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Abstract 

Antisocial behavior is highly prevalent in young and adult populations worldwide and constitutes a 

major public health problem due to the huge burden on the individual as well as the significant 

economic burden on society. A better understanding of the underlying neurobiological mechanisms of 

antisocial behavior is warranted to improve current diagnostics (e.g. early detection of children at risk) 

and effective prevention/treatment programs. So far, neuroimaging studies have indicated neural 

atypicalities in youths with antisocial behavior; however, the direction and location of these brain 

alterations vary across studies. These ambiguities are most likely caused by the heterogeneity of the 

young samples with antisocial behavior studied, especially regarding sex, clinical diagnoses, and the 

presence of callous-unemotional traits.  

 

The central aim of this dissertation was to further the neuroscientific knowledge of antisocial behavior 

in children and adolescents by investigating the underlying structural and functional neurobiological 

characteristics, with an extra focus on possible sex differences and callous-unemotional traits. First, 

we examined the current neuroimaging literature, through meta-analyses, with the purpose of 

overcoming the heterogeneity of antisocial behavior and generating a common “overlapping” pattern 

of structural and functional atypicalities in youths with antisocial behavior. Secondly, the relation 

between callous-unemotional traits and brain structure was investigated separately for sex and 

independently of psychiatric comorbidities. Thirdly, this work investigated the white matter integrity 

within a homogenous group of girls with conduct disorder –the severe variant of antisocial behavior– 

in comparison to typically developing peers. 

 

This work expands our current knowledge on the structural and functional neural correlates in children 

and adolescents with antisocial behavior in several ways. For one, our meta-analytic results indicate a 

consistent pattern of gray matter reductions and hypoactivations in brain areas within the prefrontal 

and limbic cortex. These findings fit a recently proposed neurobiological model that connects 

alterations within similar brain regions with the behavioral dispositions of antisocial behavior (e.g. 

dysfunctions in empathy, emotional learning, and decision making). Secondly, we observed a positive 

relation between callous-unemotional traits and bilateral insula volume in a large international 

population of typically developing boys, but not in girls, independent of psychiatric disorders. This 

demonstrates that callous-unemotional traits have a sex-specific neurobiological basis beyond 

psychiatric samples. Thirdly, this work presents novel findings of white-matter integrity alterations in 

the body of the corpus callosum of girls with antisocial behavior, indicating possible reduced 

interhemispheric processing and consequent emotion processing abilities. In short, the present thesis 

provides original findings regarding the neurobiology of antisocial behavior in youths and emphasizes 

the importance of callous-unemotional traits and sex differences. Our results encourage future studies 

to further investigate the developmental trajectories and potential neural markers of antisocial behavior 

in order to enhance early detection and improve intervention programs, which could ultimately reduce 

antisocial behavior and delinquency in our society. 
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Chapter 1. General Introduction 

 1.1.  Antisocial behavior in children and adolescents 

Antisocial behavior is one of the most common psychiatric problems in young and adult populations 

worldwide and causes a huge burden for the individual and the society as a whole. Examples of 

antisocial behaviors are theft, bullying, truancy, physical cruelty to animals and people, sexual 

aggression, and destruction of property. Antisocial behavior can commence at an early age in 

childhood. Young children are especially prone to develop poor social functioning skills and this in 

turn often leads to social exclusion affecting social relationships and family life, which continues 

throughout adulthood. Besides social difficulties, antisocial behavior also negatively impacts other 

aspects of the individual’s life, such as an academic and occupational career. Not only does antisocial 

behavior cause personal distress for the child, it also affects the families, the communities, and the 

society as a whole. For example, children with antisocial behavior increase the societal expenses with 

a tenfold by using the resources of child mental health and juvenile justice organizations (Bardone et 

al., 1998; Pedersen & Mastekaasa, 2011; Scott et al., 2001). Also, children with antisocial behavior 

have a higher risk to develop an antisocial personality disorder during adulthood which extensively 

increases their burden throughout life (Storm‐Mathisen & Vaglum, 1994). So far, a few studies have 

shown that family and parenting interventions have beneficial effects for the juvenile delinquents such 

as reducing institutionalization and criminal activity (Woolfenden, Williams, & Peat, 2002). 

Nevertheless, the general treatment success rates are limited and remain modest. Comprehensive 

treatment could potentially reduce the antisocial behavior by 12-25% but appears unable to normalize 

the behavior completely. A better understanding of the underlying neurobiological mechanism of 

antisocial behavior could explain this modest treatment’s efficacy and assist the development of 

innovative interventions. Improving the existing treatments or developing new methods is necessary to 

prevent and reduce antisocial behavior and delinquency in our society. 

 

Antisocial behavior in children and adolescents can be subdivided into several clinical diagnoses 

depending on the behavioral symptoms and severity as is described in the diagnostic and statistical 

manual of mental disorders (DSM-5; (APA, 2013)). Till the age of 18, youths with antisocial behavior 

symptoms generally receive a disruptive behavior disorder (DBD) diagnosis, an umbrella term for two 

sub-diagnoses: oppositional defiant disorder and conduct disorder. Oppositional defiant disorder 

(ODD) is the less severe form of DBD and usually identified in early childhood. Typical symptoms 

that belong to ODD are angry and irritable mood, defiant and noncompliant behavior, or 

vindictiveness. Children and adolescents with ODD easily lose their temper, deliberately annoy others, 

or refuse to comply with rules or authority; this behavior can cause substantial impairment in the 

child’s educational and social functioning. Twenty-five percent of children with an ODD diagnosis 

will ultimately also develop conduct disorder (Tolan & Leventhal, 2013). In contrast to ODD, children 
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with conduct disorder (CD) display severer features such as aggression and violence in their behavior; 

for example, physical aggression to people and animals, property destruction, deceitfulness, theft, and 

serious violation of societal norms and rules (DSM-5 312.8;(APA, 2013)). These children frequently 

bully and fight with others, engage in shoplifting or mugging, or vandalize property. The estimated life 

time prevalence of conduct disorder corresponds to 7% in girls and 12% in boys (Nock et al., 2006). 

Not only is conduct disorder a more severe variant of antisocial behavior in youths, it is also the most 

stable variant functioning as a key precursor for an antisocial personality disorder (ASPD) in 

adulthood (Lahey et al., 2005). Another indicator for the severity of the antisocial behavior is the 

presence of psychopathic traits such as lack of remorse, pathological lying, and callousness (Frick & 

White, 2008).  

 

1.2.  Behavioral dispositions and risk factors in antisocial behavior 

In the last few decades, researchers intensively investigated the behavioral dispositions and etiology of 

antisocial behavior. Impulsivity, fearlessness and lack of empathy are the most commonly observed 

behavioral dispositions underlying antisocial behavior (Cloninger & Svrakic, 1997; Eysenck, Milton, 

& Simonsen, 1998; Lahey, Waldman, & McBurnett, 1999; Quay, 1993). Based on these behavioral 

abnormalities several theoretical neuropsychological explanations emerged. An oversensitive (i.e. 

hyperactive) behavioral activation system may explain impulsivity (Gray & McNaughton, 1982), and 

an abnormal cognitive control and emotion regulation system could lead to dysfunctional inhibition of 

behavior. Insensitivity to punishment, poor decision making, and hyperresponsiveness to reward are 

all mechanism linked with fearlessness (Blair et al., 2006; Byrd, Loeber, & Pardini, 2014; Fairchild et 

al., 2009b; Pujara et al., 2014). Difficulties in emotion recognition or altered moral reasoning are 

proposed as underlying mechanisms for the lack of empathy in antisocial behavior (Blair et al., 2001; 

Blair & Lee, 2013). Various risk factors for developing antisocial behavior exist and are classified as 

biological predispositions and environmental factors. Biological predispositions are present at birth 

and comprise genetic, neural, endocrine, and psychophysiological factors. Early genetic studies 

investigating twins and adopted children estimated an important magnitude (~56%) of genetic 

influences on the development of antisocial behavior (Eley, Lichtenstein, & Stevenson, 1999; 

Ferguson, 2010; Rhee & Waldman, 2002). Several candidate genes (e.g. COMT, MAOA, and 5-HTTT 

genes) function as potential risk factors to develop antisocial behavior (Caspi et al., 2002; Ficks & 

Waldman, 2014; Retz et al., 2004; Thapar et al., 2005). These discovered genes likely interact with 

each other through complex regulation pathways that most probably involve numerous genes that yet 

have to be identified. Even though a genetic base is evident, still maltreatment exposure is equally 

important in the development of antisocial behavior. For example, a reduced activity of the X-

chromosomal MAOA gene enhances the risk for developing antisocial behavior, however, only in 

combination with familial maltreatment and till a certain extend of trauma exposure (Caspi et al., 

2002; Kim-Cohen et al., 2006; Nilsson et al., 2007). These findings indicate a complex interplay of 
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genetic and environmental factors in regards to the developmental trajectory of antisocial behavior. 

Due to the close interaction between genes and hormones, it is not surprising that hormonal 

testosterone and cortisol levels may function as such biological risk factors (Alink et al., 2008; van 

Honk et al., 2010) for review: (Hawes, Brennan, & Dadds, 2009; van Goozen et al., 2007)). Also on a 

psychophysiology, level robust indicators such as low heartrate and atypical heartrate variability exist 

for antisocial behavior in children and adolescents (Ortiz & Raine, 2004; Raine, Venables, & 

Mednick, 1997). In addition to these multitude of biological factors also the individual’s temperament 

should be mentioned as an significant factor, since children with increased novelty-seeking behavior 

and less harm-avoidance are at risk to develop conduct disorder (Schmeck & Poustka, 2001). Besides 

these biological aspects the trajectory of antisocial behavior is also influenced by environmental 

factors such as familial and societal life experiences. Family dysfunction, harsh parenting, and 

emotional neglect are a few examples that could obstruct the normal development of prosocial 

behavioral skills in young children, such as recognition of social cues, empathy, and self-control 

(Lansford et al., 2003; Pardini, Lochman, & Powell, 2007; Schaffer, Clark, & Jeglic, 2009; Schwartz 

et al., 2000). Negative life experiences (e.g. neighborhood violence, poverty, and social peer conflicts 

(Vitaro, Brendgen, & Tremblay, 2000)) strongly correlate with parental socio-economic status and 

induce aggression-oriented behavioral schemes, e.g. strong emotional reactions and wrong cognitive 

interpretations (Lahey et al., 1999). In sum, a multitude of factors from womb to adulthood may 

initiate and/or affect the developmental trajectories of antisocial behavior in youths. 

 

1.3.  Neurobiological basis of antisocial behavior 

The improvement of neuroimaging techniques, i.e. magnetic resonance imaging (MRI), in the last 

three decades provided neuroscientists the ability to non-invasively investigate the neural phenotype of 

youths with antisocial behavior. Consequently, a rapid increase in neuroimaging studies on the 

psychopathology of antisocial behavior laid the foundation for its possible neural correlates (Dolan & 

Fullam, 2009; Finger et al., 2008; Kiehl et al., 2001; Sterzer et al., 2007; Yang et al., 2009a). The 

amygdala is, for example, one of main brain areas that is numerously linked to antisocial behavior, this 

is not surprising since normal amygdala functioning is crucial for behaviors (such as emotional 

processing, empathy, and fear response) that are disrupted in individuals with antisocial behavior 

(Blair, 2003; Ledoux & Schiller, 2009). Therefore, amygdala dysfunction is recognized as one of the 

key characteristics in the symptomatology of antisocial disorders (Albein-Urios et al., 2013; Blair, 

2003, 2008b; Jones et al., 2009; Marsh et al., 2008).  

 

Other important brain areas that are often linked with antisocial behavior in youths are the insula, the 

cingulate cortex, and the prefrontal cortex. The involvement of the insula is not unexpected, since this 

brain structure plays an important role in emotional behavior (i.e. emotion processing, emotion 

recognition, and empathy) often disrupted in youths with antisocial behavior (Decety et al., 2009; 
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Decety, Skelly, & Kiehl, 2013; Fairchild et al., 2014; Lockwood et al., 2013; Passamonti et al., 2010; 

Rubia et al., 2009). The insula not only plays a role in the evaluation, experiencing, or expression of 

internally generated emotions, but is especially associated with disgust and anger (Lindquist et al., 

2012; Phan et al., 2004; Phillips et al., 1997). Similarly, the anterior part of the cingulate cortex (ACC) 

is also an essential brain structure involved in emotional processing and empathy, and additionally for 

response inhibition (Dalwani et al., 2011; Lockwood et al., 2013; Stadler et al., 2007; Sterzer et al., 

2005). Not only is the ACC part of the emotion processing network (Botvinick, 2007; Etkin et al., 

2006), but the ACC is also involved in executive functioning e.g. regulating cognitive and emotional 

processes (Botvinick, 2007; Ridderinkhof et al., 2004). The amygdala, insula, and ACC all belong to 

the limbic system located beneath the cerebrum on both sides of the thalamus. This system supports a 

variety of functions essential for human behavior such as memory, social cognition, motivation, 

emotional responses, and regulation of the autonomic nervous that needs interconnections between 

numerous brain structures system (Rajmohan & Mohandas, 2007); the ACC for example connects 

with various brain areas located within as well outside the limbic system, e.g. the insula and the 

prefrontal cortex (Derbyshire, 2000; Vogt, 2005). The prefrontal cortex, a neocortical structure that is 

most developed in primates and humans, is responsible for cognitive control, by means of attention, 

decision-making, and behavior regulation, over the simple and more automatic behaviors (Miller & 

Cohen, 2001). Previous neuroimaging studies have indicated strong correlations between the altered 

regions within the prefrontal cortex and antisocial behavior (Beyer et al., 2014; Blair, 2004; Decety et 

al., 2013; Ermer et al., 2012; Liu et al., 2014; Loeber et al., 2000; Potegal, 2012; Raine et al., 2000). It 

is evident that the increased, though still limited, amount of neuroimaging studies provided significant 

insight into the neuronal dispositions of antisocial behavior in children and adolescents.  

 

Recently a cognitive neurobiological model of antisocial behavior in youths, with a particular focus on 

psychiatric traits, has been proposed (Blair, 2013). This model includes two core cognitive 

impairments, i.e. reduced emotional empathy and dysfunctional decision making, and connects these 

with several brain regions that are frequently implicated in antisocial behavior: the amygdala, the 

ventromedial prefrontal cortex (vmPFC), the dorsomedial prefrontal cortex (dmPFC), the striatum, and 

the anterior insula (see Figure 1.). According to the model, the underlying cause of reduced empathy is 

the dysfunctional processing of social distress cues (e.g. fearful facial expressions); these cognitive 

characteristics are linked with reduced amygdala responses and possible lack of attention to such 

cues. Impaired processing of social distress cues is also proposed to negatively affect social 

(reinforcement) learning, which is associated with anterior insula and vmPFC dysfunction. For 

example, observing distress cues from others (e.g. pain or other emotional reactions) diminishes an 

aggressive response in typical individuals. According to the model inadequate processing and/or 

associating of these distress cues reduces such empathic responding, as is commonly observed in 

youths with antisocial behavior. Dysfunctional decision making, the second core impairment in this 
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model is likely caused by a disrupted association between reinforcements (either reward or 

punishment) and an individual’s action. Blair’s model (2013) suggests that the abnormalities in 

reinforcement learning are twofold. First, youth with antisocial behavior are more insensitive to 

reinforcements due to a lower prediction error (difference between expected and received outcome), a 

process that involves the amygdala, vmPFC, and striatum. Secondly, these youths have a poorer 

representation of the expected reward of an action, which is linked to abnormal activity within the 

anterior insula and dmPFC. Overall, this neurobiological model has described a detailed theoretical 

relationship between the behavioral and neuronal characteristics of youths with antisocial behavior. 

  

 

Despite the accumulated evidence of atypical brain structure and function in youths with antisocial 

behavior, the brain regions that are commonly affected are still not objectively determined. This is 

mainly due to the ambiguity of current neuroimaging findings: For example, studies not only differ 

regarding the set of altered brain regions observed, but also in the direction of these alterations 

increases or decreases even within the same brain regions. The main reason for these 

inconsistencies are likely the different inclusion criteria applied, especially considering the clinical 

definitions of antisocial behavior, age, and sex of the participants included. In the following sections, 

we will review the evidence of the neuroimaging studies investigating antisocial behavior in youths in 

more depth. 

 

1.4. Structural brain correlates 

To date, magnetic resonance imaging (MRI) is the most frequently used technique in psychopathology 

research to investigate anatomical features of the human brain in relation to psychological disorders or 

abnormal behaviors. Depending on the specific disorder and study aim, researchers investigate either 

gray matter, white matter, cerebrospinal fluid, or a combination of these (see Box 1. for an overview of 

brain anatomy). Structural MRI images allow researchers to compute the morphometry of the brain in 

terms of gray matter density, gyrification, cortical thickness, white matter tracts, total brain volume, or 

Figure 1. A schematic neurobiological 

model of brain regions implicated in youths 

with antisocial behavior. 

Dysfunctions within the amygdala, the 

striatum, the ventromedial prefrontal cortex 

(vmPFC), the dorsomedial prefrontal cortex 

(dmPFC), the anterior insula, and the 

striatum are linked with impairments in 

emotional empathy and/or decision-making.  

 
 

Picture is an adapted version from Blair (2013) Nature 
Reviews Neuroscience. 
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the amount of cerebrospinal fluid. The subsequent sections provide an overview of the techniques and 

outcome of previous neuroimaging studies investigating the gray and white matter structural correlates 

of antisocial behavior in youths. 

 

Box 1. Anatomy of the human brain. 

 

In the neuroimaging work field, the human brain is roughly subdivided into 

three distinct types of tissues: gray matter, white matter and cerebrospinal 

fluid/meninges (see image: a typical structural MRI scan). Gray matter 

consists of abundant neuron cell bodies, dendrites, and small blood 

capillaries for oxygen and glucose transportation; this tissue covers the 

brain (cortex) as a thin layer with sulci and gyri. White matter primarily 

consists of the long-range neuronal axons that connect with other 

neuronal cell bodies located throughout the brain. Myelin is a fatty white 

substance that protects and nurtures the axons by surrounding them; it is 

also the source for the white color and thus the name of this type of brain 

tissue. Cerebrospinal fluid and the meninges surround all brain tissues and 

ventricles to protect against injuries, pathogens, and waste accumulation. 

 

1.4.1 Gray matter alterations  

Voxel-based morphometry (VBM) has become the most popular computational imaging technique, 

due to its simplified approach and automated algorithm, for investigating gray matter morphometry in 

antisocial behavior (Alegria, Radua, & Rubia, 2016; Ashburner & Friston, 2000; Baker et al., 2015; 

Lagopoulos, 2007; Wright et al., 1995). This sensitive technique distinguishes the different types of 

brain tissue on a voxel-level from T1-weighted anatomical 3D MRI images and can compute two 

output quantities for gray matter: its volume and its density. The VBM application consists of three 

general processing steps, the first step starts with spatial normalization; each individual brain is 

transformed to a standardized template, this can be either a customized group template or a more 

generic template available online (for a more detailed overview about VBM see Ashburner & Friston, 

2000). During normalization, a non-linear-registration algorithm morphs each voxel within the brain to 

the standardized template by stretching and compressing the global brain regions embodying that 

voxel. The second step consists of segmenting the earlier normalized brain data into three tissue types 

(e.g. gray matter, white matter, and cerebrospinal fluid). This segmentation step classifies each voxel 

based on their gray-scale color intensity and their location, i.e. the likelihood of a tissue type at a given 

location, and outputs segmented images containing values that indicate the probability of belonging to 

the specific tissue type the so-called tissue density. The third step is spatially data smoothing, this 

advances the normalization and enhances the normal distribution of the data, thus increasing the power 

of the forthcoming parametric statistical analyses. During smoothing the intensity of every voxel is 

replaced by the weighted average of its neighboring voxels. After these crucial VBM processing steps 

the statistical analysis starts using the general linear model (GLM) followed by voxel-wise standard 

gray matter 

white matter 

cerebrospinal fluid 
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parametric (e.g. t-test, F-tests) or nonparametric (e.g. permutation test) statistical testing, hereby a 

correction for multiple comparisons is necessary to correct for the numerous voxel-by-voxel analyses 

(Friston et al., 1995). In sum, VBM is a useful technique that can infer about disorder-specific gray 

matter atypicalities.  

 

A less frequently used method to measure gray matter in youth with antisocial behavior is surface-

based morphometry (SBM); this technique measures the thickness and folding of the gray matter using 

specialized geometric models. First, SBM extracts the cortical surface of the brain (i.e. segmentation 

and skull-stripping) by stripping the outer cortex’s layer away and creating a cortex volume with two 

surfaces: the gray/white surface (adjoins white matter structures) and pial surface (adjoins the pia 

mater) (Dale, Fischl, & Sereno, 1999; Fischl, 2012; Fischl & Dale, 2000; Fischl et al., 2002; Fischl, 

Sereno, & Dale, 1999). The subsequent step is the deformation of the extracted surfaces using 

triangular tessellation to inflate or flatten the cortex’s surface in order to compute the morphometrical 

features of the brain. In this manner the surface area, the thickness, and the curvature of the cortex can 

be calculated (Fischl et al., 1999). The following step is spatial normalization; just as with VBM this is 

also a crucial step in SBM for the acquirement of accurate results when performing group comparison 

analyses. Similar to VBM, SBM uses a high-dimensional non-linear registration algorithm, but instead 

of using the image’s intensities SBM uses the surface curvature. In this way the major sulcal and gyral 

patterns are used as homologous anatomical regions for the alignment to a specialized surface-based 

atlas (Dale et al., 1999). After normalization a smoothing step is applied to the flattened 2D surface of 

cortex allowing a more precisely smoothing and thus improving the biologically meaningfulness, 

subsequently similar statistical analyses as mentioned for VBM can be applied here for group 

comparison. 

