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Volume-rendered entropy profile of ELEPHANT using the spherical-restart technique and
applying the hybrid supernova equation of state BASQUARK. After the collapse of the
protoneutron star, the newly formed shock wave (yellow) detached from the protoneutron
star in the center (purple) and moves through the convection zone towards the standing
accretion front (blue).
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Abstract

Extreme temperatures and densities in core-collapse supernovae and one of their
possible remnants, the so-called neutron stars, are likely to favor the appearance
of new degrees of freedom such as hyperons and/or quark matter. This work is
dedicated to the investigation of the hadron-quark phase transition in core-collapse
supernovae and cold neutron stars. To this day, only a couple of supernova equations
of state that consider quark matter have been developed and none of them fulfills the
observational 2 M, neutron star mass constraint [56, 11, 70]. The phase transition
from hadronic to quark matter can have an interesting impact on the post-bounce
evolution of core-collapse supernovae: The phase transition is able to induce a
collapse of the protoneutron star which ultimately can trigger an explosion, as
shown in spherically-symmetric simulations [174, 65]. So far, this scenario has not
been investigated in multi-dimensional core-collapse supernova simulations.

In the first part of this work, we analyze cold hybrid stars! by the means of a
systematic parameter scan for the phase transition properties. The hadronic phase
is described by the state-of-the-art supernova equation of state HS(DD2) and the
quark phase by an equation of state with a constant speed of sound (CSS). Choosing
a quark matter speed of sound of c(QQM = 1/3, we find promising cases which meet
the 2 M, criterion and are interesting for core-collapse supernova explosions. We
show that the very simple CSS equation of state is transferable into the well-known
thermodynamic bag model, important for application in core-collapse simulations.
Additionally, the occurrence of reconfinement and multiple phase transitions is
discussed. The influence of hyperons in our parameter scan is studied as well.
Including hyperons, no change in the general behavior is found, except for overall
lower maximum masses. In both cases (with and without hyperons) we find that
quark matter with céM = 1/3 can increase the maximum mass only if reconfinement
is suppressed or if quark matter is absolutely stable. The systematic parameter study
is completed with an analogous analysis using céM = 1, the maximum value to
be still consistent with special relativity. The higher speed of sound leads to more
parameter configurations consistent with the 2 M, criterion. Increasing the speed of
sound to c%M > 1/3 is therefore an interesting case which increases the possibilities
when constructing a future hybrid supernova equation of state.

On the basis of the best guess configuration obtained in the parameter scan for
céM = 1/3, we construct the new hybrid supernova equation of state BASQUARK.
BASQUARK uses HS(DD2) for the hadronic part and a bag model to describe
quark matter. The detailed analysis of BASQUARK with the sophisticated spherical

'Hybrid stars are neutron stars that contain quark matter.
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supernova code AGILE-BOLTZTRAN shows an explosion for a 15 M, progenitor.
Hence, BASQUARK is the first hybrid supernova equation of state that fulfills the
2 Mg neutron star constraint and is known to trigger an explosion in spherical
symmetry.

The second part of this work is dedicated to the analysis of BASQUARK in the 3D
core-collapse supernova code ELEPHANT. To ensure an effective analysis at late
post-bounce times without consuming a vast amount of computational resources,
we develop a new method called the spherical restart method. This method allows us
to perform a separate spherical AGILE-IDSA simulation, which is computationally
very cheap, map its profile into ELEPHANT, and continue the simulation in three
dimensions. The method shows that the obtained 3D profiles imitate well the profiles
obtained in a consistently run simulation. If the collapse behavior of ELEPHANT
up to bounce is considered in AGILE-IDSA, the spherical restart method is able to
reproduce profiles that are on spherical average almost identical to such, obtained
in consistently run ELEPHANT simulations. This allows the opportunity to increase
the resolution for more detailed investigations.

Finally, we apply BASQUARK in ELEPHANT and use a 15 M, and a 40 M, progenitor.
Both progenitors explode in spherical symmetry due to the phase-transition induced
collapse of the protoneutron star. In initial tests, ab-intio calculations with ELEPHANT
are executed with a low resolution of 2 km to proceed fast to the relevant post-bounce
times. Both progenitors ultimately explode due to oscillations of the protoneutron
star which are probably an artifact of the low resolution. This mechanism is not
expected at higher resolution. The 15 M, progenitor does not show any indication of
a collapse of the protoneutron star, but seems to be powered by the delayed-neutrino
driven mechanism. In turn, the 40 Mg progenitor shows indications of a failed
collapse of the protoneutron star. By the use of the spherical restart method, the
simulation is spherically restarted before the suspected collapse, using a resolution
of 2 km, 1 km, and 500 m. The 2 km run indicates once more collapse features, but
fails due to stability issues caused by the low resolution. Using a resolution of 1 km
ultimately shows a collapse of the protoneutron star which results in the explosion of
the star. 500 m resolution confirms the results using 1 km resolution and additionally
helped the convection to develop. This is the first time, a phase-transition induced
collapse and the succeeding explosion is simulated in a three-dimensional core-
collapse supernova. We find that resolution is crucial for a correct description of
quark matter in the center of the protoneutron star. In the near future, neutrino-
quark rates and the IDSA treatment have to be investigated in more detail.

The results obtained with BASQUARK in ELEPHANT are preliminary yet. Neverthe-
less, this work opens the door into the new field of multi-dimensional core-collapse
supernova simulations that consider quark matter and gives some clear indications
on the subjects to be investigated in the future.



Acknowledgement

I would like to express my gratitude to a couple of persons. My thanks go to

PD Dr. M. Hempel for his supervision as my PhD advisor. I am very grateful
for his constant and steady support, the close supervision, as well as his
encouragement during the three years of my PhD.

Prof. Dr. F.-K. Thielemann for co-supervising my PhD and providing me with
the opportunity to do this thesis in the best working environment. He always
saw my work in the bigger picture and never failed to give good advice.

Prof. Dr. M. Liebendoérfer for unofficially co-supervising my PhD as my third
advisor. Without hesitation, he introduced me into the world of 3D core-
collapse supernova simulations and always answered my numerous questions.

Prof. Dr. T. Takiwaki for his willingness to be the external expert of my dis-
sertation. I will also not forget his commitment when organizing the “Many
Riddles of Core-Collapse Supernovae” workshop at NAOJ in Tokyo where he
gave me the opportunity to present my work to a very proficient audience.

Dr. R. Cabézon and Dr. T. Kuroda for sharing the outpost office on the first
floor with me. It was a great time with a lot of serious and sometimes not so
serious discussions.

K. Ebinger, J. Reichert, M. Frensel, and B. Wehmeyer for granting me asylum
in their office in case of the need of a coffee/sandwich break and sharing the
honor of representing the last PhD students of the Astroparticle Group in Basel.
I appreciate the time with you and your friendship.

Dr. A. Lohs for sharing the room with me at conferences, the great work and
time together.

Dr. K.-C. Pan for his steady support especially when it came down to compiling
and visualization questions.

the other past members of the Astroparticle group of the University of Basel
for the cordial work ambiance.

E. Cazzato, F. Ceféla, and O. Miiller who started studying physics with me and
also ended up doing a PhD in theoretical Physics, for their friendship and the
good time together.

Vii



* C. Ghellert and the other CSCS staff members who granted us great support
with our code ELEPHANT.

* my family for their constant, altruistic support.

* my girlfriend Pascale for her constant and lovely support, and her patience

with me while I was writing this thesis.

viii



Contents

1 Introduction
1.1 Prefaceand motivation . . . . . . .. ... ... ...
1.2 Organization of thisthesis . . . . .. ... ... ... .. ....... 2
2 Core-Collapse Supernovae 5
2.1 Historical and general remarks on supernovae . . . . ... ...... 5
2.2 Core-collapse SUPEINOVAE . . . . . v v v v v v v v et 8
2.2.1 Stellarevolution . . ... ... ... ... ... ... ..., 8
2.2.2 Corecollapseandbounce . ... ................ 9
2.2.3 Shock evolution and explosion mechanisms . . ... ... .. 12
3 Neutron Stars and Hybrid Stars 19
3.1 Generalremarks . . ... ... ... ... 19
3.2 Neutron star structure eqUations . . . . . . . . . . . . .o .o ... 21
3.3 Hybridstars . . . . . . . . . e e e 22
3.3.1 Classification . . ... .. ... ... ... . ... . . ..., 22
3.3.2 Hot third families and their connection to core-collapse super-
NOVAC . . . v v vttt e e e e e e e e e e e e e 23
4 Equations of State 27
4.1 General purpose equation of state - theory . . . . . ... ... .... 27
4.1.1 Definition - equation of state . . . . ... .. ... ... ... 27
4.1.2 Requirements on the thermodynamic variables and on the
matter composition for a general purpose EOS . . . . . .. .. 30
4.1.3 Characterization of nuclear matter properties in EOSs . ... 33
4.1.4 Experimental and observational constraints on the EOS . . . . 35
4.2 Hadronic equationofstate . . . . . . ... ... ... 40
4.2.1 LS220 . . . . . . e e e e 40
4.2.2 STOS . . . . e 40
4.2.3 HSDD2 . ... ... .. e 41
4.2.4 BHBAG . o v v v ee e 42
4.2.5 Application of HS(DD2) and BHBA¢ in neutron stars . . . . . 43
4.3 Quarkequationofstate . . ... .. ... ... .. ... ....... 43
4.3.1 CSSmodel . ........ ... ... ... o000, 44



4.3.2 Bag model (for T = 0 and $-equilibrium) ... ... ... .. 45
4.3.3 Bag model for supernova EOS . . . . ... ... ... ... .. 49
4.4 Hybrid EOS . . . . . . . . e 50
4.4.1 Hybrid neutronstar EOS . . . . . ... ... ... ....... 50
4.4.2 Hybrid supernovaEOS . . . . . ... ... ... ... ..., 51
A Systematic Analysis of Cold Hybrid Stars 55
5.1 Numericalsetup . . . ... ... ... 56
5.2 Parameter SCam . . . . . ... i h e e e e e e e 57
5.3 Comparing the quark EOSmodels . . . . ... .. ... ... ..... 59
5.4 Restricting the bag model parameter space . . . . . ... ... .. .. 60
5.5 Reconfinement and stability of quark matter . . . . . ... ... ... 64
56 Hyperons . . . . . . . . . i i i i i e 67
5.7 Casechy =1 - v vt 69
BASQUARK - A New Hybrid Supernova Equation of State 75
6.1 BASQUARK . . . . . . . e 75
6.2 Testing BASQUARK with AGILE-BOLTZTRAN . .. ... ....... 76
6.2.1 Appearance of quark matter and dynamic evolution . . . . . . 77
6.2.2 Neutrinosignal . . . ... ... ... ... ... ... 84
Conclusions | 87
ELEPHANT - An Efficient 3D Core-Collapse Supernova Code 93
8.1 OVerview . . . . . . . o i e e e e 93
8.2 Ideal magnetohydrodynamics . . . ... .. ... ... ........ 94
8.2.1 Magnetohydrodynamical equations . . . . .. ... ...... 95
8.2.2 Implementation. . . .. ... ... ... ... ......... 95
8.3 Treatment of general relativity . . . . . . .. ... ... ........ 98
8.4 Neutrino interactions and transport . . . . . . . . . .. ... ... .. 99
8.4.1 Parametrized deleptonization . . ... ... ... ... .... 101
8.4.2 IDSA . . . . e e 102
8.43 p/r-Leakage . . . . . . ... 104
8.5 Equationofstate . . . .. ... ... . ... 105
8.6 Elephant upgrades to support quark matter simulations . . . . . . . . 106
8.7 Code set-up and parallelization . . . ... ... ... ... ...... 107
Restarting a 3D Core-Collapse Supernova Simulation from a Spherical
Profile 111
9.1 Motivation . . . . . . v v v v e e e e e e e e 111
9.2 Method and implementation . . . . ... ... ... .......... 112
9.2.1 Remapping . . . . . . . .o i v it 112

9.2.2 Relaxationscheme . ... ... ... ... . . ... ... 113



9.3 Results. . . . .. ..
9.3.1 General features - time evolution of the central density . . . .
9.3.2 Initial profiles - mapping properties . . . . .. ... ... ...
9.3.3 RelaxationI . . ... ... ... ... ... ... .. ...
9.3.4 RelaxationIl . ... ...... ... ... ... .. ...
9.3.5 \Variation of relaxation parameters . . ... ... .......
9.3.6 Restarting from the background AGILE-IDSA . . . . ... ...

10 Quark Matter in 3D

Core-Collapse Supernova Simulations

10.1 Ab-initio calculations . . . . . . ... ...
10.1.1 15 Mg progenitor . . . . . . .« o o vttt e
10.1.2 40 Mg progenitor . . . . . . . v v v v vt e e e

10.2 Spherical restart . . . . . . . . ... e e
10.2.1 Spherical restart using 2 km spatial resolution . . . . . . . ..
10.2.2 Spherical restart using 1 km spatial resolution . . . . . . . ..
10.2.3 Spherical restart using 500 m spatial resolution . . . ... ..

11 Conclusions |l
12 Summary and Outlook

Bibliography

118
120
121
127
130
132

137
137
139
144
149
149
155
159

167

173

179

Xi






1.1

Introduction

Is this the real life, is this just fantasy
Caught in a landslide, no escape from reality
Open your eyes, look up to the skies and see

— Freddie Mercury, Queen
Bohemian Rhapsody

Preface and motivation

Core-collapse supernovae are among the most energetic explosions observed in
the Universe, even outshining an entire galaxy for a brief instant. Their possible
remnants, so-called neutron stars, represent the densest stable objects (beside
black holes) known. The description of matter under such extreme conditions
is a demanding and still unsolved problem in which physicists around the world
engage. The high densities and neutron-rich conditions reached in core-collapse
supernovae and neutron stars are not accessible in terrestrial experiments. With
increasing densities the description of matter becomes more uncertain. New degrees
of freedom besides nucleons, such as hyperons and/or quark matter, can appear. The
recent discoveries of neutron stars with masses around 2 M, [56, 11, 70] represent a
strong constraint on the appearance and impact of the additional degrees of freedom
on the equation of state (EOS), used to describe matter.

Another big challenge in astrophysics represents the supernova problem; the ques-
tion why and how core-collapse supernovae take place. A lot of efforts have been
done towards a solution of this problem during the last couple of decades, but a
complete and consistent answer is missing up to this day. The most established and
well-investigated explosion mechanism is the delayed neutrino-driven mechanism
[48, 24]. Another mechanism for core-collapse supernovae is due to the appearance
of quark matter in the protoneutron star which can have crucial impact on the
dynamical evolution of the star. Sagert et al. [174] have shown in one-dimensional
simulations that the appearance of quark matter can cause a collapse of the pro-
toneutron star to a more compact configuration, which results in a second shock
wave that travels outwards. This second shock wave can revive the stalled first shock
and induce an explosion. This scenario is known as the QCD phase-transition mech-
anism. High explosion energies around and above 10°! erg [174] make this scenario
especially interesting for further investigation. However, the hybrid equations of
state applied in [174] have maximum masses much below 2 M. In the subsequent



1.2

2

works exploring this scenario [174, 68, 65, 66, 69, 150, 67] explosions could not be
obtained if the maximum mass was sufficiently high.

To this day, only a few supernovae equations of state that consider quark matter
(called hybrid supernovae equations of state) exist ([174, 65, 67, 69, 149]). Their
phase-transition parameters were not chosen on the basis of a systematic investiga-
tion. The hadronic part of the hybrid equations of state are also in conflict with some
results gained from nuclear experiments [153]. The hybrid supernova equations of
state have only been tested on a few progenitors in one-dimensional simulations.
A systematic progenitor investigation and an application in a multi-dimensional
core-collapse supernova simulation are completely missing so-far.

Based on the introductory words above, this thesis has two main purposes: First, it
shall provide a detailed analysis on possible phase-transition configurations in hybrid
stars which are useful to construct future hybrid supernova equations of state. The
best guess configuration will be used to construct a new hybrid supernova equation
of state. This equation of state is going to be the first hybrid supernova equation
of state that is in agreement with most experimental and observational constraints.
Additionally; first results of its application in the spherical core-collapse supernova
code AGILE-BOLTZTRAN will be shown. Second, we aim to show first results of 3D
core-collapse supernova simulations considering quark matter. This has never been
done before and is therefore completely new territory.

Organization of this thesis

This thesis is essentially structured in two parts. Part I consists of Chapters 2 - 7:

» Chapter 2 gives a general overview on the topic of supernovae, i.e. core-collapse
supernovae and their explosion mechanisms.

* In Chapter 3, a short introduction on cold neutron stars i.e. on hybrid stars is
provided. A special emphasis is put on the classification of hybrid stars and
their connection to the QCD phase-transition explosion mechanism.

 In Chapter 4, a broad introduction on the equations of state used in this work
is provided.

* Chapter 5 is devoted to the systematic analysis of the phase transition in cold
hybrid stars.

* Chapter 6 deals with the newly constructed hybrid supernova equation of state
with the name BASQUARK and its application in the spherical supernova code
AGILE-BOLTZTRAN.

* Chapter 7 concludes the results gained up to this part.

Chapter 1 Introduction



Part IT deals with the 3D supernova code ELEPHANT and the application of BASQUARK.
It consists of Chapters 8 - 11.

* In Chapter 8, the theoretical background of the supernova code ELEPHANT is
outlined. A special emphasis is put on the upgrades needed for simulations
with quark matter.

* Chapter 9 deals with a newly developed method called the spherical-restart
method. This method allows us to map a spherical profile from an AGILE-IDSA
run into ELEPHANT and to continue the evolution in three dimensions.

* In Chapter 10, the hybrid supernova equation of state BASQUARK is used in
ELEPHANT. This is the first time quark matter is considered in a core-collapse
supernova simulation. We discuss the preliminary results obtained in ab-initio
simulations and first results concerning a second collapse using the spherical
restart technique to increase resolution.

* Chapter 11 concludes the results obtained in part II.

Finally, in Chapter 12 an overall conclusion, summary, and outlook is provided on
the entire work presented in this thesis.

Please note that parts of this thesis are reproduced from the author’s work which
has been published as [87]

Oliver Heinimann, Matthias Hempel, and Friedrich-Karl Thielemann:
Towards generating a new supernova equation of state:

A systematic analysis of cold hybrid stars

Phys. Rev. D 94, 103008 (2016)

1.2 Organization of this thesis






2.1

Core-Collapse Supernovae

In the face of overwhelming odds, I'm left with
only one option, I'm gonna have to science the
shit out of this.

— Mark Watney
The Martian

Historical and general remarks on supernovae

The term supernovae was introduced in 1934 by the two astronomers Baade and
Zwicky. They realized that supernovae are by far more luminous and rarer than
the, in certain stellar environments, very frequently observed novae [16, 15]. By
this term Baade and Zwicky named a phenomenon which was already observed and
documented as early as the second century A.D. by Chinese astronomers: Guest stars
appeared for a limited time in the sky and faded away later [139, 23]. Nevertheless,
it took centuries until it was understood that such an event remarks the violent death
of a star whose brightness can outshine a whole Galaxy for a limited time. Within
the last millennium, a total of six supernova events occurring in our galaxy and one
in the Large Magellanic cloud were witnessed and recorded (see Tab. 2.1, published
in [33]). It is believed that this historical number only represents around 20 % of
the total number of galactic supernova events occurred during the last millennium.
This can be justified by the fact that the “majority of the supernovae was shrouded
from the view by the dust that pervades the Milky Way” [33]. Today, it is believed that
there is around one supernova explosion in the universe every second and around
one every 30-50 years in our galaxy [33].

Supernovae are classified into two physically fundamental different types: core-
collapse and thermonuclear supernovae. Thermonuclear supernovae are not part of
this thesis. It is believed that they arise from carbon-oxygen white dwarfs which
accrete matter from a binary companion. They explode as soon as the Chandrasekhar
mass limit for a degenerate electron gas is reached (~ 1.4 My). Through the
thermonuclear nature of the explosion, no remnant is left over after the violent
explosion [181].

In this thesis core-collapse supernovae are the objects, respectively events, of interest.
In stars with masses 2> 8 My, all nuclear burning stages up to iron are undergone.
No elements beyond the iron group are obtained through nuclear fusion since the
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Supernova Year (AD) Distance (kpc) Peak visual magnitude

SN1006 1006 2.0 -9.0
Crab 1054 2.2 -4.0
SN 1181 1181 8.0 ?
RXJ 0852-4642 ~1300 ~0.2 ?
Tycho 1572 7.0 -4.0
Kepler 1604 10.0 -3.0
Cas A ~1680 3.4 ~6.0?
SN1987A 1987 50+5 3.0

Tab. 2.1: “Historical” compilation of the observed supernovae in the Milky Way and the
Large Magellanic Cloud during the last millennium. The table and information
of this caption was published in [33]. Note that SN1987A exploded in the Large
Magellanic Cloud which is one of the nearby satellite galaxies. Additionally
included is RX J0852-4642, a recent supernova remnant whose recent birth went
unrecorded, most probably since it was found in the Southern Hemisphere. Cas A,
another supernova remnant, was born in historical times but the observation of
the event is only based on ambiguous notes. In the table, astronomical magnitudes
are logarithmic and given by the formula My = —2.5log;(brightness) + constant.
Examples to compare with: Moon is near -12 magnitudes, Venus peaks at -4.4
magnitudes and good eyes can see down to almost +6 magnitudes.

fusion processes would be of endothermic nature [33]. What is left at the end of
a massive star’s thermonuclear life is a structure, which is often compared with an
“onion skin ” structure. An oxygen-neon-magnesium core or an iron core is placed
in the center followed by shells of elements of progressively lower atomic weight
at progressively lower densities and temperatures [33]. A typical final nesting is
Fe — Si — O — He — H. The core of such massive stars becomes gravitationally
unstable as soon as the radiation pressure of the nuclear burning in the center cannot
counteract the gravitational pull anymore. This results in an gravitational collapse
of the core and finally leads to the formation of a neutron star or a black hole [181].
The gravitational binding energy is released in the form of neutrinos (O(10°?) erg)
and kinetic energy of the explosion of the outer layers (O(10%!) erg).

In astronomy, the classification of supernovae is not based on the explosion mech-
anism but on the specific observed optical spectra of the supernovae. Rudolph
Minkowski discovered that the spectra of supernovae can be distinguished by the
absence (Type I) or presence (Type II) of the hydrogen Balmer lines [145]. This
initial scheme was further extended by an increased number of observations and
more detailed analysis of the spectra with newer technology. Today, astronomers use
a scheme as it is presented in a simplified version in Fig. 2.1 (see e.g. [64, 82, 40,
201D):

* Type Ia: This type of supernovae is characterized by the absence of hydrogen
in its spectra and a deep absorption line around 6150 A which is attributed
to Si [64]. Due to their high luminosities and similar light curves, this type
of supernova has been used as so-called “standard candles” to determine the

Chapter 2 Core-Collapse Supernovae
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no H H
Type | Type ll
Si no Si
He no He
‘ Type la ‘ ‘ Type Ib ‘ ‘ Type Ic ‘ Type Il
H_/ — —~— _
‘ Thermonuclear ‘ ‘ Core-Collapse ‘

Fig. 2.1: Simplified astronomer’s supernova classifications scheme [64, 82, 40, 201]. A
distinction between two main classes of supernovae is carried out on the basis of
the absence (Type I) and presence (Type II) of hydrogen lines in their spectra. A
further subdivision of Type I supernovae is based on the presence (Ia) or absence
(Ib,Ic) of Si lines. Type Ib and Ic can be distinguished by the occurrence of He lines
(Ib) or not (Ic). Another, more fundamental distinction is based on the explosion
mechanism: Theorists differ between thermonuclear (Type Ia) and core-collapse
supernovae (Type II, Ib, Ic).

geometry of the Universe (see e.g. [164]). For more information see e.g.
[127].

* Type Ib: This type of supernovae is characterized by the absence of hydrogen
lines, weak or absent Si, and a strong He feature in its spectrum.

* Type Ic: This type of supernovae are distinguished by the absence of hydrogen
lines, and weak or absent Si and He lines in its spectrum.

* Type II: Supernovae of the type II family do have distinctive hydrogen Balmer
lines. More subtypes can be specified by the shape of their light curve (see e.g.
[40, 201, 82]).

Finally, the importance of supernovae on the dynamical and chemical evolution
of the Universe has to be stressed (see e.g. [206]). Many elements such as iron,
calcium and silicon have their origin in supernovae. The major source of oxygen
in the universe for example is the oxygen ejected during a core-collapse supernova
[33].

2.1 Historical and general remarks on supernovae
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Core-collapse supernovae

Stellar evolution

Stars are born in interstellar gas clouds mainly consisting of hydrogen and helium®.
Such gas clouds collapse gravitationally and transform the gravitational energy into
thermal energy and radiation. If the initial mass is above ~ 0.08 Mg, hydrogen is
able to fuse to helium (“hydrogen burning”). This onset of nuclear burning leads
to a halt of the gravitational compression and as soon as hydrogen fusion in the
core becomes the only source of energy the star is considered in hydrostatic and
thermal equilibrium. When hydrogen is exhausted in the core, most stars (i.e. if the
mass is high enough) proceed to hydrogen shell burning. If the core is compressed
sufficiently helium fusion starts in the core. As a product of the helium fusion mostly
carbon and oxygen are left as ashes. Up to this stage, the exhaustion of one fuel was
followed by the ignition of its successor.

Stars with masses below < 6 — 8 M, do not reach densities and temperatures high
enough to ignite carbon burning. Therefore, their cores become electron-degenerate
carbon-oxygen cores. In their final stage the outer layers are blown away forming
planetary nebulae leaving behind the carbon-oxygen cores which will remain as a
so-called white dwarf [214, 84].

Stars with masses 2 6 — 8 M, are able to ignite carbon burning which results in the
production of oxygen, neon and magnesium ashes. In the narrow range between
8 — 10 Mg, core temperatures are again not sufficient to ignite the further nuclear
burning stages. As a consequence, the outer layers are blown away leaving behind
an oxygen-neon-magnesium white dwarf. It is possible that such white dwarfs can
lead to a special kind of core-collapse supernova [114] or undergo accretion-induced
collapse [57, 1].

For stars with masses 2 10 M, a further contraction of the core is possible leading
to the ignition of the successive burning stages where the ashes of the former stage
build the fuel of the next stage. The last three distinct burning stages following
the carbon burning are: neon burning, oxygen burning, and silicon burning [102,
214]. Finally, silicon burning leads to the production of the iron-group nuclei in the
core. As mentioned in Sec. 2.1, no elements beyond the iron group are built since at
this stage fusion would become endothermic or in other words, the nuclear binding
energy per nucleon has reached its maximum in iron [33, 167]. As an example of
a star at the end of its lifetime (presupernova configuration), a radial profile of a
15 Mg, star is shown in Fig. 2.2 [213]. The embedded iron core in an onion-like
structure consisting of elements of progressively lower atomic weight at progressively
lower densities and temperatures (also see Sec. 2.1) is clearly recognizable. However,

!The explanations in this subsection are mainly based on [102, 156].

Chapter 2 Core-Collapse Supernovae
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the “onion shells” are not pure but mixtures of several elements and isotopes. The
must abundant element determines the name of the shell.

A typical 15 Mg, star spends around 11.1 million years burning its hydrogen to
helium and another 1.97 million years burning its helium [214]. The other burnings
stages are tremendously shorter, peaking in the final silicon burning which only
lasts around 18 days. These significantly shorter time scales are strongly influenced
by important radiation neutrino losses that occur after the helium burning. It is
the temperature sensitivity of such neutrino losses in combination with the need
to go to higher temperature in order to burn the nuclear fuels that results in a fast
acceleration during the last nuclear burning stages [214].

Core collapse and bounce

The iron core (consisting mostly of iron-group nuclei) in the center of the star grows
steadily by the ashes of the silicon shell burning. The dominant pressure component
acting against the gravitational compression is provided by the degenerate and
relativistic electron gas while nuclear pressure is only small compared to it [23].
Such a degenerate, relativistic electron gas pressure scales as

P, ~ Y343 (2.1)

where Y, represents the electron fraction and p the density. The factor 4/3 represents
the adiabatic index I for the extremely relativistic degenerate limit [23, 181]. The
stability limit of the iron core is set by the Chandrasekhar mass limit [43], which is
essentially the maximum mass that can be supported against gravity by an electron-
degenerated gas in hydrostatic equilibrium. The Chandrasekhar mass including
thermal corrections is given by [19, 214]

My ~ 5.8372 <1 + ( i )2) M, (2.2)
TYe

where Y, represents an average value of the electron fraction and 5. an average
value of the electronic entropy per baryon in the iron core. Typical values for Y, in
the iron core of a 15 M, star reach from Y, = 0.42 in the center to Y, = 0.48 at the
edge resulting in a reasonable average of Y, = 0.45 [214]. A typical value for 5, is
~ 0.52 [214]. Using these values in Eq. 2.2 results in an effective mass of 1.34 M.
Finally, the core mass exceeds the Chandrasekhar mass limit and the core becomes
unstable; the collapse sets in. The combination of two physical effects accelerates
the initial infall significantly: electron-captures (sometimes the term “neutronization”
is used to describe this effect) and photodissociation (see e.g. [181]).

2.2 Core-collapse supernovae
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Fig. 2.2: Figure and part of the caption taken from [213].
composition of a typical 15 Mg, presupernova star at a time when the edge of
its iron core begins to collapse at 1000 km/s. The upper panel shows the profile
information in terms of density and temperature. L, indicates the total energy
loss. The neutrino emission ¢, dominates the energy loss throughout most of
the iron core followed by peaks in the nuclear-energy generation rate ¢, which
show the location of the active burning shells. The lower panel shows detailed

Interior mass (M/Mg)

Shown is the structure and

information on the composition of the “onion-like” structure of the star.
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The most significant electron-capture reactions are [181]:

* Electron captures by nuclei,
e+ (Z,A) = ve+(Z-1,A), (2.3)

where e~ are the electrons, v, the electron neutrinos, Z the charge number
and A the atomic number.

* Electron captures by free protons,
e +p—ve+n, (2.4)

with p representing the proton and n the neutron.

At typical core densities (p > 10° g/cm? electron captures on iron nuclei occur
predominately by
Fe + e~ — 56M 14, | (2.5)

since the Fermi energy of the electrons

1/3
Pe 3) (2.6)

=11.1MeV | ———
He ¢ (1010gcm

exceeds the mass difference between the Fe and the Mn nuclei, namely my, — mpe =
3.7 MeV (see [117]). Such reactions reduce Y, and therefore also decrease the

contribution of the degenerate electrons to the total pressure?.

Photodissociation is the second process having an important influence on the pressure
in the core. This endothermic process can take place at temperatures 7' > 5 - 10° K
and typically dissolutes ggFe nuclei to helium (alpha) cores [117]

v 438 Fe — 13a + 4n — 124.4MeV . 2.7)

This leads to a reduction of the thermal pressure support [117]. Additionally, the
internal energy produced by the contracting core is exhausted by this reaction [117].
At even higher temperatures, the present helium nuclei can further dissociate into
free nucleons.

The iron core proceeds to contract under its self gravitation. The collapsing core is
split into two parts: the homologously collapsing inner core and the supersonically
infalling outer core. The matter inside the sonic point® still stays in communication
and collapses homologously (velocity is approximately proportional to the radius)
(see also [79, 181]). Matter outside the sonic point does not notice the inner collapse
and is in quasi free-fall. For this reason, the outer shells are not moved or affected

2Note that up to a density of p ~ 10'? g/cm® neutrinos are untrapped and can escape freely.
3The sonic point is defined as the point where the infall velocity equals the speed-of-sound velocity.

2.2 Core-collapse supernovae
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until the supernova shock wave generated in the core region collides with them and
ejects them in the explosion.

As density increases above p ~ 10'? g/cm? neutrinos are not escaping freely anymore
but become trapped. This implies that they comove with the surrounding matter
and build a semi-degenerate Fermi sea [181]. At such densities, the timescales for
neutrinos to diffuse out of the core become comparable to the collapse timescales.
Coherent scattering on nucleons

v+ (Z,A) v+ (Z,A), (2.8)

represents the dominant opacity source. The trapping of the neutrinos has enormous
implications on the core collapse: Neutrinos from the electron captures cannot
escape freely anymore but are trapped in the high density region. This implies
that the lepton number per baryon Y; = Y, + Y, does not change but is constant.
Additionally, neutrino trapping causes the collapse to proceed adiabatically to high
approximation [181, 23]. Neutrinos can escape the trapped region when they reach
the neutrino sphere. The neutrino sphere is defined as radial position where the

neutrino optical depth
r )\1/ ’

reaches 2/3, with F, the neutrino energy and ), the neutrino mean free path. Note

7(r,Ey) = (2.9)

that during the collapse only electron neutrinos are emitted due to the electron
captures.

After a few hundred milliseconds infall the homologous inner core reaches nuclear
density pnue = 2.8-10'* g/cm3. At this point, pressure increases rapidly as the nuclear
forces cause the nuclear equation of state to stiffen immediately [181]. Above ppyc
the pressure becomes high enough to halt the collapse. This causes the homologous
core to “bounce” and rebound before it settles into the hydrostatic equilibrium. The
rebounding inner core drives a hydrodynamical shock wave into the still infalling
matter from the outer core?.

Shock evolution and explosion mechanisms

The further evolution of the shock wave, initially created at core bounce, determines
the fate of the star i.e. if the shock wave is finally able to push through the outer
layers ultimately leading to a supernova explosion.

The initial shock wave propagates into the outer core region. During this propagation
through the infalling matter the shock wave loses constantly energy due to the
dissociation of nuclei into free nucleons. This happens at a cost of around 8.8 MeV per
nucleon [23]. This corresponds to an energy loss of around Ejoss = (1.6 — 1.8) - 10!
erg per infalling 0.1 M, of material [147, 23]. Behind the shock wave this change of

“At the sonic point the pressure wave turns into a shock wave [117].
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the matter composition results in even more energy loss: The emerging free protons
behind the shock front become subject of electron captures

e +p—on+uve. (2.10)

Such electron captures are significantly more effective than the ones on nuclei and
therefore lead to the production of a huge number of electron neutrinos [110]. When
the shock front passes the neutrino sphere these neutrinos are released suddenly.
This electron neutrino burst (also called “neutronization burst” or “breakout burst”
[117]) leads to peak luminosities above ~ 10°% erg/s for a few milliseconds. Due to
the immense loss of energy by dissociation of the nuclei and by neutrino emission,
the shock finally stalls at around 100 - 200 km [117, 110]. The shock becomes the
so-called standing accretion shock. The possibility that this initial “prompt shock”
leads to a direct explosion is only possible for very special physical prerequisites
(such as e.g. progenitor structure) (see e.g. [99, 12]). All other modern simulations
did not show prompt explosions (see e.g., [110, 107] and references therein).
Simultaneously to these events after core bounce, a compact remnant begins to
form in the center of the star. Its mass is growing rapidly, forming a so-called
protoneutron star. This object will either become a neutron star at later stages or
collapse into a black hole, depending on the mass of the progenitor star and the
explosion mechanism [84, 152].

During the collapse phase predominately electron neutrinos are produced. In the
post-bounce phase neutrinos of the other flavors are produced as well. The slowly
deleptonizing and cooling protoneutron star emits neutrinos of all flavors mainly via
pair-production processes [29]. In this phase neutrinos of all flavors are emitted at
a luminosity of ~ 10°? erg/s due to the mass accretion onto the protoneutron star.
After an eventual explosion this compact remnant becomes transparent to neutrinos
which results in an exponential decay of the neutrino luminosities [34].

As stated above, the vast majority of the gravitational binding energy is converted into
neutrinos. The intense neutrino burst represents a physically measurable observable.
To this day, only a small number of neutrinos from SN1987A have been measured
[100, 101]. These neutrinos confirm the basic picture of the supernova mechanism.
Today, modern detectors such as Super-Kamiokande should be able to provide more
detailed neutrino profiles in case of a nearby core-collapse supernova. This detailed
information can provide crucial information on the explosion dynamics.

The first five panels in Fig. 2.3 illustrate the processes during a core-collapse super-
nova described in Sec. 2.2.2 and Sec. 2.2.3. The question that has been bothering
physicists all around the world for the last few decades is how the standing accretion
front can be revived and lead to the star’s final explosion. In the following, a short
overview over the recently discussed explosion mechanisms is given. For a more
detailed review, see e.g. [107].

2.2 Core-collapse supernovae
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Fig. 2.3: Reprinted from [110], with permission from Elsevier. A set of schematic repre-
sentations of the different stages in a core-collapse supernova. The upper half of
the panels illustrate the dynamical conditions in the star with arrows indicating
the velocities. The lower half of the panels shows the nuclear composition as
well as the nuclear and weak processes. Mass information is given on the x-axis
while radial information is provided on the y-axis. The different used variables
represent the following quantities: Mcy, the Chandrasekhar mass, M), the mass of
the collapsing homologous inner core, Ry, the radius of the iron core, Rg the shock
radius, R, the gain radius, R, the neutron star radius, and R, the neutrinosphere.
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Delayed neutrino-driven mechanism

The delayed neutrino-driven mechanism represents the most popular scenario for the
supernova problem. The concept was initially proposed back in the 1960’s by Colgate
& White [48], and almost 20 years later numerically solved by Bethe & Wilson [24].
It is based on the fact that still a huge amount of the released gravitational binding
energy is stored in the protoneutron star in the form of trapped neutrinos. The
neutrinos streaming off the neutrino sphere are then supposed to deposit some of
their energy in the outer layers between the protoneutron star and the standing
accretion front. This energy deposition happens predominately via the v, and v,
absorptions on nucleons [24]:

Ve+n—e +p (2.11D)
Ved+p—e 4+n. (2.12)

This neutrino heating is the cause for a pressure increase behind the shock. The
heated layers expand and create a region of low density but relatively high tem-
perature between the protoneutron star surface and the shock front. This region
is sometime referred to as hot bubble [47]. The continuous energy input provided
by the neutrinos keeps the pressure high in this region and eventually pushes the
shock outwards again. Ultimately this may lead to an explosion. However, these
processes happen on a time scale of a few 100 ms and requires that a few percent of
the radiated neutrino energy are converted to thermal energy of nucleons, leptons,
and photons [110]. Therefore, the mechanism is called the delayed neutrino-driven
mechanism.

