is best suited to inferring an initial sign of a possible 

warming impact in a newly forested area at the timber-line ecotone.  
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3.5 Areas attributed to an upward shift of the Alpine timber line in 

probable response to global warming 

In this last step, we analyzed our results to identify areas where the possible impact of global climate 

warming is likely to cause an upward shift of the Alpine timber line in our studied region.  

We therefore applied the abundance of Geo montani-Nardetum character species, whose degree of 

non-disturbed/naturally determined vegetation pattern is a good indicator for the process that is 

driving plant succession in probable response to global warming.  

- For each relevé, this degree was classified according to: (a) the total number of  

Geo montani-Nardetum character species and (b) the density of Geo montani-Nardetum 

character species. ESRI ArcGIS was used for defining 3 categories: 1= highest degree: 

most probably related to climate warming, 2= intermediate degree: possible reduction in 

pasture activity and other reasons (e.g., site conditions) and 3= lowest degree: clearest 

signs of pasture reduction.  

- Relevés with the highest number and density of Geo montani-Nardetum character 

species were allocated to 1; those with intermediate values were allocated to 2 and 

those with lowest values to 3. Subsequently, the degree of abundance in each relevé was 

determined as the average of the two classifications (total number of Geo montani-

Nardetum character species and density of Geo montani-Nardetum character species) to 

show which relevés are most and least responsive to global warming (Table A 34). 

In addition, the proportion of areas that show signs of an upward shift of the Alpine timber line was 

determined by the intensity of spruce forests (Vaccinio-Piceion) invading the Geo montani-Nardetum 

grassland at the timber-line ecotone. The invasion density of spruce forests into non-forested areas 

was indicated by the appearance of plant species that are allocated to Vaccinio-Piceion (Table A 24).  

Following the same procedure, which was applied to determine the degree of non-disturbed 

and degraded vegetation pattern at the timber-line ecotone, each relevé was classified with ESRI 

ArcGIS into 3 categories according to its stage of spruce forest plant succession, which was given by 

the invasion density of Vaccinio-Piceion spruce forest vegetation: 1= highest degree: transitional to 

climax stage, 2= intermediate degree: transitional stage and 3= lowest degree: initial to transitional 

stage (Table A 35). 
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This work was concluded by the study of an additional area adjacent to the study region 

where the GIS-forest-cover-analysis by Providoli & Kuhn (2012) has also shown an increase in forest 

cover since 1899 (Figures 20 and 21). This additional area was studied to assess the effect of site 

conditions (edaphic & topographic factors and surface processes) on the dynamics of the currently 

advancing timber line and to determine areas where we propose that the timber line is likely to 

fringe and remain at a lower elevation in future, below the potential limit of 2000 m a.s.l. with 

ongoing environmental change. 

Like the study region, the selected area at Rinderalp, near Alpiglen, has also been influenced 

by former pasture activity, because it is easily accessible from the nearest barn and its topography 

has a profile that is smooth and not too steep. In contrast to the study site, however, limestones with  

coarse-grained components of the Tertiary (blocks and stones: 2-6.3 dm grain diameter;  

see Table A 42) have formed the substrate (Tables A 11 and 30). Cattle were pastured here until the 

year 1970, whereupon environmental risks, such as the high frequency of avalanche activity as well 

as the unstable steep limestone rock wall of the Eiger, provoking a high risk potential for rock-fall 

activity and debris flow, caused cattle pasturing to be given up and replaced only by extensive 

pasturing of goat and sheep (Naegeli-Oertle 1986). A further key driver of the reduced pasture 

activity is the massive wall of the Eiger, which enhances shading effects and leads to a longer lasting 

snow cover that reduces the length of growing season (Hegg & Schneiter 1988). 

In this selected site, 8 relevés each with an area of 100 m2, were chosen within the nearest 

surroundings of increased forested cover (i.e., from the area of increased forest cover up to the  

highest-altitude tree species found), mapped and analyzed, as for the relevés elevated in the study 

region. Moreover, the proportion of areas at the timber-line ecotone that show signs of an upward 

shift in timber line was derived according to the same GIS-classification procedure, as applied for the 

study region (Table A 37). 

 

Figure 20 Additionally surveyed area at the Rinderalp, near Alpiglen. Photo: S.C. Strähl, July 2009 
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Figure 21 Mapping of additional relevés near the study region at Rinderalp (Alpiglen). The mapping area of Rinderalp is 
marked by a black rectangle and the mapping relevés are marked in orange. The map has been generated with ArcGIS. 
Source: Topographical map: PK25 © 2006 swisstopo; avalanches: Lawinenkataster des Kantons Bern © Abteilung 
Naturgefahren des Kantons Bern; ski piste: Bauverwaltung Einwohnergemeinde Grindelwald (2001); average potential 
timber line elevation and altitudinal maximum of potential timber line: Landolt 2003, Holmeier 2009; largest forest cover 
increases and forest cover increases at the upper timber line: Providoli & Kuhn 2012 
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4 Results 

4.1 Vegetation structure and phyto-diversity 

4.1.1 Vegetation structure 

Our results recorded for vegetation structure showed for both krummholz-forms and trees a 

significantly higher ratio (p < 0.05) in vegetation relevés below the 1899 timber line than in 

vegetation relevés above. In addition, there was a significantly higher amount of krummholz than 

trees in relevés both below and above the 1899 timber line (Figure 22). In relevés above the 1899 

timber line, 80% of all recorded tree species were shorter than 2 m, whereas below the 1899  

timber line, 61% of all recorded tree species appeared as krummholz with a height of less than 2 m 

(Table A 20). However, tree height and the shortest distance to the neighboring trees displayed no 

significant difference (p ≥ 0.05) (Figure 22). Nevertheless, the growth of trees was less dense for 

relevés above the 1899 timber line, ranging from a minimum average distance measured for a relevé 

of 1.24 m, up to a maximum average distance measured for a relevé of 12.6 m. Below the 1899 

timber line the average distance between trees in a relevé was much less (0.46 m to 6.58 m)  

(Figures 23 and 24; Table A 20). Less variability was seen in the cover of shrubs and herbs.  

On average, the percentages of shrub and herb cover were almost equal for relevés above (mean 

shrub cover: 44%; mean herb cover: 44%) and below (mean shrub cover: 44%; mean herb cover: 

47%) the 1899 timber line, and did not differ significantly between the sites (p ≥ 0.05) (Figure 22; 

Table A 19). 
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Figure 22 Bar diagram visualizing the change in the vegetation structure for vegetation relevés above (≥ 2021 m a.s.l.) 
and below (< 2021 m a.s.l.) the 1899 timber line. The height of a bar displays the mean (m) of that variable. The T-bars 
display the standard error (se), which shows +/- two-fold standard error (+/- 2se) of the mean. The significance of the 
change in vegetation structure between vegetation relevés above and below 2021 m a.s.l. was calculated using pairwise 
comparisons: (t-test for parametric data and Wilcoxon-Rank-Sign-Test for non-parametric data); the significance value (p) 
and the number of pairs (n) are shown for each variable. Calculations have been carried out using SPSS. The graphic has 
been generated with Adobe Illustrator.  
Note: Values for the mean are rounded up to the scale values with no decimal place. Values for the standard error are 
rounded up to the scale values with one or two decimal places. 
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Figure 23 Shortest distances between two neighboring trees, small trees and tree seedlings for each vegetation relevé. 
The upper most diagram refers to vegetation relevés ≥ 2021 m a.s.l. (no. 4-32), whereas the lower two diagrams refer to 
vegetation relevés < 2021 m a.s.l. (no. 1-15 and 16-26). Relevés 4, 9, 23, 25 and 32 showed only one tree per relevé and 
therefore no distance value is recorded for those vegetation relevés. The graphic has been generated with Adobe 
Illustrator. 
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Picea abies (52%) showed the largest proportion of area covered among the recorded tree species in 

the study region. Pinus cembra was also represented in several vegetation relevés and occurred with 

a frequency of 39% (Figures 24-26; Table A 12). The majority of Picea abies (75%) were recorded as 

trees growing 2 m and taller, whereas the majority of elevated Pinus cembra (75%) appeared as 

krummholz (Figures 24-26; Table A 12). In vegetation relevés 8, 9 and 11, Pinus cembra was only 

represented as krummholz, whereas in relevé 23 one tall tree of approximately 5 m was found 

(Figures 23 and 25). Other tree species such as Pinus mugo ssp. uncinata (7%) were less frequent in 

the study region and were growing mostly as krummholz (Figures 24 and 27). Pinus mugo ssp. 

uncinata was only found in the vegetation relevés 4 and 11 as krummholz (Figures 24 and 27).  

Tree species diversity and frequency differed between vegetation relevés below and above 

the 1899 timber line. In relevés located below the 1899 timber line, Pinus cembra (47%) was slightly 

more frequent than Picea abies (44%) (Figures 24-26; Table A 12). Especially the tall Pinus cembra 

trees appeared in areas of former forests (Figures 24, 26 and 28). Pinus mugo ssp. uncinata was not 

represented in any of the vegetation relevés below the 1899 timber line; however other tree species 

like Sorbus aucuparia (6%) and Betula pendula (2%) were occasionally found in some relevés, as trees 

but also as krummholz (Figures 24 and 27). Larix decidua (relevé 24) and Sorbus aria (relevé 17) were 

growing in only one relevé each, as krummholz (Figures 24 and 27). 
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Figure 24 Height and type of tree, small tree and tree seedling species expressed for each vegetation relevé. Height 
values have been estimated as decribed in Section 3.3. The upper diagram refers to vegetation relevés ≥ 2021 m a.s.l. 
(no. 4-32), whereas the lower two diagrams refer to vegetation relevés < 2021 m a.s.l. (no. 1-15 and 16-26). The graphic 
has been generated with Adobe Illustrator. 
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Figure 25 Most frequent tree species in the study region: spruce (Picea abies). The map has been generated with ArcGIS. 
Source: Topographical map: PK25 © 2006 swisstopo; average potential timber line altitude: Landolt 2003, Holtmeier 2009; largest forest cover increases and forest cover increases at the upper 
timber line: Providoli & Kuhn 2012; tree species: own observation of vegetation mappings of the period 2008-2010. 
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Figure 26 Most frequent tree species in the study region: Swiss stone pine (Pinus cembra). The map has been generated with ArcGIS. 
Source: Topographical map: PK25 © 2006 swisstopo; average potential timber line altitude: Landolt 2003, Holtmeier 2009; largest forest cover increases and forest cover increases at the upper 
timber line: Providoli & Kuhn 2012; tree species: own observation of vegetation mappings of the period 2008-2010. 
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Figure 27 Remaining important tree species of the study region: Birch, European Larch, Pine tree, Rowan tree and Whitebeam (Betula pendula, Larix decidua, Pinus mugo ssp. uncinata, Sorbus 

aucuparia and Sorbus aria). The map has been generated with ArcGIS. 
Source: Topographical map: PK25 © 2006 swisstopo; average potential timber line altitude: Landolt 2003, Holtmeier 2009; largest forest cover increases and forest cover increases at the upper 
timber line: Providoli & Kuhn 2012; tree species: own observation of vegetation mappings of the period 2008-2010. 
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Figure 28 Distribution of Pinus cembra trees in 2008-2010 and for the year 1904. The map has been generated with ArcGIS. 
Source: Topographical map: PK25 © 2006 swisstopo; average potential timber line altitude: Landolt 2003, Holtmeier 2009; Larici-Pinetum cembrae: Hegg & Schneiter 1988; largest forest cover 
increases, forest cover increases and decreases at the upper timber line: Providoli & Kuhn 2012; Pinus cembra trees 1904: Rikli 1909; recordings of Pinus cembra trees in 2008-2010: own 
observation of vegetation mappings. 
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4.1.2 Phyto-diversity 

Our phyto-diversity results show a significantly higher abundance of Geo montani-Nardetum 

character species in vegetation relevés above the 1899 timber line; with a large amount of relevés 

showing 4 or 5 character species and a maximum density of assessed character species of 16% for 

relevé no. 5 (Figure 29; Tables A 21-23). In contrast, relevés below the 1899 timber line showed a 

significantly lower abundance of Geo montani-Nardetum character species, with a maximum of only 

3 recorded character species and a density ranging up to a maximum of 8% (Figure 29; Tables A 21-

23). The majority of our relevés, however, showed only a low abundance of recorded Geo montani-

Nardetum character species (Table A 21). Significant differences were only displayed for the test 

variable “abundance of Geo montani-Nardetum character species”, but not for the test variable 

“density of deteriorated Geo montani-Nardetum to heathland”, although the frequency of disturbed 

Geo montani-Nardetum was higher in relevés below (mean cover density: 42%) than in relevés above 

(mean cover density: 38%) the 1899 timber line (Figure 29; Table A 21). In relevés showing a 

disturbed pattern of Geo montani-Nardetum, the vegetation lacked diversity and had a wide 

occurrence of trivial vegetation, such as rich meadow species (Poa alpina, Rumex alpestris or 

Deschampsia cespitosa), but also showed a dominance of Nardus stricta (Tables A 1-8; 22-23).  

Overall, our data returned, on average, highest significance differences (Wilcoxon-Test), with  

(p < 0.01), for the test variable “total number of Geo montani-Nardetum character species”  

(p = 0.001; Figure 29; Table A 33). 
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Figure 29 Bar diagram visualizing the change in phyto-diversity by: the abundance of Geo montani-Nardetum character 
species (including: total number and density) as well as density of deteriorated Geo montani-Nardetum to heathland for 
vegetation relevés above the 1899 timber line (≥ 2021 m a.s.l.) and below (< 2021 m a.s.l.). The height of a bar displays 
the mean (m) of that variable. The T-bars display the standard error (se), which shows +/- two-fold standard error  
(+/- 2se) of the mean. The significance of the change in vegetation structure between vegetation relevés above and 
below 2021 m a.s.l. was calculated using pairwise comparisons: (t-test for parametric data and Wilcoxon-Rank-Sign-Test 
for non-parametric data): the significance value (p) and the number of pairs (n) are shown for each variable. Calculations 
have been carried out by SPSS. The graphic has been generated with Adobe Illustrator.  
Note: Values for the mean are rounded up to the scale values with no decimal place. Values for the standard error are 
rounded up to the scale values with one or two decimal places. The applied classification of plant species for  
Geo montani-Nardetum grassland corresponds to the publication “Lebensräume der Schweiz” (Delarze & Gonseth 2008) 
for indicator and important accessory plant species for Nardion, and to the publication “Übersicht über die 
Pflanzengesellschaften Rätiens” (Braun-Blanquet 1948/1949) for important accessory plant species for Geo montani-
Nardetum. 
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4.2 Areas attributed to an upward shift of the Alpine timber line in 

probable response to global warming 

The proportion of relevés that have been attributed to the lowest influences of land-use practices 

and a possible sign of warming impact was low (16%) in the study region and considerable only in 

local areas (Figure 30; Tables A 34 and 36).  

Our results showed for relevés 5 (2227 m a.s.l.) and 6 (2176 m a.s.l.) the most undisturbed  

Geo montani-Nardetum, having the highest recorded abundances of character species (Figure 30; 

Tables A 21-23). These relevés were those with the highest elevations and were among those with 

the lowest access (Table A 11). The location of relevé 4 (2160 m a.s.l.) was at a similarly high 

elevation; however, access was better (Table A 11). Our data illustrated a higher degree of disturbed 

Geo montani-Nardetum pattern in relation to non-disturbed Geo montani-Nardetum pattern  

(Tables A 21-23). In relevé 4 there was a wide appearance of short-growing vegetation, accompanied 

by one recorded Pinus mugo ssp. uncinata krummholz and dense cover of dwarf shrub species 

Loiseleuria procumbens and Calluna vulgaris (Tables A 1-8 and A 12). In the GIS-classification, 

vegetation relevés 19 and 31 were also allocated to the category of highest abundance of  

Geo montani-Nardetum character species, hence indicating a non-disturbed area (Figure 30; Tables A 

21-23), although these were at lower elevations than relevés 4, 5 and 6 (Table A 11). 

In the majority of our mapped relevés (84%), the degree of Geo montani-Nardetum character 

species was either low or intermediate (Figure 30; Tables A 21-23, A 34 and 36). Yet, only 47% of our 

mapped vegetation relevés have been attributed to areas showing lowest abundance of  

Geo montani-Nardetum character species, with clearest signs of pasture reduction (Figure 30; Tables  

A 34 and 36). Those relevés were mostly located below the 1899 timber line, i.e., in relevés 1, 2, 3, 7, 

13, 14, 16, 17, 18, 21 and 22 (Table A 11). A quite large proportion of relevés (38%) have been 

attributed to an intermediate abundance of Geo montani-Nardetum character species, where not 

only pasture reduction, but also other reasons (e.g., site conditions) are likely influencing the current 

dynamics of vegetation succession at the Alpine timber line ecotone (Figure 30; Tables A 34 and 36). 
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Figure 30 Vegetation relevés attributed to areas that are most probably responding to global warming. The response of 
probable warming effect is expressed by the degree of non-disturbed/natural vegetation pattern of Geo montani-
Nardetum. Vegetation relevés are ordered according to the rates classified for abundance of Geo montani-Nardetum 
character species. Rates classified as 1 are allocated to areas with highest abundance degree, rates classified as 2 are 
allocated to areas with intermediate abundance degree and rates classified as 3 are allocated to areas with lowest 
abundance degree and clearest signs of pasture reduction. The location and altitude of the 1899 timber line, at  
2021 m a.s.l. refers to an interpolated value according to Providoli & Kuhn (2012). The map has been generated with 
ArcGIS. 
Source: Topographical map: PK25 © 2006 swisstopo; average potential timber line altitude: Landolt 2003, Holtmeier 
2009; largest forest cover increases and forest cover increases at the upper timber line: Providoli & Kuhn 2012; 
parameters for vegetation dynamics responding to recessive pasture activity: own observation of vegetation mappings of 
the period 2008-2010. 

  

1 = highest degree:  
most probably related to global warming 

average potential timber line  
altitude at 2000 m a.s.l. for northern Swiss Alps 
study region 
largest forest cover increases 1899-2005  
at the upper timber line 
forest cover increases 1899-2005  
at the upper timber line 

2 = intermediate degree:  
possible reduction in pasture activity and other reasons  

(e.g., site conditions)  
3 = lowest degree:  
clearest signs of pasture reduction 

rates classified with GIS (class 1: highest degree, class 3: lowest degree) 
Vegetation relevés attributed to areas with probable response to global warming 
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Only 25% of our mapped relevés have been attributed to the highest degree of Vaccinio-Piceion 

spruce forest invasion (Figure 31; Tables A 35 and 36). The proportion of areas attributed to the 

highest degree of Vaccinio-Piceion spruce forest invasion is most pronounced in relevés below the 

1899 timber line. At this point of the current forest limit, almost half our relevés (2, 3, 13, 14, 16, 17 

and 18) mapped below the 1899 timber line, were allocated to the highest invasion density of 

Vaccinio-Piceion (Figure 31). The proportion of areas attributed to the lowest degree of Vaccinio-

Piceion spruce forest invasion was most pronounced in relevés located above the 1899 timber line, 

where almost half our relevés (4, 5, 6, 11, 20 and 31), were allocated to the lowest invasion density 

of Vaccinio-Piceion (Figure 31). The largest proportion of all our mapped relevés in the study region 

(i.e., 7, 9, 10, 12, 15, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 and 32) were attributed to an 

intermediate degree of Vaccinio-Piceion spruce forest invasion (Figure 31; Table A 36). 
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Figure 31 Vegetation relevés attributed to areas showing signs of an upward shift in timber line. The proportion of areas 
with signs of an upward shift in timber line is shown by the progress of spruce forest vegetation (Vaccinio-Piceion) into 
non-forested areas. Vegetation relevés are ordered according to the rates classified for invasion density of Vaccinio-
Piceion spruce forest vegetation. Rates classified as 1 are allocated to areas with highest invasion density of Vaccinio-
Piceion (i.e., most advanced stage of spruce forest plant succession), rates classified as 2 are allocated to areas with 
intermediate invasion density of Vaccinio-Piceion and rates classified as 3 are allocated to areas with lowest invasion 
density of Vaccinio-Piceion (i.e., initial to transitional stage of spruce forest plant succession). The location and altitude 
of the 1899 timber line, at 2021 m a.s.l., refers to an interpolated value according to Providoli & Kuhn (2012). The map 
has been generated with ArcGIS. 
Source: Topographical map: PK25 © 2006 swisstopo; average potential timber line altitude: Landolt 2003, Holtmeier 
2009; largest forest cover increases and forest cover increases at the upper timber line: Providoli & Kuhn 2012; 
parameters for intensity of forest progress: own observation of vegetation mappings of the period 2008-2010. 

  

3 = lowest degree of Vaccinio-Piceion spruce forest invasion: 
initial to transitional stage 

average potential timber line  
altitude at 2000 m a.s.l. for northern Swiss Alps 
study region 
largest forest cover increases 1899-2005  

at the upper timber line 
forest cover increases 1899-2005  
at the upper timber line 

2 = intermediate degree of Vaccinio-Piceion spruce forest invasion: 

transitional stage 

1 = highest degree of Vaccinio-Piceion spruce forest invasion: 
transitional to climax stage 

rates classified with GIS (class 1: highest degree, class 3: lowest degree) 
Vegetation relevés attributed to areas showing signs of an upward shift in timber line 
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Relevés 4, 5, 6 and 31, which have been allocated the highest degree of non-disturbed  

Geo montani-Nardetum and are most probably responding to global warming, have been attributed 

a low advancing rate of spruce forest. The low advancing rate of spruce forest was also shown by the 

proportion of recorded plant species associated to Vaccinio-Piceion, which was much smaller in 

relation to Geo montani-Nardetum (Figures 30-32; Tables A 34-36). Relevé 19, which has also been 

allocated the category of least disturbed Geo montani-Nardetum surface, has been attributed an 

intermediate advancing rate of spruce forest (transitional stage) (Figures 30-32; Tables A 34-36). 

Furthermore, relevé 19 showed a higher invasion density of plant species associated to Vaccinio-

Piceion compared to relevés 4, 5, 6 and 31 (Table A 24), although the proportion of plant species that 

were associated to Geo montani-Nardetum was, as for relevés 4, 5, 6 and 31, much higher in relation 

to Vaccinio-Piceion, indicating only a weak advancing rate of spruce forest (Figure 32).  

Relevé 5 was found to be at the earliest stage of spruce forest progress, since ericaceous 

dwarf shrubs were very scarce, and vegetation cover was low and showed transitions to snow pocket 

vegetation (Tables A 1-8 and 24). In addition, the location of relevé 5 had the highest elevation of all 

mapped vegetation relevés, at 2227 m a.s.l. actually sitting above the altitudinal maximum of 

potential timber line at 2200 m a.s.l. (Table A 11).  

In the 15 relevés (1, 2, 3, 7, 9, 13, 14, 16, 17, 18, 21, 22, 23, 25 and 27) that were attributed 

the lowest degree of Geo montani-Nardetum character species, and therefore showed the clearest 

signs of pasture reduction, the advancing rate of spruce forest was high for fewer than half the 

relevés (2, 3, 13, 14, 16, 17 and 18), all located below the 1899 timber line and near the region of 

largest forest cover increases since 1899 (Figures 30 and 31; Table A 36). These relevés also showed 

in their vegetation pattern a higher or almost equal proportion of plant species associated to 

Vaccinio-Piceion in relation to Geo montani-Nardetum (Figure 32). A quite large fraction of relevés 

(7, 9, 21, 22, 23, 25 and 27) were allocated as areas with intermediate invasion density of Vaccinio-

Piceion and the proportion of plant species associated to Vaccinio-Piceion was smaller in relation to 

Geo montani-Nardetum (Figure 32). One relevé (no. 1) was allocated as an area with lowest invasion 

density of Vaccinio-Piceion and also showed a smaller proportion of plant species associated to 

Vaccinio-Piceion in relation to Geo montani-Nardetum (Figures 31 and 32). 
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Figure 32 The progress of spruce forest vegetation (Vaccinio-Piceion) into non-forested areas of Geo montani-Nardetum 
grassland is expressed for each mapped relevé by the fraction of plant species associated to Vaccinio-Piceion spruce 
forest in relation to plant species associated to Geo montani-Nardetum. The cumulative species cover includes all 
recorded plant species of each vegetation layer (i.e., tree-, shrub-, herb- and moss layer). A cumulative density value of 
more than 100% can occur, since the parts of each vegetation layer may overlap. The upper graphic shows vegetation 
relevés located above 2021 m a.s.l., whereas the lower graphic shows vegetation relevés located below 2021 m a.s.l. The 
graphic has been generated with Adobe Illustrator. 
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In the additional studied area at Rinderalp, we also found evidence of former cattle pasturing in the 

vegetation pattern at the timber-line ecotone, here in the high abundance of plant species 

associated to the rich meadow community Poion alpinae (Tables A 28-29). Compared to the studied 

region, vegetation showed a large density of undemanding pioneer plant species (e.g., Dryas 

octopetala, Saxifraga exarata ssp. moschata and Salix retusa), initial tree invaders, such as Pinus 

mugo ssp. uncinata and Sorbus aucuparia as well as a higher frequency of plant species associated 

with Erico-Pinetum montanae than with Vaccinio-Piceion (Figures 24 and 34; Tables A 13-16; 28-29). 

Moreover, tall-growing trees (≥ 2 m) were dominated by Pinus mugo ssp. uncinata (50%) and less by 

Picea abies (32%) (Figures 24 and 34; Table A18). In addition, the majority of our relevés were either 

attributed an initial- or transitional stage (63%) of spruce forest succession (Figure 33; Table A 37). 

Compared to the studied region, there was a large amount of dwarf Picea abies (82%) (Figures 24 

and 34) and the current limit of tree existence was at a markedly low elevation (Figure 33;  

Tables A 11 and 30). 
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Figure 33 Vegetation relevés 33-40 at Rinderalp, attributed to areas showing signs of an upward shift in timber line.  
The proportion of areas with signs of an upward shift in timber line is shown by the progress of spruce forest vegetation 
(Vaccinio-Piceion) into non-forested areas. Vegetation relevés are ordered according to the rates classified for invasion 
density of Vaccinio-Piceion spruce forest vegetation. Rates classified as 1 are allocated to areas with highest invasion 
density of Vaccinio-Piceion (i.e., most advanced stage of spruce forest plant succession), rates classified as 2 are allocated 
to areas with intermediate invasion density of Vaccinio-Piceion and rates classified as 3 are allocated to areas with 
lowest invasion density of Vaccinio-Piceion (i.e., initial to transitional stage of spruce forest plant succession). The 
location and altitude of the 1899 timber line, at 2021 m a.s.l., refers to an interpolated value according to Providoli & 
Kuhn (2012). The map has been generated with ArcGIS. Note: For map location refer to figure 21 on page 56. 
Source: Topographical map: PK25 © 2006 swisstopo; average potential timber line altitude: Landolt 2003, Holtmeier 
2009; largest forest cover increases 1899-2005: Providoli & Kuhn 2012; tree species and parameters for intensity of forest 
progress: own observation of vegetation mappings of the period 2008-2010.  

average potential timber line altitude  
at 2000 m a.s.l. for northern Swiss Alps 

Vegetation relevés attributed to areas showing signs of an upward shift in timber line at Rinderalp 

3 = lowest degree of Vaccinio-Piceion 
spruce forest invasion:  

initial to transitional stage 

2 = intermediate degree of Vaccinio-Piceion 
spruce forest invasion:  
transitional stage 

1 = highest degree of Vaccinio-Piceion  
spruce forest invasion:  

transitional to climax stage 

rates classified with GIS (class 1: highest degree, class 3: lowest degree) 

forest cover increases 1899-2005  
at the upper timber line 
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Figure 34 Tree height and type of tree species in each relevé at Rinderalp. The graphic has been generated with Adobe 
Illustrator. 
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5 Discussion  

This current study tried to answer the question whether the impacts of changes in land-use activity 

or climate change can be differentiated by means of vegetation mappings according to Braun-

Blanquet (1964). Our results showed that Phyto-diversity was found to be more suitable than 

vegetation structure for understanding the process of progressing forest vegetation at the timber-

line ecotone by its non-disturbed/natural character or disturbed/anthropo-zoogenically modified 

character. In particular, the abundance of Geo montani-Nardetum character species was the test 

variable that showed the most significant difference between vegetation relevés located above and 

below the 1899 timber line (Table A 33). The majority of tested mapping variables, however, 

revealed no sufficient significance differences between the relevés above and below the 1899 timber 

line (Figures 22 and 29; Table A 33). We therefore draw the conclusion that these causes (land-use 

changes or climate warming) cannot be clearly disentangled from each other, underlining the 

difficulty in defining dynamics of vegetation succession for research purposes (Strähl & Burga in 

prep.). Hence, the results provided by this experimental design remain provisional. 