 

The increased usage of VBM and SBM techniques has broadened our knowledge of cortical 

alterations in children and adolescents with antisocial behavior. The majority of neuroimaging studies 

have utilized VBM to investigate antisocial behavior, these studies have frequently reported reduced 

gray matter density, especially in frontal and temporal brain regions (Cope et al., 2014; Dalwani et al., 

2011; Dalwani et al., 2015; De Brito et al., 2011; De Brito et al., 2009; Ermer et al., 2013; Fahim et 

al., 2011; Fairchild et al., 2013a; Fairchild et al., 2011; Huebner et al., 2008; Kruesi et al., 2004; 

Michalska et al., 2015; Sarkar et al., 2013; Sterzer et al., 2007; Stevens & Haney-Caron, 2012). 

Likewise, studies using SBM have provided additional evidence of reduced thickness and atypical 

curvature of the cortex within similar brain regions involved in emotion processing, reward and 

empathy, i.e. the orbitofrontal cortex, insula, and amygdala (Fahim et al., 2011; Hyatt, Haney-Caron, 

& Stevens, 2012; Wallace et al., 2014). However, some VBM studies had opposing results observing 

gray matter increases in the anterior cingulate and prefrontal cortices (Dalwani et al., 2011; De Brito et 

al., 2011; De Brito et al., 2009), or were unable to identify any gray matter deviations from typically 
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developing youths (Hummer et al., 2015; Michalska et al., 2015). Although many studies indicated 

gray matter atypicalities in youths with antisocial behavior, still the direction and location of these 

alterations vary across studies and are likely caused by the differences in inclusion criteria applied to 

compose young samples with antisocial behavior. 

 

1.4.2. White matter alterations 

Several neuroimaging techniques exists nowadays to investigate the volume, density, or the 

microstructural properties of white-matter structures (i.e. white matter fiber tracts), thus far two 

techniques have been used to investigate antisocial behavior in youth (Baker et al., 2015; Waller et al., 

2017). One method is the previously mentioned voxel-based-morphology (VBM) technique which 

computes the volume and density of white brain matter with identical processing steps for gray matter 

as described within the previous section. The other more frequently applied technique is diffusion 

tensor imaging (DTI). This technique is based on the three-dimensional displacement of water 

molecules throughout the brain, which is assessed through specially designed multiple-directional 

diffusion-weighting gradient pulses. The basic concept behind DTI is that water molecules diffuse 

differently depending on the microstructural barriers within each brain tissue; for example, white 

matter forces the water molecules to flow along the direction of their fiber tracts (Beaulieu, 2002; 

Chenevert, Brunberg, & Pipe, 1990; Douek et al., 1991; Moseley et al., 1990). DTI translates the 

diffusion within each voxel into tensors, i.e. a matrix describing the diffusion’s features, and these 

tensors help to characterize the microstructure of white matter fiber tracts. This translation is not only 

technically and competitively demanding but requires many steps for data processing (Basser, 

Mattiello, & LeBihan, 1994a, 1994b; Soares et al., 2013). Diffusion weighted imaging is highly 

susceptible to artifacts, therefore the first general preprocessing step is to remove or at least reduce 

commonly encountered artifacts such as magnetic susceptibility distortions or eddy currents, i.e. 

electrical currents resulting from the rapid switching of the diffusion weighting gradients. Several 

different computational programs, for example DTIprep and FMRIB, exist to automatically recognize 

and correct aforementioned artifacts in the diffusion weighted images (Jenkinson et al., 2012; Oguz et 

al., 2014). After data preprocessing, the DTI tensors need to be estimated: mathematical equations 

describe and calculate the tensor for each voxel based on the voxel’s eigenvectors (diffusion direction) 

and eigenvalues (diffusion magnitude). Several types of tensors exist, each indicating a distinct 

features of the measured diffusivity: mean diffusivity (diffusion magnitude), fractional anisotropy 

(anisotropic fraction of diffusivity), axial diffusivity (diffusion magnitude of fastest diffusion 

direction), and radial diffusivity (diffusion magnitude of transverse direction) (Basser and Pierpaoli, 

1996; Vilanova et al., 2006; Jones, 2008; Abe et al., 2010; Chanraud et al., 2010). Subsequently, 

specialized algorithms transform and combine the tensor of every single voxel into a global diffusion 

map, this allows within- and between-group comparison (Abe et al., 2010; Chanraud et al., 2010; 

Jones, 2008; Pierpaoli & Basser, 1996; Vilanova et al., 2006). During the final step these diffusion 
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maps are normalized for statistical analysis. The type of normalization depends on the predetermined 

statistical method. Two statistical methods that are typically applied in DTI are voxel-based analysis 

(VBA) and tract-based spatial statistics (TBSS). VBA runs statistical analysis on a voxel-by-voxel 

basis where registration algorithms normalize the diffusion maps to a standard space followed by a 

standardized smoothing step. Whereas TBSS estimates a mean skeleton-tensor structure that 

represents the centers of all common fiber tracts of the investigated participant group (Andersson, 

Jenkinson, & Smith, 2007; Smith et al., 2006). This TBSS skeleton is then used for the normalization 

of each individual brain, smoothing is not necessary in this method.  

 

Another DTI method that should be shortly mentioned is fiber tractography, here the diffusion maps of 

fractional anisotropy are used to build up individual 3D fiber tracts (Basser & Pajevic, 2000; Jones, 

Horsfield, & Simmons, 1999; Mori et al., 1999; Mori et al., 2002; Wedeen et al., 2012). In this 

method, mathematical algorithms follow the tensor directions within specific diffusion maps to 

reconstruct probable fiber tracts between two a-priori chosen brain regions, or so-called seeding points 

(Le Bihan et al., 2001). Researchers have hypothesized that the uncinate fasciculus is most likely 

disrupted in antisocial behavior, since this fiber tract interconnects the amygdala and prefrontal areas 

commonly affected in antisocial behavior (Blair, 2013; Marsh et al., 2011a). Therefore, DTI-based 

studies in youths and adults with antisocial behavior have mainly focused on the fiber consistency and 

microstructural integrity of the uncinate fasciculus and found atypicalities within this tract (Breeden et 

al., 2015; Motzkin et al., 2011; Sarkar et al., 2013; Sobhani et al., 2015; Sundram et al., 2012; Zhang 

et al., 2014a). The ability to non-invasively estimate brain structural connectivity by investigating 

individual tracts have led fiber tractography to become a more popular method nowadays. 

 

To date, a handful of VBM studies and numerous DTI studies investigating white matter structure 

have led to ambiguous results in children and adolescents with antisocial behavior (for review see 

(Baker et al., 2015; Waller et al., 2017). For instance, one VBM study reported decreased white matter 

volume within the frontal, temporal and limbic regions of boys with antisocial behavior compared to 

their typically developing peers (De Brito et al., 2011), while another was unable to observe white 

matter differences at all (Stevens & Haney-Caron, 2012). This trend of ambiguity continues in DTI 

studies investigating the integrity, mostly through fractional anisotropy, of white matter tracts in 

youths with antisocial behavior. A majority of DTI studies observed increased or decreased white 

matter integrity in numerous fiber tracts comprising the corpus callosum, corona radiata, superior 

longitudinal fasciculus, fronto-occipital fasciculus, uncinate fasciculus, stria terminalis, and cerebellar 

peduncle (Breeden et al., 2015; Haney-Caron, Caprihan, & Stevens, 2014; Passamonti et al., 2012; 

Zhang et al., 2014b), while some found no white matter alterations (Beyer et al., 2014; Finger et al., 

2012; Hummer et al., 2015). Furthermore, different aspects of antisocial behavior, for instance 

psychopathic traits, callous unemotional traits, and conduct disorder symptoms, assumingly correlate 



Chapter 1.  General Introduction 

 

12 

 

with two DTI measures namely fractional anisotropy (FA) and axial diffusivity (AD), (Breeden et al., 

2015; Decety, Yoder, & Lahey, 2015; Haney-Caron et al., 2014; Pape et al., 2015). However, also 

here the correlational direction varies between these studies. These inconsistencies in white matter 

alterations and correlations may result from differences in DTI methods or analysis approaches 

applied, small sample sizes, group heterogeneity, or differences in the age of the participants tested. 

Zhang and colleagues (2014a) observed sex differences within the uncinate fasciculus of youth with 

antisocial behavior; indicating sex as another important factor that could explain the ambiguous 

findings within the DTI literature, since past studies included only male or mixed-gender groups to 

investigate antisocial behavior. To date it is unclear, whether the previously identified white matter 

alterations in boys with antisocial behavior are also present in girls with antisocial behavior. Two 

studies, one using a region of interest approach, the second based on post-hoc examinations of adult 

females with a prior diagnosis of antisocial behavior provide first evidence about potentially unique 

white-matter characteristics in girls with antisocial behavior (Lindner et al., 2016; Zhang et al., 2014a). 

However, no study to date has investigated whole-brain white matter alterations in young girls with 

antisocial behavior using DTI. 

 

1.5.  Functional brain correlates 

Functional magnetic resonance imaging (fMRI) has become the leading research technique for 

mapping brain activity, and therefore this subchapter will solely focus on this technique by describing 

its underlying theory and examining the neural correlates observed in youths with antisocial behavior 

to date. The principle of fMRI is based on the hemodynamic responses –changing oxygen levels in the 

blood– throughout the brain as an indirect measure of neural activity. This principle is called the blood 

oxygenation level-dependent (BOLD; also called T2
*
 parameters) contrast and is measured with 

radiofrequency pulses and rapidly changing magnetic fields in the MRI scanner (Lee et al., 2010; 

Logothetis & Pfeuffer, 2004). The BOLD contrast is based on the concentration of deoxygenated and 

oxygenated hemoglobin, the protein in red blood cells that transports oxygen, in the blood. High 

concentrations of deoxyhemoglobin molecules have paramagnetic features that induces magnetic field 

inhomogeneities which in turn decreasing the BOLD contrast (Ogawa et al., 1990; see Logothetis & 

Wandell, 2004 for a more entailed description of this technique). Active neurons get an overshoot of 

oxygenated hemoglobin supply that, in contrast to deoxygenated hemoglobin, increases the BOLD 

contrast. In this way fMRI can record brain activity with a temporal resolution of a few seconds 

covering the whole brain, producing images with a spatial resolution of a few millimeters.  

 

Analyzing fMRI images comprises the following three general phases: preprocessing, model 

specification, and statistical analysis. Additionally, each phase consists of numerous standardized steps 

that can be implemented using brain-imaging-analysis software (e.g. FSL, SPM, BrainVoyager). The 

goal of the preprocessing phase is to correct for artifacts caused by head movements or magnetic 
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inhomogeneities (i.e. realignment, unwarping, and/or slice time correction), and normalize each 

individual brain to a standardized brain template to improve statistical analysis (i.e. coregistration, 

segmentation, normalization, and smoothing). The following phase consists of designing a general 

linear model that predicts the brain activity during the employed fMRI paradigm. For an accurate 

model, the implementation of essential parameters extracted from the paradigm is a necessity, such 

parameters are the MRI sequence settings, the hemodynamic response model, timing parameters, 

regressors, and covariates. The last phase consists of setting up the statistical design consisting of the 

general linear model followed by voxel-wise standard parametric or nonparametric statistical testing. 

As it true for all neuroimaging techniques, also here correcting for multiple comparisons is essential 

for an accurate interpretation of the final results (Friston et al., 1995; Holmes et al., 1996). It is 

important to note that the outcome of fMRI studies is highly dependent on the quality of the designed 

fMRI paradigm, model specification, and statistical analysis involved. Therefore, a full and detailed 

methodological description in fMRI publications is a necessity for the reproducibility of the results 

(Poldrack et al., 2008). 

 

The behavioral aspects of antisocial behavior in youths encompasses merely higher-order processes, as 

a result functional MRI studies have mainly focused on unconscious/conscious processes that involve 

emotion processing, empathy, decision making, moral judgement, or avoidance learning. A multitude 

of neuroimaging studies have indicated altered brain activity in youths with antisocial behavior 

compared to their typically developing peers (Baker et al., 2015). Brain regions involved in emotion 

processing (e.g. amygdala, anterior cingulate cortex, and insula) and executive control (e.g. several 

regions within the prefrontal cortex) are frequently found to have altered activation patterns during 

paradigms using emotional stimuli (Dotterer et al., 2017; Fairchild et al., 2014; Hwang et al., 2016; 

Jones et al., 2009; Klapwijk et al., 2015; Lozier et al., 2014; Marsh et al., 2008; Passamonti et al., 

2010; Sebastian et al., 2014; White et al., 2012) or empathy aspects (Decety et al., 2009; Lockwood et 

al., 2013; Marsh et al., 2013b; Sebastian et al., 2012). Neuroimaging studies investigating the poor 

decision-making and avoidance-learning characteristics in antisocial behavior have found atypical 

neural activation during reward and punishment paradigms (Bubenzer‐Busch et al., 2015; Cohn et al., 

2013; Finger et al., 2011; Finger et al., 2008; Gatzke-Kopp et al., 2009; Rubia et al., 2009), and 

decision making tasks (Crowley et al., 2010; Klapwijk et al., 2016; Sakai et al., 2017; Sharp, Burton, 

& Ha, 2011; van den Bos et al., 2014; White et al., 2016). Impaired moral judgement may result from 

impairments in emotional empathy and decision-making, and is repeatedly linked with dysfunctional 

amygdala, frontal cortex areas (Blair, 2007a; Glenn & Raine, 2014; McColgan, Rest, & Pruitt, 1983; 

Moll et al., 2005; Van der Velden et al., 2010), and temporal regions in youth with antisocial behavior 

(Harenski, Harenski, & Kiehl, 2014; Harenski et al., 2010; Marsh et al., 2011a). In sum, the 

accumulation of fMRI studies provides strong evidence for atypical brain functioning within a wide 

variety of brain areas in youths with antisocial behavior, however, the direction and location of these 
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atypicalities vary between studies. This indicates once more the importance of investigating the 

consistency and stability of these fMRI findings of past studies. 

 

A correct processing and interpretation of distress-related cues, for example facial expressions, are a 

necessity in social human behavior for eliciting affective behavior and empathy, and inhibiting 

aggression towards others; behaviors that are often impaired in antisocial behavior (Blair et al., 2005; 

Blair, 2013; Marsh et al., 2011b). Dysfunctional recognition and processing of facial expressions (e.g. 

fearful and sad) have been observed in adolescents with antisocial behavior (Fairchild et al., 2010; 

Fairchild et al., 2009a); these deficiencies are associated with altered neural activation patterns, 

especially within the amygdala, the prefrontal cortex, and the insula (Fairchild et al., 2014; Herpertz et 

al., 2008; Passamonti et al., 2010; Sterzer et al., 2005). Additionally, psychopathic characteristics such 

as callous unemotional traits could mediate the effect on the neural activation pattern in antisocial 

behavior. For example, studies observed reduced amygdala activation in adolescents with both 

conduct disorder and callous unemotional traits (Jones et al., 2009; Lozier et al., 2014; Marsh & Blair, 

2008a). In contrast, adolescents with conduct disorder and low on callous unemotional traits exhibit 

increased neuronal activation within the amygdala as a response to negative emotional stimuli 

(Sebastian et al., 2014; Viding et al., 2012b) (Han et al., 2011). Research has suggested that a 

dysfunctional amygdala in healthy individuals cause recognition impairments of facial expressions 

(Adolphs et al., 1994; Adolphs et al., 1995). Moreover, these recognition impairments are linked to a 

lack of attention to the eye region: instructing to focus on the eyes abolished earlier observed 

recognition impairments, unfortunately, its effect on amygdala activity was not measured (Adolphs et 

al., 2005). The eye region is proven to be crucial for the recognition and thus processing of facial 

expressions (Baron-Cohen 1997; Eisenbach 2011); Consequently, Dadds and colleagues (2006) have 

hypothesized that the facial-expression-recognition deficits observed in individuals with antisocial 

behavior could be a result of reduced attention to the eyes. Indeed, young children (4- to 8-year old) 

and adolescents (till 15 years) with antisocial behavior and elevated callous-unemotional traits had 

reduced attention to the eyes of static pictures or during real life (parental play) interaction (Dadds et 

al., 2014; Dadds et al., 2008; Dadds et al., 2011; Dadds et al., 2006). Redirecting the attention to the 

eye abolished the impaired facial-expression recognition within these young samples (Dadds et al., 

2008; Dadds et al., 2006). So far, the neural underpinnings of these attentional deficits within 

antisocial behavior populations have not been thoroughly investigated. Only two functional 

neuroimaging studies have found a relation between neural correlates, callous-unemotional traits, and 

attention to the eye region (Han et al., 2011; Sebastian et al., 2014). However, both studies 

manipulated the patient’s eye gaze indirectly, by means of a fixation point or a mask, to the eye region 

of pictures with different facial expressions. To date, no study has investigated the direct correlation 

between the patient’s natural eye gaze (e.g. voluntary attention to the eye region) and neural activation 

patterns in antisocial behavior.  
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1.6 Neural correlates of callous-unemotional traits 

Children and adolescents with antisocial behavior form a highly heterogeneous population 

behaviorally, thus researchers proposed meaningful subtypes of antisocial behavior (Fairchild et al., 

2011; Frick, 2009; Frick & Marsee, 2006; Kruesi et al., 2004; Moffitt et al., 2008). In particular, 

callous-unemotional traits are a potential quantitative indicator for the severity (e.g. more delinquency 

and aggression) and persistence of antisocial behavior (Frick & White, 2008). Callous-unemotional 

traits reflect a lack of empathy, reduced guilt combined with a shallow affect, or limited prosocial 

emotions. Nowadays, callous-unemotional traits are also implemented as an additional specifier to the 

diagnosis of conduct disorder within the DSM-5 labeled as ‘Limited Prosocial Emotions’ (APA, 2013; 

Fairchild et al., 2013b; Pardini, Frick, & Moffitt, 2010). Behaviorally, callous-unemotional traits have 

been associated with reduced empathy and increased reward sensitivity, punishment insensitivity, and 

thrill seeking behavior in young populations with and without a diagnosis of antisocial behavior 

(Centifanti & Modecki, 2013; Chabrol et al., 2012; Frick et al., 2003; Frick et al., 1994; Jones et al., 

2010; Kimonis et al., 2008; Pardini & Byrd, 2012; Pardini, Lochman, & Frick, 2003). Recent studies 

investigating the neurobiology of callous-unemotional traits have most commonly linked areas of the 

limbic and threat system to the variability in callous-unemotional traits. Elevated levels of callous-

unemotional traits have frequently been linked with gray matter alterations in the paralimbic and 

limbic brain areas, studies found either a negative (Cohn et al., 2016; Cope et al., 2014; Rogers & De 

Brito, 2016; Sauder et al., 2012; Sebastian et al., 2016; Wallace et al., 2014) or positive correlation 

(De Brito et al., 2009; Fairchild et al., 2013a). Functional neuroimaging studies suggest that callous 

unemotional traits are also negatively correlated with amygdala activity (Viding, Fontaine, & 

McCrory, 2012a) and connectivity between the anterior cingulate and the insula (Yoder, Lahey, & 

Decety, 2016). Additionally, one meta-regression study found a negative correlation between callous-

unemotional traits and putamen gray matter volume (Rogers & De Brito, 2016). Evidently, these 

studies indicate an important connection between callous-unemotional traits and neurobiological 

correlates in youths with antisocial behavior. However, it remains open whether this correlation is 

driven by the presence of antisocial behavior, or whether callous-unemotional traits only modulate the 

brain structure within antisocial behavioral populations. 

 

1.7.  Gaps in knowledge 

To date, most evidence for neural correlates in antisocial behavior is based on individual 

neuroimaging studies that suffer from small sample sizes and low reliability, e.g. low statistical power. 

Furthermore, the findings of these studies are to some extent ambiguous: studies identified both hypo- 

and hyperactivations within the same brain regions (e.g. the amygdala) or observed a completely 

different set of altered brain regions. These inconsistencies are likely caused by different inclusion 

criteria applied, especially considering the clinical definitions of antisocial behavior, age, and sex of 

the participants included. The consistency and robustness of previous neuroimaging findings are of 
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importance to evaluate which brain areas are repeatedly affected throughout the literature; such brain 

regions can be identified with an activation likelihood estimation (ALE) meta-analysis –a statistical 

technique– specialized for analyzing neuroimaging data (Eickhoff et al., 2009; Turkeltaub et al., 2002; 

Turkeltaub et al., 2012). Therefore, the first aim of this thesis is to aggregate and investigate the 

robustness of all structural and functional neuroimaging studies conducted in youths with antisocial 

behavior using an ALE meta-analysis (see chapter 2).  

 

Neuroimaging studies have suggested a significant correlation between callous-unemotional traits and 

neurobiological functional and structural correlates in youths with antisocial behavior. However, it 

remains open whether this correlation is driven by the presence of antisocial behavior, or whether 

solely callous-unemotional traits modulate the brain structure within antisocial behavioral populations. 

In order to bridge this gap, the second aim of this thesis is to investigate callous-unemotional traits in 

typically developing youths free from –and thus independent of– any psychiatric disorder. 

Furthermore, since most studies have focused solely on males, the variations in callous-unemotional 

traits and brain structure will be investigated for boys and girls separately (see chapter 3). 

 

Besides gray matter alterations also the white matter appears to differ between the brains of youths 

with and without antisocial behavior. DTI studies have observed white matter alterations within 

several white matter tracts. However, these studies have mostly focused on boys or mixed-gender 

samples, and thus it is unclear whether the previously identified white matter alterations are also 

present in girls with antisocial behavior. No study to date has investigated whole-brain white matter 

alterations in girls with antisocial behavior using DTI. Therefore, the third aim of the present work 

aims at bridging this gap in knowledge by comparing white matter tracts in girls with antisocial 

behavior compared to typically developing controls (see chapter 4).   