The success of the delayed neutrino-driven mechanism turned out to be very sensitive
to the so-called gain radius. At this radial position the neutrino heating rate per
nucleon equals the neutrino cooling rate per nucleon. Especially the extent of the
net neutrino heating region and the magnitude of the net neutrino energy deposition
therein are responsible for a successful explosion. Crucial factors in this region are
the neutrino energy density and the neutrino flux outside the neutrino sphere [117].
This makes a detailed neutrino treatment indispensable for core-collapse supernova
simulations. For a more detailed discussion on the gain radius see e.g. [110] and
the references therein.

However, highly elaborated spherically symmetric simulations including e.g. full
Boltzmann neutrino transport and general relativity failed in general to explode
[133, 134]. Only for special low mass progenitors (O-Ne-Mg cores with masses
between ~ 8 — 10 M) were found to explode [114].

Multi-dimensional simulations on the other side showed successful explosions where
spherically symmetric explosions failed (see e.g. [97, 37, 74, 73]). Fluid instabilities
which only occur in multi-dimensional treatment lead an enhanced energy deposition

2.2 Core-collapse supernovae
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behind the shock front. The most important fluid instabilities include convection
[97, 108] and the standing-accretion shock instability (SASI), see e.g. [31, 105, 137,
148, 176].

Magneto-rotational mechanism

In the case of rapidly rotating stars the so-called magneto-rotational or magnetohy-
drodynamic mechanism is possible. The concept is rather old and has already been
proposed in the 1970’s [142, 25]. With observation of highly magnetized neutron
stars, so-called magnetars, this mechanism was reconsidered as a possible supernova
mechanism [61]. The mechanism is based on the idea that during the collapse and
in the post-bounce phase magnetic fields grow due to flux-freezing, increasing the
number of field windings [142], and by the help of magnetorotational instabilities
(MRI) [17, 2, 151]. These processes require differential rotation which is naturally
developed in the case of rapid rotation during infall. Magnetic fields on the order of
10% G are expected [2]. The resulting explosions are highly energetic (~ 1052 erg)
and show well-collimated bipolar jets (see e.g. [38, 196] and references therein).
Such high explosion energies make this mechanism favorable to explain hypernovae
(see e.g. [210] and references therein).

Acoustic mechanism

The acoustic mechanism has been proposed by Burrows et al. [35, 36]. It has
been found in 2D simulations where no explosions were found by the neutrino-
heating mechanism. At late post-bounce times (¢ = 1 s), the protoneutron star
shows large-amplitude dipole gravity-mode oscillations which were excited by SASI
sloshing motions and by anisotropic accretion downstreams [107]. The violent
protoneutron star vibrations send strong sound waves into the surrounding medium
which ultimately transform into shock waves that drive the explosion. Robust
explosions were obtained for various tested progenitors. Nevertheless, other groups
failed to reproduce this mechanism (see e.g. [137]) and a serious counterargument
to this scenario has been proposed [207].

QCD core-collapse supernova mechanism

It has been shown that the conditions in core-collapse supernovae can favor a phase
transition from hadronic to quark matter in the early post-bounce phase [194, 193,
195, 76, 60, 215]. In such simulations it was found that a second shock wave can
form as a direct consequence of the phase transition [76]. However, due to the
lack of an appropriate neutrino transport treatment, the evolution could only be
followed for a few milliseconds. Only later, more detailed simulations where used
to test equations of state considering quark matter [149]. Sagert et al. found in
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their simulations using the sophisticated one-dimensional supernova code AGILE-
BOLTZTRAN [130] with full Boltzmann neutrino transport that a shock wave created
by the hadron-quark phase transition can indeed lead to an explosion [174, 65].
This is the only mechanism that shows explosions in spherical symmetry besides the
simulations using an O-Ne-Mg progenitor (see discussion above).

In their models, Sagert et al. described quark matter using a simple, but widely
used MIT bag model. The hybrid equation of state used was designed having an
early onset of the phase transition. This leads to the appearance of quark matter
already at core bounce. The successive evolution of the shock is initially similar to
other simulations using a purely hadronic equation of state: The expanding shock
looses energy due to the dissociation of nuclei and loss of neutrinos, especially
at the neutrino burst. This transforms the outwards moving shock wave into a
standing accretion shock. Meanwhile, in the core region of the protoneutron star
the quark fraction rises until the reduced adiabatic index causes the protoneutron
star to collapse. The collapse halts due to a stiffening of the equation of state and as
consequence a subsonic accretion front forms at the border of the quark phase. The
accretion front then detaches from this border turning into an accretion shock that
later becomes a dynamic shock moving outwards with positive matter velocities (see
Fig. 2.4). As soon as this expanding shock wave merges with the standing accretion
shock the further evolution is similar to the neutrino-driven scenario. The revived
shock wave is energetic enough to possibly lead to an explosion. The collapse of
the protoneutron star and the subsequent shock wave release a second neutrino
burst which is distinct enough to be measurable by current terrestrial neutrino
experiments.

Unfortunately, this scenario has one big drawback: The equations of state used in
[174, 65] do not support the observational 2 M, neutron star constraint [56, 70,
11]. Equations of state supporting the 2 M neutron star constraint did not lead to
explosions [66]. So far it is unclear if future hybrid equations of state that support
the observational constraints can still lead to explosions. It was also criticized that
the parameters determining the phase transition rely on a certain fine tuning to
allow this scenario (see e.g. [107]).

To this day, there is no general agreement of theoretical astrophysicists on what
might be the core-collapse supernova explosion mechanism. It is more likely that
the explosion mechanism might: a) depend on the progenitor star’s structure, its
rotation, its magnetic field etc. and b) finally be a combination of some of the above
mentioned mechanisms.

2.2 Core-collapse supernovae
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Fig. 2.4: Reprinted figure with permission from [174], copyright 2009 by the American
Physical Society. Shown are the radial velocity profiles at different times during
the post-bounce evolution of a 10 Mg, progenitor. The equation of state used is
of a hybrid nature including additionally to hadronic matter also quark matter.
Clearly visible are the second collapse of the protoneutron star which ultimately
results in a strong explosion.
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3.1

Neutron Stars and Hybrid Stars

I'm smart enough to know that I'm dumb.

— Richard Feynman

In this chapter, a short summary on the subject of neutron stars and especially hybrid
stars is provided. Very detailed and profound information can be found in e.g. [78,
181]. In the last section of this chapter we provide new insights on the mass-radius
curves at finite entropies and neutrino fractions which directly link the mass-radius
curves to the second-collapse mechanism in core-collapse supernovae.

General remarks

Neutron stars are the objects with the highest densities found in the universe
(besides black holes). Masses of up to two 2 M, are compressed to sphere-like
objects (depending on rotation or magnetic fields) of radii between 8 and 20 km.
The idea of such objects goes back to Baade & Zwicky in 1934 who proposed that a
supernova represents “the transition of an ordinary star into a neutron star, consisting
mainly of neutrons.” [16, 15]. A few years later in 1939, the theoretical description
of the structure of neutron stars was developed by Oppenheimer and Volkoff [155]
and Tolman [199]. The first observational evidence of a neutron star was found in
1968 when the first pulsar (fast rotating neutron star) was discovered by Hewish
et al. [98]. Today, more than 2000 pulsars have been detected [124]. Amongst
these observations, the two most important measurements are two 2 Mg neutron
stars which represent the heaviest neutron stars observed with a high precision [56,
70, 11]. These two neutron stars set the mass constraint which every equation of
state describing the matter of the neutron stars has to fulfill. Since in neutron stars
physical quantities such as densities, pressures, magnetic fields etc. reach values not
accessible in Earth-based experiments, these objects provide the ideal laboratory to
test the description of matter under extreme conditions. The strongest constraint
on the neutron star equation of state could be set by a single exact measurement of
mass and radius at the same time. Since such a measurement is still missing up to
present, the state of matter at such extreme densities is still unknown.

After the formation neutron stars cool down: the initial strong cooling happens
via neutrino emission on a timescale of seconds. The neutron star temperature T’
can therefore assumed to be T' = 0 (see discussion in Sec. 4.2.5 for more details).
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Additionally, matter is assumed to be in beta equilibrium®. The internal structure of
a neutron star can best be described by dividing the density profiles into different
sections. In [181] the following density ranges are defined:

* Surface: p < 10% g cm™3

* Outer crust: 105 gem™3 < p <4.3 x 10! gem™3
e Inner crust: 4.3 x 10 gem=3 < p < 0.5p0

* Quter core: 0.500 < p < Peore = 200

* Inner core: p = peore = 2p0

where pg defines the density of nuclear matter at the saturation point of the nuclear
forces?. A brief summary on the state of matter in the different layers is given in the
following (for details see e.g. [78, 181, 41]):

Surface The surface of a neutron star is defined as where the pressure P = 0. °Fe
is the matter with the lowest density in a neutron star and therefore forms the
surface of the neutron star. *Fe is the most stable element which possesses the
lowest energy per nucleon and therefore represents the lowest possible energy
state at zero compression.

Outer crust In the most simple models, the outer crust at a given depth is a crystal
of only one nuclear species. Matter is completely ionized. Due to the inverse
B decay (e~ +p — n + v), the 5°Fe atoms are altered step-by-step to more
neutron-rich nuclei. The crystal structure is maintained, but atomic numbers
can reach vast numbers.

Inner crust At the border of the outer crust to the inner crust, the neutron drip
occurs. Free neutrons start to appear (neutrons that “dripped out of nuclei”).
At the bottom of the inner crust, exotic nuclear matter configurations, so called
“pastas” are possible (see [41] for a good review).

Outer core In this density regime, nuclei dissolve and build a strongly interacting
Fermi liquid of nucleons. It is composed of neutrons, protons, electrons and
w1~ mesons and therefore is often called npeu-composition.

Inner core This density regime is the most speculative part of a neutron star. It
is the part of the core where hyperons and exotic matter is expected. Many
different theories and models have been applied e.g. conversion of nucleons
into hyperons®, pion condensation, and conversion into quark matter.

!'Beta equilibrium is defined via the relation 1, = pup + e With jin, p1p, and pe as the chemical
potentials of the neutrons, protons, and electrons. The neutrino chemical potential is neglected
since the neutron star is transparent for neutrinos.

2For more details, see Sec. 4.1.3.

3Hyperons are baryons that contain at least on strange quark.
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3.2

There is also the possibility that neutron stars could be built by pure quark matter.
It is based on the idea that strange quark matter can be absolutely stable and
considered as the true ground state of matter which was developed by Bodmer and
Witten [209, 28]. However, in this work we will not consider such objects.

Neutron star structure equations

Since extreme masses and densities occur in neutron stars, they have to be treated
as general relativistic objects. Starting from Einstein’s field equation

G

GNV - _7T,U‘V ; (3.1)

one arrives for an isotropic, general relativistic, static, ideal-fluid sphere in hydro-
static equilibrium at the so-called Tolman - Oppenheimer - Volkoff equation (TOV)
[199, 155]:

i __Gelmt) (1 20) (1 | () ) (- 2Gm<r>>‘1 . 62

dr c?r? e(r) m(r)c? c2r

where p describes the pressure, ¢ the energy density which is determined by the
equation of state ¢(r) = e(p(r)), m the enclosed mass up to radius r, and G the
Newtonian gravitational constant. The second equation which describes the mass
dependence reads as ,

c%: _ 47Trc2e(7") . 3.3)
In Eq. 3.2 three correction factors, compared to the structure equations obtained in
a purely Newtonian treatment, can be identified (following [185]): The first two
bracket terms represent the special relativity corrections of order v?/c%. In the non-
relativistic limit they reduce to 1. The last bracket is a general relativistic correction.
The factor 2GM/ 2R (M represents the total mass at radius R) determines whether
general relativity has to be taken into account or not. The corresponding critical

radius
2G M

R=—7

(3.4)

c
is called the Schwarzschild radius. E.g.: The Schwarzschild radius of a 1 Mg, star
is approximately R ~ 3 km. Since neutron star radii are of the order of ~ 10 km,
general relativistic effects that have to be taken into account. Please note: all of
the three terms written in brackets in Eq. 3.2 are bigger than one and therefore
strengthen the term of the Newtonian gravity.

Equations 3.2 and 3.3 can be numerically solved starting from an initial central
pressure py and the boundary condition m(r = 0) = 0, until the surface of the
neutron star is reached at p = 0. If the central pressure p, is varied as well a
so-called mass-radius (M-R) relation can be produced. In such a representation

3.2 Neutron star structure equations
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the masses of the neutron stars are plotted against their radii for a varied py. Since
Eq. 3.2 and Eq. 3.3 only depend on the equation of state, the used equation of state
generates a unique M-R relation. The maximum-mass configuration of the M-R
relation has to be able to fulfill the observational 2 M, constraint.

Hybrid stars

Hybrid stars are defined as neutron stars that consist of both, hadronic matter and
quark matter. The outer region is described by hadronic matter until at a certain
transition pressure pians iS reached where a phase transition to quark matter is
undergone. This phase transition can be treated in two ways generally: Either
there is a mixed region where both hadronic and quark matter coexist (Gibb’s phase
transition) or there is a sharp transition from hadronic to quark matter without a
mixed phase (Maxwell phase transition). In this work we will use the Maxwell phase
transition to model hybrid stars. Detailed information on the equations of state of
hybrid stars will be given in Sec. 4.4.

Hybrid stars can have a special feature in their M-R curve; a so-called third family.
Families of compact stars in M-R relations are defined as follows: First family stars
are white dwarfs which are not subject of this thesis. Regular neutron stars are
considered second family stars. In the M-R curves of neutron stars after a phase of
instability* a third stable branch can build up, which consists of hybrid stars [77,
178] (see Fig. 3.1). The third family feature can be used to classify hybrid stars, as
discussed in the following.

Classification

In Ref. [7] Alford et al. introduced four different cases to classify hybrid stars by
their M-R relation as shown in Fig. 3.1. The classification is based on two criteria:
the presence of a third family branch and the stability of hybrid stars at the onset
of quark matter. Cases A and C have no third family branch and therefore only
one maximum mass configuration. Case A (“absent”) consists of only a hadronic
branch. The point where quark matter sets in coincides with the maximum mass
configuration. Case C (“connected”) is similar to case A with the difference that
there are stable hybrid star configurations which include quark matter up to the
maximum mass. Cases B and D both have a third family branch in their M-R curve.
Case B is identical to case C up to the first maximum. There is an unstable branch to
the left of this point, followed by a third family branch ending in a second maximum.
Case D is identical to case A up to the first maximum, but also has a third family
branch in addition.

“*Such hybrid star configurations are unstable with respect to radial perturbations [178].
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Fig. 3.1: M-R classification according to Alford et al. [7]. The straight green lines represent
the purely hadronic stable configurations. Straight red lines represent stable hybrid
star configurations and dashed red lines unstable hybrid star configurations.

For the supernova mechanism triggered by the hadron-quark phase transition, cases
B and D are interesting. As we will learn in Sec. 3.3.2 they both have the potential
to induce a second collapse in a supernova and a subsequent explosion (as described
in Sec. 2.2.3).

Hot third families and their connection to core-collapse
supernovae

In [93] we have shown that a connection between the third family features in M-R
relations and the processes in a core-collapse supernova with a second collapse is
present. The following discussion is based closely on [93].

Third family features do not necessarily have to be as distinct as shown in the
illustrations in Fig. 3.1. More often, the feature is almost absent or very tiny in the
case of cold compact stars respectively. The situation changes dramatically if one
considers finite entropies. In [93] we had a closer look at two representative, already
existing hybrid supernova equations of state which use a bag model to describe
quark matter®: The B165 EOS uses a bag constant of B'/* = 165 MeV and B139 EOS
a bag constant of B'/4 = 139 MeV. While B139 EOS does fulfill the 2 M, constraint

>See Sec. 4.3.3 for a detailed discussion of the bag model
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(a) Fig. 1 of [93]. No neutrinos are present. (b) Fig. 2 of [93]. Completely trapped neu-
trinos in beta equilibrium and a lepton
fraction Y7, of 0.4.

Fig. 3.2: M-R curves for the B165 EOS and the B139 EOS for finite entropies per baryon S
in beta equilibrium without (left panels) and with (right panels) neutrinos. The
beginning a phase-coexistence regions is indicated with an open circle and the end
with a full circle.

with a maximum mass of 2.04 M, the B165 EOS does not, having a maximum
mass of only 1.50 M. However, it is only the B165 EOS that leads to explosions
in spherical symmetric supernova simulations [174, 66, 67]. More information on
these equations of state can be found in Chapter 4.

Figure 3.2a shows the M-R relations for the two hybrid supernova equations of state
and their underlying hadronic equations of state for various entropies per baryon S,
in beta equilibrium and without neutrinos. For cold hybrid stars, the third family
is almost absent. With increasing entropies a second maximum develops which
ultimately becomes the global maximum.

Comparing the B165 EOS with the B139 EOS we find that the third family branch
appears already for lower entropies and is generally more pronounced than for the
B139 EOS. The circles in Fig. 3.2a indicate the beginning (open circles) and the
end (full circles) of the phase-coexistence region. Interestingly, using the B139 EOS
pure quark matter is only obtained in hybrid stars at the highest entropies. For
both equations of state a third family exists at S = 5. But, since the maximum total
numbers of baryons in these third-family branches are below the one of the second
family, such a third family cannot be reached by accretion. Consequently, a collapse
from the maximum of the second family would result in the formation of a black
hole as the number of baryons is conserved during a collapse.

Chapter 3 Neutron Stars and Hybrid Stars



In protoneutron stars not only finite entropies are present but also a finite neutrino
fraction. Neutrinos are typically trapped in the core. To identify the effects of a
finite neutrino fraction on the stability of a protoneutron star, we include completely
trapped neutrinos in Fig. 3.2b using a constant lepton fraction Y7, = 0.4. It is clearly
visible that neutrinos tend to decrease the phase transition effects and the resulting
third-family feature. This can be explained by the fact that neutrinos contribute to
the thermodynamic properties of both phases. Therefore, using a finite neutrino
fraction, the third family features occur only at high entropies: for the B165 EOS at
S > 3 and for the B139 EOS at S > 4. In any case, these results are not so realistic
since in protoneutron stars the Y7, fraction is not constant. The results in actual
simulations would lie somewhere between the results of Fig. 3.2a and Fig. 3.2b.

Such M-R relations with finite entropies and neutrino fractions can be connected
with the second collapse mechanism in core-collapse supernovae [174, 66]. As
long as shocks are absent and neutrinos trapped, S and Y7, are conserved quantities
in core-collapse supernovae which are only advected with matter. Their values
are similar to the ones in Fig. 3.2. In the post-bounce phase, matter is gradually
accreted onto the protoneutron star increasing its mass and density. This would
move the protoneutron star configuration from the right to the left in the M-R
curves in Fig. 3.2. When the mostly hadronic protoneutron star has reached the
maximum mass of the second family a collapse is induced. The collapse halts when
high enough pressures are reached in the core to counterbalance the gravitational
forces. Subsequently a second shock is formed which can lead to an explosion. It
seems that only equations of state with a pronounced third family feature at finite
entropies and neutrino fractions are favorable for explosions. Hence, the result that
the B139 EOS, which only has a weakly pronounced third family feature, did not
lead to explosions in spherically symmetric core-collapse supernova simulations is
consistent with our explanation above.

3.3 Hybrid stars
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Equations of State

A reader lives a thousand lives before he dies,
said Jojen. The man who never reads lives only

one.

— George R.R. Martin
A Dance with Dragons

General purpose equation of state - theory

This section provides an overview of the equation of state theory used for astrophysi-
cal purposes. The discussion is mainly based on the review article of Oertel et al.
[153] and the useful summary provided in the CompOSE manual' [203, 202]. The
units used are kg =h=c=1.

Even though in this work the term supernova equation of state (SN EOS) is often
used, actually the term “general purpose equation of state” [153] is more accurate
in a broader astrophysical context. Such a general purpose equation of state has to
describe matter under extreme densities, extreme temperatures, and extreme isospin
asymmetries which can be found in neutron stars, supernova explosions, collapse
into black holes, and also neutron star mergers.

Definition - equation of state

Generally spoken, by the expression “equation of state” we mean any relation
between thermodynamic state variables. In the following, we define this expression
more precisely. If a thermodynamic potential = = Z(x;, {;) is known as a function
of its n natural variables x; and &; (with the integers i € [1,n1], j € [1,n2] and n =

ny + no), all the thermodynamic properties of a system are completely determined.

The variables x; can be identified as extensive and ¢; as intensive variables. With
this information, the thermodynamic equation of state can be determined as

0=
§i =5 = &i(zi, &) 4.1)
Li x,k#5;E;
and
o=
Ti= —o = xj(z;, &). 4.2)
TGl ke

"http://compose.obspm.fr/
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The thermodynamic potential = can be expressed as

[1]

=E(zi,&) = ) & (4.3)
i=1

using Euler’s theorem on homogeneous functions. Equation 4.3 shows that we can
reconstruct the full thermodynamic potential if all equations of state are known.
Useful for further thermodynamic considerations are the so-called Maxwell relations

98
oxp

0%

= (4.4)

They are obtained using the information that for the mixed second derivative of a
thermodynamic potential = the order of differentiation must not be of relevance for

the final result.

In the context of this work we are interested in applications of the equation of state
to models that hydrodynamically describe a macroscopic system. There, matter is
treated as a fluid and explicit effects from the present gravitational potential are not
included into the thermodynamic description. The equation of state is constructed
under the assumption that in each local system a thermodynamic equilibrium holds.
In such systems the intensive thermodynamic variables (e.g. temperature 7', pressure
p or chemical potential ;) are typically well defined and thermal, mechanical, and

chemical equilibrium hold?.

In typical general purpose equations of state for dense matter the natural variables of
choice are; temperature 7 [MeV], volume V [fm?3], and the set of particle numbers
N; i € [1, Npart) [ 1. These variables correspond to the (Helmholtz) free energy F' =
F(T,V,N;) [MeV] as the thermodynamic potential®. Since in the thermodynamic
limit the actual value of V' is not of relevance, meaning that all the extensive variables
show the same scaling behavior, it is convenient to define important quantities as
ratios of V, some of which we will list in the following. The free energy density is
defined as

F(Tms) = g (MeV/fm?), 4.5)
the entropy density is
S(T,ny) = _g% ), (4.6)

g

where the entropy is defined as

oF

S(T,‘/,Nl) = VS(T, nz) = _67T

[ ] (4.7)
V,N;

ZNote that in the chosen domain thermal equilibrium corresponds to constant temperature, mechani-
cal equilibrium to constant pressure, and chemical equilibrium to constant chemical potential.
3Free energy includes rest-mass contributions of the particles.

Chapter 4 Equations of State



and the chemical potential of a particle i is

Wi = oF = 2] [MeV]. (4.8)
ON; T,V,N;,j#i on; T,nj,j#i
The pressure p can be calculated by
or 2 O(f/nB) 3
p oV _— B ong v, ;H ni—f | ]

where np = Np/V is the baryon number density and Y, = n,/np the charge fraction
of the strongly interacting particles. For a system constrained by charge neutrality
and with only electrons as charged leptons, Y, = Y. holds.

By using Legendre transformations, the free energy can be transformed into the

other thermodynamic potentials which are listed below for the sake of completeness.

The internal energy is defined as
E=E(S,V,N,)=F+TS [MeV], (4.10)
the free enthalpy or Gibbs potential

G=G(T,p,N;)=F+pV => uN; [MeV], (4.11)

the enthalpy
H=H(S,p,N;)=E+pV [MeV], (4.12)

and the grand canonical potential

Q=T V,ps) =F =Y piN; = —pV  [MeV]. (4.13)

The analogous densities of £, G, H, and Q aree = E/V,g=G/V, h= H/V, and
w = Q/V, all in units of [MeV/fm?].

As mentioned above an equation of state can only be applied if the corresponding
system is considered in thermodynamic equilibrium. While thermal and mechanical
equilibrium (with the variables T and p) are usually achieved quickly in astrophysical
simulations, the chemical equilibrium is the more critical. The condition to assume
an equation of state is in chemical equilibrium is that the corresponding reactions
happen on a significantly shorter timescale than the hydrodynamic evolution of the
system. This is mostly the case if the system is in the so-called nuclear statistical
equilibrium (NSE) which is reached if temperatures reach values of T > 0.5 MeV
[102]. This condition provides us also with the information where the equation of
state is not valid anymore, e.g. in the outer regions of core-collapse supernovae or in
explosive nucleosythesis. There, a nuclear reaction network would have to be used

4.1 General purpose equation of state - theory
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to follow the time evolution of the matter in chemical equilibrium. The chemical
potential for every particle : is given by

wi = Bipip + Qiptg + L e + Sifus (4.14)

with baryon number B;, the charge number Q;, electronic lepton number L§, and
the strangeness number S; and their corresponding chemical potentials up, 14, fiie,
and us. In NSE, Eq. 4.14 reduces for each nucleus a with neutron number N, and

proton number Z, to
Ha = (Na + Za)/«LB + Zan = Najpin + Za,up- (4.15)

Weak interactions can in general not be considered in equilibrium. Their timescales
can exceed the dynamical timescale of the considered astrophysical object. In the
case of core-collapse supernovae, which is especially relevant for this work, weak
equilibrium can only be obtained at high densities above 10~2 fm3. Even there,
neutrinos do not have to be in thermal or chemical equilibrium. This is the reason
why in supernova codes neutrinos are generally treated in separate routines using a
transport approach (see Sec. 8.4).

In almost all astrophysical scenarios, the length scales of the system can be considered
as infinitely large compared to the ones used in the microscopic models in the
equations of state. This implies that the thermodynamic limit is reached and hence
electric charge neutrality is necessary. Elsewise, strong electric fields might occur.
The local condition for charge neutrality is

ngQ = Z QZTLZ =0. (416)

Since Eq. 4.16 implies that n¢ is not an independent thermodynamic degree of
freedom, often a hadronic charge density is introduced

ng =Y Qjnj, (4.17)
J

where the sum only considers the hadrons (and possibly quarks if present). If the
only leptons present are electrons Eq. 4.17 reduces to ng = n..

Requirements on the thermodynamic variables and on the
matter composition for a general purpose EOS

When constructing a general purpose equation of state, it should only depend on the

temperature 7, the total baryon number density np and the total hadronic charge
density n,. Often, instead of n, the corresponding charge fraction Y, = n,/np is

Chapter 4 Equations of State
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Fig. 4.1: Reprinted figure with permission from [153], copyright 2017 by the American
Physical Society. Shown are the temperatures in MeV (left scale) and densities
(lower scale the baryon number density in fm~2 and the upper scale the baryon
density in g/cm?®). The Y, fraction is indicated by the color coding.

used. In the following, the ranges of ng, T and Y, which should be considered in a
general purpose equation of state are discussed.

Baryon number density np: From the observation of the 2 M, neutron stars (see [56,
11, 70]) it can be deduced that the baryon number densities in neutron stars can
be as high as 10 times the nuclear saturation density n%3' ~ 0.16. While densities in
core-collapse supernovae are generally lower, black hole formation due to a failed
supernova can lead to even higher densities [192, 152, 94, 163] even though they
will only last for less than a millisecond. While low density matter is almost irrelevant
for neutron stars (few centimeters on the surface) it is important for core-collapse
supernovae and neutron star mergers since in these cases ejecta are of interest.
In such regions full thermodynamic equilibrium is not always fulfilled. For this
reason an external nuclear network has to be applied to consider the time-dependent
nuclear reactions. This is especially relevant to calculate the burning processes which
contribute to the explosion energy.

Temperature T: A general purpose equation of state has to cover a huge temperature
range. The lower limit is set by neutron stars. A new born neutron star cools
extremely fast to temperatures below 1 MeV. This is small on the scale of nuclear
energy and can hence be considered as zero in almost all models. In core-collapse
supernova simulations temperatures between less than one MeV up to several tens of

4.1 General purpose equation of state - theory
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quantity range
temperature T’ 0 MeV < T < 150 MeV
baryon number density ng | 107! fm™3 < np < 10 fm 3
electron fraction Y, 0<Y.<0.6

Tab. 4.1: Table adapted from Oertel et al. [153]. Listed are the suggested ranges of
temperature T, baryon number density ng, and the electron fraction Y, a general
purpose equation of state should cover. If these ranges are described, a general
purpose equation of state should be able to describe events as core-collapse
supernovae and their products neutron stars, as well as neutron star mergers and
eventually the onset of black hole formations.

MeV appear. In case of a failed supernova and the subsequent collapse into a black
hole, temperatures above 100 MeV can appear (see e.g. [152]). Such scenarios set
the upper boundary of the temperature scale for a general purpose equation of state.
A general purpose equation of state should therefore cover the temperature range
0 < T < 150 MeV.

Electron fraction Y,: A general purpose equation of state has to be able to describe
the whole range of Y. during the simulation of a core-collapse supernova. While in
the progenitor the electron fraction is Y. ~ 0.5, Y, decreases during the collapse due
to electron captures. Matter becomes more and more neutron rich until the lowest
limit of Y, is reached. Initially, this lower limit for Y, in the protoneutron star is set
by the chemical equilibrium with trapped neutrinos where the total lepton fraction
Y, =Y. +Y, is constant (see [65]). In the late stage, when the neutron star cools
down, Y, can reach values close to zero. Values of Y, > 0.5 can be reached in parts
of the supernova ejecta, corresponding to proton rich matter.

Figure 4.1 shows the temperatures, densities and electron fractions reached during
a one-dimensional core-collapse supernova simulation using the 15 M, progenitor
of Woosley and Weaver [212] (figure taken from [65]). It illustrates the above
described ranges of np, T and Y. In Tab. 4.1 the ranges of T, np, and Y, to be
covered by each general purpose equation of state are summarized (table published
in [153]).

Besides the requirements on thermodynamic variables that have to be covered by
a general purpose equation of state, similar demands arise with respect to particle
degrees of freedom. The composition of matter that can occur is very diverse and
therefore “the wish” list for the equation of state long:

* To describe the surface layer, outer crust, and inner crust of cold neutron stars,
56Fe ions (at the surface immersed in a sea of electrons) as well as heavy nuclei
should be present (for detailed discussion of the composition of the neutron
star crusts see [41]).
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* At low densities and finite temperatures, a plasma consisting of a mixture of
nuclei, nucleons, and electrons has to be described.

* To simulate shock-heated matter in core-collapse supernovae, light nuclear
clusters, such as « particles, deuterons, tritons, and nucleons should be consid-
ered.

* The dissolution of nuclei at densities just below the saturation point (or high
enough temperatures) into strongly interacting nuclear matter and electrons
has to be described accurately.

* At even higher densities and temperatures, mesons such as pions can appear
but also exotic matter such as hyperons or kaons can be present.

* In the highest density/temperature regime quark matter is possible to appear
and therefore might also have to be considered.

* Besides the regular particles also some of their antiparticles should be consid-
ered.

Which of these ingredients are included into the equation of state and how depends
on the underlying theoretical models and available experimental and observational
data.

Characterization of nuclear matter properties in EOSs

To fit an equation of state to experimental and observational constraints, its nuclear
parameters should be reduced to a meaningful set of parameters. Properties of
nuclear matter can be compared well at the so-called saturation density n%3*: At this
density the symmetries of the strong interaction cause uniform nuclear matter at
T = 0 to reach the state with the largest binding energy per nucleon. At this density,
neutrons and protons are present in equal concentration*. At 7' = 0, the energy per
nucleon F can be defined as a function of the baryon number density np and the
so-called asymmetry «. The (isospin) asymmetry « describes the composition of the
nuclear matter and is defined as

Ny —n
a=—"—PL=1-2Y, (4.18)

N, + Ny
where n,, and n, are the number densities of the neutrons and protons, respectively.
Y, = n,/np is the proton number fraction. The asymmetry « vanishes for symmetric
matter where Y, = 0.5. Using «, the energy per nucleon E can be expanded around

symmetric matter at the saturation point n53"

E(np,a) = Eo(np) + Esym(np)a® + O(a*)  [MeV]., (4.19)

“*For the exact equality of the number of protons and neutrons at saturation point, the mass difference
between protons and neutrons has to be neglected.
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where the energy per nucleon of symmetric matter reads as
Lo 1.3
Eo(np) = Muue — Bsat + 5Kyc + ng +... [MeV]. (4.20)
and the symmetry energy as
1
Esym(np) =J + Lz + §Ksymx2 +...  [MeVl (4.21)

In general, the symmetry energy is defined as

182E(n3,a)

S B [MeV]. (4.22)

Esym (nB) =

a=0

Usually an expansion up to the quadratic term, as shown in Eq. 4.21, is sufficient. In
Eq. 4.20 and 4.21, the variable z is defined as

_ msat
r = 1 (anB> : (4.23)

3 nsat
and can be considered as an expansion parameter of the baryon number density
np close to the saturation density n%3*. The coefficients n%3' and B, K, Q, J, L,
Ksym [MeV], ... are used to characterize the equation of state and are discussed in
more detail below. It is clear that these parameters do no describe all features of an
equation of state, but they are especially relevant at densities close to the saturation
density at T' = 0 and close to symmetric nuclear matter. However, extrapolation
from these values based on a polynomial expansion are dangerous and have to be
thoroughly tested.

* The saturation density of symmetric nuclear matter n53* can be defined more
precisely by the condition that the pressure p vanishes

2 dE(nBa 0)

p=npg

=0 [MeV/fm?3] (4.24)
dnp

—nsat
np=ny

and the energy per baryon is minimal. Typical values are commonly in the
range 0.15 fm =3 < n$3* < 0.17 fm=3 [53].

* Bqat is the binding energy of symmetric nuclear matter at saturation. Ranges are
usually 15.6 MeV < Bg; < 16.2 MeV [53].

* K [MeV] is defined as the incompressibility of bulk nuclear matter. It is defined

[MeV]. (4.25)
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It quantifies the curvature of the binding energy per baryon with respect to the
density variation at saturation. In [165] it is mentioned that the consensus for
a good value of K given by nuclear experiments is given by K = 240 4+ 10 MeV.

* The parameter () is the so-called skewness coefficient of bulk nuclear matter. It
is defined as

32
= 27n23 p/np

2
np=n’ 8”3

3
Q = 27y, T E2:0) — 6K [MeV] (4.26)
ony

—nsat
np=ny

Q) in combination with K describes the surface properties of nuclei (e.g. surface
tension to surface thickness).

* J is the symmetry energy at saturation. It is defined by
J = Egym(n%Y)  [MeV]. (4.27)

J mainly defines the isospin dependence of the binding energy of nuclei and
is therefore important to predict masses of exotic nuclei far off the valley of
stability in the chart of nuclei. Typical values of .J are shown in Fig. 4.2a. For
more detailed information see [153].

* [ is the symmetry energy slope coefficient which is given by

dl%ym(ng)

L =3npg dnp

[MeV]. (4.28)

—npsat
np=ng

L shows the density dependence of the neutron matter equation of state close
to the saturation density. It is strongly related to the neutron skin thickness of
heavy nuclei. Typical values of L are shown in Fig. 4.2b. For more detailed
information see [153].

* Kgym is the so-called symmetry incompressibility and is given by

d2Esym(nB)

dn2 sat
B np=ny

Keym = In% [MeV]. (4.29)

In [53] typical values between —500 MeV < Ky, < 100 MeV are mentioned.

4.1.4 Experimental and observational constraints on the EOS

In [153], a well-written and compact overview about the different experiments
and their influence on determining the parameters n$3" and B, K, Q, J, L, Kgym
[MeV], ... is provided. In the following, a summary of the different methods listed
in [153] is given. For more detailed information and an extensive list of references,
the reader is encouraged to contact [153] for further reading. The parameters
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Fig. 4.2: Reprinted figure with permission from [153]. The left panel shows a summary
of the probability distribution of the symmetry energy J at saturation density, the
right panel a summary of the probability distribution of the symmetry energy slope
parameter L.

introduced in Sec. 4.1.3 can be constrained by experimental and observational data.
Generally, we can differ three different categories (as listed in [153]):

1. Terrestrial laboratory measurements of nuclear properties and reactions:

Nuclear masses (see e.g. [13, 14]) and density distributions (see e.g. [10])
provide the most basic constraints on the equation of state parameters listed in
Sec. 4.1.3. Nuclear matter parameters can be obtained through extrapolation
of the data to high mass numbers. Information on the saturation density n%",
the binding energy at saturation point Bg,; and constraints on the symmetry
energy Egymm is obtained. Indirectly, information on .J and L can be extracted
as well.

Collective excitations of finite nuclei (so-called nuclear resonances) provide
crucial information about isoscalar and isovector properties of the nucleon-
nucleon interaction. This includes data from giant monopole resonances (to
constrain the nuclear incompressibility K), giant dipole resonances (i.a. the
symmetry energy Fgym can be constrained at ng = 0.1 fm™3 to 23.3 MeV
< Esym(O.lfm’S) < 24.9 MeV [200], and the measurement of the electric
dipole polarizability ap (see e.g. [197]) which used to constrain L.

Heavy, neutron-rich nuclei develop a neutron skin with thickness Ar,, =
V(r2) — \/@ with \/(r;) (i = n, p) the root-mean-square radii of the neutrons
and protons, respectively. To determine the neutron skin thickness, the neutron
radii of nuclei have to be measured.

Heavy-ion collider experiments provide important information of warm/hot,
strongly interacting matter. In such collider experiments densities of several
times nuclear saturation densities and temperatures of several tenths of MeV
can be obtained for a short period of time. Even though these values are very
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similar to the values that can appear in supernovae, there are fundamental
differences between matter in heavy-ion colliders and supernovae: Generally,
matter in heavy-ion colliders is more isospin symmetric, while matter in super-
novae can be more asymmetric (low proton fraction, high neutron fraction).
Moreover, the fireball in heavy-ion collisions is finite size only, with a fixed
number of nucleons which do not have to be in thermal equilibrium. As a
consequence the maximum mass number of nuclear clusters is limited in such
experiments. Contrariwise, matter in supernovae can be considered as in an
infinite system and has therefore to be charge neutral. The net charge in
heavy-ion collisions is fixed by the initial charge of the two colliding nuclei.
Additionally, due to the high kinetic energies Coulomb energies are usually
neglected in heavy-ions collisions. Another difference are the characteristic
timescales: While in heavy-ion collisions, timescales of typically a few fm/c are
reached and thus no equilibrium with respect to weak interactions is obtained,
in neutron stars full equilibrium is obtained. This is also important for the
strangeness changing reactions, which can be assumed to be in equilibrium
in compact stars while in heavy-ions collisions the net strangeness is zero.
From heavy-ion collisions a lot of information can be extracted e.g. constraints
for the incompressibility K using information from kaon production (see e.g.
[83]), isospin dynamics, the density dependence of the symmetry energy en-
ergy at moderate to high densities and multifragmentation reactions. The
observation of light nuclei in heavy-ion collisions also provides important
information to constrain the equation of state. For example the chemical
equilibrium constant can be measured [169]. Figure 4.3 shows the comparison
of the equilibrium constant of the a-particle obtained in the experiment (black
diamonds) with different supernova equation of states (colored symbols) [92,
153]. Certain equations of state do clearly not lie within the grey error band of
the experimental data.