Nevertheless, our results reveal different tendencies in vegetation dynamics within the timber-

line ecotone that are thought to be related to the different impacts of climate warming and land-use 

changes. At some sites we observed dynamics consistent with the initial signs of climate warming, 

thus providing evidence for an effect of global warming on tree regeneration success and the timber 

line in subalpine ecosystems of the Swiss Alps. A large proportion of the current timber-line ecotone 

was found to be following a disturbed process of plant succession, which is determined by pasture 

reduction; and a minor proportion was found to be following a non-disturbed process, most probably 

responding to the impact of global warming; although for the majority of relevés the cause of current 

dynamics in forest vegetation succession is unclear, neither attributable to the impact of global 

warming nor pasture reduction. Relevés showing a non-disturbed vegetation pattern are limited to 

localized areas of the timber-line ecotone, as are areas where we propose the timber line will shift 

upward above its potential limit in the coming decades (Figures 30 and 31). 
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5.1 Vegetation pattern analysis 

5.1.1 Vegetation structure 

The results for vegetation structure are according to our expectations, because they evidence 

younger vegetation in relevés above the 1899 timber line, in that trees in those relevés are 

predominated by krummholz forms and grow less densely together (Figures 23 and 24; Table A 12). 

Our surveys and analysis showed significant differences between the means for vegetation relevés 

above and below the 1899 timber line for the test variables “amount of trees and krummholz” and 

therefore agree with the studies by Körner and co-authors that trees above the timber line are 

shorter and krummholz are, on average, more frequent above than below the timber line, because of 

harsher climate conditions affecting the growth of trees at their upper limit. The higher ratio of 

krummholz, not only in vegetation relevés above, but also in vegetation relevés below the 1899 

timber line (61% of all recorded tree species), but also the lack of significant differences in tree 

height and shortest tree distance between the sets of relevés above and below the 1899 timber line 

(Figure 22), however, lends no support to suggestions given by Körner and co-authors (Körner 1998, 

2003; Körner & Paulsen 2004; Körner 2012; Table A 11).  

In agreement with other calcareous northern alpine regions, the current timber line of the 

study region is shaped by Norway spruce, while European larch or Cembran pines, which dominate in 

the crystalline central Alpine regions, are less frequent (Figure 24). Our results showed a wide 

population of Pinus cembra trees at the slope from Itramen towards Kleine Scheidegg and therefore 

confirm the observations of Imhof (1900) and Rikli (1909) (Figures 25-26 and 28). The wide 

distribution of Pinus cembra krummholz in relation to trees of 2 m and taller, but also the large 

distribution of Picea abies, are evidence of Picea abies continuously invading areas of former Pinus 

cembra forests (Figures 24-26 and 28). In only few areas (e.g. relevés 7, 21 and 23; see Figure 24), did 

we find Pinus cembra trees of 2 m and taller, which is evidence of a relict of the upper limit of former 

Swiss stone pine forests (Figure 28). 

5.1.2 Phyto-diversity 

The results for phyto-diversity evidence vegetation with a disturbed character in the majority of the 

mapped relevés, especially for relevés below the 1899 timber line, which is consistent with areas that 

are easily accessible from the nearest barn being or having been exploited for land-use practices such 

as pasturing (Tables A 11 and 21). In addition, the recorded vegetation pattern at the timber-line 

ecotone showed dense patterns of ericaceous dwarf shrubs (Calluna vulgaris, Rhododendron 

ferrugineum or Vaccinium myrtillus) and single spruces, which is an indication of areas that are not 

profitable for land-use practices showing reduction in pasture activity and a transition form to the 

potential coniferous forest. The invaded Geo montani-Nardetum surfaces at the timber-line ecotone 
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were lacking for the main part in character species. Especially, competitive weak herbs species such 

as orchids (e.g., Pseudorchis albida) were missing in the majority of relevés, while undemanding 

trivial vegetation with plant species typical of rich meadow communities (Leontodon helveticus,  

Poa alpina, Rumex alpestris or Deschampsia cespitosa) were frequent (Tables A 1-8, 22-23).  

In contrast, in only few relevés did the vegetation pattern of the current timber-line ecotone show a 

sign of non-disturbed character, in probable response to global warming, with a wider abundance of 

character species associated with Geo montani-Nardetum and a scarcity of dwarf shrub species 

(Tables A 1-8, 22-23). However, in none of our surveyed relevés in the study region was the 

maximum amount of 9 character species recorded (Braun-Blanquet 1948/1949; Delarze & Gonseth 

2008).  

Our results were therefore consistent, firstly with our studies of the Lauterbrunnen valley, 

where a large proportion of mapped Geo montani-Nardetum grassland at the timber-line ecotone 

showed a transition form with ericaceous dwarf shrubs (Strähl & Burga in prep.; see Tables A 45-46), 

and secondly with studies that the majority of newly forested area that developed in the Swiss Alps 

between 1985 and 1997 was a result of ingrowth below the potential regional treeline, indicating 

land-use as the most likely driver (Gehrig-Fasel et al. 2007). Significant differences in test variables 

between relevés above and below the 1899 timber line were displayed only in the abundance of  

Geo montani-Nardetum character species, but not in the density of deteriorated Geo montani-

Nardetum to heathland (Figure 29). Hence, our vegetation mapping results do not directly agree with 

other studies carried out in the northern Swiss Alps that show long-term effects of former pasturing 

on the composition of the plant communities, where soil degradation and exhaustion cause a 

continuous transformation of grassland into non-productive heathland (Lüdi 1948; Hegg 1984a, b; 

Hegg et al. 1992, 1993; Spiegelberger et al. 2006). Nevertheless, our findings that the abundance of  

Geo montani-Nardetum character species can differentiate naturally determined/undisturbed areas 

from anthropo-zoogenically determined/disturbed areas demonstrates the potential of using the 

appearance and abundance of association character species to identify the driving process of 

vegetation dynamics in a region (Braun-Blanquet 1921, 1964; Dierschke 1994; Ellenberg 1996; 

Landolt et al. 2010). 
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5.2 Areas attributed to an upward shift of the Alpine timber line in 

probable response to global warming 

Our vegetation mapping results show a sign of spruce forest progress responding to pasture 

reduction in fewer than half the relevés (47%) (Figures 30 and 31), even though changes in the 

organization of agriculture and increasing tourism have led to non-profitable areas for pasture with 

complicated access being progressively abandoned (Naegeli-Oertle 1986; Liechti et al. in prep.).  

In addition, there are only few relevés (16%) where global warming may be the predominant driver 

of spruce forest progression. Those relevés are limited to peripheral areas, where topography  

(i.e., steep and isolated slope sites) does not allow the pronounced land-use pressure applied in 

locations with better access to the closest barn (Table A 11). A large proportion of our mapped 

relevés (38%) cannot be clearly attributed to either pasture reduction or global warming, in which 

cases the current dynamics of vegetation succession at the timber-line ecotone are likely being 

determined by other reasons, e.g., site conditions (Figures 30 and 31). The majority of our relevés 

can only be attributed an initial or intermediate stage of spruce forest development (75%) and are 

expected to remain at this stage for centuries to come, even in a warmer climate (Figure 31;  

Table A 36). The test variable “density of deteriorated Geo montani-Nardetum to heathland” is 

supposed to show a significant difference between areas affected by pasture reduction and areas 

affected by global warming when forests are reinvading their former terrain after clearance and at 

the same time progressing beyond their potential limit. Hence, the lack of significant differences 

between the sets of relevés above and below the 1899 timber line, especially in areas with dense 

patterns of ericaceous dwarf shrubs supports the observation that a large proportion of our mapped 

relevés cannot be clearly attributed to either pasture reduction or global warming (Hegg et al. 1993; 

Holtmeier 2009; Figure 29). Like our main study site, the test area at Rinderalp also shows a large 

proportion of spruce forest proceeding through the initial or transitional stage of succession, which 

cannot be attributed to a direct response to land-use changes nor to climate warming (Figure 33; 

Table A 37). 

  



Ph. D. Sarah C. Strähl 

 

82 

 

In our study region, Mesozoic Aalenian schists characterize the common bedrock material 

(Figure 17; Table A 11). Schists are highly erodible, low in permeability and form soils with high 

moisture that are prone to landslide activity. In spite of geological substrate allowing soils to develop 

profoundly and assure root penetration (Hoffmann et al. 2014), the easily and plastically deformable 

clays produce an unstable substrate, which is unfavourable for the establishment and growth of 

plant species, in particular more demanding plant species, such as trees (Collet et al. 1938; Lutz & 

Chandler 1955; Ott et al. 1997; Scheffer et al. 2010). In addition, the effects of trampling produced 

either by cattle or browsing livestock are likely to enhance surface instability in areas formed out of 

schists. This is due to frequent trampled surfaces showing a tendency to deepen, while in less 

trampled surfaces, a large raw humus layer accumulates from decomposition of the dry matter 

produced by the dwarf shrubs, which are avoided as pasture weeds and produce an abundant  

A0 (organic)-horizon (Schweingruber 1972). Furthermore, the steep north-facing walls of the Eiger, 

which border the area of investigation, are prone to avalanche, and also the wide extent of ski 

slopes, are, together with the bedrock material, likely producing an unfavourable environment for a 

stable climax forest in the study site (Figure 36).  

In agreement with previous observations, we find that some areas along the slopes near 

Alpiglen have always been vegetated by large patterns of shrubs and ericaceous dwarf shrubs, these 

areas having never been used as pastures, so this vegetation is rather specific to the site than to a 

result of a dynamic abandonment process (Naegeli-Oertle 1986; Hegg & Schneiter 1988; Liechti et al., 

in prep.; Figure 35). Similarly, the existence of widely distributed dwarfed trees, at a markedly low 

current upper limit (this in spite of topography being shaped by a smooth and not steep surface) is 

likely to be attributable to unfavorable site conditions (Figures 24 and 34; Tables A 11 and 30). 

 

Figure 35 Dense pattern of ericaceous dwarf shrub heath near Alpiglen. Photo: S.C. Strähl, July 2009 
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5.3 Fieldwork methods 

The present study reinforces the findings of previous studies that vegetation mappings developed by 

Braun-Blanquet (1964) are important in understanding the potential impact of global warming on a 

subalpine ecosystem at the scale where trees and other plant species develop. However, short-term 

changes in the living conditions and growth behaviour of plants, which are important when 

fingerprinting early signs of the global warming impact within an ecosystem, cannot be analyzed as 

accurate as, for example, isolated analysis of physiological responses of mature tree growth to 

thermal conditions, because the plant compositions reacts with a large time lag (Braun-Blanquet 

1957; Burga & Perret 2001a; Klötzli 2001; Theurillat & Guisan 2001; Walther et al. 2001; Burga et al. 

2007; Burga et al. 2010; Strähl & Burga in prep.; Körner 2012).  

 The short-term impact of global warming on an ecosystem has been also simulated with 

other study methods (e.g., pollen analysis, plant phenology, dendrochronology, modeling etc.) (Burga 

& Perret 1998, 2001b; Theurillat 1998; Zimmermann & Kienast 1999; Kullmann 2000; Defila & Clot 

2001; Bolli et al. 2007). Pollen analysis studies have been able to diagnose initial changes in the 

function of ecosystems. However, this method is time consuming and strongly dependent on how a 

sample is taken in the peat or lake sediments and stored (Burga 1979, 1988; Burga & Perret 1998). In 

particular, changes affected by climate impact are often misinterpreted in a pollen diagram, because 

climate- and anthropogenic-driven impacts often overlap in the pollen analytical profile. For 

example, natural or anthropo-zoogenically caused forest fires are often misinterpreted in pollen 

diagrams, because natural or anthropo-zoogenic caused forest fires can change the ratio between 

tree and non-tree pollen and may mimic a climate fluctuation (Frenzel 1977; Burga & Perret 1998). 

Plant phenology has been applied as an important method for the purpose of climate and vegetation 

studies (Defila & Clot 2001; Menzel & Estrella 2001). However, the interpretation quality regarding 

the measurements of a phenophase is strongly influenced by the number of observation posts and 

the observing personnel. A lack of observation posts or changing observing personnel can influence 

the quality of measurements and deteriorate the interpretation quality. As a consequence, 

measurements of the entire cycles of certain phenophases within a year can be missing and though a 

general trend of an ecosystem change cannot be mirrored with plant phenology (Defila & Clot 2001). 

Dendrochronology belongs to one of the most reliable method for the interpretation of short-term 

impact of global warming. In addition, dendrochronology allows to establish past and present climate 

variations near the timber line, which are reflected in the age pattern, growth form and rate of 

increment of the trees. Dendrochronological and dendroclimatological investigations at the upper 

timber line have been consulted to detect changes in the position of the timber line through the past 

few decades by analyzing the distribution of tree ages to distinguish between a warming and cooling 

period, and have been found to be highly suitable for reconstructing past climatic fluctuations.  
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While studies in dendrochronology are well-suited to monitoring the impact of global ecological 

change, modest changes in temperature, for example sudden frost or extremely low winter 

temperatures, are difficult to interpret, because radial growth changes may respond with a certain 

time lag. Moreover, other locally induced changes that occur over a short-term period, such as 

topographic or edaphic changes or changes in the intensity of land use, which further alter the 

timber line position, may also be wrongly interpreted and mimic a climate change. A more precise 

interpretation can be provided by studies in Herbchronology, which follow the counting of annual 

growth rings in the secondary root xylem of perennial herbaceous plants. Herbchronology is referring 

to dendrochronology because of the similarity of the structures investigated. Counting of annual 

growth rings can be used to estimate plant age, similarly as it is done in trees using 

dendrochronology (Beniston et al. 1997; Kullmann 2000; Paulsen et al. 2000; Burga & Perret 2001b; 

Motta & Nola 2001; Dietz & Schweingruber 2002; Bolli et al. 2007; Devi et al. 2008; Kirdyanov et al. 

2012; Hagedorn et al. 2014). Modeling is the only available tool that has been demonstrated to be 

able to assess the impact of long-term climatic change in an ecosystem over several decades 

(Beniston et al. 1997; Haeberli & Beniston 1998; Zimmermann & Kienast 1999; Heiri et al. 2006; 

Beniston 2006). Models have been developed and used to show distinct differences in vegetation 

pattern, to reproduce the impact of long-term climatic change on the diversity of plant species and to 

analyze changes in land cover density (Theurillat 1995; Allen & Walsh 1996; Jens & Körner 2001; 

Theurillat & Guisan 2001; Alftine & Malanson 2004; Gehrig-Fasel et al. 2007). Realistic predictions of 

short-term sequences and spatial changes occurring in transitional areas such as ecotones may need 

very accurate data (e.g., migration, competition or human disturbance of the landscape, which are 

crucial to describe dynamics of vegetation succession), which are not always available (Bircher et al. 

2015).  

For the purpose of long-term monitoring, however, vegetation mappings may lack in accuracy, 

since repeated observations over several decades on permanent plots are required (Klötzli 2001).  

A change in observers (e.g., 20 to 30 years later) can affect the data quality. Interpretation regarding 

type and frequency of plant species may differ among the observers and lead to a less accurate result 

than less subjective techniques like root-zone measurements (Körner 1998; Körner & Paulsen 2004). 

In addition, timber lines might be compared to subnival peaks less suited for long-term vegetation 

monitoring over centuries, because they are often located in areas with better access for human and 

cattle (Vittoz et al. 2008). 
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5.4 Experimental design 

The locations of our relevés within newly forested area at the timber-line ecotone were chosen to 

best detect differences between sings of a possible warming impact and signs of pasture reduction 

and to exclude or keep constant other impacts (e.g., topography, substrate, surface processes, etc.). 

Moreover, the altitudinal limit of the timber line in the year 1899 was applied as reference to 

separate a set of relevés most likely responding to the impact of changes in land-use activity from a 

set, in which a possible warming impact might be recognized. Because the region of Grindelwald has 

been shaped by varying landscape features that produces a heterogeneous outcome of different 

substrates, we could only select a limited number of sites for our relevé mappings that satisfied the 

criteria of our study (Figure 17; Table A 11). Nevertheless, our results have allowed us to map the 

vegetation patterns at the current timber-line ecotone and to assess differences between non-

disturbed and disturbed vegetation patterns at the timber-line ecotone. 

However, not all our mapping variables showed significant differences between the set of 

relevés expected to be non-disturbed influenced by global warming, and the set expected to be 

disturbed, influenced by changing land-use practices, hence pointing to limitations in this current 

study. First of all, this study records the vegetation pattern at the timber-line ecotone only at this 

single moment in time, which may not be sufficient to accurately determine the driving influence. 

Because plant species are seldom regularly distributed at a site, it might be difficult to gain an 

accurate result on the significance between the differences of vegetation records. In addition, the 

large number of non-significant results also emphasizes the difficulty of site selection in this study 

region, whose complex landscape features make it difficult to identify areas at the timber-line 

ecotone where signs of a possible warming impact can be disentangled from signs of pasture 

reduction and other impacts (e.g., topography, substrate, surface processes etc.) are as much as 

possible excluded or kept constant. Impacts of global warming may not be as distinctive in the Alps 

as in other high mountain regions of the World (e.g., Rocky Mountains, Russian Ural-mountains, 

Swedish Scandes), because the timber line of the European Alps has been heavily affected by 

anthropo-zoogenic impacts over centuries (Burga 1988; Burga & Perret 1998, 2001a; Kullmann 2000; 

Moiseev & Shiyatov 2003; Wick et al. 2003; Butler et al. 2009). Furthermore, this current study has 

not considered photographic comparisons between former and current timber lines, as presented by 

the studies of Moiseev & Shiyatov (2003) in the Russian Ural-mountains. Neither have we 

incorporated dendroecological analysis, whereas such tree age studies have proven to be useful for 

reconstructing the process of tree establishment and growth dynamics at the timber line in the 

northern Central Swiss Alps, and for assessing whether these are in response to recent changes of 

climate, land-use activity or site properties (Bolli et al. 2007). In addition, other climate parameters 
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besides the temperature effects should also be considered when discussing vegetation succession 

dynamics at the Alpine timber line. For example, studies carried out in the Russian Ural have shown 

that the primary cause of forest advance has been particularly released by increases in snow fall, 

having a larger impact on tree survival than increases in temperature (Hagedorn et al. 2014). 

5.5 Suggestions for future research 

In order to overcome the limitations of this study, future research should focus primarily on a  

long-term monitoring of vegetation pattern on permanent relevés, because recording changes in 

plant species composition requires multiple observations over decades that must be repeated on 

permanent relevés, in order to achieve a clearer picture of the magnitude of a possible global 

warming impact. We therefore suggest that the number of relevé mappings of this current study at 

the timber-line ecotone be increased and that these relevés be focussed on a certain plant 

community. Thereby, relevé mappings should also consider areas of pure grassland community, 

where the impacts of possible climate warming and anthropo-zoogenic effect are interrupted by 

neither site conditions nor landscape processes and relevés no larger than 4 m2 should be used to 

avoid inhomogeneity of too many randomly interspersed plant species. We additionally propose, on 

the one hand, to monitor changes in species richness and richness of functional plant groups, mean-

Landolt-indicator-values, and community mean traits (e.g., specific leaf area, leaf dry-matter content, 

seed mass, plant height etc.) over time. On the other hand, a calculation of the turnover of species 

composition in grassland communities, as performed by Fischer & Stöcklin (1997), would also be 

useful for detecting changes in the intensity of land-use practice over time. 

We further suggest that long-term vegetation monitoring also includes other parameter (e.g., 

precipitation intensity and snow cover pack, type of substrate, type, frequencies and consequences 

of surface processes) that consider not only how the distribution patterns of plant species are 

determined by changes in climate warming or intensity of land-use practice over time, but also the 

ecological requirements of plant species. Including such parameters will allow assessment of 

ecological factors like surface stability, nutrient availability and drought stress, which are important 

for plant growth, and enable better understanding of the current and future dynamics of the Alpine 

timber line.  
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The inclusion of dendroecological analysis would be an important supplement to the results of 

vegetation pattern analysis, giving information on the age and evolution of tree growth dynamics 

within the mapped vegetation relevés at the timber-line ecotone, and helping to better understand 

the speed of forest invasion into non-forested areas. Moreover, a combined monitoring of 

vegetation mapping and simulations with remote sensing methods would permit a more accurate 

interpretation of the dynamics of vegetation succession at the timber line over a long-term period, 

especially in areas with reduced access for field work studies. Satellite images give an excellent 

classification of forest surfaces and allow a physiognomic-structural classification of vegetation in the 

range of sub-formations, but also at the cohort level (Hörsch 2003). Another approach would be to 

combine GIS-simulation and biomonitoring by developing models of how the topology of a plot of 

land affects its accessibility and hence the intensity of anthropo-zoogenic practices on it  

(Liechti et al., in prep.). This approach would help to better understand the non-synchronous 

behavior of the Alpine timber line with regard to future changes in the disturbance regime, notably in 

areas in which the forest limit has retreated over the past 100 years (Providoli & Kuhn 2012), and to 

quantify the area of timber line (e.g., along the steep limestone rock-walls of the Eiger) that is likely 

to fringe and become more degraded with ongoing environmental change. 
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6 Outlook 

From the results provided by this study, we propose that Vaccinio-Piceion spruce forest will further 

develop and progress in the study region in the coming 100 years. For the majority of our surveyed 

relevés, we found a tendency for an upward shift in the timber line, which has been largely 

attributed to pasture reduction, and thus, spruce forest vegetation is continuously reinvading its 

former terrain, as noticed in other Alpine regions. In wide areas of our study site, however, we 

propose that spruce forests are likely to remain at the transitional stage of development and not 

reach the climax forest stage. The Alpine timber line might therefore not be able to regain its former 

habitat, even after pasture reduction (Figure 37). The unfavorable site conditions, which are given by 

the wide extent of Aalenian schists and the high risk of avalanche activity, are expected to strongly 

hamper the current advance of trees towards their potential limit, even in a warmer climate. As a 

result, we propose a future invasion of Vaccinio-Piceion spruce forests into  

non-forested areas in around only 50% of the study region. The majority of these sites are situated 

near Arvengarten, Bustiglen, as well as between Kleine Scheidegg and Lauberhorn, but some areas 

are located between Fallboden and the station of the Eiger glacier (Figure 36, 37). In barely 25% of 

the current timber line do we propose that the altitudinal maximum, at 2200 m a.s.l., will be reached 

with continuous warming of 0.6 °C per century (IPCC 2013). 
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Figure 36 Extent of avalanche tracks and ski slopes within the study region 
Source: Topographical map: PK25 © 2006 swisstopo; avalanches: Lawinenkataster des Kantons Bern © Abteilung 
Naturgefahren des Kantons Bern; ski piste: Bauverwaltung Einwohnergemeinde Grindelwald (2001); forest area in 2007: 
VECTOR25 © swisstopo; average potential timber line altitude and altitudinal maximum of potential timber line: Landolt 
2003, Holmeier 2009; largest forest cover increases 1899-2005 at the upper timber line: Providoli & Kuhn 2012; 
parameters for the interpretation of vegetation mapping results: own observation of vegetation mappings of the period 
2008-2010. 
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Figure 37 Possible forest expansion and upward shift in the Alpine timber line in the study region with continued global 
warming of 0.6 °C and continued reduction in pasture activity in the coming 100 years. Areas are selected as a function 
of: (a) favorable and unfavorable substrate that respectively favors or restricts forest vegetation (Aalenian schists are 
considered as unfavorable substrate) and (b) risk potential of avalanche activity. Areas expected to show an upward shift 
in timber line towards the altitudinal maximum of 2200 m are emphasized by the two black rectangles. 
Source: Topographical map: PK25 © 2006 swisstopo; forest area in 2007: VECTOR25 © swisstopo; average potential 
timber line altitude, altitudinal maximum of potential timber line and potential natural timber line: Landolt 2003, 
Holmeier 2009; potential of timber line with increasing global warming and area possible for spruce forest to progress: 
Lawinenkataster des Kantons Bern © Abteilung Naturgefahren des Kantons Bern, Ereigniskataster NGKAT © Abteilung 
Naturgefahren des Kantons Bern, Collet et al. 1938; largest forest cover increases at the upper timber line: Providoli & 
Kuhn 2012; parameters for the interpretation of vegetation mapping results: own observation of vegetation mappings of 
the period 2008-2010. 
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In the whole region of Grindelwald, we expect the timber line to evolve in a similar way to that 

proposed for the studied region, behave non-synchronously with and show an uncertain response to 

the global warming impact (Figures 37 and 38).  

We propose an increase in the forest limit to be produced more by pasture reduction and 

less by global warming. Moreover, site conditions (e.g., edaphic and topographic factors), but also 

surface processes, are likely affecting large areas of the current forest limit (Figure 38; Table 6).  

In response to the continuous melting of glaciers ice and permafrost surfaces, surface stability will be 

affected. As a consequence, rock-falls or landslides (e.g., at the Mettenberg above Stieregg at  

2700 m a.s.l.) are expected to be triggered, but also sudden extreme events, since each landscape 

form exhibits a temporal lifespan that is dependent on the type of bedrock components, type and 

frequency of surface process and can range from seconds to several centuries (Hörsch 2003; Keusen 

2006; Oppikofer et al. 2008; Wagner & Saurer 2008; Werder et al. 2010; Huggel et al. 2011). 