 

In the last decennia studies investigating young samples with antisocial behavior have associated 

dysfunctional recognition and processing of facial expressions with altered neural activation patterns. 

Studies have proposed that reduced attention to the eye region could be the cause of such impairments. 

Interestingly, when the attention is redirecting to the eye region these recognition impairments are 

abolished. So far two fMRI studies have found alterations in amygdala activity when manipulating 

attention to the eye via fixation point or mask in youth with antisocial behavior. Nevertheless, no study 

has investigated the direct correlation between the natural eye gaze and neural activation in antisocial 

behavior. Therefore, the fourth aim of this thesis is to investigate the neural underpinnings of facial-

expression processing and its relationship with eye gaze, using a modified facial-expression paradigm 

in combination with real-time eye-tracking. Real-time eye tracking allows researchers not only to 

measure eye-gaze patterns, such as fixations and saccades, but also the possibility to control the task 

compliance/performance of the participants (see chapter 5). 
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Nowadays scientists are becoming more aware of their responsibility and the importance of good 

communication of science to the general public. A poor understanding of the basics of science may 

force the public to make uninformed decisions, ultimately leading to negative consequences, such as 

mistrust or misunderstanding of scientists and their research. Therefore, our fifth aim was to raise 

awareness about antisocial behavior and the importance of neuroscientific research in youths by 

translating the results from our meta-analysis project to the general public using accessible language, 

attractive illustrations, and popular examples (see chapter 6). 

 

1.8.  Thesis Aims 

 

(1)  Aggregate all structural and functional neuroimaging studies conducted in adolescents with 

aggressive or antisocial behavior to date.  

(a)   Conduct a systematic literature review of neuroimaging findings in adolescents with 

antisocial behavior.  

(b)   Perform meta-analyses to examine gray matter volume reductions as well as functional 

alterations during emotion processing tasks in adolescents with antisocial behavior.  

(c)   Identify potential overlaps in brain structural and functional alterations in adolescents with 

antisocial behavior.  

 

 

(2)   Investigate callous-unemotional traits in typically-developing boys and girls without 

antisocial behavior. 

(a)   Investigate variations in callous-unemotional traits and brain structure for typically 

developing males and females. 

 

 

(3)   Investigate the white matter in female adolescents with antisocial behavior. 

(a)   Investigate white matter alterations in females on a whole brain level and within a priori 

defined regions of interest to allow comparability to past studies and data in males. 

 

 

(4)  Investigate the neural underpinnings of facial-expression processing in youths with 

antisocial behavior, and its relationship with eye gaze to the eye region. 

 

 

(5)  Translate neuroscience and neuroimaging results to the general public.  

(a)   Translate the findings of our meta-analysis to children and adolescents. 

(b)   Explain the neuroimaging technique and importance of neuroscience research. 
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Chapter 2. Structural and functional alterations in right dorsomedial 

prefrontal and left insular cortex co-localize in adolescents 

with aggressive behavior: an ALE meta-analysis. 
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Abstract 

Recent neuroimaging work has suggested that aggressive behavior (AB) is associated with structural 

and functional brain abnormalities in processes subserving emotion processing and regulation. 

However, most neuroimaging studies on AB to date only contain relatively small sample sizes. To 

objectively investigate the consistency of previous structural and functional research in adolescent AB, 

we performed a systematic literature review and two coordinate-based activation likelihood estimation 

meta-analyses on eight VBM and nine functional neuroimaging studies in a total of 783 participants 

(408 [224AB/184 controls] and 375 [215 AB/160 controls] for structural and functional analysis 

respectively). We found 19 structural and eight functional foci of significant alterations in adolescents 

with AB, mainly located within the emotion processing and regulation network (including 

orbitofrontal, dorsomedial prefrontal and limbic cortex). A subsequent conjunction analysis revealed 

that functional and structural alterations co-localize in right dorsomedial prefrontal cortex and left 

insula. Our results are in line with meta-analytic work as well as structural, functional and connectivity 

findings to date, all of which make a strong point for the involvement of a network of brain areas 

responsible for emotion processing and regulation, which is disrupted in AB. Increased knowledge 

about the behavioral and neuronal underpinnings of AB is crucial for the development of novel and 

implementation of existing treatment strategies. Longitudinal research studies will have to show 

whether the observed alterations are a result or primary cause of the phenotypic characteristics in AB. 
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Introduction 

Aggressive behavior (AB), as observed in social disorders such as DBD (including conduct (CD) and 

oppositional defiant disorder (ODD)), is characterized by a repeated pattern of antisocial behavior and 

severe aggression, where the basic rights of others, major age-appropriate norms or societal rules are 

violated (R. J. Blair, Leibenluft, & Pine, 2014). Such problems can cause significant impairment in 

social, academic, or occupational functioning (Association, 2013; Scott, Knapp, Henderson, & 

Maughan, 2001). Clinical and subclinical forms of AB are observed in up to 14% of all girls and 16% 

of all boys (Ravens-Sieberer et al., 2008). The negative impact of aggression-related problems reaches 

beyond a patient’s family, ultimately affecting society as a whole (e.g. school-dropouts, delinquency, 

teen-pregnancies, substance abuse or difficulties integrating into work life (Bardone et al., 1998; 

Pedersen & Mastekaasa, 2011; Scott et al., 2001)). Early conduct problems are key precursors of 

persistent AB and thus also predictive for ODD, CD and antisocial personality disorder in adulthood 

(Lahey, Loeber, Burke, & Applegate, 2005). Neurodevelopmental theories (Frick & Viding, 2009; 

Gao, Glenn, Schug, Yang, & Raine, 2009; Glenn & Raine, 2008) and longitudinal studies (Vloet, 

Konrad, Huebner, Herpertz, & Herpertz-Dahlmann, 2008) are in line with these behavioral 

observations, suggesting that the presence of early brain alterations in individuals with aggressive 

behavior may heighten the risk for long-lasting social impairments (McEwen, 2003; Raine & Yang, 

2006). In the current paper we particularly focus on adolescents with aggressive behavior (AB), 

hereby summarizing neuroimaging research in youths with either conduct problems, CD or ODD.  

 

In recent years structural (e.g. voxel-based/surface-based) and functional (e.g. fMRI/PET) 

neuroimaging techniques have grown into powerful tools to investigate the neuronal basis of the 

human brain in typically developing individuals as well as patients. It has been demonstrated that both, 

brain structure and function, may be modified by experience (Maguire et al., 2000; Schmidt-Wilcke, 

Rosengarth, Luerding, Bogdahn, & Greenlee, 2010). Activation-dependent structural plasticity can 

even occur after as little as seven days of training (Draganski et al., 2004; Driemeyer, Boyke, Gaser, 

Buchel, & May, 2008) and it is suggested to play a key role in human adaptation to environmental 

changes and disease. Even though neuroimaging evidence points toward a neuronal basis of AB (R. J. 

Blair, 2003; Raine & Yang, 2006), the overall number of research studies within this population 

remains relatively scarce. Furthermore, it has to be noted that AB characteristics as seen in CD and/or 

ODD are considered heterogeneous in respect to their pathologies. CD and ODD are frequently 

associated with comorbidities such as attention-deficit hyperactivity disorder (ADHD) or anxiety 

(Loeber, Burke, Lahey, Winters, & Zera, 2000)). These comorbid disorders can differ in their 

pathophysiological mechanisms, some of them seem exclusive on a biological level making it possible 

that different developmental trajectories with varying neurobiological bases lead to the clinical 



Chapter 2.  Meta-Analysis: Functional and Structural 

 

22 

 

manifestations of AB (Crowe & Blair, 2008). The vagueness of the group definition within many of 

the current studies on AB is thus bound to impact general conclusions drawn from it. 

 

Even though the total number of studies is still limited, neuroanatomical and functional variations in 

youths with AB have been reported with increased frequency since the advent of modern 

neuroimaging. In particular, brain structure in AB has been investigated using voxel-based 

morphometry (VBM), diffusion tensor imaging (DTI) or surfaced-based morphometry. VBM studies 

for example have revealed differences in gray and white matter volume in brain regions including the 

amygdala, insula, orbitofrontal and dorsomedial prefrontal cortex (e.g. (De Brito et al., 2009; 

Fairchild, Hagan, et al., 2013; Fairchild et al., 2011; Sterzer, Stadler, Poustka, & Kleinschmidt, 2007)) 

when comparing adolescents with AB and typically developing controls. Similarly, studies using 

surface-based morphometry (Hyatt, Haney-Caron, & Stevens, 2012; Wallace et al., 2014) or DTI 

(Finger et al., 2012; Haney-Caron, Caprihan, & Stevens, 2014; Li, Mathews, Wang, Dunn, & 

Kronenberger, 2005; Passamonti et al., 2012; Sarkar et al., 2013; Zhang et al., 2014a; Zhang, Zhu, et 

al., 2014) provide evidence for structural alterations and/or impaired connectivity within brain regions 

involved in emotion processing, reward and empathy. Functional neuroimaging studies corroborate the 

structural neuroimaging literature. Cognitive paradigms employed in the investigation of AB have 

focused on disturbances in the emotion processing and regulation network of the brain. These tasks 

particularly target emotion processing/regulation (Herpertz et al., 2008; Jones, Laurens, Herba, Barker, 

& Viding, 2009; Lockwood et al., 2013; Marsh et al., 2008; Mathews et al., 2005; Passamonti et al., 

2010; Sebastian et al., 2014; Stadler et al., 2007; Sterzer, Stadler, Krebs, Kleinschmidt, & Poustka, 

2005; White et al., 2012), empathy (Decety, Michalska, Akitsuki, & Lahey, 2009; Lockwood et al., 

2013; Marsh et al., 2013), theory of mind (Sebastian et al., 2012), passive avoidance (Finger et al., 

2011), decision making (Dalwani et al., 2014; White et al., 2013) or executive functioning (Mathews 

et al., 2005; Rubia et al., 2008; White et al., 2012). Overall, studies point towards aberrant brain 

function in AB in key areas of social cognition and emotion, including prefrontal (orbitofrontal, 

dorsolateral and medial prefrontal cortex), limbic (e.g. amygdala, anterior insula, cingulate cortex) and 

temporal cortices.  

 

Despite increasing evidence about the uniformity of atypical brain structure and function in AB, it has 

yet to be objectively determined which brain regions are commonly affected. Functional and structural 

neuroimaging studies are crucial for the understanding of the phenotype and etiology of AB. However, 

most results and interpretations are based on individual neuroimaging studies and present various 

limitations (e.g. small sample sizes, low reliability, dependency on task chosen (Eickhoff et al., 2009; 

Raemaekers, du Plessis, Ramsey, Weusten, & Vink, 2012; Stark & Squire, 2001)). Furthermore, very 
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few imaging studies have yet investigated brain structure and function in the same population. 

Activation likelihood estimation (ALE) meta-analyses allow the identification of consistent findings of 

brain activation and structure across multiple data sets. Hereby, ALE quantitatively investigates 

communalities between reported foci based on modelling them as probability distributions centered 

around the corresponding coordinates. The resulting probability maps mirror the likelihood of 

morphological change and/or activation on a voxel-wise level across an entire set of studies (Eickhoff 

et al., 2009). ALE has been successfully applied in meta-analyses of various neuropsychiatric 

disorders to date (Fusar-Poli et al., 2011; Glahn et al., 2008; Kollndorfer et al., 2013; Linkersdorfer, 

Lonnemann, Lindberg, Hasselhorn, & Fiebach, 2012; Schwindt & Black, 2009) and provides a 

promising tool for a more unified investigation of pathophysiologic changes in disease. 

 

Therefore, the present paper intends to close this gap in research and aims to aggregate all structural 

and functional neuroimaging studies conducted in adolescent AB to date. In a first step, we planned to 

conduct a systematic literature review of neuroimaging findings in adolescents with AB. Secondly two 

separate meta-analyses looking at gray matter volume reductions as well as hypoactivations during 

emotion processing tasks in AB were carried out. Finally, we decided to run a conjunction analysis to 

identify potential overlaps in deviant brain structure and function in adolescents with AB.  

 

Method 

Participants 

We decided to focus our analysis on adolescents with aggressive behavior (AB) in general as opposed 

to a specific clinical diagnosis. By including both community samples and clinical samples in the 

present meta-analyses we adhere to the heterogeneity in juvenile aggression. This heterogeneity is 

further reflected by different behavioral symptoms of aggression and antisocial tendencies, such as 

oppositional behavior, impulsive hot-tempered quarrels or premeditated violent acts, the presence of 

callous unemotional/psychopathic traits or co-morbid conditions in CD and ODD patients. All studies 

were conducted during childhood and/or adolescence and share the communality of aggression and 

antisocial tendencies within the populations studied. Thus, AB as defined here may be considered an 

umbrella term for children and adolescents with a range of subclinical and clinically relevant 

symptoms of pathological aggression. 

 

Study Selection 

For the structural and functional neuroimaging meta-analyses we used PubMed and Google Scholar to 

systematically search for neuroimaging literature in AB. Literature searches were conducted and 

reviewed by several research team members (NMR, WMM, LVF, ET) and adhered to the Preferred 
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Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the revised 

Quality Of Reporting Of Meta-analyses (QUOROM) statement (Moher, Liberati, Tetzlaff, Altman, & 

Group, 2009). Our main search (see Figure 1) conducted through PubMed included the following key 

words: “conduct disorder”, “conduct problems”, “disruptive behavior disorder”, “oppositional 

defiant disorder” and “aggression”, each in combination with methodologically relevant terms 

including “VBM”, “fMRI” and/or “neuroimaging”. Moreover, a number of review articles published 

on conduct disorder, antisocial behavior and aggression in adolescents were considered (e.g. 

(Anderson & Kiehl, 2014; R. J. Blair, 2010; Cappadocia, Desrocher, Pepler, & Schroeder, 2009; 

Dolan, 2010; Fairchild, van Goozen, Calder, & Goodyer, 2013; Viding & McCrory, 2012; Vloet et al., 

2008)). Finally, additional publications were explored by searching the reference list of the articles 

obtained to assure integration of all data available. Studies were included in our meta-analyses if the 

following criteria were given: (I) included at least one clinical group with described aggressive 

behavior, (II) in combination with a healthy control sample, (III) conducted during adolescence, (IV) 

reported whole brain gray matter volume alterations or whole brain functional neuroimaging data, (V) 

results are described using a standard reference space (Talairach or MNI) and (VI) the same threshold 

was used throughout the whole brain analysis. All structural studies included employed a standard 

VBM analysis protocol. In both meta-analysis of structural and functional brain alterations in 

adolescents with AB versus controls, no studies providing results based on a priori region-of-interest 

analysis only were included (since they violate the assumption, under the null hypothesis, that the 

likelihood of locating activated foci is equal at every voxel). Similarly, no animal studies or case 

reports were included in any meta-analysis and only studies from peer-reviewed journals that are 

written in English were considered. Data is current up to July 2015. 

 

Of the 1021 studies identified through our systematic review (see Figure 1), we screened 930 (after 

removal of duplicates) and consequently assessed the full texts of 173 articles. 156 studies had to be 

excluded from the functional or structural meta-analysis in adolescents with AB, because they did not 

meet the criteria listed above (for detailed exclusion reasons, see Figure 1). Looking more closely at 

our review on structural research studies in AB revealed that only five studies reported on gray matter 

volume increases in AB (four reported de- and increases, one study only reported increases). Therefore 

we did not conduct a separate meta-analysis for gray matter volume increases in AB. Consequently, 
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Figure 1. Systematic literature research. Literature research according to the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the revised Quality Of 

Reporting Of Meta-analyses (QUOROM) statement (59) resulting in 17 neuroimaging studies 

included in the current meta-analyses. 

 

 

eight studies were included in our meta-analysis about gray matter volume reductions, together 

reporting data from 408 research participants (224 AB, 184 typically developing controls=TD), and 50 

foci of gray matter volume decreases in youths with AB (Table 1, (Dalwani et al., 2011, 2015; De 

Brito et al., 2009; Fahim et al., 2011; Fairchild, Hagan, et al., 2013; Fairchild et al., 2011; Huebner et 

al., 2008; Stevens & Haney-Caron, 2012)).  
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Table 1. Characteristics of the studies in adolescents with AB included in the current structural meta-

analysis. 

       # First author Year Method  Diagnosis [N] Sex [m/f] Average age and 

[range] in years 

1 Huebner 2008 VBM CD, early-onset [23] 

TD [23] 

[23/0] 

[23/0] 

CD, early-onset: 14.5 

TD: 14.2 

[12-17] 

2 De Brito 2009 VBM CP/CU+ [23] 

TD [25] 

[23/0] 

[25/0] 

CP/CU+: 11.5 

TD: 11.8 

[10-13] 

3 Dalwani 2011 VBM CP+SUD [25] 

TD [19] 

[25/0] 

[19/0] 

CP+SUD: 16.6 

TD: 16.6 

[14-18] 

4 Fahim 2011 VBM DBD [22; 

11CD/11ODD] 

TD [25] 

[22/0] 

[25/0] 

DBD: 8.4 

TD: 8.4 

5 Fairchild 2011 VBM CD, early-onset [36] 

CD, late-onset [27] 

TD [27] 

[36/0] 

[27/0] 

[27/0] 

CD, early-onset: 17.7 

CD, late-onset: 17.9 

TD: 18.5 

[16-21] 

6 Stevens 2012 VBM CD [24] 

TD [24] 

[19/5] 

[16/8] 

[16/8] 

CD: 15.7 

TD: 16.0 

[12-18] 

7 Fairchild 2013 VBM CD [22] 

TD [20] 

[0/22] 

[0/20] 

CD: 17.6 

TD: 17.2 

[14-20] 

8 Dalwani 2015 VBM CP [22]TD[21] [0/22][0/21

] 

CP: 16.7 

TD: 16.1 

[14-18] 

CD = Conduct disorder. DBD = Disruptive behavior disorder. CU+ = with high callous-unemotional traits . 

SUD = Substance use disorder. TD = Typically developing subjects. VBM = Voxel-based morphometry 

    

 

Our systematic literature review of functional neuroimaging studies in youths with AB identified 

experiments targeting emotion processing (Herpertz et al., 2008; Jones et al., 2009; Lockwood et al., 

2013; Marsh et al., 2008; Mathews et al., 2005; Passamonti et al., 2010; Sebastian et al., 2014; Stadler 

et al., 2007; Sterzer et al., 2005; White et al., 2012), empathy (Decety et al., 2009; Lockwood et al., 

2013; Marsh et al., 2013), theory of mind (Sebastian et al., 2012), passive avoidance (Finger et al., 

2011), decision making (Dalwani et al., 2014; White et al., 2013) or executive functioning (Mathews 

et al., 2005; Rubia et al., 2008; White et al., 2012). We decided to restrict our functional meta-analysis 

to tasks only including emotionally loaded and visually presented stimuli (e.g. tasks of emotion 

processing and empathy). In case of sample overlap, the study with the highest subject number 
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meeting all other criteria listed above was selected. In case of comparisons between AB and TD in 

more than one contrast, only foci from the contrast putting the highest demand on emotion processing, 

were included. The majority of studies indicated hypoactivations in AB. Only six studies  

 

Table 2. Characteristics of the studies in adolescents with AB included in current functional meta-

analysis. 

# First author Year Stimuli  Diagnosis [N] Sex  Average age and 

      [m/f] [range] in years 

1 Sterzer 2005 Pictures with 

neutral or strong 

negative affective 

valence (IAPS). 

  CD [13] 

TD [14] 

 [13/0] 

[14/0] 

CD: 12.9 

TD: 12.7 

[9-15] 

2 Passamonti 2010 Pictures of angry, 

sad and neutral 

faces. 

  CD, early-onset [27] 

CD , .late-onset [25] 

TD [23] 

[27/0] 

[25/0] 

[23/0] 

CD, early-onset: 

17.7 

CD, late-onset: 17.1 

TD: 17.8 

[16-21] 

3 Marsh 2011 Emotional words 

(categorization 

task). 

  CD/ODD+PT [14] 

TD [14] 

[8/6] 

[11/3] 

CD/ODD+PT: 14.4 

TD: 13.5 

4 White 2012 Pictures of fearful 

and neutral faces. 

  CD/ODD+PT [15] 

TD [17] 

[12/3] 

[9/8] 

CD/ODD+PT: 15.7 

TD: 14.5 

[10-17] 

5 Lockwood  2013 Pictures of others in 

pain or no pain. 

  CD [37] 

TD [18] 

[37/0] 

[18/0] 

CD: 14.1 

TD: 13.7 

[10-16] 

6 Marsh 2013 Pictures of others in 

pain or no pain. 

  CD/ODD+PT [14] 

TD [21] 

[8/6] 

[15/6] 

CD/ODD+PT:  15.4 

TD: 14.3 

[10-17] 

7 Fairchild 2014 Pictures of 

emotional or 

neutral faces. 

  CD [20] 

TD [20] 

[0/20] 

[0/20] 

CD: 17.0 

TD: 17.6 

8 O'Nions 2014 Cartoons (affective 

picture series) 

  CP/CU+ [16] 

TD [16] 

[16/0] 

[16/0] 

[16/0] 

CP/CU+: 14.2 

TD: 13.5 

[10-16]  

9 Sebastian 2014 Pictures of fearful 

and calm facial 

expressions. 

  CP/CU+ [17] 

CP/CU- [17] 

TD [17] 

[17/0] 

[17/0] 

[17/0] 

CP/CU+: 14.0 

CP/CU-: 14.5 

TD: 13.5 

[10-16] 

CD = Conduct disorder. CP = Conduct problems. ODD = Oppositional defiant disorder. PT = with psychopathic 

traits. CU+ = with high callous-unemotional traits. CU- = with low callous-unemotional traits . TD = Typically 

developing subjects. 
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that fulfilled all other criteria listed above reported hyperactivations in AB compared to TD. 

Therefore, we did not conduct a separate meta-analysis on functional overactivations in AB. 