. Theoretical ab-initio calculations:

In case of pure neutron star matter, its simple isospin structure simplifies the
nuclear interaction Hamiltonian significantly. This allows ab-initio calculations
which are more complex to perform in the case of asymmetric matter. Using
different many-body techniques with well-calibrated interactions, calculations
for a large range of densities are available. For an extensive review see [75].
Such calculations can serve as important constraints for the equation of states.

. Observations in astronomy

Neutron star masses set a strong constraint on the equation of state. Each
equation of state should be able to support the masses of the most massive
observed neutron stars. Two very precise measurements of neutron stars with
masses of 2 Mg which are part of neutron-star-white-dwarf systems set the
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strongest constraints: In 2010, a neutron star with the mass of (1.928 + 0.017)
Mg [70] has been measured by a method based on the Shapiro delay [56].
In 2013, a second very precise measurement of a neutron star with the mass
of (2.01 + 0.4) Mg has been measured [11]. In this case the orbital data was
combined with the well-known structure model of the white dwarf in the
binary system. There are indications of even more massive neutron stars (e.g.
black widow and redback system [205, 173, 111]), but these measurements
are more model dependent and do not reach the same precision (and hence
reliability) as the two first mentioned measurements.

Measuring the mass and radius of the same compact object would be the ul-
timate observation to constrain the equation of state. For example in [186]
it is discussed how a precise measurement of a low-mass neutron star might
be translated into a constraint for a certain combination of K and L. Since
radius measurements are done in an even more indirect way than mass mea-
surements they are even more model dependent. To list a few possible sources
of systematic error: distance to the source, composition of the atmosphere,
residual accretion in binaries, brightness variation over the surface, interstellar
extinction and the uncertainty considering rotation in case of sources with
unknown rotation frequencies (for more detailed information see [144, 166]).
Isolated neutron stars, quiescent X-ray transients, bursting neutron stars and
rotation powered millisecond pulsars are the type of sources from which radii
can be extracted currently. Future high precision astronomy, gravitational wave
signals of neutron star mergers and the possible observation of gravitational
redshift at the neutron star surface might provide better constraints on the
radius.

Measuring the cooling of neutron stars gives a direct insight to the composition
of a neutron star. Neutron star cooling depends directly on the composition of
a neutron star and therefore determines the neutrino emission and the heat
transport. Currently, the direct observation of the cooling of the neutron star
in Cassiopeia A [88] seems to be promising to give a direct insight into the
neutrons star composition.

Another constraint on the equation of state can be set by the measured rotation
rates. However, the currently measured maximum frequency of 716 Hz does
not set a significant limit on the equation of state [81]. This might change if
even higher rotation rates would be measured.

Chapter 4 Equations of State
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Fig. 4.3: Reprinted figure with permission from [153]. Shown are the equilibrium constants
of a-particles obtained in heavy-ion collision experiments (black diamonds) as

well as predictions from a selection of supernova equations of state and other
models which were adapted to the experimental conditions as far as possible.
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Hadronic equation of state

In this section all the relevant hadronic supernova equation of state models used in
this work are listed and briefly described. We follow closely [153] when describing
the different equations of state and extend the discussion where needed.

LS220

The equation of state by Lattimer and Swesty [125] is widely used in astrophysics.
Even though not explicitly used in this work, it is briefly summarized here for the
sake of completeness and later comparison with HS(DD2). In LS(220) nucleons,
a-particles, and heavy nuclei in the single nucleus approximation are considered
as degrees of freedom. The heavy nuclei are described with a medium-dependent
liquid-drop model and for the nucleons a non-relativistic Fermic-Dirac statistics
is applied. Additionally, a simplified momentum-independent nucleon-nucleon
interaction is used. This results in constant nucleon masses which are identical to the
used vacuum masses. To describe the interactions between the gas of nucleons, the
a-particles and the heavy nuclei an excluded volume mechanism is used. a-particles
are treated in a simplified way assuming they are hard spheres of the volume
V,, = 24 fm? that form an ideal Boltzmann gas. Excited states are neglected. Non-
spherical nuclei and bubble phases can be formed as density increases and before
nuclei completely dissolve into homogeneous nuclear matter. Such deformation is
described by modifying the Coulomb and surface energies of the nuclei. A Maxwell
construction is applied to describe the phase transition to bulk nuclear matter.
LS(220) EOS has an incompressibility of K = 220 MeV. The maximum mass for cold
neutron stars is 2.06 Mg,.

STOS

The STOS EOS has been developed by Shen et al. in [183, 184, 182]. As in LS(220)
the degrees of freedom are neutrons, protons, a-particles and one heavy nucleus
in the single nucleus approximation. To describe the interactions of the nucleons
a relativistic mean-field model with nonlinear meson self-interactions is used with
the parameterization of TM1 [189]. Once again, a-particles are described as an
ideal Boltzmann gas with excluded volume corrections while excited states are
neglected. The properties of the single heavy nucleus are described “by Wigner-Seitz
cell calculations within the Thomas-Fermi approximation for parametrized density
distributions of nucleons and a-particles” [153]. As an additional simplification the
translational energy and entropy contribution of heavy nuclei is not taken into
account. The maximum mass for cold neutron stars is 2.23 M.
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EOS nit Feat K Q J L

[fm~3] | [MeV] | [MeV] | [MeV] | [MeV] | [MeV]
LS(220) | 0.1550 | 16.00 | 220 -411 | 28.61 | 73.82
STOS | 0.1452 | 16.26 | 281 -285 | 36.89 | 110.79
HS(DD2) | 0.1491 | 16.02 | 243 169 | 31.67 | 55.04

Tab. 4.2: Nuclear matter matter properties of the discussed hadronic supernova equation
of state models.

HSDD2

The HS(DD2) EOS [96, 69] is a supernova equation of state available at finite
temperature and variable proton fraction and density in the form of a table. As
baryonic particle degrees of freedom, nucleons, and nuclei are considered. HS(DD2)
describes matter as a chemical mixture of nuclei and unbound nucleons in nuclear
statistical equilibrium (NSE). The interactions of the nucleons are described with
density-dependent relativistic mean-field theory (DD2) which uses experimental
nucleon masses as an input [204]. Several thousand nuclei are considered, including
light ones and are treated as Maxwell-Boltzmann particles. Their binding energies
are either determined by data from experimental measurements [13] or from various
theoretical nuclear structure calculations (see [146, 122]). The formation of nuclei
at subsaturation densities is considered in a statistical description employing experi-
mentally measured binding energies and excluded-volume corrections [96]. Since in
the HS(DD2) EOS the description of heavy nuclei is based on experimental data, it
implicitly includes the correct shell effects of nuclei in vacuum. The HS(DD2) EOS
is in good agreement with experimental constraints for the symmetry energy [89],
theoretical constraints for the neutron matter equation of state [69], and cluster
formation in low-energy heavy-ion collisions [92]. HS(DD2) EOS has a rather high
maximum mass for cold neutron stars of 2.42 M.

Table 4.2 summarizes the equation of state parameters of LS(220), STOS and
HS(DD2). In Fig. 4.4 the values of the slope parameter of the symmetry energy L
and the value of the symmetry energy J at the saturation point shown in Tab. 4.2
are plotted. STOS EOS which is based on TM1 clearly lies outside the experimental
constraints which are indicated in grey color. LS(220) also lies only at the left outer
boundary of the weaker constraint area. We can conclude that the HS(DD2) EOS
is a “state-of-the-art” supernova equation of state which is in best agreement with
many experimental constraints.
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Fig. 4.4: Plotted are the slope parameter of the symmetry energy L against the value of the
symmetry energy J at the saturation point for several equations of state: LS(220),
STOS, and HS(DD2). The area shaded in dark grey indicates the constraints shown
in Fig. 4.2. The area shaded in light grey indicates the stronger constraints given
by [126].

BHBA¢

Temperature and densities in core-collapse supernovae can reach values where the
description of matter in terms of nucleons, electrons and nuclei is no longer sufficient.
Hyperons represent an additional degree of freedom which can be considered in
the hadronic EOS. Their appearance generally leads to a softening of the equation
of state and therefore to a lower maximum mass. Often it is hard to even meet
the 2 My, constraint. This problem is known under the name “hyperon puzzle”;
see, e.g., [136, 45]. However, several hyperonic neutron star equations of state
exist which have sufficiently high maximum masses by including repulsive hyperon
interactions. An alternative solution to this puzzle is a phase transition to quark
matter at low densities, which takes place before the appearance of hyperons; see
[179, 218, 45].

The only existing supernova equation of state that considers hyperons and strictly
fulfills the 2.01 M neutron star constraint of [11] is the BHBA¢ EOS [18]. It
represents an extension of HS(DD2) where the A hyperon has been added as a
particle degree of freedom within the density-dependent relativistic mean-field
framework. Otherwise, the underlying models of HS(DD2) and BHBA ¢ are identical,
e.g., regarding the nucleon interactions or the description of nuclei. Other hyperons
than the A are not considered in BHBA¢. The justification of this simplification
is that the experimental data for the interactions of the other hyperons are even
more uncertain than they are for the A (especially AN and AA interactions are best
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constraint from experiments), and that often the A is found to be the most important
hyperon regarding the neutron star EOS. To reach the 2 My, constraint repulsive
hyperon-hyperon interactions have been included in the BHBA¢ EOS via the strange
¢ meson. The resulting maximum mass for cold, S-equilibrated matter is 2.11 Mg,
and thus directly compatible with the measurement of [11]. This means BHBA¢
does not show a hyperon puzzle.

Application of HS(DD2) and BHBA¢ in neutron stars

In this work, we use the HS(DD2) and BHBA¢ EOSs in beta equilibrium and at
T = 0.1 MeV. A temperature of 0.1 MeV is negligibly small in comparison to typical
Fermi energies in neutron stars, and thus a sufficient approximation for 7' = 0. Note
that the inner and outer crust is included self-consistently in HS(DD2) and BHBA ¢,
i.e., we have a unified EOS description for the entire neutron star. These equation of
state tables have been kindly provided by PD M. Hempel.

Quark equation of state

In 1984, Witten proposed the concept of absolutely stable quark matter [209] (see
also earlier works, e.g. [103, 72]). The main idea is that hadronic matter is only
a metastable state of matter while strange quark matter is considered as the true
ground state since its energy per baryon is lower than the one of °*Fe. This hypothesis
leads to the conclusion that the existence of so-called “strange stars” (stars which
only consist of absolutely stable strange quark matter) is possible. In the same year
as Witten published his hypothesis, Farhi and Jaffe investigated Witten’s theory by
using a Fermi-gas model to establish conditions under which strange matter in bulk
is absolutely stable [63].

By “bulk quark matter”, Farhi and Jaffe define a cluster of quark matter large enough
that surface effects are negligible and electrons (respectively positrons) are bound
in the bulk. It is supposed that strange quark matter is the true ground state of
the strong interaction at zero temperature and pressure. In order for this to be
true the energy per baryon E/A has to be smaller than the one of a nucleon with
mass My = 939 MeV. If E/A is between 930 and 939 MeV, it is possible for strange
matter to decay by emission of nuclei accompanied by weak interactions to stay in
flavor equilibrium. If £/A is less than 930 MeV, in principle a nucleus can lower
its energy by simply converting approximately one third of its quarks into strange
quarks. However, this is not very likely since a very high-order weak interaction
would be required. The rate up to forth order (which is considered here) remains for
all practical purposes zero. Since ordinary nuclei consist of nucleons and not of pure
(u,d) quark matter, £//A of non-strange (u,d) quark matter has to exceed the lowest
energy per baryon found in a nuclei, which is 930 MeV in iron. Nevertheless, this is
not restrictive enough for non-strange quark matter: For large, but still finite A it
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is believed that its £//A is less than for A — oo (which is the “bulk matter case”).
On the other hand, strange quark matter behaves the opposite: Its /A decreases
with A. Therefore, in the case of non-strange quark matter a A (which describes
the difference between the £/A of non-strange quark matter in bulk matter and
for A ~ 250, ~ 4 MeV here) has to be added to the value of iron 930 + A MeV (for
detailed explanation, see [63]).

In this work we do not assume that strange quark matter is absolutely stable. At high
densities and/or temperatures it is possible that hadronic matter can change its state
into a phase of deconfined quarks and gluons, with restored chiral symmetry. In this
regime, quarks and gluons can move as free and almost non-interacting particles due
to the deconfinement and the asymptotic freedom (bag model assumption). Quarks
obtain mass due to chiral symmetry restoration; up and down quarks only of the
order of a few MeV while the strange quark obtains a mass of around ms ~ 100 MeV
[65]. In the following, we introduce the models by which we describe quark matter
in core-collapse supernovae and hybrid stars in this work. We start the discussion
of our models in Sec. 4.3.1 and Sec. 4.3.2 which can be applied for hybrid stars at
T = 0 and S-equilibrium. In Sec. 4.3.3, we finally describe a thermodynamic bag
model which is later used to describe quark matter in our core-collapse supernova
simulations.

CSS model

A very simple, phenomenological model for quark matter was introduced by Alford
et al. in [7]. Due to its simplicity it is well suited for systematic investigation of
phase-transition properties in hybrid stars. The model describes the quark phase by
the constant speed of sound (CSS) EOS :

ecss(p) = cqu(p — o) , (4.30)

where cq)y is the density-independent speed of sound, p the pressure, and p, the
pressure where ecgg = 0. Two values for cqy are of special interest: c2QM =1/3
which corresponds to non- or weakly interacting, massless quarks and C2QM =1
which is the maximum value to be still consistent with special relativity. Later in this
work, the main discussion is based on c(QQM = 1/3, which is typical for many quark
EOSs and also in agreement with other, more sophisticated models (e.g., [6, 20]).
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4.3.2 Bag model (for T'= 0 and -equilibrium)

The CSS EOS is not a very common equation of state for the description of quark
matter. Furthermore, as it only represents a parametrization of thermodynamic
quantities, it does not contain any composition or temperature dependence. Both
aspects are important for the application in core-collapse supernova simulations
simulations which we are aiming at in this work.

A commonly used and easy-to-handle model which provides this information is
the so-called thermodynamic bag model, which is described in more detail in the
following. The most prominent bag model is the one developed by Chodos et al.
in 1974 [46], known as the “MIT bag model”. Bag models are generally easy to
handle and able to reproduce hadron properties well (see e.g. [46, 55, 58]). Their
application to describe bulk quark matter is also fairly popular. The main idea of
quark bag models can be summarized as follows: It is assumed that the true vacuum
of QCD is a medium which refuses the intrusion of quarks and confines them with
in a sphere, respectively “bag”. This bag is a color neutral hadron. The pressure
on the hadron exerted by the QCD vacuum is considered in the bag models by the
phenomenological bag constant B. The pressure B onto the bag is opposed by the
motion of the quarks in it. Quarks are assumed to move asymptotically free within
the bag.

Farhi and Jaffe considered three-flavor (u, d, s) quark matter in beta equilibrium at
zero temperature with a negative external bag pressure B acting on quark matter
[63]. Matter is assumed to be in equilibrium regarding the following reactions:

du+e+ve,
s ute+ve,

stusu+d. (4.31)

In cold neutron stars where no neutrinos are present the chemical potentials thus
fulfill the relation:

Hd = fs = [y + He - (4.32)

The pressure p; depending on the chemical potential y; for each species i = u,d, s, e
is easily calculated since the quarks are treated as noninteracting Fermi gases:

o Lg [ ez Do
pi = 6 4n2 [Hz(ﬂi mi) (g sz’)
2 _m2)1/2 .
+3mf‘ln<('ul mi) *“’) (4.33)
2 m;
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The degeneracy factor g is g = 24,y for electrons and g = 6 = 2gpin X 3color fOr
quarks. The pressures for each species, assuming the masses for u and d quarks as
well as electrons are negligible, are:

non—int __ @
“ C A4Ax2
non—int __ Lzll
Pa o A4x2
4
non—int __ He
Pe T Iop2”
non—int 1 2 2\1/2/, 2 5 2
DPs = m :U’S(Ns - ms) (:U’s Qms)
3 2 _ ,,2\1/2
+Zmiin ((,us mi) A s . (4.34)
2 Mg

The total pressure is the sum of the particle pressures with the bag constant sub-
tracted:

Dtot = ZP?OH_M - B. (4.35)

By using the number density for each species n;, which can be obtained from the
thermodynamic relation

n; = ODtot 7 (4.36)
O
the charge neutrality condition can be expressed as
2 1 1
§n“ — §nd — §ns —ne=0. (4.37)

Equations (4.37) and (4.32) leave only one independent chemical potential. Using
the T' = 0 thermodynamic relation

Etot = —Prot + Y HiMi (4.38)

1

and Eq. (4.35), the total energy density can be written as

ot = I (=PI + pin;) + B (4.39)

7

— Y eonint 4 g (4.40)

To include interactions, often a phenomenological parametrization is used. Here, we
apply the model of [65] for T' = 0:

. 20 1]
pQM _ Zp?onflnt _B_ Z Qg ng’ (4.41)
7 j:u7d75 T 471-
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where «, accounts for strong interaction corrections. The model presented in [65]
is similar to the ones from Alford et al. [4] and Weissenborn et al. [208]. Both use
an interaction correction proportional to u* (where i denotes the quark chemical
potential) similar to the «a term in Eq. 4.41. In fact, Weissenborn’s model is
equivalent to Eq. 4.41 for ms = 0, and in this case the proportionality factor a4 of the
p*-term can be identified as ay = 1 — 2a, /7. Alford’s quark EOS is a generic power-
series ansatz, which includes an additional asy? term. This term can be interpreted
to be related to color superconductivity by using ay = m? —4A2, where A represents
the pairing gap [3, 4]. Another quark model suitable for astrophysical application
is vBag, which was introduced in [115, 116]. It contains vector interactions and a
medium-dependent bag pressure, which is based on the assumption of simultaneous
deconfinement and chiral symmetry restoration. It would be interesting to compare
vBag with the quark equations of state used in the present study in the future.

An important case is where u, d, and s quarks are massless. It follows p, = pg =
s = p, and p. = 0, and n, = ngy = ns and n, = 0, i.e., quarks maintain charge
neutrality by themselves and there are no electrons in the quark phase. This allows
us to compare the CSS EOS with the bag model of Eq. 4.41 in the limit of m; = 0
and beta equilibrium. Therefore Eq. 4.30 has to be reformulated. Together with
Eq. 4.38, Eq. 4.30 leads to

2

c

pP = 7@\;[ <]200 +un> , (4.42)
L+cim \cou

where n = n,, + nq + ns. n depends on p due to the relation n = dp/du, which can

be inserted in Eq. 4.42. Separating the variables and integrating over the respective
boundaries leads to

2
1+CQM

c2 2 1
pCSS(M) — 71 Ql\;[ po (M> QM + ‘2 — . (443)
+com Ho cQu

It is interesting to note that another constant yo appears. The reason is that the
e(p)-relation of Eq. 4.30 does not represent a thermodynamic potential. For given Ae
and pyans (both quantities will be introduced in Sec. 4.4), which fix pg by Eq. 4.58,
1o can be fixed as well by inverting Eq. 4.43 and using the condition of chemical
equilibrium at the phase transition point,

1 .
NCSS (ptrans) = gﬂ%admmc (ptrans) ) (444)
which gives
C(QQM
1 . 1 + CQ M p 1 - 1+02
Lo = g,Uf}]lgadromc (ptrans) < . Q trans S QM . (445)
Q.  Po CQm
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Fig. 4.5: Contour lines of fixed energy per baryon dependent on the strange quark mass
ms and the bag constant B/, The black vertical line on the left indicates the
minimum bag constant for which nonstrange v — d quark matter is unbound.

The schematic form of Eq. 4.43 was already given in the appendix of [7]. However,
in [7] chemical equilibrium was not considered explicitly, as it is done above.

Comparing the bag model description of Eq. 4.41 with the p(u) formulation of the
CSS EOS (Eq. (4.43), it is obvious that these two formulations are equivalent when
v = 1/3. The identifications of the y*-dependent and p-independent terms in the
CSS and bag equations of state lead to

e

T_1T
2 6 u
3

S

Qg —

O

Since we do not assume absolutely stable quark matter the bag constant B has to
be chosen such that the previously described conditions for absolutely stable quark
matter are not fulfilled. Figure 4.5 shows the contour lines of the non-interacting
bag model for fixed energy per baryon dependent on the strange quark mass m, and
the bag constant B'/4. As we will learn below a strange-quark mass of m, = 100
MeV is a reasonable value. From Fig. 4.5 it is clear that in order to not fulfill the
conditions for absolutely stable quark matter (F/A < 939 MeV), the bag constant
should be chosen B/ > 161 MeV in the non-interacting case. If strong interaction
corrections are included this lower limit of B/4 is shifted to smaller values since the
one-gluon-exchange effects inside hadrons are of repulsive nature.
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4.3.3 Bag model for supernova EOS

In this section, we discuss the general case of the model of Farhi and Jaffe [63]
described in Sec. 4.3.2. We use the model presented in [174, 65] and follow closely
the discussion of [65].

As in the 7' = 0 and (-equilibrium, within the more general bag model the pressure
p?, energy density €2, entropy density s? and baryon number density n can be
expressed as follows:

p?=> pi—B (4.47)
@ — Z ¢+ B (4.48)
Q=3s (4.49)
n% = %Zni : (4.50)

The summation index ¢ runs over all present quark flavors. In the case of a non-
interacting bag model, quarks can be treated as non-interacting fermions. The
individual components can be calculated solving the corresponding Fermi integrals
for a given temperature 7', quark chemical potential ;;, and quark mass m;:

. 1 i o0 Eik
PRI (s T ) = =D /O K2k k2 ()X[f<k,m)+f(k,—m)] (4.51)

T 3272 ok
& g, T, i) = 22:2 /000 Ei(k)k*dk x [f (k, pi) + f(k, — )] (4.52)
?On_int(mi, T, /’LZ) — 2.3;2 /OOO kde;[_f(ka Ml)lnf(k7 Ml)
— (1= fky p)In(1 — f(k, i)
— f(k, —pi)In(f(k, —pi))
— (1= f(k, —p))In(L — f(k, —pi))] (4.53)
RO (s T 1) = 23:2 /0 TRk < [f (k) + Fk—p0). (4.54)

The degeneracy factor g; consists of the number of degrees of freedom and is in the
case of the considered quark matter g; = 2¢pin X 3color = 6. The functions f(k, £4;)
are the Fermi distributions with momentum k, the quark Fermi energy F;(k) =
\/m? + k? and the chemical potentials for particles (+;)) and the antiparticles
(—pid:

1

fhy£0) = —mmmm (4.55)
e T 41
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This model can be extended to include interactions of quarks. One way is to
additionally consider first-order corrections for the strong interaction with a strong-
interaction constant «, as for example done in [63]. In this work, we use the
same extension as described in [65]. In the case of massless quarks an analytical
expression for the thermodynamic potentials at finite temperature and finite strong-
interaction constant «; can be derived. Therefore in [65] the pressure for massive
quarks of flavor i is assumed to be:

p’i(mi7T7 Hi,s Ofs) - pi(mi7T7 Hi,y 0) + [p2(07T7 Hi, O[S] - pZ(O7T7 Hi,y 0)]

7 50c 205 (1 4
:pl(thnqu) — T - + 7_(8 <2T2/J’z2+ Ki >]

~ 160 217 472
(4.56)

pi(m;, T, u;, 0) corresponds to Eq. 4.51 and can be numerically solved. From Eq. 4.56,
similar expressions for ¢;, s; and n; can be derived. This procedure is only applied
to strange quarks. In this work, we choose a strange quark mass of ms = 100
MeV which is in accordance with the range ms ~ 70 — 130 MeV and the weighted
average of 105115 of Amsler et al. [9]. Up and down quarks are treated as massless
since their masses are only of the order of a few MeV. Heavier quark flavors are not
included in our model since they are to heavy to appear in conditions of core-collapse
supernovae and neutron stars.

Hybrid EOS

In this section, we describe how hybrid equations of state® are constructed in the
present work. In Sec. 4.4.1 the model for cold hybrid stars is introduced which
will be later used in the parameter scan for a systematic investigation of the phase-
transition parameters. In Sec. 4.4.2 the concepts of constructing a hybrid supernova
equation of state are introduced. These concepts are later used to construct the new
hybrid supernova equation of state “BASQUARK” (see Chapter 6).

Hybrid neutron star EOS

Matter in cold hybrid stars is described under the condition 7" = 0 and is assumed to
be in S-equilibrium. Alford et al. introduced in Ref. [7] a simple model to describe
hybrid stars in a systematic way. We closely follow this modeling, except for one
difference: Alford et al. used the rather soft HLPS and the rather stiff NL3 EOS for
the hadronic part in [7] (respectively BHF and DBHF in [5]), to illustrate its impact
on the hybrid star configurations. Instead, we apply HS(DD2) (respectively BHBA¢®
to study the effect of hyperons) which has a “stiffness” somewhere in between the

>We define hybrid equations of state as equations of state that contain both, hadronic and quark
matter.
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equations of state used by Alford et al.. The quark phase is described by the constant
speed of sound (CSS) EOS as in Ref. [7]. Both phases are connected by the means
of a Maxwell construction [7]. This means that local charge neutrality is assumed
implicitly. It implies pressure, temperature and baryon chemical equilibrium at the
transition point and no phase coexistence region is present in compact stars. In fact,
previous parameter scans did not consider chemical equilibrium explicitly, which
we will discuss further in Sec. 5.5. Pressure equilibrium at the transition pressure
Pirans can be formulated as phadronic — pavark — 4, A direct consequence of the
Maxwell construction is the appearance of a discontinuity in the energy density
Ae = eark _ chadronic a¢ , . For a deconfinement transition from hadronic to
quark matter one has n4™™ > phadronic (with the baryon number density ) and

therefore also eduark > ¢hadronic

The phase transition and the quark EOS depend on three variables: the transition
pressure pians, the speed of sound in quark matter cqy and the value of the dis-
continuity in the energy density Ae. In the present work we fix the speed of sound
to CéM =1/3 and céM = 1 while p¢;ans and Ae are varied systematically. The final
form of the equation of state is written as

6hadronic(p) P S Pirans

6(])) — Ghadronic(ptrans)+ (457)

AE + c(jgi/[ (p - ptrans) D > Ptrans -

This means that py in Eq. (4.30) is fixed by the pressure and energy density of
quark matter at the transition point, piyans and €css(Perans) = €trans + A€, With
€trans — Ehadronic (ptrans): 1€ading to

PO = Ptrans — C(%M(etrans + AE) (458)

Hybrid supernova EOS

We construct an equation of state from the pure hadronic phase described by the
HS(DD2) EOS to the quark phase described by the thermodynamic bag model
explained in Sec. 4.3.3. The construction of the phase transition is done applying the
Gibbs approach described in [78, 65]. This section closely follows these references.

In a Gibbs phase transition, conservation laws are globally fulfilled and the pressure
within the mixed phase is a smooth function of the density. This allows a phase
coexistence of hadron and quark matter in the phase transition region. Like the
Maxwell phase transition, the Gibbs phase transition is of first order. In this work,
finite-size effects and Coulomb contributions are neglected and the phases are treated
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in the thermodynamic limit®. We define % as a globally conserved quantity. The
corresponding chemical potentials are equal in the hadron and the quark phases.
The conditions in the phase coexistence region, considering thermal and mechanical
equilibrium of hadronic and quark matter, are

Thadronic = Tquark (459)
Ml]gadronic = Mzuark (460)
phadronic = pquark ) (4.61)

In the hadronic and the quark phase, the pressures p'@dronic and pdu@k are sums over
all available particles, including electrons and neutrinos. The conditions where quark
matter sets in are generally at high temperatures and densities. This corresponds
to regimes where neutrinos are still fully trapped. At a given lepton fraction Y7,
neutrinos are in weak equilibrium with nuclear matter, electrons, and positrons
(see e.g. [187, 157]). Due to the equality of the chemical potentials of electrons
and neutrinos in the Gibbs approach, their contribution in other thermodynamic
quantities, like the pressure in Eq. 4.61, cancels as a consequence. In [91] it was
shown that if an equation of state is provided for given temperature 7, proton
fraction Y, and baryon density n, neutrino contributions do not have to be taken
into account when constructing a Gibbs or a Maxwell phase transition.

The equilibrium conditions where deconfinement takes place can be expressed as

p<2u+d (4.62)
n<2d+u. (4.63)

These conditions can be used to express the corresponding relations for the up and
down quarks:

Hu = S Hp — S Hn (4.64)

Md = Hn — Mp (4.65)

WlINW| N

1
3
1
3

Weak reactions which produce strangeness (e.g. kaon decays [9]) happen on a
shorter timescale (10~%s) while the dynamical timescales in core-collapse supernova
simulations are on the order of 10~3s. Such reactions should be equilibrated in
nuclear matter. As a consequence, strangeness has either to be already present in
nuclear matter through hyperons (as e.g. in BHBA¢) or has to be produced by a
series of weak interactions in the quark phase. The reaction in the quark phase can
be expressed as

u+du+s (4.66)

5Note that without neglecting the finite-size effects and Coulomb contributions, structures similar to
the know pasta phases in hadronic matter can appear (spheres, rods, plans, ...).
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which leads to
Ms = Kd (4.67)

for the chemical potential of the strange quark. To characterize the mixed phase, the
fraction of quark matter y is introduced:

quark
v (4.68)

X = hadronic quark ’
V +V

with the volume fractions for hadronic and quark matter Vhadronic gnd yavark

respectively. Using x the phase transition region and the pure hadronic and quark
phase can be expressed as

x = 0 hadronic phase , (4.69)
0 < x < 1 mixed phase , (4.70)
x = 1 quark phase . 4.71)

In the mixed phase (0 < x < 1), the baryon number density np, the energy density
¢, and the entropy density s can be calculated as a combination of the hadron and
quark contributions:

ng = (1— X)n}}gadmnic + Xn%uark , (4.72)
€ = (1 _ X)Ehadronic + quuark , (4.73)
s = (1 - X)shadronic + quuark ) (4.74)

The proton fraction Y, is a global quantity within the Gibbs approach. This leads to
the following relation

Y;)TLB — (1 _ X)}/chadronicn%adronic + Xy'cquarkanuark ) (4.75)

In Eq. 4.75 the charge fraction for hadronic matter is denoted by Yladronic —
n,,/nhadronic and for quark matter Yauark — pauark /pduark - quark can be calculated
using the relation
2Ny —ng—n
pauark — Su A s (4.76)
3

Start and end of the phase transition are chosen in such a way that in case of T'=0
and S-equilibrium the phase transition region is close to the the parameters pt ans

and Ae which are evaluated in Sec. 5.

Sagert et al. and Fischer et al. [65, 174, 175] generated several hybrid supernova
equations of state in their papers. Here, we use the same quark interactions as
applied in some of these equations of state. Similar quark-hadron hybrid supernova
equations of state have also been generated by Nakazato et al. [149, 150]. They did
not consider corrections from strong interactions, and therefore obtain maximum
masses only below 2 M. Table 4.3 gives an overview of the already published
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Name B'* «, My.x Explosion Reference

(MeV) (Mo)

B162 162 0 1.56 Yes [174, 65]
B165 165 0 1.50 Yes [174, 65]
B155 155 0.3 1.67 Yes [65]
B139 139 0.7 2.04 No [175, 67]
B145 145 0.7 1.97 No [175]
B209 209 0 1.80 No [149, 150]
B162 162 0 1.54 Yes [150]
B184 184 0 1.36 No [150]

Tab. 4.3: Overview of existing hybrid supernova equations of state and their tests in
spherically symmetric core-collapse supernova simulations simulations. All models
employ m; = 100 MeV.

hybrid supernova equations of state. In all of them, STOS [183, 184, 182] was used
for the hadronic part (see Sec. 4.2.2).
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A Systematic Analysis of Cold
Hybrid Stars

Schreiben ist gut, Denken ist besser. Klugheit ist
gut, Geduld ist besser.

— Hermann Hesse
Siddhartha

In this chapter we present the method and results of our so-called parameter scan
which represents a systematic variation of the phase-transition parameters in hybrid
stars and the calculated mass-radius relations. The results written in Sec. 5.2-5.6
have been published in [87] while Sec. 5.7 contains new additional data.

In order to systematically analyze hybrid stars in regard to the maximum mass
constraint we use the scheme proposed by Alford et al. [7], applying a simplified, but
representative quark equation of state. Four different subclasses of hybrid stars were
introduced in [7] according to the stability of hybrid stars at the onset of quark matter
and/or the existence of a third family' (see discussion in Chapter 3). In a subsequent
work [5], a more detailed analysis was presented and different hadronic equation of
states were applied. Zacchi et al. [216, 217] used the approach of Alford et al. for
comparison of the results obtained with a newly developed SU(3) quark equation
of state. A special emphasis was put on the occurrence of twin stars, which are
pairs of compact stars at equal masses. For the hadronic equation of state, they used
the relativistic mean-field model DD2 [204] as we do in the present study. Alford’s
classification was also applied in a number of other works [32, 172, 6, 8], varying
the hadronic and/or quark equations of state. Similar parameter scans for quark
matter properties were done in [208, 218], where, however, only the maximum
mass but not the type of hybrid star was investigated. In this work, the motivation to
use the parameter scan is different: One of the main motivations is to gather more
insights about the parameter space describing the quark matter equation of state
and the resulting QCD phase transition in the context of core-collapse supernovae.

'Rememember: In the mass-radius (M-R) relation, first family stars are white dwarfs while second
family stars are neutron stars. After a phase of instability a third stable branch can build up, which
consists of hybrid stars [77, 178].
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Numerical setup

In this section we describe the code setup used in the parameter scan. Two pieces
of information are especially relevant when modeling a hybrid star: its maximum
mass and the type of hybrid star. To calculate a single compact star, the Tolman-
Oppenheimer-Volkoff (TOV) equations (Eq. 3.2 and Eq. 3.3) have to be solved for a
given central density (see Sec. 3.2 for more details).

To solve the TOV equations, we developed a sophisticated TOV solver. It is based on
the solver described in [86]. To achieve a good converging and stable code, the TOV
equations are solved using a 4th-order Runge-Kutta scheme. Using this scheme, the
overall accumulated error using a stepsize h is of order O(h*) (see e.g. [168, 59] for
detailed discussion). An initial value problem of the form

v (x) = f(z,v) with y(zo) = vo , (5.1)

is solved numerically. During each step, four intermediate sub-steps are calculated

fo = f(x0,%0)
fi = f(zo+ g,yo + gfo)

L 5 (5.2)
fo = f(xo+ §7y0 + §f1)

fs = f(zo + h,yo + f2) ,

which are then combined to the solution

y(wo + h) Zy($0)+%(fo+2f1+2f2+f3) : (5.3)

As shown in [86], this scheme achieves good convergence in actual simulations. The
maximum mass configuration with fixed transition pressure pa,s and discontinuity
in the energy-density Ae is obtained from the mass-radius relation, where the central
density of the hybrid stars is systematically varied. The detection of the maximum
mass configuration is handled automatically. To achieve better performance, the
integration step size of the solver is adjusted automatically when varying the central
density, assuring that the results fulfill the wished precision. Our TOV solver is able
to automatically classify the calculated mass-radius relations into the four hybrid star
cases as defined by Alford et al. [7]. Additionally, a feature to detect and consider
multiple phase transitions in the TOV calculations is implemented.

To systematically investigate hybrid stars, the phase-transition parameters pi,ans and
Ae have to be varied. Hence, pi.ans and Ae are handled as input parameters in our
TOV solver. The variation of pians and Ae is done via an external routine. This
procedure allows us to run a parameter scan on a small cluster in an embarrassingly
parallel way: On each CPU a TOV solver with one input combination of pi;.,s and
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Mass and Energy Density Profile M-R-Relation

min [M
M [M,,]
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2M, Line

0.0%10" \ L .
0 9 10 11 12 13
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Fig. 5.1: Series of operations executed in a parameter scan: For each combination of a
given central density, transition pressure p..,s and discontinuity in the energy
density Ae the TOV equations are solved to obtain its structure (left panel). To
obtain the maximum mass configuration the central pressure has to varied (panel
in the middle). When also varying the phase transition parameters p;,.,s and Ae
a three-dimensional mass distribution as a function of these two parameters is
obtained (right panel).

Ac is executed. This allows us to calculate several thousands of calculations on the
order of a few hours. As a result a three-dimensional surface plot of the maximum
mass as a function of these two parameters is obtained. Figure 5.1 summarizes this
series of operations executed in a parameter scan.

Parameter scan

In [87], we considered 80 variations of each pgans and Ae, varying pirans from
1 MeV/fm3 (np ~ 0.1 fm~3) to 800 MeV/fm? (np ~ 1.02 fm~3) while using HS(DD2)
EOS. Ptrans also fixes €irans, resulting in values pians/€trans = [0.01,0.55]. A€/€trans
is varied within the range [0,1.3]. In Sec. 5.4 we will also present an extended
parameter scan for HS(DDZ2), covering the range of pians/€trans = [0.01,0.55] and
Ae/é€grans = [0,3]. For BHBA¢ pirans is varied from 1 MeV/fm? to 640 MeV/fm?3,
covering the range of pians/€trans = [0.01,0.41], while Ae/€irans is varied from
[0,1.3].