Therefore, we propose that forest vegetation will be restricted in completing its succession 

to the climax stage and that the current forest limit may, despite pasture reduction, not even be able 

to regain its former limit recorded in 1861, and is likely to persist as an unchanged boundary in a 

transitionary stage of its vegetation development. We therefore propose that only 11% of the 

current timber line will be able to reach the potential limit of 2000 m a.s.l. and just 1% the altitudinal 

maximum at 2200 m a.s.l., with continuous warming of 0.6 °C per century (Figure 38; Table 6). 
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Figure 38 Future development of the Alpine timber line in the Grindelwald region in relation to access and event processes dominating in the region. Areas with current forest limit produced by 
possible global warming impact are emphasized by white rectangles. 
Source: Hillshade and contours: Digitales Geländemodell 2m © swisstopo; river system, watercourse, settlement area, rock area, debris area, glacier debris area, glacier area and forest area in 
2007: VECTOR25 © swisstopo; actual forest limit produced by site conditions, possible extent of future forest limit and type of events: Collet et al. 1938, Lawinenkataster des Kantons Bern © 
Abteilung Naturgefahren des Kantons Bern, Ereigniskataster NGKAT © Abteilung Naturgefahren des Kantons Bern; forest limit for the year 1861: DUFOUR © swisstopo; lower and upper forest 
limit and actual forest limit produced by possible global warming impact: Landolt 2003, Holtmeier 2009; actual forest limit produced by land use practices: Arealstatistik 1992/97, © BFS GEOSTAT; 
largest forest cover increases and forest cover increases at the upper timber line: Providoli & Kuhn 2012; walking time to closest barn: Liechti et al., in prep.   
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Table 6 Current forest limit and expected future development of the Alpine timber line in the region of Grindelwald 

current forest limit in the whole region produced by 

land-use practices [%]: 61 site conditions [%]: 38 

(e.g., slope, substrate, topography)  

possible global warming impact [%]: 1 

      

expected future development of the Alpine timber line in the whole region 

increasing forest limit [%]: 38  unchanged forest limit [%]: 62 

      

increasing forest limit produced by:  

pasture reduction [%]: 98 possible global warming impact [%]: 2 

      

increasing forest limit reaching the average potential timber line altitude at 2000 m a.s.l. [%]: 11 

increasing forest limit reaching the altitudinal maximum of potential timber line at 2200 m a.s.l. [%]: 1 

Source: Current forest limit produced by land use practices: Arealstatistik 1992/97, © BFS GEOSTAT, VECTOR25 © 
swisstopo; current forest limit produced by site conditions: Collet et al. 1938, Lawinenkataster des Kantons Bern © 
Abteilung Naturgefahren des Kantons Bern, Ereigniskataster NGKAT © Abteilung Naturgefahren des Kantons Bern; 
current forest limit produced by possible global warming impact: Landolt 2003, Holtmeier 2009; expected future 
development of the timber line: Digitales Geländemodell 2m © swisstopo, Collet et al. 1938, Lawinenkataster des 
Kantons Bern © Abteilung Naturgefahren des Kantons Bern, Ereigniskataster NGKAT © Abteilung Naturgefahren des 
Kantons Bern, VECTOR25 © swisstopo, Landolt 2003, Holtmeier 2009 
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This case study in the Grindelwald region (Northern Swiss Alps) was of great value for understanding 

the current and future dynamics of vegetation succession at the timber line in high mountain 

ecosystems across the globe with regard to global warming (Beniston et al. 1997; Burga et al. 2003; 

Walther et al. 2005b; Beniston 2006). Such high mountain ecosystems are important to understand 

because they are more exposed to atmospheric oscillations, experience a greater availability of 

thermal energy and the reduced stability of formerly glaciated or perennially-frozen slopes enhances 

the risk and frequency of extreme events, such as block-debris flows, mud-flows or rock-falls, that 

are capable of destroying wide areas of the current forest limit (Davies et al. 2001;  

Haeberli & Burn 2002; Beniston & Stephenson 2004; Gruber et al. 2004; Stoffel et al. 2005; Gruber & 

Haeberli 2007; Haeberli 2007; Haeberli & Maisch 2007; Haeberli et al. 2007). 

The reaction to global warming is complex, especially at the local scale where plant species 

develop. For example, tree individuals may modify and change local climate conditions, since each 

tree species has different ecological properties and requirements (e.g., shade tolerant or intolerant, 

pioneer or climax species, animal or wind mediated seed dispersal, etc.), which influence the 

development of tree stands and the structure of the timber line. While competitive species  

(e.g., Fagus sylvatica, Picea abies) rather form dense stands and abrupt timber lines, less competitive 

species (e.g., Larix decidua, Pinus cembra) form open forests that gradually give way to grassland or 

other subalpine vegetation (Holtmeier 1974, 2009).  

In addition, the harsh high-mountain climate prevents the rapid and compete development 

of forest vegetation, because vegetation generally responds to climate change only decades after a 

climate impact (e.g., temperature increase) has been established (Burga 1999; Holtmeier & Broll 

2007). Similarly, the type of substrate is as important as the climate, because grain size and the water 

content of the substrate, micro-relief and micro-climate are all crucial for the development of 

vegetation and soil (Burga et al. 2010).  

As a result, newly forested areas at the timber line may not be able to withstand the 

changing environmental conditions, hence neither reinvade their former limit after pasture reduction 

nor invade new areas beyond their potential limit, and so the advance of timber lines towards the 

potential climatically-driven elevation is expected to be strongly hampered or even impeded. The 

response of timber lines to global warming is therefore rather unpredictable and, in many areas 

across the globe, in disequilibrium with the current climate conditions (Walther et al. 2002; Nagy et 

al. 2003; Jones et al. 2009; Brown 2013; Marcias-Fauria & Johnson 2013). Predicted advances of trees 

towards a given threshold are likely to be driven by geomorphological features and geomorphic 

processes with climate having only a modulating effect (Hörsch 2003; Butler et al. 2007; Zeng et al. 

2007; Holtmeier & Broll 2010). 
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In our current study, we have found a tendency for forest vegetation to be hardly ever 

continuous at the timber line, indicating that the Alpine timber line in Grindelwald is responding 

more to site conditions than to changing climate conditions with elevation. Furthermore, the treeline 

in cleared areas is likely to remain at a depressed elevation in future, below the potential elevation. 

We therefore suggest that the Alpine timber line in the Grindelwald region will not directly respond 

in a uniform manner to ongoing global warming in the coming century, as has been suggested for the 

purely physics-driven boundary of the snow line, and that the expected timber line will be only able 

to shift in local areas with ongoing global warming in the coming 1-2 centuries (Körner 1998; 

Theurillat & Guisan 2001; Kullmann 2002; Körner & Paulsen 2004; Holtmeier & Broll 2005, 2010; 

Körner 2007b; Harsch et al. 2009; Marcias-Fauria & Johnson 2013).  

Compared to the abrupt and thermally controlled snow line, the boundary position of a 

timber line is expected to be driven rather by local ecological impacts than by the thermal impact 

alone. Particular important parameters such as, snow cover pack, snow depth, time of snowmelt or 

snow fungus diverge significantly from the global mean of average temperatures. However, if 

necessary, mean temperatures may be applied as indicators to roughly describe the thermal 

conditions at timber lines (e.g., Tuhkanen 1980, 1993; Oshawa 1990; Perret 2005; Holtmeier & Broll 

2007). 
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7 Conclusion 

This Ph. D. project studied areas of the timber-line ecotone in the Grindelwald region that had shown 

the largest [proportional] increases in forest-cover between 1899 and 2005 in order to investigate 

the importance of vegetation mappings (Braun-Blanquet 1964) for (a) assessing where the 

vegetation pattern has a non-disturbed (natural) character in probable response to global warming 

and where it has a disturbed (anthropo-zoogenic) character indicative of pasture reduction and  

(b) understanding the potential impact of global warming on a subalpine ecosystem at the local scale 

of tree development.  

While previous studies have assumed that the dynamics of vegetation succession differs in 

both structure and phyto-diversity between areas that have been disturbed by anthropo-zoogenical 

practices and areas that are non-disturbed, having experienced natural conditions (Lüdi 1921, 1948; 

Braun-Blanquet 1964; Hegg 1984 a, b; Hegg et al. 1992, 1993, Burga & Perret 2001b; Perret 2005; 

Strähl & Burga in prep.), our results showed that phyto-diversity is more meaningful than plant 

structure for determining whether the vegetation pattern has a non-disturbed or a disturbed 

character. We found that a large proportion of the current timber line shows a disturbed vegetation 

pattern driven by pasture reduction, whereas only a minor proportion shows the non-disturbed 

pattern expected of a response to global warming, and this is limited to a few local areas.  

The majority of studied sites, however, showed a vegetation pattern that was neither clearly 

disturbed nor clearly non-disturbed, making it impossible to attribute the cause of vegetation 

succession at the timber-line ecotone to either global warming or pasture reduction. 

Correspondingly, though we had expected areas of advancing timber line that are at higher altitude 

(than the 1899 average timber line altitude) to have been driven mainly by temperature rise and 

areas at lower altitude to have been driven mainly by pasture reduction, the variables measured to 

characterize the relevés at higher and lower altitudes (e.g., cover and distribution of shrubs and 

herbs, growth and distribution of trees and phyto-diversity) showed no significant differences in 

mean values, with the exception of total number of krummholz, total number of trees, total number 

and density of Geo montani-Nardetum character species (Figures 22 and 29; Table A 33). 

We can conclude, therefore, that the temperature rises generated by global warming are not 

the primary driver of advances in the Alpine timber line in the Grindelwald region observed over the 

last century. Based on this observation, we predict that the Alpine timber line will not directly 

respond in a uniform manner to ongoing global warming in the coming century, as has been 

suggested for the purely physics-driven boundary of the snow line (Körner 1998, 2003 and 2007). 

Instead, in agreement with previous studies, we expect an upward shift in the timber line in only 

some locally favored sites (Walther et al. 2001; Kullmann 2002; Holtmeier and Broll 2005, 2010; 

Burga et al. 2007; Harsch et al. 2009).  
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A.1 Field work raw data for relevés no. 1-32 

A.1.1 Vegetation mapping results  

Table A 1 Vegetation mapping results for the tree and shrub cover of vegetation relevés no. 1 to 16. Plant species are ordered alphabetically (without indication of family).  

Note: Tree cover comprises all trees, small trees and tree seedlings; shrub cover comprises all shrub-, dwarf shrub- and shrublet species. 

                                                                                                 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

trees in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

tr
e

e
s 

Betula pendula                                                 5 2.1             

Picea abies  < 1 r.1 15 2.2 10 2.2             1 +.1 4 1.1                 7 2.1 12 2.2 1 +.1 15 2.2 

Pinus cembra 1-2 +.1 20 2.2 5 2.1             10 2.2 1-2 +.1 1-2 +.1 5 2.1         1 +.1 1 +.1 3 1.1 5 2.1 

Pinus mugo ssp. uncinata             < 1 r.1                         1 +.1                     

Sorbus aucuparia                         < 1 r.1                     3 1.1 4 1.1     1-2 +.1 

total trees [%] 2 35 15 < 1     11 6 2 5 1   13 13 4 22 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

shrubs in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

sh
ru

b
s 

Alnus viridis                                                     4 1.1         

  dwarf shrubs in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

Calluna vulgaris 12 2.3 < 1 r.1 4 1.2 25 2.3     5 2.2 3 1.2 6 2.3 5 2.3 15 2.3 15 2.4 5 2.4         18 2.3     

Erica carnea                                 5 2.3     1 +.1                     

Juniperus nana 8 2.3         1-2 +.1         10 2.3 4 1.3 8 2.3 4 1.3                         

Lonicera caerulea     5 2.3 10 2.3                                     10 2.3 10 2.3     5 2.3 

Rhododendron ferrugineum  8 2.2 1-2 +.2 4 1.3     3 1.3 4 1.3 7 2.3 7 2.3 7 2.3 8 2.3 3 1.2 1-2 +.1 10 2.2 7 2.3 5 2.1 5 2.1 

Vaccinium gaultherioides 5 2.1                                                             

Vaccinium myrtillus 10 2.3 5 2.3 22 2.3 3 1.1     6 2.3 25 2.3 30 3.3 15 2.3 5 2.3 5 2.3 15 2.4 20 2.3 5 2.3 15 2.4 20 2.3 

Vaccinium uliginosum                     2 1.1 9 2.2 6 2.3 < 1 r.1 1 +.1 4 1.3 3 1.2                 

Vaccinium vitis-idaea 3 1.3     5 2.3         5 2.1 7 2.3 20 2.3 10 2.3 20 2.3 3 1.2 4 1.2         7 2.1 3 1.3 

  shrublets in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

Dryas octopetala                                                      8 2.3         

Loiseleuria procumbens             10 2.3     3 1.3 3 1.3     1-2 +.2 3 1.3 10 2.4                     

Salix retusa                 3 1.3                                             

total shrubs [%] 46 12 45 40 6 25 64 73 52 56 41 29 40 34 45 33 

 

  

species 

relevé no. 

species 

relevé no. 
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Table A 2 Vegetation mapping results for the herb cover of vegetation relevés no. 1 to 16. Plant species are ordered according to their family. 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

herbs in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

P
o

ac
e

ae
 

Anthoxanthum alpinum 1-2 +.2 5 2.2 1 +.1             < 1 r.1 < 1 r.1 1 +.1 1 +.1 1-2 +.1             4 1.1 4 1.2 

Avenella flexuosa/  

Deschampsia flexuosa     7 2.2 4 1.1                                                 5 2.2 

Calamagrostis villosa     3 1.1 1 +.2                                     1 +.1 < 1 r.1     < 1 r.1 

Deschampsia cespitosa     1 +.1 < 1 r.1                                     5 2.2 1 +.1     3 1.1 

Festuca rubra 3 1.2         3 1.2 3 1.2 3 1.2 1-2 +.2 1 +.1 4 1.2 3 1.2 1 +.1         < 1 r.1 6 2.4     

Helictotrichon versicolor                 1-2 +.1                     1 +.1                     

Nardus stricta 15 2.2 8 2.2 6 2.2 5 2.2 4 1.2 6 2.2 4 1.2 4 1.2 4 1.2 5 2.2 5 2.2 15 2.2 6 2.2 4 1.2 12 2.2 10 2.2 

Phleum alpinum                                                             1-2 +.1 

Poa alpina 4 1.2 3 1.1                                     4 1.1             1 +.1 

C
yp

e
ra

ce
ae

 

Carex sempervirens 4 1.2             1-2 +.1     1 +.1 3 1.2 1-2 +.1 1-2 +.1 4 1.2                     

Ju
n

ca
ce

ae
 Juncus trifidus                                 1-2 +.1                             

Luzula multiflora 6 2.2         < 1 r.1     1-2 +.1 < 1 r.1     1 +.1 1 +.1 1 +.1 4 1.1     1-2 +.1 < 1 r.1     

Luzula sylvatica ssp. sieberi     4 1.1 3 1.2                                     < 1 r.1         1 +.1 

Li
lia

ce
ae

 

Paradisea liliastrum                                                         3 1.2     

Veratrum album  

ssp. album 
            1-2 +.1     7 2.2 4 1.2 < 1 r.1 < 1 r.1 1 +.1 1-2 +.1                     

Ir
d

ac
e

ae
 

Crocus albiflorus             1-2 +.2 3 1.2 3 1.2 1 +.1     1 +.1 1-2 +.2 4 1.2                     

O
rc

h
id

ac
e

ae
 

Pseudorchis albida             1-2 +.1     1 +.1     < 1 r.1     < 1 r.1                         

Nigritella nigra                 < 1 r.1                                             

P
o

ly
go

n
ac

e
ae

 

Rumex alpestris                                                     3 1.1         

Polygonum bistorta                             < 1 r.1                                 

Polygonum viviparum                                             1-2 +.1                 

species 

relevé no. 
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Table A 2 (continued) 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

herbs in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

C
ar

yp
h

yl
la

ce
ae

 

Silene vulgaris  

ssp. vulgaris 
        3 1.1                                                     

R
an

u
n

cu
la

ce
ae

 Pulsatilla alpina  

ssp. alpina 
                1 +.1                                             

Ranunculus alpestris                  1-2 +.1 1 +.1                                         

Trollius europaeus                      < 1 r.1                                         

R
o

sa
ce

ae
 

Alchemilla alpina      3 1.3 1 +.1     1 +.1                             14 2.2 1 +.1 1-2 +.1     

Alchemilla monticola     10 2.3 14 2.3         3 1.1                                 2 1.2     

Alchemilla pentaphyllea                                                     5 2.2 < 1 r.1     

Geum montanum     < 1 r.1 < 1 r.1 5 2.2 1-2 +.1 2 1.1 1-2 +.1 1 +.1 < 1 r.1 < 1 r.1 3 1.1 3 1.1 < 1 r.1 3 1.2 1-2 +.1 1 +.1 

Potentilla aurea  < 1 r.1 8 2.3 1 +.1 3 1.1 1 +.1 3 1.1 1 +.1 1 +.1     3 1.1     1-2 +.1 1-2 +.1     1 +.1 3 1.2 

Potentilla erecta < 1 r.1 7 2.3 10 2.2 1-2 +.1 1 +.1 3 1.1 < 1 r.1 1-2 +.2     1-2 +.1     6 2.2 3 1.1 4 1.1 1 +.1 4 1.2 

Fa
b

ac
e

ae
 

Anthyllis vulneraria  

spp. alpestris 
                                                    6 2.2         

Hippocrepis comosa                  3 1.1                                             

Trifolium alpinum              1 +.1 1-2 +.1 1 +.1 3 1.1 1 +.1 1 +.1 1-2 +.1 3 1.1     1-2 +.1             

Trifolium pratense  

ssp. pratense 
        1 +.1     1 +.2 1-2 +.1                                     1 +.2 

G
e

ra
n

ia
ce

ae
 

Geranium rivulare 1 +.2                                                             

Geranium sanguineum                                                     5 2.2         

V
io

la
ce

ae
 

Viola cenisia                     1 +.1                                         

O
n

ag
ra

ce
ae

 

Epilobium angustifolium                                                     < 1 r.1         

species 

relevé no. 
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Table A 2 (continued) 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

herbs in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

A
p

ia
ce

ae
 Astrantia major                                                 1 +.1 1-2 +.1         

Ligusticum mutellina                         1 +.1     1 +.1                             

Ligusticum mutellinoides                 4 1.2 4 1.2                                         

O
xa

lid
ac

e
ae

 

Oxalis acetosella     6 2.3 5 2.3                                     5 2.3         8 2.3 

P
yr

o
la

ce
ae

 

Pyrola rotundifolia                                                     < 1 r.1         

P
ri

m
u

la
ce

ae
 

Primula farinosa                  4 1.1 1 +.1                                         

G
e

n
ti

an
ac

e
ae

 Gentiana acaulis              1 +.1 1 +.1 1-2 +.1 1 +.1                                     

Gentiana asclepiadea 3 1.1                                                             

Gentiana purpurea 3 1.2                             < 1 r.1     1 +.1                     

Gentiana verna                 5 2.1                                             

La
m

ia
ce

ae
 

Ajuga pyramidalis                 8 2.1 4 1.1                                         

O
ro

b
an

ch
ac

e
ae

 

Bartsia alpina                 10 2.2                                             

Euphrasia rostkoviana         4 1.2                                                     

Pedicularis tuberosa                             1-2 +.2     1 +.1 1 +.1             5 2.1     

Pedicularis verticillata                                                                 

  

species 

relevé no. 
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Table A 2 (continued) 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

herbs in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

P
la

n
ta

gi
n

ac
e

ae
 

Plantago alpina     1-2 +.1 1 +.1 1-2 +.1 3 1.1 1-2 +.1 < 1 r.1 < 1 r.1         1 +.1 5 2.2 4 1.1 4 1.2 5 2.1 3 1.1 

D
ip

sa
ca

ce
ae

 

Scabiosa lucida                                                 < 1 r.1 1 +.1         

C
am

p
an

u
la

ce
ae

 

Campanula barbata             < 1 r.1     1-2 +.1     < 1 r.1                                 

Campanula rhomboidalis         < 1 r.1                                                     

Phyteuma spicatum                                         1 +.1                     

A
st

e
ra

ce
ae

 

Achillea millefolium                         1 +.1                                     

Adenostyles alliariae                                                 < 1 r.1 3 1.1         

Arnica montana 1 +.1 1-2 +.1     1-2 +.1 5 2.2 3 1.1 1 +.1 1 +.1 1 +.1 5 2.2 1-2 +.2 3 1.1 3 1.1     6 2.2     

Carduus personata                                                     < 1 r.1         

Cirsium acaule                                             3 1.1                 

Cirsium helenioides                 1 +.1                                             

Crepis aurea                             < 1 r.1 1 +.1 6 2.2                         

Hieracium alpinum         < 1 r.1                                     1-2 +.1             

Hieracium prenanthoides 1-2 +.1                                                             

Homogyne alpina  1 +.1 5 2.3     3 1.1 1 +.1 3 1.1 1 +.1 < 1 r.1 1-2 +.1 1 +.1 1-2 +.1 8 2.3     10 2.2 3 1.1 4 1.2 

Leucanthemum adustum                      1-2 +.1                         < 1 r.1             

Senecio ovatus         < 1 r.1                                                     

Leontodon helveticus 3 1.1 1-2 +.1 1 +.1 1 +.1 3 1.2     1-2 +.1 1-2 +.1 1 +.1 1-2 +.1 1 +.1 1 +.1 3 1.1     < 1 r.1 4 1.2 

Taraxacum alpinum                                              9 2.1                 

 

  

species 

relevé no. 



Appendix: Ph. D. Sarah C. Strähl 

 

6 

 

Table A 3 Vegetation mapping results for the pteridophyte cover of vegetation relevés no. 1 to 16. Plant species are ordered alphabetically (without indication of family). 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

pteridophytes in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

p
te

ri
d

o
p

h
yt

e
s 

Athyrium distentifolium     < 1 r.1 3 1.1                                     < 1 r.1         1 +.1 

Blechnum spicant                                                     1-2 +.1         

Gymnocarpium dryopteris                                                     < 1 r.1         

Huperzia selago                                 1 +.1                 3 1.2         

total herbs  

& pteridophytes [%] 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

48 76 59 35 73 61 25 18 23 37 35 65 51 59 52 55 

 

Table A 4 Vegetation mapping results for the mosses and lichens cover of vegetation relevés no. 1 to 16. Plant species are ordered alphabetically (without indication of family). 

 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

mosses & lichens in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

m
o

ss
e

s 
&

 li
ch

e
n

s Cetraria islandica                 3 1.3 5 2.3 < 1 r.1             < 1 r.1         5 2.5     5 2.2 

Cladonia rangiferina         5 2.3 15 2.3             < 1 r.1 5 2.3 5 2.3 4 1.3     10 2.4     10 2.3 1 +.3 

Polytrichum sexangulare 20 2.3 15 2.3 15 2.3 5 2.3 4 1.3 5 2.3 5 2.3 5 2.3 15 2.3 3 1.3 1 +.1 4 1.3 15 2.4 20 2.5     20 2.4 

Rhizocarpon geographicum                                         5 2.3                     

total mosses & lichens [%] 20 15 20 20 7 10 5 5 20 8 10 4 25 25 10 26 

 

  

species 

relevé no. 

species 

relevé no. 
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Table A 5 Vegetation mapping results for the tree and shrub cover of vegetation relevés no. 17 to 32. Plant species are ordered alphabetically (without indication of family).  

Note: Tree cover comprises all trees, small trees and tree seedlings; shrub cover comprises all shrub-, dwarf shrub- and shrublet species. 

 
S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

trees in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

tr
e

e
s 

Larix decidua                             < 1 r.1                                 

Picea abies  25 2.2 30 3.3     5 2.2 5 2.1             1 +.1 1-2 +.1 < 1 r.1 3 1.1 4 1.2 3 1.1 9 2.2     

Pinus cembra     7 2.2         10 2.1 6 2.1 5 2.1 3 1.1     3 1.1 1 +.1                 < 1 r.1 

Sorbus aria < 1 r.1                                                             

Sorbus aucuparia 1 +.1 3 1.1                             < 1 r.1                         

total trees [%] 25 37   5 15 6 5 3 1 5 1 3 4 3 9 < 1 

 
S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

shrubs in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

sh
ru

b
s 

Alnus incana     < 1 r.1                                                         

Alnus viridis 1 +.1 1-2 +.2     4 1.3                                                 

  dwarf shrubs in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

Calluna vulgaris         3 1.3 6 2.3 15 2.3 1-2 +.1 < 1 r.1 15 2.3 7 2.3 7 2.2 10 2.3 10 2.3 15 2.3 23 2.4         

Empetrum  

hermaphroditum 
        1 +.1                         9 2.2                         

Erica carnea             5 2.3                                         4 1.3     

Juniperus nana         1 +.3 5 2.3 20 2.3 7 2.3     5 2.3 3 1.3 6 2.3 < 1 r.1 18 2.4 20 2.4 10 2.4 5 2.3     

Lonicera caerulea 15 2.4 5 2.4                                                         

Rhododendron ferrugineum  4 1.3 5 2.3 10 2.3 3 1.1 10 2.1 10 2.3 13 2.3 10 2.3 15 2.3 8 2.3 10 2.3 6 2.2 5 2.2 4 1.1 6 2.3 15 2.3 

Vaccinium gaultherioides         6 2.3         15 2.4 25 2.3 10 2.3 8 2.3 8 2.3 6 2.3                     

Vaccinium myrtillus 20 2.4 10 2.4 12 2.3     10 2.4 25 2.4 15 2.3 15 2.3 13 2.3 18 2.3 15 2.3 18 2.4 10 2.3 22 2.3 3 1.1 10 2.3 

Vaccinium uliginosum                                                 7 2.2         1 +.1 

Vaccinium vitis-idaea 3 1.1     6 2.3     5 2.2 5 2.3 5 2.2 1-2 +.1 5 2.2 3 1.3 4 1.1 7 2.2 4 1.1 1-2 +.1 1-2 +.1 4 1.2 

  shrublets in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

Dryas octopetala              6 2.3                                         5 2.3     

Polygala chamaebuxus             10 2.3                                         5 2.3     

total shrubs [%] 43 22 39 39 60 64 58 57 51 59 45 59 61 61 30 30 

 

  

species 

relevé no. 

species 

relevé no. 
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Table A 6 Vegetation mapping results for the herb cover of vegetation relevés no. 17 to 32. Plant species are ordered according to their family. 