Consequently nine studies suggesting hypoactivations in adolescents with AB compared to TD were 

selected (Table 2; (Fairchild et al., 2014; Lockwood et al., 2013; Marsh et al., 2013; Marsh et al., 

2011; O'Nions et al., 2014; Passamonti et al., 2010; Sebastian et al., 2014; Sterzer et al., 2005; White 

et al., 2012)). Together the selected studies report data from 375 research participants (215 AB, 160 

TD) and describe 58 foci of hypoactivation in AB compared to TD. 

 

ALE meta-analysis procedure 

We conducted two separate meta-analyses on gray matter volume alterations and functional 

hypoactivations in adolescents with AB. Data analysis was carried out using the revised version of the 

ALE approach for coordinate-based meta-analysis of neuroimaging data (Ginger ALE software, 

version 2.3; available from http://brainmap.org/ale/ (Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012; 

Eickhoff et al., 2009; Laird et al., 2005; Turkeltaub et al., 2012)). In short, this new approach 

implements a random-effects model, a quantitative uncertainty model to determine the FWHM and an 

exclusive gray matter mask (for further details, see also (Eickhoff et al., 2012; Eickhoff et al., 2009; 

Laird et al., 2005; Stark & Squire, 2001; Turkeltaub et al., 2012)). Most importantly, instead of testing 

for an above-chance clustering between foci, the revised ALE algorithm assesses above-chance 

clustering between experiments. The spatial relationship between foci in a given experiment is now 

assumed to be fixed and ALE results are assessed against a null distribution of random spatial 

association between experiments. Prior to running any analyses, coordinates reported in Talairach 

space were transformed to MNI space using the tal2icbm algorithm (Laird et al., 2010; Lancaster et 

al., 2007). The here employed revised ALE approach identifies areas of convergence of activation 

across various experiments, minimizing the within-groups effects (approach by Turkeltaub and 

colleagues (Turkeltaub et al., 2012)). Each focus is represented as a center for 3D Gaussian probability 

distributions, where the standard deviation depends on group size (capturing spatial uncertainty) rather 

than single time points. First, the probabilities of all activation foci in a given experiment are 

combined for each voxel, which is represented in modelled activation maps (fMRI) or modelled 

anatomical maps (VBM). Secondly, the ALE method combines all modelled maps (fMRI and VBM 

separately) on a voxel-by-voxel basis to form an ALE image containing all unthresholded voxel ALE 

values. In the last step, this ALE image is tested against the null hypothesis under the assumption that 

all activated voxels are homogeneously distributed in the brain, independent of the experiments. This 

null-hypothesis model (a distribution map made by multiple permutations of random voxel activation) 

was created using a random-effects statistical method and tested against the original ALE image 

according to the selected significance threshold. Therefore, the null distribution is constructed 
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reflecting a random spatial association between different studies. Comparing the “true” ALE score to 

this distribution allows a focused inference on convergence between studies while preserving the 

relationship between individual foci within each study. Critically, this change from fixed- (foci-based) 

to random-effects (testing between study effects) inference in ALE analysis allows generalization of 

the results to the entire population of studies from which the analyzed ones were drawn. This more 

conservative approach with an increased specificity (Eickhoff et al., 2012; Eickhoff et al., 2009) does 

also accommodate the idea of convergence across heterogeneous studies. We used a statistical 

threshold of p<0.05 False Discovery Rate (FDR) corrected for multiple comparisons and a minimum 

cluster size of 500mm
3
. ALE maps are overlaid onto a standard brain in MNI space (Colin27 available 

at http://www.brainmap.org/ale/) using the Multi-image Analysis GUI (Mango available at 

http://ric.uthscsa.edu/mango/mango.html) and clusters were anatomically labelled by cross-referencing 

the Talairach Daemon (Lancaster et al., 1997; Lancaster et al., 2000) and aal (Tzourio-Mazoyer et al., 

2002). In order to further investigate possible overlaps between the structural (VBM) and functional 

(fMRI) meta-analysis in adolescent AB, a formal conjunction analysis was performed by multiplying 

binarized versions of the individually thresholded ALE maps. 

 

Results 

Our meta-analysis of structural neuroimaging studies in adolescents with AB revealed 19 clusters of 

significant convergence between the studies (see Table 3; Figure 2). The largest clusters were found 

in the right inferior frontal lobe (inferior frontal/precentral gyrus), right precuneus and left-

hemispheric insula. Further smaller clusters were found bilaterally in the frontal (e.g. dorsolateral and 

medial frontal gyrus), parietal (e.g. precuneus) and temporal lobe (e.g. middle/superior temporal 

gyrus) as well as the cerebellum (e.g. culmen). Our meta-analysis of functional hypoactivation in 

adolescents with AB revealed 8 clusters of significant convergence between the studies with the 

largest clusters in the right middle/superior frontal gyrus, left thalamus and basal ganglia, as well as 

left-hemispheric insula (see Table 3, Figure 2). Beyond others, further clusters included the right 

anterior cingulate, left middle temporal gyrus and right amygdala. 
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Figure 2. Neuronal alter-

ations in adolescents with 

aggressive behavior (TD>AB): 

Results from an ALE meta-

analysis. 2-D axial slices 

displaying the thresholded 

and binarized ALE maps of 

significant overlap (P<0.05, 

FDR-corrected) in studies of 

structural (green) and 

functional (red) alterations 

in adolescent AB (TD>AB) 

as well as a conjunction 

analysis (blue) overlaid on 

the Colin T1-template in 

MNI space. Z-slices 

depicting the results range 

from z=21 to 120 and are 

displayed in neurological 

view using the Multi-image 

Analysis GUI (Mango 

available at http://ric.uthscsa.edu/mango/mango.html). 
 

 

Table 3. Results of the structural and functional ALE-meta analyses and conjunction analysis of 

structure and functional alterations in adolescents with AB 

#  Region BA H Volume 
Local Maxima 

   x          y           z                         

 

Structural Meta-Analysis (TD>AB)        

1 inferior frontal/precentral gyrus, 13, R 1952 54 16 10  

 insula 44 , 45   62 20 6  

     56 26 16  

2 subcallosal gyrus, putamen,  34 R 1672 26 4 -16  

 lateral globus pallidus, amygdala    22 4 -8  

     14 10 -12  

3 inferior frontal gyrus 45, 47 R 1304 52 26 -10  

4 insula 13 L 1144 -38 8 8  

     -38 4 -2  

5 middle/superior frontal gyrus 9,8 R 1112 34 48 30  

     40 38 30  

6 middle/inferior frontal gyrus 10,46 L 1040 -36 48 -2  

     -46 48 2  

7 putamen, claustrum  R 688 34 2 -2  

8 thalamus  R 560 20 -30 8  

9 subcallosal/middle frontal gyrus, 

cingulate 

25 R 528 10 14 -22  

10 cingulate/middle frontal gyrus 32 L 528 -10 24 42  

11 claustrum  L 520 -24 20 8  

12 claustrum, insula  R 520 32 14 10  

13 subcallosal/parahippocampal 

gyrus, amygdala 

34 L 512 -30 4 -18  

14 culmen, declive  R 512 4 -58 -16  
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15 caudate  R 512 10 14 2  

16 thalamus  L 512 -8 -16 15  

17 inferior frontal gyrus 47 R 504 46 26 -30  

18 middle temporal gyrus 37 R 504 54 -68 12  

19 superior frontal gyrus 9 R 504 18 56 20  

#  Region BA H Volume 
Local Maxima 

   x             y          z                              

Functional Meta-Analysis (TD>AB)           

1 middle/superior frontal gyrus, 8, 9,  R/L 3728 14 44 30 

 

anterior cingulate gyrus 10, 32 

  

8 36 28 

     

22 48 22 

     

32 50 14 

     

0 36 24 

2 thalamus, lentiform nucleus, 

 

L 1944 -6 -12 -4 

 

putamen, medial globus 

pallidus 

   

-26 -8 -12 

 

amygdala 

   

-16 -8 -4 

3 claustrum, insula 13 L 1896 -28 20 0 

     

-38 20 12 

4 middle frontal gyrus,  11, 24 R 1328 12 30 -20 

 

anterior cingulate 

   

4 30 -14 

5 inferior/middle temporal gyrus 21 L 1288 -48 -8 -26 

6 amygdala, parahippocampal  28 R 1224 30 -4 -28 

 

gyrus  

   

20 -2 -30 

7 claustrum, putamen, insula 13 R 776 28 20 0 

     

30 24 -2 

8 superior, middle frontal gyrus 9 R 552 14 60 16 

        Conjunction: Structural (TD>AB) ∩ Functional (TD>AB)  
  

1 
superior frontal gyrus 

(dmPFC) 
9 R 128 16 58 18 

2 claustrum, insula 

 

L 8 -26 20 4 

3 claustrum, insula   L 8 -28 18 6 

All x, y, z-coordinates represent local maxima in MNI space. AB=Aggressive Behavior. 

Volume=Volume (mm3). TD=Typically developing controls. H=Hemisphere. BA= Brodmann areas. 

R=Right. L=Left. 

 

 

A formal conjunction analysis using the thresholded ALE maps from the structural and functional 

meta-analysis discovered three areas of regional overlap (Table 3, Figure 3). The biggest area of 

functional and structural overlap (128mm
3
) in adolescents with AB was identified within the right 

dmPFC. Additionally, the analysis exposed two smaller, close-lying clusters of convergence with a 

peak in the left claustrum, extending into the insular cortex.  
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Figure 3. Structural and functional neuroimaging findings in youths with AB co-localize in right 

dorsomedial prefrontal cortex (dmPFC) and left insular cortex. 2-D slices displaying the thresholded 

and binarized ALE maps of significant overlap (P<0.05, FDR-corrected) in studies of structural 

(green) and functional (red) alterations in adolescents with AB (TD>AB) as well as a conjunction 

analysis (blue) overlaid on the Colin T1-template in MNI space. The upper-row including left cut-out 

as well as right surface-model highlight the right dmPFC where structural and functional alterations 

co-localize. The lower-row including left cut-out as well as right surface-model illustrate left insular 

cortex/claustrum where structural and functional alterations overlap.   

 

 

Discussion 

To our knowledge, the current work provides the first quantitative summary of functional 

hypoactivations and gray matter volume reductions in adolescents with AB by summarizing findings 

of eight structural and nine functional neuroimaging studies in a total of 783 participants (408 [224 

AB/184 TD] and 375 [215 AB/160 TD] for structural and functional analysis respectively). Our 

findings indicate 19 structural and eight functional foci of significant alterations in AB, mainly located 

within the emotion processing and regulation network of the human brain (including orbitofrontal, 

dorsolateral/medial prefrontal cortex and limbic brain regions; for reviews on emotion processing and 

regulation see also (Lindquist, Wager, Kober, Bliss-Moreau, & Barrett, 2012; Ochsner, Silvers, & 

Buhle, 2012; Rubia, 2011)). Conjunction analysis reveal that functional and structural alterations in 

AB overlap in three areas, with the largest cluster centered in the right dmPFC and two smaller 

clusters that encompass the left insula. 
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In the following sections we will review structural and functional neuroanatomical evidence derived 

from healthy participants as well as those with aggressive behavior (e.g. conduct problems, CD, ODD) 

for the key areas implicated here (orbitofrontal and dorsomedial prefrontal cortex, insula, cingulate 

cortex, amygdala). 

 

Orbitofrontal and Dorsomedial Prefrontal Cortex 

Our findings identify prefrontal brain regions including orbitofrontal and dorsomedial prefrontal 

cortex as main locations of aberrant brain function and structure in youths with AB. Furthermore, an 

overlap in the foci representing structural and functional changes that co-localize in AB is centered in 

the right dmPFC. While the orbitofrontal as well as the dorsomedial prefrontal cortex can be 

differentiated based on quantitative as well as qualitative markers (Zald, 2007), both have equally been 

suggested in emotion processing and working memory/inhibitory control (Golkar et al., 2012). The 

medial prefrontal cortex in particular has been implicated in emotional self-regulation (Davidson, 

Jackson, & Kalin, 2000), general self-referential activities (D'Argembeau et al., 2007) and emotion-

related decision making (Euston, Gruber, & McNaughton, 2012). Meta-analytic evidence suggests a 

more generic role of the dmPFC in emotion processing (e.g. appraisal, evaluation, experience, 

response), non-specific to a particular emotion (Phan, Wager, Taylor, & Liberzon, 2002). In addition, 

lesion, neurophysiological and neuroimaging evidence have linked the orbitofrontal and dorsomedial 

prefrontal cortex to stimulus-reinforcement association learning (Bechara, Damasio, & Damasio, 

2000). The ability to rapidly decode and readjust values of different input signals is likely to be crucial 

to emotional behavior and may ultimately influence emotional learning. It has been suggested that the 

observed deficits in decision making may directly result from aberrant emotion processing as for 

example observed after frontal brain damage (Bechara et al., 2000). Research has for instance 

demonstrated that aberrant self-monitoring abilities may be responsible to preclude the generation of 

social emotions typically associated with the resolution of social mistakes (Beer, John, Scabini, & 

Knight, 2006). Finally, a whole line of evidence (e.g. (Beyer, Munte, Gottlich, & Kramer, 2014; R. J. 

Blair, 2003; Potegal, 2012)) has linked the prefrontal cortex to aggression. In its extreme, antisocial 

personality disorder and psychopathy are exemplary for individuals displaying increased aggressive 

behavior and studies of both have linked structural (Ermer, Cope, Nyalakanti, Calhoun, & Kiehl, 

2012; Raine, Lencz, Bihrle, LaCasse, & Colletti, 2000) and functional (Decety, Skelly, & Kiehl, 2013; 

Liu, Liao, Jiang, & Wang, 2014) changes to the prefrontal cortex.  

 

Insula 

Both our functional and structural AB meta-analysis have found significant clusters of hypoactivations 

or altered brain structure within the insula. In addition to that, two smaller clusters reached 
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significance in the left insular cortex during our conjunction analysis, mapping structural and 

functional alterations in youths with AB. The insula or insular cortex is part of the cerebral cortex 

forming the base of the lateral sulcus (or sylvian fissure (Gasquoine, 2014)). From a 

neurodevelopmental perspective it is the first region of the cortex to develop and differentiate around 6 

weeks of fetal life (Afif, Bouvier, Buenerd, Trouillas, & Mertens, 2007). The insula is bi-directionally 

connected to various brain regions, including the orbitofrontal cortex, anterior cingulate, 

supplementary motor areas, parietal and temporal cortices, but also to subcortical structures such as 

the amygdala, basal ganglia and thalamus (Dupont, Bouilleret, Hasboun, Semah, & Baulac, 2003; 

Gasquoine, 2014). Connectivity to and from the insula is divided, in that the anterior part of the insula 

has greater connectivity with the frontal lobe, while posterior parts are more strongly connected to the 

parietal lobe. Neuroimaging evidence has suggested that the insula may play a key role in the 

awareness of bodily sensations and affective feelings (A. D. Craig, 2009; Lindquist et al., 2012). 

Meta-analytic data supports this idea, and suggests that the insula is a key player in the evaluation, 

experience or expression of internally generated emotions (Phan et al., 2002). Particularly the left 

insula, along with frontal and temporal brain regions, is associated with anger (Lindquist et al., 2012). 

Furthermore, an emotion-specific role of the insula for disgust (Phillips et al., 1997) has been 

discussed. However, the majority of neuroimaging findings and meta-analytic reviews to date support 

a generic role of the insula in emotional behavior (e.g. (Lindquist et al., 2012; Phan, Wager, Taylor, & 

Liberzon, 2004)).  

 

Atypical neuronal functioning of the insula (e.g. during tasks of emotion processing and empathy) are 

linked to AB (e.g. (Decety et al., 2013; Lockwood et al., 2013)). However, so far, both hyper- (Decety 

et al., 2009; Fairchild et al., 2014) and hypoactivations (Lockwood et al., 2013; Passamonti et al., 

2010; Rubia et al., 2009) are observed during tasks of empathy, face or pain processing. In 

psychopathy particularly fear conditioning has been linked to aberrant insula activation (Birbaumer et 

al., 2005). Functional atypicalities within the insula are further observed in borderline personality 

disorder (Koenigsberg et al., 2009), schizophrenia (Manoliu et al., 2013), depression (Manoliu et al., 

2014) or anorexia nervosa (Bar, Berger, Schwier, Wutzler, & Beissner, 2013). Gray matter volume 

alterations within the insula are associated with various psychiatric conditions beyond antisocial 

populations (e.g. (Ermer et al., 2012; Sterzer et al., 2007)), including bipolar disorder (Selvaraj et al., 

2012), schizophrenia (Glahn et al., 2008), drug dependence (Garavan, 2010), major depression (Bora, 

Fornito, Pantelis, & Yucel, 2012) or anorexia nervosa (Nunn, Frampton, Fuglset, Torzsok-Sonnevend, 

& Lask, 2011).Therefore, the neuronal and structural alterations within the insula may reflect a 

characteristic of psychiatric conditions per se (Gasquoine, 2014).  
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Cingulate Cortex 

The cingulate cortex showed functional as well as structural foci of significance in each of our two 

meta-analyses individually. Cytoarchitectonically, the cingulate gyrus may be divided into four 

functionally independent but interconnected subregions, including the anterior cingulate cortex 

(emotion), the midcingulate cortex (response selection), the posterior cingulate cortex (personal 

orientation), and the retrosplenial cortex (memory formation and access) (Vogt, 2005). Overall the 

cingulate cortex has been implicated in the regulation of cognitive as well as emotional processes 

(Phan et al., 2002; Vogt, 2005) (e.g. processing of acute pain (Shackman et al., 2011) or affective 

stimulus material (Vogt, 2005)), most likely through an interaction with the prefrontal cortex, anterior 

insula, premotor area, the striatum and cerebellum (Derbyshire, 2000; Vogt, 2005). We here 

particularly identified regions within the bilateral anterior cingulate as foci of interest through both our 

functional and structural meta-analysis. While dorsal aspects of the anterior cingulate have been linked 

to tasks of executive functioning (Botvinick, 2007; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 

2004), the anterior part of the cingulate is part of the emotion processing network (Botvinick, 2007; 

Etkin, Egner, Peraza, Kandel, & Hirsch, 2006). It is further suggested that the cingulate gyrus may 

serve as a transition and/or interaction zone between affective and cognitive processing (Phan et al., 

2002). 

 

Studies in AB and antisocial personality disorder have found both gray and white matter increases as 

well as decreases within the cingulate (e.g. (De Brito et al., 2009; Fahim et al., 2011; Wu, Zhao, Liao, 

Yin, & Wang, 2011; Yeh et al., 2009)); the developmental pathway within this region thus still needs 

further assessment. Hypoactivation in AB within the cingulate has been reported during tasks of 

emotion processing (Stadler et al., 2007; Sterzer et al., 2005), empathy (Dalwani et al., 2011; 

Lockwood et al., 2013), response inhibition (Zald, 2007) and sustained attention (Rubia et al., 2009). 

Similarly, individuals with antisocial personality disorder or psychopathic tendencies show reduced 

activation within the cingulate during tasks of emotion processing and conflict resolution, as for 

example observed in moral decision making (Glenn, Raine, & Schug, 2009; Prehn et al., 2013), 

deception (Jiang et al., 2013), frustration (Pawliczek et al., 2013) and emotion processing (Kiehl et al., 

2001). 

 

Amygdala 

Both our functional and structural meta-analyses have identified the right and left-hemispheric 

amygdala as significant foci of interest, even though this area has not reached significance in our 

conjunction analysis. The amygdala is crucial for the perception and encoding of emotionally loaded 

stimulus material and has been suggested as the brain locus of fear (e.g. detection, generation, 
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maintenance of fear and coordination of response in the danger of such) (LeDoux, 2000; Lindquist et 

al., 2012). To summarize the existing fMRI evidence, neuronal activation within the amygdala has 

been observed in healthy individuals in tasks that include arousing stimulus material (e.g. emotionally 

loaded images (Garavan, Pendergrass, Ross, Stein, & Risinger, 2001; Irwin et al., 1996), facial 

expressions (Morris et al., 1998; Vuilleumier, Armony, Driver, & Dolan, 2001; Whalen et al., 1998) or 

words (Hamann, Ely, Hoffman, & Kilts, 2002; Kensinger & Schacter, 2006)), during tasks of empathy 

(Baron-Cohen et al., 1999; Carr, Iacoboni, Dubeau, Mazziotta, & Lenzi, 2003), moral reasoning (Luo 

et al., 2006) or when processing potential threats (Phelps et al., 2001)). A range of tasks investigating 

amygdala responses to different evocative stimulus material led to the suggestion that increased 

activation within the amygdala may particularly mirror affective processing under acute danger or 

threat, rather than fear per se (Phan et al., 2002). Furthermore, neuronal activation is thought to mirror 

dispositional affective style (Davidson & Irwin, 1999; Phan et al., 2002), whereby increased amygdala 

activity correlates with affective reactivity to negative stimuli. Interestingly, amygdala activation in 

response to emotionally loaded stimuli may be attenuated by task demand (K. S. Blair et al., 2007; 

Etkin et al., 2006; Mitchell et al., 2007) or comorbid anxiety and depression symptoms (Sterzer et al., 

2005). For example, concurrent goal-directed processing can disrupt amygdala activation that is 

evoked by emotional images (K. S. Blair et al., 2007). This is in line with meta-analytic evidence 

indicating that studies employing a cognitive task during affect processing are less likely to 

demonstrate amygdala activation (Phan et al., 2002).  