Figure 5.2 shows contour lines of the maximum mass for our considered range
of parameters. The most important contour line is the 2 M mass line, since all
equations of state have to be able to support this mass. Such heavy compact stars
< 0.02 (case 2)

~

can be reached at pians/€trans = 0.22 (case 1) and pirans/€trans
for any Ae€/€tans. For 0.02 < pirans/€trans S 0.22, A€/€rrans (case 3) is limited
to low values to be compatible with the observational constraint. In case 1, the
hadronic phase is dominant and a mass of 2 M, is reached already in the hadronic
branch. The higher pians/€trans gets, the later the quark phase sets in. At high
values of pirans/€trans, hybrid stars consist almost only of hadronic matter. For
PDtrans/ €trans > 0.47, eventually the transition pressure is above the central pressure
of the heaviest stable hadronic star. For 1ow piyans/€trans (case 2), one obtains an

almost pure quark star with only a thin hadronic layer on top. At the lowest ptrans

5.2 Parameter scan
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Fig. 5.2: Calculated hybrid star configurations, colored to distinguish the four cases A
(absent), B (both), C (connected) and D (disconnected). The lines in blue show
the maximum mass contours for 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, and 2.8 M. The
thick black dashed line shows the analytic criterion from Seidov [180], above
which neutron stars are unstable at the onset of quark matter. Published in [87].

and Ae, extremely high maximum masses of over 3 M, can be reached, well above
the maximum mass of HS(DD2).

The dots in Fig. 5.2 represent all the parameter configurations that have been
calculated. The color coding classifies the resulting M-R relations according to the
four cases of Alford et al. The straight black diagonal line represents the analytical
constraint derived by Seidov in 1971 [180]: A€crit/€trans = 1/2 + 3/2 - Pirans/ €trans-
If Aeis below Ae.,it, hybrid stars are stable at the onset of quark matter. Above the
Seidov line, cases A (green) and D (magenta) are found, below cases C (yellow) and
B (blue). Apparently, pians has to be chosen low enough, to obtain a disconnected
third family branch. Interesting cases for supernova simulations are in the small
region on the left side of the two solar mass line and above the Seidov line. There,
hybrid stars with a third family branch and maximum masses above 2 M, are found.
Furthermore, they correspond to low onset densities of the phase transition between
1 and 2 n% (with n% denoting the nuclear saturation density) which is required to
reach quark matter in a core-collapse supernova simulation, at least for low- and
intermediate-mass progenitors, see [66]. Note that such low transition densities are
compatible with heavy-ion collision experiments, where matter is more symmetric
and strangeness is not in equilibrium, which shifts the phase transition to much
higher densities [65].
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Fig. 5.3: Similar to Fig. 5.2, but with red lines showing the solutions of the bag model from
Eq. (4.41) for varying B with increasing values from left to right, different values
of a; (as indicated in the figure), and m, = 0. Published in [87].

In [5], Alford and Han showed results of a similar parameter scan done also for
the CSS EOS with ¢2 = 1/3, but with the stiff DBHF EOS and the soft BHF EOS for
the hadronic phase, and in [7] for the HLPS and NL3 hadronic EOSs. The general
distribution of the cases found here is the same as in [7] and [5]. The 2 M, curve
from Fig. 5.2 behaves in a similar way as the 1.95 M, line of DBHF in Fig. 5 of [5].
Considering these two references, our results seem to be consistent with Alford et al.
We can state here, that for céM = 1/3, the hadronic phase has little impact on the
distribution of the hybrid stars in the pirans/€trans VS A€/ €trans plot.

Comparing the quark EOS models

As discussed in Sec. 4.3.2, the CSS EOS is not a very common equation of state for
the description of quark matter. However, it was shown that for the case ms; = 0
and the use of a strong interaction parameter o the commonly used bag model
is transferable into the CSS model. Figure 5.3 shows a comparison of the CSS
EOS and the bag EOS used for the description of quark matter. By varying the bag
constant B from lower to higher values (left to right on the red curves) as well as
the o parameter (increasing o, leads to a downward shift of the curves), the whole
parameter space of the CSS model can be reproduced.

More realistic models of quark matter often employ a finite strange quark mass.

A typical value is m; = 100 MeV, which is, as mentioned by Fischer et al. in [65]
in accordance with the range ms; ~ 70 — 130 MeV and the weighted average of

5.3 Comparing the quark EOS models
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Fig. 5.4: Dependency of the speed of sound on the energy density for four different values
of my (0, 100, 200 and 300 MeV), BY/* = 155 MeV and o, = 0.3. The phase-
transition points are indicated with triangles. Published in [87].

105ﬂ:§ MeV of Amsler et al. [9]. Figure 5.4 shows the influence of a finite m on
the speed of sound squared c2. With increasing ms, the speed of sound deviates
significantly from the value of ¢? = 1/3, corresponding to ms = 0 MeV. However, for
mgs = 100 MeV the deviations are still small. The energy densities €;ans + Ac at the
phase transition from hadronic to quark matter are indicated in Fig. 5.4 by triangles.
For ms = 200 and 300 MeV, the strongly deviating part at the beginning is not of
importance, since the phase transition happens at higher energy densities. As visible
in the figure, if the value of the strange quark mass is larger than 100 MeV, it shifts
the phase transition to higher densities, but for ms = 100 MeV the effect is still small.
As a conclusion we can state that with a finite mg the one-to-one correspondence
between the CSS model and the bag model is not true anymore, but nevertheless the
models are still comparable. We have checked that at least for mys = 100 MeV the
induced differences in the M-R relation are small. Only for detailed comparisons,
the exact M-R relations have to be calculated with the strange quark mass taken
into account.

Restricting the bag model parameter space

As summarized in Table 4.3 in Sec. 4.4.2, so far only hybrid equations of state that
have maximum masses below 2 My, were found to lead to explosions in spherically
symmetric core-collapse supernova simulations. In particular, the models B139
and B145, which both have QCD interaction terms and support maximum masses
around 2 M, did not lead to explosions. Currently, these are the only two available
supernova equations of state that include quark matter and support maximum

Chapter 5 A Systematic Analysis of Cold Hybrid Stars
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Fig. 5.5: Parameter scan extended to higher A¢/et,ans and logarithmic scale for pyrans/€trans-
Additionally, the phase transition parameters of the hybrid equations of state of Ta-
ble 4.3 are plotted with yellow squares (explosions found) and green triangles (no
explosions found). Note that the hadronic part of these equations of state is based
on STOS, whereas the results in the figure (maximum mass and classification) are
based on HS(DD2), for details see the main text. Marked with a yellow circle is an
example case whose M-R relation is shown in Fig. 5.6. Published in [87].

neutron stars masses above 2 M. Note that so far only very few progenitors have
been tested in core-collapse supernova simulations of this scenario. A systematic
progenitor exploration is still missing, even for the few existing hybrid supernova
equations of state.

In the following, we use the properties of the existing hybrid supernova equations of
state listed in Table 4.3 to identify interesting regions of the quark matter parameter
space which could be favorable for core-collapse supernova explosions. In these
equations of state STOS is used for the description of hadronic matter and Gibbs’ con-
ditions for phase equilibrium are applied. For the present parameter scan HS(DD2)
and Maxwell’s conditions are used instead, which complicates the comparison. For
the aspects we are mostly interested in the parameters pians/€trans and A€/ €trans
are more relevant than the bag model parameters: the former have a physical
meaning independent on the particular hadronic equations of state that is used, as,
for example, they determine whether or not hybrid stars are stable at the onset of
quark matter (cases A and D vs B and C). Therefore we calculate these parameters
for the STOS EOS and the given bag model parameters mg, B, and «;. As the only
difference to the original hybrid equations of state of Table 4.3, we have to assume
local instead of global charge neutrality to achieve the desired Maxwell transition at

5.4 Restricting the bag model parameter space
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constant pressure. The results are shown by green triangles and yellow squares in
Fig. 5.5. Four of the seven configurations did not lie in the original parameter space
used in Fig. 5.2. For this reason, we expanded the parameter space to A¢/€qrans UP
to 3. Now only B162, with A€/€rans ~ 6.1 and pirans/€trans = 0.005 lies outside the
parameter range considered in the figure. We are also using a logarithmic scale for
Dtrans/ €trans 10 achieve a clearer presentation of the data. Note that the maximum
mass contour lines and Alford classification are still calculated for the HS(DD2) EOS
(as before) so that they are different from the values given in Table 4.3, due to the
procedure described above.

The exploding equations of state B155 and B165 have values just slightly above
PDtrans/€trans = 0.01. B139 has a comparable value of pians/€trans to the ones from
B155 and B165, but differs in the energy discontinuity Ae which is smaller. B145
seems to be rather different: the phase transition happens at very high pians/€trans
and low Ae€/€qrans. B184 and B209 have similar pirans/€trans but higher Ae/eqpans.
These results indicate that a high Ae/€gans and low pirans/€trans are more favorable
for obtaining explosions. Interestingly, these are the conditions that result in a dis-
connected third family. This confirms our expectations presented in the introduction
(see Sec. 3.3.2) and is in agreement with [95], that supernova explosions induced by
a QCD phase transition are related to the existence of a third family. Note that B139
has a disconnected third family but did not explode, indicating that a pronounced
third family is favorable for explosions. It has to be emphasized that the inclusion of
the existing hybrid equation of state in Fig. 5.5 can only serve as a weak guideline
regarding the explodability, because in the simulations a different hadronic equation
of state STOS is used, and global instead of local charge neutrality is assumed.

As already discussed in Sec. 5.2, the 2 M, line in Fig. 5.5 excludes a lot of po-
tential parameter combinations for new supernova equations of state. Only the
“disconnected” cases D in the lower left corner, which have a sufficiently high max-
imum mass, are left as interesting candidates. The other parameter regions with
Max > 2 Mg have either a very low A€/ €qrans Or @ very high pians/€trans, and in any
case do not lead to a third family of compact stars. These results nicely illustrate the
tension between high maximum masses and the possibility of core-collapse super-
nova explosions induced by a strong phase transition, but there is still an interesting
parameter region remaining.

Next we discuss the implications for the bag model formulation of the quark equation
of state. Choosing a; = 0.7 leads to configurations that lie almost on top of the 2 M,
line in the lower left corner, as can be seen by the red dotted line in Fig. 5.5. We
consider this as a lower boundary for a;, to choose. Higher values of a; are allowed,
too, but are constrained to be above the Seidov line if one requires a third family.
Considering a finite strange quark mass of ms = 100 MeV shifts the oy = 0.7 line
slightly to lower Aet,ans Values, as can be seen by comparing with the red dashed

Chapter 5 A Systematic Analysis of Cold Hybrid Stars
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Fig. 5.6: M-R relation of an example hybrid equation of state which might be interesting
for core-collapse supernovae. The quark matter parameters are ms = 100 MéeV,
as = 0.7, and B'/* = 138.5 MeV. Published in [87].

line. However, cases with same bag constants B and interaction parameters s,
but different strange quark masses ms, can lead to big differences in Ae€/€qrans and
€trans/Ptrans Values, which is not visible in the figure.

As an example of what a possible hybrid star configuration might look like, we
chose the configuration m, = 100 MeV, a; = 0.7, and B'/* = 138.5 MeV. The phase
transition properties are shown in Fig. 5.5 by the yellow circle and the mass-radius
relation is shown in Fig. 5.6. The values of the phase transition parameters are
Dtrans/€trans = 0.013 and A€/€gans=0.76. The maximum mass configuration has
Max = 2.05 Mg with R = 11.98 km. For 1.4 M, the hybrid equation of state
leads to a somewhat smaller radius of 12.64 km than HS(DD2) with 13.22 km. The
onset of quark matter in the M-R curve takes place around 22 km, corresponding
to a density of 0.127 fm~3 which is close to n%. Note again, that such a low onset
density in neutron stars is not in disagreement with heavy-ion collision experiments.
For the conditions in heavy-ion collisions (isospin symmetric matter with zero net
strangeness), the onset density at 7' = 0 shifts to much higher values: for the
example case to 0.962 fm—3.

It is important to point out that the third-family feature of the example case is so
weak, that it is almost not visible in Fig. 5.6. Also for the other cases B and C with
stable hybrid stars we found that the characterizing features often are very weak,
and look very different than the prime examples of Fig. 3.1 discussed in Sec. 3.3.1.
However, in [95] it was shown that finite entropies as they occur in the protoneutron
star in a core-collapse supernova can significantly enhance the third-family features
so that they become very pronounced (see discussion in Sec. 3.3.2).

5.4 Restricting the bag model parameter space
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Fig. 5.7: Example case with three phase transitions. The inlay shows a zoom-in of the first
two phase transitions. Published in [87].

Reconfinement and stability of quark matter

In the model used in Sec. 5.2, by construction there is always just one (decon-
finement) phase transition, which goes from hadronic to quark matter. Figure 5.2
shows that in this case masses well above 2 My and even above the maximum
mass of the hadronic HS(DD2) EOS are possible. However, the p(up) relation of
the CSS EOS derived in Eq. 4.43 reveals that more than a single phase transition
can happen. Multiple phase transitions were also found for other hybrid equations
of state; see, e.g., [123, 218, 42, 26]. Figure 5.7 shows an example where three
phase transitions occur. The phase transition in the original setup of the parameter
scan, where the p(up)-relation is not considered, is the one most to the left, with
values pirans/€trans =~ 0.014 and Ae€/€qans = 0.2. For higher chemical potentials,
by construction the CSS quark EOS is always used. From the selected values of
Prrans and Ae and the condition for chemical equilibrium at the transition point (see
Eq. 4.44), the p(up) relation of the CSS EOS is uniquely fixed. By using this relation
as shown in Fig. 5.7, it turns out that quark matter is not the true ground state for
chemical potentials between approximately 987 and 1844 MeV. Instead, at 987 MeV
a reconfinement transition from quark to hadronic matter takes place, and another
deconfinement transition around 1844 MeV. We abbreviate such a series of phase
transitions as HQHQ. The original setup is forced to have only one phase transition
and the other(s) are ignored. Strictly speaking, this leads to thermodynamically un-
stable solutions (violating the second law of thermodynamics), which, however, can
be justified by making additional assumptions. We give a more elaborate assessment
of reconfinement and multiple phase transitions at the end of this section.
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Fig. 5.8: This figure shows the number of phase transitions that occur for given Ae and
Pirans- The yellow dots represent cases with one phase transition (HQ), red dots
with three phase transitions (HQHQ), and grey dots with two phase transitions
(QHQ), where quark matter is absolutely stable. The black dots represent QHQ
cases, where even negative energy densities occur. Published in [87].

Considering the parameter range of Fig. 5.2, we find that there are one, two, or
three phase transitions possible, as shown in Fig. 5.8. The yellow dots in Fig. 5.8
represent the cases where only one phase transition happens. It occurs from hadronic
to quark matter (HQ transition) and therefore does not differ from the transition
points chosen manually in the original parameter scan. The red dots correspond
to cases with three phase transitions (HQHQ), as discussed for Fig. 5.7. The grey
dots describe cases with two phase transitions (QHQ). They differ from the first
two, since quark matter exists also at the lowest densities. At intermediate densities
reconfinement happens, a phase with hadronic matter appears, which disappears
again in a deconfinement transition at higher densities. The resulting compact stars
of QHQ cannot be considered as hybrid stars in a classical sense, but more as quark
stars with a thin hadronic shell somewhere in their interior. In fact, as quark matter
is the ground state at lowest densities, this case corresponds to absolutely stable
strange quark matter. The black dots represent unphysical cases, where, on top of
that, quark matter even has negative energy densities. For these reasons we will not

consider the QHQ cases as viable models for the supernova equation of state in our
hybrid star analysis.

Figure 5.9 shows the parameter scan taking multiple phase transitions into account.

In addition to the color coding used in Fig. 5.2, which distinguishes the type of
hybrid star, A, B, C, and D, red dots show cases with a reconfinement transition

5.5 Reconfinement and stability of quark matter 65
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(HQHQ), and the grey dots cases of QHQ where strange quark matter is absolutely
stable. For such cases with multiple phase transitions, the hybrid-star classification
of Alford cannot be applied.

The maximum mass contour lines up to 2 M, and slightly above lie completely in the
HQ area. Therefore, they correspond exactly to the ones shown in Fig. 5.2. This is
also true for the regions of hybrid star cases A and B. Imposing strict thermodynamic
stability has a strong effect on the maximum masses in the other regions, which
would have been cases D or C otherwise. With strict thermodynamic stability masses
above the maximum mass of the HS(DD2) EOS are not possible anymore in the
lower left corner. For example, for the phase transition parameters which are used
in Fig. 5.7 (Dtrans/€trans =~ 0.014 and Ae/€qans = 0.2) and which are situated in the
three phase transition region, the maximum mass changes from 2.53 M, (HQ) to
2.42 My (HQHQ). QHQ phase transitions on the other hand, with the additional
occurrence of quark matter at low densities taken into account, lead to an increased
maximum mass above the one of HS(DD2). This is due to the dominance of quark
matter in these compact stars, which in fact are almost pure quark stars. The
triangular region in the lower right without points represents the unphysical cases
where negative energy densities would occur, for which the M-R relations are not
calculated. Finally we note that the phase transition parameters extracted for the
hybrid equations of state of Table 4.3, and which are shown in Fig. 5.5, do not lead
to the problem of reconfinement, at least not for the HS(DD2) hadronic equation
of state employed in the present study. The same is true for the phase transition
parameters belonging to the example of Fig. 5.6.

Chamel et al. also discussed the possibility of multiple phase transitions for a few
example equations of state [42]. They observed the same behavior as discussed above
in the HQHQ case: a first phase transition to quark matter, then another one back to
hadronic matter, and finally a last one to quark matter with increasing pressure is
observed. It is also mentioned that the appearance of quark deconfinement in the
strictly thermodynamically stable setup always leads to a lowering of the maximum
mass. In contrast, if only one phase transition is enforced, the maximum mass can
be increased, as we observe too.

Similar results were obtained by Zdunik and Haensel [218]. They showed that
the reconversion of quark matter back to hadronic matter limits the size of the
quark core in their hybrid stars. The resulting maximum mass of the hybrid star has
almost the same value as the neutron star consisting of pure hadronic matter when
thermodynamic stability is taken into account. Only by ignoring reconfinement can
an increased maximum mass be obtained.

The occurrence of reconfinement and multiple phase transitions should probably
not be taken as a physically realistic scenario, but rather as artifacts of the equation
of state models. The purpose of our investigation is just to show for which phase

Chapter 5 A Systematic Analysis of Cold Hybrid Stars



5.6

5.|0 6'.0 _

== Seidov crit. H
| —— Mnax contour | |

A€/ €trans

ptrans/ €trans

Fig. 5.9: Results for the parameter scan taking into account the occurrence of multiple
phase transitions. Red dots show parameter combinations resulting in three phase
transitions (HQHQ), grey in two phase transitions (QHQ) and absolutely stable
strange quark matter. The other points have only one phase transition (HQ), for
which the Alford classification (A, B, C, or D) can be done. The empty triangular
region in the lower right corner corresponds to unphysical equations of state
with negative energy density, for which the M-R relation has not been calculated.
Published in [87].

transition parameters they occur. If several phase transitions are present, this could
be taken as an indication that the quark equation of state parameters are unrealistic.
One can also argue that the hadronic equation of state is not appropriate at high
densities and neither is the quark equation of state at low densities, if one uses a two-
phase approach as in the present study; see also [218, 26]. The hadronic equation
of state model does not account for chiral symmetry restoration and deconfinement,
whereas the quark equation of state model usually does not account for confinement
and the saturation properties of nuclear matter. In [218, 26] it was discussed that
the problem of reconfinement could be cured by taking into account the finite size
of baryons in the hadronic equation of state. From this perspective it is acceptable
to enforce just one phase transition and ignore the others as is done in the original
parameter scans of Fig. 5.2 and [7, 216, 216, 217, 32, 172, 6].

Hyperons

With increasing density, hyperons such as A’s and =~ ’s can appear. To investigate
their effect on the maximum mass of hybrid stars, Fig. 5.10 shows a parameter
scan using the BHBA¢ EOS (see Sec. 4.2.4) for the hadronic part. We remind the

5.6 Hyperons
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Fig. 5.10: As in Fig. 5.2, but including hyperons by using the BHBA¢ EOS instead of
HS(DD2). Published in [87].

reader that BHBA ¢ is an extension of HS(DD2) where only A hyperons have been
added. Thus it is identical to HS(DD2) at low densities and temperatures. For
BHBA¢ we calculate hybrid stars only up to ptrans/€trans =~ 0.4, which is the highest
value available in this EOS table. Comparing Fig. 5.10 with the previous parameter
scan using the nucleonic HS(DD2) EOS shown in Fig. 5.2, we find no qualitative
difference in the distribution of the four different hybrid star cases. Since the A
hyperons appear at around p/e = 0.11 a slight kink in the maximum mass contour
lines is visible there. For phase transitions at lower pressures, the results of Fig. 5.10
are identical to those of Fig. 5.2 because hyperons are not yet present. At higher
phase transition pressures, the maximum masses are generally reduced due to the
presence of hyperons in the hadronic part of the hybrid star. For pians/€trans > 0.34,
the phase transition pressure is above the central pressure of the heaviest stable
hadronic star, so that quark matter does not appear in stable compact stars and the
results are identical to the purely hadronic calculations. We remark that the part of
the parameter space we are interested in (case D at low transition pressures), and
also our example hybrid equation of state used in Fig. 5.6, is not affected from the
presence of hyperons.

As discussed in Sec. 5.5 for HS(DDZ2), strict thermodynamic stability can lead to the
appearance of multiple phase transitions. In Fig. 5.11 we repeat the parameter scan
for BHBA¢ but this time taking into account strict thermodynamic stability. As in
Fig. 5.9 one, two and three phase transitions are possible. The red dots indicate
again the cases with three phase transitions (HQHQ). At low Ae€/€qyans, the region
of three phase transitions expands up to pirans/€trans = 0.125 and appears again at

Chapter 5 A Systematic Analysis of Cold Hybrid Stars
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Fig. 5.11: As in Fig. 5.9, but including hyperons by using the BHBA¢ EOS instead of
HS(DD2). Published in [87].

around Pirans/€trans = 0.22. Compared to Fig. 5.9, this region is shifted to slightly
higher values of pians/€trans- The cases with two phase transitions, represented by
grey dots, appear in two regions: at high pians/€trans, these cases are of the same
type as in Fig. 5.9 (QHQ). These quark stars show again masses well above the
maximum mass of the BHBA¢ EOS. When using the BHBA¢ EOS, an additional two
phase transition region appears at low piyans/€trans- Whereas with the HS(DD2) EOS,
this region was populated by HQHQ cases, now only an HQH sequence of phase
transitions happens. At high densities, the hadronic equation of state including
hyperons remains favored over quark matter. The maximum masses of these cases
are still below the maximum mass of the BHBA¢ EOS, as we observed for the strictly
thermodynamically stable parameter scan for the HS(DD2) EOS. This is similar to
the results of [218]. Without considering reconfinement, it was found that the phase
transition to quark matter can resolve the hyperon puzzle; i.e., it can increase the
too low maximum mass of a hyperonic equation of state to sufficiently high values.
If reconfinement is permitted, the maximum mass of the hybrid equation of state
remains very similar or becomes lower than the one of the hadronic equation of
State.

2 _
Case cfy =

To investigate the effect of an increased speed of sound in quark matter, we set cqm
to the maximum value still consistent with special relativity; C%QM = 1. Figure 5.12

5.7 Case cgy =1
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shows the same set up as presented in Fig. 5.9, but with the adjusted value of the
speed of sound for quark matter to CQQM =1.

The contour lines of the maximum masses in Fig. 5.12 show an overall increase of
the maximum masses when using céM = 1 compared to the ones shown in Fig. 5.9
where C(2QM = 1/3 was used. Especially, the significantly higher values at moderate
to loW pirans/€trans are striking. The important 2 Mg, line is only present in the upper
left quarter of the plot. The number of parameter combinations excluded by the 2
M, constraint has decreased tremendously. The highest masses are reached again at
1oW pirans/€trans and compared to the céM = 1/3 calculations even higher masses are
possible. At the lowest ptyans/€trans and Ae/eqans masses (lower left corner), masses
above 4.8 M, are occurring. Such high mass hybrid star configurations consist of
almost only quark matter and only a very thin layer of hadronic matter on top. They
are only possible due to the additional stiffening of the quark equation of state due
to the extreme cq.

Interesting to note is the effect of a high cqn on the distribution of the four hybrid
star cases, especially on the region containing third family cases: The case D region is
extended to higher pians/€rans- Cases D are now also possible at transition densities
above 3 np/n%. Due to the overall higher masses in the parameter scan, more
cases D fulfill the 2 Mg, constraint compared to the céM = 1/3 parameter scan.
The case B region is expanded as well, not only to higher piyans/€trans but also to
smaller Ae/eqans. In the corner of the case B region values of pirans/€trans = 0.29
and Ae¢/éeqans = 0.31 are reached. With the exception of a small region at around
3 ng /n%, close to the Seidov line, all cases B fulfill the 2 M, constraint. This is
remarkable since with a speed of sound of ¢, = 1/3, this constraint could not be
met at all. Considering the expansion of the case D and B regions, using C(2QM =1
leads to a notably bigger amount of options for third family configurations that
fulfill the 2 My, constraint. Regarding the construction of a possible new supernova
equation of state this increases the possible remarkably. Even though c(QQM =1is
probably an overestimated value, an increased speed of sound above céM =1/3 for
sure leads to interesting new options worth to consider in a more detailed analysis.

Considering strict thermodynamic stability leads again to the appearance of multiple
phase transitions (see Fig. 5.13). Whereas with céM = 1/3 one (HQ), two (QHQ)
and three phase transitions (HQHQ) are possible, using C?QM = 1 only one and two
phase transition cases appear. These two phase transition cases are of a different
kind than the previously observed ones: After a phase transition from hadronic
to quark matter a second phase transition happens back from quark to hadronic
matter (HQH). After this second phase transition no transition back to quark matter
is possible anymore what makes hadronic matter the favored state of matter at high
densities. This is quite surprising since it is generally assumed that quark matter is
the preferred state of matter at high densities. More than half of all the parameter

Chapter 5 A Systematic Analysis of Cold Hybrid Stars
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Fig. 5.12: As in Fig. 5.9, but with the maximum value for the speed of sound in quark
matter of cgy; = 1.

configurations in the considered parameter space are affected by multiple phase
transitions. The region spreads from the lowest pirans/€trans (@nd all A€/€qrans) to
the highest pirans/€trans (@Nd A€/€rans UP t0 A€/€qrans = 0.36).

The appearance of multiple phase transitions generally leads to a lowering of the
maximum masses compared to the cases with only one phase transition and max-
imum masses above the one of the purely hadronic HS(DD2) EOS. While at low
A€/€rans the maximum masses are similar or below the maximum mass of the
HS(DD2) EOS at high A¢/étrans masses above the maximum mass of the HS(DD2)
EOS are possible. Figure 5.14 shows an example M-R curve corresponding to the
values pirans/€trans = 0.018 and Ae€/€gans = 1.27. In an M-R curve like Fig. 5.14,
the central pressure of the plotted configurations increases from the right to the
left in the curve (large to small radii except for the cases where multiple mass
configurations are possible at the same radius). The two magenta crosses in Fig. 5.14
indicate the positions where the phase transitions first occur. To the right of the phase
transition at M = 0.23 My and R = 15.60 km, neutron stars consist only of hadronic
matter. In between the two crosses (second phase transition takes place at M = 2.60
My and R = 12.30 km), quark matter is present in the core of the neutron stars. It
is clearly visible that the second phase transition at the larger neutron star mass
happens to be only slightly below the maximum mass configuration. If the phase
transition would happen at merely higher transition pressures this case would turn
into a one phase transition case (HQ). We can conclude that such high-mass cases
are only possible due to a pronounced quark region which contributes significantly
to the total mass.

5.7 Case cgy =1
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Fig. 5.13: As in Fig. 5.12 but imposing strict thermodynamic stability. This leads again to
the appearance of multiple phase transitions. The dark green dots mark the two
phase transition cases (HQH) which do not appear in the case of C%QM =1/3.
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Fig. 5.14: M-R relation of a two phase transition case where the maximum mass exceeds
the maximum mass of the HS(DD2) EOS. The phase transition parameters are

Dtrans/ €trans = 0.018 and Ae/eyans = 1.27. Indicated with magenta crosses are
the positions where the phase transitions first occur.
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Fig. 5.15: As in Fig. 5.12, but including hyperons by using the BHBA¢ EOS instead of
HS(DD2) EOS.

Only few of the third family cases which do meet the 2 M, constraint are not affected
by the appearance of multiple phase transitions: a narrow band of cases D left and
right of the 2 M, line and a small region of cases B right of the 2 M, line are left.
As a consequence, finding an example case with a low transition pressure, as it was
done using cg; = 1/3, is excluded.

Figure 5.15 shows a parameter scan including hyperons using BHBA¢ using C?QM =1.
Again, the higher speed of sound leads to an increase of the maximum masses. Espe-
cially, at moderate to low pirans/€trans, the mass contour lines very high maximum
masses. Compared to Fig. 5.12 the 2 M, line expands to lower A¢/¢€tans Which
excludes more parameter combinations compared to the calculations using the
HS(DD2) EOS. In this region the transition pressures allow the appearance of hyper-
ons and consequently the equation of state differs from the purely hadronic HS(DD2)
EOS. The regions including third family cases expand to higher pi;ans/€trans COM-
pared to the HS(DD2) calculations. The tail of the cases B even expands to values
of Pirans/€trans = 0.27 and Ae€/€rans = 0.18. For both cases B and D, it is possible
to find parameter configurations which meet the 2 Mg, constraint. In contrast to
Fig. 5.12 it is not possible to find cases D that fulfill the 2 M, constraint right of the
2 M, contour line. However, since hyperons occur at p/e = 0.11 it is possible to find
parameter configurations of cases B and D where at the transition point to quark
matter hyperons are present in the hadronic phase. This is not feasible with a speed
of sound of ¢gy; = 1/3.

5.7 Casecgy =1
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Fig. 5.16: As in Fig. 5.13, but including hyperons by using the BHBA¢ EOS instead of
HS(DD2) EOS.

Figure 5.16 shows the results for BHBA¢ with céM = 1 using a thermodynamically
consistent treatment of the phase transitions. Again, multiple phase transitions in
the form of the two phase transition case (HQH) appear. Similar to Fig. 5.13, the
appearance of multiple phase transitions leads to a lowering of the maximum mass at
moderate to 10W pirans/€trans. As in the HS(DD2) calculations, massive hybrid stars
with masses above the maximum mass of the hadronic equation of state (BHBA¢)
are possible at 1ow pians/€trans and high Ae/eqans. The two phase transition region
spreads over almost the whole py,ans/€trans Tange except for the largest treated values.
At moderate to high pians/€trans the two phase transition region does not expand to
A€/ €rans Values as high as reached in Fig. 5.13. At low pirans/€trans Values the whole
A€/ €eans range consists of two phase transition cases.

Interestingly, using BHBA¢ more third family cases which do meet the 2 M, con-
straint and are not affected by the appearance of multiple phase transitions. Hence,
the reconfinement problem is less severe when using hyperons and céM =1. A
continuous band spreading through the case D and B area is found left and below the
2 Mg, contour line. It is considerably wider than the one found using the HS(DD2)
EOS in Fig. 5.13. Since lower pians/€trans are generally allowed compared to the
by reconfinement unaffected HS(DD2) EOS cases, it might be more interesting to
construct a new hybrid supernova equation of state using BHBA¢ than using only
HS(DD2). As mentioned for the HS(DD2) calculations the céM = 1 value is probably
an overestimation. Nevertheless, constructing a new hybrid supernova equation of
state using BHBA¢ at caM > 1/3 is an interesting option.

Chapter 5 A Systematic Analysis of Cold Hybrid Stars
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BASQUARK - A New Hybrid
Supernova Equation of State

Dass ich erkenne, was die Welt im Innersten
gusammenhdlt.

— aus Goethe’s Faust

In this chapter, the new hybrid supernova equation of state BASQUARK is presented.

In the first section the setup of BASQUARK is discussed in detail. The second section
deals with the implementation of BASQUARK into the spherical supernova code
AGILE-BOLTZTRAN.

BASQUARK

Based on the parameter configuration presented in Chapter 5, Matthias Hempel
calculated the new hybrid supernova equation of state called BASQUARK. In the
following a short summary over the main characteristics is given:

As in the parameter scan (see Chapter 5), the hadronic phase is described by the
state-of-the-art supernova equation of state HS(DD2) [90]. The quark phase is
described by the bag model (see Sec. 4.3.3) using a bag constant of BY/* = 138.5
MeV, a strong-interaction constant as = 0.7, and a strange-quark mass m,; = 100
MeV. The design of the phase transition is based on our best guess parameters
obtained in Sec. 5.4: Ptrans/€trans = 0.013 and Ae€/€rans = 0.76. In BASQUARK
local charge neutrality is assumed. Since we do not assume beta equilibrium as a
condition for our new supernova equation of state, we have to apply a Gibb’s phase
transition construction. This phase transition transforms in the neutron star limit
(T = 0 and beta equilibrium) back to a Maxwell phase transition. BASQUARK uses
the same mesh structure in temperature 7, electron fraction Y, and baryon number
density np as HS(DD2):

* Temperature 7": 81 temperature entries are available which can be calculated
by: 7= 0.1-10°04(~1) MeV with ¢ = 1,...,81. The mesh considers the range
0.1 MeV < T < 158.5 MeV.

e Electron Fraction Y,.: 60 electron fraction entries are available and can be
calculated by Y, = j - 0.01 with j = 1,...,60. The mesh in Y, considers the
range 0.01 <Y, < 0.6.
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* Baryon Number Density np: 326 baryon number density entries are available.
They can be calculated by np = 10712 . 1004+~ fm—3 with k = 1,.. ., 326.
The mesh considers values in the range of 1072 fm™3 < np < 10 fm=3.

Additionally to the BASQUARK-EOS table, a table containing the mass fraction of the
quarks corresponding to the entries of BASQUARK is provided. This table can be used
for detailed analysis of the quark fractions in core-collapse supernova simulations.

As previously mentioned, every constructed equation of state must fulfill the 2 Mg,
constraint [56, 11]. In Fig. 6.1 the dashed magenta line shows the M-R curve
of BASQUARK in beta equilibrium and at temperature 7' = 0.1 MeV'. The blue
line shows the original example case obtained in the parameter scan in Sec. 5.4.
As shown in Fig. 6.1, there is a very good agreement between the M-R curves of
BASQUARK and the example case. The maximum mass configuration of BASQUARK
has Mpy.x = 2.05 Mg with a radius of Ry, ,, = 11.99 km and thus meets the
2 Mg, constraint. For 1.4 Mg the hybrid equation of state leads to a somewhat
smaller radius of 12.63 km than HS(DD2) (red line) with 13.22 km. The yellow 1 o
and orange 2 o area indicate the observational radius constraints from Steiner et
al. [188]. The M-R curve of BASQUARK does cross the observational constraints
between 1 and 1.3 M. For higher masses the BASQUARK EOS is still close to the 2 o
area. The onset of quark matter is marked by the point where the BASQUARK curve
parts from the HS(DD2) M-R curve. As mentioned previously, the parameter set of
BASQUARK is classified as a case D in Alford’s classification scheme [7]. However, it
is important to point out that the third-family feature of BASQUARK is so weak that
it is almost not visible in Fig. 6.1.

Testing BASQUARK with AGILE-BOLTZTRAN

Initial tests with the new BASQUARK EOS are done in spherical symmetry using the
general-relativistic AGILE-BOLTZTRAN code with three-flavor Boltzman neutrino
transport, developed by Liebendorfer et al. [130].

We aim to compare our results with the ones obtained by Sagert et al. [174] and Fis-
cher et al. [65] who first showed the QCD phase-transition induced supernova mech-
anism and discussed it in detail. In both papers, AGILE-BOLTZTRAN was used for the
simulations performed. In a first simulation of BASQUARK in AGILE-BOLTZTRAN,
we use the 15 M, progenitor from Woosley et al. [214]. Both references [174, 65]
use this progenitor amongst others, hence it provides a good opportunity to compare
it with these simulations. We setup our simulation including the innermost 2.03 M,
of the progenitor in the computational domain and distribute it over 140 grid zones.
Three neutrino flavors are treated (v, v. and v, -, ;) using two propagation angles.

!Note, a temperature of 0.1 MeV is negligibly small in comparison to typical Fermi energies in neutron
stars. Hence, it is a sufficient approximation for ideally 7' = 0 MeV.

Chapter 6 BASQUARK - A New Hybrid Supernova Equation of State
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Fig. 6.1: M-R relation of BASQUARK (dashed magenta) and HS(DD2) (red) in beta-
equilibrium and at T = 0.1 MeV. The blue line shows the M-R relation of the

example case presented in Sec. 5.4 with the quark parameters in BASQUARK are
ms = 100 MeV, as = 0.7, and B'/4 = 138.5 MeV.

In the following, we discuss the results obtained in our simulation in detail. We
follow the discussion in [65] and compare our results to the ones present therein.

Appearance of quark matter and dynamic evolution

Figure 6.2 shows the evolution of the central density p. with time. This figure
provides a good overview over different stages of the post-bounce evolution and
shall serve as guideline for the subsequent discussion. A brief summary over the key
events happening in the simulation: After 293 ms simulation time, the simulation
reaches bounce where the central density reaches ppounce = 3.48 - 1014 g/cm?. Up
to 357 ms post bounce, no quark matter is present and therefore the results of the
simulation with BASQUARK correspond to the a run executed with the pure-hadronic
HS(DD2) EOS. At t,;, = 501 ms, the protoneutron starts to collapse. During this
so-called “second collapse” p. increases up to p. = 6.85 - 10'* g/cm?® (t,1, = 504.6
ms). After the second collapse p. stabilizes before decreasing due to the explosion,
as we will see below. The oscillations at around 800 ms post bounce are probably
of numerical origin. They might be an effect of an insufficient treatment of the
neutrinos in context of quark matter. As in the simulations of [174] and [65] we
assumed in our calculations that neutrinos only appear in optically thick regimes
and are therefore in thermal and chemical equilibrium. For this reason, the results
are assumed to be independent of the precise value of the quark-neutrino interaction
rates, and the hadronic weak-interaction rates (e.g. [29]) are used in the quark
phase to derive the hadron chemical potentials from the quark chemical potentials so

6.2 Testing BASQUARK with AGILE-BOLTZTRAN
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Fig. 6.2: Evolution of central density p. of BASQUARK with time for the 15 Mg, progenitor.

that weak equilibrium is obtained (see [174]). It is questionable if this assumption
also hold after the second collapse and for sure needs further investigation.