 
S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

herbs in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

P
o

ac
e

ae
 

Anthoxanthum alpinum         1 +.1 3 1.2 1 +.1 3 1.2 1-2 +.1 4 1.2 1-2 +.1 1 +.1 3 1.1 6 2.2 3 1.1 5 2.1 3 1.2     

Avenella flexuosa/  

Deschampsia flexuosa 
    1 +.1                                                         

Calamagrostis villosa 1-2 +.1 3 1.1                                                         

Deschampsia cespitosa 1-2 +.1 4 1.1                                                         

Festuca rubra 1-2 +.1     3 1.1         5 2.2 4 1.2 5 2.2 3 1.2 1 +.1 3 1.2 4 1.2 3 1.2 3 1.1         

Nardus stricta 3 1.2     8 2.2 4 1.2 10 2.2 8 2.2 10 2.2 9 2.2 15 2.2 10 2.2 12 2.2 4 1.2 5 1.2 6 2.2 6 2.2 8 2.2 

Oreochloa disticha             1-2 +.1                                                 

Phleum alpinum                             4 1.1                                 

Poa alpina                     1 +.1     1 +.1 8 2.2 1 +.1 5 2.2                 4 1.2 

C
yp

e
ra

ce
ae

 

Carex curvula spp. curvula                                                         2 1.2 3 1.2 

Carex sempervirens         6 2.1 3 1.2         3 1.2     5 2.2 3 1.1 4 1.1 1 +.1 1 +.1         1 +.1 

Trichophorum alpinum                         < 1 r.1                                     

Ju
n

ca
ce

ae
 

Luzula multiflora 1 +.1     3 1.1 1 +.1         1 +.1             1 +.1 4 1.1         1 +.1 1 +.1 

Luzula sylvatica ssp. sieberi     1 +.1                                                         

Li
lia

ce
ae

 

Veratrum album  

ssp. album 
                                            1 +.1 1 +.1         1 +.1 

Ir
d

ac
e

ae
 

Crocus albiflorus                                                             3 1.2 

O
rc

h
id

ac
e

ae
 

Dactylorhiza maculata             1 +.1                                         < 1 r.1     

Pseudorchis albida         1 +.1                         1 +.1                         

P
o

ly
go

n
ac

e
ae

 

Rumex alpestris 1 +.1                                                             

Polygonum viviparum                 1 +.1                                             

 

species 

relevé no. 
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Table A 6 (continued) 

 
S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

herbs in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

C
ar

yp
h

yl
la

ce
ae

 

Silene vulgaris  

ssp. vulgaris 
                1 +.1                             3 1.1 4 1.1         

R
an

u
n

cu
la

ce
ae

 Anemone narcissiflora             < 1 r.1                                                 

Pulsatilla alpina  

ssp. alpina 
                    3 1.1                     1 +.1 < 1 r.1 3 1.1         

Ranunculus alpestris              1-2 +.1                                         1 +.1 1-2 +.1 

Ranunculus lanuginosus         4 1.1                                                     

Trollius europaeus                                                              1 +.1 

Sa
xi

fr
ag

ac
e

ae
 

Saxifraga exarata  

ssp. moschata 
                                                        4 1.3     

R
o

sa
ce

ae
 

Alchemilla alpina  1 +.1 10 2.3 1-2 +.1 4 1.3 7 2.1 3 1.2 5 2.2 1-2 +.1 < 1 r.1     1 +.1     1 +.1     3 1.3 4 1.2 

Alchemilla monticola 1 +.1 3 1.2         5 2.2                                             

Alchemilla vulgaris         1 +.1             1 +.2     3 1.2     3 1.2                     

Geum montanum         1-2 +.1 3 1.1 < 1 r.1 1 +.1 < 1 r.1 < 1 r.1 1 +.1 1 +.1 1 +.1 < 1 r.1 < 1 r.1 < 1 r.1 2 1.1 3 1.2 

Potentilla aurea      1 +.1 3 1.1     1 +.1             1 +.1 1-2 +.1 1 +.1 1 +.1 1 +.1 1 +.1 3 1.2 3 1.1 

Potentilla erecta     < 1 r.1 4 1.2     1-2 +.1     < 1 r.1 < 1 r.1 < 1 r.1 3 1.1 1 +.1 1-2 +.1 1 +.1 1-2 +.1 3 1.2 1-2 +.1 

Fa
b

ac
e

ae
 Hippocrepis comosa              1-2 +.1                                                 

Trifolium alpinum  < 1 r.1         4 1.1 1-2 +.1 < 1 r.1     1 +.1                         3 1.1     

Trifolium pratense  

ssp. pratense 
                                                            1 +.1 

G
e

ra
n

ia
ce

ae
 

Geranium rivulare 1 +.1                     1 +.2                                     

Geranium sanguineum             1 +.1                                                 

V
io

la
ce

ae
 

Viola cenisia                                         < 1 r.1                 4 1.2 

  

species 

relevé no. 
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Table A 6 (continued) 

 
S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

herbs in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

A
p

ia
ce

ae
 

Peucedanum ostruthium                                 1 +.1                             

Ligusticum mutellina         1-2 +.1             3 1.1     1 +.1     3 1.1                 3 1.2 

O
xa

lid
ac

e
ae

 

Oxalis acetosella 6 2.4 4 1.3                                                         

P
ri

m
u

la
ce

ae
 

Androsace chamaejasme             1-2 +.1         < 1 r.1                             1-2 +.1     

Primula farinosa                                                          1-2 +.1     

Primula veris              3 1.1                                         2 1.1     

G
e

n
ti

an
ac

e
ae

 Gentiana acaulis          1 +.1 4 1.1                         < 1 r.1         1 +.1 3 1.1 4 1.1 

Gentiana asclepiadea                     < 1 r.1     1-2 +.1                                 

Gentiana purpurea         < 1 r.1         1 +.1 < 1 r.1 1 +.1     1 +.1 < 1 r.1 2 1.1     3 1.1         

Gentiana verna                                                         1 +.1     

La
m

ia
ce

ae
 

Ajuga pyramidalis                                                         2 1.1     

O
ro

b
an

ch
ac

e
ae

 

Pedicularis tuberosa         3 1.1 1-2 +.1                 < 1 r.1 < 1 r.1     < 1 r.1 < 1 r.1 < 1 r.1         

P
la

n
ta

gi
n

ac
e

ae
 

Plantago alpina 3 1.1     3 1.1     1 +.1 1-2 +.1     3 1.1 1-2 +.1 1 +.1     1 +.1 1 +.1 4 1.2     3 1.1 

  

species 

relevé no. 
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Table A 6 (continued) 

 
S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

herbs in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

G
lo

b
u

la
ri

ac
e

ae
 

Globularia nudicaulis              1-2 +.1                                         3 1.1     

D
ip

sa
ca

ce
ae

 

Scabiosa lucida                                                     < 1 r.1         

C
am

p
an

u
la

ce
ae

 

Campanula barbata         1 +.1                                 1 +.1 1 +.1 1 +.1         

A
st

e
ra

ce
ae

 

Achillea millefolium             1 +.1                                         2 1.1 1-2 +.1 

Adenostyles alliariae 1 +.1 1-2 +.1                                                         

Adenostyles leucophylla         < 1 r.1                                                     

Arnica montana         1 +.1 1 +.1 < 1 r.1 1 +.1 1-2 +.1 4 1.2 1-2 +.1 4 1.1 1-2 +.1 3 1.1 3 1.1 1 +.1 1 +.1 1 +.1 

Carduus personata 3 1.2                                                             

Carlina acaulis  

ssp. caulescens forma nana 
                                                    < 1 r.1         

Cirsium acaule                 4 1.1                                             

Cirsium helenioides 1-2 +.1 1-2 +.1                                                 1 +.1     

Crepis aurea                     1 +.1                                         

Hieracium prenanthoides                     < 1 r.1 1 +.1 < 1 r.1 3 1.1     3 1.1         3 1.1         

Homogyne alpina  5 2.3 15 2.3 5 2.2 1-2 +.1 1 +.1     1-2 +.1     6 2.2 5 2.2 3 1.1 4 1.2 3 1.2 3 1.2     5 2.2 

Leucanthemum adustum              1 +.1                                         2 1.1     

Leontodon helveticus < 1 r.1             1-2 +.1                     1 +.1 3 1.1 3 1.1 1 +.1     3 1.1 

Leontodon hispidus         3 1.2                                                     

 

  

species 

relevé no. 
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Table A 7 Vegetation mapping results for the pteridophyte cover of vegetation relevés no. 17 to 32. Plant species are ordered alphabetically (without indication of family). 

 
S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

pteridophytes in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

p
te

ri
d

o
p

h
yt

e
s 

Athyrium distentifolium 1 +.1 1-2 +.2                                                         

Blechnum spicant 3 1.1                                                             

Botrychium lunaria     1 +.1                                                         

Gymnocarpium dryopteris < 1 r.1 1 +.1                                                         

Lycopodium annotinum                     3 1.4                                         

Selaginella selaginoides                 1-2 +.3                                             

total herbs  

& pteridophytes [%] 

S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

38 50 57 48 40 32 35 36 53 34 47 38 30 41 52 62 

 

Table A 8 Vegetation mapping results for the mosses and lichens cover of vegetation relevés no. 17 to 32. Plant species are ordered alphabetically (without indication of family). 

 
S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

mosses & lichens in percent (left column) and according to the abundance-dominance index of Braun-Blanquet (right column) 

m
o

ss
e

s 
&

 li
ch

e
n

s Cetraria islandica         3 1.3         5 2.4                                     < 1 r.1 

Cladonia rangiferina     < 1 r.1 6 2.3         1 +.3     5 2.3 5 2.3 12 2.4 5 2.3 1 +.1 < 1 r.1 < 1 r.1 < 1 r.1     

Polytrichum sexangulare 30 2.5 30 3.4 6 2.3 5 2.3 5 2.3 25 2.5 20 2.4 15 2.5 5 2.3 10 2.3 10 2.3     4 1.3     5 2.3 5 2.3 

Rhizocarpon geographicum     < 1 r.1                                     7 2.4 1 +.3 3 1.1         

total mosses & lichens [%] 30 30 15 5 5 31 20 20 10 22 15 8 5 3 5 5 

 

  

species 

relevé no. 

species 

relevé no. 
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Table A 9 Evaluation of vegetation pattern for the vegetation relevés no. 1-16 

Note: The value expressing the cumulative species cover includes parts of vegetation layers (i.e., tree-, shrub-, herb- and moss layer) that overlap, hence a density value of more than 100% can 

occur in general. 

Vegetation pattern S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 

total trees [%] 2 35 15 < 1     11 6 2 5 1   16 17 4 22 

total shrubs [%] 46 12 45 40 6 25 64 73 52 56 41 29 40 34 45 33 

total herbs  

and pteridophytes [%] 
48 76 59 35 73 61 25 18 23 37 35 65 51 59 52 55 

total mosses & lichens [%] 20 15 20 20 7 10 5 5 20 8 10 4 25 25 10 26 

cumulative species cover 

[%] 
116 138 139 95 86 96 105 102 97 106 87 98 132 135 111 136 

total number of  

24 25 30 23 30 32 30 28 28 27 29 19 27 33 23 27 flowering plants,  

ferns, mosses & lichens 

 

Table A 10 Evaluation of vegetation pattern for the vegetation relevés no. 17-32 

Note: The value expressing the cumulative species cover includes parts of vegetation layers (i.e., tree-, shrub-, herb- and moss layer) that overlap, hence a density value of more than 100% can 

occur in general. 

Vegetation pattern S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

total trees [%] 26 40   5 15 6 5 3 1 5 1 3 4 3 9 < 1 

total shrubs [%] 43 22 39 39 60 64 58 57 51 59 45 59 61 61 30 30 

total herbs  
and pteridophytes [%] 

38 50 57 48 40 32 35 36 53 34 47 38 30 41 52 62 

total mosses & lichens [%] 30 30 15 5 5 31 20 20 10 22 15 8 5 3 5 5 

cumulative species cover 

[%] 
137 142 111 97 120 133 118 116 115 120 108 108 100 108 96 97 

total number of  

29 26 32 30 24 25 24 24 26 26 29 25 27 27 33 29 flowering plants,  

ferns, mosses & lichens 
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Table A 11 Summary of the habitat properties of the relevés no. 1-32 

relevee ID 
coordinates 

elevation [m a.s.l.] slope [°] exposure geology & substrate soil depth [cm] micro relief type of land use accessibility [value] 
x  y  

1 641412 159935 1910 16 E Mesozoicum Aalenian schists 41 wavy pasture 0.34 

2 641240 160170 1816 17 S Quaternary moraine 47 planar pasture 0.28 

3 641200 160180 1813 5 W Quaternary moraine 47 planar pasture 0.29 

4 640415 158817 2160 13 SW Mesozoicum Aalenian schists 31 planar extensive pasture 0.75 

5 640572 158321 2227 24 NW Quaternary moraine 31 planar extensive pasture 1.03 

6 640468 158371 2176 24 NW Mesozoicum Aalenian schists 31 light-humped extensive pasture 0.99 

7 640447 159562 1996 23 NE Quaternary moraine 40 wavy pasture 0.47 

8 640134 159712 2038 24 S Mesozoicum iron sandstones 40 wavy pasture 0.42 

9 639960 159853 2121 16 SE Mesozoicum iron sandstones 31 humped extensive pasture 0.60 

10 640261 159897 1997 24 E Mesozoicum iron sandstones 40 wavy pasture 0.29 

11 639948 159852 2124 15 SE Mesozoicum iron sandstones 31 light-humped extensive pasture 0.59 

12 640898 160354 1872 28 SE Quaternary moraine 41 light-humped pasture 0.04 

13 642191 160342 1745 26 N Quaternary moraine 49 humped forestry 0.25 

14 642235 160371 1741 26 N Quaternary moraine 49 humped forestry 0.25 

15 640698 160387 1913 27 SE Mesozoicum iron sandstones 41 wavy pasture 0.16 

16 641200 160200 1811 13 W Quaternary moraine 47 planar pasture 0.29 

17 642197 160400 1733 21 E Quaternary moraine 49 humped forestry 0.23 

18 642219 160402 1731 14 N Quaternary moraine 49 humped forestry 0.65 

19 640961 159026 2045 17 N Quaternary moraine 33 light-wavy extensive pasture 0.77 

20 640035 158099 2022 24 SW Quaternary moraine 31 light-humped extensive pasture 1.07 

21 640689 160329 1898 29 SE Mesozoicum iron sandstones 41 wavy pasture 0.09 

22 641422 159985 1906 7 NE Mesozoicum Aalenian schists 41 wavy pasture 0.34 

23 640988 159107 2028 12 NE Quaternary moraine 33 humped extensive pasture 1.16 

24 641398 159919 1913 13 E Mesozoicum Aalenian schists 41 wavy pasture 0.32 

25 641027 159157 2023 11 N Quaternary moraine 33 humped extensive pasture 0.77 

26 641411 159966 1909 10 NE Mesozoicum Aalenian schists 41 wavy pasture 0.34 

27 640977 159193 2026 11 N Quaternary moraine 33 light-humped extensive pasture 0.66 

28 639737 159734 2137 14 S Quaternary moraine 31 light-humped extensive pasture 0.65 

29 639813 159752 2128 21 S Mesozoicum iron sandstones 31 light-humped extensive pasture 0.66 

30 639853 159744 2118 26 S Mesozoicum iron sandstones 31 light-humped extensive pasture 0.62 

31 640140 158084 2030 29 SW Quaternary moraine 31 light-humped extensive pasture 1.08 

32 640275 159452 2041 12 NE Mesozoicum Aalenian schists 40 wavy pasture 0.49 

Source: Coordinates, elevation, slope and exposition: Digitales Geländemodell 2m © swisstopo; substrate: Collet et al. 1938; soil data, micro relief and type of land use: Hoffmann et al. 2014; 

accessibility: Liechti et al., in prep. 
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A.1.2 Tree height and density  

Table A 12 Vegetation growth expressed by tree height and density (including all trees, small trees and tree seedlings). Height is 

recorded for each tree species and displayed separately for trees (growing ≥ 2 m) and krummholz  

(growing < 2 m). Density is expressed for each tree species within the tree layer by the shortest distances to the neighbouring 

trees, small trees and tree seedlings in cm. Each recorded tree species of a relevé (no. 1 to 32) is displayed in the following 

tables.  

*Note: Shortest tree distance values with less than 5 cm were not able to be calculated and are not displayed in the table. The 

same applies to relevés with only one recorded tree species where there are no distance values shown. **In relevés 5, 6, 12 and 

19 no tree species were recorded. 

relevee ID 
coordinates 

number 
krummholz height 

[cm] 
tree height 

[cm] 
species 

shortest tree 
distance [cm]* x y 

1 641412 159935 B1 20   Pinus cembra 36 

  641412 159935 B2 50   Pinus cembra 36 

  641413 159936 B3 10   Picea abies 83 

2 641242 160175 B1   500 Pinus cembra 112 

  641243 160176 B2   200 Pinus cembra 11 

  641243 160176 B3   1000 Pinus cembra 11 

  641243 160176 B4   1000 Picea abies 5 

  641243 160176 B5   1000 Pinus cembra 5 

  641244 160171 B6   800 Pinus cembra 68 

  641244 160171 B7   1000 Picea abies 68 

  641250 160174 B8   500 Picea abies 611 

3 641206 160189 B1 130   Picea abies 360 

  641209 160189 B2   500 Picea abies 301 

  641209 160186 B3   700 Pinus cembra 76 

  641209 160185 B4   650 Picea abies 76 

  641209 160183 B5   700 Picea abies 226 

  641210 160180 B6   250 Picea abies 226 

  641207 160182 B7   450 Picea abies 238 

  641204 160182 B8   500 Picea abies 290 

4 640410 158817 B1 25 
  

Pinus mugo  

ssp. unicinata   

5**               

6**               

7 640435 159561 B1 150   Picea abies 583 

  640440 159558 B2   210 Pinus cembra 583 

  640439 159552 B3   300 Pinus cembra 608 

  640447 159553 B4   400 Pinus cembra 806 

  640441 159565 B5 15   Sorbus aucuparia 707 

8 640127 159712 B1 80   Picea abies 224 

  640132 159716 B2 35   Picea abies 316 

  640135 159715 B3 90   Picea abies 224 

  640136 159717 B4 155   Picea abies 224 

  640127 159715 B5 140   Picea abies 141 

  640128 159714 B6 95   Pinus cembra 141 

9 639956 159842 B1 45   Pinus cembra   
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Table A 12 (continued) 

relevee ID 
coordinates 

number 
krummholz height 

[cm] 
tree height 

[cm] 
species 

shortest tree 
distance [cm]* x y 

10 640262 159901 B1 15   Pinus cembra 412 

  640267 159900 B2 20   Pinus cembra 141 

  640266 159898 B3 25   Pinus cembra 100 

  640266 159899 B4 50   Pinus cembra 100 

  640264 159897 B5 30   Pinus cembra   

  640266 159895 B6 40   Pinus cembra   

  640264 159895 B7 10   Pinus cembra   

  640264 159897 B8 10   Pinus cembra   

  640264 159897 B9 15   Pinus cembra   

  640263 159897 B10 10   Pinus cembra 100 

  640261 159888 B11 90   Pinus cembra 447 

  640263 159892 B12 65   Pinus cembra 224 

  640265 159891 B13 40   Pinus cembra 224 

  640266 159894 B14 80   Pinus cembra 100 

  640264 159895 B15 85   Pinus cembra   

  640266 159895 B16 35   Pinus cembra   

  640267 159894 B17 25   Pinus cembra 100 

  640269 159893 B18 10   Pinus cembra 224 

  640267 159890 B19 15   Pinus cembra 224 

11 639947 159850 B1 35   
Pinus mugo  

ssp. unicinata 
1204 

  639934 159852 B2 25   
Pinus mugo  

ssp. unicinata 
1315 

12**               

13 642191 160352 B1   600 Betula pendula 78 

  642191 160351 B2   500 Picea abies 51 

  642191 160351 B3   450 Picea abies 51 

  642191 160344 B4   200 Sorbus aucuparia 206 

  642191 160342 B5 56   Pinus cembra 206 

  642193 160347 B6 67   Picea abies 323 

  642197 160342 B7 62   Betula pendula 265 

  642198 160344 B8 30   Betula pendula 265 
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Table A 12 (continued) 

relevee ID 
coordinates 

number 
krummholz height 

[cm] 
tree height 

[cm] 
species 

shortest tree 
distance [cm]* x y 

14 642237 160372 B1   600 Picea abies 105 

  642237 160372 B2   300 Picea abies 105 

  642236 160375 B3   500 Picea abies 189 

  642236 160377 B4   350 Sorbus aucuparia 32 

  642237 160379 B5   700 Picea abies 152 

  642240 160372 B6 25   Picea abies 30 

  642240 160372 B7 35   Picea abies 30 

  642244 160373 B8 40   Pinus cembra 261 

  642240 160374 B9 45   Picea abies 210 

  642243 160375 B10 60   Sorbus aucuparia 50 

  642243 160375 B11 15   Sorbus aucuparia 50 

  642244 160376 B12 23   Picea abies 70 

  642244 160376 B13 27   Sorbus aucuparia 56 

  642244 160377 B14 34   Picea abies 56 

  642244 160377 B15 50   Picea abies 81 

  642242 160376 B16 55   Picea abies 122 

  642240 160376 B17 45   Picea abies 175 

  642238 160378 B18 25   Picea abies 45 

  642236 160377 B19 35   Picea abies 32 

  642236 160377 B20 50   Picea abies 41 

  642238 160379 B21 20   Picea abies 45 

  642239 160379 B22 40   Picea abies 10 

  642239 160379 B23 25   Picea abies 10 

15 640699 160388 B1 15   Picea abies 140 

  640702 160389 B2 45   Pinus cembra 215 

  640704 160389 B3 60   Pinus cembra 150 

  640706 160389 B4 20   Pinus cembra 150 

  640699 160390 B5 25   Pinus cembra 50 

  640700 160390 B6 30   Picea abies 50 

  640701 160391 B7 40   Pinus cembra 99 

  640702 160392 B8 30   Pinus cembra 222 

16 641202 160200 B1   600 Picea abies 397 

  641205 160203 B2   300 Picea abies 45 

  641205 160203 B3   600 Pinus cembra 45 

  641207 160204 B4 80   Sorbus aucuparia 130 

  641205 160205 B5   700 Picea abies 175 

  641208 160205 B6   900 Picea abies 36 

  641207 160205 B7   500 Picea abies 36 
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Table A 12 (continued) 

relevee ID 
coordinates 

number 
krummholz height 

[cm] 
tree height 

[cm] 
species 

shortest tree 
distance [cm]* x y 

17 642204 160401 B1   800 Picea abies 80 

  642204 160402 B2   600 Picea abies 63 

  642204 160402 B3 80   Picea abies   

  642205 160403 B4 75   Picea abies 51 

  642204 160402 B5 80   Picea abies 21 

  642205 160405 B6 40   Sorbus aucuparia 41 

  642205 160405 B7 30   Sorbus aria 41 

  642205 160406 B8   230 Picea abies 65 

  642204 160407 B9   600 Picea abies 84 

  642205 160407 B10   700 Picea abies 25 

  642205 160407 B11 50   Sorbus aucuparia 25 

  642207 160410 B12 80   Picea abies 305 

  642199 160410 B13 80   Picea abies 296 

  642199 160407 B14   520 Picea abies 296 

  642198 160403 B15   1020 Picea abies 412 

18 642223 160405 B1   1200 Picea abies 20 

  642224 160405 B2   600 Picea abies 20 

  642204 160402 B3   1200 Picea abies   

  642225 160404 B4   500 Sorbus aucuparia 172 

  642228 160404 B5   1000 Picea abies 300 

  642220 160407 B6   650 Pinus cembra 284 

  642221 160410 B7   650 Pinus cembra 134 

  642222 160411 B8   700 Pinus cembra 134 

  642224 160409 B9   1100 Picea abies 103 

  642225 160410 B10   900 Picea abies 54 

  642224 160411 B11   250 Picea abies 54 

  642226 160411 B12   500 Pinus cembra 63 

  642226 160411 B13   1000 Picea abies 50 

  642226 160411 B14   450 Picea abies 50 

  642228 160411 B15   900 Picea abies 170 

  642229 160408 B16   1050 Picea abies 318 

19**               

20 640034 158101 B1 45   Picea abies 500 

  640029 158101 B2 40   Picea abies 100 

  640028 158101 B3 50   Picea abies 100 

  640028 158103 B4 110   Picea abies 200 

  640026 158102 B5 195   Picea abies 224 

  640027 158100 B6 180   Picea abies 141 

  640023 158102 B7 95   Picea abies 300 
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Table A 12 (continued) 

relevee ID 
coordinates 

number 
krummholz height 

[cm] 
tree height 

[cm] 
species 

shortest tree 
distance [cm]* x y 

21 640689 160329 B1   800 Picea abies 218 

  640691 160331 B2   500 Picea abies 10 

  640691 160331 B3   500 Pinus cembra 10 

  640691 160331 B4 50   Pinus cembra 10 

  640691 160330 B5   1000 Pinus cembra 10 

  640691 160330 B6   500 Picea abies 20 

  640691 160330 B7 40   Pinus cembra 10 

  640691 160331 B8 50   Pinus cembra 10 

  640691 160331 B9   500 Picea abies 10 

  640692 160330 B10 160   Picea abies 85 

  640691 160331 B11 15   Pinus cembra 25 

  640689 160336 B12   400 Picea abies 90 

  640690 160336 B13 25   Pinus cembra 90 

22 641422 159985 B1 100   Pinus cembra 361 

  641426 159987 B2 116   Pinus cembra 200 

  641424 159988 B3 70   Pinus cembra 141 

  641425 159989 B4 60   Pinus cembra 141 

  641430 159985 B5 60   Pinus cembra 193 

  641431 159986 B6 45   Pinus cembra 146 

  641431 159987 B7 10   Pinus cembra 146 

  641432 159991 B8 50   Pinus cembra 376 

  641428 159991 B9 10   Pinus cembra 20 

  641428 159991 B10 25   Pinus cembra 20 

  641427 159992 B11 40   Pinus cembra 156 

  641424 159992 B12 30   Pinus cembra 130 

  641423 159993 B13 50   Pinus cembra 64 

  641422 159993 B14 60   Pinus cembra 64 

  641422 159995 B15 60   Pinus cembra 204 

23 640988 159107 B1   500 Pinus cembra   

24 641398 159919 B1 140   Pinus cembra 753 

  641400 159926 B2 30   Larix decidua 235 

  641401 159929 B3 100   Pinus cembra 235 

  641403 159926 B4 40   Pinus cembra 250 

  641406 159926 B5 100   Pinus cembra 250 

25 641027 159157 B1 80   Picea abies   

26 641413 159967 B1 50   Picea abies 162 

  641411 159966 B2 100   Pinus cembra 22 

  641411 159966 B3 30   Pinus cembra 22 

  641418 159968 B4 33   Picea abies 128 

  641421 159969 B5 88   Pinus cembra 226 

  641417 159969 B6 28   Sorbus aucuparia 128 

  641415 159971 B7 69   Pinus cembra 171 

  641416 159973 B8 50   Pinus cembra 171 
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Table A 12 (continued) 

relevee ID 
coordinates 

number 
krummholz height 

[cm] 
tree height 

[cm] 
species 

shortest tree 
distance [cm]* x y 

27 640977 159193 B1 45   Pinus cembra 775 

  640978 159201 B2 70   Pinus cembra 446 

  640983 159200 B3 40   Picea abies 446 

28 639737 159734 B1 180   Picea abies 400 

  639741 159734 B2 45   Picea abies 400 

29 639817 159754 B1   300 Picea abies 121 

  639816 159753 B2 190   Picea abies 121 

  639816 159756 B3 75   Picea abies 187 

30 639863 159745 B1 60   Picea abies 304 

  639860 159746 B2 50   Picea abies 211 

  639858 159747 B3 63   Picea abies 211 

  639863 159754 B4   200 Picea abies 825 

31 640135 158096 B1 160   Picea abies 361 

  640138 158093 B2 50   Picea abies   

  640141 158093 B3   250 Picea abies 100 

  640142 158092 B4   230 Picea abies 100 

  640143 158093 B5   210 Picea abies 141 

  640141 158092 B6   260 Picea abies 100 

  640139 158094 B7 150   Picea abies 100 

  640138 158093 B8 170   Picea abies   

  640138 158094 B9   300 Picea abies 100 

  640135 158092 B10   210 Picea abies 100 

  640135 158091 B11 160   Picea abies   

  640135 158091 B12 140   Picea abies   

  640140 158087 B13 50   Picea abies 510 

32 640280 159441 B1 15   Pinus cembra   
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A.2 Field work raw data for additionally surveyed area (relevés no. 33-40) 

A.2.1 Vegetation mapping results 

Table A 13 Vegetation mapping results for the tree and shrub cover of vegetation relevés no. 33 to 40.  