 

Because of its role in aversive conditioning, instrumental learning and fear processing, the amygdala is 

often chosen as a region of interest in investigations targeting AB, antisocial personality disorder or 

psychopathy (R. J. Blair, 2003). Amygdala dysfunction is suggested to be one of the core features in 

the symptomatology of antisocial disorders (e.g. (R. J. Blair, 2003; Dolan & Fullam, 2009; Sebastian 

et al., 2014; Sterzer et al., 2005)). Structurally, the amygdala is altered in AB similarly as in antisocial 

personality disorders and psychopathy (e.g. (Boccardi et al., 2011; M. C. Craig et al., 2009; Sterzer et 

al., 2007)). Finally, it is to note that the amygdala is strongly interconnected with the orbitofrontal 

brain regions and alterations in the connectivity between these two centers have been reported in AB 

and psychopathy (e.g. connectivity between key regions of the emotion processing and regulation 

network (e.g. (R. J. Blair, 2007; van Honk & Schutter, 2006), for a further discussion see following 

section). 

 

Structure-Function Relationship and Connectivity Findings 

While neuroplasticity is known to potentially range from synaptic plasticity to more complex changes 

(e.g. shrinkage in cell size, neural or glial cell genesis, spine density or even changes in blood flow or 
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interstitial fluid (May et al., 2007)), the neurophysiological basis of experience-induced neuroplasticity 

is still a matter of extensive research (Schmidt-Wilcke et al., 2010). Some studies indicate that 

functional and structural measures of plasticity may be related. For example it could be hypothesized 

that experience-related gray matter volume changes correspond to task-specific processing, or, more 

precisely, synaptic remodeling within specific processing areas (Ilg et al., 2008). Another possibility 

may be that impaired connectivity between key regions leads to the functional alterations observed. 

For example researchers have argued that the social and emotional deficits seen in AB may be 

mediated by impaired connectivity between the emotion processing and regulation network (R. J. 

Blair, 2007; van Honk & Schutter, 2006). These system-specific deficits may be observed by diffusion 

tensor imaging and tractography measurements. For example, the uncinate fasciculus is a white-matter 

tract connecting the amygdala and neighboring anterior temporal lobe with the orbitofrontal cortex and 

it thus may be involved in facilitating empathy, emotion regulation and socio-cognitive processes 

(Von Der Heide, Skipper, Klobusicky, & Olson, 2013). Such models would for example explain why 

local changes in brain structure cannot always be inferred from purely functional models. For 

example, in individuals with reactive aggression aberrant amygdala activity but intact amygdala 

structure is observed (Bobes et al., 2013). In such cases it is possible that impaired fiber connections 

(e.g. reduced functional anisotropy in the uncinate fasciculus) to and from this area cause the neuronal 

differences observed (Bobes et al., 2013). In line with evidence in AB (Bobes et al., 2013) significant 

differences in the fractional anisotropy (FA) measures of the uncinate fasciculus have been 

demonstrated in adolescents with conduct disorder (Passamonti et al., 2010; Sarkar et al., 2013) as 

well as in adult psychopathy (M. C. Craig et al., 2009; Motzkin, Newman, Kiehl, & Koenigs, 2011). 

Similarly, studies of intrinsic connectivity (resting state) explore functional networks that are non-

stimulus driven and may inform about the basic functional brain architecture while implicating 

anatomical connectivity of the regions involved (Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011). 

In individuals with antisocial personality disorder this intrinsic connectivity between highly 

interconnected brain centers is disrupted (Tang, Jiang, Liao, Wang, & Luo, 2014).  

 

Independent of the precise neurophysiological nature of structure-function associations, our results 

have indicated co-localized structural and functional deficits in right dmPFC and left insular cortex. 

Based on today’s structure-function knowledge we thus hypothesize that decreased synaptic density 

may have led to a co-localized decrease within the BOLD response measured through fMRI. However, 

it has to be noted that here we only investigate co-localized structure-function findings that are based 

on gray matter volume reductions and functional hypoactivations in AB. This limitation (no volume 

increases or hyperactivity investigated) is due to the nature of the existing neuroimaging evidence, 

with only five studies reporting gray matter volume increases and six studies providing evidence for 
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functional hyperactivations in individuals with AB. Further studies comparing adolescents with AB 

compared to controls are needed in order to examine functional hypoactivations and gray matter 

volume increases more extensively. Furthermore, only longitudinal research studies will be able to 

show the precise developmental trajectory of these alterations in detail. 

 

Limitations 

Meta-analytic approaches such as the current one have a number of limitations in need for discussion. 

The presented analyses are first of all limited by the detail and quality of the original research studies. 

This includes problems of variations within the significance threshold of data reported, insufficient 

information on possible coordinate transformations and variation in group sizes. Additionally, even 

though psychosocial factors have been significantly linked to brain structure in AB, none of the studies 

to date systematically studied the influence of these within their designs. Furthermore, only a small 

number of studies to date have examined brain structure and function in youths with AB on a whole 

brain level. We decided that a more stringent inclusion criterion is beneficial over the absolute number 

of studies entering the analyses, especially in regards to the attempt to truly capture the neuronal and 

structural phenotype of adolescents with AB. The number of studies entering each analysis therefore is 

on the lower limit. Contrast analyses are ideally contain a minimum of 15 studies in each dataset to 

obtain sufficient statistical power (http://brainmap.org/ale/ (Eickhoff et al., 2012; Eickhoff et al., 2009; 

Laird et al., 2005; Turkeltaub et al., 2012)). Therefore, the current analysis runs the risk of being 

under-powered. 

 

Most of the studies included here consisted of only, or majority of, male participants (see Tables 1, 2). 

Some of the included study designs considered sex-matched clinical and control groups, while others 

applied a gender covariate within their design (e.g. (Stevens & Haney-Caron, 2012; Wallace et al., 

2014)). Two VBM (Dalwani et al., 2015; Fairchild, Hagan, et al., 2013) and one fMRI (Fairchild et al., 

2014) study included only female participants. These studies were nevertheless included in the current 

meta-analyses because the structural alterations observed in girls with CD broadly overlapped with 

those previously reported in male samples only (Fairchild, Hagan, et al., 2013). But while the current 

population included mirrors the occurrence of AB in the general population (e.g. higher number of 

males with AB (Loeber et al., 2000)), research has shown that it may be crucial to differentiate clinical 

cases based on gender in future research studies (e.g. (Berkout, Young, & Gross, 2011)). Specifically, 

to determine possible gender related differences of structural and functional characteristics in 

individuals with AB, a comparison between meta-analyses of studies examining females and those 

examining males separately would have been of interest, but was not possible due to the small number 

of studies that are available for each group individually. 
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Another potential caveat is the fact that clinical and subclinical forms of aggressive behavior are often 

associated with comorbid diagnoses, most prominently attention-deficit hyperactivity disorder 

(ADHD; reported in up to 69% of CD patients (Klein et al., 1997)) and anxiety (Loeber et al., 2000). 

To date there is no neuroimaging evidence investigating pure diagnosis of clinical manifestations of 

aggressive behavior (e.g. CD or ODD) (Banaschewski et al., 2005). Researchers argue whether 

aggressive behavior in combination with ADHD even posits a distinct subtype or not (Banaschewski 

et al., 2003) and common neurobiological pathways are considered (Banaschewski et al., 2005). 

Overall it can be concluded that neuroimaging research studies on aggressive behavior in children and 

adolescents to date are characterized by diverse approaches in regards to the sample selection and 

definition, all of which have their justification and pitfalls (Sterzer & Stadler, 2009). Ultimately, only 

a comparison of both, pure and comorbid groups will be able to inform about the specificity and 

predictive value of either definition. Here we included adolescents with clinical and subclinical forms 

of aggressive behavior, most of which have comorbid ADHD symptoms (e.g. (Dalwani et al., 2011; 

De Brito et al., 2009; Fairchild et al., 2014; Fairchild, Hagan, et al., 2013; Fairchild et al., 2011; 

Huebner et al., 2008; Lockwood et al., 2013; Marsh et al., 2013; Marsh et al., 2011; O'Nions et al., 

2014; Passamonti et al., 2010; Sebastian et al., 2014; Sterzer et al., 2005; Wallace et al., 2014; White 

et al., 2012). Many of the included studies report no differences in results when controlling for ADHD 

(through exclusion or a covariate within the study design; (Fairchild et al., 2014; Marsh et al., 2013; 

O'Nions et al., 2014; Passamonti et al., 2010; Sebastian et al., 2014; Sterzer et al., 2005; White et al., 

2013)).  

 

Similar problems are IQ differences, drug use or socioeconomic status, all of which are a characteristic 

of populations with aggressive behavior. Studies included in the current meta-analysis have all 

matched their participants according to IQ measures (Fahim et al., 2011; Fairchild et al., 2014; 

Fairchild et al., 2011; Huebner et al., 2008; Lockwood et al., 2013; Marsh et al., 2013; Marsh et al., 

2011; O'Nions et al., 2014; Passamonti et al., 2010; Sebastian et al., 2014; Stevens & Haney-Caron, 

2012; White et al., 2012) or used IQ as a covariate within their study design (Dalwani et al., 2011; De 

Brito et al., 2009; Fairchild, Hagan, et al., 2013; Hyatt et al., 2012; Sterzer et al., 2005; Wallace et al., 

2014). Drug use and socio-economic status were controlled for in some, but not all, studies and further 

research is needed using a more careful sample characterization in order to inform about the impact of 

these variables on brain structure and function.  

 

It is also to consider that the diagnosis of conduct disorder (clinical manifestation of AB) may 

encompass at least two clinically relevant subgroups. While the first group exhibits callous-

unemotional traits (e.g. reduced guilt, callousness, uncaring behavior and reduced empathy) and 
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heightened risk of persistent antisocial behavior, the second group is characterized by heightened 

threat sensitivity and reactive aggression (R. J. Blair et al., 2014; Euler et al., 2014). Callous-

unemotional traits are highly heritable (Viding, Seara-Cardoso, & McCrory, 2014), expressed as early 

as at two years of age (Waller et al., 2012) and are predictive of the most severe and persistent variant 

of conduct disorder (Dandreaux & Frick, 2009; Rowe et al., 2010). Studies also indicate that this 

severity may significantly impact the neuronal alterations observed (Ducharme et al., 2011; Fairchild 

et al., 2014; Fairchild et al., 2011; Passamonti et al., 2010). To summarize, while we were unable to 

constrain the current meta-analysis based on potential subtypification and gender variables, these 

factors may pose an exciting view on data analysis strategies and interpretations for future studies. For 

all the reasons noted, the current results have to be interpreted with caution. However, multimodal 

neuroimaging methods combining two or more functional (fMRI and/or EEG) and structural (MRI 

and/or DTI) approaches are suggested to provide a more sensitive measure in comparison to unimodal 

imaging for disease classification (Sui, Huster, Yu, Segall, & Calhoun, 2014). Furthermore, we think 

that the confounding variables discussed here have influenced the functional and structural meta-

analyses similarly.  

 

Overall, we could demonstrate that structural and functional alterations in adolescents with AB co-

localize within key regions of the emotion processing and regulation network (e.g. prefrontal and 

insular cortex). Thus, our current analysis, using an activation likelihood estimation approach, 

provides an important step towards a more focused method of neuroimaging in AB. Future studies 

need to determine whether the here identified convergent clusters of neuronal and structural alterations 

may be applicable for clinical purposes (for example an improved pathophysiological description of 

individuals with AB) or whether a further specification (e.g. based on subtypes and gender) may be 

needed. However, the coordinates presented here can serve as non-independent regions of interest for 

future studies in AB, conduct disorder or in individuals with AB or antisocial/psychopathic tendencies.  

 

Summary and conclusion 

Aggressive behavior constitutes a major issue of public health and increased knowledge about the 

behavioral and neuronal underpinnings of AB are crucial for the development of novel and 

implementation of existing treatment strategies. However, single site studies often suffer problems of 

small sample size and thus power issues. Quantitative meta-analysis techniques using activation 

likelihood estimations as implemented here offer a unique opportunity to investigate consistency of 

results between several studies investigating the same research question and population. We have 

implicated several brain regions of the emotion processing and regulation network to show 

hypoactivations and gray matter volume reductions in adolescents with AB (including prefrontal brain 
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regions, amygdala, insular and cingulate cortex) and demonstrated that functional and structural 

alterations in AB co-localize within right dmPFC and left insular cortex. 

 

Overall, we are in line with meta-analytic work as well as structural, functional and connectivity 

findings that make a strong point for the involvement of a network of brain areas responsible for 

emotion processing and regulations. This network is impacted in individuals with AB and antisocial 

personality disorder/psychopathy. However, much still needs to be investigated. For example, study 

findings differ in regards to hypo- or hyperactivations and gray matter volume reductions or increases 

in different regions of the emotion processing and regulation network. Due to power constraints, the 

current meta-analysis only investigated hypoactivations and gray matter volume reductions in youths 

with AB and no hyperactivations or increases in brain structure. Future studies implementing 

longitudinal designs may be able to shed more light on the developmental pathway as well as onto 

typical and atypical trajectories within the regions reported. Such longitudinal designs will further 

allow the investigation of the bidirectional influence of biological and psychosocial influences in AB. 
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Abstract 

Aggressive and antisocial behaviors are common reasons for referral to youth mental health services, 

and result in adverse psychological, clinical and societal consequences. However, aggressive and 

antisocial youths are heterogeneous with respect to etiology, behavior, treatment responsiveness and 

neurobiology. Callous-unemotional traits differentiate meaningful subgroups, and callousness has 

been linked to neuroanatomical correlates in clinical samples. Nevertheless, it is unknown whether 

callous-unemotional traits are associated with neuroanatomical correlates within normative 

populations without clinical forms of aggression. Here we investigated the relationship between 

callous-unemotional traits and gray matter volume using voxel-based morphometry in typically-

developing boys and girls (N=189). Whole-brain multiple regression analyses controlling for site, total 

intracranial volume and age were conducted in the whole sample and in boys/girls individually. 

Results revealed that callous-unemotional traits were positively correlated with bilateral anterior insula 

volume in boys, but not girls. Insula volume explained 19% of the variance in callous-unemotional 

traits for boys. Our results demonstrate that callous-unemotional traits have a neurobiological basis 

beyond psychiatric samples. This association was sex-specific, underlining the importance to consider 

sex in future research designs. Longitudinal studies will need to determine whether these results 

persist over time and whether neural correlates of callous-unemotional traits are predictive of future 

psychiatric vulnerability. 
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Introduction 

Aggressive and antisocial behavior during childhood and adolescence are amongst the most common 

reasons for a childhood referral to mental health services (Kazdin et al., 2006). While the prevalence 

of aggressive and antisocial behavior is higher in boys than girls, for both genders adverse 

psychological, clinical and societal consequences may result (Kessler et al., 2012). Clinically, severe 

aggression and antisocial behaviors in youths are subsumed under the term disruptive behavior 

disorders (DBD), which includes oppositional defiant and conduct disorder (American Psychiatric 

Association, 2013). Notably, children and adolescents with DBD form a very heterogeneous group in 

regard to etiology, associated behavioral symptoms, developmental trajectories, future risk for 

impairment or response to treatment (Moffitt et al., 2008). Thus devising a meaningful approach to 

subtyping antisocial behavior has been of long-lasting clinical interest (Frick et al., 2014). Various 

procedures have been adapted, including the distinction between proactive and reactive aggression, 

childhood- or adolescent-onset conduct problems, socialized versus under-socialized youths or high 

versus low callous-unemotional (CU) traits (see also Diagnostic and Statistical Manual of Mental 

Disorders (DSM-III to DSM-5) (Kruesi et al., 2004; Frick et al., 2006; Fairchild et al., 2011; American 

Psychiatric Association, 2013)). Overall, behavioral, genetic and neurobiological data indicate the 

potential of CU-traits in explaining heterogeneity within antisocial populations (Frick et al., 2006; 

Bezdjian et al., 2011; Rogers and De Brito, 2016). This was likewise recognized within the latest 

version of the DSM-5 by an additional specifier to the diagnosis of conduct disorder termed ‘Limited 

Prosocial Emotions’ (American Psychiatric Association, 2013). However, to date there is only little 

evidence focusing on the neurobiological correlates of CU-traits in typically-developing youths and no 

study has yet focused on sex-specific effects by studying males and females individually. 

 

Descriptively, CU-traits are defined by lack of empathy, reduced guilt or limited prosocial emotions 

(Blair, 2013; Fairchild et al., 2013). In DBDs high CU-traits are indicative for the development of 

particularly severe, persistent and treatment-resistant forms of aggression (Frick and White, 2008). 

While CU-traits have most commonly been studied in clinical populations that display antisocial 

behavior (i.e. DBD) there is increasing evidence for the relevance of CU-traits in community samples 

without clinical levels of antisocial behavior (Frick et al., 2006; Kumsta et al., 2012; Viding and 

McCrory, 2012). Children who experienced early deprivation have for example been shown to display 

high levels of CU-traits in the absence of antisocial behavior. CU-traits in youths without DBD have 

again been related to antisocial behavior (subclinical levels), impairments affecting peer relationships, 

prosocial behavior, hyperactivity increased risk-taking and reduced emotional responsiveness in some 

studies (Frick et al., 2003; Barker et al., 2011; Kumsta et al., 2012; Viding and McCrory, 2012). 

Emotion processing deficits in high CU-community youths are not consistently reported though and it 
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has been suggested that CU individuals may further be subtyped according to conduct problems and/or 

anxiety levels (Fanti et al., 2013). CU-traits in aggressive and non-aggressive youths are likewise 

highly heritable and may carry independent diagnostic value (Frick et al., 2003; Larsson et al., 2008; 

Rowe et al., 2010; Barker et al., 2011; Kumsta et al., 2012; Viding and McCrory, 2012). 

Neuroimaging studies in DBDs have led to varying findings with respect to the direction and precise 

location of the observed neuronal alterations (Blair, 2013; Raschle et al., 2015; Rogers and De Brito, 

2016). However, most commonly evidence has linked atypical brain structure and function to limbic 

and prefrontal regions (Kruesi et al., 2004; Fahim et al., 2011; Fairchild et al., 2011; Rogers and De 

Brito, 2016). Considering variations amongst DBDs has led to the identification of meaningful 

subgroups within DBD adolescents (e.g. differences between high/low CU-traits). Functional 

neuroimaging evidence revealed that while high CU-traits were negatively associated with activations 

of the threat or limbic system (insula, amygdala, caudate, anterior cingulate, and ventromedial 

prefrontal cortex) (Blair, 2013, 2015), low levels of CU-traits were positively linked to activations of 

the same areas (Viding et al., 2012; Blair, 2013). Notably, these findings have not been consistently 

replicated or even show an opposite pattern (White et al., 2012; Lozier et al., 2014; White et al., 2016). 

Furthermore, some studies have revealed that the degree of functional alteration in DBD may reflect 

the symptom severity of the associated disorder (Marsh et al., 2008), while others were not able to 

replicate this (Finger et al., 2012).  

 

Investigating the unique associations between CU-traits in DBD youths and brain structure has 

generated exciting preliminary findings, but further evaluation is still needed (Blair, 2013; Cohn et al., 

2016). Overall, areas of the limbic and threat system are again most commonly linked to variability in 

CU-traits. Elevated CU-traits have been linked to both increases and decreases in gray matter volume 

and concentration within orbitofrontal, anterior cingulate, para-/hippocampal and temporal cortices 

(De Brito et al., 2009; Fairchild et al., 2013; Cope et al., 2014; Wallace et al., 2014; Raschle et al., 

2015; Cohn et al., 2016; Rogers and De Brito, 2016). Within the amygdala volume-decreases in DBD 

are linked to variations in CU-traits by some (Sterzer et al., 2007; Huebner et al., 2008; Fairchild et al., 

2013; Cohn et al., 2016), but not all researchers (De Brito et al., 2009; Dalwani et al., 2011). In 

adulthood, psychopathic traits, subsuming callous-unemotional traits and impulsive antisocial 

tendencies, have shown to be negatively associated with gray matter volume in paralimbic and limbic 

areas as demonstrated in a large sample of incarcerated adults (N=191) (Ermer et al., 2013). Finally, a 

meta-regression study found a negative correlation between CU-traits and putamen gray matter 

volume in DBD youths (Rogers and De Brito, 2016). Overall, variations in the direction and precise 

location of altered regions in studies to date may be due to the use of different analysis tools and 
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strategies, as well as heterogeneity (e.g. differences in demographic and clinical features) of the groups 

studied. 

 

To date, investigations on CU-traits in DBD have been limited by several factors: (1) By missing to 

study the neurobiological correlates of CU-traits in typically-developing youths, it remains open 

whether effects previously attributed to CU-traits were actually driven by the presence of DBD, or 

whether CU-traits only modulate brain structure within DBD populations; (2) While epidemiologic as 

well as longitudinal research indicate gender-specific developmental trajectories for neuropsychiatric 

disorders (Moffitt et al., 2008; Giedd and Rapoport, 2010), most studies on CU-traits have focused 

solely on males, limiting the generalizability of these findings to females; and (3) Contradictory 

findings may be due to the group classification employed or the questionnaires chosen to assess CU-

traits (Essau et al., 2006; Viding and McCrory, 2012; Kimonis et al., 2016). 

Therefore, the current study aimed at bridging this gap in knowledge by investigating CU-traits in 

typically-developing boys and girls without DBD-symptoms using whole brain multiple regression 

analyses. By studying typically-developing adolescents we aimed at characterizing the individual 

differences in CU-traits associated with brain structure independent of DBDs. Secondly, we aimed to 

test whether variations in CU-traits and brain structure are sex-specific for males and females. Finally, 

we aimed to implement a comprehensive measure of CU-traits by testing a composite score based on 

two sources of information for CU-traits variability (self and other taring). To date, limited neuronal 

evidence in typically-developing non-DBD youths hinders a concise hypothesis. However, based on 

evidence in DBD and community samples with varying degrees of aggression, we expect correlations 

between CU-traits and brain structure in typically-developing youths within limbic and prefrontal 

brain regions including amygdala, insula and prefrontal cortex.  