Figure 6.3 shows a selection of hydrodynamical quantities in their radial profile at
three different times; at bounce (blue), ¢,;, = 101.72 ms (green), and ¢, = 403.2
ms (brown). Quark matter can only be obtained, if the central density and the
temperatures are sufficiently high and the electron fraction low enough. In our
simulation using BASQUARK, the conditions for quark matter at bounce were not
given while the simulations of [65] already showed quark matter at this stage. At
tph = 101.72 ms the shock has stalled. The temperatures behind the shock have risen
and the electron fraction has been lowered. Still, the conditions for the appearance
of quark matter are not met. After another ~ 250 ms of mass accretion onto the
protoneutron star, at ¢, = 357 ms the conditions finally favor the appearance of
quark matter. This leads to another interesting difference between our simulations
and [174, 65]: In our simulation, quark matter appears first off center while in
[174, 65] quark matter always appeared the center of the protoneutron star first:
Figure 6.4 shows the detailed radial profiles of the quark mass fraction at different
times post bounce. Quark matter first appears at around 0.5 My, and spreads faster
outwards to higher masses and more slowly to lower masses. Only after the second
collapse happened quark matter appears in the center of the protoneutron star. At
tpb = 921.54 ms, there is a mixed phase from the center to ~ 0.73 M, followed by a
layer of pure quark matter up to ~ 0.9 M. Up to 1.28 M, the quark mass fraction
lies still above 0.95 followed by a strong decrease up to 1.55 M where no quark
matter is present anymore.

The appearance of quark matter has serious implications on the dynamics of the
protoneutron star. As mentioned above quark matter first appears at t,, = 357
ms. During approximately 150 ms the quark mass increases gradually until the last
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Fig. 6.3: Radial profiles of selected hydrodynamical quantities for the 15 Mg, progenitor at
three different times; at bounce (blue), ¢,, = 101, 72 ms (green), and ¢, = 403.2
ms (brown).

stable configuration of the current protoneutron star is reached at ¢,;, = 501.51 ms.

Ultimately, the protoneutron star starts to collapse. The softening of the equation
of state due to the appearance of the hadron-quark mixed phase leads to a sudden
contraction of the protoneutron star. Figure 6.5 shows a series of hydrodynamical
profiles from the start of the second collapse until the protoneutron star stabilizes
again. In Fig. 6.5a the radial coordinate is the integrated mass while in Fig. 6.5b
the logarithm of the radius is used. The velocity profiles in the upper right panel
of Fig. 6.5b show the sudden contraction of the protoneutron star. The density in

the central region and temperature increase considerably within a few milliseconds.

This change in thermodynamic conditions leads a lower electron fraction Y, due to a
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Fig. 6.4: Radial profiles of quark mass fraction at different times post bounce.

readjustment of the weak equilibrium. The biggest changes in the profiles of these
three quantities are found in the region where density increases by about one order
of magnitude from 10'* to 10'® g/cm?. The collapse is adiabatic as the entropies
stay constant in the collapse region (see entropy panel in Fig. 6.5a). The higher
densities and temperatures as well as the lower electron fraction are now sufficient
conditions to turn a large fraction of the hadronic matter into quark matter. While
the maximum central densities are reached (see second peak in the central density
curve in Fig. 6.2) we can also see a short overshoot of the quark matter fraction up
to almost 1.7 Mg, in Fig. 6.5a. When the inner core stabilizes afterwards, the quark
matter fraction also stabilizes at around 1.5 Mg,. This feature is not mentioned in
[65] but should also be found in their simulations. The rise of the quark matter
fraction to 1, which corresponds to a pure quark phase, leads to stiffening of the
equation of state. As a result, the collapse of the protoneutron star stops and a
second hydrodynamic shock forms at the outer boarder of the hadron-quark mixed
phase. Since the velocities of the outer infalling parts are supersonic, the outer parts
get no information about the central stiffening of the core and the formed shock
wave. Initially this shock front is a pure accretion front without any matter outflow.
Density and temperature increase at the shock front due to the infalling matter as
seen in Fig. 6.5b. The thermal pressure behind the shock front is increasing. When
the densities of the infalling matter become lower, the second shock can finally
detach from the core surface. The shock changes its nature from an accretion shock
to a dynamic, accelerating, outwards-propagating shock wave. The shock further
accelerates due to the strong drop in densities on the order of several orders of
magnitude outside the protoneutron star surface. As in [174, 65], we find velocities
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Fig. 6.6: In the left panel, the green line represents the total mass included in the computa-
tional domain, the red line the total rest mass of the protoneutron star (p > 10'2
g/cm?), and the blue line shows the total mass of the quark matter. The right panel
shows the percentage of quark matter compared to the total protoneutronstar
mass.

above 10° km/s for this outwards moving shock wave. Fischer et al. [65] give
additional information on the nature of the shock wave: Since the infalling matter
onto the shock wave is “already dissociated and composed of only free nucleons and
nuclei” (no heavy nuclei infall in contrast to the first formed shock wave at bounce),
“the shock does not loose energy during the initial propagation. Even more, during
the initial shock expansion neutrino heating still deposits energy behind the shock
wave”[65]. At t,;, = 504.99 ms the second shock wave merges with the standing
accretion front produced at bounce. The energy of the second shock wave is high
enough to continue its outward propagation with velocities still above 10° km/s.
In Fig. 6.5b, the profile of t,;, = 505.62 ms shows an additional newly formed
shock wave at around 11 km. This shock wave is formed due to oscillations of the
protoneutron star which happen right after the second collapse. Such oscillations
might become a source of gravitational waves in multi-dimensional simulations. The
small shock waves later merge with the outwards moving shock wave. This is easily
visible in form of the bumps in the velocity profile at t,, = 505.62 ms behind the
sharp shock front. Fischer et al. [65] also find oscillations of the central densities in
their simulations. However, it is not explicitly mentioned that these oscillations lead
to delayed, weaker shock waves which are sent into the strong shock front, even
though it is visible for example in their Fig. 12. Since the expanding shock wave is
including more and more mass, it slows down with bigger radii but still has high
positive velocities up to several thousand kilometers of radii. We therefore consider
our model to be exploded.

In Fig. 6.6 more detailed information about the total accumulated quark fraction
is shown: The green line in Fig. 6.6a represents the total mass included in the
computational domain and remains constant. The red line represents the rest mass
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Prog. EOS tpb Pe T. Y.
[Mo] [ms] | [10Mg/em?] | [MeV]

15 B162 172 7.523 17.15 | 0.170
15 B165 275 7.586 16.25 | 0.187
15 B155a,0.3 308 5.511 17.67 | 0.197
15 BASQUARK | 501.5 4.226 20.06 | 0.290

Tab. 6.1: Selected central quantities of the protoneutron star at the onset of the second
collapse. The first three rows represent the values given in Tab. 2 in [65]. The
forth row represents the simulation with BASQUARK.

of the protoneutron star. As a density criterion for the protoneutron star we use
p > 10'2 g/cm3. The protoneutron star is formed at bounce and its mass is constantly
increased due to accretion up to the second collapse. As soon as the second shock
wave detaches from the protoneutron star surface, its mass stays almost constant
for the rest of the simulation time. The remaining neutron star has a total baryon
rest mass of 1.75 M. This neutron star mass is about 0.1 M, higher than the ones
obtained with the hybrid equation of state in [174, 65]. Such a high mass neutron

star might be interesting as a candidate for the high mass observations of [56, 11].

If such a neutron star would be born in a binary system, its mass could likely be
increased up to two solar masses by mass accretion. The blue line represents the
total quark mass in the computational domain. After the second collapse, where for
a short period up to 1.25 M, of quarks are present in the protoneutron star, the total
mass of quark matter is around 1.05 M. This corresponds to roughly 60% of the
total mass of the protoneutron star! In the later evolution this value rises up to even
63% of the total protoneutron-star mass.

To compare BASQUARK with the other hybrid equations of state of [174, 65], we

list the information given there in Tab. 6.1 and 6.2, and add our obtained results.

In [174, 65] a different hadronic equation of state (Shen et al. [183]) compared
to BASQUARK has been used. While in [174, 65] several equations of state with
the same hadronic model but different parameters for the quark model could be
compared amongst each other, we are now comparing our model which has a
different hadronic model and different quark parameters to them. We highlight the
main differences in the following:

Comparing the post bounce times where the second collapse sets in, we find that
BASQUARK collapses almost 200 ms later than B155«,0.3. The central density at
collapse is 1.285 - 10'* g/cm?® smaller than the value of B155c,0.3. On the other
hand, the central temperature is almost 3 MeV above the highest temperatures of the
other models. The central Y, is also higher than the other values. The differences are
due to an overlap of the effects of using a different hadronic equation of state and a

quark model with a smaller bag constant and larger strong-interaction correction.
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Pl’Og- EOS MNS Eexpl teol Pmax
Mo [Mo] | [10° erg] | [ms] | [10"°g/cm’]
15 B162 1.608 0.420 175.07 1.487
15 B165 1.641 BH 277.10 15.362
15 B1550,0.3 | 1.674 0.458 312.99 1.342
15 BASQUARK | 1.753 ? 504.62 0.684

Tab. 6.2: Obtained neutron star mass Mysg, explosion energy ..y, time where the second
collapse reached its maximum central density ¢..;, and the maximum central
density pmax. The arrangement of the models is the same as in Tab. 6.1. Model
B165 did not explode but collapsed into a black hole (BH).

Additionally, we remember the reader at this point that the phase transition in
BASQUARK is modeled under the assumption of local charge neutrality while in
the equations of state by Sagert et al. the conservation laws are fulfilled globally.
Once more it should be mentioned at this point that with BASQUARK quark matter
appears off-centered initially while with the other equations of state quark matter
appears first in the center of the protoneutron star.

In Tab. 6.2 some general features about the second collapse and the succeeding
explosion are summarized. Compared to the other equations of state, we do only get
about half the value of the peak central density pm.x. However, the time between
the onset of the collapse and the peak central density is for all models in the
range between 3 and 4 ms (see [65],except for model B155a0.3 which collapses
into a black hole). This collapse feature is very robust and does not vary a lot.
Unfortunately, we were not yet able to calculate the explosion energy for our model.
However, we should be able to do this in the near future. As mentioned above, when
using BASQUARK the remaining neutron star has a baryon mass of 1.753 Mg,. It is
0.08 - 0.15 M, heavier than the ones obtained with the other mentioned models.

Neutrino signal

In the following we discuss the neutrino signal produced in our simulation. The
discussion is, as above, based on the information given in [174, 65].

Figure 6.7 shows the neutrino signal produced for BASQUARK in our AGILE-
BOLTZTRAN run. The blue line represents the luminosity of v., the dashed green
line the luminosity of 7., and the straight red respectively the dashed cyan line the
v, /v, respectively their anti-neutrino luminosities.

Shortly after bounce there is a strong peak in the v, luminosity which has a peak
value of L,, = 1.805-10°3 erg/s at 37 ms post bounce. This burst is produced by the
strong deleptonization processes occurring at bounce. .’s are only produced post
bounce: In the post-bounce phase, a reduced degeneracy allows charged current
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reactions as well as pair processes for positrons as well. At around ¢,,;, = 100 ms, the
v, luminosity almost converged with the v, luminosity. /7 neutrinos are also solely
produced after bounce in pair-processes.

Two processes determine the neutrino luminosities in this post-bounce phase: The
mass accretion and the neutrino diffusion at the neutrino spheres. The small
maximum in the v, and 7, signal at around ¢,;, = 180 ms is caused by the initially
stronger mass accretion. In the v,/v, luminosities we do not find such a peak in the
signal. Up to ¢, = 357 ms, no quark matter is present and the neutrino luminosities
therefore correspond to the ones of the purely hadronic HS(DD2) EOS.

On its way to the neutrino sphere, the second shock wave passes regions with low
Y. produced by the first shock wave. This region consists of formerly dissociated
matter which is now reheated by the second shock wave. The high temperatures
of the passing shock wave allow the creation of new electron-positron pairs. Their
creation is succeeded by positron captures on neutrons which then lead to higher Y.
This is visible as the small peak in the low Y, region (see Fig. 6.5). As soon as the
shock wave passes the protoneutron-star surface, the velocities change to positive
values. Not shown here (but in [65], Fig. 15) is that the degeneracy in front of the
shock wave is reduced while it is increased right after the shock wave compared to
the unshocked state. This leads to smaller Y, in front of the shock wave and larger
Y. right behind the shock wave. We find this behavior in the Y, plot in Fig. 6.5.

At t,;, = 537.9 ms respectively ¢,;, = 540.7 ms we find second peaks in the v, and
v, respectively v,/v, luminosity signal in Fig. 6.7. The peaks are not found in
simulations with pure hadronic matter. They are a consequence of the appearance of
quark matter in the center of the protoneutron star which causes a collapse of it and
the formation of a second shock wave. As soon as the second shock wave passes the
neutrino sphere a second neutrino burst is released. The peaks in the v, and the and
v,/ v, signal are more pronounced than the v, peak. This can be explained by the
production of electron-positron pairs what is favored due to the high temperatures
occurring at the shock front. Since most positrons are captured by neutrons there is a
pronounced peak in the 7, luminosity as a direct consequence. Additionally, electron-
positron annihilation is possible producing neutrino anti-neutrino pairs which explain
the other peaks. The values of the luminosity peaks are: L,, = 4.13 - 1052 erg/s,
Ly, =5.44-10°% erg/s, L,, 5, = 2.55-10° erg/s, and L; 5 = 2.58 - 10> erg/s.

Our results are in good qualitative agreement with the results of [174, 65]. The peak
values of the luminosities are generally lower than in [174, 65]. This is due to the
different microphysical input of the hadronic equation of state (already the bounce
luminosity peak of BASQUARK is less than half as intense as the one obtained with
the Shen EOS) as well as the different values for the phase transition and the quark
model. However, measuring a multi-flavor neutrino signal (see e.g. Dasgupta et
al. [54] for some estimation on the Super-Kamiokande and the IceCube detectors)
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Fig. 6.7: Neutrino luminosities for the different treated neutrino flavors using the 15 Mg,
progenitor and BASQUARK EOS.

might give some serious constraints on the equation of state used. Especially the
information on the delay of the second neutrino burst and its order of magnitude
contains a lot of information on the hadronic and the quark equation of state: In case
the hadronic equation of state is determined and the progenitor star of the event is
known, the conditions for hadron-quark phase transition could be determined.

Ideally, the information from several observables are combined in a so-called multi-
messenger approach: The measurement of the neutrino signal, the gravitational
waves, the electromagnetic signature etc. would provide detailed information of the
processes inside a core-collapse supernova. With this information we would have
critical information to model matter at extreme conditions.

Chapter 6 BASQUARK - A New Hybrid Supernova Equation of State



Conclusions |

What ’s done is done.

— William Shakespeare
Macbeth

The main objective of the first part of this thesis was to systematically explore the
hadron-quark phase transition of cold hybrid stars in order to generate a new hybrid
supernova equation of state. All of the currently existing hybrid supernova equations
of state employ STOS for the description of hadronic matter. STOS is known to
have an unrealistically high symmetry energy. Furthermore, only two of all the
existing hybrid supernova equations of state using STOS are compatible with the
2 Mg constraint. Here, we choose HS(DD2) to describe the hadronic matter which
has good nuclear matter properties. Quark matter is described by a constant speed of
sound (CSS) equation of state with ¢ = 1/3, first. The two equations of state were
combined to a new hybrid equation of state. By systematically varying the phase-
transition pressure and the energy-density discontinuity, we performed a parameter
scan as introduced by Alford et al. [7]. In addition to analyzing the maximum mass,
we also applied Alford’s classification scheme, resulting in four different types of
hybrid stars. Overall, the results look similar as in [7] where different hadronic
equations of state were used: we find the same qualitative distribution of the four
hybrid star categories.

We showed that the simple CSS parametrization for quark matter is equivalent to
the thermodynamic bag model with ms = 0 and an additional term from strong in-
teractions that scales with y*. This identification is quite important for our purposes,
as the CSS parametrization does not provide a temperature and composition depen-
dence required for core-collapse supernova simulations. ms = 0 is not considered as
the most realistic value. For this reason, often m, = 100 MeV is used instead. A finite
strange quark mass induces a nonconstant speed of sound. Therefore, the one-to-one
correspondence between the CSS and the thermodynamic bag model equations of
state does not hold anymore. It also changes the resulting phase-transition param-
eters Pirans/€trans aNd A€/ eqans. However, we showed that for mg, = 100 MeV the
speed of sound shows only little deviation from the fixed value ¢? = 1/3.

In order to get insights about the quark matter parameter regions which are favorable
for core-collapse supernova explosions, we calculated pirans/€trans and A€/ €qrans Of
the already existing hybrid equations of state from Sagert et al. and Nakazato et al.,
and added this information to the results of our parameter scan. The equations of
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state that showed explosions in one-dimensional core-collapse supernova simulations
are all situated in the parameter region that shows a disconnected third family of
compact stars. This supports our initial considerations that third-family features
might play an important role in the core-collapse supernova explosion mechanism
induced by the QCD phase transition; see also [93] for further details.

Regarding the question whether this mechanism can still work despite the 2 My
constraint, the results do not look very promising at first. To form a third family
in cold compact stars, phase transition densities below 2.5 n}, are required. On
the other hand, to reach sufficiently high maximum masses, the energy density
discontinuity has to be rather low, meaning that the phase transition is rather
weak and the third family is not very pronounced. As a consequence, only a small
parameter region remains where one has third families and a maximum masses
above 2 M. From this region we presented the M-R relation of a new hybrid
supernova equation of state, employing the bag model parameters oy = 0.7 and
B'/* = 138.5 MeV. The energy density discontinuity of our example case is lower
than the one of B139 which was not (yet) found to explode. However, we want to
emphasize again that the existing hybrid equations of state have been tested only for
very few progenitor models. It is not excluded that even a slightly more pessimistic
equation of state could still trigger explosions for other progenitors. The effects of
the hadronic equation of state and of local vs. global charge neutrality for the phase
transition also remain to be studied.

Considering hyperons in the hadronic equation of state, using the BHBA¢ EOS,
did not show a qualitative difference in the distribution of the four Alford cases.
Again, only a small parameter region remained which might be interesting for future
supernova equation of state candidates. Since the transition pressures in this region
lie below the pressure where hyperons appear, our proposed example case for a new
hybrid supernova equation of state is affected by the presence of hyperons.

In an another section we discussed the problem of reconfinement. Using the as-
sumption of chemical equilibrium at the transition point, the pressure relation p(up),
depending on the baryon chemical potential, of the CSS EOS can be derived. The
p(pp) relation revealed that multiple phase transitions appear in our considered
range of the parameter scan. Three cases were identified: one (hadron-quark, HQ);
two (quark-hadron-quark, QHQ); or three (hadron-quark-hadron-quark, HQHQ)
phase transitions. The second case corresponds to a special form of absolutely
stable strange quark matter and in the third case, a spurious reconfinement and
subsequent second deconfinement transitions occur. Low pians and small Ae (in
regions which otherwise belong to cases C and D) lead to HQHQ phase transitions,
whereas high pi;ans and low Ae (in regions which otherwise belong to case C) lead to
QHQ phase transitions. For BHBA¢ an additional two-phase-transition case (hadron-
quark-hadron, HQH) at low transition pressures is present. In Sec. 5.5 we discussed
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different options on how to interpret and deal with reconfinement. If it occurs in
a density region where one of the two equations of state is not reliable any more,
it is justified to ignore it. Otherwise it might point to a region of the quark matter
parameter space which is not realistic and should be avoided.

Without considering multiple phase transitions, i.e. ignoring thermodynamic stability
in a strict sense, we found that the hybrid stars can have a maximum mass above
the ones of the purely hadronic equations of state HS(DD2) and BHBA¢. Conversely,
if strict thermodynamic stability is taken into account, this is not possible unless one
has absolutely stable quark matter. Masuda et al. [140, 141] constructed a crossover
phase change by an interpolation between the hadronic and the quark equation of
state instead of using the usual Maxwell or Gibbs construction. In this procedure,
which represents a “manual” manipulation of the equation of state, the maximum
mass can be increased. One can conclude that without further assumptions the
inclusion of quark matter (using ¢ = 1/3) generally leads to a reduction of the
maximum mass. Only by making use of additional assumptions (e.g. crossover
or suppression of reconfinement) the maximum mass can be increased. It would
be interesting to further explore the role of multiple phase transitions for other
hadronic equations of state in the context of the hyperon puzzle (similarly as in
[218]), especially as HS(DD2), and to a smaller extent also BHBA ¢, are particularly
stiff equations of state at high densities.

Works such as [7, 5, 27, 172] have shown that an increase of ¢? above 1/3 leads to
stronger third-family features in the M-R relation and generally higher maximum
masses. A speed of sound above ¢? = 1/3, can be realized, e.g. by introducing
vector interactions; see [21, 217, 172, 115, 116]. To investigate this effect in our
calculations, we set the speed of sound to the largest value still consistent with
special relativity; ¢ = 1. Indeed, our calculations for HS(DD2) and BHBA¢ show a
general increase of the maximum masses. The number of parameter combinations
excluded by the 2 M, neutron star constraint is reduced tremendously. The third
family regions (case B and D) are expanded to higher pians/€trans and the case B
region also to lower A¢/€;ans, compared to the ¢? = 1/3 results. Hence, significantly
more third-family configurations that consider the 2 M, neutron star constraint are
found, what makes this scenario interesting for possible candidates for future hybrid
supernova equation of state that might induce an explosion.

Considering hyperons in the hadronic equation of state leads to a slightly more
restrictive scenario than without them: More third family cases are excluded by
the 2 M, constraint. Compared to the calculations with ¢2 = 1/3 it is possible to
find parameter configurations where hyperons are already present at the onset of
the phase transition to quark matter. This is not the case with a speed of sound of
2 =1/3.
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The consideration of thermodynamic stability in a strict sense again leads to multiple
phase transitions. Two cases were identified: Besides the one phase-transition HQ,
a new two phase transition case (hadron-quark-hadron, HQH) was found. The
occurrence of the latter case, HQH, affects the majority of the phase-transition
configurations when using HS(DD2). Only a small number of possible supernova
equation of state candidates with a third-family feature is not affected. In case
of BHBA¢, the situation is more optimistic and significantly more configurations
are still possible. Therefore, we can conclude that it might be very interesting to
use BHBA¢ in case of ¢ > 1/3 to enlarge the number of possibilities where the
chosen phase transition configuration is not affected by multiple phase transitions.
While the consideration of thermodynamic consistent stability is expected to result
in lowering the maximum mass below the maximum mass of the hadronic equation
of state using ¢ = 1, we still found cases where masses above are possible. A closer
analysis of the M-R curves revealed that such cases are only possible due to the
huge quark fraction in the neutron star. The large c? allows the maximum mass to
be increased.

The detailed analysis of the hadron-quark phase transition in cold hybrid stars lead
to a best-guess configuration for a possible new hybrid supernova equation of state.
Based on these values, we constructed the new hybrid supernova equation of state
BASQUARK and tested it in the spherical supernova code AGILE-BOLTZTRAN. Our
simulation using BASQUARK and a 15 M, progenitor shows an explosion which
confirms the choice of our parameters. BASQUARK represents the first hybrid
supernova equation of state that fulfills the 2 M, neutron star constraint and triggers
the QCD phase transition explosion mechanism. The explosion shows qualitatively
the same features as discussed in [174, 65]. However, while in [174, 65] quark
matter appeared at core-bounce in the center, we find quark matter to appear off-
center sever hundred milliseconds post bounce before spreading to the center. At
the end of our simulation, a heavy neutron star with a mass of ~ 1.75 M, is born
consisting of around 60 % quark matter. So far, a detailed discussion of the equation
of state properties is missing. This will be done in the near future and will contribute
to a better understanding of the simulation results.

We conclude that in case of ¢ = 1/3, suitable parameters for alternative new
hybrid supernova equation of state have to be searched for in a strongly restricted
region of Ae and ptyans, Where a maximum mass of 2 Mg, is obtained and a third-
family feature is found. Additionally, the possibility of multiple phase transitions
also has to be considered. Considering ¢?> > 1/3, the possible parameter space is
enlarged. Additionally, the influence of extra interaction parameters such as as
might be analyzed. It would also be interesting to compare with the high-density
limit of perturbative QCD [120, 119]. BASQUARK is a new supernova equation
of state constructed on the basis of the parameters from the determined example
case which shows an explosion for the 15 My, progenitor. In the near future it has
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to be systematically tested using other progenitors to investigate the effects of the
phase transition. Still an open question is the behavior of hybrid equations of state
in multidimensional simulations, i.e. if and how the QCD phase transition explosion
mechanism is still working. A first step towards the answer of this question is done
in the following chapters.
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8.1

ELEPHANT - An Efficient 3D
Core-Collapse Supernova Code

Success is not final, failure is not fatal, it is the
courage to continue that counts.

— Winston Churchill

In this chapter we give an overview over the code ELEPHANT (Elegant and Efficient
Parallel Hydrodynamics with Approximate Neutrino Transport) used to simulate the
innermost region of a core-collapse supernovae in three dimensions. ELEPHANT
was developed within the Basel group under the leadership of M. Liebendorfer (see
e.g. [113, 129,132,135, 177, 112]).

Overview

The ELEPHANT code actually is a combination of several codes. It consists of a cen-
tral 3D computational domain which is embedded in a larger spherically symmetric
computational domain. In the 3D computational domain, the magnetohydrody-
namical equations are solved using the explicit hydrodynamics code FISH (Fast
and Simple Ideal magneto-Hydrodynamics) [113]. During the collapse phase, the
neutrino electron scattering is effectively taken into account using the parametrized
deleptonization scheme developed by Liebendorfer et al. [129]. The neutrino trans-
port in the post-bounce phase is solved using the IDSA (Isotropic Diffusion Source
Approximation) [135, 22]. A leakage scheme [162] is used to take the energy
loss caused by p/7-neutrinos into account. Gravity is solved using a poisson solver
and general-relativistic corrections are considered using a modified gravitational
potential following Marek et al. [138]. The evolution of the outer layers of the
progenitor (and therefore also providing the boundary conditions of the 3D compu-
tational domain) is handled by the spherically symmetric code AGILE-IDSA [131,
135]. Figure 8.1 summarizes schematically the described code setup.

93



8.2

94

1D
implicit

AGILE-IDSA

+PD+Leakage

3D
explicit
FISH
+IDSA+PD+Leakage

~600-1000 km

~10000 km

Fig. 8.1: Schematic representation of the code set-up used in the ELEPHANT code. The
inner domain of the collapsing star is described in full-3D while the outer layers
are described only in spherical symmetry.

|deal magnetohydrodynamics

Matter in astrophysical scenarios such as core-collapse supernovae can be described
as magnetized fluids. The fluid description is valid when

AL L, 8.1)

holds, where A is the collisional mean free path of the involved particles and L a
scale over which the distribution function varies significantly [147]. The conditions
of Eq. 8.1 are generally met in a core-collapse supernova and therefore the concept
of a fluid element can be introduced. The size of the discrete fluid element should be
large compared to A but still small compared to L. The amount of particles in such a
fluid element is large and therefore it is possible to define mean physical quantities
such as e.g. density and velocity for the fluid element.

The forces between particles have to be of a short-range nature [147]. Since gravity
is a long-range force it has to be included as an external macroscopic force.

A magnetized fluid can be described by the theoretical framework of the so-called
magnetohydrodynamics (MHD) (see e.g. [118, 106]). It is sufficient to describe the
core-collapse supernova matter by the equations of the ideal magnetohydrodynamics
[118]: In this approach, all dissipative processes are neglected and no viscosity and
conductivity! are assumed.

The resistivity of the fluid is so small that the it can be treated as a perfect conductor.
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8.2.1 Magnetohydrodynamical equations

The three-dimensional conservation equations (including gravitational source terms)
which are solved in the hydrodynamical part of ELEPHANT read as follows:

o+ ) =0, (8.2)

E?t + ;%(pij +b; +bj + pdij) = ngi ; (8.3)
o+ B+ = —pug? (8.4

(Y0 + 5o =0, 5.5

G (PYE) + 5 oViny) = 0. (5.6

o (0201 + 5 [Zh] =0, 8.7)
ai i ( gfi ) — 4G (8.8)

The magnetic field is additionally included in the hydrodynamics part by the operator
split evolution of the a magnetic field B; = v/47b;,

Z—?—Vx(vxb):(). 8.9

In Eq. 8.2 - 8.9, t denotes time, z; the spatial coordinate, p the baryonic mass

density, v; the velocity, Y, the electron fraction, and ¢ the gravitational potential.

Temperature 7 is indirectly considered by the specific internal energy e(p, T, Y,) in
the total energy E = pe + pv?/2. The pressure p(p, T, Y.) and the specific internal
energy e(p,T,Y,) are provided via the equation of state. Equations 8.2, 8.3, 8.4, and
8.9, are the ideal MHD equations which conserve the divergence of the magnetic
field, so that the divergence-free condition, V - b = 0, remains true. The ideal MHD
equations are complemented by Eq. 8.5 for the Y, evolution. The trapped electron
neutrino fraction Y;! and a multiple of the neutrino energies (pi,)%z, where 7,
represents the mean neutrino specific energy, are considered in Eq. 8.6 and 8.7 as
part of the IDSA. G is the gravitational constant.

8.2.2 Implementation

Providing a detailed description of how Eq. 8.2 to Eq. 8.9 are implemented in the
code is beyond the scope of this work, as they are thoroughly described in [113,
112, 177]. In the following the methods are coarsely outlined and we refer to more
detailed sources that the reader can examine in case of interest.

2Note that the power 3/4 is introduced to achieve a conservative formulation of the evolution of pZ},.
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The general numerical framework of ELEPHANT is based on the FISH code [113,
112, 177] which is, in turn, based on the algorithm of Pen et al. [160]. In FISH,
the fluid MHD equations (Eq. 8.2,8.3 and 8.4) are rewritten in a very compact form
using a vector of conserved variables u and three flux vectors F, G and H for the x,
y, and z directions, and vector S of source terms:

du OF 0G OH

ou OF 0G  OH 1
ot T ox T oy T oz (8.10)

The vector with the conserved fluid variables is defined as

p
pUg
u= | py, | . (8.11)
pv.
E

The fluxes are given by

pUy
pvy + P — b2
F = pUzVy — byby (8.12)
pUzVz — bgb

| (E+ P)vy —bzb-v

Py
PUyUy — byby
G = pvg + P — bz (8.13)

pUyv; — byb,
| (E+ Ploy —byb-v |

PUz
pUzVg — b2by
H= pvzvy — byby . (8.14)

pv2 + P — b2
| (E+P)v, —b,b-v |

The source term takes into account only gravity and is defined as

0
p0¢/0x
S=| pop/dy | . (8.15)
pOp/0z
pv -V
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In FISH, Eq. 8.10 is solved using a finite volume method (details e.g. in [168]) and
applying operator splitting [113]. The full discussion of the numerical solution can
be found in [113, 112, 177]. In the following, just a few short comments on the
solution of Eq. 8.10:

To solve Eq. 8.10 it is decomposed into an homogeneous and an inhomogeneous
equation:

du OF 9G 0H

du OH _ 1
ot "oz "oy oz (8.16)
du
Mg 1
% (8.17)

Equation 8.16 is solved while keeping the magnetic field constant and interpolating
it between the cells. Additionally, the gravitational source terms are neglected during
this step. Equation 8.17 is solved assuming that the gravitational potential is given
and constant in time for the current iteration. The induction equation (Eq. 8.9)
is evaluated separately while keeping quantities, other than the magnetic field,
constant. To fulfill the physical constraint V - b = 0, in FISH the so-called constrained
transport method of Evans & Hawley [62] is applied.

To couple the IDSA to the hydrodynamics the vectors u, F, G and H can be simply
expanded to:

u= : (8.18)
pYe
Y

| (p2})7 ]

PV
pvg + P — b2
PULVy — byby
pUzVz — bgb
(E+ P)vy —byb-v
VppYe

) (8.19)

v pY,}t
3
'Uz(pZIE)Z

and G and H are expanded in the same way as F following the same strategy.
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8.3 Treatment of general relativity
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In ELEPHANT gravity is considered via the Poisson equation
V3¢ = 4nGp . (8.20)

The Poisson equation is an non-homogeneous, elliptic partial-differential equation of
second order, while the MHD equations are of hyperbolic nature. Whereas the MHD
equations propagate the physical information only at a finite speed in the Poisson
equation information is propagated instantaneously®. This means that, in the case
of the MHD equations, communication takes only place between the treated cell and
its immediate neighbors. In the case of the elliptical Poisson equation, the whole
information of the entire domain must be available.

In ELEPHANT it is possible to choose between four options to calculate gravity: We
can choose between a 1D and a 3D treatment of gravitiy in either a pure Newtonian
approach or with relativistic corrections. In the following, we give a brief overview
over the available options:

* The purely Newtonian spherically symmetric Poisson equation reads as fol-

10/ ,06
i <r287q> = 4w Gp(r) (8.21)

p(r) is obtained from the spherically averaged 3D data. Equation 8.21 is

lows:

easily integrable and it is computationally not expensive. The one dimensional
approach is a good approximation for non- or slowly rotating stars, as long
as centrifugal forces do not produce strong deformations. However, it has
been shown in spherical symmetric core-collapse supernova simulations that
considering full GR results in more compact core radii, smaller shock radii,
and different neutrino luminosities and and rms energies of each occurring
flavor during the shock reheating epoch [30, 133]. GR should therefore not be
neglected in core-collapse supernova simulations.

* Due to the mentioned differences between the full general relativistic potential
and the Newtonian potential, ELEPHANT includes an approximation to the
radial general relativistic effects. To mimic the general relativistic effects,
the Newtonian ¢ is replaced by an effective potential ¢.¢ according to [138,
112]:

oo (7 4 3 1 2 4 4
¢eff :/ 772 <Meff + i (p+pu)> <p0,06p dr , (8.22)

c2 2 pc?

3The equation is non-causal which means the propagation speed of the physical information is not
restricted by the speed of light
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where p is the gas pressure, p the rest mass density, e the internal energy
density, and p, the neutrino pressure. The potential is theoretically motivated
by the TOV solution for spherical general relativistic stars in hydrostatic equi-
librium (see e.g. [181]). For the effective mass Mg, “case A’ of [138, 112] is
implemented

o0 E
Mg = / A (p + 24 2”) Ir2dr (8.23)
0 & C

with E, representing the neutrino energy density. The metric function I is
given by

, (8.24)
where v, is the radial fluid velocity.

* In core-collapse supernovae non-spherical effects, such as e.g. convection, play
an important role. Thus, the Poisson equation (Eq. 8.9) has to be solved in
three dimensions. The Poisson equation in 3D Cartesian coordinates reads

) ”2 9 9
\Y ¢(xa Y, Z) = Wa 8711/27 @ (ﬁ(x,% Z) = 47TGp(.7}, Y, Z) (825)

To solve the Poisson equation efficiently, ELEPHANT uses the HYPRE library*
which is a highly scalable multi-grid solver.

* An effective potential for multi-dimensional flows can be designed according
to [138]

beti (2,9, 2) = (2,y,2) — O(r) + Pesi (1) (8.26)

where ¢(z,v, z) is the 3D Newtonian potential, ¢ the monopole term of the
Newtonian potential, and ¢.g refers to Eq. 8.22. However, in ¢ and ¢.g the
quantities p,e, P,v, F, and p, are replaced by the spherically averaged 3D
quantities.

8.4 Neutrino interactions and transport

The inclusion of neutrino physics into core-collapse supernova simulations is a
crucial ingredient. During the evolution of the collapse and the post-bounce stage,
the vast majority of the released binding energy is converted into neutrinos of all
species. The neutrino interactions play an essential role during the deleptonization
of the protoneutron star and in the subsequent explosion dynamics. Ideally, neutrino
transport should be treated using the full Boltzmann equation to describe the
neutrino distributions and their temporal evolution (see e.g. [143]). The Boltzmann
equation describes the time ¢ evolution of the particle distribution function f(z,v,t)

“*For the latest releases of the HYPRE suite please see: http://computation.llnl.gov/projects/
hypre-scalable-linear-solvers-multigrid-methods.
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with x as the position and v as the velocity. According to [143], the classical
Boltzmann equation in Cartesian coordinates is

()er (2o (Z)-(R), oo

Equation 8.27 describes, in its most general form, a 7-dimensional problem: time and

the 6-dimensional neutrino phase space (3 spatial coordinates, neutrino energy and
two angular degrees of freedom). The numerical solution of this equation results thus
in a very computationally demanding calculation that lies in the sustained exascale,
being nowadays out of reach for current computational resources/infrastructures.
The Boltzmann transport has been routinely implemented in 1-dimensional sim-
ulations (see e.g. [133, 130]) and there have also been approaches to solve the
Boltzmann equation in full 3D (see [191]). Nevertheless, using todays supercom-
puter it is still not possible to effectively implement the solution of the Boltzmann
equation in 3-dimensions without making big trade-offs on other quantities such as
the spatial resolution.