Plant species are ordered alphabetically (without indication of family).  

Note: Tree cover comprises all trees, small trees and tree seedlings; shrub cover comprises all shrub-, dwarf shrub- and shrublet 

species. 

 

S33 S34 S35 S36 S37 S38 S39 S40 

trees in percent (left column) and according to the abundance-dominance index of  

Braun-Blanquet (right column) 

tr
e

e
s 

Fraxinus 

excelsior 
< 1 r.1                             

Picea abies  3 1.1 6 2.1 14 2.2 8 2.1 10 2.1 3 1.1 10 2.2 1 +.1 

Pinus mugo  

ssp. uncinata 
7 2.2 12 2.2 1 +.1         < 1 r.1 8 2.1     

Pinus mugo  

ssp. mugo 
6 2.2 4 1.2                 < 1 r.1     

Sorbus  

aucuparia 
5 2.1 3 1.1                 6 2.2     

total trees [%] 21 25 15 8 10 3 24 1 

 

S33 S34 S35 S36 S37 S38 S39 S40 

shrubs in percent (left column) and according to the abundance-dominance index of  

Braun-Blanquet (right column) 

sh
ru

b
s 

Alnus viridis 5 2.1 10 2.1 3 1.1 < 1 r.1     5 2.1 < 1 r.1     

  

dwarf shrubs in percent (left column) and according to the abundance-dominance index of  

Braun-Blanquet (right column) 

Calluna vulgaris 1-2 +.1 < 1 r.1                         

Daphne  

mezereum                         
< 1 r.1 

    

Erica carnea 3 1.3 10 2.3 4 1.1     1-2 +.1     5 2.3     

Rhododendron  

hirsutum 
6 2.1 5 2.1 6 2.3 5 2.3 6 2.3 20 2.3 8 2.2 10 2.3 

Vaccinium  

myrtillus 
3 1.1 4 1.1 15 2.3 3 1.1 1-2 +.1 < 1 r.1 12 2.3 < 1 r.1 

Vaccinium  

vitis-idaea 
1 +.1 < 1 r.1 2 1.2         < 1 r.1         

  

shrublets in percent (left column) and according to the abundance-dominance index of  

Braun-Blanquet (right column) 

Dryas  

octopetala  
            7 2.3 5 2.3 6 2.3     10 2.3 

Salix retusa 5 2.3 5 2.1 5 2.1             5 2.2     

total shrubs [%] 25 34 35 15 14 30 30 20 

 

  

species 

relevé no. 

species 

relevé no. 



Appendix: Ph. D. Sarah C. Strähl 

 

22 

 

Table A 14 Vegetation mapping results for the herb cover of vegetation relevés no. 33 to 40. Plant species are ordered according 

to their family. 

 

S33 S34 S35 S36 S37 S38 S39 S40 

herbs in percent (left column) and according to the abundance-dominance index of  

Braun-Blanquet (right column) 

P
o

ac
e

ae
 

Anthoxanthum  

alpinum         
5 2.2 

                    

Festuca rubra         4 1.2                     

Nardus stricta 7 2.2 3 1.2 5 2.2         < 1 r.1 4 1.2 4 1.2 

Poa alpina 3 1.2 4 1.2                 3 1.2     

C
yp

e
ra

ce
ae

 

Carex curvula  

spp. curvula 
        3 1.2 1-2 +.1 3 1.2 1-2 +.1     1-2 +.1 

Carex ferruginea             1 +.2 2-3 1.2         < 1 r.1 

Carex parviflora             1 +.2                 

Carex  

sempervirens                     
4 1.1 

    
4 1.2 

Ju
n

ca
ce

ae
 

Luzula  

multiflora 
    1 +.1 4 1.2 1 +.1 1 +.1     1 +.1     

Ir
d

ac
e

ae
 

Crocus  

albiflorus 
                5 2.3             

O
rc

h
id

ac
e

ae
 

Dactylorhiza  

majalis 
                    < 1 r.1         

Pseudorchis  

albida                     
< 1 r.1 

    
< 1 r.1 

P
o

ly
go

n
ac

e
ae

 

Polygonum  

viviparum 

                    

< 1 r.1 

    

1-2 +.1 

C
ar

yp
h

yl
la

ce
ae

 

Silene vulgaris  

ssp. vulgaris 
1 +.1                     1 +.1     

R
an

u
n

cu
la

ce
ae

 Pulsatilla alpina 

ssp. alpina             
< 1 r.1 

                

Ranunculus  

alpestris                  
1 +.1 

            

Trollius  

europaeus                  4 1.2 1-2 +.1         

Sa
xi

fr
ag

ac
e

ae
 

Saxifraga 

exarata  

ssp. moschata 

            8 2.3 3 1.3             

R
o

sa
ce

ae
 

Alchemilla  

alpina  
6 2.2 5 2.2 15 2.3 10 2.3 5 2.3 8 2.3 10 2.3 8 2.3 

Alchemilla  

monticola 
1-2 +.1 

                            

Alchemilla  

vulgaris         10 2.2                     

Geum  

montanum     1 +.1         < 1 r.1     < 1 r.1     

Potentilla aurea  3 1.2         1 +.1 1-2 +.1     1 +.1     

Potentilla erecta 1-2 +.1 1-2 +.1         1-2 +.1     3 1.1     

 

species 

relevé no. 
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Table A 14 (continued) 

 

S33 S34 S35 S36 S37 S38 S39 S40 

herbs in percent (left column) and according to the abundance-dominance index of  

Braun-Blanquet (right column) 

Fa
b

ac
e

ae
 

Astragalus 

alpinus                             
5 2.1 

Hippocrepis  

comosa                  
3 1.1 

            

Trifolium  

alpinum                  
3 1.1 

            

Trifolium 

pratense  

ssp. nivale                     

< 1 r.1 

        

Trifolium rubens                     
< 1 r.1 

        

Vicia cracca                 1-2 +.1             

G
e

ra
n

ia
ce

ae
 

Geranium 

 sylvaticum 
4 1.1 10 2.2 

                

12 2.2 

    

C
is

ta
ce

ae
 Helianthemum 

nummularium  

ssp. 

grandiflorum 

        

            

5 2.2 

    

3 1.1 

A
p

ia
ce

ae
 

Astrantia major     1 +.1                 < 1 r.1     

P
ri

m
u

la
ce

ae
 

Androsace  

chamaejasme 
            < 1 r.1                 

Primula veris              4 1.1 < 1 r.1             

G
e

n
ti

an
ac

e
ae

 Gentiana  

acaulis      
< 1 r.1     < 1 r.1 1-2 +.1         < 1 r.1 

Gentiana  

asclepiadea     
7 2.2 

            
1 +.1 

        

Gentiana 

punctata     
< 1 r.1 

                        

O
ro

b
an

ch
ac

e
ae

 

Veronica  

bellidioides 

                    

1 +.1 

        

P
la

n
ta

gi
n

ac
e

ae
 

Plantago  

alpina 
4 1.2 1-2 +.1     1-2 +.1 4 1.2     1 +.1 3 1.1 

 

  

species 

relevé no. 
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Table A 14 (continued) 

 

S33 S34 S35 S36 S37 S38 S39 S40 

herbs in percent (left column) and according to the abundance-dominance index of  

Braun-Blanquet (right column) 

G
lo

b
u

la
ri

ac
e

ae
 

Globularia  

nudicaulis  
            5 2.2 < 1 r.1             

D
ip

sa
ca

ce
ae

 Knautia 

arvensis 
        3 1.1                     

Scabiosa lucida 1-2 +.1 3 1.1 < 1 r.1         < 1 r.1 < 1 r.1 4 1.1 

C
am

p
an

u
la

ce
ae

 Campanula  

barbata 
    < 1 r.1                         

Campanula 

scheuchzeri                     
1-2 +.1     3 1.1 

Phyteuma 

orbiculare                     
< 1 r.1 

        

A
st

e
ra

ce
ae

 

Arnica montana < 1 r.1 3 1.1 < 1 r.1     1-2 +.1 < 1 r.1 1 +.1 1-2 +.1 
 

Carlina acaulis  

ssp. caulescens 

forma nana 

                        < 1 r.1     

Cirsium  

helenioides 
4 1.1 

    
3 1.1 

                    

Hieracium 

pilosella     
4 1.1 

                        

Hieracium  

prenanthoides     
3 1.1 

                
5 2.2 

    

Homogyne  

alpina  
15 2.2 6 2.2 1-2 +.1 1-2 +.1 4 1.3 8 2.2 8 2.3 5 2.1 

Leucanthemum  

adustum      
3 1.1 3 1.1 1 +.1 1-2 +.1 3 1.1 < 1 r.1 

    

Leontodon  

helveticus 
3 1.1 1-2 +.1             8 2.2     5 2.1 

 

Table A 15 Vegetation mapping results for the pteridophyte cover of vegetation relevés no. 33 to 34.  

Plant species are ordered alphabetically (without indication of family). 

 

S33 S34 S35 S36 S37 S38 S39 S40 

pteridophytes in percent (left column) and according to the abundance-dominance index of  

Braun-Blanquet (right column) 

p
te

ri
d

o
p

h
yt

e
s Athyrium  

distentifolium 
3 1.1     3 1.2                     

Blechnum  

spicant 
    1 +.1                 < 1 r.1     

total herbs  

& pteridophytes 

[%] 

S33 S34 S35 S36 S37 S38 S39 S40 

55 60 60 38 50 45 50 50 

 

 

 

  

species 

relevé no. 

species 

relevé no. 
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Table A 16 Vegetation mapping results for the mosses of vegetation relevés no. 33 to 40 

 

S33 S34 S35 S36 S37 S38 S39 S40 

mosses in percent (left column) and according to the abundance-dominance index of  

Braun-Blanquet (right column) 

m
o

ss
e

s 
 

Polytrichum  

sexangulare 
8 2.3 15 2.3 15 2.3 1 +.3 2-3 1.3 5 2.3 20 2.3 1 +.3 

total mosses [%] 8 15 15 1 3 5 20 1 

 

Table A 17 Evaluation of vegetation pattern for the vegetation relevés no. 33 to 40 

Note: The value expressing the cumulative species cover includes parts of vegetation layers (i.e., tree-, shrub-, herb- and moss 

layer) that overlap, hence a density value of more than 100% can occur in general. 

Vegetation  

pattern 
S33 S34 S35 S36 S37 S38 S39 S40 

total trees [%] 21 25 15 8 10 3 24 1 
total shrubs 

[%] 25 34 35 15 14 30 30 20 

total  
herbs and 

pteridophytes 
[%] 

55 60 60 38 50 45 50 50 

total moss [%] 8 15 15 1 3 5 20 1 

cumulative 

species cover 

[%] 

109 134 125 62 77 83 124 72 

total number 

of flowering 
plants, ferns, 
mosses & 

lichens 

28 33 23 21 27 28 29 21 

 

  

species 

relevé no. 
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A.2.2 Tree height and density  

Table A 18 Vegetation growth expressed by tree height and density (including all trees, small trees and tree seedlings). Height is 

recorded for each tree species and displayed separately for trees (growing ≥ 2 m) and krummholz  

(growing < 2 m). Density is expressed for each tree species within the tree layer by the shortest distances to the neighboring 

trees, small trees and tree seedlings in cm. Each recorded tree species of a relevé (no. 33 to 40) is displayed in the following 

tables.   

*Note: Distance values with less than 5 cm were not able to be calculated and are not displayed in the table. The same applies to 

relevés with only one recorded tree species where there are no distance values shown. 

relevé ID 
coordinates 

number 
krummholz height 

[cm] 
tree height  

[cm] 
species 

shortest tree  
distance [cm]* x y 

33 643787 160985 B1 
  

275 Pinus mugo  

ssp. unicinata 
364 

  
643785 160989 B2   350 Pinus mugo  

ssp. unicinata 
89 

  643784 160990 B3   300 Sorbus aucuparia 89 

  
643785 160991 B4   300 Pinus mugo  

ssp. mugo 
152 

  
643786 160989 B5   230 Pinus mugo  

ssp. mugo 
50 

  
643786 160989 B6   300 Pinus mugo  

ssp. mugo 
50 

  643789 160991 B7   200 Sorbus aucuparia 201 

  
643791 160991 B8   400 Pinus mugo  

ssp. unicinata 
76 

  643791 160991 B9 150   Picea abies 76 

  643790 160987 B10 20   Fraxinus excelsior 364 

34 643761 160955 B1 50   Pinus mugo  

ssp. mugo 
502 

  643762 160946 B2   200 Picea abies 224 

  643762 160949 B3   500 Picea abies 100 

  
643762 160950 B4 

  
500 Pinus mugo  

ssp. uncinata 
40 

  
643763 160950 B5   600 Pinus mugo  

ssp. uncinata 
110 

  
643764 160947 B6   600 Pinus mugo  

ssp. uncinata 
212 

  
643763 160948 B7   800 Pinus mugo  

ssp. uncinata 
141 

  
643765 160950 B8   700 Pinus mugo  

ssp. uncinata 
200 

  
643766 160945 B9   600 Pinus mugo  

ssp. uncinata 
250 

  643762 160950 B10 180   Sorbus aucuparia 40 

  
643770 160949 B11 150 

  
Pinus mugo  

ssp. mugo 
461 

  
643767 160952 B12 100 

  
Pinus mugo  
ssp. mugo 

283 
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Table A 18 (continued) 

relevé ID 
coordinates 

number 
krummholz height 

[cm] 
tree height  

[cm] 
species 

shortest tree  
distance [cm]* x y 

35 643738 160971 B1   350 Picea abies 230 

  643738 160973 B2   250 Picea abies   

  643738 160973 B3   300 Picea abies   

  643738 160973 B4 90   Picea abies   

  643740 160983 B5 76   Picea abies 300 

  
643740 160978 B6 75 

  

Pinus mugo  

ssp. uncinata 
54 

  643739 160986 B7 45   Picea abies 300 

  643741 160974 B8 40   Picea abies 255 

  643741 160978 B9 95   Picea abies 54 

  643743 160971 B10 130   Picea abies 262 

  643743 160974 B11 55   Picea abies 180 

  643744 160976 B12 55   Picea abies 136 

  643745 160974 B13 35   Picea abies 117 

  
643747 160972 B14 40 

  
Pinus mugo  
ssp. uncinata 

40 

  643746 160972 B15 45   Picea abies 40 

  643746 160972 B16 60   Picea abies 56 

  643746 160973 B17 85   Picea abies 30 

  643745 160973 B18 80   Picea abies 30 

  643746 160971 B19 100   Picea abies 123 

36 643941 160863 B1 60   Picea abies 100 

  643941 160864 B2 10   Picea abies 100 

  643945 160864 B3 55   Picea abies   

  643946 160863 B4 15   Picea abies   

  643945 160864 B5 65   Picea abies   

  643946 160863 B6 80   Picea abies   

  643950 160862 B7 65   Picea abies 100 

  643951 160862 B8 50   Picea abies 100 

  643952 160867 B9 55   Picea abies 412 

  643948 160866 B10 10   Picea abies 360 

  643939 160866 B11 60   Picea abies 100 

  643942 160869 B12 65   Picea abies 200 

  643942 160867 B13 75   Picea abies 100 

  643941 160867 B14 45   Picea abies 100 

  643940 160866 B15 65   Picea abies 100 
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Table A 18 (continued) 

relevé ID 
coordinates 

number 
krummholz height 

[cm] 
tree height  

[cm] 
species 

shortest tree  
distance [cm]* x y 

37 643895 160790 B1 75   Picea abies 640 

  643891 160795 B2 80   Picea abies 200 

  643889 160795 B3 65   Picea abies 200 

  643881 160792 B4 10   Picea abies 224 

  643880 160794 B5 10   Picea abies 224 

  643875 160803 B6 80   Picea abies 300 

  643873 160799 B7 90   Picea abies 224 

  643866 160798 B8 95   Picea abies 316 

  643867 160795 B9 105   Picea abies 316 

  643866 160789 B10 80   Picea abies 355 

  643871 160793 B11 160   Picea abies 424 

  643874 160796 B12 80   Picea abies 316 

  643875 160800 B13 165   Picea abies 224 

  643879 160804 B14 125   Picea abies 412 

  643880 160790 B15 120   Picea abies 224 

  643881 160798 B16 65   Picea abies 316 

  643882 160801 B17 55   Picea abies 316 

38 643886 160902 B1 120   Picea abies 305 

  
643930 160902 B2 70 

  

Pinus mugo  

ssp. uncinata 
305 

  643861 160926 B3 50   Picea abies 869 

  643804 160940 B4 80   Picea abies 869 

39 643798 160980 B1   250 Picea abies 78 

  643798 160982 B2   200 Sorbus aucuparia 150 

  643798 160983 B3   600 Sorbus aucuparia 150 

  643800 160984 B4   500 Sorbus aucuparia 175 

  643799 160980 B5 40   Picea abies 78 

  643800 160980 B6 30   Picea abies 51 

  643800 160980 B7 150   Picea abies 42 

  
643800 160979 B8 50   Pinus mugo  

ssp. mugo 
42 

  
643800 160978 B9   600 Pinus mugo  

ssp. uncinata 
120 

  
643807 160978 B10 150   Pinus mugo  

ssp. uncinata 
414 

  
643804 160981 B11   500 Pinus mugo  

ssp. uncinata 
414 

  643805 160986 B12   300 Picea abies 81 

  643805 160986 B13   700 Picea abies 10 

  643805 160986 B14   200 Picea abies 10 

  643807 160986 B15 100   Picea abies 148 

40 643881 160723 B1 60   Picea abies   
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A.3 Analysis of vegetation pattern for relevés no. 1-32 

A.3.1 Analysis of vegetation structure 

Table A 19 Vegetation cover showing the cover and distribution of shrubs and herbs. Shrub cover includes all shrub, dwarf shrub 

and shrublet species; herb cover includes all herb and pteridophyte species. Each value is expressed in percent of the whole 

surface mapped. Values are expressed separately, for relevés beyond the 1899 limit of the timber line (≥ 2021 m a.s.l.)  

(left table) and for relevés below (< 2021 m a.s.l.) (right table). Mean values are marked in bold, for both, relevés beyond and 

below 2021 m a.s.l.  

relevés (100 m
2
)  

≥ 2021  

[m a.s.l.] 

shrub cover 
[%] 

herb cover  
[%] 

relevés (100 m
2
) 

< 2021  

[m a.s.l.] 

shrub cover 
[%] 

herb cover 
[%] 

4 40 35 1 46 48 

5 6 73 2 12 76 

6 25 61 3 45 59 

8 73 18 7 64 25 

9 52 23 10 56 37 

11 41 35 12 29 65 

19 39 57 13 40 51 

20 39 48 14 34 59 

23 58 35 15 45 52 

25 51 53 16 33 55 

27 45 47 17 43 38 

28 59 38 18 22 50 

29 61 30 21 60 40 

30 61 41 22 64 32 

31 30 52 24 57 36 

32 30 62 26 59 34 

Ø 44 44 Ø 44 47 
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Table A 20 Vegetation growth expressing the growth and distribution of trees (including small trees and tree seedlings). Growth 

shows the height of trees (including small trees and tree seedlings) in cm. Distribution illustrates: (a) the frequency of trees  

(≥ 2m) and krummholz (< 2 m; including all small trees and tree seedlings), and (b) shortest tree distance (average shortest 

distance between all neighboring trees, small trees and tree seedlings) in cm. Values are expressed separately for relevés 

beyond the 1899 limit of the timber line (≥ 2021 m a.s.l.) (upper table) and for relevés below (< 2021 m a.s.l.) (lower table). 

Mean values are marked in bold for relevés both beyond and below 2021 m a.s.l. 

relevés (100 m
2
)  

≥ 2021  

[m a.s.l.] 

tree height  
[cm] 

number of 
krummholz  

[< 2 m] 

number of trees  
[≥ 2 m] 

shortest tree 
distance  

[cm] 

4 25 1 0 (-) 

5 0 0 0 (-) 

6 0 0 0 (-) 

8 95 6 0 212 

9 45 1 0 (-) 

11 30 2 0 1260 

19 0 0 0 (-) 

20 100 7 0 224 

23 500 0 1 (-) 

25 80 1 0 (-) 

27 50 3 0 555 

28 110 2 0 400 

29 180 2 1 143 

30 90 3 1 388 

31 180 7 6 124 

32 15 1 0 (-) 

Ø 94 2 1 413 

relevés (100 m
2
) 

< 2021  

[m a.s.l.] 

tree height  
[cm] 

number of 
krummholz  

[< 2 m] 

number of trees  
[≥ 2 m] 

shortest tree 
distance  

[cm] 

1 25 3 0 52 

2 750 0 8 111 

3 485 1 7 224 

7 215 2 3 658 

10 35 19 0 126 

12 0 0 0 (-) 

13 245 4 4 181 

14 135 18 5 85 

15 30 8 0 135 

16 520 1 6 123 

17 330 8 7 120 

18 790 0 16 120 

21 340 6 7 46 

22 50 15 0 157 

24 80 5 0 345 

26 55 8 0 129 

Ø 255 6 4 174 
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A.3.2 Analysis of phyto-diversity 

Table A 21 Phyto-diversity expressed by the effect of plant species immigration into Geo montani-Nardetum grassland.  

The pattern of non-disturbed/naturally shaped vegetation of Geo montani-Nardetum is determined by the abundance of  

Geo montani-Nardetum character species (i.e., total number and density of character species), whereas the pattern of anthropo-

zoogenically disturbed vegetation of Geo montani-Nardetum is determined by the intensity of deteriorated Geo montani-

Nardetum to heathland. Values are expressed separately for relevés beyond the 1899 limit of the timber line (≥ 2021 m a.s.l.) 

(upper table) and for relevés below (< 2021 m a.s.l.) (lower table). Mean values are marked in bold for relevés both beyond and 

below 2021 m a.s.l. 

Note: According to Braun-Blanquet (1948/1949) and Delarze & Gonseth (2008) the natural and undisturbed vegetation pattern 

of Geo montani-Nardetum grassland shows 9 character species. 

relevés (100 m
2
)  

≥ 2021  

[m a.s.l.] 

total number of  
Geo montani-Nardetum 

character species 

density of  
Geo montani-Nardetum 

character species  
[%] 

density of deteriorated  
Geo montani-Nardetum to  

heathland  
[%] 

4 5 11 34 

5 4 16 11 

6 5 12 21 

8 4 3 49 

9 2 2 33 

11 2 5 29 

19 5 6 37 

20 3 8 17 

23 2 3 47 

25 3 4 60 

27 3 4 57 

28 3 5 41 

29 3 5 39 

30 4 4 56 

31 4 8 18 

32 3 8 47 

Ø 3 6 37 

relevés (100 m
2
)  

< 2021  

[m a.s.l.] 

total number of  
Geo montani-Nardetum 

character species 

density of  
Geo montani-Nardetum 

character species  
[%] 

density of deteriorated  
Geo montani-Nardetum to  

heathland  
[%] 

1 1 1 49 

2 2 3 24 

3 1 1 39 

7 3 4 42 

10 3 6 35 

12 2 6 42 

13 2 4 58 

14 1 3 21 

15 2 8 53 

16 1 1 43 

17 0 0 32 

18 0 0 34 

21 2 1 54 

22 2 2 49 

24 2 5 52 

26 3 6 44 

Ø 2 3 42 
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Table A 22 Recorded plant species associated to Geo montani-Nardetum for vegetation relevés no. 1-32. Herb plant species are displayed in the order of their family and alphabetically within 

their family (first pteridophytes then herbaceous angiosperms). Shrub species are ordered alphabetically (without indication of family).  

Note: Plant species marked in bold refer to dominant plant species of the vegetation layer. Values are expressed in percent for each mapped plant species. Plant species showing a density cover 

of < 1% are attributed with a value of 0.5%. Plant species with an interval percent range, e.g., 1-2%, are rounded up to 2%. 

shrub species S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

Calluna vulgaris 12 0.5 4 25   5 3 6 5 15 15 5     18       3 6 15 1-2 0.5 15 7 7 10 10 15 23     

Rhododendron ferrugineum  8 1-2 4   3 4 7 7 7 8 3 1-2 10 7 5 5 4 5 10 3 10 10 13 10 15 8 10 6 5 4 6 15 

Vaccinium myrtillus 10 5 22 3   6 25 30 15 5 5 15 20 5 15 20 20 10 12   10 25 15 15 13 18 15 18 10 22 3 10 

herb & pteridophyte species  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

Botrychium lunaria                                   1                             

Anthoxanthum alpinum 1-2 5 1       0.5 0.5 1 1 1-2       4 4     1 3 1 3 1-2 4 1-2 1 3 6 3 5 3   

Avenella flexuosa   7 4                         5   1                             

Festuca rubra s.str. 3     3 3 3 1-2 1 4 3 1     0.5 6   1-2   3     5 4 5 3 1 3 4 3 3     

Nardus stricta  15 8 6 5 4 6 4 4 4 5 5 15 6 4 12 10 3   8 4 10 8 10 9 15 10 12 4 5 6 6 8 

Luzula multiflora 6     0.5   1-2 0.5   1 1 1 4   1-2 0.5   1   3 1     1       1 4     1 1 

Nigritella nigra         0.5                                                       

Pseudorchis albida       1-2   1   0.5   0.5                 1           0.5 0.5             

Pulsatilla alpina ssp. apiifolia         1                                 3               3     

Alchemilla alpina   1-2 1   1               14 1 1-2   1 15 1-2 4 7 3 5 1-2 0.5   1   1   3 4 

Potentilla aurea  0.5 8 1 3 1 3 1 1   3   1-2 1-2   1 3   1 3   1       1 1-2 1 1 1 1 3 3 

Potentilla erecta  0.5 7 10 1-2 1 3 0.5 1-2   1-2   6 3 4 1 4   0.5 4   1-2   0.5 0.5 0.5 3 1 1-2 1 1-2 3 1-2 

Geum montanum    0.5 0.5 5 1-2   1-2 1 0.5 0.5 3 3 0.5 3 1-2 1     1-2 3 0.5 1 0.5 0.5 1 1 1 0.5 0.5 0.5 2 3 

Trifolium alpinum         1-2 1 3 1 1 1-2 3   1-2       0.5     4 1-2 0.5   1             3   

Gentiana acaulis        1 1 1-2 1                       1 4             0.5     1 3 4 

Gentiana purpurea 3               0.5   1               0.5     1 0.5 1   1 0.5 2   3     

Ajuga pyramidalis         8 4                                                 2   

Pedicularis tuberosa               1-2   1 1       5       3 1-2         0.5 0.5   0.5 0.5 0.5     

Plantago alpina   1-2 1 1-2 3 1-2 0.5 0.5     1 5 4 4 5 3 3   3   1 1-2   3 1-2 1   1 1 4   3 

Campanula barbata        0.5   1-2   0.5                     1                 1 1 1     

Arnica montana 1 1-2   1-2 5 3 1 1 1 5 1-2 3 3   6       1 1 0.5 1 1-2 4 1-2 4 1-2 3 3 1 1 1 

Homogyne alpina  1 5   3 1 3 1 0.5 1-2 1 1-2 8   10 3 4 5 17 5 1-2 1   1-2   6 5 3 4 3 3   5 

Leontodon helveticus   1-2 1 1 3   1-2 1-2 1 1-2 1 1 3   0.5 4 0.5       1-2           1 3 3 1   3 

total density [%] 62 56 56 58 40 50 54 61 43 55 46 69 68 41 86 63 40 51 67 37 63 65 56 70 69 63 65 70 56 84 39 62 

Source: Braun-Blanquet 1948/1949; Delarze & Gonseth 2008; plant species displayed for Geo montani-Nardetum is according to Figure 14 on page 39. 
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Table A 23 Evaluation of non-disturbed/natural vs. disturbed/anthropo-zoogenically influenced Geo montani-Nardetum grassland, expressed by: (a) abundance of Geo montani-Nardetum 

character species and (b) density of deteriorated Geo montani-Nardetum to heathland, in percent, for vegetation relevés no. 1-32. Herb plant species are displayed in the order of their family and 

alphabetically within their family (first pteridophytes then herbaceous angiosperms). Shrub species are ordered alphabetically (without indication of family). 