 

Method 

Participants 

We recruited 223 typically-developing adolescents (9-18 years) within the average IQ range. All 

adolescents were tested in the context of an ongoing European multi-center study investigating female 

conduct disorder (FemNAT-CD) and were explicitly screened to be free of any psychiatric disorder, 

including DBDs. Participants underwent standardized clinical interviews and psychometric testing and 

took part in a neuroimaging session. On average, the two sessions took place within 8.2±7.7 weeks of 

each other. Data were acquired at five different sites, including the Universities of Frankfurt #01 and 

Aachen #02 in Germany; the Psychiatric University Hospital in Basel, Switzerland #05; and the 

Universities of Birmingham #07 and Southampton #04, England (only site numbers will consequently 
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be reported within the text). All participants and their caretakers provided verbal and written informed 

consent to take part in the study, as approved by all local ethics committees. 

 

Clinical and psychometric testing 

Based on the Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present 

and Lifetime Version (K-SADS-PL (Kaufman et al., 1997)) diagnostic interview, we ascertained that 

none of the youths met a current clinical diagnosis or a past history of DBDs according to DSM-5 

(American Psychiatric Association, 2013). Behavioral and emotional problems within the past 6 

months were assessed using the Child Behavior Checklist (CBCL: 120 items, using a three-point 

Likert scale (Achenbach, 1991)). Since we explicitly aimed to study CU-traits in non-aggressive 

individuals, participants scoring T≥70 within the aggression and/or the delinquency subscales of the 

CBCL were excluded from this study (see Supplement 1). IQ was assessed using the short-form of the 

Wechsler Abbreviated Scale of Intelligence (WASI (Wechsler, 1999)) at English speaking sites (#04, 

#07) or the German version of the Wechsler Intelligence Scale for Children (WISC‐IV/WAIS-IV 

(Petermann and Wechsler, 2008)) for sites #01, #02 and #05. All t- and standard scores were first z-

transformed prior to any analysis. 

 

CU-traits were measured using parent ratings of the Inventory of Callous-Unemotional traits (ICU 

(Essau et al., 2006)) and self-ratings of the Youth Psychopathic traits Inventory (YPI (Andershed et 

al., 2007)). The ICU (a 24-item parental report) has three subscales: callousness, uncaring, and 

unemotional, as well as a total score. Across previous samples, reliability reports for the ICU range 

from acceptable to good (Cronbach alpha range: 0.77-0.89) (Essau et al., 2006). The YPI (a 50-item 

self-report) comprises ten subscales, which generate the following three dimensions: callous-

unemotional, grandiose-manipulative and impulsive-irresponsible (Andershed et al., 2007). Research 

based reliability scores of the YPI dimensions range from moderate to good (Cronbach’s alphas of 

0.36-0.71). While there is a validated short form of the YPI available for children 9-12 years, we used 

the original YPI for all ages because these versions differ only minimally and only the original YPI is 

available in all languages represented here (Andershed et al., 2007; van Baardewijk et al., 2008). A 

Cronbach’s alpha for the ICU total of 0.79 (confidence interval: 0.74-0.83) and a Cronbach’s alpha for 

the YPI callous-unemotional dimension of 0.79 (confidence interval: 0.74-0.83) was calculated in the 

present sample. We based CU-traits on multiple sources of information in order to maximize 

reliability, which is in line with suggestions by the American Psychiatric Association (American 

Psychiatric Association, 2013). However, it is noteworthy that we computed a composite score based 

on parent and child-ratings from two different instruments. Specifically, mean scores representing the 

YPI callous-unemotional dimension and the ICU total were z-transformed and a new composite score 

for ‘CU-traits’ was built by calculating the mean of the two resulting z-scores. The usefulness of this 
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new composite score was verified by: (1) Running a reliability analysis including all respective items 

(Cronbach’s alpha of 0.83; CI: 0.79-0.87); (2) Investigating brain structure and correlations between 

ICU total, YPI callous-unemotional scale and composite CU-traits score; and (3) Testing significant 

differences between the old and new Cronbach alpha’s (see Supplement 2). The new composite score 

showed significantly higher internal reliability as compared to the ICU total or YPI callous-

unemotional dimension. The composite scores were normally distributed and showed sufficient 

variance to justify a dimensional approach (Supplement 3). 

 

Table 1. Group characteristics – psychometrics and clinical testing. 

  
 Girls (N=108) Boys (N=81) p-value  

Mean (±SD) Mean (±SD) Two-Sample T 

Age in years 13.9 (±2.9) 13.2 (±2.5) 0.850   

            
IQ 105.5 (±10.4) 106.6 (±11.4) 0.486   

            
Psychopathic Traits (YPI)         

  Psychopathy (YPI total) 87.6 (±17.0) 96.1 (±18.0) 0.001 *** 

  Grandiose, Manipulative 32.0 (±8.4) 35.1 (±9.4) 0.020 * 

  Callous, Unemotional 25.3 (±5.7) 29.4 (±5.8) <0.001 *** 

  Impulsive, Irresponsible 30.2 (±6.1) 31.7 (±6.5) 0.115   

            
CU-Traits (ICU)         

  ICU total 15.3 (±7.2) 18.3 (±7.5) 0.006 ** 

  Uncaring 7.2 (±4.1) 8.6 (±4.2) 0.024  * 

  Unemotional 4.2 (±2.5) 5.1(±2.6) 0.019  * 

  Callousness 3.9 (±3.0) 4.6 (±2.5) 0.080   

            
Callous-unemotional traits         

  Composite score -0.2 (±0.8) 0.3 (±0.7) 0.001 *** 

            
CBCL         

  Anxiety/Depression 55.5 (±6.2) 54.1 (±5.9) 0.121   

  Attention Problems 53.4 (±4.9) 53.1 (±5.0) 0.677   

  Delinquency 52.3 (±5.1) 52.3 (±3.9) 0.999   

  Aggression 52.7 (±4.4) 51.7 (±5.4) 0.160   

  Internal Problems 49.7 (±10.0) 49.7 (±10.0) 0.868   

  External Problems 47.7 (±8.5) 46.6 (±8.1) 0.385   

  Total Problems 48.4 (±9.6) 47.4 (±9.3) 0.472   

***significant at p≤0.001; **significant at p≤0.01; *significant at p≤0.05 

IQ= Intelligence quotient (Z-scores); YPI= Youth Psychopathic Traits Inventory (mean scores); ICU= Inventory of Callous-
Unemotional traits (mean scores); CBCL= Child Behavior Checklist (T-scores). 
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ICU and YPI as well as the new composite scores are presented in Table 1. Overall, scores observed in 

the present sample are comparable to those reported in community samples or control groups (Essau et 

al., 2006; Fairchild et al., 2013). Boys scored significantly higher than girls on several subscales of the 

YPI or ICU as analyzed using SPSSv23 (IBM Corp., Armonk, N.Y., USA). 

 

Structural image acquisition 

Participants completed between one and three functional neuroimaging tasks and/or diffusion tensor 

imaging in addition to structural T1-weighted MPRAGE data acquisition on Siemens 3T (#01/#04: 

Trio; #02/#05: Prisma) or Philips 3T (#07: Achieva) scanners. Each site underwent a site qualification 

procedure prior to starting data collection in which a radiological (ACR) phantom and healthy 

volunteers were scanned using multiple sequences (Chen et al., 2004). The resulting data were 

reviewed by an MR physicist, and scanning parameters were adjusted until the protocols were 

comparable (see acquisition parameters in Supplement 4). 

 

Voxel-based morphometry (VBM) analysis and statistics 

We utilized the computational anatomy toolbox (CAT12; http://www.neuro.uni-jena.de/cat12/CAT12-

Manual.pdf) as implemented in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) and executed in MATLAB 

(Mathworks, Natick, MA). To account for the young age of the participants, we employed an adapted 

VBM-workflow that implemented customized tissue probability maps (TPM) as created through the 

template-o-matic toolbox (TOM8; https://irc.cchmc.org/software/tom/downloads.php) and a 

customized DARTEL template based on the gray and white matter tissue segments of all participants. 

Analysis steps included: 

 

Quality control 

Prior to preprocessing, all images passed a first visual quality check targeting motion, gross 

anatomical artifacts and assuring whole-brain coverage. After preprocessing, additional information 

about data-quality (resolution, noise and bias) was provided by CAT12. We assured that all data had a 

weighted average quality of B or higher, representing very good image quality (http://www.neuro.uni-

jena.de/cat12/CAT12-Manual.pdf). Finally, prior to statistical analysis we conducted another quality 

assessment by displaying the sample homogeneity using standard deviations through the CAT12 

toolbox. Of the 223 scans reviewed, 14 had to be excluded due to motion artifacts and 2 individuals 

were excluded from the analysis due to significantly enlarged ventricles, resulting in N=207.  
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Customized tissue probability maps (TPMs) and Dartel Template creation 

Customized TPMs were created using an average approach within TOM8 including vectors for age 

and gender, representing each of the 207 participants with useable T1 data based on the previous step 

(Wilke et al., 2008). All images were segmented into gray matter, white matter and cerebrospinal fluid 

(whereas customized TPMs were inputted during affine registration) and the affine registered tissue 

segments were used to construct a customized DARTEL template representing the entire study 

sample. Finally, the template was normalized to MNI and registered to MNI (ICBM) space.  

 

Preprocessing and calculation of total intracranial volume 

(TIV). Preprocessing was achieved through segmentation of all data using the custom template/TPMs 

and a Gaussian smoothing kernel of 8mm. Total intracranial volume (TIV) was calculated for each 

participant through CAT12. Since we were interested in group-based variations in the absolute tissue 

(gray matter volume), TIV was consequently incorporated in the statistical analysis to account for 

differences in brain size.  

 

Statistical Analysis 

Prior to analysis, we excluded two participants with high scores on the aggression and delinquency 

subscales of the CBCL (≥70; see methods section for further explanation). Additionally, 16 individuals 

missed either an YPI or ICU subscale and were thus excluded. The total N entering statistical analysis 

was therefore 189 participants (108 female, 81 male). The DARTEL-normalized gray matter volumes 

entered multiple regression models linking CU-traits with brain structure. Scanning site, age and TIV 

were added as covariates (and gender for the whole sample) and statistics were conducted for gray 

matter volume only. Results are reported at a whole brain cluster-level FWE correction for multiple 

comparisons of p<0.05. 

 

Results 

Voxel-based morphometry results 

In line with previous findings, girls and boys significantly differed in total intracranial volume (TIV: 

[girls/boys] = [1414.4±112.9 / 1580.6±126.2]), white (WM: [girls/boys] = [470.3±49.8 / 529.3±48.5]) 

and gray matter volume (GM: [girls/boys] = [702.3±57.8 / 790.1±71.3]; all p<0.001). Thus, along with 

age and site, TIV was included as a covariate in all analyses. 

 

Multiple regression analysis across the whole sample 

Across all girls and boys, there were no significant positive or negative correlations between CU-traits 

and gray matter volume. To exclude the influence of unequal group sizes between boys and girls, we 
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employed a stratified random sampling approach and created two age, gender and site-controlled 

groups of equal size (81:81). The analysis was then repeated, resulting in similar outcome.  

 

Multiple regression analysis in girls 

Within females there were no significant positive or negative relationships between CU-traits and gray 

matter volume.  

 

Multiple regression analysis in boys 

For boys, CU-traits were significantly positively correlated with gray matter volume in bilateral 

anterior insular cortex (p<0.05, cluster level corrected; see Table 2 and Figure 1). 

 

Table 2. Montreal Neurological Institute neuroanatomical coordinates, cluster size and Z-scores (Zo) 

representing the peak coordinates for significant positive associations between callous-unemotional 

traits and gray matter volume in typically-developing boys, but not girls.  

 

 K (Zo) x y z 

           
  Boys (N=81)           

    Left anterior insula, inferior frontal cortex 1069 4.16 -28 22 3 

    Right anterior insula, putamen, inferior frontal cortex 958 4.51 30 21 0 

                
  Girls (N=108)           

    No significant correlations - - - - - 

        

 

Post-hoc region of interest analyses 

Post-hoc region of interest and partial correlation analyses were conducted using the marsbar toolbox 

(http://marsbar.sourceforge.net/) to extract gray matter volume and SPSS-23 to run statistical analyses. 

Bilateral anterior insula regions of interest were created using 5mm-radius spheres around the MNI 

coordinates (x=-32, y=22, z=-2) and (x=36, y=22, z=-6) as derived from a coordinate-based meta-

analysis (Rottschy et al., 2012). The averaged mean gray matter volume indices for these regions of 

interest were extracted and scaled by each individual’s TIV, in order to avoid multicollinearity and 

adjust for unmodulated scores. Resulting values were used to address two post-hoc aims, namely: (1) 

Investigate the specific CU-traits-bilateral insula associations for boys and girls separately; and (2) 

Investigate the amount of variance in CU-traits accounted for by bilateral insula volume variations in 

boys, as was done previously in adult studies (Ermer et al., 2013; Cope et al., 2014). Post-hoc results 

revealed significant positive correlations between left (Figure 1d) and right (e) insula volumes and 

CU-traits in males, but not girls. In girls, a trend even indicates an opposite (negative) association 

between insular volume and CU-traits. Finally, the scaled mean gray matter bilateral insula volumes 
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were entered as predictors into a multiple regression model with CU-traits scores as the dependent 

variable. The resulting model for boys, excluding the influence of the covariate, reached significance 

(p<0.001) and indicated that variations in bilateral anterior volume explained 19.4% of the variance in 

CU- traits.  

 

 

Figure 1. Statistical parametric maps showing a significant positive correlation between callous-

unemotional traits and bilateral anterior insula volume in boys (in blue; displayed a=axial, 

b=sagittal, c=coronal views using the Multi-image Analysis GUI, available at 

http://ric.uthscsa.edu/mango/mango.html; p<0.05, FWE cluster level corrected) and correlations 

between callous-unemotional traits and gray matter volume in the left (d) and right (e) anterior insula 

regions of interest for boys (blue) and girls (green). 

 

 

Discussion 

In a sample of typically-developing community boys and girls, we show for the first time that callous-

unemotional (CU) traits correlate with brain volume of the anterior insula, independent of disruptive 

behavior disorders (DBDs). This association was sex-specific, with CU-traits showing a positive 

correlation with bilateral anterior insula volume in boys only. Overall, anterior insula volume 
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accounted for 19.1% of the variance in CU-traits amongst boys; this is comparable to the informative 

value of structural associations in adult psychopathy (Ermer et al., 2013; Cope et al., 2014). The 

present study generated a composite CU-score based on multiple sources of information. In line with 

others before and according to psychometric evaluations, we consider this a potential strength (Essau 

et al., 2006; American Psychiatric Association, 2013). However, through the use of a newly created 

score, comparability with previous findings may be impacted. 

 

Callous-unemotional traits and brain structure in boys 

Our analysis identified the bilateral anterior insula as a structural correlate of CU-traits in typically-

developing boys, but not girls. Previous studies point towards a functionally plausible parcellation of 

the insula into at least three distinct sub-regions, subserving chemosensory and socioemotional 

processing (ventro-anterior), higher cognitive processing (dorso-anterior) and pain or sensorimotor 

processing (posterior) (Chang et al., 2013). The here observed correlation between CU-traits and brain 

structure was strongest in bilateral anterior insula extending to the inferior frontal gyrus. This area has 

consistently been linked to emotion processing and empathy tasks and has further been associated to 

cognitive control mechanisms (Phan et al., 2002; Fan et al., 2011; Sundermann and Pfleiderer, 2012). 

Past research has revealed structural and functional alterations in individuals with DBDs (Sterzer et 

al., 2007; Fahim et al., 2011; White et al., 2012; Blair, 2013; Raschle et al., 2015; Rogers and De 

Brito, 2016; White et al., 2016). Thereby, empathic responding, emotional learning and decision-

making are for instance all linked to the anterior insula and impacted in DBD (White et al., 2012; 

Blair, 2013; White et al., 2016). However, while some DBD studies identified gray matter increases in 

insular cortex (De Brito et al., 2009), others found reduced anterior insula volume, cortical thinning or 

folding deficits (Fahim et al., 2011; Hyatt et al., 2012; Fairchild et al., 2013). Additionally, DBD-

related structural and functional insula alterations were shown to correlate with CU-traits in some 

(Blair, 2013; Frick et al., 2014), but not all previous work (White et al., 2012; White et al., 2016). In 

line with a previous study in DBD boys (De Brito et al., 2009), it could be hypothesized that 

differences in reports of increased or decreased gray matter in anterior insula in community boys with 

heightened CU-traits, may reflect maturational effects (i.e. delayed maturation of this region in males). 

Reports of an inverted U-shaped development for the insular cortex and differences in rates of cortical 

maturation between girls and boys of about 1-3 years supports this hypothesis(Giedd and Rapoport, 

2010; Viding et al., 2012). Notably, our findings diverge from those of Sterzer and colleagues (2007), 

who identified decreases in bilateral anterior insula volume in DBD and a negative association to 

empathy scores. Within this line, our findings may appear surprising given several previous studies in 

DBD suggested a negative association between CU-traits and brain structure (Rogers and De Brito, 

2016). This could suggest that the association between CU-traits and brain structures differs in 
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typically-developing youths and those with DBDs. However, differences may also be based on group 

selection (number of participants, clinical criteria) or construct employed (e.g. measuring CU-traits 

versus empathy more specifically).  

 

CU-traits and brain structure in girls: gender differences? 

Unlike previous clinical findings across boys and girls, we found no significant relationships between 

CU-traits and gray matter volume in a large sample of girls (N=108). Sexual dimorphism in insula 

structure and function, as well as sex-difference in gray matter volume trajectories may explain this 

(Lenroot et al., 2007; Giedd and Rapoport, 2010). Studies on the impact of CU-traits in DBD 

populations have almost exclusively focused on males, not allowing a validation of the constructs 

employed in females (Rogstad and Rogers, 2008). It is a matter of ongoing debate whether differences 

in CU-traits between boys and girls represent true sex differences or whether the instruments, which 

have predominantly been developed in male samples, do not likewise apply to females (Rogstad and 

Rogers, 2008). Nevertheless, we suggest that the sex-specific effects identified here do not result from 

measurement issues since the variance in CU-traits within each group is similar. While the 

consideration of sex-differences in brain imaging studies is a controversial issue, bearing in mind the 

implications of incorrect conclusions (Cosgrove et al., 2007), future studies should include both 

genders to enhance our understanding of sex differences and apply this information to study 

neurodevelopmental disorders (i.e. DBDs) that are more prevalent in males. Ultimately, longitudinal 

studies are needed in order to answer the question whether the observed neuroanatomical differences 

are of developmental (e.g. through a time-specific shift in the cortical growth curve of boys and girls) 

or fundamental nature (e.g. present across development). 

 

Limitations 

This study had several limitations that should be considered when interpreting the results. First, 

previous evidence suggests that volumetric brain alterations derive from changes in both cortical 

thickness and surface area (Panizzon et al., 2009). Investigating gray matter volume indices in relation 

to CU-traits cannot indicate which factor(s) have uniquely contributed to the results. For example, in 

conduct disorder cortical thickness and folding deficits were demonstrated to localize to different 

(posterior versus anterior) brain structures (Hyatt et al., 2012). Secondly, while we excluded 

adolescents scoring high on aggression or delinquency, we cannot eliminate the possibility that 

subclinical variations of these measures have contributed to the present findings. Third, future studies 

will need to assess more complex developmental questions, which the present sample could not 

answer (e.g. stability of the observed associations across age). And finally, while we employed a 
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dimensional analysis approach in each sex individually, it is still possible that extreme scores in one 

group have driven the effects observed. 

 

CU-traits as a dimensional construct 

We here demonstrate the usefulness of CU-traits as a potential neurobiological specifier in adolescent 

boys beyond clinical populations. More specifically, CU-traits showed associations with brain 

structure in typically-developing boys, without diagnosable levels of antisocial behavior. Our findings 

thus support a dimensional approach characterizing mental health as implemented within the Research 

Domain Criteria framework (Blair, 2015). Moving away from categorical classifications, variations in 

traits are used to describe individual phenotypes. Frameworks assessing such traits must be able to 

differentiate not only across the clinical spectrum, but also within samples of typically-developing 

youths. While our findings in typically-developing boys complement findings in DBDs linking the 

anterior insula to CU-traits (De Brito et al., 2009; Fairchild et al., 2013), the direction of findings 

across studies varies (i.e. increases/decreases of gray matter volume). This may indicate a different 

relationship between CU-traits and brain structures in DBD and typically-developing youths. Within 

these lines, a recent voxel-based morphometry study in at-risk adolescents demonstrated a positive 

correlation between CU-traits and insular cortex volume in individuals with low, but not high, CD 

symptoms (Cohn et al., 2016). Future studies will need to examine the relationship between CU-traits 

and brain structure, not only in typically-developing individuals, strictly at-risk children or those with 

DBDs, but across the whole spectrum. Large-scale neuroimaging studies including both genders may 

likewise explore interaction effects of age, gender and CU-traits. Finally, it remains to be investigated 

whether the structural variations accompanying CU-traits identified here predict future psychiatric 

illness or psychosocial maladjustment (Viding and McCrory, 2012). 
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Supplementary material 
 

Supplement 1 

Distribution of the delinquency and aggression subscale from the CBCL (left: raw scores; right T-

scores). 

 
  



Chapter 3.  Callous-Unemotional Traits 

 

65 

 

Supplement 2 

Here we present evidence for the usefulness of the newly built composite score reflecting CU traits: 

(1) Cronbach Alpha scores and confidence intervals (CI) for the YPI callous-unemotional dimension, 

ICU total and the new composite score representing CU-traits; (2) Between-assessment correlations; 

(3) Changes in Cronbach’s alpha between assessments; and (4) replication of correlational findings in 

boys for ICU total, YPI callous-unemotional and composite score. 