A common set of neutrino interactions used in 1D core-collapse supernova simula-
tions with Boltzmann transport (see e.g. [65]) is listed below.

e +tpE=2n+ e (8.28)

et +n=p+u, (8.29)

e +(A,Z)=2 (A, Z 1)+, (8.30)

v+ N=V+ N (8.31)

v+ (A Zy=2V + (A Z) (8.32)

viet =) et (8.33)

e +et2v+w (8.34)

N+NZN+N+v+vw (8.35)

Ve + Ve & Vyyr + V)7 (8.36)

The key of the denoted variables is as follows: e~ = electrons, e* = positrons, n =

free neutrons, p = free protons, N = free neutrons or protons, (A, Z) = nuclei with
mass number A and charge number Z, v = any type of neutrinos and ~ the respective
antineutrino. For a detailed discussion of these interactions see e.g. [29] and an
illustrative summary see [177]. It has to be noted at this stage that ELEPHANT does
not consider all of these rates, but only a selection: the IDSA currently includes
reactions 8.28, 8.29, 8.31, 8.32, and the ;/7-leakage reaction 8.36. Reactions 8.30
and 8.32 are still based on the old Bruenn rates [29].
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8.4.1 Parametrized deleptonization

As mentioned in Chapter 1, the stellar collapse proceeds by an imbalance between
self-gravitating forces of the inner core and its fluid pressure. While baryons con-
tribute the dominant part to the gravitational mass of the stellar core, the degenerate
electron gas represents the dominant contribution to the pressure. The electron
fraction Y, is, therefore, the most important quantity for the stability of the inner
core and its further evolution. During the collapse, the electron fraction evolves by
electron capture on nuclei (Eq. 8.30) and electron captures on protons (Eq. 8.28).
These reactions lead to a reduction of the electron fraction Y,. These electron
captures during the collapse are called deleptonization. The collapse halts when
matter in the core reaches nuclear density. Compressibility is reduced due to strong
interactions and leads to the core bounce. This generates an outward traveling
pressure wave which turns into a shock wave as it reaches the sonic point at the
edge of the collapsing inner core. The location of this transition determines the size
of the inner core.

The correct treatment of the deleptonization is therefore crucial for the correct
description of the collapse phase in core-collapse supernovae. As mentioned above,
full Boltzmann transport is generally too computationally expensive for multi-
dimensional applications. For this reason, in ELEPHANT, the so-called parametrized
deleptonization scheme is applied [129]. It is a simple and efficient scheme which
relies on a Y, vs. p parametrization. As described in [129], the deleptonization
scheme uses the idea that, during the collapse, the Y,(p,t) profiles depend only
weakly on time in spherical simulations with full Boltzmann transport. For this
reason it is possible to replace the computationally expensive calculation of Y. (p, t)
by a linear interpolation in the logarithmic density of a time-dependent tabulated
template of Y, at the time of bounce, Y, (p) = Y.(p,t = t;), using the interpolation
formula provided in [129]. It is important to fit the Y, as accurately as possible at
the time of bounce, since at that point the final size of the inner core is determined.
Pan et al. [159] also found that the level of electron deleptonization during the
collapse can have dramatic effects on the post-bounce evolution.

The implementation of an electron fraction along the fitted Y, (p) is achieved by

Y. _ min{0, Y (p(t + 8t)) — Ye(t)}
5t 5t ' (8.37)

where the variation is taken at the same fluid element. The minimum function
guarantees that the electron fraction monotonically decreases even in the case of
transient instances in which the parametrized Y, is larger than the actual Y,.

The electron captures during the collapse are not only changing the electron fraction
Y., but also affect the matter entropy and the neutrino stress. Depending on the
matter density and the energy of the produced neutrinos, three cases are possible:
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Case 1: the neutrinos directly escape, case 2: they thermalize and then escape, case
3: they are trapped for a longer timescale than the dynamical timescale. Entropy
has to be modified for case 2, the neutrino pressure and the neutrino stress in all
cases. The corresponding formulas can be found in [129].

As soon as bounce is reached, the parametrized deleptonization scheme is turned off
and the neutrino physics has to be treated with a different scheme to appropriately
treat the later evolution as the parametrized deleptonization scheme cannot describe
the neutrino burst.

IDSA

In ELEPHANT, the neutrino transport equation used in the post-bounce phase is
approximated by the IDSA (Isotropic Diffusion Source Approximation) [135]. The
IDSA is considered a spectral method. We will follow the explanations therein closely
in the following.

The main idea is to decompose the distribution function f, of a given neutrino
species v into an isotropic distribution function of trapped neutrinos f. and a
distribution function of streaming particles f;;, depending if the local zone is opaque
or transparent for neutrinos. The total distribution function is then the sum of the
trapped and the streaming distribution functions f, = fL + f$. It is assumed that
these two components evolve separately. Using a linear operator D describing the
particle propagation, the transport equation can be written as

D(f,=fl+£)=0C,. (8.38)

C, = C! + O3, represents a suitable decomposition of the collision integral according
to the coupling to trapped (C?) or streaming (C?) particle components. The transport
equation Eq. 8.38 can then be split in two equations:

D(f))=C,-%,, (8.39)
D(fy) =C,+%,. (8.40)

¥, represents an additional (coupling) source term which converts trapped particles
into streaming particles and vice versa. It can be determined approximately by the
requirement that a temporal change of f! in Eq. 8.39 has to reproduce the diffusion
limit in the limit of small free mean paths. In [135], X, is therefore named the
“diffusion source”.

The full derivation for the expression of the neutrino distribution function can be
found in [135]. A strict mathematical discussion of the IDSA has been done in [22]
including the discussion of all limiting cases. Below, a short review on the actual
implementation in ELEPHANT is provided closely following [158]. Based on the
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trapped neutrino fraction Y! and the trapped mean neutrino specific energy 7
the neutrino distribution function f! is constructed first, assuming an equilibrium

spectrum for the trapped component. With this information, the diffusion equation

or
cgt = G xo) L — 5 (8.41)

can be solved in three dimensions with the diffusion source

1
s, = min {max o, + G+ )5 [ £0.0] i} (8.42)

where the non-local scalar is

-1
al/:v'( -
3(]V+XV+¢Z/)

v f,ﬁ) . (8.43)

The angular integral of the streaming neutrinos % [ fsdpu,® is provided based on the
value from the previous time step. In Eq. 8.41 - 8.43, j, represents the spectral
neutrino emissivity, x, the neutrino absorptivity, and ¢, includes the isoenergetic
scattering in the mean free path (see e.g. [29]). The non-local diffusion term
a, (Eq. 8.43) is evaluated using an explicit finite differencing scheme. All other
variables are local. In each zone of the computational domain, they are iterated
towards convergence using an implicit Newton-Raphson scheme. Equation 8.41 also
determines the net interaction rates s, = j, — (j, + x)(f! + j5) between matter
and radiation particles. These rates in turn determine the updates of the electron
fraction Y, and the specific energy e

oft . 1
v — z Z:1/ — Uv v)y > ) .
sy = o + (ju + X )Q/fydu (8.44)
Y, my 4me 9
=__ v, — 85 ) E°dE 45
cot p (he)? /(S - 5% (645
Oe _ my 4mc =
81 = g T | (v 2B 849

where m;, is the baryon mass, ¢ the speed of light and & the Planck constant. The
change in the electron fraction Y, (Eq. 8.45) and the specific internal energy e
(Eq. 8.46) are then fed back into j,, x, and ¢, and adjusted until convergence is
reached.

In [135], for the streaming part a stationary-state solution is assumed and observer
corrections are neglected. Using these assumptions, the integration of the net rate
over a sphere with radius R gives a useful approximation for the neutrino number
luminosity 47 R%q, at the surface of the sphere. The streaming neutrino flux reads
then

1 R /1
Qv = W/O (2 /[_(]V + le]f;j + UVM‘M) 47rr2d7“ : (8.47)

> is the momentum space spanned by the angle cosine.
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The spectral neutrino density can then be derived from the neutrino flux by an
analytically estimated flux factor F'(F) and reads

1 s Q

where the estimated flux factor is defined as

) R(E) \’
FE) =1 1= (el )

(8.49)

with R, being the radius of the monochromatic last scattering sphere (also called
the neutrino sphere) that depends on the particle energy E. The spectral neutrino
density from Eq. 8.47 enters the diffusion equation (Eq. 8.41) in the next time
step.

Using the solution of Eq. 8.41, the trapped neutrino fraction Y;! and the trapped
mean neutrino specific energy 7!, are updated by integrating the spectral f! over the
energy E:
oYt  my dme [ OfL o
Y= “E°dE 8.50
ot p (he)3 ) ot ’ (8.50)
0zt my 4me [ OfL

=— E*dE 51
ot p (he)® ) Ot ’ 8.51)
ov 1 pZt
—_—=—— “ . 8.52
ot pv <3mb> ( )

Equation 8.52 describes the contribution of the neutrino pressure on the matter
which leads to an extra momentum.

Finally, it has to be noted that ELEPHANT includes the crucial compressional heating
of the trapped neutrino gas in Eq. 8.7, which in the original Boltzmann equation is an
O(v/c) observer correction. This correction is important to fulfill the hydrodynamical
limit.

In the future, the IDSA could be upgraded including neutrino-electron scattering.
This would make the parametrized deleptonization redundant since the collapse
could also be treated with the IDSA self consistently. However, it would also make
the computations more computationally demanding. Furthermore, the scheme
could be applied to u/7 neutrinos whose spectrum is significantly determined by
non-isoenergetic scattering.

w/T-Leakage

Since p/7 neutrinos (and their respective anti-particles) are not handled within
the IDSA but still play an important role by their effect on the compactness of the
protoneutron star, they are treated separately. The role of such neutrinos is primarily
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8.5

to cool the neutron star. They do not interact with the outer accreting layers after
their emission from the neutrino surface. In ELEPHANT, the energy loss caused by
the 1/7 neutrinos during the collapse and the post-bounce phase is treated using a

so-called spectral 11/7 leakage scheme which is similar to the one used in [162, 161].

The following description closely follows [161].

In the used leakage, 1 and 7 neutrinos (and their antineutrinos) are treated as a
collective species which only act as a source of cooling. Due to the neutral current
reactions, it is assumed that for this type of neutrinos always the same amount of
neutrinos and antineutrinos are produced. The leakage includes the pair production
which is supposed to be the main source of neutrinos

et +e — Vyr + Vyr (8.53)

The production rates are calculated using the interpolating formulas from Itoh
et al. [104]. These formulas give directly the production rate Ry,q using the
thermodynamic conditions specified by matter density p, temperature 7', and electron
fraction Y,

(p, T,Ye) = Rprod - (8.54)

At every point of the grid, the effective emission rate is calculated using a smooth
interpolation between the local production rate and the diffusion rate. The latter
is determined by assuming the ;/7 neutrinos to be an ideal Fermi gas with zero
chemical potential. The diffusion time scale, used to determine the diffusion, can be
found in [161, 162].

Equation of state

To be able to solve the set of equations (Eq. 8.2 - 8.9), an equation of state has
to provide the pressure as well as other quantities as a function of the density p,
temperature T or entropy s, and the electron fraction Y.

Elephant has two built-in interfaces to read tabulated equations of state, such as
described in Sec. 4.2. The first interface supports the format for the equations from
Lattimer and Swesty [125]. The second interface supports the new format “HS” from
the equation of states developed by Matthias Hempel and collaborators® e.g. the
HS(DD2) EOS [96, 69]. In this second part of the work, we focus on the HS(DD2)
EOS (see Sec. 4.2.3) and BASQUARK (see Sec. 4.2.4) which both have the new
format. Presently, an extension to the regions not fulfilling the nuclear statistical
equilibrium (NSE) is missing in ELEPHANT.

®Equations of state calculated by Matthias Hempel using another standardized format are available at
http://phys-merger.physik.unibas.ch/~hempel/
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8.6 Elephant upgrades to support quark matter
simulations

To consider quark matter in ELEPHANT two important upgrades had to be done
compared to the standard version:

* Two independent equations of state: As mentioned above, ELEPHANT con-
sists of a central 3D hydro code and the 1D AGILE-IDSA code which runs in
the background treating the outer layers and providing the outer boundary
conditions of the 3D domain. In the standard version, both domains use the
same equation of state. This treatment leads to a problem when using a hybrid
supernova equation of state: due to the spherical nature of the AGILE-IDSA it
is possible that a collapse of the protoneutron star and an eventual explosion
occurs before this happens in the 3D domain. Since AGILE-IDSA is providing
the boundary conditions of the 3D domain, this is fatal! As soon as the shock
wave in AGILE-IDSA reaches the region from which the boundary of the 3D
domain is updated the boundary is not treated correctly anymore. High en-
tropy material from the shock is fed into the boundary of the 3D domain which
is consequently falling onto the protoneutron star in the central 3D domain
leading to a prompt explosion.

To avoid this problem we run AGILE-IDSA with a purely hadronic equation
of state. Using a hadronic equation of state ultimately leads to a black hole
formation in 1D, but this happens significantly later than the second collapse
would take place in case of using a hybrid equation of state. In this second
part of this work, we want to implement BASQUARK into ELEPHANT. As
mentioned in Sec. 6 the hadronic part of BASQUARK is described by the
HS(DD2) EOS. We therefore use the BASQUARK EOS in the 3D domain and
implement the HS(DD2) EOS in AGILE-IDSA. The boundary conditions should
still be treated correctly since the appearance of quark matter happens in
the central protoneutron star. Since this information cannot go beyond the
standing accretion front the boundary conditions are not influenced.

* Quark routines: In the next chapters, we will need the information about the
quark matter fraction distribution. The quark matter fraction is calculated and
stored during the simulation to be available for later post processing. This is
done by an additionally implemented “quark routine”. The quark mass fraction
is interpolated from a separate table additionally to the normal BASQUARK
table using density p, electron fraction Y, and temperature 7" as an input.
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Fig. 8.2: Illustration of the domain decomposition used in ELEPHANT. The left panel
shows for instance the decomposition of the 3D computational domain into 8
blocks. Each of these blocks is assigned to one distributed memory MPI-task. The
magnetohydrodynamical equations of each block are then solved efficiently using
additional shared memory OpenMP parallelization. The right panel shows the
treatment of the IDSA: an example block is decomposed into further sheets which
are sent to the GPU where OpenACC is used for further parallelization.

Code set-up and parallelization

As mentioned above in Sec. 8.1, ELEPHANT consists of a central 3D computational
domain which is embedded in a larger spherical computational domain. The 3D
computational domain usually consists of ~ 6003 cells with a resolution of 1 — 2
km. Since such a problem size can not be handled with a single CPU anymore
therefore the code is parallelized. The strategy is a domain composition, dividing the
whole 3D computational domain into n rectangular blocks of dimension n,, - n, - n,
(see Fig 8.2a). Each of these blocks is assigned to one MPI-task [71, 80] with
distributed memory and is enclosed by buffer zones to ensure that that the largest
stencil are supported in the boundary zones. Each MPI-task uses additionally shared
memory OpenMP parallelization [52, 44] to solve the magnetohydrodynamical
equations. The solver for the 3D diffusion equation in the IDSA uses the same
domain decomposition and MPI-tasks. For further parallelization the block is sliced
into sheets. The operations on the sheets can either be parallelized by OpenMP or be
sent to a GPU using OpenACC [154]. To ensure efficient data transfer, the zones of a
block are swept from bottom to top sending one sheet after the other (illustrative
representation given in Fig. 8.2b). Using the OpenACC version, a speed-up of a factor
of two can be achieved compared to the version using OpenMP. To handle the input
/ output operations efficiently and ensure portability and scalability ELEPHANT uses
the HDFS5 library [198].

Figure 8.3 shows information about the scaling behavior of ELEPHANT on the Cray
XC30 named Piz Daint at CSCS in Lugano. Only lately, in November/December 2016,

8.7 Code set-up and parallelization

107



1.0

0.8

g 06
v
u
&
w
0.4 | e—e 600°, 64 MPI
a4 600% 512 MPI
e—e 600°, 64 MPI, without I/O and stop/finalize
0.2 | &—a 600% 512 MPI, without I/O and stop/finalize
e @ 150° zones per node
e e 150° zones per node, without I/O and stop/finalize
0.0 I L L I I L
1] 20 40 60 80 100 120 140

Nodes

Fig. 8.3: Scaling behavior of ELEPHANT on the XC30 (name Piz Daint) at Swiss National
Supercomputing Center (CSCS) showing the efficiency against the number of used
nodes. The timing is done post-bounce using 10 hydro steps. The solid lines show
the strong scaling behavior of ELEPHANT using a problem size of 600 cells and
are gauged to 8 nodes. The two colors indicate if the poorly-scaling writing and
stopping routines are considered or not. The dashed lines in blue represent the
weak scaling behavior of ELEPHANT with increasing problem size varying from
1502 to 7502 cells.
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Piz Daint has been upgraded to an Cray XC50/XC40 hybrid machine and a scaling
analysis should now be redone on the new machine. For our analysis we restart the
simulation shortly post bounce using a purely hadronic equation of state. The solid
lines in red and green in Fig. 8.3 show the strong scaling of a fixed problem size of
6003 cells using 1 km resolution which corresponds to a representative production-
size model. We split the domain in 64 and 512 MPI-tasks which results in 1 to 8
MPI-tasks per node. The GPU accelerator is also enabled. Since the problem size
does not fit on 1 node anymore, we start our analysis on 8 nodes (the efficiency is
therefore normalized to 8 nodes). The timing is done for 10 hydro steps. The straight
line in red shows the scaling behavior of ELEPHANT. ELEPHANT does not show a
good scaling behavior at all. However, we realized that determining the timing of
ELEPHANT using only 10 hydro steps differs from the actual production behavior:
The 1D writing routine and the finalization (“comm_mpistop”) do scale poorly and
contribute strongly to the overall time. Since these two routines only play a minor
role during an actual production run, we subtracted their time from the overall
timing. This corrects our results closer to the actual behavior found in a production
run. The result is shown by the solid green line. Based on the efficiency shown in
Fig. 8.3, we can conclude that a run with the size of 600% cells can be efficiently done
on 64 nodes. The dashed lines in blue (with and without the correction of the two
poorly scaling routines) shows the weak scaling of ELEPHANT increasing the overall
problem size. We investigated 150% zones on 1 node, 300 zones on 8 nodes, 6003
zones on 64 nodes and 750° zones on 128 nodes. This setup corresponds to always
1503 zones per node. We gauged the timing results from the problems with size of
3002, 6002 and 7502 cells to the one with 150 cells on one node. We find that it is
possible to enlarge the computational domain or the resolution without sacrificing
efficiency.

8.7 Code set-up and parallelization
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9.1

Restarting a 3D Core-Collapse
Supernova Simulation from a
Spherical Profile

“Everything must be made as simple as possible.
But not simpler.”

— Albert Einstein

This chapter deals with the newly developed spherical restart method. As we will
see in the following chapter, this method has proven to be extremely useful when
testing BASQUARK in ELEPHANT. In this chapter the method is discussed in detail
and tested, using the purely hadronic equation of state HS(DD2) to exclude possible
artifacts from quark matter in the discussion.

Motivation

Simulating core-collapse supernovae in three spatial dimensions is a computationally
very demanding task. As mentioned previously, our code ELEPHANT provides us a
useful and efficient tool to simulate the core-collapse and the following evolution
of the innermost few hundred kilometers of the star. Since the ultimate goal of
this second part of this work is to simulate quark matter and its effects in three-
dimensional core-collapse supernova calculations, simulation times up to several
hundreds of milliseconds post bounce have to be reached. This is computationally
very expensive. A small example shall illustrate the time consumption: Even “low
resolution” simulations, with 2 km resolution in our central 3D computational do-
main, calculates only 35 ms of physical time per 18 hours batch of wall-clock time
(run on 27 nodes on the Cray XC30 “Piz Daint” at CSCS) in the post-bounce phase.
To get to ~ 500 ms post-bounce, where one could expect quark matter, around 15 to
16 batches have to be used. Depending on the occupancy of “Piz Daint”, each one of
these batches can have a queuing time of around three days on average which leaves
us with more than a month to get to the relevant post-bounce time. Furthermore,
since ELEPHANT was never run with a hybrid supernova equation of state before we
completely lack of any experience. Therefore, to test ELEPHANT in this scenario,
a new tool has to be developed to overcome the mentioned long-term simulation
times and be able to set up test cases without wasting vast amount of computational
resources. Besides the expected long simulation times, we are completely unaware
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Fig. 9.1: Diagram illustrating the method of a spherical restart in ELEPHANT.

at this stage of what spatial resolution is needed to correctly treat quark matter in
the core of the protoneutron star. Resolution might become especially important
in the case of a collapse of the protoneutron star. The ability to test resolution at
late post-bounce time is therefore another crucial requirement for future flagship
calculations.

Simulating core-collapse supernovae in spherical symmetry is computationally much
less demanding than a full 3D simulation. Using the time-implicit AGILE-IDSA
code (see Liebendorfer et al. [131, 135]), a simulation can be run up to several
hundreds of milliseconds post-bounce within a few hours, using one single CPU
on a simple desktop computer. Since AGILE-IDSA is also run in the background of
ELEPHANT, providing the boundary conditions of the 3D domain, in principle it
should be possible to map any 1D AGILE-IDSA profile into ELEPHANT and restart
from there. This is what we call the spherical restart method. Figure 9.1 illustrates
the discussed idea of a spherical restart.

Method and implementation

The spherical restart method can coarsely be divided into two parts: The initial
remapping of the spherical profiles into the 3D domain of ELEPHANT and the
subsequent relaxation of ELEPHANT.

Remapping

The spherical profile is extracted from a standard AGILE-IDSA run' at the desired
time post-bounce. The profile should not be chosen during the collapse too close to
core bounce. This is motivated by the fact that ELEPHANT shows problems when
trying to restart (from a three-dimensional restart file) during the collapse and
bounce in full ab-initio runs. Mapping a one-dimensional profile from an external
AGILE-IDSA run into ELEPHANT is done in the following steps (also see Fig. 9.2):

In the following, we will use the term standard AGILE-IDSA for an AGILE-IDSA run that is run
separately and is independent of the ELEPHANT calculations.
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1. In a first step the profile from the standard AGILE-IDSA run is read in and the

data transferred into the background AGILE-IDSA of ELEPHANT. The read-in
quantities are: Rest mass my., radius r, velocity v, gravitational mass mgrav,
density p, temperature T, electron fraction Y., the lapse function «, electron-
neutrino fraction Y, and its anti-neutrino fraction Y;, and the neutrino mean
specific energy Z, respectively the anti-neutrino mean specific energy Z;. With
an equation of state call using the variables p, T, and Y, , the quantities
pressure p, specific energy e, entropy per baryon s, and the speed of sound
¢, are determined. In AGILE-IDSA these variables are defined either on the
cell-edges (a-grid quantities) or on the cell-centers (b-grid quantities):

* a-grid quantities are: Mmyest, 7, v, and mgray-.

* b-grid quantities are all other quantities: p, T, Y, o, Yy, Y3, Z,, Z5, p, €,

s, and cs.

2. AGILE-IDSA uses an adaptive grid what causes the zones to be unequally

spaced. ELEPHANT on the other hand uses an equally spaced 3D grid. For this
reason, in a second step a remapping from the not-equally spaced AGILE-IDSA
array to an equally spaced 1D dummy array is done. This dummy array has half
the length of the 3D ELEPHANT domain and the same equal grid spacing. The
remapping is done using an internal routine which maps the quantities myest,
s, Y., the derived relativistic factor I', Y,,, Y3, Z,, Z;, and v in a conserved
form to the new grid. This ensures that the conservation laws such as; mass,
momentum, charge, and energy conservation, are fulfilled. The new dummy
array does not differ between a-grid and b-grid values. All quantities are
defined cell-centered. The reason for this restructuring is that in ELEPHANT
all quantities are defined in a cell-centered manner. In case cell-edged values
are needed for a calculation, these are calculated and stored only temporarily.

. In a third step, the equally-gridded spherical data, stored in the dummy array,

is mapped in the 3D domain. The values of the cells in the 3D domain are
interpolated from the spherical data using an internal mapping routine. Again
it is ensured that the conservation laws are fulfilled.

The routines to remap AGILE-IDSA values into ELEPHANT and vice versa have
already been implemented in ELEPHANT since they are also crucial for a correct
treatment of the boundary conditions. However, only using the remapping routines
did not lead to successful spherical restarts as we will learn in the following chapters.
Important new concepts and routines had to be developed.

Relaxation scheme

In AGILE-IDSA the innermost zone corresponds to a sphere. However, the b-grid
quantities are only evolved at half of the radius of this innermost cell (cell b2 in
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Fig. 9.2: Illustration of the remapping from the unequally spaced AGILE-IDSA grid to the
equally spaced dummy grid which is then used to distribute the spherical data
into the 3D domain of ELEPHANT. In AGILE-IDSA it is differed between quantities
defined on the cell-edges al, a2, a3, . . . (a-grid quantities) and such defined on
the cell-centers b2, b3, b4, . . . (b-grid quantities). Please note that the centered
values in the center bl correspond to the values of the first cell center b2. b1 is not
evolved separately in the code. In the equally spaced dummy array all quantities
are defined cell-centered (c1, c2, c3, ...).
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Fig. 9.3: Spherically averaged density profiles at the beginning of a spherical restart. The
blue line represents the background AGILE-IDSA data while the red line shows the
spherically averaged data of the 3D domain of ELEPHANT. The circles indicate the
positions of the cells in the code. The offset between the blue line and the red line
is due to the remapping of the zones under the condition of mass conservation.

Fig. 9.2). The values at zero radius correspond to the values of half of the radius
(b1=b2 in Fig. 9.2). Additionally, the adaptive-grid algorithm in AGILE-IDSA usually
chooses this innermost zone to have quite a large radial expansion on the order of
several kilometers. Especially the large radial expansion of the central zone has a
crucial impact on the evolution of the star during the relaxation.

Figure 9.3 shows the innermost region of the radial density profiles of ELEPHANT
after mapping a typical standard AGILE-IDSA profile into it. The blue line shows the
values of the AGILE-IDSA code in the background. In AGILE-IDSA the first zone (the
cells are marked with circles) expands over almost 5 km due to the adaptive grid
alignment. The red line represents the spherically averaged values of the 3D domain
in ELEPHANT. In the plotted example a coarse resolution of 2 km is used in the 3D
domain of ELEPHANT. The remapping shown in Fig. 9.3 is done i.a. requiring mass
conservation. The central pressure in the two profiles remains the same. However,
under the condition of i.a. mass conservation and the change from a non-equally
spaced grid into an equally-spaced one leads to the consequence that the mapped
profile in ELEPHANT is not identical to the original standard AGILE-IDSA profile 2.
Furthermore, this mapped spherical profile does not represent a hydrodynamical
stable state in three dimensions. An obvious feater is e.g. the flat density profile of
the innermost zones. This is an artifact of the large first zone the standard AGILE-
IDSA which is mapped onto several zones of ELEPHANT. As a result, during the
further evolution ELEPHANT tries to adjust its hydrodynamical state until a new
stable state is found. Initial tests showed that this triggers strong artificial shock
waves which lead to an explosion within a few milliseconds. To solve this problem,
we developed a simple but efficient relaxation scheme.

2In Fig. 9.3 the red line is below the blue line. This is not always the case as at larger radii it can also
be vice versa. See e.g. Fig. 9.6.
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Fig. 9.4: Flow chart that illustrates the main calculation steps of the ELEPHANT code. The
orange boxes indicate the positions where routines for the spherical restart are
placed.

The principle is simple: We allow the mapped spherical model in ELEPHANT to adjust
itself to a new three-dimensional hydrodynamical stable state while damping out
all the artificial shock waves that might be triggered during this process. Figure 9.4
shows a flow chart illustrating the main calculation steps executed in the ELEPHANT
code. The orange boxes indicate the routines needed for a successful spherical
restart:

Save Relax Profile: After the read-in of the spherical data, the remapping into
ELEPHANT, and the initialization of the routines in ELEPHANT, a “snapshot” of the
initial velocity profile is saved into an array. For each cell in the three-dimensional
domain we save a reference velocity

vret (2, 7, k) = max(cs(1, 7, k, to) * a,v(i, j, k,to) * b) , 9.1)

where the integers i, j, k indicate the cell indices, t(o the time at the start of the
spherical restart, ¢, the local speed of sound, and v the velocity of the cell. a and b
are real parameters to tune the influence of ¢ and v, respectively.

dt Start Spherical: The actual damping mechanism takes place in the loop illus-
trated in Fig. 9.4. It is usually activated during the first 700 to 1000 iterations.
During the first few iterations a very small time step dt ., is chosen?, well below the
usual time step dtcpr, determined by the CFL-condition [51]. In each iteration the
time step is increased dtmannew = 1.1 * dtman ola Until it reaches the value of dtcyr,

3A typical value to start with is e.g. 1 x 107" s.
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which will be used henceforth. This permits a smooth start of the spherical restart
since the initially chosen time step dtcpr, would be too large and result in bigger

perturbations.

Spherical Relax: The actual damping takes place after each 3D MHD step: The
absolute value of the new velocity in each cell |v(i, 7, k)| at time ¢; is calculated. If
|v(i, 7, k, ti)| > |veet (4, 7, k)| the value is reset to the initial reference value |v(3, j, k, t;)| =
|vret (4, 7, k)|. The idea behind this velocity criterion, dependent on vy, is that small
changes in the velocity during the relaxation are allowed while big velocity changes
(e.g. induced by artificial shocks) are damped back to the initially saved value of
the velocity criterion. We take the absolute value of the velocities to allow both
contracting and expanding adjustments. In the domain of the protoneutron star
matter velocities v are very small. In this domain the speed of sound ¢ is bigger
than than the velocities v. Therefore the first argument of Eq. (9.1) determines
Uref N this regime. In the outer domain (outside of the protoneutron star), where
matter falls in at supersonic velocities, the second argument of Eq. (9.1) determines
vret. The parameters a and b control the strength of the damping. Two conditions
apply: b > 1 (otherwise the in-falling matter would be slowed down) and 0 < a < 1.
Typical values are for example: @ = 0.2 and b = 1.2. A more detailed analysis on the
influence of the parameters a and b on the relaxation behavior is given below.
Using this scheme, small changes in the absolute values of the velocities are still
allowed, but big changes will be damped. Since the criterion is only based on the
absolute value of the velocity, changes in all spatial directions are still possible. This
scheme allows the star to evolve into the new, hydrodynamically stable state without
triggering an artificial explosion due to remapping artifacts.

Results

In this chapter, we provide a detailed analysis of our spherical restart method. We
discuss in detail the different stages of a spherical restart. The results are compared
to a full ELEPHANT simulation executed on Piz Daint. We use the following setup:
As the progenitor we use the s15(W2007) model from Woosley and Heger [211] and
for the equation of state we use HS(DD2) [90], see Sec. 4.2.3. The simulation uses
an initial angular velocity of 2 = 0.3 rad/s (applying a shellular velocity profile)
and a magnetic field according to Heger, Woosley and Spruit [85]. The gravity
uses an effective GR potential according to Marek et al. [138] (see Sec. 8.3). The
parameterized deleptonization scheme [129] used during the collapse phase is fitted
to the s15(2007) progenitor using the AGILE-BOLTZRAN code [130]. We simulate
the 3D domain with 4503 cubes with 2 km resolution, using 27 nodes with GPU
enabled. For this analysis the simulation is run up to 248 ms post-bounce, which
corresponds to 555 ms of total simulation time.

9.3 Results
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To create the spherical profiles with a standard AGILE-IDSA simulation (which are
later mapped into ELEPHANT), we use the same setup regarding the progenitor, equa-
tion of state, and parametrized deleptonization values. Due to the one-dimensional
nature of AGILE-IDSA, we cannot simulate the magnetic field and rotation. For
this reason we do not consider rotation and magnetic fields when doing a spherical
restart with ELEPHANT.

General features - time evolution of the central density

Figures 9.5a and 9.5b show the time evolution of the central density p. of a full
ELEPHANT run (red) (called ELEPHANT-full hereafter) and a standard AGILE-IDSA
run (blue). The main reason for the large difference of the plotted central densities
is due to the different treatment of the central zones. The flattening central density
evolution of ELEPHANT is mostly due to the low resolution, as we have seen in other
higher resolved runs that the evolution becomes not as flat. The red cross marks the
used initial AGILE-IDSA profile at ¢,;, = 166 ms which is mapped into ELEPHANT.
The orange line shows the further evolution of p. in ELEPHANT after the mapping
(called ELEPHANT-SR hereafter).

As shown in Fig. 9.5, p. of ELEPHANT-SR after the relaxation is generally higher
than the corresponding values of ELEPHANT-full. This feature is mainly caused by
the different collapse behavior of ELEPHANT and the standard AGILE-IDSA:

The reason for the different collapse behavior is found in the different grid treatment
(spherical vs. 3D Cartesian gird), the different resolutions used, and the different
treatment of the gravity (full-GR vs. effective potential). As a consequence, as seen
in the p. evolution at same simulation times in Fig. 9.5b, ELEPHANT collapses
28.85 ms earlier than standard AGILE-IDSA. The internal background AGILE-IDSA
avoids this problem by using a feedback routine: Up to bounce after each hydro
step the spherically averaged data of the 3D domain of ELEPHANT is copied into
the background AGILE-IDSA domain. This assures the same collapse history (and
therefore the same bounce time) and assures that the boundary conditions of the
3D domain are treated correctly. As we will see in Sec. 9.3.6, restarting from such
a background AGILE-IDSA profile leads to an extremely good agreement in the
spherically averaged profiles of ELEPHANT-full and ELEPHANT-SR. However, the
standard AGILE-IDSA does not share the same prebounce history with ELEPHANT.
As a consequence, the central density p. of ELEPHANT-SR is different compared
to the ELEPHANT-full profile when performing a spherical restart using such an
AGILE-IDSA profile*.

“Not shown here but important: The standard AGILE-IDSA has higher p. in the postbounce phase
compared to the background AGILE-IDSA. Starting with this higher p. also leads to higher p. in
the ELEPHANT code.

Chapter 9 Restarting a 3D Core-Collapse Supernova Simulation from a Spherical Profile



50-10"

4.0-10"

30-10"

p. g/ cm’]

2.0-10
1.0- 10"

0.0-10°

-0.1

= AGILE-IDSA -
ELEPHANT-FULL
ELEPHANT-SR
‘ J ‘ AGILE-IDSA-SR-START __+
-005 0 005 01 015 02 025 03

tpb [s]

(a) Central density p. vs. post-bounce time ¢y,

50-10"

4.0-10"

3

30-10

p.lg/cm

2.0-10"
1.0- 10"

0.0 - 10°

I I
AGILE-IDSA
ELEPHANT-FULL
ELEPHANT-SR A
- AGILE-IDSA-SR-START __ + K’L/—./
| | J J | |
0 0.1 0.2 0.3 0.4 0.5

tsim [s]

(b) Central density p. vs. total simulation time #g;,

Fig. 9.5: Time evolution of the central density p.. The red line shows a full ELEPHANT
run using 2 km spatial resolution. The blue line shows the data of a standard
AGILE-IDSA run which provides the data for a spherical restart. The red cross
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In Fig. 9.5a the central densities are fixed to equal bounce times. This allows us
to compare the evolution of the hydrodynamical quantities at same post-bounce
times.

Figure 9.5 shall serve as a reference for discussion below. Observing the evolution
of p. with time gives a good overview in what stage of the relaxation and further
evolution the spherically restarted run ELEPHANT-SR is.

Initial profiles - mapping properties

A spherical restart is initialized by mapping a one-dimensional standard AGILE-IDSA
profile into ELEPHANT by using the mapping method described in Sec. 9.2.1. In our
case the mapped initial profile is marked with a red cross in Fig. 9.5. Again, there
are two ways of comparing the mapped data of ELEPHANT-SR to the ELEPHANT-full
data: a comparison at same post-bounce times (¢,;, = 166 ms, see Fig. 9.6) or at
same simulation times (s, = 501 ms, see Fig. 9.7). We start our discussion using
the profiles at the same post-bounce time and indicate later the differences to a
comparison at equal simulation time.

Figure 9.6a shows the spherically averaged values of the density p, velocity v, electron
fraction Y, and entropy per baryon s of ELEPHANT-SR in a radial profile (red dashed
lines), as well as the values of the background AGILE-IDSA (blue dashed lines) after
remapping. The mapped spherically averaged ELEPHANT-SR values lie close to the
original AGILE-IDSA lines. Only small deviations are visible, e.g. in the velocity
profile at the shock front. These are caused by the remapping discussed above. With
an increased resolution such deviations can be reduced. The solid lines indicate the
values of the ELEPHANT-full run. The solid blue lines represent the values of the
background AGILE-IDSA and solid red lines the spherically averaged values of the
3D domain of ELEPHANT-full. It is obvious that in the ELEPHANT-full run the data
of the background AGILE-IDSA and the data from the 3D domain do not coincide.
This is mainly due to the different treatment of gravity in the background AGILE-
IDSA (spherical and full-GR), the different resolution and grid structure, and the
differences due to multidimensional effects in the 3D domain. To give an example:
The shock front of ELEPHANT-full is at a about 20 km larger radius than the one of the
background AGILE-IDSA which can be explained by the development of convection
behind the shock region which only occurs in multidimensional simulations. The
differences between the blue lines of the two background AGILE-IDSA profiles are
due to the above mentioned different bounce times respectively different pre-bounce
history.

Figure 9.6b shows the same quantities as Fig. 9.6a but plotted against the integrated
mass. Again, we find rather small deviations between the initial 1D profiles and
the spherically averaged 3D profiles of the restart. The mass representation does
not resolve the region of the shock front, since the majority of the mass in the
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computational domain is bound in the protoneutron star. However, we find that the
mass is well conserved during the mapping process.

Visible in both Fig. 9.6a and Fig. 9.6b is the large difference in the central Y, between
AGILE-IDSA and ELEPHANT. It is a known problem of the current ELEPHANT code
version that after bounce, the Y, starts to lower what results in too low Y, values
in the post-bounce phase. Most likely this is a diffusion problem but no definite
answer can be provided at this stage. Further investigations towards an answer of
this problem are done currently.

Figure 9.7 shows the same data of ELEPHANT-SR but compared to ELEPHANT-full
at same simulation time. Comparing the data at same simulation time means, that
due to the earlier collapse of ELEPHANT-full compared to the standard AGILE-IDSA
run, the post-bounce evolution of ELEPHANT-full is 28.85 ms later compared to the
analysis at same post-bounce times. As a consequence, the shock front of ELEPHANT-
full is at a slightly bigger radius in Fig. 9.7a. The surprisingly good agreement
between the background AGILE-IDSA profiles in the p, v, and s panels is more a
coincidence of the chosen restart time than a consistent feature that is also found at
other simulation times.

The differences between Fig. 9.6 and Fig. 9.7 are rather small. Comparing the
profiles at same simulation times does not reveal significant differences compared to
the comparison at same post-bounce times. Hence, we will restrict the discussion in
the following to same post-bounce times.