Note: Plant species marked in bold refer to dominant plant species of the vegetation layer. Values are expressed in percent for each mapped plant species. Plant species showing a density cover 

of < 1% are attributed with a value of 0.5%. Plant species with an interval percent range, e.g., 1-2%, are rounded up to 2%. 

abundance of Geo montani-
Nardetum character species 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

herb species 

Pseudorchis albida       1-2   1   0.5   0.5                 1           0.5 0.5             

Geum montanum    0.5 0.5 5 1-2   1-2 1 0.5 0.5 3 3 0.5 3 2 1     1-2 3 0.5 1 0.5 0.5 1 1 1 0.5 0.5 0.5 2 3 

Gentiana acaulis        1 1 1-2 1                       1 4             0.5     1 3 4 

Ajuga pyramidalis         8 4                                                 2   

Campanula barbata        0.5   1-2   0.5                     1                 1 1 1     

Arnica montana 1 1-2   1-2 5 3 1 1 1 5 1-2 3 3   6       1 1 0.5 1 1-2 4 1-2 4 1-2 3 3 1 1 1 

total density [%] 1 3 1 11 16 12 4 3 2 6 5 6 4 3 8 1 0 0 6 8 1 2 3 5 4 6 4 5 5 4 8 8 

density of deteriorated  
Geo montani-Nardetum to 
heathland 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

shrub species 

Calluna vulgaris 12 0.5 4 25   5 3 6 5 15 15 5     18       3 6 15 1-2 0.5 15 7 7 10 10 15 23     

Rhododendron ferrugineum  8 1-2 4   3 4 7 7 7 8 3 1-2 10 7 5 5 4 5 10 3 10 10 13 10 15 8 10 6 5 4 6 15 

Vaccinium myrtillus 10 5 22 3   6 25 30 15 5 5 15 20 5 15 20 20 10 12   10 25 15 15 13 18 15 18 10 22 3 10 

herb species  

Deschampsia cespitosa   1 0.5                   5 1   3 1-2 4                             

Nardus stricta  15 8 6 5 4 6 4 4 4 5 5 15 6 4 12 10 3   8 4 10 8 10 9 15 10 12 4 5 6 6 8 

Poa alpina 4 3                   4       1           1   1 8 1 5         4 

Rumex alpestris                           3     1                               

Alchemilla alpina   1-2 1   1               14 1 1-2   1 15 1-2 4 7 3 5 1-2 0.5   1   1   3 4 

Ligusticum mutellina             1   1                   1-2       3   1   3         3 

Leontodon helveticus   1-2 1 1 3   1-2 1-2 1 1-2 1 1 3   0.5 4 0.5       1-2           1 3 3 1   3 

total density [%] 49 24 39 34 11 21 42 49 33 35 29 42 58 21 53 43 32 34 37 17 54 49 47 52 60 44 57 41 39 56 18 47 

evaluation 

Geo montani-Nardetum S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

amount of character species 1 2 1 5 4 5 3 4 2 3 2 2 2 1 2 1     5 3 2 2 2 2 3 3 3 3 3 4 4 3 

density of character species [%] 1 3 1 11 16 12 4 3 2 6 5 6 4 3 8 1     6 8 1 2 3 5 4 6 4 5 5 4 8 8 

density of deterioration  

to heathland [%] 
49 24 39 34 11 21 42 49 33 35 29 42 58 21 53 43 32 34 37 17 54 49 47 52 60 44 57 41 39 56 18 47 

Source: Braun-Blanquet 1948/1949; Delarze & Gonseth 2008; plant species displayed for non-disturbed vs. disturbed Geo montani-Nardetum is according to Figure 14 on page 39. 
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A.3.3 Intensity of spruce forest progress into areas of grassland vegetation 

Table A 24 Spruce forest progress is shown by the invasion density of recorded plant species associated to Vaccinio-Piceion, for vegetation relevés no. 1-32.  

Herb plant species are displayed in the order of their family and alphabetically within their family (first pteridophytes then herbaceous angiosperms). Tree and shrub species are ordered 

alphabetically (without indication of family).  

Note: Plant species marked in bold refer to dominant plant species of the vegetation layer. Values are expressed in percent for each mapped plant species. Plant species showing a density cover 

of < 1% are attributed with a value of 0.5%. Plant species with an interval percent range, e.g., 1-2%, are rounded up to 2%. 

tree species S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

Picea abies  0.5 15 10       1 4         7 12 1 15 25 30   5 5       1 1-2 0.5 3 4 3 9   

Larix decidua                                               0.5                 

Sorbus aucuparia             0.5           3 4   1-2 1 3               0.5             

shrub species S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

Lonicera caerulea   5 10                   10 10   5 15 5                             

Rhododendron ferrugineum  8 1-2 4   3 4 7 7 7 8 3 1-2 10 7 5 5 4 5 10 3 10 10 13 10 15 8 10 6 5 4 6 15 

Vaccinium myrtillus 10 5 22 3   6 25 30 15 5 5 15 20 5 15 20 20 10 12   10 25 15 15 13 18 15 18 10 22 3 10 

Vaccinium vitis-idaea 3   5     5 7 20 10 20 3 4 10   7 3 3 5 6   5 5 5 1-2 5 3 4 7 4 1-2 1-2 4 

herb & pteridophyte species  S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 

Athyrium distentifolium   0.5 3                   0.5     1 1 1-2                             

Blechnum spicant                           1-2     3                               

Avenella flexuosa   7 4                         5   1                             

Calamagrostis villosa   3 1                   1 0.5   0.5 1-2 3                             

Luzula sylvatica ssp. sieberi    4 3                   0.5     1   1                             

Oxalis acetosella   6 5                   5     8 6 4                             

Pyrola rotundifolia                           0.5                                     

Veronica urticifolia                                                                 

Adenostyles alliariae                         0.5 3     1 1-2                             

Homogyne alpina  1 5   3 1 3 1 0.5 1-2 1 1-2 8   10 3 4 5 15 5 1-2 1   1-2   6 5 3 4 3 3   5 

total density [%] 23 53 67 6 4 18 42 62 34 34 13 29 68 54 31 70 86 86 33 10 31 40 35 28 40 37 33 38 26 34 20 34 

Source: Delarze & Gonseth 2008; plant species displayed for Vaccinio-Piceion is according to Figure 14 on page 39. 



Appendix: Ph. D. Sarah C. Strähl 

 

35 

 

A.3.4 Analysis of habitat conditions 

Table A 25 Ecological plant indicator values showing the climate factors (light (L), temperature (T) and continentality (K)). Factors 

for light and continentality follow a scale of five units ranging from 1 to 5, whereas temperature follows a scale of nine units 

ranging from 1 to 5. 

scale light (L) temperature (T) continentality (K) 

 
1 

 
 

deep shade 
(plant tolerates even less than 
3 % of relative illumination) 

alpine and nival 

oceanic 
(very high relative air humidity; very 

small daily and annual variation in 
temperature, relatively mild winters) 

1.5   
lower alpine, supra subalpine and upper 
subalpine 

  

2 

shade 
(plant rarely tolerates below 3 

%, but often below 10 % of 
relative illumination) 

subalpine 

suboceanic 
(high relative air humidity; small daily 

and annual variation in temperatrue, 
rather mild winters) 

2.5   lower subalpine and upper montane   

3 

semi-shade 

(plant rarely tolerates below 10 
% of relative illumination) 

montane 

suboceanic to subcontinental 
(medium relative air humidity; moderate 

daily and annual variation of 
temperature; medium winter 
temperatures) 

3.5   lower montane and upper colline   

4 

well-lit places 

(plant tolerates light shade 
only occasionally or for short 
periods) 

colline 

subcontinental 

(low relative air humidity; large daily and 
annual variation of temperature; rather 
cool winters) 

4.5   warm colline   

5 
full light 
(plant grows only in open and 
sunny places) 

very warm colline 

continental 
(very low relative air humidity; very 

large daily and annual variation in 
temperature; relatively cold winters) 

Source: Landolt et al. 2010 
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Table A 26 Ecological plant indicator values showing the soil factors (moisture (F), soil reaction (R), nutrients (N), humus (H) and 

aeration (D)). Factors for soil reaction and nutrients follow a scale of five units ranging from 1 to 5, whereas moisture follows a 

scale of nine units ranging from 1 to 5. Humus and aeration follow a scale of 3 units (1, 3, 5). Additionally, the value for root 

depth specifies the depth of the root penetration in the soil, where small values indicate superficial and high values deep root 

penetration. Values follow a scale of nine units ranging from 1 to 5. 

scale moisture (F) soil reaction (R) nutrients (N) humus (H) aeration (D) root depth (WT) 

1 very dry 
extremely acid 

pH 2.5-5.5 
very infertile 

little or  

no humus 

bad areation 
(compacted or 

wet soil) 

< 25 cm 

1.5 dry         
at most 20 % of 
the root  

depth in class 2 

2 moderately dry acid, pH 3.5-6.5 infertile     25-50 cm 

2.5 fresh         
at most 20 % of 
the root  
depth in class 3 

3 moderately moist 
weakly acid to 
weakly neutral 
pH 4.5-7.5 

medium 
infertile to 
medium fertile 

moderate humus content  

(mostly as mull) 

moderate  

areation 
50-100 cm 

3.5 moist         

at most 10 % of 

the root  
depth in class 4 

4 very moist 
neutral or alkaline 

pH 5.5-8.5 
fertile     100-200 cm 

4.5 wet         

at most 5 % of the 

root depth  
in class 5 

5 
flooded,  

i.e. submerged 

alkaline, high pH 

pH 6.5-8.5 

very fertile  

and over-rich 

high humus content 
(mostly as raw humus, 
moder or peat) 

good areation 
(loose, often  

rocky or sandy 
soil) 

> 200 cm 

Source: Landolt et al. 2010 
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Table A 27 The ecological behavior for each relevé is given by the mean ecological plant indicator values of all recorded plant 

species. Average values are displayed for climate (L: light, T: temperature, K: continentality) and soil indicators (F: moisture,  

R: reaction, N: nutrients, H: humus and D: aeration) as well as values for root depth (WT). 

relevé ID 
climate indicators soil indicators root depth 

L T K F R N H D WT  

1 3.21 2.01 2.90 2.81 1.98 2.10 3.67 1.74 1.73 

2 2.94 2.10 2.94 2.99 2.03 2.17 3.83 2.16 1.98 

3 2.97 2.19 2.89 2.88 1.96 2.04 3.84 2.17 1.90 

4 3.58 1.90 2.95 2.78 1.95 1.82 3.54 1.81 1.64 

5 3.90 1.97 3.07 2.99 2.80 2.12 3.30 2.18 1.71 

6 3.59 2.12 2.89 3.03 2.26 2.09 3.85 1.86 1.58 

7 3.21 1.95 2.79 2.73 1.92 1.98 3.76 1.94 1.81 

8 2.89 1.93 2.60 2.65 1.65 1.84 3.66 1.73 1.73 

9 3.33 1.96 2.98 2.67 2.03 1.91 3.74 2.00 1.65 

10 3.43 2.02 2.97 2.80 1.98 2.03 3.88 1.88 1.71 

11 3.52 2.07 2.98 2.82 2.06 2.01 3.93 1.97 1.74 

12 3.46 2.12 2.85 3.06 1.95 2.24 3.93 1.87 1.67 

13 2.99 2.10 2.85 2.88 2.01 1.97 3.49 2.09 2.49 

14 3.13 2.01 2.84 2.91 2.52 2.21 3.50 2.06 2.47 

15 3.32 2.06 2.86 2.88 1.93 2.09 3.88 1.97 1.69 

16 3.01 2.16 3.01 3.00 2.10 2.04 3.89 2.28 2.11 

17 2.70 2.13 2.74 2.96 1.99 2.34 3.63 1.98 2.06 

18 2.73 2.09 2.85 3.02 2.09 2.28 3.87 2.23 2.27 

19 3.43 2.01 2.92 2.88 1.98 2.00 3.80 1.79 1.62 

20 3.57 1.95 3.08 2.64 2.82 2.06 3.34 2.58 2.06 

21 3.28 2.02 2.96 2.76 2.09 2.13 3.72 2.41 2.08 

22 3.28 1.93 2.99 2.84 2.07 1.96 3.61 2.06 1.77 

23 3.16 1.91 2.80 2.80 1.84 1.98 3.62 1.91 1.64 

24 3.33 1.91 2.88 2.84 1.99 1.92 3.52 1.85 1.89 

25 3.24 1.93 2.89 2.89 2.02 2.17 3.62 1.90 1.69 

26 3.36 1.93 2.94 2.93 1.83 1.91 3.98 1.73 1.77 

27 3.23 1.90 2.78 2.89 1.98 2.09 3.53 1.88 1.61 

28 3.25 2.09 2.89 2.84 2.00 2.09 4.00 1.95 1.87 

29 3.21 2.06 2.80 2.85 1.96 2.00 3.82 1.90 1.92 

30 3.18 2.01 2.87 2.72 2.12 2.06 3.59 2.09 2.00 

31 3.60 1.94 3.11 2.65 2.76 1.98 3.38 2.58 1.88 

32 3.64 1.87 2.82 2.94 2.23 2.15 3.47 2.29 1.67 

Source: Landolt 1977, Landolt et al. 2010 

In this table, the ecological behavior of each relevé was determined by the mean ecological plant indicator 

values, which has been measured by the total amount of recorded plant species (including flowering plants, 

ferns, mosses and lichens) for each relevé (no. 1-32). Average values have been calculated for climate  

(L: light, T: temperature, K: continentality) and soil indicators (F: moisture, R: reaction, N: nutrients,  

H: humus and D: aeration), as well as values for root depth (WT). Landolt et al. (2010) suggests that average 

values are more accurate for evaluating a habitat by its ecology than only considering separate values of a 

plant species. For all vegetation records we calculated the mean for each ecological plant indicator value 

over species weighted by abundance, as suggested by Landolt (1977), in order to account for the greater 

importance of dominant plant species over rare ones. Species with abundance “+” were weighted one, 

species with abundance “1” were weighted two, “2” were weighted three, “3” were weighted four, “4” 

were weighted five and “5” were weighted six. Plant species with a very low abundance “r” were  

weighted 0.5.   
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A.4 Analysis of vegetation pattern for additionally surveyed area  

(relevés no. 33-40) 

A.4.1 Intensity of forest progress into areas of grassland vegetation  

Table A 28 The intensity of forest progress into areas of grassland vegetation is displayed by the density of recorded plant 

species associated to the dominant forest communities (cohorts: Vaccinio-Piceion and Erico-Pinion mugo), for vegetation relevés 

no. 33-40. Tree and shrub species are ordered alphabetically (without indication of family).  

Note: Plant species marked in bold refer to dominant plant species of the vegetation layer. Values are expressed in percent for 

each mapped plant species. Plant species showing a density cover of < 1% are attributed with a value of 0.5%. Plant species with 

an interval percent range, e.g., 1-2%, are rounded up to 2%. 

Vaccinio-Piceion 

tree species S33 S34 S35 S36 S37 S38 S39 S40 

Picea abies  6 3 14 8 10 3 10 1 

Sorbus aucuparia 3 5         6   

shrub species S1 S2 S3 S4 S5 S6 S7 S8 

Vaccinium myrtillus 4 3 15 3 1-2 0.5 12 0.5 

Vaccinium vitis-idaea 0.5 1 2     0.5     

herb and pteridophyte species  S1 S2 S3 S4 S5 S6 S7 S8 

Homogyne alpina  6 15 1-2 1-2 4 8 8 5 

total density [%] 20 27 33 13 16 12 36 7 

Erico-Pinion mugo 

tree species S33 S34 S35 S36 S37 S38 S39 S40 

Picea abies  6 3 14 8 10 3 10 1 

Pinus mugo ssp. mugo 4 6         0.5   

Pinus mugo ssp. unicinata 12 7 1     0.5 8   

shrub species S33 S34 S35 S36 S37 S38 S39 S40 

Erica carnea 10 3 4   1-2   5   

Rhododendron hirsutum 5 6 6 5 6 20 8 10 

Vaccinium myrtillus 4 3 15 3 1-2 0.5 12 0.5 

Vaccinium vitis-idaea 0.5 1 2     0.5     

total density [%] 42 29 42 16 20 25 44 12 

Source: Delarze & Gonseth (2008) 
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A.4.2 Recorded plant species with signs of pasturing and signs of undemanding/pioneer 

vegetation 

Table A 29 Evaluation of vegetation pattern at the timber-line ecotone of the study region of vegetation relevés no. 33-40. 

Recorded plant species with signs of pasturing (plant species associated to the cohort Poion alpinae) and with signs of 

undemanding/pioneer vegetation are shown for vegetation relevés no. 33-40. Herb plant species are displayed in the order of 

their family and alphabetically within their family (first pteridophytes then herbaceous angiosperms). Shrub species are ordered 

alphabetically (without indication of family). 

Note: Plant species marked in bold refer to dominant plant species of the vegetation layer. Values are expressed in percent for 

each mapped plant species. Plant species showing a density cover of < 1% are attributed with a value of 0.5%. Plant species with 

an interval percent range, e.g., 1-2%, are rounded up to 2%. Shrub cover comprises all shrub-, dwarf shrub- and shrublet species. 

The value expressing the cumulative species cover includes parts of vegetation layers (i.e., tree-, shrub-, herb- and moss layer) 

that overlap, hence a density value of more than 100% can occur in general. 

recordet plant species  

with signs of pasturing S33 S34 S35 S36 S37 S38 S39 S40   

herb species    

Festuca rubra s.str.     4             

Poa alpina 4 3         3     

Alchemilla vulgaris     10             

Trifolium pratense ssp. nivale           0.5       

Plantago alpina 2 4   2 4   1 3   

total density [%] 6 7 14 2 4 < 1 4 3   

recordet plant species with signs of 
undemanding / pioneer vegetation 

S33 S34 S35 S36 S37 S38 S39 S40 
preferred 

habitat 

shrubs (including all shrubs, dwarf shrubs & shrublets) 

Alnus viridis 10 5 3 0.5   5 0.5   

stony rocks,  

slopes and 
gullies 

Daphne mezereum             0.5   
forests,  

rock-debris 

Dryas octopetala       7 5 6   10 
rock-debris,  
rocks 

Salix retusa 5 5 5       5   
rock, debris,  

stony pastures 

herb species 

Saxifraga exarata ssp. moschata       8 3       
rock-debris,  

rocks 

Alchemilla alpina  5 6 15 10     10 8 rocks 

Androsace chamaejasme       0.5         stony grass 

Globularia nudicaulis       5 0.5       
meadows,  
stony slopes 

Scabiosa lucida 3 2 0.5     0.5 0.5 4 

alpine 

meadows  
on stony soils 

total density [%] 23 18 24 31 9 12 17 22   

evaluation 

  S33 S34 S35 S36 S37 S38 S39 S40   
cumulative species cover [%] 113 135 125 62 77 83 124 72   
total cover of undemanding / pioneer 
plant species [%] 

23 18 24 31 9 12 17 22 
  

total density of plant species with signs 

of pasturing [%]  
6 7 14 2 4 1 4 3 

  

Source: Recorded plant species with signs of pasturing, signs of undemanding/pioneer vegetation, as well as the interpretation 

of preferred habitat corresponds to the publications “Lebensräume der Schweiz” (Delarze & Gonseth 2008), “Flora Helvetica” 

(Lauber & Wagner 2012) and “Unsere Alpenflora” (Landolt 2003)   
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Table A 30 Summary of the habitat properties of the relevés no. 33-40 

relevé 

ID 

coordinates 

geology & substrate 
slope 

[°] 

elevation 

[m a.s.l.] 

type of 

land use  

accessibility  

[value]  x y 

33 643783 160982 tertiary (coalic limestones) 11 1691 
extensive  
pasture 

0.29 

34 643761 160945 tertiary (coalic limestones) 37 1701 
extensive  

pasture 
0.29 

35 643737 160970 tertiary (coalic limestones) 21 1685 
extensive  
pasture 

0.24 

36 643941 160871 tertiary (limestone breccia) 19 1762 not used 0.40 

37 643880 160796 tertiary (limestone breccia) 22 1781 
extensive  

pasture 
0.39 

38 643939 160897 tertiary (limestone breccia) 19 1754 
extensive  
pasture 

0.38 

39 643797 160977 tertiary (coalic limestones) 28 1696 
extensive  

pasture 
0.31 

40 643881 160723 mesozoic (berriacien, Oehrli-calc) 24 1812 not used 0.44 

Ø       23 1735   0.34 

relevé 

ID 

tree  
height  

[cm] 

shortest tree 

distance [cm] 

cumulative 
species 

cover [%] 

plant community 

Erico-
Pinion 

mugo  
[%] 

Vaccinio-
Piceion 

[%]  

total cover of 
undemanding/pioneer 

plant species [%] 

total density of 
plant species 

with signs of 
pasturing [%] 

33 253 214 113 
Erico-Pinetum 

mugi 
42 20 23 6 

34 415 151 135 
Erico-Pinetum 

mugi 
29 27 18 7 

35 106 116 125 
Erico-Pinetum 

mugi 
42 33 24 14 

36 52 118 62 
Rhododendro  

hisuti-mugetum 
16 13 31 2 

37 86 308 77 
Rhododendro  

hisuti-mugetum 
20 16 9 4 

38 80 587 83 
Rhododendro  

hisuti-mugetum 
25 12 12 < 1 

39 291 131 124 
Erico-Pinetum 

mugi 
44 36 17 4 

40 60 (-) 72 
rock and debris 

vegetation 
12 7 22 3 

Ø 168 232 99   29 20 19 6 

Source: Coordinates, altitude, slope and exposition: Digitales Geländemodell 2m © swisstopo; substrate: Collet et al. 1938; type 

of land use: Hoffmann et al. 2014; accessibility: Liechti et al., in prep. 
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A.5 Statistical analysis 

Table A 31 Tests produced by IBM SPSS-Statistics program for (a) normality and (b) homogeneity of variance for test variables for vegetation cover, vegetation growth and phyto-diversity. 

Significance value (p) is two-tailed. Test variables are normally distributed if the distributions of their values are not significantly different from a normal distribution (p > 0.05).  

Note: *The value 0.200 shows a minimum level of the effective significance. Several test variables show for vegetation growth inconsistent results (marked in red bold in the table) for the 

calculated significances of the Kolmogorov-Smirnov and Shapiro-Wilk test. Since the Shapiro-Wilk test has more power to detect differences from normality, the results of the Shapiro-Wilk output 

table are applied for the interpretation of normal and non-normal data distribution (Field 2009). The Levene’s test shows that the variances in different groups are roughly equal if p > 0.05.  

In spite of some variables showing equal variances (marked in blue bold in the table), a non-parametric test is more appropriate, since parametric tests always require normally distributed 

samplings (Field 2009). 

test variables 

(a) Tests of Normality (b) Test of Homogeneity of Variance 

assumption  

of data 

Kolmogorov-Smirnov Shapiro-Wilk distribution Levene's test interpretation 

relevés 

≥ 2021  
[m a.s.l.] 

(p) 

relevés 

< 2021  
[m a.s.l.] 

(p) 

relevés 

≥ 2021  
[m a.s.l.] 

(p) 

relevés  

< 2021  
[m a.s.l.] 

(p) 

relevés  

≥ 2021  
[m a.s.l.] 

   

relevés 

< 2021  
[m a.s.l.] 

(p) is based  

on mean 

based on the Test of 

Homogeneity of 
Variance 

vegetation cover                 

shrub cover  .200* .200* .807 .417 normal normal .772 equal variances parametric 

herb cover  .200* .200* .982 .861 normal normal .653 equal variances parametric 

vegetation growth                   

tree height  .200* .200* .339 .023 normal non-normal .003 different variances non-parametric 

number of krummholz .038 .081 .019 .028 non-normal non-normal .042 different variances non-parametric 

number of trees .001 .044 .000 .010 non-normal non-normal .038 different variances non-parametric 

shortest tree distance .106 .002 .011 .000 non-normal non-normal .065 equal variances non-parametric 

phyto-diversity                   

total number of Geo montani-Nardetum 
character species 

.027 .007 .049 .046 non-normal non-normal .581 equal variances non-parametric 

density of Geo montani-Nardetum 
character species 

.138 .200* .062 .303 normal normal .097 equal variances parametric 

density of deteriorated Geo montani-
Nardetum to heathland  

.200* .200* .630 .678 normal normal .152 equal variances parametric 
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Table A 32 Exploratory data analysis produced by IBM SPSS-Statistics program showing descriptive statistics, such as number of pairs (n), mean (m), standard deviation (sd) and standard error (se) 

for test variables for vegetation cover, vegetation growth and phyto-diversity. 

test variables 

number of pairs (n) mean (m) standard deviation (sd) standard error (se) 

relevés 

≥ 2021  
[m a. s. l.] 

relevés 

< 2021  
[m a. s. l.] 

relevés 

≥ 2021  
[m a. s. l.] 

relevés  

< 2021  
[m a. s. l.] 

relevés  

≥ 2021  
[m a. s. l.]   

relevés 

< 2021  
[m a. s. l.] 

relevés  

≥ 2021  
[m a. s. l.]   

relevés 

< 2021  
[m a. s. l.] 

vegetation cover                

shrub cover  16 16 44 44 16.8 15.4 4.2 3.9 

herb cover  16 16 44 47 15.04 13.6 3.8 3.4 

vegetation growth                 

tree height  16 16 94 255 53.8 259.6 19.03 67.02 

number of krummholz 16 16 2 6 2.3 6.3 0.8 1.6 

number of trees   16 16 1 4 2.07 4.5 0.7 1.2 

shortest tree distance 16 16 413 174 372.43 152.07 131.7 39.3 

phyto-diversity                 

total number of Geo montani-Nardetum 
character species  

16 16 3 2 1.03 0.95 0.26 0.24 

density of Geo montani-Nardetum 

character species  
16 16 6 3 3.9 2.45 0.98 0.6 

density of deteriorated Geo montani-
Nardetum to heathland  

16 16 37 42 15.06 10.7 3.8 2.7 
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The output of the tests for normality and tests of homogeneity of variance show that the data for the 

shrub-, herb cover, density of Geo montani-Nardetum character species and density of deteriorated Geo 

montani-Nardetum to heathland are parametric. We applied for the interpretation of significance, the 

dependent t-test (Paired Samples Test). In contrast, the data for tree height, number of krummholz and 

trees, shortest tree distance and total number of Geo montani-Nardetum character species are non-

parametric. We applied for the interpretation of significance, the non-parametric equivalent of the 

dependent t-test, i.e., the Wilcoxon-signed-rank test (Table A 31).  