 

(1) Reliability of Scales - Cronbach’s alpha scores 

Group Assessment Cronbach's Alpha Confidence Interval 

    All YPI (callous-unemotional) 0.785 0.737 to 0.828 

 ICU (total) 0.791 0.744 to 0.833 

 CU-traits (composite) 0.832 0.794 to 0.866 

    

    

Girls YPI (callous-unemotional) 0.765 0.694 to 0.825 

 ICU (total) 0.774 0.705 to 0.833 

 CU-traits (composite) 0.803 0.743 to 0.854 

    

    

Boys YPI (callous-unemotional) 0.752 0.662 to 0.827 

 ICU (total) 0.791 0.717 to 0.853 

 CU-traits (composite) 0.823 0.759 to 0.877 

        

Note. 95% Confidence Intervals. 

 
 

 

 

Supplement 3 

Graphs show the distribution of callous-unemotional traits, for girls and boys respectively. Plots 

demonstrate that the data falls into a wide range and that a sufficient number of high, medium and low 

scores represent our groups. 
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Supplement 4 

Site-specific acquisition parameters and numbers of subjects tested. 

      Site # 01 02 04 05 07 

#of participants 36 41 44 18 50 

[girls/boys] [16/20] [22/19] [22/22] [18/0] [30/20] 

scanner model Siemens Trio Siemens Prisma Siemens Trio Siemens Prisma Phillips 

#of slices 192 192 192 192 192 

TR 1900ms 1900ms 1900ms 1900ms 1900ms 

TE 2.74ms 3,42ms 4.1ms 3.42ms 3.7ms 

TI 900ms 900ms 900ms 900ms 900ms 

flip angle (°) 9 9 9 9 9 

field of view 256mm 256mm 256mm 256mm 256mm 

voxel size 1×1×1mm 1×1×1mm 1×1×1mm 1×1×1mm 1×1×1mm 

01=Frankfurt; 02=Aachen; 04=Southampton; 05=Basel; 07=Birmingham; TR=repetition time; TE=echo time; 

TI=inversion time.  
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Chapter 4. Microstructural White Matter Alterations in the Corpus 

Callosum of Girls with Conduct Disorder. 
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Abstract 

Diffusion tensor imaging (DTI) studies in adolescent conduct disorder (CD) have demonstrated white 

matter alterations of tracts connecting functionally distinct fronto-limbic regions, but only in boys or 

mixed-gender samples. So far, no study has investigated white matter integrity in CD girls on a whole-

brain level. Therefore, our aim was to investigate white matter alterations in adolescent girls with CD. 

We collected high resolution DTI data from 24 girls with CD and 20 typically developing control girls 

using a 3T MR imaging system. Fractional anisotropy (FA) and mean diffusivity (MD) were analyzed 

for whole brain as well as a priori defined regions of interest, while controlling for age and 

intelligence, using a voxel-based analysis and an age-appropriate customized template. Whole-brain 

findings revealed white matter alterations (i.e. increased FA) in CD girls bilaterally within the body of 

the corpus callosum, expanding towards the right cingulum and left corona radiata. The FA and MD 

results in a priori defined regions of interest were more widespread and included changes in the 

cingulum, corona radiata, fornix and uncinate fasciculus. These results were not driven by age, 

intelligence or ADHD comorbidity. This paper provides the first evidence of white matter alterations 

in female adolescents with CD as indicated through white matter reductions in callosal tracts. This 

finding enhances current knowledge about the neuropathological basis of female CD. An increased 

understanding of gender-specific neuronal characteristics in CD may influence diagnosis, early 

detection and successful intervention strategies. 
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Introduction 

Conduct disorder (CD) is a mental disorder of childhood and adolescence and is characterized by 

repeated patterns of rule-breaking and aggressive or defiant behavior which is outside the appropriate 

age norm (DSM-5 312.8; American Psychiatric Association, 2013). A clinical diagnosis of CD affects 

familial, academic or occupational functioning and can thus result in substantial societal costs. 

Clinically, CD and oppositional defiant disorder are subsumed under the diagnosis disruptive behavior 

disorder (American Psychiatric Association, 2013). The estimated life time prevalence of CD 

corresponds to about 7% in girls and 12% in boys (Nock, Kazdin, Hiripi, & Kessler, 2006). 

Consequently, the majority of research studies investigating CD almost exclusively included male 

participants. However, considering the known sex differences in the prevalence and progression of 

CD, the importance of including gender as a critical factor within CD studies remains indispensable 

(Nock et al., 2006). Sixteen to thirty percent of adolescents with CD display comorbid attention deficit 

hyperactivity disorder (ADHD), resulting in a possible influence (Maughan, Rowe, Messer, Goodman, 

& Meltzer, 2004). However, research has indicated that CD specific deficits persist beyond the 

presence of comorbid ADHD symptoms (Pape et al., 2015; Passamonti et al., 2012). 

 

Behaviorally, reduced empathy, emotion processing and regulation skills are key deficits in the 

behavioral symptomatology of CD. Likewise, impulsivity, decision making and reinforcement 

learning, are commonly impacted (Blair, 2013). In line with the known behavioral phenotype, 

functional neuroimaging studies in CD have revealed neuronal characteristics affecting the emotion 

processing, regulation and threat circuitries of the brain, as indicated by neuronal alterations in 

amygdala, insula, prefrontal, superior temporal and cingulate cortex (Marsh et al., 2008; Passamonti et 

al., 2010; Sterzer, Stadler, Krebs, Kleinschmidt, & Poustka, 2005; Viding et al., 2012). In line with 

functional evidence, changes in gray and white matter structure in brain areas of the frontal, limbic and 

temporal lobe have been identified when comparing CD to typically developing youths (Baker, 

Clanton, Rogers, & De Brito, 2015; De Brito et al., 2009; Sterzer, Stadler, Poustka, & Kleinschmidt, 

2007). For example, by using voxel-, surface- or cortical thickness-based morphometry analysis 

structural alterations in CD have been linked to the amygdala, insula, precuneus, prefrontal cortex, 

cingulate cortex and corpus callosum (Baker et al., 2015; Fairchild et al., 2013; Raine et al., 2003; 

Raschle, Menks, Fehlbaum, Tshomba, & Stadler, 2015). Structural and functional brain alterations are 

further dependent on age of onset, CD symptom severity or the level of callous-unemotional traits 

displayed. Heightened scores are thereby predictive of a negative disease progression and the 

development of antisocial behavior later in life (Fairchild et al., 2013; Marsh et al., 2008; Passamonti 

et al., 2010; Viding et al., 2012). Regionally specific structural changes have been linked to alterations 
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within the white matter tracts, or neural circuitries, connecting these regions, for example the 

prefrontal-limbic circuit. 

 

Neural circuits such as the prefrontal-limbic system may be investigated using diffusion tensor 

imaging (DTI), a technique measuring structural connectivity. DTI can inform about the fiber 

consistency and microstructural integrity of white matter tracts (e.g. fractional anisotropy (FA) or 

mean diffusivity (MD)). Previous DTI studies in male or mixed-gender groups of adolescents with 

disruptive behavior disorders have reported white matter increases and decreases in tracts comprising 

the corpus callosum, corona radiata, superior longitudinal fasciculus, fronto-occipital fasciculus, 

uncinate fasciculus, stria terminalis and cerebellar peduncle (Breeden, Cardinale, Lozier, VanMeter, & 

Marsh, 2015; Haney-Caron, Caprihan, & Stevens, 2014; Passamonti et al., 2012; Zhang et al., 2014b). 

 

To date it is unclear whether previously identified white matter alterations in CD boys are also present 

in CD girls. Two studies, one using a region of interest approach, the second based on post-hoc 

examinations of adult females with a prior CD diagnosis provide first evidence about potentially 

unique white-matter characteristics in female CD (Zhang et al., 2014a; Lindner et al., 2016). However, 

no study to date has investigated whole-brain white matter alterations in female adolescents with a 

clinical diagnosis of CD using diffusion tensor imaging. Therefore, the present paper aims at bridging 

this gap in knowledge by comparing white matter tracts in CD girls compared to typically developing 

controls through voxel-based DTI-TK using both a whole-brain and a region-of-interest approach. By 

employing a more conservative whole brain approach as well as investigations within a priori defined 

regions of interest method we aim to gain novel insights into white matter alteration in CD girls, but 

also allowing comparability to past studies. Based on previous evidence implicating white matter 

alterations within the neurobiology of CD, we hypothesize that in a group of only girls with CD 

alterations in white matter structures are likewise observed (i.e. in the uncinate fasciculus, corpus 

callosum, corona radiata, fornix, cingulum and fronto-occipital fasciculus) (Breeden et al., 2015; 

Haney-Caron et al., 2014; Pape et al., 2015; Passamonti et al., 2012; Zhang et al., 2014b). Comorbid 

ADHD symptoms will be accounted for by the repetition of analysis in CD girls without ADHD 

comorbidity. Finally, using correlational analyses we will investigate whether callous-unemotional 

traits, which are known to increase the symptom severity and disease progression of CD, may be 

linked to the observed microstructural alterations (Frick, Cornell, Barry, Bodin, & Dane, 2003).  
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Method 

Participants 

Forty-four average intelligent female adolescents, 24 with CD (age range: 12-18 years) and 20 

typically developing controls (age range: 12-19 years), were recruited through healthcare institutions 

and schools within this Swiss National Foundation study investigating adolescent CD. Some 

participants were part of FemNAT-CD, a project across Europe (http://www.femnat-cd.eu/). All 

patients fulfilled the DSM-5 criteria for CD using the semi-structured diagnostic interview K-SADS-

PL(Kaufman et al., 1997); Healthy controls were free of any psychiatric or neurological disorder. In 

line with the known overlap between CD and ADHD, we here identified nine CD patients with 

comorbid ADHD symptoms (Maughan et al., 2004). Furthermore, two patients were diagnosed with a 

present alcohol abuse and five patients with a present substance abuse. Handedness was assessed using 

the Edinburgh Handedness Inventory (Caplan & Mendoza, 2011). All participants completed two 

testing sessions, including clinical interview/psychometric testing and one MRI appointment. The 

MRI session occurred on average 2.6 months (±2.3 for CD; ±2.9 for controls) after the clinical 

interview. All participants and caretakers provided verbal and written informed consent to take part in 

the study as approved by the local ethics committee in Basel, Switzerland (Ethikkommission 

Nordwest- und Zentralschweiz). 

Table 1. Group characteristics of girls with conduct disorder (CD) and typically developing controls (TD). 

Variable 
CD TD 

p-value 
N 

Mean (±SD) Mean (±SD) (CD/TD) 

Age in years 15.8 (±1.4) 16.3 (±1.8) .262 (24/20) 

Age of CD onset     -   

  Child-onset (<10 years) 5 -     

  Adolescent-onset (≥10 years) 19 -     

Handedness   
.319 (22/20) 

  Left-handed 2 4     

  Right-handed 20 16     

Intelligence quotient (IQ; WISC-IV)
*
 99.5 (±10.5) 108.1 (±10.9) .011 (24/20) 

  Verbal IQ
*
 96.9 (±13.3) 111.3 (±13.5) .001 (24/20) 

  Performance IQ 102.1 (±11.1) 105.0 (±11.5) .398 (24/20) 

Aggression (RPQ) 13.1 (±9.3) 8.6 (±4.3) .127
1
 (20/20) 

Psychopathic Traits (YPI)
*
 107.5 (±22.1) 92.2 (±18.6) .019 (23/20) 

Callous-Unemotional Traits (ICU)
*
 28.6 (±10.8) 17.0 (±6.1) .001 (16/17) 

Puberty status 3.9 (±0.4) 4.2 (±0.7) .233
1
 (18/19) 

Socioeconomic status 5.0 (±1.8) 5.5 (±1.4) .502 (13/12) 

* significant group difference (p < 0.05), two-tailed T-test. 
1 
Mann-Whitney U test; For all tests, mean scores and 

standard deviations (SD) are reported. RPQ= Reactive-Proactive Questionnaire; YPI= Youth Psychopathic Traits 

Inventory; ICU= Inventory of Callous-Unemotional Traits. 
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Psychometric testing 

Participants completed a battery of standardized psychometric tests measuring psychopathic traits 

(Youth Psychopathic Traits Inventory self-report, based on 10 dimensions/50 items rated on a four-

point Likert scale (Andershed, Kerr, Stattin, & Levander, 2002)), callous-unemotional traits (Inventory 

of Callous-Unemotional traits parent-report, based on 24 items rated on a four-point Likert scale 

(Essau, Sasagawa, & Frick, 2006)), aggressive behavior (Reactive–Proactive Aggression 

Questionnaire, a 26-items self-report (Raine et al., 2006)) and pubertal status (Petersen, Crockett, 

Richards, & Boxer, 1988). Additionally, behavioral problems were recorded through parental reports 

(Child Behavior Checklist (Achenbach & Rescorla, 2001)). Furthermore, parental socioeconomic 

status was estimated using a six point educational-scale based on the International Standard 

Classification of Education (OECD/Eurostat/UNESCO Institute for Statistics). Clinical and 

psychometric data analyses were based on the homogeneity of variance (Levene’s) test and parametric 

(two-sample t-test) or non-parametric testing (Mann-Whitney U test) as implemented in SPSSv23 

(IBM Corp., Armonk, N.Y., USA). Group characteristics are presented in Table 1. There were no 

significant differences in respect to age, handedness, puberty status, socioeconomic status or 

performance IQ. The present group of CD girls is comparable in scores to previously described CD 

samples, including heightened aggression, callousness and psychopathy scores (Passamonti et al., 

2012; Zhang et al., 2014a). Compared to controls, total and verbal but not performance IQ was 

significantly lower in CD girls. 

 

DTI acquisition  

Whole-brain neuroimaging data was acquired using a 3T MR imaging system (Siemens Prisma, 

Erlangen, Germany) and a 20-channel phased-array radio frequency head coil. A single-shot echo 

planar imaging (EPI) sequence was used with the following acquisition parameters: A>>P phase 

encoding direction; echo spacing of 0.65ms, GRAPPA parallel imaging with an acceleration factor of 

two, phase partial Fourier 6/8 acquisition, matrix 128 × 128, field of view 256mm, 2 x 2 mm2 in-plane 

resolution, slice thickness of 2.0mm, no slice gap, 62 contiguous axial slices, TR = 7500ms, TE = 

71ms and bandwidth of 1776 Hz/Pixel. Diffusion-sensitive gradients were applied along 64 directions 

(b=800 s/mm
2
), and two additional images were collected without a diffusion gradient (b0=0 s/mm

2
) 

with A>>P and P>>A phase encoding directions, necessary for distortion corrections of the EPI 

imaging data during analysis.  

 

DTI data processing 

Prior to preprocessing, all images underwent quality control using DTIPrep in addition to visual 

checks through two independent reviewers (WMM, RF) in order to exclude artifact-influenced 
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gradient directions. EPI distortions were corrected using eddy and TopUp in FSL5.0 and the brain 

fMRI software library.(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; Oguz et al., 2014) 

With FSL-BET individual brain masks were created. Subsequently FA and MD values were obtained 

by using the FSL-DTIfit algorithm. Again, visual checks were applied to assure good coherence 

between individual FA- and MD- maps and corresponding diffusion tensor eigenvectors. 

 

To increase specificity, particularly for smaller tracts a voxel-based analysis as opposed to tract based 

statistics was employed (Bach et al., 2014; Schwarz et al., 2014). Most importantly, by using DTI-TK 

and an existing tensor template (the IXI aging template v3.0 in standard space) a study-specific 

customized adolescent brain template was created based on our study population (H. Zhang, 

Yushkevich, Alexander, & Gee, 2006). Subsequently, all subjects’ DTI volumes were aligned to our 

customized template, using the affine and diffeomorphic alignment of DTI-TK. DTI-TK uses a 

deformable registration algorithm optimizing the white matter alignment of DTI images between 

participants based on the tensors itself (Zhang et al., 2006). Therefore an advantage of using DTI-TK 

is the more precise spatial normalization of the DTI data. Consequently, a higher sensitivity for white 

matter alterations is achieved (Bach et al., 2014; Schwarz et al., 2014). After normalization, the FA 

and MD data were smoothed using a Gaussian kernel with full width at half maximum of 6 mm. 

 

Statistical whole brain and region of interest analysis 

Statistical analyses were performed using both, a whole-brain and a region of interest approach. All 

analyses were based on a permutation inference (n=5000), with demeaned age and total IQ-scores as 

covariates. Results are based on between-group two sample-t-tests (two-tailed) and presented using a 

threshold-free cluster enhancement, p≤0.05 FWE-corrected. The ICBM-DTI-81 atlas was 

implemented for determining tracts that lie within the clusters resulting from the analysis. In order to 

evaluate specific white matter tracts previously identified in males with disruptive behavior disorder, 

we further chose to investigate six tracts using an a-priori defined region of interest approach (Breeden 

et al., 2015; Haney-Caron et al., 2014; Pape et al., 2015; Passamonti et al., 2012). More specifically, 

these regions were generated from the ICBM-DTI-81 atlas for white matter tracts that were altered in 

previous studies investigating CD: the uncinate fasciculus, corpus callosum, corona radiata, fornix, 

cingulum, fronto-occipital fasciculus (Breeden et al., 2015; Haney-Caron et al., 2014; Mori et al., 

2008; Pape et al., 2015; Passamonti et al., 2012; Zhang et al., 2014b). 

 

Post-hoc region of interest analysis 

Evidence indicates that CD adolescents can be further dissociated depending on the level (high versus 

low) of callous-unemotional traits displayed (Andersson, Skare, & Ashburner, 2003; Fairchild et al., 



Chapter 4.  White Matter Alterations 

 

74 

 

2013; Lockwood et al., 2013; Viding et al., 2012; Wallace et al., 2014). There were not enough girls 

with high/low callous-unemotional traits allowing further subgroup analysis. However, post-hoc 

correlation analysis comparing the mean FA and MD values in anatomically defined areas of interest 

to callous-unemotional traits (corrected for IQ and age) were conducted in order to assess the influence 

of callousness on white matter alterations in CD girls. Correlational analyses were conducted using the 

ICU questionnaire, as well as the callous-unemotional subscale of the YPI. Both questionnaires are 

commonly used to distinguish relevant subgroups of CD individuals based on callous-unemotional 

traits (Fairchild et al., 2013; Lockwood et al., 2013; Wallace et al., 2014). Additionally, we planned to 

investigate the effect of comorbid ADHD symptoms, present in nine CD girls, on our findings by (1.) 

re-estimation of DTI analysis excluding the nine CD/ADHD girls; (2.) multiple linear regression 

analyses using CD and ADHD symptoms as independent variables (with age and intelligence as 

covariates) and clusters of significant whole brain FA changes in CD girls as dependent variables.  

 

 

Results 

Whole brain DTI findings in female CD 

On a whole-brain level, DTI analysis identified one significant cluster of FA increases centered in the 

body of the corpus callosum expanding towards the right cingulum and the left corona radiata when 

comparing CD girls to healthy controls (Table 2; Figure 1). 

 

 

Region of interest based DTI findings in female CD 

Further analyses within six a-priori based regions of interest derived from the literature on male CD 

(i.e. the uncinate fasciculus, corpus callosum, corona radiata, fornix, cingulum, fronto-occipital 

fasciculus) likewise confirmed several significant clusters of FA and MD alterations in girls with CD 

(Table 2). When compared to their typically developing peers, girls with CD displayed increased FA 

within the body of the corpus callosum, the right cingulate and the left anterior part of the corona 

radiata, but lower MD in the callosal body and right cingulate. The opposite pattern was observed for 

the left hippocampal part of the cingulum and the right hemispherical fornix, where FA was found to 

be significantly decreased in CD girls, but MD was increased in the fornix. Finally, within the right 

uncinate fasciculus girls with CD had lower MD, but no differences in FA, compared to typically 

developing girls. 
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Table 2. MNI peak coordinates of microstructural white matter alterations in female conduct 

disorder (CD) compared to typically developing controls (TD). 

# Brain region L/R 

coordinates of 

peak location
a
 Cluster size 

(number of 

voxels) p-value
b
 X Y Z 

Fractional Anisotropy 

CD>TD 
       

1 Bilateral corpus callosum (body) L -1 -26 24 2291 .038 

2 Corpus callosum (body)
c
 R 1 -26 24 5926 .005 

3 Cingulum (cingulate)
c
 R 12 -23 34 544 .011 

4 Corona radiata (anterior)
c
 L -15 31 -3 91 .047 

TD>CD 
       

5 Cingulum (hippocampal)
c
 L -20 -18 -27 196 .040 

6 Fornix
c
 R 2 -2 8 69 .046 

Mean Diffusivity 

CD>TD 
       

1 Fornix
c
 R 3 -3 8 109 .040 

TD>CD 
       

2 Corpus callosum (body)
c
 R 4 -24 26 5490 .010 

3 Cingulum (cingulate)
c
 R 7 -14 33 1197 .004 

4 Uncinate fasciculus
c
 R 38 -1 -18 156 .040 

a
 MNI space. 

b
 Threshold-free cluster enhancement, p≤0.05 FWE-corrected. 

c 
Region of interest 

 

 

 

Post-hoc region of interest analysis 

Correlation analyses indicated no significant relationship between callous-unemotional traits (either 

ICU or YPI) and the MD or FA values within anatomically defined regions of interest in the group of 

CD girls. Furthermore, results of an additional DTI analysis excluding nine CD/ADHD girls remained 

significant (see Supplement 2). Additionally, multiple linear regression analysis indicated that ADHD 

symptoms do not explain any additional variance observed within the results (R
2
 change = .019; 

F(1.39)=1.09; p=.303). 
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Figure 1 (top). Increased fractional anisotropy (FA) values in the body of the corpus callosum in 

conduct disorder (CD) girls compared to controls (TD). In a priori defined regions of interest 

increased FA (middle) and mean diffusivity (MD) (bottom) alterations in CD were detected in areas 

including right corpus callosum, cingulum, left anterior corona radiate, right fornix and uncinate 

fasciculus. 