Relaxation |

After the initial mapping of the standard AGILE-IDSA profile into ELEPHANT, the
3D profile has to be relaxed into its new, hydrodynamically-stable 3D state. During
the first 1000 hydro time steps, the damping mechanism described in Sec. 9.2.2
is applied. The upper two panels of Fig. 9.8 show the evolution of the central
density p. with time while using the damping mechanism. In the left panel time is
plotted linearly while in the right panel a logarithmic scale is used to obtain a better
representation of the data during the first iterations. The second row shows the
corresponding total number of zones where the damping mechanism applies (using
the same x-scales in the figures above). In this run we used a = 0.2 and b = 1.2.
As mentioned in Sec. 9.2.2, the innermost zones of ELEPHANT-SR are fitted to the
flat AGILE profile. Running the code, the central density is adjusting itself to higher
pe trying to reach the new hydrodynamically-stable state. Since this stable state is
not reached within a few iterations the central density profile shows several humps
until it converges to a constant p.. The adjustment of p. has serious implications
on the dynamics of the star: it triggers pressure waves which move from the center
outwards. On their way outwards, the pressure waves turn into shock waves which
are then decelerated by the damping mechanism. The number of damped zones
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(b) Radial profiles of density p, velocity v, electron fraction Y,, and entropy
per baryon s plotted against the integrated mass.

Fig. 9.6: Profiles of typical hydrodynamical quantities after mapping a one-dimensional
AGILE-IDSA profile into ELEPHANT. The red lines show the values in ELEPHANT
while the blue lines show the values of the background AGILE-IDSA. The dashed
lines show the ELEPHANT-SR, the solid lines ELEPHANT-full at same post-bounce
time (¢p, = 166 ms). Figure 9.3 shows a zoom-in of the p. panel of Figure a).
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(b) Radial profiles of density p, velocity v, electron fraction Y,, and entropy
per baryon s plotted against the integrated mass.

Fig. 9.7: Profiles of typical hydrodynamical quantities after mapping a one-dimensional
AGILE-IDSA profile into ELEPHANT. The red lines show the values in ELEPHANT
while the blue lines show the values of the background AGILE-IDSA. The dashed
lines show the ELEPHANT-SR, the solid lines ELEPHANT-full at same simulation
time (i, = 501 ms).
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Fig. 9.8: The two upper panels show the evolution of central density p. using a linear x-
scale in the left panel and a logarithmic x-scale in the right panel. The second row
shows the corresponding number of zones which are damped by the mechanism
described in Sec. 9.2.2.

depends on the intensity of the damped shock wave and the position where the
damping takes place. The more off-center the damping takes place the more cells
are affected. The first intense shock waves are decelerated from the core region
all the way to the standing accretion shock. Later, weaker shocks are only damped
when reaching the standing accretion shock region since they are only sensitive to
the velocity criterion that applies in this region.

Figure 9.9 shows the x-y plane slices of the 3D domain of ELEPHANT-SR at different
relaxation times t,..x. The zones plotted in color are affected by the damping
mechanism. The colors indicate the intensity of the damping |v.et|/|v(i, J, k, t;)]-
Values close to 1 represent a small damping (blue colors) while values down to 0.7
indicate a strong damping (green, yellow, and red colors). Figure 9.9a and 9.9b
show slices at t,e1ax = 0.46 ms and ¢,¢1ax = 1.17 ms which correspond to times before
the number of zones peaks in Fig. 9.8. At this stage, strong shock waves are triggered
in the central region of the protoneutron star. Strong damping takes place at the
surface region of the protoneutron star. Figure 9.9c¢ at ¢,c.x = 2.99 ms represents a
profile which is placed in the peak region of the number of damped zones plot in
Fig. 9.8. The shock waves travel outwards and are damped on their way towards

Chapter 9 Restarting a 3D Core-Collapse Supernova Simulation from a Spherical Profile



Velocity damping, t = 0,0004618s Welocity damping, t = 0,0011656s

1 1
100 B X 100 .35
- ' ) .
50 A 0.3 50 e 0.3
s : a s -
= 0 L | 0,55 Z 0 P .
- . r = =
L -
-50 . . 0.8 -50 0.8
-100 0,75 -100 0,75
e 0 =0 0 S0 1o 0.7 e w0 =0 0 B0 1o 0.7
% [kn] % [kn]
(a) (b)
Velocity damping, t = 0,0023938s Velocity damping, t = 0,0052457=
. T T . T 1 . T T . . 1
100 0,95 100 0,95
e TT oy
50 0.9 50 . 0.9
- - 1 ¥
E E i 3
2 0 0,85 2 0 H 0,85
= = ' *
1 ]
-50) 0,8 -5 1 ‘J" 0,8
[ —
-100 0,75 -100 0,75
e 0 =0 0 S0 1o 0.7 e w0 =0 0 B0 1o 0.7
% [kn] % [kn]
(c) (d)

Fig. 9.9: x-y plane slice of the 3D domain of ELEPHANT-SR at different times .1, showing
the zones affected by the damping mechanism. The colors indicate the intensity of
the damping |v,ef|/|v(4, 4, k, t;)|: Blue corresponds to a weak damping while green,
yellow, and red indicate a stronger damping. The white background indicates the
regions not affected by the damping criterion.

the standing accretion front. In Fig. 9.9d at t,c.x = 5.2497 ms, the strongest shock
waves have already been damped out. Weaker shock waves from the core region are
still moving outwards and are damped in the region close to the standing accretion
front.

After 10 to 15 ms, the time evolution of the central density has flattened and the
number of damped zones has reduced to a vanishingly small number compared to
the total number of cells of the computational domain (see Fig. 9.8). At this time,
the damping mechanism can be switched off and the star can be evolved freely.
Figure 9.10 shows the radial profiles after a relaxation time of t,,.x = 13.48 ms.
From this time on, we run the code without the damping mechanism (see Sec. 9.3.4).
In the following, we discuss the results of this first relaxation step in more detail.

The density profile in Fig. 9.10a shows a good agreement between ELEPHANT-SR and
ELEPHANT-full down to densities of around 5 - 10'? g/cm?, respectively a radius of
25 km. Up to 25 km radius, we also find good agreement in the velocity and entropy
profiles, only the electron fraction in the core region is well above the ELEPHANT-full
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Fig. 9.10: Profiles of typical hydrodynamical quantities after a relaxation time of ¢,cjax =
13.48 ms. The red lines show the values in ELEPHANT while the blue lines
show the values of the background AGILE-IDSA. The dashed lines show the
ELEPHANT-SR, the solid lines ELEPHANT-full at post-bounce time (¢,, = 179
ms).
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run. We can conclude that the dense part of the protoneutron star expanded into a
new, hydrodynamical-stable configuration which is very similar to the one obtained
by in the ELEPHANT-full run. In the region between 25 km and approximately
90 km (position of the standing accretion shock of ELEPHANT-SR), the profiles of
ELEPHANT-SR moved towards the ELEPHANT-full profiles but did not converge
yet. We still find a gap of roughly 25 km between the standing accretion front of
ELEPHANT-SR and the one of ELEPHANT-full. This is due to the convection that is
present in ELEPHANT-full but is still underdeveloped in ELEPHANT-SR. Examining
the profiles depending on the integrated mass (shown in Fig. 9.10b) we also find
convergence of the ELEPHANT-SR towards the ELEPHANT-full profiles. The density
profile of ELEPHANT-SR shows a similar shape as the one of ELEPHANT-full but
generally shows slightly higher densities. As mentioned above, this is an artifact of
the initial profile of the standard AGILE-IDSA run which leads to a slightly more
compact hydrodynamical-stable state compared to the ELEPHANT-full run.

Compared to Fig. 9.6b the humps in the Y, and s profiles at around 0.8 Mg, have
diminished in Fig. 9.10b in the Y, panels. These humps in Fig. 9.6b were a relict of
the core bounce. In spherical simulations this feature is mostly conserved due to
the missing prompt convection which is occurring in multi-dimensional simulations.
During this relaxation phase, we observe a similar prompt convection as known
after core bounce. This results in a smoothed Y. and s profile. Even tough the
Y. profile of ELEPHANT-SR has smoothed, it is still systematically higher than its
counterpart of ELEPHANT-full. With the ongoing evolution this difference will shrink
further. Again this is caused by the the suspected diffusive problem of the “too low Y,
problem” mention previously. Nevertheless, the agreements of the density, velocity,
and entropy profiles are remarkably good.

Relaxation Il

After the damping mechanism is turned off, the 3D domain of ELEPHANT-SR can
evolve naturally. In the high-entropy regions around the protoneutron star convection
starts to build up. This leads to a slight reduction of the central density since the
developing convection expands the high-entropy region and pushes the shock front
outwards (barely visible in Fig. 9.5). Later, the central density increases again due
to the ongoing accretion. Figure 9.11 shows the volume-rendered entropy profile in
3D after a total run time of 55.1 ms since the beginning of the spherical restart. The
purple sphere in the center represents the protoneutron star and the blue layer on the
outside, the shock front. The brown to yellow colors represent the entropies between
14.5 and 17.9 kg/baryon. It is clearly visible that between the protoneutron star
surface and the shock front the entropy profile is not smooth anymore. Convection
leads to mixing and the bubble-like features in Fig. 9.11. However, the overall profile
still shows some spherical features (e.g. symmetry of bubbles, almost spherical shock
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Fig. 9.11: Volume-rendered entropy profile of ELEPHANT-SR after 55.1 ms simulation time.
The almost covered purple sphere in the center represents the protoneutronstar.
The outer layer in blue represents the shock front. The surfaces with the colors
from brown to yellow represent the entropy bubbles which are formed due to
convection.

front). These spherical relict will diminish with time due to stronger convection and

the ongoing mixing.

Figure 9.12 shows the profiles of ELEPHANT-SR and ELEPHANT-full at ¢}, ~ 220 ms
(54 ms after the spherical restart). Comparing the radial profiles from Fig. 9.12a with
the ones at the end of the first relaxation stage in Fig. 9.10, we find an even better
agreement between the dashed red lines of ELEPHANT-SR and the solid red lines of
ELEPHANT-full in all of the four subplots. The main reason for this improvement is
the convection that pushes the shock front of ELEPHANT-SR to a larger radius, closer
to the one from ELEPHANT-full. As shown in Fig. 9.12b the profiles of the inner part
of ELEPHANT-SR do not converge significantly closer to the ones of ELEPHANT-full.
The differences between the ELEPHANT profiles shown in Fig. 9.12b and Fig. 9.10b
are rather small. The adjustment of the protoneutron star configuration took already
place at during the “damping stage” of the spherical restart and does not change
severely afterwards.

In summary we can state that the profiles of ELEPHANT-SR are well comparable to
the profile of ELEPHANT-full after 55 ms of relaxation time.
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Fig. 9.12: Profiles of typical hydrodynamical quantities after mapping a one-dimensional
AGILE-IDSA profile into ELEPHANT. The red lines show the values in ELEPHANT
while the blue lines show the values of the background AGILE-IDSA. The dashed
lines show the ELEPHANT-SR, the solid lines ELEPHANT-full at same post-bounce
time (t,, = 220 ms).
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Variation of relaxation parameters

In the preceding discussion of the relaxation method the two free parameters of
damping criterion (Eq. 9.1) were chosen as a = 0.2 and b = 1.2. In this short section
other parameter combinations are tested and their effect on the damping mechanism
is shown. From these results we are able to justify why our previously used values
are in general a good choice.

In the following we focus our discussion on stronger damping values which might
shorten the period where the damping mechanism is applied. We choose three
additional combinations of a and b to illustrate possible effects on the damping
mechanism: ¢ = 0.2and b =1.1,a =0.1and b = 1.2, and a = 0.1 and b = 1.1.
Figure 9.13 shows the same quantities as Fig. 9.8 but with the extra three sets of
parameters. The initially discussed set of parameter (¢ = 0.2 and b = 1.2) is shown
in brown color.

Case a = 0.2 and b = 1.1 is shown in yellow. Reducing b to lower values means
setting a stronger constraint on the velocity criterion in Eq. 9.1. This criterion acts
mainly in the low-density regions. The maximum density evolution shows almost
the exact same behavior as case a = 0.2, b = 1.2. Considering the number-of-
damped-zones plots (lower panels in Fig. 9.13), the same behavior as case a = 0.2,
b = 1.2 is found but shifted to slightly higher numbers of damped zones. This is due
to a stronger damping in the shock-front region where the velocity criterion acts
dominantly. The peaks are at the same position since the speed-of-sound parameter
a is left unchanged. Hence, the damping behavior in the central high-density regimes
remains the same. The behavior of the maximum density of case a = 0.2 and b = 1.1
does not show differences to case a = 0.2, b = 1.2. The stable state seems to be
reached at the same time.

Cases ¢ = 0.1, b = 1.2 (cyan lines) and a = 0.1, b = 1.1 (dark-blue lines) both
have a lower a-parameter value which corresponds to a stronger constraint on
the speed-of-sound criterion in Eq. 9.1. In the maximum-density profiles a sightly
smoother behavior is visible between approximately 1 and 5 ms compared to the
simulations with a = 0.2. Especially the third bump of p,.x is almost inexistent.
The reason for this behavior is found in the stronger damping of the central region.
Up to around 5 ms a similar trend of between the lines with ¢« = 0.1 and a = 0.2
is found in the number of damped zones plots. Afterwards, the lines with a = 0.1
diverge significantly from the lines with « = 0.2. Figure 9.14 shows the p., v,
Y., and s profiles of different ELEPHANT-SR and its background AGILE-IDSA at
different relaxation times: The dashed lines correspond to the case a = 0.1, b = 1.2
at tyeax = 0 ms, the solid lines to the same case but at tyq.x = 15.66 ms and the
dotted lines to case a = 0.2, b = 1.2 at same tyq., = 15.66 ms. In all of the four
panels, case a = 0.1, b = 1.2 and a = 0.2, b = 1.2 at tyax = 15.66 ms have almost
identical profiles up to approximately 50 km radius. This nice agreement corresponds
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Fig. 9.13: Asin Fig. 9.8, but for three additional combinations of a and b. The initial set
used above (a = 0.2, b = 1.2) is shown in brown.

to densities above 10'° g/cm3. In this region, both values of a are able to relax
the protoneutron star efficiently that results in the good agreement. The situation
changes at lower densities respectively in the region between roughly 60 and 80
km radius. Case a = 0.2, b = 1.2 was able to evolve the system in a correct manner:
The shock front was pushed around 10 km further outwards while all of the four
quantities did not indicate any inconsistencies. Contrarily, with a value of a = 0.1
the shock front is fixed at the same position as it was at the initial restart. The
density is lowered as well as the velocity. The biggest difference is visible in the
entropy profile where the high-entropy region has been lowered significantly. This
behavior is clearly not physical. It is caused by a too intense damping: In this region
the speed-of-sound criterion of Eq. 9.1 is still dominant and using a = 0.1 is too
strict to allow this region evolve naturally. The region is damped too strong, the
entropy reduces and the shock front can not evolve to the place it belongs. The
continuous damping of this region causes the large number of damped zones in
Fig. 9.13. This problem of “overdamping” could be solved by continuously changing
a towards a = 0.2 after about 6 ms of relaxation.
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Fig. 9.14: Radial profiles (of the quantities p., v, Y. and s) of the 3D-domain of ELEPHANT-
SR for case a = 0.1, b = 1.2 at the moment of the spherical restart (red-dashed
line) and after a relaxation time of t,q.x = 15.66 ms (solid-red line). The red-

doted line indicates the profiles of case a = 0.2, b = 1.2 at same t;cj.x. The blue
lines represent the values of the background AGILE-IDSA.

In the case of a > 0.2 the damping in the high density regions is reduced which leads
to stronger oscillations of the central density. Therefore stronger shock waves spread
outwards. Applying bigger a’s must therefore be accompanied by choosing smaller
b’s to compensate for the weaker damping in the central region. We can conclude
that there is no advantage of choosing a > 0.2.

In summary we can state that our initial choice of the damping parameters a = 0.2
and b = 1.2 is a good choice. a = 0.2 shows a good damping of the high density part
while still allowing to evolve the shock front. a < 0.2 is only applicable if after a
certain initial period the values are changed to a ~ 0.2 to inhibit an “overdamping”.

Restarting from the background AGILE-IDSA

Above, we discussed the method of a spherical restart from an external standard
AGILE-IDSA run. This option allows for example to test the code at late post-bounce
times that otherwise would have required weeks of computations. Another option is
to directly restart ELEPHANT from a spherical profile extracted from the internal
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background AGILE-IDSA. The advantage of this option is that the background AGILE-
IDSA shares the same prebounce history as the 3D domain. The initial profile is again
chosen at ~ 166 ms post bounce. ELEPHANT-SR is then relaxed for t,¢1.x = 15.53 ms
and freely evolved for another 53.44 ms. Figure 9.15 shows the final ELEPHANT-
SR profile (t,, ~ 235 ms) together with the corresponding ELEPHANT-full profile.
The agreement in all the profiles respective quantities in both representations is
remarkable. Using a background AGILE-IDSA profile for the remapping allows us to
reproduce a spherically-averaged ELEPHANT-SR profile that is almost identical to
the profile obtained in a ELEPHANT-full run. Only the Y, profile has not converged
to the ELEPHANT-full values and the shock-front is still at a few kilometers behind.
It is expected that both quantities will converge to the ELEPHANT-full lines with
further evolution.

This extremely good agreement between the spherically averaged profiles of an
ELEPHANT-SR and an ELEPHANT-full run allows to draw some interesting conclu-
sions: The post-bounce evolution of a spherical restart run is primarily dependent on
the behavior of the simulation up to bounce. The background AGILE-IDSA and the
standard AGILE IDSA used above have exactly the same setup. The only difference
is the transfer of the spherically averaged 3D data into the background AGILE-IDSA
up to bounce. It is clear that the detailed 3D profiles of the ELEPHANT-full and
ELEPHANT-SR runs still show their differences due to their different history and
possible spherical relict. Nevertheless, it is remarkable that using the spherical
restart method we are able to obtain a on spherical average almost identical state in
the post-bounce evolution without simulating the whole post-bounce evolution in a
consistent 3D manner!

The good agreement between ELEPHANT-SR and ELEPHANT-full at the same res-
olution makes the spherical restart tool even more powerful: At any given time
post-bounce we simply have to perform a spherical restart. After the relaxation and
an evolution long enough to generate multi-dimensional fluid motion and wash
out the spherical symmetry, the simulation is well comparable to a consistently
performed simulation. The method can therefore be used to perform resolution
studies and data analysis. In case of a hybrid supernova equation of state the method
might be especially interesting for a high resolution study of an eventual second
collapse. Of course, this method, imitating a fully consistent run, has its limitations:
Since we do not yet consider rotation, the comparison are only valid if we compare
an ELEPHANT-SR run to a non- or slowly-rotating ELEPHANT-full run. However,
applying artificially and additional rotation profile to the ELEPHANT-SR run might
help to even imitate rotation in a core-collapse supernovae! The lack of magnetic
fields in an ELEPHANT-SR is another drawback of the method at the moment. By
applying an artificial field configuration at the begin of the spherical restart, this
might as well help to approach ELEPHANT-SR even closer ELEPHANT-full.

9.3 Results
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Fig. 9.15: Profiles of typical hydrodynamical quantities after mapping a spherical back-
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The dashed lines show the ELEPHANT-SR, the solid lines ELEPHANT-full at same

post-bounce time (¢, = 235 ms).
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Summing up the discussion of this chapter: We can state that final differences
between the ELEPHANT-SR profiles and the ELEPHANT-full profiles, at same post-
bounce times, are mostly caused by the different pre-bounce history. The relaxation

behavior of the spherical restart method itself is very robust.
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10.1

Quark Matter in 3D
Core-Collapse Supernova
Simulations

Strength does not come from winning. Your
struggles develop your strengths. When you go
through hardships and decide not to surrender;

that is strength.

— Arnold Schwarzenegger

This chapter deals with the application of BASQUARK in the 3D core-collapse
supernova code ELEPHANT. This is the first time a hybrid supernova equation of
state is applied in a 3D core-collapse supernova simulation. The aim is to investigate
the influence of the appearance of quark matter on the explosion mechanism. One
of the key questions to answer is whether a second collapse can also happen in 3D
simulations. We split our discussion into two parts: Calculations simulating the
collapse and a long part of the post-bounce phase (so-called “ab-initio” simulations)
and simulations using the spherical-restart method to simulate a second collapse in
the star in three dimensions with increased resolution. It has to be mentioned at this
point that the following results where all produced within the last two months of my
PhD studies. For this reason, the results are still preliminary and have to be handled
with care.

Ab-initio calculations

In this section, we simulate BASQUARK in ELEPHANT ab-initio. We investigate two
progenitor models with different masses: the 15 Mg, and the 40 M models of [211]
(called w15 and w40 progenitor below).

The 15 My model has already been used to investigate BASQUARK in spherical
symmetry using AGILE-BOLTZTRAN (see Sec. 6.2). The hadron-quark phase transi-
tion lead to a second-collapse of the protoneutron star which ultimately caused an
explosion of the spherical model. It is therefore important to rerun this progenitor in
a three-dimensional simulation to be able to investigate the effects of quark matter
in three dimensions as well. Furthermore, the 15 M, model is interesting since other
non-rotating (respectively slowly rotating) three-dimensional simulations showed
explosions for this model using purely hadronic equations of state (see e.g. [128,
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121, 109])1. It is therefore reasonable to expect that a neutrino-driven explosion
happens before the conditions for a second collapse are reached.

For this reason we decided to run additionally a second simulation using a heavier 40
M, progenitor. Such a progenitor is expected to collapse into a black hole when using
a purely hadronic equation of state [152, 190]. Using our hybrid supernova equation
of state BASQUARK, we also find a second collapse succeeded by an explosion in
spherical symmetry. As we will learn in Sec. 10.1.2, the elapsed time until the second
collapse is shorter than in the 15 M, case. We expect this progenitor to explode in
three dimensions with the QCD phase-transition mechanism, too. This case might be
interesting to perform an analysis of the second collapse using the spherical restart
method.

We run our simulations using ELEPHANT with the setup described in Sec. 8. Addi-
tionally, we use an initial angular velocity of 2 = 0.3 rad/s, and an initial magnetic
field with a 1.6 - 10° G poloidal and 5 - 10° G toroidal component, all implemented
according to [85]. So far, our main simulation references are the performed spheri-
cal simulations which indicate that quark matter (and a possible second collapse)
appears only at several hundred of milliseconds post-bounce time. Since we advance
with our 3D simulations in completely unchartered waters, we start our analysis
using a low spatial resolution of 2 km in a computational domain of 4503 cells. The
main benefit of the low resolution is that the computational costs are relatively
low and our simulation proceeds with around 45 ms physical time per day per 18
hours batch wall-clock time during the post-bounce phase. This allows us to perform
such a simulation within approximately two weeks. The drawback is of course the
low spatial resolution itself: It is known that resolution has a crucial impact on
the dynamics of a core-collapse supernova [170, 171]. In full awareness of this
effect, we consider the following two runs as starting point for further, more detailed
investigation.

A broad variety of tested progenitors in 3D supernova simulations is still missing due to the
tremendous amount of computational resources needed to perform a single simulation.

Chapter 10 Quark Matter in 3D



10.1.1 15 M., progenitor

To determine the effects of quark matter on the post-bounce evolution in comparison
with a usual, purely hadronic simulation, we executed two runs using the w15
progenitor: one with the purely hadronic HS(DD2) EOS and one with the BASQUARK
EOS.

Figure 10.1 shows the evolution of the central density p. with time for the HS(DD2)
EOS and the BASQUARK EOS using ELEPHANT (red and yellow lines). Additionally,
the corresponding spherical simulations using standard AGILE-IDSA are plotted
(magenta and blue lines). All runs are shifted to same bounce times for a better
comparison. The p. evolution shall serve as a guide line for the subsequent discussion
of the post-bounce phase. The initial large differences in p. after bounce, between
ELEPHANT and AGILE-IDSA, are mainly due to large first zone of AGILE-IDSA and
that the density of the first zone is considered as p. (see also discussion in Sec. 9.2.2).
The low resolution in the ELEPHANT runs causes the initial strong increase and the
following strong flattening of the central density. In the purely hadronic HS(DD2)
EOS run with ELEPHANT (red line), the p. evolution continues very flat up to the
end of the simulation. This is a result of the coarse resolution which has a strong
effect on the evolution of the convection of the protoneutron star. The simulation
finally indicates an explosion of the star: The post-bounce phase develops as known
from a typical neutrino-driven mechanism; convection starts to build up (see e.g.
the entropy profile shown in Fig. 10.4a) and the shock front expands to bigger radii.
However, the explosion is ultimately not caused by the neutrino driven mechanism
but by an excited protoneutron star which starts to oscillate in the center of the star.
The occurring behavior of the protoneutron star is similar to the acoustic mechanism
described by Burrows et al. in [35, 36]. We believe that this behavior is due to
the coarse resolution and will not be reproduced with higher resolution. Without
running a better resolved simulation, we can not provide a definite answer. For sure
this subject needs a closer investigation.

The yellow line shows the evolution of the central density in ELEPHANT using the
BASQUARK EOS. As long as the yellow and the red line superpose no, or a not
significant amount, of quark matter is present in the protoneutron-star core. As soon
as enough quark matter is present in the central part of the protoneutron star the
central density starts to increase. Compared to the spherical simulation this happens
at a significantly earlier time. Figure 10.2 shows the evolution of quark matter
in the protoneutron star. Quark matter appears first at around ¢, = 63 ms and
increases gradually. At the end of the simulation, around 18 % of the protoneutron
star consists of quark matter. The more quark matter is present in the core, the more
the yellow p, line in Fig. 10.1 departs from the red line. Another interesting property:
Even though the quark fraction in the protoneutron star in three dimensions is higher
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Fig. 10.1: Evolution of the central density p. with time using the 15 M, progenitor of
[211]. Shown are the results from the simulations in spherical symmetry using
AGILE-IDSA for the HS(DD2) EOS (magenta) and the BASQUARK EOS (blue),
as well as the corresponding simulations with ELEPHANT (red and yellow). All
profiles are shifted to same bounce times.

than the spherical simulations discussed in Sec. 6.2 at same post-bounce times the
protoneutron star does not collapse.

Figure 10.3 shows a selection of hydrodynamical quantities for different times post-
bounce. The solid lines refer to the BASQUARK run while the dotted lines represent
the HS(DD2) run. Up to ¢,;, = 100 ms the radial profiles of BASQUARK and HS(DD2)
are practically identical. The quark mass fraction at this time is too small to have an
influence on the structure and dynamics. At 150 ms, a quark mass fraction of around
10 % is present in the center. The appearance of quark matter from the center
outwards is different compared to the results gained in the spherical simulations,
discussed in Sec. 6.2.1. In spherical symmetry quark matter appears off-center and
only later spreads inwards. The lower Y, and higher temperatures in the core region
in ELEPHANT favor the appearance of quark matter. At ¢,;, = 250 ms, respectively
even better at ¢,,;, = 300 ms, clear differences between the two equation of state runs
become visible in several profiles. The appearance of quark matter leads to a more
compact protoneutron star. Figure 10.4c shows a typical picture of the quark core
in the protoneutron star (¢,;, = 300 ms). Due to the low resolution, the quark core
consists only of a few hundreds of zones. The structure of this quark core is clearly
under resolved. The increase of the quark matter fraction leads to a decrease of
the electron fraction Y, in the center while in the outer boarder of the quark-mixed
phase entropy s and temperature 7" increase. At t,;, = 300 ms, the convectional zone
expanded and shows higher entropies compared to the hadronic run. This is also
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visible in the x-y plane entropy slices of ELEPHANT in Fig. 10.4a (HS(DD2) EOS)
and Fig. 10.4b (BASQUARK EOS), respectively.

After t,;, = 300 ms, the protoneutron star starts to oscillate what is well visible in the
yellow p,. line in Fig. 10.1. Again, we find no obvious trigger for these oscillations. It
is probable that they are caused by convection which stimulates the protoneutron
star in the eigenfrequency. As mentioned above, the simulation using the HS(DD2)
EOS also showed an explosion triggered by oscillations of the protoneutron star.
Using the BASQUARK EOS, the oscillations set in at a significantly earlier time and
lead to more pronounced oscillations of the central density. Quark matter seems
to facilitate such oscillations. To be able to determine whether this behavior is of
physical origin or just an effect of the low resolution, we will have to rerun this
simulation using a higher resolution. Figure 10.5 shows a selection of velocity
profiles between t,;, = 330 ms and ¢,;, = 350 ms. The dip in the velocity profile at
approximately 10 km is due to the occurrence of quark matter and occurs at the
beginning of the phase mixture. The figure clearly shows the oscillations in the
outer layers of the protoneutron star which send shock waves outwards and push
the standing accretion front to bigger radii (see also velocity profile in Fig. 10.3b).

Aside from these unexpected oscillations, no sign of a collapse of the protoneutron
star is found. The overall evolution of the simulations seems to indicate that the
explosion is powered by the neutrino driven mechanism. This assumption can only
be confirmed when running the simulation using a higher resolution.

10.1 Ab-initio calculations
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Fig. 10.3: Selection of hydrodynamical quantities in their radial profiles for selected post-
bounce times using the 15 My, progenitor. The solid lines refer to the BASQUARK
run while the dotted lines represent the HS(DD2) run.
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the entropy profile using the HS(DD2) EOS, panel b) the entropy profile using
BASQUARK, and panel ¢) shows the quark mass fraction in the protoneutron star
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Fig. 10.5: A selection of velocity profiles that show the strong oscillations of the protoneu-
tron star surface which ultimately lead to an explosion of the star.
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40 M, progenitor

As for the 15 M, progenitor, two simulations were executed with ELEPHANT for
the 40 M, progenitor (one with the HS(DD2) EOS and one with the BASQUARK
EOS).

The BASQUARK run is restarted from the HS(DD2) run shortly after bounce where
still no quark matter is present®. Figure 10.6 shows the evolution of the central
density p. for the HS(DD2) EOS and the BASQUARK EOS obtained with AGILE-IDSA
(magenta and blue lines) and ELEPHANT (red and yellow lines) for the 40 Mg,
progenitor of [211]. As initially mentioned in this chapter, the second collapse of
the 40 M, progenitor in spherical symmetry happens more than 200 ms earlier than
for the 15 M, progenitor. Further more, the peak maximum density at the second
collapse is almost 2 - 10! g/cm? higher.

In our simulation with ELEPHANT using the hadronic equation of state, no explosion
happened. The strong accretion hinders that the standing accretion shock front
can expand to larger radii and the low resolution prevents the development of
effective convection. The divergence between the central densities of the runs
using the HS(DD2) EOS and the BASQUARK EOS is again due to the appearance
of quark matter in the core of the protoneutron star. Using the BASQUARK EOS
in ELEPHANT, quark matter already appears at around ¢}, ~ 15 ms. Figure 10.2
shows the amount of produced quark matter with time. Up to ¢, ~ 150 ms, quark
matter represents less than 10 % of the total mass of the protoneutron star. As for
the 15 M, progenitor, we find strong oscillations in the central density, this time at
around ¢, ~ 160 ms. The situation seems to be different: Compared to the 15 Mg,
progenitor, the oscillations do not appear gradually but start with a strong increase
of pe.

Figure 10.8 shows the same set of hydrodynamical quantities for several post-bounce
times, as in Fig. 10.3. Again, the solid lines refer to the BASQUARK run while the
dotted lines refer to the HS(DD2) run. Up to t,, ~ 100 ms almost no differences
are visible between the profile lines of the HS(DD2) run and the BASQUARK run.
Quark matter is present in the very inner core of the protoneutron star, but only
with a quark mass fraction 0.1 or less. At t,}, ~ 120 ms, respectively ¢}, ~ 150 ms,
the differences between the HS(DD2) run and the BASQUARK run become more
pronounced. Quark matter leads to a more compact protoneutron star which results
in a standing accretion front at smaller radii. In the central part Y, is again lowered
due to the appearance of quark matter while entropy is slightly increased at ~ 10
km. Between 158 and 160 ms, the profiles change drastically.

2Remember that the hadronic part of the BASQUARK EOS is based on the HS(DD2) EOS and therefore
the evolution of the simulation up to the point of the appearance of quark matter is identical.

Chapter 10 Quark Matter in 3D



9x10'4 : : : :

8x10'* | w40, HS(DD2), 1D i
w40, BASQUARK. 1D
7x 1014 L w40, HS(DD2), 3D |
w40, BASQUARK. 3D !

6x10'* -
sx10™ -
4x1014 -
3x10™ |
2x10™
1x10™ F

O | | |
-04 -03 02 -01 O 01 02 03 04

tob [s]

p.lg/ cm’]

Fig. 10.6: Asin Fig. 10.1, but for the 40 M, progenitor of [211].

2.5

100
201 | X 8of
~ 2
® 1.5} i
= = 60}
& c
g 1.0 .g
E 40
<
0.5} B ]
T '
0.0 1 !
0.00 0.05 0.10 0.15 0.20 0 ) -
ton 0.00 0.05 0.10 0.15 0.20
| — Quark-Matter Mass — Enclosed Mass — PNS Massl th
(a) (b)

Fig. 10.7: Asin Fig. 10.2 but for the 40 M, progenitor.

10.1 Ab-initio calculations 145



146

Figure 10.9 shows the radial velocity profiles between 157 and 160 ms. Again, a
negative velocity dip is visible at around 10 km (see discussion in Sec. 10.1.1). At
tpb = 157.97 ms, negative velocities appear in the region between approximately
10 and 50 km which was stable before. At t,;, = 158.17 ms, these negative values
increase further until at ¢,;, = 158.17 ms a new shock front starts to build out
between 30 and 40 km. Afterwards, positive velocities start to appear which lead to
an outward moving shock wave. At ¢, ~ 160 ms, the shock wave merges with the
standing accretion shock.

The sudden negative velocities and the building of a new shock front resemble
the behavior of a second collapse observed in spherical symmetric simulations.
However, a closer look at the profiles reveals that this is not a “proper collapse
of the protoneutron star”: Based on the knowledge of spherical simulations, the
protoneutron star should collapse until the stiffening of the equation of state due
to pure quark matter leads to an halt. At the boarder of the quark phase, the shock
formation is expected. The shock detaches from the surface of the quark core, gains
positive velocities, and ultimately merges with the standing accretion front. In the
present ELEPHANT simulation, the negative infall velocities are by orders smaller
than expected. Furthermore, the shock front does not form at the border of the
quark mixed phase but a few tenths of kilometers further outside. The quark panels
in Fig. 10.8 show that the quark matter fraction is increased during this process
but pure quark matter is not obtained. As a result, the peak central densities are
clearly too low. Summing up, we can state that although a beginning of a collapse of
the protoneutron star is recognizable we are not able to identify this behavior as a
“proper collapse” of the protoneutron star.

The resulting shock waves produced by this collapse-like behavior are not strong
enough to trigger an explosion of the star. Moreover, this “collapsing” process stimu-
lates the protoneutron star to oscillate in a monopole mode. This excitation finally
leads to an explosion: New shock waves triggered from the surface of the protoneu-
tron star merge at the accretion front and move the shock wave gradually outwards.
This behavior can be observed in the profiles from ¢, = 170 ms onwards.

At this point we assume that the insufficient resolution of this initial simulation to be
the cause of failure of the suspected collapse of the protoneutron star. As described
above in Sec. 10.1.1, the quark core in the center of the protoneutron star only
consists of a few hundred simulation cells. This region, which is crucial in QCD
phase-transition mechanism, is therefore completely underresolved and not able
to describe the important physical processes. Additionally, since the time steps in
ELEPHANT are controlled by the CFL-condition [51], also the time resolution is
too coarse to describe the fast dynamics of a second collapse. Higher resolution is
needed with no doubt; the only question is: to which extend?
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Fig. 10.8: Selection of hydrodynamical quantities in their radial profiles for selected post-
bounce times using the w40 progenitor. The solid lines refer to the BASQUARK
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Fig. 10.9: Radial profiles of the velocity profiles at times between t,, = 157 and 160 ms.
The profiles show the weak features of a second collapse behavior known from
spherical simulations.
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10.2 Spherical restart

10.2.1

In this section, we investigate the supposed collapse of the protoneutron star of the
40 M, progenitor using the spherical restart method. The spherical restart method
has the advantage that the resolution can be increased arbitrarily when restarting
from background AGILE-IDSA. Using this feature, this will help us to get an idea
on the minimal requirements of resolution needed to simulate a possible second
collapse in 3D core-collapse supernova. ELEPHANT can be restarted at the point
of the suspected collapse without using a huge amount of computational resources.
However, there are a few differences to ab-initio simulations which have to be kept
in mind:

* No rotation: Compared to the full ab-initio runs, no rotation is considered
when doing a spherical restart. So far, we do not know how rotation might
effect a second collapse.

* No magnetic fields: Since we cannot reproduce the full evolution of the
magnetic field found in ab-initio simulations, we do not consider magnetic
fields in our spherical-restart runs.

Both of these assumptions move the conditions in the protoneutron star closer to
the ones encountered in the one-dimensional case. In the following, we show the
results for the initial two spherical restart simulations performed. We restart the
simulation at ¢, = 148 ms from a spherical profile of the background AGILE-IDSA
in ELEPHANT.

Spherical restart using 2 km spatial resolution

We start our spherical restart investigation by using the same resolution as in the full
ab-initio simulations discussed in Sec. 10.1.2. The computational domain consists of
a box with 3003 cells. This reduced box is still big enough to simulate the relevant
part of the star, but saves quite some computational time. Even though we are aware
that 2 km resolution leads to problems in the ab-initio simulations, we use it to
investigate any fundamental differences between a simulated second collapse in full
ab-initio simulation and the spherical restart simulation. Figure 10.10 shows the
evolution of the central density p. with time for the ab-initio simulation discussed in
Sec. 10.1.2 (red line) and the simulation using the spherical restart method (yellow
line). After the initial relaxation (first strong vertical increase of the yellow line),
the p. of the spherical restart approaches the values of the ab-initio simulation. The
radial profiles of both simulations at ¢,,;, = 156 ms are shown in Fig. 10.11, a point
close to the second collapse indicated with the blue cross in Fig. 10.10. The radial
profiles show a remarkable good agreement between all hydrodynamical quantities.
The good agreement agrees with the results shown in Sec. 9.3.6. Using the same
resolution, our spherical restart tool seems to well reproduce the conditions found
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Fig. 10.10: Shown is the evolution of the central density p. with time. The red line
indicates the results obtained in the full ab-initio simulation with 2 km spatial
resolution as discussed in Sec. 10.1.2. The yellow line represents the data
obtained from a spherical restart simulation which is also performed using 2 km
spatial resolution. The blue cross indicates the time where the profiles shown in
Fig. 10.11 are compared.

in an ab-initio simulation, on spherical average. Since in the 40 M, case the shock
front does not expand to large radii, the spherical restart method can even reproduce
the shock front reasonably well.