Table A 33 Significance tests produced by IBM SPSS-Statistics program for (a) Wilcoxon-Test, showing the exact significance 

(required for most accurate results in small samples) of calculated z-score for test variables for vegetation cover, vegetation 

growth and phyto-diversity with non-normal distribution and different variances; and (b) Paired Samples Test showing the 

significance of calculated t-value for test variables for vegetation cover, vegetation growth and phyto-diversity with normal 

distribution and equal variances. Significance value (p) is two-tailed. Values p < 0.05 are significant. Values p ≥ 0.05 are not 

significant. Significance values applied for the interpretation of mean differences are pointed out in bold. 

Note: (-)* The Paired Samples Test is only displayed for parametric data. 

test variables for vegetation cover 

(a) Wilcoxon-Test 

exact significance of 
z-score (p) 

(b) Paired Samples Test 

significance of 
t-value (p) 

Interpretation 

of mean differences 

shrub cover  .990 .988 non-significant 

herb cover .280 .406 non-significant 

test variables for vegetation growth 

(a) Wilcoxon-Test 
exact significance of 

z-score (p) 

(b) Paired Samples Test 
significance of 

t-value (p) 

Interpretation 
of mean differences 

tree height  .050 (-)* non-significant  

number of krummholz  .026 (-)* significant  

number of trees  .020 (-)* significant  

shortest tree distance  .578 (-)* non-significant 

test variables for phyto-diversity 

(a) Wilcoxon-Test 

exact significance of 
z-score (p) 

(b) Paired Samples Test 

significance of 
t-value (p) 

Interpretation 

of mean differences 

total number of Geo montani-Nardetum 

character species 
.001 (-)* significant  

density of Geo montani-Nardetum 
character species 

.030 .024 significant  

density of deteriorated Geo montani-
Nardetum to heathland 

.291 .243 non-significant 
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A.6 Expected prognosis of current study by means of ArcGIS 

A.6.1 For relevés no. 1-32 

Table A 34 GIS-classification for areas where we propose a climate warming impact. The expected response of possible warming 

impact is expressed by the degree of non-disturbed/natural vegetation pattern of dominiant grassland community of the study 

region (i.e., abundance of Geo montani-Nardetum character species). Vegetation relevés are classified according to the different 

rates for abundance of Geo montani-Nardetum character species. Classes are categorized with ESRI ArcGIS and are marked in 

bold. Rates classified as 1 are allocated to areas with highest abundance rates, rates classified as 2 are allocated to areas with 

intermediate abundance rates, and rates classified as 3 are allocated to areas with lowest abundance rates and clearest signs of 

recessive pasture activity. 

Note: Average rate of 2.5 are rounded up to 3, whereas average rates of 1.5 are rounded down to 1. 

relevé  

ID 

GIS-class for total number of  
Geo montani-Nardetum 

character species 

GIS-class for density of 
Geo montani-

Nardetum character 
species 

average  

rates 

GIS-class 

according  

to average 

rate 

degree of non-disturbed/natural 
vegetation pattern of Geo montani-

Nardetum 

1 3 3 3.0 3 
lowest degree:  

clearest signs of pasture reduction 

2 2 3 2.5 3 
lowest degree:  

clearest signs of pasture reduction 

3 3 3 3.0 3 
lowest degree:  

clearest signs of pasture reduction 

4 1 1 1.0 1 
highest degree: 

most probably related to global warming 

5 1 1 1.0 1 
highest degree: 

most probably related to global warming 

6 1 1 1.0 1 
highest degree: 

most probably related to global warming 

7 2 3 2.5 3 
lowest degree:  

clearest signs of pasture reduction 

8 1 3 2.0 2 

intermediate degree: 
possible reduction in pasture activity and 

other reasons  
(e.g., site conditions) 

9 2 3 2.5 3 
lowest degree:  

clearest signs of pasture reduction 

10 2 2 2.0 2 

intermediate degree: 
possible reduction in pasture activity and 

other reasons  
(e.g., site conditions) 

11 2 2 2.0 2 

intermediate degree: 
pasture reduction and other reasons  

(e.g. site conditions) 

12 2 2 2.0 2 

intermediate degree: 

possible reduction in pasture activity and 
other reasons  

(e.g., site conditions) 

13 2 3 2.5 3 
lowest degree:  

clearest signs of pasture reduction 

14 3 3 3.0 3 
lowest degree:  

clearest signs of pasture reduction 

15 2 2 2.0 2 

intermediate degree: 
possible reduction in pasture activity and 

other reasons  
(e.g., site conditions) 

16 3 3 3.0 3 
lowest degree:  

clearest signs of pasture reduction 
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Table A 34 (continued)  

relevé  
ID 

GIS-class for total number of  

Geo montani-Nardetum 
character species 

GIS-class for density of 
Geo montani-

Nardetum character 

species 

average  
rates 

GIS-class 

according  

to average 

rate 

degree of non-disturbed/natural 

vegetation pattern of Geo montani-
Nardetum 

17 3 3 3.0 3 
lowest degree:  

clearest signs of pasture reduction 

18 3 3 3.0 3 
lowest degree:  

clearest signs of pasture reduction 

19 1 2 1.5 1 
highest degree: 

most probably related to global warming 

20 2 2 2.0 2 

intermediate degree: 
possible reduction in pasture activity and 

other reasons  

(e.g., site conditions) 

21 2 3 2.5 3 
lowest degree:  

clearest signs of pasture reduction 

22 2 3 2.5 3 
lowest degree:  

clearest signs of pasture reduction 

23 2 3 2.5 3 
lowest degree: clearest signs of pasture 

reduction 

24 2 2 2.0 2 

intermediate degree: 
possible reduction in pasture activity and 

other reasons  
(e.g., site conditions) 

25 2 3 2.5 3 
lowest degree:  

clearest signs of pasture reduction 

26 2 2 2.0 2 

intermediate degree: 
possible reduction in pasture activity and 

other reasons  

(e.g., site conditions) 

27 2 3 2.5 3 
lowest degree:  

clearest signs of pasture reduction 

28 2 2 2.0 2 

intermediate degree: 

possible reduction in pasture activity and 
other reasons  

(e.g., site conditions) 

29 2 2 2.0 2 

intermediate degree: 
possible reduction in pasture activity and 

other reasons  

(e.g., site conditions) 

30 1 3 2.0 2 

intermediate degree: 
possible reduction in pasture activity and 

other reasons  
(e.g., site conditions) 

31 1 2 1.5 1 
highest degree: 

most probably related to global warming 

32 2 2 2.0 2 

intermediate degree: 

possible reduction in pasture activity and 
other reasons  

(e.g., site conditions) 

  



Appendix: Ph. D. Sarah C. Strähl 

 

46 

 

Table A 35 GIS-classification for the proportion of areas where we propose an upward shift in timber line. The expected 

proportion of areas showing progress of spruce forest vegetation into non-forested areas is expressed by the appearance of 

plant species that are allocated to Vaccinio-Piceion. Vegetation relevés are classified according to the different rates for invasion 

density of Vaccinio-Piceion spruce forest vegetation. Classes are categorized with ESRI ArcGIS and are marked in bold.  

Rates classified as 1 are allocated to areas with highest invasion density of Vaccinio-Piceion (i.e., most advanced stage of spruce 

forest plant succession), rates classified as 2 are allocated to areas with intermediate invasion density of Vaccinio-Piceion and 

rates classified as 3 are allocated to areas with lowest invasion density of Vaccinio-Piceion (i.e., initial to transitional stage of 

spruce forest plant succession). 

relevé 

ID 

GIS-class for density of  

Vaccinio-Piceion 

intensity of  

forest progress 

relevé 

ID 

GIS-class for density of  

Vaccinio-Piceion 

intensity of  

forest progress 

1 1 initial to transitional stage 17 3 transitional to climax stage 

2 3 transitional to climax stage 18 3 transitional to climax stage 

3 3 transitional to climax stage 19 2 transitional stage 

4 1 initial to transitional stage 20 1 initial to transitional stage 

5 1 initial to transitional stage 21 2 transitional stage 

6 1 initial to transitional stage 22 2 transitional stage 

7 2 transitional stage 23 2 transitional stage 

8 3 transitional to climax stage 24 2 transitional stage 

9 2 transitional stage 25 2 transitional stage 

10 2 transitional stage 26 2 transitional stage 

11 1 initial to transitional stage 27 2 transitional stage 

12 2 transitional stage 28 2 transitional stage 

13 3 transitional to climax stage 29 2 transitional stage 

14 3 transitional to climax stage 30 2 transitional stage 

15 2 transitional stage 31 1 initial to transitional stage 

16 3 transitional to climax stage 32 2 transitional stage 
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Table A 36 Evaluation of GIS-analysis for: (a) current shape of timber line in probable response to global warming/pasture reduction, (b) areas proposed to show an upward shift in timber line 

relevé 
ID 

current shape of timber line with signs in probable response to global warming areas proposed to show an upward shift in timber line 

signs of global  

warming impact 

signs of  

pasture reduction 
clear signs intermediate signs lowest signs 

initial to  

transitional stage 

transitional  

stage 

transitional to  

climax stage 

1   x     x x     

2   x     x     x 

3   x     x     x 

4 x   x     x     

5 x   x     x     

6 x   x     x     

7   x     x   x   

8   x   x       x 

9   x     x   x   

10   x   x     x   

11   x   x   x     

12   x   x     x   

13   x     x     x 

14   x     x     x 

15   x   x     x   

16   x     x     x 

17   x     x     x 

18   x     x     x 

19 x   x       x   

20   x   x   x     

21   x     x   x   

22   x     x   x   

23   x     x   x   

24   x   x     x   

25   x     x   x   

26   x   x     x   

27   x     x   x   

28   x   x     x   

29   x   x     x   

30   x   x     x   

31 x   x     x     

32   x   x     x   

in percent 16 84 16 38 47 22 53 25 
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A.6.2 For relevés no. 33-40 

Table A 37 GIS-classification for the proportion of areas where we propose an upward shift in timber line. The expected 

proportion of areas showing a progress of spruce forest vegetation into non-forested areas is expressed by the appearance of 

plant species that are allocated to Vaccinio-Piceion. Vegetation relevés are classified according to the different rates for invasion 

density of Vaccinio-Piceion spruce forest vegetation. Classes are categorized with ESRI ArcGIS and are marked in bold.  

Rates classified as 1 are allocated to areas with highest invasion density of Vaccinio-Piceion (i.e., most advanced stage of spruce 

forest plant succession), rates classified as 2 are allocated to areas with intermediate invasion density of Vaccinio-Piceion and 

rates classified as 3 are allocated to areas with lowest invasion density of Vaccinio-Piceion (i.e., initial to transitional stage of 

spruce forest plant succession). 

relevé 
ID 

GIS-class for density of  
Vaccinio-Piceion 

intensity of  
forest progress 

33 2 transitional stage 

34 3 transitional to climax stage 

35 3 transitional to climax stage 

36 1 initial to transitional stage 

37 2 transitional stage 

38 1 initial to transitional stage 

39 3 transitional to climax stage 

40 1 initial to transitional stage 
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A.7 Further important records 

 

 

 

 

 

 

 

 

 

Figure A 1 Vegetation of the whole region of Grindelwald according to Hegg & Schneiter (1988) 

Source: Hillshade and contours: Digitales Geländemodell 2m © swisstopo; actual forest limit, glacier debris and glacier area: 

VECTOR25 © swisstopo; vegetation: Hegg & Schneiter 1988; possible extend of future forest limit for whole region: Collet et al. 

1938, Lawinenkataster des Kantons Bern © Abteilung Naturgefahren des Kantons Bern, Ereigniskataster NGKAT © Abteilung 

Naturgefahren, Amt für Wald des Kantons Bern, Landolt 2003, Holtmeier 2009; contours displayed for the selected altitudinal 

boundaries are according to tables 1 and 2 (page 17). 

High: 254 

Low: 0 

hillshade 
illumination value 

possible extend of future forest limit for whole region 

contours displayed for the following altitudinal boundaries:  
1400 m a.s.l. upper limit of broadleaved forests  

1800-2000 m a.s.l. forest limit / timber line 
2200-2300 m a.s.l. tree limit / treeline  
2400 m a.s.l. Krummholz limit  

3000 m a.s.l.  nival belt, snow line 
current forest limit 

glacier area 

glacier debris area 

broadleaved forests 

subalpine dwarf shrub heath 

rich meadows and pastures  

subalpine coniferous forests 

shrubs 

vegetation 

subalpine and alpine pastures 

peat bogs and swamps 

subalpine and alpine mega forbs 

richly manured alpine pasture 

alpine grassland  

snow pocket vegetation 

rock and debris vegetation  
on limestone 

not defined units 

thermophilic dry meadow 
dry meadows on limestone 

meager pastures 

afforested area 

natural stage of growth 

subalpine and alpine meadows 
forests 

shrubs 

grassland rock and debris vegetation 
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Table A 38 Vegetation of the whole region of Grindelwald according to Hegg & Schneiter (1988) 

type of vegetation in [m
2
] in [%] 

broadleaved forests 2787986.529 2.9 

subalpine coniferious forests 17640354.09 18.3 

afforested area 182269.462 0.2 

natural stage of growth  
(pioneer spruce forest with Melampyrum 

sylvaticum) 
70327.427 0.1 

shrubs 2231139.029 2.3 

subalpine dwarf shrub heath 4044907.771 4.2 

rich meadows and pastures 20893946.68 21.7 

thermophilic dry meadow 758803.062 0.8 

dry meadows on limestone 1267193.969 1.3 

meager pastures 1108560.325 1.1 

subalpine and alpine meadows 12941291 13.4 

subalpine and alpine pastures 4694830.099 4.9 

alpine grassland 767439.133 0.8 

peat bogs and swamps 2179463.333 2.3 

subalpine and alpine mega forbs  1601207.521 1.7 

richly manured alpine pasture 724077.846 0.8 

snow pocket vegetation 4172623.393 4.3 

rock and debris vegetation 15371744.49 15.9 

not undefined units 3012655.857 3.1 

total area of vegetation  

in the community 
96450821.02 100 

Source: Hegg & Schneiter 1988; Delarze & Gonseth 2008 
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Methods of vegetation classification:  

The MAB (Man and Biosphere) is an interdisciplinary research program of UNESCO that has focussed its 

research on the equilibrium between the ecological balance of the area and human activity. Switzerland 

has decided to contribute in one part (i.e., research program no. 6: “The study of Man’s impact on 

mountain ecosystems”) of the worldwide studied research projects, investigating all fundamental habitats 

of the earth. In addition, this research program was taken over by the Swiss National Science Foundation 

(SNF) under the title “Socioeconomic development and ecological resilience in mountainous areas” (NFP 

55). The aim of this research project was to analyse, in selected regions (Grindelwald, Pays-d'Enhaut, 

Aletsch, Davos): (1) the interdependency between economical activities, land use and the ecological 

balance of the area and (2) determine the processes that affect the long-term security of a mountainous 

area in the sense of living, economic and recreation areas (Swiss National Science Foundation 2015). In the 

region of Grindelwald, vegetation mappings belong to a sub-project among many others. For the region of 

Grindelwald, several spatial units of different vegetation groups have been identified that are more or less 

homogeneous areas of about 1-5 ha and cover the whole inventory of plant communities. According to the 

traditional vegetation mapping method of Braun-Blanquet (1964), different vegetation types were defined 

within the spatial units. In the mapping entities, plant communities of different plant sociological levels, 

specifically the levels of subassociation, association and cohort, are considered. For specific research 

purposes of the MAB-project, the different plant physiognomic aspects were additionally recorded in the 

sense of their formation or appearances, according to the dominance of certain plant species or groups of 

certain plant species (e.g., variants or facies). For the whole test area of Grindelwald, there have been a 

total of around 5600 spatial units. 

The vegetation map, showing the dominant plant communities in the region of Grindelwald, has 

been produced by selecting the values out of the attribute table that show the dominant vegetation groups 

(including forests and non-forest areas) within the spatial units. In order to select the most dominant 

vegetation groups (i.e., the plant communities with strongest abundance), the attribute values of “DVEG1” 

have been selected (Hegg & Schneiter 1988). 
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Figure A 2 Dominant plant communities in the whole region of Grindelwald. For the legend, see following pages  

(53-54).  

Note: Abbreviation “V” stands for cohort and “A” for association. 

Source: Hillshade and contours: Digitales Geländemodell 2m © swisstopo; actual forest limit, glacier debris and glacier area: 

VECTOR25 © swisstopo; vegetation: Hegg & Schneiter 1988; possible extend of future forest limit for whole region: Collet et al. 

1938, Digitales Geländemodell 2m © swisstopo, Lawinenkataster des Kantons Bern © Abteilung Naturgefahren des Kantons 

Bern, Ereigniskataster NGKAT © Abteilung Naturgefahren, Amt für Wald des Kantons Bern, Landolt 2003, Holtmeier 2009; 

contours displayed for the selected altitudinal boundaries are according to tables 1 and 2 (page 17). 
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V: Vaccinio-Piceion  

A: Rhododendro-Pinetum sorbetosum chamaemespili 
and Rhododendro-Pinetum juniperetosum nanae 
percentage out of all coniferous forests: 5.4% 
V: Erico-Pinion  
A: Erico-Pinetum mugi, Rhododendro hirsuti-Pinetum 
mugi typicum and Rhododendro hirsuti-Pinetum mugi 

betuletosum 
percentage out of all coniferous forests: 4.6% 

V: Fagion  

A: Galio odorati-Fagetum luzuletosum 
percentage out of all broadleaved forests: 2.1%  

V: Abieti-Fagion  
A: Abieti-Fagetum festucetosum, Abieti-Fagetum 
luzuletosum, Abietetum festucetosum, Abieti-Piceetum 

mercurialietosum and Abieti-Piceetum 
dryopteridetosum 
percentage out of all broadleaved forests: 40.1% 
V: Lunario-Acerion  
A: Ulmo-Aceretum, Arunco-Aceretum and Aceri-Fraxinetum 
tilietosum 

percentage out of all broadleaved forests: 8.9% 

V: Fagion  
A: Tilio-Fagetum 

percentage out of all broadleaved forests: 7.4% 
V: Fagion 

A: Carici-Fagetum and Calamagrostio variae-
Fagetum 
percentage out of all broadleaved forests: 4.2% 

V: Alno-Fraxinion  
A: Aceri-Fraxinetum typicum 
percentage out of all broadleaved forests: 37.3% 

broadleaved forests 

V: Piceo-Abietion  
A: Aceri-Piceetum mercurialietosum, Aceri-Piceetum  

aconitetosum vulpariae, Aceri-Piceetum 
chaerophylletosum cicutariae and Aceri-Piceetum 
calamagrostietosum variae 

percentage out of all coniferous forests: 11.5% 
V: Piceo-Abietion  
A: Calamagrostio variae-Piceetum and Carici-Piceetum 
percentage out of all coniferous forests: 13% 
V: Vaccinio-Piceion  
A: Myrtillo-Piceetum typicum, Myrtillo-Piceetum 

prenanthetosum and Asplenio-Piceetum 
percentage out of all coniferous forests: 17% 
V: Vaccinio-Piceion  
A: Sphagno-Piceetum 

percentage out of all coniferous forests: 0.2% 
V: Vaccinio-Piceion  

A: Veronico latifoliae-Piceetum, Homogyno-Piceetum 
typicum, Homogyno-Piceetum sphagnetosum and 

Homogyno-Piceetum asplenietosum 
percentage out of all coniferous forests: 46.3% 

V: Vaccinio-Piceion  

A: Adenostylo-Piceetum 
percentage out of all coniferous forests: 2.1% 

subalpine coniferous forests 

V: Alnion  
A: Alnetum viridis adenostyletosum and 

Alnetum viridis rhododendretosum 
percentage out of all shrubs: 33.9% 
V: Salicion  
A: Salicetum appendiculatae 
percentage out of all shrubs: 9% 
V: Corylion 
A: Coryletum avellanae 
percentage out of all shrubs: 2.2% 

V: Alnion  
A: Calamagrostio-Alnetum mercurialietosum, 

Calamagrostio-Alnetum stellarietosum, 
Calamagrostio-Alnetum petasitetosum, 
Calamagrostio-Alnetum scirpetosum and Salici-

Alnetum incanae 
percentage out of all shrubs: 54.2% 
hedges and single bushes 
percentage out of all shrubs: 0.7% 

shrubs 

rich meadows and pastures 
V: Arrhenatherion  
A: Alchemillo-Arrhenatheretum, Anthrisco-Trisetetum 

and Phleo-Trisetetum 
percentage out of all rich meadows and pastures: 58% 
V: Cynosurion  
A: Alchemillo-Cynosuretum 

percentage out of all rich meadows and pastures: 8% 
V: Cynosurion  

A: Crepido-Cynosuretum and Crepido-Festucetum 
percentage out of all rich meadows and pastures: 14% 

V: Poion alpinae  
A: Crepido-Festucetum 

percentage out of all rich meadows and pastures: 19% 

V: Poion alpinae  
A: Poetum alpinae 

percentage out of all rich meadows and pastures: 1% 

afforested area 
percentage out of all increased forest areas: 72% 
natural stage of growth (pioneer spruce forest with 
Melampyrum sylvaticum) 
percentage out of all increased forest areas: 28% 

afforestation and natural growth V: Rhododendro-Vaccinion  

A: stocks of Rhododendro hirsuti-mugetum 
percentage out of all subalpine dwarf shrub heath: 11% 

stocks of Dryadetum 
percentage out of all subalpine dwarf shrub heath: 2% 

A: Agrostio-Festucetum rubrae and Alchemillo-
Poetum alpinae 

meager pastures 

V: Mesobromion and Seslerio-Mesobromion 

thermophilic dry meadow 

mixed stocks of Crepido-Festucetum-Nardetum 

dry meadows on limestone 

subalpine dwarf shrub heath 
V: Rhododendro-Vaccinion  

A: Rhododendro-Vaccinietum 
percentage out of all subalpine dwarf shrub heath: 65% 

V: Juniperion nanae  

A: Junipero-Callunetum 
percentage out of all subalpine dwarf shrub heath: 18% 

V: Rhododendro-Vaccinion 
A: Empetro-Vaccinietum 
percentage out of all subalpine dwarf shrub heath: 3.6% 

V: Loiseleurio-Vaccinion  

A: Cetrario-Loiseleurietum 
percentage out of all subalpine dwarf shrub heath: 0.4% 
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 peat bogs and swamps 

V: Caricion fuscae 
A: Caricetum fuscae and Valeriano-Caricetum fuscae 

 percentage out of all peat bogs and swamps: 52% 
V: Molinion 
A: Trollio-Cirsietum, Polygono-Cirsietum, Scirpetum 

silvaticae and Filipendulo-Juncetum inflexi 
percentage out of all peat bogs and swamps: 11% 

neutral and basiphyle wet vegetation  

A: Bartsio-Caricetum davallianae, Junco-Caricetum 
davallianae, Nardo-Caricetum pulicaris and 

Molinietum litoralis 
percentage out of all peat bogs and swamps: 36% 

wet vegetation general not further defined 

percentage out of all peat bogs and swamps: 1% 

subalpine and alpine mega forbs 
V: Adenostylion 
A: Adenostylo-Cicerbitetum, Calamagrostietum villosae, 

Calamagrostietum variae, Brachypodietum pinnatae, 
Chaerophylletum villarsi and Trifolietum medii 

percentage out of all subalpine and alpine mega forbs: 86% 
V: Epilobion angustifolii 
A: Epilobietum angustifoliium 

percentage out of all subalpine and alpine mega forbs: 14% 

richly manured alpine pasture 
V: Rumicion alpini 

A: Rumicetum alpini, Cirsietum spinosissimi and 
Poetum supinae 

A: Salicetum herbaceae, Salicetum retuso-reticulatae, 
Arabido-Rumicetum nivalis, Polytrichetum 

sexangularis and Poo-Cerastietum cerastoidis 

snow pocket vegetation 

A: Androsacetum helveticae, Potentillo-Hieracietum 

humilis, Asplenio-Primuletum hirsutae, Sedo-
Sclerathion, Dryopteridetum robertianae, Petasitetum 

paradoxi, Athamanto-Trisetetum distichophylli, 
Thlaspietum rotundifolii, Leontodontetum montani, 
Androsacetum alpinae, Oxyretum digynae and 

Tussilago-Flur 

rock and debris vegetation 

subalpine and alpine pastures 
V: Seslerion  

A: Oxytropo-Sesleretum, Astero-Seslerietum and 
Trifolio-Seslerietum 
percentage out of all subalpine and alpine meadows: 

66.9% 
V: Caricion ferruginae  
A: Festuco pulchellae-Caricetum ferrugineae and 
Heracleo-Caricetum ferrugineae 
percentage out of all subalpine and alpine meadows: 

24.8%  

V: Festucion variae 
A: Trifolio-Festucetum violaceae 

percentage out of all subalpine and alpine meadows: 

4.2% 

V: Caricion ferruginae 

A: Arnica montana-Carex ferruginae and Sesleria 
coerulea-Carex sempervirens 

percentage out of all subalpine and alpine meadows: 

4.1% 

alpine grassland 
V: Caricion firmae 

A: Caricetum firmae 
percentage out of all alpine grassland: 20% 
V: Elynion 

A: Elynetum 
percentage out of all alpine grassland: 13% 
V: Caricion curvulae  
A: Caricetum curvulae 
percentage out of all alpine grassland: 67% 

High: 254 

Low: 0 

hillshade 
illumination value 

contours displayed for the following altitudinal boundaries:  

1400 m a.s.l. upper limit of broadleaved forests  
1800-2000 m a.s.l. forest limit / timber line 
2200-2300 m a.s.l. tree limit / treeline  

2400 m a.s.l. Krummholz limit  
3000 m a.s.l.  nival belt, snow line 

possible extend of future forest limit for whole region 
current forest limit 

not defined units 

glacier area 

glacier debris area 

subalpine and alpine meadows 
V: Nardion  
A: Geo montani-Nardetum 

percentage out of all subalpine and alpine meadows: 

96.6% 
V: Nardion  
A: Luzulo-Nardetum 

percentage out of all subalpine and alpine meadows: 

3.1% 
V: Nardion  
A: Hypochoero-Nardetum 
percentage out of all subalpine and alpine meadows: 

0.3% 
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The nomenclature of plant communities for the cohort level corresponds to the publication “Lebensräume 

der Schweiz” (Delarze & Gonseth 2008).  

For the association level, the nomenclature of plant communities corresponds to the publication 

and data file “Die Vegetation als Grundlage von Alp-und Forstwirtschaft, Tourismus und Naturschutz im 

MAB-Testgebiet Grindelwald” (Hegg & Schneiter 1988) and to the publication “Die subalpinen 

Zwergstrauchgesellschaften im Einzugsgebiet der Aare” (Schweingruber 1972). The percentage values 

calculated for an association are taken from the AREA column (showing m2 values) in the attribute table 

“DVEG1” (Hegg & Schneiter 1988).  