A few milliseconds later after the snapshot shown in Fig. 10.11 a “collapse™ of
the protoneutron star sets in at a density of approximately p. = 4.5 - 10'° g/cm3.
As shown in Fig. 10.10, the ab-initio and the spherical restart simulation collapse
almost simultaneously. This confirms that with the spherical restart method we
are able to reproduce a very similar situation as found in the ab-initio simulation.
The spherical restart run shows a more pronounced collapse feature. The central
density rises to values up to ~ 6.7 - 1014 g/cm? at ¢, = 161.39 ms. Figure 10.12
shows a selection of radial profiles of typical hydrodynamical quantities, beginning
at the start of the collapse until a few milliseconds after the collapse. The velocity
profiles clearly show the negative values during the collapse phase. Compared to
the ab-initio run in Sec. 10.1.2, this feature is well pronounced. Still, the shock front
forms at a surprisingly large radius, similar to the ab-initio run. Afterwards, the
shock front detaches from the place of formation and moves towards the standing
accretion front (positive velocities in the velocity profile). However, the shock wave
is too weak to push the standing accretion front outwards. In the center of the
protoneutron star densities are high enough to reach quark mass fractions up to
1. Based on our knowledge of the spherical simulations, we would expect such

3We will discuss the validity of the term for this simulation below.
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Fig. 10.11: Comparison of a selection of hydrodynamical quantities in their radial profiles
at ¢, = 156 ms (indicated with a blue cross in Fig. 10.10) of the ab-initio run
(solid line) and the spherical restart run (dotted) line of a 40 M, progenitor with
2 km resolution. The profiles show a good agreement of the two simulations at
the same post-bounce time.
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high quark mass fraction. Compared to the full ab-initio calculation of the 40 M,
progenitor, it is more reasonable to use the term “collapse” for the behavior found in
this simulation. The central density profile shows a pronounced increase of p. which
allows to reach quark matter fractions of up to 1 in the core. Only the shock front is
still formed at a too large radius.

At ~ t,;, = 171 ms, we observe the start of a strange behavior of the protoneutron
star (see the radial profiles of Fig. 10.13): The protoneutron star becomes unstable,
best visible as the huge drop in the central density shown in Fig. 10.10, leading to
an expansion and decompression. This results in positive velocities between the
surface of the quark region and the standing accretion front. Matter of the outer
part of the protoneutron star is pushed towards the standing accretion front, merges
with it, and continues afterwards as an outwards moving shock front. During this
process a lot of quark matter is reconverted back into hadronic matter, reducing the
quark matter fraction from a maximum of 1 back to below 0.5. We consider this
whole process as not physical, but more as a consequence of the poor resolution of
the central protoneutron star. With a resolution of 2 km the code seems not able
to support a hydrodynamical equilibrium after the second collapse. Most probably
this can be explained by the fact that the strong gradients are not resolved well
enough.

Chapter 10 Quark Matter in 3D
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Fig. 10.12: Radial profiles of a selection of hydrodynamical quantities for the spherical
restart model with 2 km spatial resolution during and shortly after the second
collapse. In the Y, ;, profiles, the dashed lines indicate Y7, and the solid lines Y.

10.2 Spherical restart

153



154

10910 PBaryon [9/cm?]

v [10* km/s]

0 0.5 1.0 1.5 2.0
Enclosed Baryon Mass [M]

o
o
&
o

0.5 1.0 1.5 2.0 2.
Enclosed Baryon Mass [M]

o

T T T T

s [kB/Baryon]

T T T

0.0 0.5 1.0 1.5 2.0
Enclosed Baryon Mass [M]

60 T T T T

o
o
oo
o

. . .
0.5 1.0 1.5 2.0 25
Enclosed Baryon Mass [M.]

T [MeV]

T T T T

Enclosed Baryon Mass [M]

—_
Q
~

c
1 < ]
©
{8
w B
(2]
g 7]
©
2 ]
1 0=
[
B = 7
e}
. . . A 0.0 ) ) . .
0.0 05 10 15 20 25 00 05 10 15 20 25

Enclosed Baryon Mass [M]

1010 pBaryon [!l/cms]

v [10* km/s]

10! 10%
Log;o(Radius) [km]

10! 10%
Log,o(Radius) [km]

s [kB/Baryon]

0 10 107
Logo(Radius) [km] Logio(Radius) [km]
60 1.0
c
1 So0s 1
| 8
w 0() .
1 8
S o4 1
1 =<
1 So2 ,
¢}
0 100 102 00 10" TG
Log,o(Radius) [km] Logio(Radius) [km]
— 170 ms 174 ms — 178 ms
— 171 ms 175 ms — 179 ms
— 172 ms 176 ms — 180 ms
— 173 ms 177 ms

(b)

Chapter 10 Quark Matter in 3D

Fig. 10.13: Asin Fig. 10.12, but for times from ¢, = 170 ms onwards.
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Fig. 10.14: Central densities of the spherical restart runs. The red line indicates the ab-
initio run discussed in Sec. 10.1.2, the yellow line indicates the simulation with
2 km resolution discussed in Sec. 10.2.1, the blue line the simulation discussed
in Sec. 10.2.2, and the magenta line the simulation discussed in Sec. 10.2.3.

Spherical restart using 1 km spatial resolution

In this section we discuss a spherical restart simulation using a 600® box with 1 km
resolution. We restart the simulation at the same position as in Sec. 10.2.1.

Figure 10.14 shows the evolution of the central density of the simulation with 2
km spatial resolution (red line, ab-initio run as discussed in Sec. 10.1.2 and yellow
line, as discussed in Sec. 10.2.1), the simulation using 1 km spatial resolution (blue
line), and the simulation using 500 m resolution (magenta line) discussed in the
succeeding section. Relaxing the system with 1 km resolution does not lead to the
same hydrodynamical stable configuration as running with 2 km resolution. The
central densities of the 1 km resolution run are clearly lower than the ones of the
2 km resolution run. This is due to the better resolved protoneutron star. Until
sufficiently high densities for a second collapse are reached, the simulation has to be

0 g/cm3.

run for almost 50 ms. The second collapse sets in again at around ~ 4.5 -1
During the second collapse, central density rises up to values of p. = 7.97 - 10™
g/cm? what is significantly higher than using a resolution of 2 km. After the second
collapse the protoneutron star seems to remain stable. The shape of the central
density curve is now very similar to the spherically symmetric case, i.e. the shape

expected from a collapse of the protoneutron star.

Figure 10.15 shows the radial profiles of a selection of hydrodynamical quantities
during the second collapse. The second collapse starts to set in at around ¢,;, = 198.4
ms. The velocity profiles show the large negative velocities of the in-falling matter of
the outer protoneutron-star shells. At around ¢,,;, = 200 ms, a shock front forms close
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to the outer boundary of the quark core which then detaches from the surface and
moves outwards with high positive velocities (profiles from ¢,,;, = 200.2 ms onwards).
With 1 km resolution, the shock seems to be formed at the position expected. The
outward moving shock has enough energy to keep its positive velocities even after
having merged with the standing accretion front. This is the behavior we expect the
QCD phase-transition mechanism to show in a three-dimensional simulation, based
on our knowledge of the spherical simulations.

Figure 10.16 shows entropy in the x-y plane of the 3D-ELEPHANT domain for several
times before and after the collapse of the protoneutron star. Figure 10.16a shows
the entropy profile just before the collapse. Even though small convections are
visible around the protoneutron star, they are not strong enough to visibly deform
the standing accretion front surface. The shock front remains almost spherical in
shape. In Fig. 10.16b, the formation of the pressure wave is visible as a yellow
ring in the low entropy part around the almost blue quark core. As soon as the
detached shock front reaches the convectional high entropy region, a sharp, almost
spherical shock front is visible, exhibiting high entropy values (see Fig. 10.16c and
10.16d). The shock front later merges with the standing accretion front (Fig. 10.16e)
where entropies above 32 kp/baryon are reached. The outwards moving shock
then decouples from the high entropy “ring” (red colors) when moving away from
the former standing accretion front region (Fig. 10.16f). While the spherically
averaged profiles show similar features as known from the AGILE simulations, the
2D slices clearly show multi-dimensional effects: The irregular pattern inside the
shock front seems to be caused by Rayleigh-Taylor instabilities. Additionally, it
would be interesting to investigate the effects of the outwards moving second shock
wave on a more perturbed standing accretion front. This might be achieved using a
different progenitor, in a full ab-initio simulation, or an earlier spherical restart.

As visible in the quark mass fraction panel in Fig. 10.15, during the collapse of
the protoneutron star the quark mass fraction rises significantly. The increased
resolution helps to better model the different regions of the central core: While in
the inner core a hadron-quark mixed phase with quark mass fraction of just below
0.5 is present, in the outer core the quark mass fraction rises towards 1 leaving a
region of several kilometers with pure quark matter. In the subfigures of Fig. 10.17,
the evolution of the quark mass fraction during the second collapse is shown in the
x-y plane of ELEPHANT. In Fig. 10.17a the onset of the increasing of the quark mass
fraction starts to be visible. The stronger increase along the grid axis is a numerical
artifact. In Fig. 10.17b and Fig. 10.17c a ring with a large quark mass fraction is
formed which also spreads inwards during the collapse. Again, the square shaped
deformation of the red inner core in Fig. 10.17c is due to the grid nature of code.
Such features could be prevented using a different, non-grid code setup, for example
using a smooth particle hydrodynamics code such as SPHYNX [39]. Figure 10.17d
shows the quark mass fraction distribution when it reached its maximum. This shape
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Fig. 10.15: Selection of hydrodynamical quantities in their radial profiles during and shortly
after the second collapse.
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does not change significantly until the end of the simulation. In Fig. 10.18, the
evolution of the total quark mass is plotted. The second collapse leads to an increase
of quark matter from ~ 0.15 Mg, to ~ 1.22 M, which corresponds to almost 60 % of
the total protoneutron star mass. This high quark mass fraction is in good agreement
with spherical results as for example shown in Sec. 6.

As known from spherical simulations, the second collapse can release a vast amount
of neutrinos. The integrated neutrino luminosities are shown in Fig. 10.19. During
the second collapse, all neutrino types (ve, Ve, v, /; /7)) show sharp peaks in their
luminosity signals. The strongest feature is found in the /7 neutrino signal: The

luminosity peaks at L/, = 8.4 - 10°3 erg/s. The strong peak in the ;/7 neutrino

s
signal is different to th/e 1D simulations and might be overestimated due to the
applied leakage. Nevertheless, such a strong signal might be interesting as a possible
observable for neutrino detection. Unfortunately, the anti-neutrino luminosities
become negative after the second collapse. This might indicate a problem with the
quark-neutrino rates (see discussion in Sec. 6.2.1) or a problem with the IDSA (or
both). The IDSA neutrino treatment might run into problems in this scenario since
it is constructed to trap neutrinos in optically thick regimes and release them in
optically thin regimes. A collapse of the protoneutron star and the succeeding second
shock wave might mess with the original order of the optical thickness and trouble
the IDSA. In the near future, we have to check if the IDSA is still handling all the

regimes in a correct manner.

Spherical restart using 500 m spatial resolution

In this section we discuss the spherical restart simulation using a 750 box with 500
m resolution. Since this setup requires 125 nodes on Piz Daint and advances only
approximately 8 ms per day, the spherical restart is started at ¢,;, = 184.7 ms.

In Fig. 10.14 the magenta line indicates the run with 500 m grid resolution. Again,
the better resolution leads to lower central densities at same post-bounce times
compared to the lower resolutions runs. After the relaxation the simulation runs
for approximately 22 ms until the second collapse sets in at ~ 4.5 - 10'* g/cm?.
This density is consistent with the results obtained in the 2 km and 1 km grid-
resolution runs. During the second collapse the central density rises up to values
of p. = 8.06 - 10 g/cm?3. This value is only slightly (0.09 - 10'4 g¢/cm?) higher than
the value of the 1 km run. After the second collapse the protoneutron star seems to
remain stable. The central density increases after the second collapse due to fallback
onto the protoneutron star. Unfortunately, we were not able to further investigate
the evolution of the explosion i.e. the p. evolution since the shock front passed the
domain walls.

In Fig. 10.20 a selection of hydrodynamical quantities during the second collapse
are shown. In general, the results are very similar to the 1 km results discussed
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restarted 40 M simulation using 1 km grid resolution.

in Sec. 10.2.2 just shifted to later post-bounce times. The second collapse sets in
at around ¢, = 214.2 ms. Large negative velocities of the in-falling matter of the
outer protoneutron-star shells are the consequence until at around ¢,,;, = 215.6 ms
a shock front is formed at the outer boundary of the quark core. The position of
the formation of the shock front coincides very well with the results obtained using
1 km resolution. When the shock detaches from the surface its velocity is again
large enough to continue the expansion even after having merged with the standing

accretion front.

In Fig. 10.21, several entropy slices in the x-y plane of the 3D-ELEPHANT domain
are shown before and after the collapse of the protoneutron star. The figures show
times where the second shock is at similar positions as shown in Fig. 10.16. Figure
10.21a shows the entropy profile close to the collapse of the protoneutron star. In
Fig. 10.16a, using 1 km resolution, the convections was small, showed symmetric
features, and did not visibly deform the standing accretion front. In Fig. 10.21a
clear convection bubbles with entropies around or above 20 kg /baryon appeared.
These bubbles are strong enough to visibly deform the surface of the protoneutron
star surface. Furthermore, the convection does not show any artifacts from the
spherical restart but is more randomly distributed. The convectional features at the
low-high entropy region at around 60 km radius is another property which could not
be resolved using 1 km resolution. We can state that performing a spherical restart
with 500 m grid resolution enhances the convection and leads to a more realistic
convection pattern. Figure 10.21b shows the snapshot at a time where the newly
formed pressure wave is visible in the central part of the protoneutron star. The (low
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Fig. 10.20: Selection of hydrodynamical quantities in their radial profiles during and shortly
after the second collapse using 500 m grid resolution.
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entropy) core of the protoneutron star has collapsed to a quark core (dark blue in the
center) and the pressure wave moves outwards (turquoise ring). In Fig. 10.21c the
detached shock front has reached the high entropy region, now indicating increased
entropies. The shock front is still almost spherical and the convectional features
towards the lower entropy region shown in Fig. 10.21a and 10.21b are destroyed by
it. The squarish feature of the central core (in blue) is due to its oscillation and is a
consequence of the grid code. In Fig. 10.21d the shock front has moved deeper in
the high entropy region. The shock front is gradually more distorted. In the back of
the shock front new hydrodynamical instabilities become visible i.e. Rayleigh-Taylor
instabilities. In Fig. 10.21e the second shock wave has merged with the standing
accretion front. Entropies above 30 kp/baryon are reached and the instabilities
behind the shock front become even more pronounced. In contrast to the simulation
with 1 km grid resolution the merged shock front does not show a spherical shape
any more but more undulations on the surface to the unshocked region. This feature
is even more enhanced in Fig. 10.21f. It would be very interesting to perform a
spherical restart with this resolution at an earlier restart time to give the system even
more time to develop convections and distort the standing accretion front. The effect
of the second shock wave merging with a more strongly deformed standing accretion
shock might lead to an even more non-spheric shock evolution, and therefore be
even more realistic.

The quark mass fraction panels in Fig. 10.20 show similar results as shown in
Fig. 10.15: The central core consists of a mixed phase of hadronic and quark matter
with a quark mass fraction of 0.5 and below. With the better resolution this becomes
also better visible in the quark matter panel in Fig. 10.20a. In the subfigures of
Fig. 10.22, the quark mass fraction is shown in the x-y plane of ELEPHANT at
several times during and after the second collapse. Figure 10.22a shows the profile
before the second collapse. The higher quark fractions along the grid axis is again
a numerical artifact. Figure 10.22b shows the profile shortly after the onset of the
second collapse. The quark mass fractions increase and the protoneutron star is
strongly deformed, due to the grid structure of the code. In Fig. 10.22¢c the majority
of the protoneutron star mass has been transformed into quark matter, visible as the
white ring. Again, the square shape in the center is an artifact. Finally, in Fig. 10.22d
the core has reached its final state at the end of the simulation. The deformation
of the inner part is gone since the core has stopped the strong oscillation caused
by the collapse of the protoneutron star. The higher resolution shows now in more
detail the interfaces between the different quark fractions regions. Figure 10.23
shows the evolution of the total quark matter. Again, the second collapse leads to an
increase of the quark matter from around ~ 0.15 Mg, to ~ 1.3 My, which is slightly
higher than the value obtained in the 1 km run. This corresponds to 65 % of the
total protoneutron star mass.

10.2 Spherical restart
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Fig. 10.21: Snapshots of the entropy in the x-y plane of ELEPHANT at different times post
bounce using 500 m grid resolution.
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Fig. 10.22: Snapshots of the quark mass fraction in the x-y plane of ELEPHANT at different
times post bounce using 500 m grid resolution.
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Fig. 10.23: Evolution of the quark mass fraction.
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Fig. 10.24: Neutrino luminosities for the different treated neutrino flavors in the spherically
restarted 40 M simulation using 500 m grid resolution.

Figure 10.24 shows the neutrino luminosities of all treated neutrino types. Again,
the 11/ neutrino signal shows a clear peak of around 8 - 10°3 erg/s. However, the
IDSA seems to have severe problems treating the v, and v, neutrinos. Compared
to the 1 km grid resolution run the problems using 500 m are even bigger: Strong
oscillations already set in before the collapse, so no clear peak is at the second
collapse is recognizable. This might indicate that, apart from the problems already
mentioned in Sec. 10.2.2, the time stepping for the IDSA chooses to large values.

This can be easily tested in the near future.
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Conclusions |l

What’s this: @ — ©®?

It’s a “face”-transition!
— F.-K. Thielemann

In the second part of this thesis, the subject of multi-dimensional core-collapse
supernova simulations was addressed, especially the application of BASQUARK in
the 3D supernova code ELEPHANT. This is the first time a hybrid supernova equation
of state is applied in a 3D core-collapse supernova simulation.

In Chapter 8, a short overview over the 3D core-collapse supernova code ELEPHANT
was given. ELEPHANT consists of a central 3D domain which is embedded in a larger
spherical domain described by the spherical code AGILE-IDSA. AGILE-IDSA describes
the boundary conditions of the 3D domain. We consider ELEPHANT as a very suitable
code to simulate core-collapse supernovae when using a hybrid supernova equation
of state. ELEPHANT is a fast and efficient code which is parallelized using methods
such as MPI, OpenMP, and OpenACC. The neutrino transport, which represents the
computationally most expensive part of the code, is approximated using several
schemes such as parametrized deleptonization, the IDSA, and a x/7-neutrino leakage
scheme. These approximations result in huge speed-up of the code compared to a
full solution of the Boltzmann equation. ELEPHANT is not a fully relativistic code,
but strong gravitational fields are treated efficiently using a modified gravitational
potential that includes GR corrections. Since ELEPHANT is rather fast and not as
computationally expensive as other supernova codes (e.g. FLASH [50, 49, 159]),
it is suitable for simulations up to several hundred milliseconds post bounce. Two
upgrades had to be implemented to consider quark matter in ELEPHANT: A separate
quark routine has been implemented to calculate and output the quark matter
fraction in the 3D domain for a detailed post processing. Additionally, we had to
split the equation of state treatment of the 3D domain and AGILE-IDSA: While we
use the BASQUARK EOS in the 3D domain, AGILE-IDSA is run with the HS(DD2)
EOS. This is procedure is applied to prevent a second collapse of AGILE-IDSA which
in turn would lead to false boundary conditions of the 3D domain.

In Chapter 9, we presented the method and the results of a newly developed method
called the spherical restart method. The original idea of the application of this method
was to restart an ELEPHANT simulation at late post-bounce times, without weeks
of preceding calculations, to test the code there, i.e. before a suspected second
collapse. Since in ELEPHANT, AGILE-IDSA is always running in the background
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treating the outer layers and the boundaries of the 3D domain, we can simply map a
spherical profile, created in a separate external AGILE-IDSA run, into ELEPHANT.
However, the mapping from the unequally-spaced AGILE-IDSA grid to the equally
spaced ELEPHANT grid leads to a profile which is in the wrong hydrodynamical
equilibrium. During an initial phase of the spherical restart, ELEPHANT tries to
adjust the profile to a new hydrodynamical equilibrium. To prevent an artificial
explosion caused by these adjustments, we introduced a damping mechanism in
the 3D domain, valid during the first couple of hundred time steps. The damping
criterion of this mechanism depends on the local speed of sound and the matter
velocity of the initial profile. Initially, a profile with reference velocities, calculated
with the damping criterion, is saved. In the following, any velocities that exceed
these reference velocities are set back to the saved values. This method allows the
protoneutron star to adjust to the new hydrodynamical equilibrium while damping
the artificial shock waves caused by the adjustment.

The results obtained using this method are very promising: The relaxation of
the system (with activated damping mechanism) takes place on a time scale of
approximately 10 — 15 ms. During this time, the central part of the protoneutron star
adjusts to its new stable configuration i.a. through convection in the protoneutron
star. After this relaxation, the damping mechanism is turned off and the system
is evolved naturally. During this time, convection starts to build up in the high
entropy regions, pushing the standing accretion front outwards. After another 50
ms of simulation time, the spherically averaged profiles of the restarted run imitate
well the profiles obtained by a consistently run ab-initio simulation. Remaining
differences between the profiles of these two runs are mainly caused by the different
collapse behavior of the two codes.

Of the two damping parameters, especially the speed-of-sound-dependent parameter
is very sensitive. If the values are chosen too high, the protoneutron star is not
damped enough and strong shock waves are sent outwards. These in turn have to be
decelerated by a strong velocity criterion. If the parameter is chosen too restrictive,
the protoneutron star is overly damped and hindered in his natural adjustment.
Especially the shock front is not able to expand to larger radii. This problem could
be solved by gradually adjusting the parameter too higher values.

Very interesting results were obtained when ELEPHANT was spherically restarted
from a spherical profile of the AGILE-IDSA, run in the background of ELEPHANT. The
profiles of the background AGILE-IDSA differ from the profiles of the standard AGILE-
IDSA: During the collapse phase of ELEPHANT, the spherically averaged profiles of
ELEPHANT are transferred into the background AGILE-IDSA to achieve the same
bounce times. A spherical restart from such a profile leads, after the relaxation and
a few tenths of milliseconds of evolution, to an extremely good agreement of the
spherically averaged radial profiles, between the restarted and the fully executed
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ELEPHANT run. This result implies that the spherically-averaged 3D profiles in the
post-bounce phase depend essentially on the evolution up to bounce, and not much
on the following post-bounce evolution.

Since the spherically averaged profiles agree that good, the spherical restart method
can as well be used to increase the resolution at any time post bounce. Using this
method, interesting resolution studies might be performed in the post-bounce phase
without using a vast amount of computational resources.

The spherical restart method could further be improved also considering rotation:
predetermined rotation could be mapped in the simulation. Additionally, no magnetic
fields are included so far, but might also be considered by an artificial profile. The
damping procedure could also be used to remap 3D simulation data in the post-
bounce phase to investigate higher resolutions. The damping procedure could
suppress eventual artifacts caused by the rearrangement data to a different grid
structure. Even though the spherical restart method was developed for ELEPHANT, it
might as well be used for any other hydrodynamical core-collapse supernova code.

Chapter 10 dealt with the application of our new hybrid supernova equation of state
BASQUARK in ELEPHANT. This is the first time that quark matter is investigated in
a 3D core-collapse supernova simulation. In a first step we run two low resolution
simulations (2 km) with BASQUARK using a 15 Mg, and a 40 M, progenitor. The
15 Mg, progenitor is expected to explode by the neutrino-driven mechanism, using
a hadronic equation of state [128, 121, 109]. On the other hand, the 40 M
progenitor is expected to collapse into a black hole using a hadronic equation of state.
In spherically symmetric simulations using BASQUARK, both progenitors showed
explosions caused by the QCD phase-transition mechanism. It is therefore very
interesting to investigate the effect of quarks in a multi-dimensional treatment. The
low resolution for the initial runs was chosen so the simulations proceed reasonably
fast in the post-bounce phase. This allowed us to get first information about the
evolution.

In both simulations (15 Mg and 40 Mg, progenitors) using BASQUARK, quark matter
already appeared at significantly earlier post-bounce times than in the spherical
simulations. This is caused by the higher present densities and the lower electron
fractions. The appearance of quark matter leads to a more compact core of the
protoneutron star which as a consequence influences the succeeding post-bounce evo-
lution. In comparison to the spherical simulations, using BASQUARK in ELEPHANT
quark matter appears first in the center and not off center.

In the case of the 15 M, progenitor, the post-bounce evolution in the beginning
largely resembles the situation found in a typical neutrino-driven mechanism with
the exception that quark matter is present. No collapse of the protoneutron star is
found. The simulation ultimately shows an explosion due to gradually increasing
oscillations of the protoneutron star. These oscillations drive shock fronts into the
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standing accretion shock which in turn is pushed outwards. We believe that this
oscillation behavior is caused by the low resolution, as we have seen a similar
behavior with the same resolution using HS(DD2). But, without a higher resolution
run this question cannot be definitely answered. However, the evolution before
the unexpected oscillations of the protoneutron star indicates a neutrino driven
explosion mechanism.

The 40 M progenitor ultimately explodes because of strong oscillations of the
protoneutron star, too. Compared to the 15 M, progenitor, the oscillations start not
gradually but with a pronounced increase in the central density. A more detailed
analysis of the radial profiles revealed that there is the beginning of a collapse at
tpb ~ 157 ms, but the collapse does not behave like the collapse of the protoneutron
star in the spherical simulations: The increase in the central density is not as
pronounced as in spherical simulations, the quark matter fraction does not rise up
to values of 1, and the shock front builds not at the boarder of the quark mixed
phase but several tenths of kilometers further outside. Nevertheless, the 40 M,
progenitor shows indications of a collapse which might fail due to the too low
resolution. We can conclude that higher resolution is crucial for our core-collapse
supernova simulations.

In the second half of Chapter 10, we applied the spherical restart method with the
aim of a better resolution at the expected collapse. As mentioned above, compared to
a full ab-initio run the spherical restart run does not consider rotation and magnetic
fields. In a first attempt, we executed a spherical restart simulation using 2 km
resolution. The radial profiles of the spherical restart and the ab-intio simulation
at the onset of the collapse coincide extremely well. Surprisingly, the restarted
simulation shows a clearer collapse behavior to higher central densities, and quark
fractions of up to 1. The shock front is still built at too large radii, but in summary
the collapse behavior resembled more a second collapse known from spherical
simulations. Nevertheless, the outward moving shock wave is too weak to trigger
an explosion. A couple of milliseconds after the second collapse, the protoneutron
star becomes unstable: The central density decreases, a huge fraction of the quark
matter is reconverted into hadronic matter, and the outer layers of the protoneutron
star are expelled in a shock wave, leading to an explosion of the system. This
behavior is most likely caused by the low resolution which is not able to handle the
steep occurring gradients of the new protoneutron-star configuration. The runs with
higher resolution summarized below support this statement.

In summary we can state that a spherical restart simulation with 2 km resolution
shows part of the second collapse behavior known from spherical simulations but
shows significant problems due to the low resolution. The different collapse behavior
between the spherical restart simulation and the ab-initio calculation is unexpected
and should be investigated in more detail. Since the radial profiles before the
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second collapse (see Fig. 10.11) show an extremely good agreement between the
simulations, the source probably is a multi-dimensional effect. At present, we can
only speculate about the reasons: The slow rotation in the ab-initio calculations
might additionally perturb the center of the protoneutron star, preventing a full
collapse with this poor resolution. Contrariwise, the relaxation at the beginning of
the spherical restart run might produce an initially more stable configuration. At the
moment, we can only speculate about the influence of the magnetic fields on the
collapse behavior, too. These effects could be systematically investigated running
multiple simulations: Ab in-initio simulations could be run without magnetic fields
and/or without initial rotation to examine the effects of the two initial conditions
and compare it to the spherical restart runs. Spherical restart simulations could be
started earlier to give the system more time to perturb and investigate the effect on
the collapse behavior. However, it is questionable if it is worth to do this detailed
investigation using 2 km spatial resolution, as we know of the problems caused by
the low resolution during and after the second collapse.

In a second attempt we performed a spherical restart using 1 km resolution. Using
the increased resolution, a higher maximum density during the second collapse
is reached and the newly configured protoneutron star remains stable afterwards.
The radial profiles of the second collapse reveal a similar pattern as known from
the spherical simulations. The protoneutron star with a high quark matter fraction
(~ 60 %) is well resolved. The pressure wave finally forms close to the quark mixed
phase, the position also observed in spherical simulations. The outward moving
shock wave is strong enough to transform the standing accretion front into a moving
shock front which ultimately leads to an explosion. The pattern of the expanding
shock wave is very spherical. This might be connected with the fact that the previous
standing accretion front did also show little perturbation. Interestingly, within the
expanding shock wave patterns known from Rayleigh-Taylor instabilities become
visible. This simulation is the first to simulate the collapse of the protoneutron star
with a succeeding explosion in three dimensions!

The neutrino signal shows an strong peak in the y — 7 luminosities (8.4 - 10° erg/s).

We find another pronounced peak of the v, luminosities. However, the v, luminosities

show negative values after the second collapse which is most likely not physical.

Either, this indicates a problem with the quark rates or a problem with the IDSA. A
detailed investigation of the neutrino rates and neutrino transport is necessary in
the future.

In a final attempt we performed a spherical restart using a spatial resolution of 500
m. This run with higher resolution confirms the results already obtained using 1 km
resolution. The maximum central density obtained during the second collapse is
slightly higher than the one obtained with 1 km resolution. The newly configured
protoneutron star remains stable afterwards having a quark matter fraction of around
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65 %. This slightly higher quark fraction is due to the better resolved core. The
radial profiles confirm well the results of the 1 km resolution run. However, the
biggest improvements of the higher resolution were found in the discussed entropy
slices: 500 m grid resolution leads to the development distinct convection. This
was not the case using only 1 km resolution. The convection removes almost all of
the spherical artifacts and also leads to deformation of the standing accretion front.
Finally, the expanding shock wave is less spherical than in the 1 km resolution. Again,
the merged shock wave has enough energy to trigger an explosion. In the backwash
of the expanding merged shock wave we find again features of Rayleigh-Taylor
instabilities. These nice results once more show the importance of a high enough
spatial resolution.

The neutrino signal shows again a clear peak in the y — 7 neutrino luminosities
treated by the leakage scheme. However, the p. and ji. signal treated by the IDSA
shows strong oscillations even before the collapse of the protoneutron star. This
might, additionally to the already discussed problem with the neutrino rates, indicate
a too large time stepping in the neutrino transport.

To sum up the discussion: A spherical restart using 1 km or even 500 m resolution
seems to describe correctly the collapse of the protoneutron star and the succeeding
explosion of a 40 M, star. The resolution is sufficient to resolve the protoneutron
star in a correct and stable manner. 500 m resolution seems to be a good resolution
to also treat the convections correctly. In a next step we would have to check if
we can observe the same features in a full ab-initio calculation or if we would still
meet similar problems as found in the 2 km ab-initio runs. In the future it might be
interesting to test other progenitors, which eventually show even stronger perturbed
standing accretion shocks before the second collapse, and investigate the effect on
the shock evolution.
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Summary and Outlook

Ich hab’ getan, was ich nicht lassen konnte.

— Wilhelm Tell
Aus Schiller’s gleichnamigen Werk

In Chapter 7 and 11, a detailed summary and conclusion of the first and second
part of this thesis was provided. This last chapter shall provide a brief summary and
conclusion on the entire thesis.

The final goal of the first part of this thesis was to construct a new hybrid supernova
equation of state that is in good agreement with current experimental and observa-
tion constraints, i.e. the 2 M, neutrons star mass constraint. Additionally, the future
hybrid supernova equation of state should be constructed such that the known QCD
core-collapse supernova mechanism is expected to occur in spherical simulations.

In a first step, we systematically investigated the mass-radius relations of cold hybrid
stars by the variation of the phase-transition parameters. We initially used the
HS(DD2) EOS to describe the hadronic matter and the CSS EOS with C?QM =1/3
(which has been shown to be transferable into a bag model) to describe the quark
matter. We successfully determined the hybrid star configurations that satisfy the
2 M neutron star mass constraint and show a third family feature in their mass-
radius relation. Finally, we presented the parameter set to construct the new hybrid
supernova equation of state BASQUARK. Furthermore, we investigated the possibility
of multiple phase transition in cold hybrid stars: Apart from the regular HQ phase
transitions we found for C2QM = 1/3 additionally HQHQ and QHQ phase transitions
and in case of C(%M = 1 additionally HQH phase transitions. The parameter set for the
new supernova equation of state is not affected by these multiple phase transitions.
We extended our analysis by considering hyperons in the hadronic matter, using the
BHBA¢ EOS. We found that BASQUARK is not affected by hyperons. Finally, we
investigated the limiting case of ¢, = 1 for quark matter. We found that a speed
of sound C(QQM > 1/3 increases the number of possibilities for new hybrid supernova
equations of state significantly. In addition, our results show that using the BHBA¢®
EOS in future hybrid supernova equations of state represents a valid option.

On the basis of the example case obtained during the systematic analysis of the cold
hybrid stars, we constructed the new hybrid supernova equation of state BASQUARK.
A first analysis with the spherical core-collapse supernova code AGILE-BOLTZTRAN
with a 15 Mg, progenitor showed an explosion, triggered by the QCD core-collapse
supernova mechanism. Hence, BASQUARK represents the first hybrid supernova
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equation of state that fulfills the 2 Mg, neutron star mass constraint and is able to
trigger an explosion in spherical symmetry.

The second part of this thesis was dedicated to the analysis of BASQUARK in three-
dimensional core-collapse supernova simulations using the code ELEPHANT. We
developed a new method called the spherical restart method which allows us to restart
ELEPHANT from a spherical profile produced in a standard AGILE-IDSA simulation.
With this method we can test our code at several hundreds of milliseconds post-
bounce without using a vast amount of computational resources. The spherically
averaged profiles of such a restarted run are able to imitate profiles obtained in a
full simulation well. The results are even better if a spherical restart is performed
from a profile produced by the background AGILE-IDSA of ELEPHANT, normally
used to treat the boundary conditions of the 3D domain. In contrast to the standard
AGILE-IDSA, the background AGILE-IDSA contains the spherically averaged 3D data
of ELEPHANT up to bounce. The spherical restart from such a background AGILE-
IDSA profile produces almost identical spherically-averaged profiles as obtained in
full ab-initio simulations. In the future, this exceptionally good agreement of the
profiles will allow us to do detailed resolution studies.

Finally, we tested BASQUARK in ELEPHANT using a 15 Mg, and a 40 M, progenitor.
Our ab-initio simulations with a resolution of 2 km ultimately showed explosions
due to heavy oscillations of the protoneutron star. We concluded that this behavior
probably is due to the low resolution and not robust, hence. Nevertheless, we found
indications that the 15 M, progenitor probably underlies the delayed neutrino-driven
mechanism while the 40 M, progenitor showed indications of a second collapse of
the star.

As a consequence, we used our spherical restart method to investigate the suspected
collapse of the protoneutron star in the 40 My run. Using a 2 km resolution, we
found a collapse but the resolution was too coarse to resolve the steep gradients in the
profiles properly. As a result the reconfigured protoneutron star was unstable. With
1 km resolution, we were able to correctly simulate a collapse of the protoneutron
star with a subsequent explosion using the spherical restart method. The best results
using the spherical restart method where obtained with a resolution of 500 m. This
additionally allowed the convection to develop properly. This confirms the need for
sufficient resolution to simulate this scenario in three dimensions.

The results presented in this work represent a first step towards new investigations
of quark matter in core-collapse supernova simulations:

* BASQUARK represents the first new hybrid supernova equation of state that
is in good agreement with experimental and observational constraints. On
the basis of the results of this work we are able to additionally calculate
variations of it; e.g. using different phase-transition parameter configurations;
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alternatively including hyperons with BHBA¢; or considering C%QM > 1/3.
We need to further investigate BASQUARK itself: A detailed analysis of its
thermodynamical properties needs to be performed to complete the analysis
of our core-collapse supernova simulation done with AGILE-BOLTZTRAN. In
addition, a systematic progenitor scan would be of great interest and might
provide additional information on the progenitor dependence of the QCD
core-collapse supernova mechanism.

* The simulations of ELEPHANT with BASQUARK are the first simulations of its
kind that consider quark matter in a 3D core-collapse supernova simulation.
Our results are still very preliminary, but give some clear indications on what
to focus in the future: The need for runs with higher resolution is indisputable,
as our results using the spherical restart method showed. We need to run
full simulations with at least 1 km (better 500 m) resolution to be able to
provide a detailed analysis. The influence of rotation and magnetic fields has
to be investigated systematically running several simulations with different
combinations of these two parameters, essentially on/off configurations. On
the other hand, it might be interesting to use our spherical restart method to
execute high-resolution simulations of the collapse of the protoneutron star.
This might give some more information on convergence of the code when
resolving the collapse and subsequent explosion.

* Moreover, we have to investigate in more detail the possible influence of
included neutrino-quark rates in the simulations. Besides this, the investiga-
tion of the IDSA treatment in the context of hybrid core-collapse supernova
simulations is missing so far.

In the end, we can only validate our results using experimental and observational
data. The most important information would come from the observation of a new
core-collapse supernova in, or close-by, our galaxy. Today, it would be possible to
measure its signal using a multi-messenger approach determining quantities such as
the neutrino signal, the electro-magnetic signals, and eventually its gravitational-
wave signal. The combined information of such measurements would provide crucial
information on the core-collapse supernova mechanism and the underlying equation
of state. Ultimately, this would allow us to draw detailed conclusions about the
possible appearance of quark matter and its influence on the explosion dynamics in
core-collapse supernovae.
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