The nomenclature “Geo montani-Nardetum“ was applied according to the publications “Übersicht 

über die Pflanzengesellschaften Rätiens” (Braun-Blanquet 1948/1949) and “Lebensräume der Schweiz” 

(Delarze & Gonseth 2008). Hegg & Schneiter (1988) identifies this plant community as Sieversio-Nardetum. 

However, the plant species content within the plant community remains unchanged between the two 

different designations of nomenclature. 

Table A 39 Land-use practices in the region of Grindelwald 

intensively used agricultural land: 24% 

cu
lt

iv
a

te
d

 a
re

a 
(2

4
%

) 

vegetation in [m
2
] 

thermophilic dry meadow 758803.062 

dry meadows on limestone 1267193.969 

rich meadows and pastures 20893946.68 

total area of cultivated fields 22919943.72 

extensively used agricultural land: 14% 

to
ta

l a
re

a 
o

f 
p

as
tu

re
s,

 m
e

ad
o

w
s 

an
d

 g
ra

ss
la

n
d

 (
2

0
%

) 

vegetation in [m
2
] 

Elynetum 98979.088 

Geo montani-Nardetum 12503947.56 

Luzulo-Nardetum 399042.192 

Hypochoero-Nardetum 38301.254 

Caricetum curvulae 516640.638 

Trifolio-Festucetum violaceae 195545.323 

total area of extensive used land 13752456.05 

lean pastures: 6% 

vegetation in [m
2
] 

meager pastures 1108560.325 

Seslerion 2509376.216 

occasionally grazed Seslerion 632142.888 

Caricion ferruginae 1164310.46 

Arnica montana-Carex ferruginae 193455.212 

Caricetum firmae 151819.407 

total area of lean pastures 5759664.508 

Source: Hegg & Schneiter 1988; Käsermann 2007. Nomenclature of plant communities is applied according to Hegg & Schneiter 

1988 and Delarze & Gonseth 2008. 
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Table A 40 Geological time scale in the study region, modified according to Collet et al. 1938 and Käsermann 2007 

era period epoch age  

(mio. years) 
stratigraphy & lithogenesis 

  

C
ai

n
o

zo
ic

 

Quaternary Holocene 0.01 

Quaternary features 

 
-slope debris 

-rock fall & scree material 
-settling & landslides 

-aggradation & alluvial terrace 
 
 

-moraines with ramparts of present glaciers  
(e.g. Eiger glacier, Lower & Upper Grindelwald Glacier) 
-local moraines  

(deposits from local glaciers of Männlichen & Faulhorn chains) 
-moraines with ramparts of the main glacier (glacial debris) 

P
o

st
-g

la
ci

al
 p

e
ri

o
d

 

Pleistocene 1.75 

G
la

ci
al

 p
e

ri
o

d
 

Tertiary 

Pliocene 5 Paraautochthonous 

imbrication 

 

-Flysch 
-coalic limestones 

-quarzit 
-Mürren limestone 
breccias 

-Bohnerz formation  
(siderolithic breccias,  

e.g. Grindelwald marble) 
 
-Hauterivien  

(sandy limestones) 
-Berriacien  
(Oehrli-limestones) 

-Malm limestones 
  

 
-Argovien breccias 
(limestones & schists) 

 

    

M
ai

n
 a

lp
in

e
 f

o
ld

in
g

 

Miocene 24     

Oligocene 37 

  

  

Eocene 58       

Paleocene 65       

M
e

so
zo

ic
 

Cretaceous 
Upper Cretaceous 98   Helvetic nappe 

(Wildhorn) 

 
 

 
 
-Berriasien-marl 

-Argovien-limestones 
-Argovien-Callovien-
schists 

-Bajocien-
Echinodermen 

breccia 
-Bajocien-sandy 
limestones 

-iron sandstone  
(gnarled, sandy and 

irony slate) 
-Aalenian schist  
(clay-slate with iron 

content) 
 

  

Lower Cretanous 140     

Jura 

Malm 160   

In
it

ia
l a

lp
in

e
 f

o
ld

in
g 

Dogger 175 

Ultrahelvetic nappe 

(Doldenhorn) 

 
 
-Wildflysch  

(clay-slate interspersed 
with unregulraly often 
tectonically disrupted 

by sandstone benches) 

Lias 203 

Lias depositions are not 
existent because of 

emersion 
 

 
 
 

  

Trias 

Keuper 230 Trias & Perm are also 
only partly existent due 

to degradation during 
the Lias-drainage 

    

Muschelkalk 240     

Bunter sandstone 245     

P
al

e
o

zo
ic

 

Permian 

n
o

t 
it

e
m

iz
e

d
 

290       

Carbon 360 Autochthonous Aar massif 

 

Crystallin 

-Innertkirchner Granite  
(ortho-rock going over to mixed gneiss) 
-Erstfelder Gneiss  

(ortho-rock, parly going over to mixed gneiss) 
-Lötschental-Fernigen-schists  

(mixed gneiss) 

H
e

rc
yn

ic
 f

o
ld

in
g 

Devonian 408 

Silurian 438 

Ordovician 500 

Cambrian 570 
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Figure A 3 Cumulative length change of glacier tongue of the Lower Grindelwald Glacier since A.D. 1879  

Source: Glaciological reports 1881-2009; Holzhauser & Zumbühl 2003 
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Figure A 4 Development of the Central Alpine forest belt of the Central Grisons since the Late Würmian 

Source: Modified according to Burga C. A. (1999) 
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Table A 41 Scheme relating dominant geological features of the study region to pedogenesis, soil type, land cover and type of 

plant community  

geology 
substrates &  

components 
soils location land cover 

Quaternary 

-landslide 

→ coarsely-finely grained 

material → instable 
→ badly weathering 

→ neutral-basic  

→ immature soils  
(e.g. rendzina, syrosem-
rendzina) 

locally distributed 

between 
Alpiglen & Kleine 
Scheidegg 

rock, sand, scree  

alternating with 
pasture, meadow 

Quaternary 

-debris 

→ coarsely-finely grained 

loose material → instable 
→ badly weathering  

→ neutral-basic 

→ immature soils  
(e.g. rendzina, syrosem-
rendzina) 

locally distributed 

between Alpiglen & 
Kleine Scheidegg 

rock, sand, scree  

alternating with 
pasture, meadow 

Quaternary 
-moraine 

→ coarsely-finely grained 
material → stable  
→ weathering weathering 

intensity depending on grain 
size of fraction 

→ neutral-basic 
→ cambisols & podsols 

widely spread along 
smooth slopes between  
Kleine Scheidegg &  

Grindelwald 

forest,  
open forest,  
shrubs, bushes, 

pasture with shrubs, 
grassland, farmland 

Tertiary 

-Flysch 

→ rapid change of strata 

→ alternaZng grained 
fraction (clay-larger stones) 
→ instable  

→ mean weathering intensity 

→ rather acid 

→ regosol & acidic cambisol 

only in small-areas & 

often folded in the  
Doldenhorn-nappe at 
the base of the Eiger, 

Mättenberg & 
Wetterhorn 

pasture, meadow,  

pasture with shrubs 

Tertiary  
-coalic 

limestones 
-limestone 
breccia 

→ massive chalks  
→ coarse grained fracZon → 

tough 
→ badly weathering 

→ neutral-basic 
→ lime cambisol, regosol and 

immature soils  
(e.g. rendzina, humic soils) 

steep north-facing walls 
of Eiger, Mättenberg & 

Wetterhorn 

rock, sand, scree  
alternating with 

pasture, meadow 

Mesozoic 
-iron 

sandstones 

→ quarz-rich sand stone 
→ fracZon with mean grain 

size (e.g. sand & gravel) 
→ mean weathering intensity 

→ sour 
→ regosols & cambisols, partly 

also podsols 

smooth slopes between 
Grindelwald and Kleine 

Scheidegg  

forest, open forest,  
pasture with shrubs 

Mesozoic 
-Aalenian 
schists 

→ mixed schistous & quarz 
material 
→ fine grained fracZon  

(clay & silt) 
→ easy weathering 

→ rather sour 
→ cambisols & podsols 

smooth slopes between 
Grosse and Kleine 
Scheidegg  

forest, open forest,  
pasture with shrubs, 
pasture, meadow 

Source: Geological features: Collet et al. 1938; soil and land cover type: Arealstatistik 1992/97, © BFS GEOSTAT; soil 

nomenclature and identities: Scheffer et al. 2010 

 

Table A 42 Grain type and grain diameter (equivalent diameter) for substrates and components of the bedrock 

  fine grained intermediate coarse grained 

grain type clay silt sand gravel block 

grain diameter 
(equivalent diameter) 

63 nm-2 µm 2-63 µm 63 µm-2 mm 2 mm-63 mm 2 dm-6.3 dm 

Source: Scheffer et al. 2010   
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Table A 43 Most important plant communities at the timber-line ecotone of the study region in relation to climate, soil and  

land use intensity 

 
climate soil vegetation cultivation location 

Subalpine Norway spruce 

forest communities 
(e.g. Homogyno-
Piceetum typicum) 

→ mean 

humidity 

→ acid 

→ profoundity 
dependent to 
parent material 

→ trees, shrubs & herbs  

→ acid indicators 
(e.g. Vaccinium myrtillus) 

minor 

influence,  
e.g. 
pasturing 

dominant throughout the 

whole study region, 
smooth mean steep 
slopes from Grindelwald 

towards  
1500-1600 m elevation 

Subalpine dwarf shrub 
heath (e.g. Rhododendro-

Vaccinietum) 

→ humid → acid  
→ rich in humus 

→ oligotroph 

→ shrubs, herbs & mosses  
→ acid indicators 

(e.g. Rhododenron 

ferrugineum) 

→ the upper boundary of 
Rhododendron ferrugineum 
gives rise about the 

potential forest limit 

extensive 
pasturing 

without  
maintenance 

dominant at the timber-
line in depressions with 

large & long-lasting snow 
cover 

→ Rhododendro hirsuZ-
mugetum (on limestone 
rich slopes, e.g. Eiger, 

Mettenberg, Wetterhorn, 
Schwarzmönch) 

Subalpine dwarf shrub 
heath  
(e.g. Loiseleurio-

Vaccinion) 

→ windy 
→ extremely 
low 

temperatures  
(max. -40 °C) 

→ short snow 
cover duration 
(max. 3 month)  

→ very acid  
→ immature soils 
with shallow 

layer  

→ short growing plant 
species,  
i.e. herbs & mosses  

−highly adapted to strong 
winds & desiccation 

−acid indicators  
(e.g. Loiseleuria 

procumbens) 

no land use occurs seldom as 
continous layer, forms at 
peaks or ridges, e.g. 

Männlichen, local 
mosaics with adjacent 

vegetation types  

Subalpine green alder 

shrubs 
(e.g. Alnetum viridis 
adenostyletosum) 

humid → profound  

→ eutrophic clay-
rich & immature 
soils 

→ pa^ern dominated by 

Alnus viridis shrubs → highly 
adapted to erosion, 
avalanches & capable to 

bind nutrients 
→ opulent herb layer with 

nutrient indicator plants 
(e.g. Adenostyles alliariae) 

unmanaged 

pastures 

dominant on steep slopes 

prone to landslides & 
surface processes in the 
subalpine belt  

(1500 m a.s.l.) towards 
the timber-line 

Subalpine and alpine 
mega forbs  
(e.g. Adenostylo-

Cicerbitetum) 

humid → profound  
→ humid  
→ venZlated  

→ nutrient rich  
 & alkaline soils 

→ tall growing perennial 
herbs & mosses 
→ nutrient indicator plants  

(e.g. Adenostyles alliariae)  
→ form mosaics with 
adjacent plant species of 

forests or Alnetum viridis 

not regularly  
mowed or 
grazed  

scattered occurence in: 
→ depressions with long-
lasting snow cover  

→ areas with forest 
openenings, north-facing 
shaded slopes, prone to 

avalanche activity 

Subalpine and alpine 
meadows (e.g. Poetum 
alpinae) 

mesophilous → humid  
→ nutrient rich  
→ alkaline soils 

→ dense herbal cover  
→ nutrient indicator  
plants (e.g. Poa alpina) 

→ forms mosaics with 
adjacent vegetation of Geo 

montani-Nardetum 

occationally  
fertilized 

not frequent & dominant 
on lightly inclined slopes 
with long-lasting snow 

cover at Busalp, between 
First & Grosse Scheidegg, 

Alpiglen 

Source: Käsermann 2007; nomenclature plant communities: Braun-Blanquet 1948/1949, Schweingruber 1972, Hegg & Schneiter 

1988 and Delarz & Gonseth 2008 

  

factors 
communities 
plant 
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Table A 43 (continued) 

 
climate soil vegetation cultivation location 

Subalpine and alpine 
meadows  

(e.g. Geo montani-
Nardetum) 

mesophilous acid & meager 
soils  

→ tu_ed herbal cover 
→ meagerness  

indicator plants  
(e.g. Nardus stricta) 
→ forms mosaics with 

adjacent vegetation of dwarf 
shrub heath,  Poetum 
alpinae or Caricetum 

curvulae 

non-
fertilized, 

extensive 
used   

widely spread along 
smooth slopes in the 

subalpine and alpine belt 
on strongly acidifying 
clay-slate & iron 

sandstones  

Subalpine and alpine 
pastures  
(e.g. Caricion ferrugineae) 

mesophilous → moistened   
→ nutrient rich  
& alkaline soils 

→ tall growing meadows  
→ humid indicator plants  
(e.g. Carex ferruginea) 

extensively 
used 
pastures & 

hay crop 

dominant on N-facing, 
steep slopes (1600-2300 
m a.s.l.) towards 

Wetterhorn, Eiger north-
wall on clay-rich & 

skelletous substratum 

Peat bogs and swamps  

(e.g. Caricetum fuscae) 

moist & high 

precipitation 
amount 

moistened,   

acid, nutrient-
poor soils 

nutrient-poor  

indicator plant species  
(e.g. Eriophorum vaginatum) 

no land use occurs in scattered  

areas east of Männlichen, 
near Kleine and Grosse 

Scheidegg on water-
impermeable clay-slate, 
iron sandstones, Flysch 

Rock and debris 
vegetation on limestone  
(e.g. Thlaspietum 

rotundifolii)  

short 
vegetation 
period, approx.  

4-5 month 

→ immature soils  
→ high skellet 
content 

→ nutrient-poor 

→ low vegetaZon cover  
(< 10 %) 
→ pioneer-vegetation, 

highly adapted to 
continuous changes by 
debris movements 

→ rich plant species 
diversity 

no land use frequent in scattered 
areas  
along debris slopes on 

Malm limestones & 
Oehrli limestones 
between  

1900 & 2500 m a.s.l.  

 

Table A 44 The altitudes of former timber line for 1861, current timber line for 2007 and expected timber line for  

2107 are displayed as interpolated average values.  

Note: Results show in all cases an altitude of the actual timber line located far below the potential altitude of timber line for the 

Northern Swiss Alps. 

year 1861 2007 2107 

timber line altitude [m a.s.l.] 1612 1643 1639 

Source: Digitales Geländemodell 2m © swisstopo, VECTOR25 © swisstopo, DUFOUR © swisstopo, Lawinenkataster des Kantons 

Bern © Abteilung Naturgefahren des Kantons Bern, Ereigniskataster NGKAT © Abteilung Naturgefahren, Amt für Wald des 

Kantons Bern, Collet et al. 1938, Landolt 2003, Holtmeier 2009  

The altitudes of the timber line shown, for 1861 and 2007 are interpolated average values and have been 

calculated with ESRI ArcGIS algorithms out of all highest reached areas of forest for each year. The expected 

altitude of the timber line for 2107 has been calculated with ESRI ArcGIS algorithms and represents a 

calculated average value out of the expected future extent of the forest limit. The resulting value is 

somewhat below the forest limit recorded in 2007, and its altitudinal limit is expected to be determined by 

local site conditions (surface topography and substrate). 

factors 
communities 
plant 
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Figure A 5 Definition of forest according to the Swiss National Forest Inventory (LFI)  

Source: Modified according to Brändli (2010) 

The Swiss National Forest Inventory (LFI) records the main basic data on forests. The LFI publishes a sample 

inventory, carried out by the Swiss Federal Office of Forest, Snow and Landscape, that reports the 

conditions of forests in Switzerland. Areas are defined according to the LFI into: forest, shrubby forest and 

non-forest. The forest definition is based on the area of forest stands, forest width and the height of 

timber. The minimum requirement for a surface to be defined as forest is illustrated by the curve, which 

shows the relation between forest width and the area of canopy cover. For example, a surface is defined as 

forest, when the canopy area covers at least 20% of the ground area for forest stands ≥ 50 m wide, whereas 

smaller forest stands (e.g. 25-50 m wide) cover at least 60% of ground area. 
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A.8 Vegetation records from master thesis 

Table A 45 GPS coordinates and habitat properties for vegetation relevés recorded in the Geo montani-Nardetum grassland  

sample ID 
plot size 

[m
2
] 

coordinates 
altitude [m a.s.l.] slope [%] exposition geology & substrate defined category of vegetation unit 

x y  

1 4 639525 159242 2130 25 SW Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with  
ericaceous dwarf shrubs 

2 4 639054 159003 2146 15 SW Mesozoicum Aalenian schists disturbed Geo montani-Nardetum 

3 4 638502 158856 2130 25 SW Mesozoicum Aalenian schists non-disturbed Geo montani-Nardetum 

4 4 634460 157088 1933 15 NE Mesozoicum Aalenian schists disturbed Geo montani-Nardetum 

5 4 634465 157097 1933 20 NE Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with  
ericaceous dwarf shrubs 

6 4 639545 159222 2134 20 SW Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with  
ericaceous dwarf shrubs 

7 4 639430 159100 2154 20 SW Mesozoicum Aalenian schists 

Geo montani-Nardetum transition form with  

ericaceous dwarf shrubs 

8 4 639418 159102 2139 45 SW Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with  
ericaceous dwarf shrubs 

9 4 639122 158977 2152 5 SW Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with  
ericaceous dwarf shrubs 

10 4 639052 159021 2148 2-3 SW Mesozoicum Aalenian schists disturbed Geo montani-Nardetum 

11 4 639041 159011 2150 2 SW Mesozoicum Aalenian schists non-disturbed Geo montani-Nardetum 

12 4 639009 159016 2142 3 SW Mesozoicum Aalenian schists disturbed Geo montani-Nardetum 

13 4 639016 159033 2150 2 SW Mesozoicum Aalenian schists disturbed Geo montani-Nardetum 

14 4 638522 158849 2149 5 SW Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with  
ericaceous dwarf shrubs 

15 4 638502 158856 1916 5 SW Mesozoicum Aalenian schists disturbed Geo montani-Nardetum 

16 4 638463 158856 1932 5-6 SW Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with  
ericaceous dwarf shrubs 
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Table A 45 (continued)  

sample ID 
plot size 

[m
2
] 

coordinates 
altitude [m a.s.l.] slope [%] exposition geology & substrate defined category of vegetation unit 

x y  

17 4 638224 158579 1896 5 SW Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with 
ericaceous dwarf shrubs 

18 4 634454 157067 1930 5 NE Mesozoicum Aalenian schists non-disturbed Geo montani-Nardetum 

19 4 634397 157088 1915 5 SW Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with 
ericaceous dwarf shrubs 

20 4 634349 157113 1920 3-4 NE Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with 
ericaceous dwarf shrubs 

21 4 634499 157560 1902 4-5 SE Mesozoicum Aalenian schists 

Geo montani-Nardetum transition form with 

ericaceous dwarf shrubs 

22 4 634344 157124 1913 5 NE Mesozoicum Aalenian schists disturbed Geo montani-Nardetum 

23 4 639052 159021 1905 5 NE Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with 
ericaceous dwarf shrubs 

24 4 634348 157136 1903 3 NE Mesozoicum Aalenian schists disturbed Geo montani-Nardetum 

25 4 634463 157069 1942 6 SE Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with 
ericaceous dwarf shrubs 

26 4 634905 157497 1893 3 SE Mesozoicum Aalenian schists disturbed Geo montani-Nardetum 

27 4 634497 157065 1880 6 SE Mesozoicum Aalenian schists non-disturbed Geo montani-Nardetum 

28 4 634450 157060 1942 8 SE Mesozoicum Aalenian schists non-disturbed Geo montani-Nardetum 

29 4 634580 157645 1901 2-3 SE Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with 
ericaceous dwarf shrubs 

30 4 634675 157302 1873 3 SE Mesozoicum Aalenian schists 
Geo montani-Nardetum transition form with 
ericaceous dwarf shrubs 
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Table A 46 Field data for vegetation relevés recorded in the Geo montani-Nardetum grassland 

sample ID Poaceae [%] 
Cyperaceae,  

Juncaceae [%] 
Liliaceae,  

Orchidaceae [%] 
Fabaceae 

[%] 
Dicotyledonae 

[%] 
Pteridophyta 

[%] 
mosses & lichens 

[%] 
woody plants 

[%] 

total number of  

flowering plants,  
ferns, mosses & lichens 

1 45 5 1 5 20   < 1 25 26 

2 70 < 1 1 < 1 30     < 1 14 

3 60 7 2 10 18   < 1 < 1 27 

4 60 10 < 1 5 30       20 

5 50 5-6 2 5 30     7-8 24 

6 30 10 5 5 25     23 22 

7 40 20 4 5 20     10 22 

8 40 15 3 5 25     10 19 

9 45 5 5   35   < 1 9-10 24 

10 70 5 < 1   30       19 

11 65 5 1   28     < 1 26 

12 70 10 3   25       17 

13 60 3-4 2   30       18 

14 65 15 4-5 2-3 20     10 32 

15 50 5 < 1 5 42   < 1 < 1 27 

16 40 5 1 1 30   1-2 10 27 

 

  



Appendix: Ph. D. Sarah C. Strähl 

 

66 

 

Table A 46 (continued) 

sample ID Poaceae [%] 
Cyperaceae,  

Juncaceae [%] 
Liliaceae,  

Orchidaceae [%] 
Fabaceae 

[%] 
Dicotyledonae 

[%] 
Pteridophyta 

[%] 
mosses & lichens 

[%] 
woody plants 

[%] 

total number of  

flowering plants,  
ferns, mosses & lichens 

17 70 5 2 < 1 30   < 1 10 25 

18 60 5 1-2 5-6 40     < 1 30 

19 50 5 2   40     10 26 

20 65 3-4 < 1 3-4 30   < 1 8 20 

21 30 3 < 1 3-4 30   < 1 30 25 

22 50 5   3-4 40   2-3   19 

23 70 5   3-4 25   1-2 8 17 

24 65 5 < 1   25   < 1   18 

25 50 5 1 4-5 37   1 10 35 

26 70 5   4-5 30     < 1 16 

27 50 2-3 1-2 5 45     < 1 31 

28 40 4-5 1-2 5 45     < 1 32 

29 30 2   1-2 15   1-2 40 26 

30 30 1   1-2 15   2 45 23 
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Table A 47 GPS coordinates and habitat properties for vegetation relevés recorded in the subalpine dwarf shrub heath (Alnetum viridis and Rhododendro ferruginei-Vaccinietum) 

sample ID 
plot size 

[m
2
] 

coordinates 
altitude [m a.s.l.] slope [%] exposition substrate defined category of vegetation unit 

x y  

1 100 634185 157142 1886 45 NW Mesozoicum Aalenian schists disturbed Alnetum viridis 

2 100 634125 157199 1885 45 NE Mesozoicum Aalenian schists non-disturbed Alnetum viridis 

3 100 634258 157348 1816 10 NE Mesozoicum Aalenian schists 

disturbed Rhododendro  

ferruginei-Vaccinietum 

4 100 634667 157652 1877 25 NE Mesozoicum Aalenian schists 
non-disturbed Rhododendro  
ferruginei-Vaccinietum 

5 100 638001 158486 1820 15 NW Mesozoicum Aalenian schists disturbed Alnetum viridis 

6 100 638001 158802 1832 45 SW Mesozoicum Aalenian schists non-disturbed Alnetum viridis 

7 100 637815 162557 1846 30 SW Mesozoicum Aalenian schists disturbed Alnetum viridis 

8 100 637930 161720 1507 45 NW Mesozoicum Aalenian schists disturbed Alnetum viridis 

9 100 634815 158121 1825 35 NE Mesozoicum Aalenian schists 

non-disturbed Rhododendro  

ferruginei-Vaccinietum 

10 100 638038 159815 1734 25 NW Mesozoicum Aalenian schists non-disturbed Alnetum viridis 

 

Table A 48 Field data for vegetation relevés recorded in the subalpine dwarf shrub heath (Alnetum viridis and Rhododendro ferruginei-Vaccinietum) 

sample ID trees[%] shrubs [%] herbs [%] pteridophytes[%] mosses & lichens[%] 
total number of 

flowering plants, ferns, 
mosses & lichens 

1   70 30 5 < 1 38 

2   60 30 5 1 44 

3 2 65 25 1 5-6 38 

4 1-2 70 25   5 28 

5   60 30 3-4 2-3 37 

6   70 25 3 1-2 41 

7 2 70 35 1-2 1-2 34 

8 3 60 40 5 1-2 36 

9   70 25   2-3 36 

10 1-2 70 20 5 1-2 44 
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Table A 49 Changes in the positions of forest, tree and dwarf shrub limits. Comparison between Lüdi (1921) and our own records 

of 2005. The largest changes are marked in bold. 

forest limit 

location  exposure 
1920 

[m a.s.l.] 
2005 

[m a.s.l.] 

difference  
1920-2005  
[m a.s.l.] 

right valley side of Stechelberg          

Grindegg near Wengen S & SW 2020 2030 + 10 

Grindegg near Wengen N 1830 1850 + 20 

Männlichen below Hotel W 2030 2035 + 5 

Männlichen below Tschuggen W 1850 1880 + 30 

Girmschbiel N 1820 1850 + 30 

Girmschbiel S 1895 1913 + 18 

Steineggwald S 1950 1965 + 15 

          

left valley side of Stechelberg         

Pletschenalp E 1900 1923 + 23 

Pletschenalp SE 1920 1925 + 5 

Dorrenhubel N 1830 1830 0 

Dorrenhubel S 1895 1896 + 1 

Allmihubel-Hartwänge E 1920 1955 + 35 

Mürrenbach-Blumental  E 1810 1826 + 16 

tree limit 

location  exposure 
1920 

[m a.s.l.] 

2005 

[m a.s.l.] 

difference  
1920-2005  

[m a.s.l.] 

right valley side of Stechelberg          

Grindegg near Wengen S & SW 2020 2030 + 10 

Grindegg near Wengen N 1910 1923 + 13 

Männlichen below Hotel W 2080 2136 + 56 

Männlichen below Tschuggen W 2030 2120 + 90 

Steineggwald N 1920 1962 + 42 

Steineggwald S 2000 2000 0 

          

left valley side of Stechelberg         

Pletschenalp SE 1990 2001 + 11 

Allmihubel-Hartwänge SE 2060 2080 + 20 

Mürrenbach-Blumental  E 1860 1899 + 39 

dwarf shrub limit 

location  exposure 
1920 

[m a.s.l.] 
2005 

[m a.s.l.] 

difference  
1920-2005  

[m a.s.l.] 

right valley side until Stechelberg         

Männlichen below Hotel W 2050 2070 + 20 

Wengernalp  S & SE 2170 2200 + 30 

          

left valley side until Stechelberg         

Pletschenalp E 2100 2120 + 20 

Allmihubel-Hartwänge NE & SE 2120 2126 + 6 

 