 

 

Discussion 

For the first time, we here describe white matter alterations in female adolescents with conduct 

disorder (CD) using a whole-brain DTI analysis. More specifically, female CD is characterized by 

increased fractional anisotropy (FA) scores within the body of the corpus callosum, expanding towards 

the right cingulum and the left corona radiata. Further investigations within a-priori defined regions of 

interest reveal additional clusters of significantly altered white matter integrity in brain areas including 

the bilateral cingulum, left anterior corona radiata, right uncinate fasciculus and the right fornix. 

Overall, these findings align with findings in male CD or adolescents with aggressive behavior (Baker 

et al., 2015; Breeden et al., 2015; Haney-Caron et al., 2014; Passamonti et al., 2012; Sarkar et al., 

2013; Sobhani, Baker, Martins, Tuvblad, & Aziz-Zadeh, 2015; Zhang et al., 2014a; Zhang et al., 

2014b). These findings were corrected for age and IQ and proven independent of ADHD symptoms, 

which is in line with previous studies indicating that characteristic CD alterations remain after 

removal/control for ADHD comorbidity (Pape et al., 2015; Passamonti et al., 2012). 
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The here observed white matter alterations within the body of the corpus callosum are in line with 

previous research in CD. For example, Zhang and colleagues (2014b) used tract-based spatial statistics 

in order to demonstrate FA increases within the body and genu of the corpus callosum of male 

adolescents with CD. The corpus callosum is the largest white matter tract of the brain and crucial for 

interhemispheric communication. It has abundant projections (so called callosal radiations) to and 

from the cortices of both hemispheres and is generally subdivided into three distinct areas: the genu, 

the body and the splenium. Each part thereby connects functionally distinct brain regions. While the 

genu connects parts of the frontal lobes (executive and higher order cognitive processing) and the 

splenium temporal/occipital regions (visual processing), the body of the corpus callosum as identified 

here is specifically thought to connect motor, parietal and temporal areas important for motoric and 

emotion processing tasks (Schulte & Muller-Oehring, 2010). Interhemispheric processing is known to 

become progressively relevant with increasing cognitive demand. An intact connectivity through the 

body of the corpus callosum may thus be critical for enabling higher order skills such as emotion 

regulation (Raine et al., 2003). Furthermore, fibers of the callosal body connect to the insula, a 

structure associated with emotion processing and commonly altered in CD (Raybaud, 2010; Raschle et 

al., 2015). We therefore conclude that changes in the body of the corpus callosum of girls with CD 

may result in reduced interhemispheric processing and consequent lower emotion regulation abilities. 

In line with our finding, callosal alterations are linked to several childhood onset neuropsychiatric 

disorders (e.g. attention deficit hyperactivity disorder or developmental dyslexia (Catherine, 1994; 

Hasan et al., 2012)). 

 

It is to note, that corpus callosum alterations are commonly identified, however, reports differ in 

regards to the precise underlying neuroanatomical variations. For example, two studies including 

mixed-gender groups of adolescents with and without CD reported no FA differences, but reduced 

radial diffusivity, which is the DTI measure for the transverse component of diffusion direction 

(Finger et al., 2012). Such inconsistencies may result from differences in the DTI methods or analysis 

approaches applied, small sample sizes or missing group heterogeneity (e.g. clinical criteria), variation 

in accompanying traits (e.g. high/low callous-unemotional traits), unbalanced gender or differences in 

the age of participants tested. For instance, previous studies have either used voxel-based analysis or 

tract-based spatial statistics (but rarely a combination), which may explain differences in results 

observed. Since DTI-TK has shown to enhance the specificity of the normalization of DTI data, we 

overall recommend using this tool (also prior to tract-based approaches) in order to increase the 

sensitivity in future studies (Bach et al., 2014). 
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Developmentally, the corpus callosum matures throughout childhood and adolescence, with a peak 

typically expected around 20 to 35 years of age (Lebel et al., 2012). Based on this knowledge, three 

possible explanations for FA increases in CD may be used: (1) accelerated maturation, causing the FA 

peak to shift to an earlier age; (2) an earlier degeneration following the initial over-proliferation 

(Passamonti et al., 2012; Zhang et al., 2014b); or (3) compensatory processes following an initial 

under-myelination (Markham, Herting, Luszpak, Juraska, & Greenough, 2009). These explanations 

would be in line with the finding that adults with a antisocial personality disorder or previous 

diagnosis of CD display FA reductions within the corpus callosum (Lindner et al., 2016; Sundram et 

al., 2012), while increases are more commonly detected in younger individuals (e.g. the here presented 

findings or Zhang et al., 2014b). Therefore, we agree with previous suggestions and hypothesize that 

an initial over-acceleration of white matter maturation, either due to excessive stimulation following 

early life stress or as a consequence of compensatory mechanism cause the characteristic changes in 

the corpus callosum in adolescents with CD and may potentially be followed by the onset of an earlier 

degeneration. However, future studies implementing longitudinal designs are needed in order to test 

whether differences in white matter trajectories within the corpus callosum are origin or result of the 

behavioral challenges observed. Furthermore, it would be interesting for future studies to analyze the 

eigenvalues (i.e. λ1, λ2, λ3) of FA results separately in order to investigate which component is 

driving the observed findings (Passamonti et al., 2012). 

 

Investigating a-priori defined regions of interest based data in males (Breeden et al., 2015; Haney-

Caron et al., 2014; Pape et al., 2015; Zhang et al., 2014b), additional FA increases (i.e. in the right 

cingulum, left anterior corona radiate) but also decreases (i.e. in the left hippocampal part of the 

cingulum and right fornix) were detected. One area identified is the cingulum, a large c-shaped white 

matter tract positioned directly above the corpus callosum and connecting frontal, temporal and limbic 

brain regions. Particularly its anterior part is linked to cognitive and emotion processing (Bush, Luu, & 

Posner, 2000; Catani, Howard, Pajevic, & Jones, 2002). In line with our results, structural (i.e. voxel-

based morphometry, DTI, surface-based morphometry) and functional (e.g. emotion, empathy and 

pain processing) cingulum alterations have been identified in CD (De Brito et al., 2009; Haney-Caron 

et al., 2014; Lindner et al., 2016; Sterzer et al., 2005). In line with previous findings (Haney-Caron et 

al., 2014; Raine et al., 2003; Sundram et al., 2012; Zhang et al., 2014b), we identified the corona 

radiate to distinguish girls with CD from healthy controls (Haney-Caron et al., 2014; Fergusson, 

Horwood, & Ridder, 2007; Caplan & Mendoza, 2011; Andershed et al., 2002). Containing a fan-

shaped array of ascending and descending projection fibers and fanning out widely (Catani et al., 

2002), the position of white matter alterations within this structure varies and remains debated. 

However, alterations within the left anterior corona radiata were linked to increased impulsivity. 
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Finally, we here identified the fornix a white matter tract connecting the hippocampus with the 

mammillary body, medial temporal lobe and the anterior thalamic nuclei (Catani et al., 2002; Thomas, 

Koumellis, & Dineen, 2011). Being part of the limbic system, the fornix and hippocampus are crucial 

for learning and memory processes (Tsivilis et al., 2008). Reduced FA in the fornix and the uncinate 

fasciculus have been associated with early life stress (Choi, Jeong, Rohan, Polcari, & Teicher, 2009; 

Lindner et al., 2016), which is common in the etiology of CD. It is mentionable, that we did not 

observe FA alterations in the uncinated fasciculus in CD girls, but only reduced MD values. A 

reduction in MD may indicate increased myelination or more compact white matter tracts, however, 

various factors (e.g. fiber crossings) may play a role (Beaulieu, 2002). While reduced FA are 

consistently reported in male psychopaths (Craig et al., 2009; Motzkin, Newman, Kiehl, & Koenigs, 

2011; Sobhani et al., 2015; Sundram et al., 2012), findings in adolescent CD show decreases (Breeden 

et al., 2015; Haney-Caron et al., 2014), increases or no changes in FA at all (Finger et al., 2012; 

Passamonti et al., 2012; Sarkar et al., 2013; Zhang et al., 2014a). Differences may be due to variations 

in study designs, small sample sizes, unbalanced or single sex studies, age/developmental differences 

or no control for comorbidities.  

 

Limitations 

A potential limitation of the present work is that the overall intelligence score was significantly lower 

in girls with CD. While we used the overall intelligence score as a covariate of no interest within the 

analysis conducted, it is still possible that intelligence may have influenced the data. Interestingly, 

only verbal IQ differentiated CD girls from controls, but performance IQ was comparable between the 

groups. Furthermore, past DTI studies focusing on intelligence have indicated that FA values are 

unrelated to variations in IQ.(Meier et al., 2012) According to past research age of CD onset may 

distinguish meaningful neurobiological subgroups (Passamonti et al., 2012). This study included both 

child- (N=5) and adolescent-onset (N=19) CD girls which may have affected the final results. While 

no study has yet demonstrated differences in white matter integrity between child- and adolescent 

onset CD groups, it is recommendable to investigate this topic further. Lastly, some of the girls with 

CD had a diagnosis of alcohol and/or substance abuse, which was shown to strongly correlate with CD 

severity (Crowley, Mikulich, Ehlers, Whitmore, & MacDonald, 2001; Fergusson, Horwood, & Ridder, 

2007), and consequent brain activation (Castellanos-Ryan et al., 2014). Therefore, we cannot exclude 

potential effects on the presented results.  

 

Conclusion 

Research has suggested that boys have an increased propensity to develop disruptive behavior 

disorders as opposed to girls who require a higher loading of biological risk factors to develop CD 

(Cloninger, Christiansen, Reich, & Gottesman, 1978). An increased understanding of the 
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neurobiological basis of CD across both sexes is crucial in order to improve individualized diagnostics 

and facilitate early detection of children at risk. Particularly, because a timely start of intervention 

program precedes success (Pardini & Frick, 2013). Here we have identified structural white matter 

changes specific for the corpus callosum in girls with a diagnosis of CD. Our findings align with 

results in male adolescents with CD displaying corpus callosum deficits, but being on average about 

two years younger (Zhang et al., 2014b). Thus it could be hypothesized that these alterations may be 

indeed a characteristic of both, males and females with CD, however, linked to different sensitive 

periods. Continuous developmental research of the uniqueness and shared features of both female and 

male individuals with CD is needed in order to draw conclusions adaptable for both genders. 
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Supplementary material 

 

Supplement 2. Microstructural white matter alterations in 15 females with CD (CD) and 

without ADHD comorbidity compared to 20 typically developing controls (TD) using 

fractional anisotropy (FA) and mean diffusivity (MD). 

# Brain region L/R 

coordinates of 

peak location
a
 Cluster size 

(number of 

voxels) p-value
b
 X Y Z 

Fractional Anisotropy 

CD>TD              

1 Bilateral corpus callosum (body) L -1 -24 24 560 .046 

2 Bilateral corpus callosum (body) L -13 -22 32 197 .050 

3 Corpus callosum (body)
c
 R 1 -25 23 6725 .003 

4 Cingulum (cingulate)
c
 R 12 -23 34 159 .022 

TD>CD    
          

5 Cingulum (hippocampal)
c
 L -22 -20 -27 628 .005 

Mean Diffusivity 

CD>TD    
          

  -  
          

TD>CD    
          

1 Corpus callosum (body)
c
 R 4 -25 25 7644 .003 

2 Cingulum (cingulate)
c
 R 7 -13 33 903 .008 

3 Uncinate fasciculus
c
 R 37 3 -20 58 .047 

a Neurological view (MNI space). b Threshold-free cluster enhancement, p≤0.05 FWE-corrected. c Region of 

interest 
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Background. Antisocial behavior in adolescence, such as conduct disorder (CD) and oppositional 

defiant disorder, increases the risk for developing mental and physical health problems in adulthood. 

Behavioral and neuroimaging research has associated CD with deficits in facial expression recognition 

(e.g. fearful and angry faces) and altered neural activation during face/emotion processing (Dawel 

2012; Fairchild 2014; Jones 2009). However, evidence for the neuronal basis of face processing is 

limited in CD, especially in relation to eye gaze/attention. Already, in 4- to 8-year-old children CD 

symptoms and callous-unemotional traits are linked to reduced eye contact (Dadds 2014). The eye-

region plays an important role in the recognition of facial expressions. Thus, impaired eye contact 

could explain the observed dysfunctional face recognition and altered neuronal pattern in CD. So far, 

no fMRI study has investigated face processing and eye-tracking simultaneously. Our aim is to 

examine our adapted eye-tracking neuroimaging paradigm and investigate brain activation patterns 

during emotional face processing in youths with CD compared to typically developing controls. 

 

Methods. We collected whole brain functional neuroimaging (fMRI) data using a 3T Siemens Prisma 

scanner in 81 youths (average age=15.5♂/15.5♀) with a clinical diagnosis of CD (DSM-5/N=42; 

20♂,17♀) and their typically developing peers (N=39; 7♂,20♀) using an age appropriate 

neuroimaging protocol (Raschle 2012). All participants were behaviorally characterized using 

standardized clinical interviews/testing, including CU traits and aggression questionnaires. An 

emotional face processing paradigm (adapted from (Passamonti 2010) was used to investigate emotion 

processing. Participants have to indicate via button press the sex of angry, fearful, and neutral facial 

expressions posed by 30 different actors (50% female). Stimuli are presented in a blocked design 

where 5 faces from one category (angry, fearful or neutral) are pseudo randomly intermixed with 5 

null events (fixation cross). Faces are presented for 2000ms, followed by a fixation cross of 750ms; 

null events consist of a presented fixation cross for 2750ms. During two scan sessions of 8.25min, the 

participants will view 18 blocks of each stimulus category (see Figure 1). Throughout the task reaction 

time and accuracy, as well as eye gaze are monitored.  

 

A ViewPoint eye-tracking (Arrington Research®) system recorded real time (X- and Y-position) 

location and velocity of the right eye’s pupil of all participants; from these data points the participant’s 

eye gaze (i.e. fixations and saccades) can be calculated. The collected neuroimaging data was analyzed 

using SPM12. Preprocessing included realignment, coregistration, segmentation, normalization, 

smoothing, and artefact detection. Two-sample t-tests for the contrasts 'angry vs. neutral', and 'fear vs. 

neutral' were computed to compare youths with antisocial behavior with typically developing peers.  
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Figure 1. (A) Emotion 

processing paradigm 

and (B) the Eyetracker 

system with (C) real-

time pupil tracking.   

 

 

 

 

Results. Behaviorally, individuals with CD display significantly higher CU traits (total YPI 

(110.8/94.8), total ICU (27.0 /19.2), and the callousness (9.73/5.37) and uncaring (11.5/8.5) ICU 

subscales). Preliminary neuroimaging analyses indicated that both typically developing adolescents 

and adolescents with CD activate the emotional network of brain. However, adolescents with CD have 

more activation in the right caudate, left anterior cingulate, right fusiform area, and right amygdala for 

angry (angry>null) facial expressions in comparison to their typically developing peers (Figure 2A). 

Similarly, youths with CD display more activation in the right insula, left caudate, and right fusiform 

area for fearful (fearful>null) facial expressions (Figure 2B). Compared to the antisocial group, the 

control had no increased activation pattern on a whole brain level.  

 

 

Figure 2. Statistical parametric maps for looking at (A) angry facial expressions (angry>null) and 

(B) fearful facial expressions (Fear>null). TD: typical developing; CD: conduct disorder. Red: 

amygdala. Purple: left caudate. Blue: right fusiform area. Green: right insula. (p>0.005 unc.) 

  

A              B 
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Preliminary eye tracking data suggests that adolescents with conduct disorder have an atypical eye-

gaze pattern –less fixations in the eye regions– compared to typically developed adolescents (see 

Figure 3.).  

 

 Figure 3. Heatmaps during angry, fearful and neutral facial expression stimuli. 

 

 

Discussion. These whole-brain neuroimaging results demonstrate the effectiveness of our modified 

emotional-face processing paradigm, since several important regions involved in face (e.g. fusiform) 

and emotion processing (e.g. amygdala and insula) were activated in our sample of adolescents. 

Furthermore, youths with conduct disorder displayed altered neuronal activations during facial 

expression processing compared to controls. Our results will lay the foundation for investigating the 

neural activation pattern in larger groups (dependent on sex and symptom severity) and linking these 

activation patterns with eye gaze.  
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Abstract 

Do you like science fiction? Have you heard of, or are you even a fan of, the famous “Star Wars” 

series? To summarize, there are rebels, emperors, princesses, robots, and many more fabulous 

creatures. There is also a power source called “The Force.” It is used by the Jedi (the good ones) but 

also by the dark side (the evil ones). Only the dark side uses the destructive power of “The Force,” 

which is based on negative emotions such as fear, anger, jealousy, or hate. A Jedi masters “The Force” 

and uses it for knowledge and defense by learning to control his emotions. Our research also looks at 

emotions and how to control them. We know that in our galaxy too, we have more success when we 

can control our feelings. Therefore, we want to find the brain regions responsible for allowing us to 

deal with our emotions and to help those children struggling with controlling negative emotions.  
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Introduction 

Imagine walking down the school hall thinking about your next lesson. Suddenly, your best friend 

jumps out from a dark corner, right in front of you, wearing a silly mask and scaring you. This trick 

that was played on you immediately led to a reaction of your body. You can feel your heart beating 

and maybe you just screamed out loudly. A few seconds later though, you recognize your friend and 

notice there is no real threat. You may even start laughing about the joke. This is an example of how a 

person can react to an emotional situation. It also shows how our mind processes a situation using 

different clues. Emotions are feelings that (1) are caused by situations that are meaningful or 

important to you, (2) are something you feel or show through your body language, and (3) may 

compete with other important things (Gross & Barrett, 2011). In our example, the scary joke gave you 

the impression of being attacked, and it is important to you to stay unharmed. Your beating heart and 

the screaming is the reaction of your body. While you are scared and your first intention might be to 

run away quickly, you also noticed that this was simply your friend playing a joke on you. Being 

scared and knowing someone is your friend are two different clues that might compete with each other 

in your brain. One clue tells you to run away in order to stay unharmed, and the other tells you to stay 

with someone you like (competing reactions). Within a split second, you make a choice about which 

emotion you find important and which emotion you choose to control or suppress completely. Overall, 

people tend to choose to decrease negative emotions (anger, sadness, or fear) and increase positive 

emotions (happiness, love, and joyfulness). Changing or controlling your feelings is an action we call 

“emotion regulation.” The way that you control and change your emotions is called your “emotion 

regulation strategy.” Looking at data from many people, scientists were able to show that the way you 

regulate your emotions influences how you feel, but it also affects the people around you (Gross & 

Barrett, 2011). For example, if you have difficulties controlling your emotions when being angry you 

may end up cursing, punching, or even bullying the people around you. This is no fun for them either. 

Therefore, successful emotion processing and regulation is very important for humans. In fact, 

emotion regulation difficulties are a part of many mental health issues in children, teenagers, and 

adults. 

 

Using An MRI Camera For Studying The Brain 

The way the brain processes and regulates emotions can be studied using a technique called magnetic 

resonance imaging (MRI). An MRI scanner looks like a big tunnel (see Figure 1A). Actually, it is just 

a very fancy camera that is able to take images of all the parts inside your body. For example, an MRI 

camera can take an image of the bones in your leg, of your beating heart, or of the organ we are 

interested in – the brain. We can use the MRI camera to look at the structure (shape and size) of the 

brain. When we want to see how the brain works, then we can use an MRI  
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Figure 2. Why staying still during an MRI session is important: [A] A picture 

taken by a regular camera can be very sharp when the person is standing super 

still (green happy face). But when the person is moving a lot, the picture becomes 

blurry (red sad face). [B] The same is true when taking brain pictures. The pictures 

can turn out super sharp when the person stays still (green happy face) or blurry 

and hard for scientists to read for when the person wiggles around (red sad face). 

  

Figure 1. [A] Two of our research team members showing you an MRI camera 

and how it is used. [B] Different views of a child’s brain as taken by an MRI 

camera. The areas that are colored yellow are important for emotion processing 

and regulation. 

 



Chapter 6.             Emotions and the Brain: How to Master “the Force” 

 

91 

 

camera to look at brain function. Just as you need more food when you do sports, your brain also 

needs more energy when it becomes active, but instead of food it needs oxygen. Therefore, when a 

specific region in the brain is hard at work, it will get more oxygen transported to it by the 

bloodstream. We call this blood oxygen-rich. Oxygen-rich blood gives different signals to the MRI 

camera compared with blood that has less oxygen. Using this knowledge, researchers can create an 

image of both the brain’s structure and function. With special computer programs, we can make 

pictures like the ones in Figure 1B. One of the most amazing things is that the MRI camera can take 

pictures of your brain at work without even touching you! But there are some challenges for people 

who take part in research studies using an MRI. Two of the biggest challenges are that (1) you have to 

stay super still while the pictures are taken or they become blurry (for an explanation, see Figure 2) 

and (2) you have to protect your ears against the noise. Big cameras such as an MRI can be quite loud, 

which is why you need to wear special headphones. Staying still can be practiced with fun games, 

such as the freezing game, where you have to stay still like an ice statue. If you want to know more 

and see what MRI experiments involving young children look like, you can watch the following video 

(http://www.jove.com/video/1309/ making-mr-imaging-child-s-play-pediatric-neuroimaging-protocol; 

Raschle et al., 2009). 

 

What does the brain look like while processing and regulating emotions? 

Now, in the first section, you learned about feelings, which scientists call emotions. You heard that 

emotions can lead to a reaction in your body. You also know that sometimes we experience several 

emotions at once and that sometimes it is necessary to control a feeling and not to act on it. This 

process is called emotion regulation. In the second section, you learned how an MRI camera works 

and how it can be used to take images of the structure and function of the brain. In the next section, we 

want to combine these two things and talk about the parts of the brain that are responsible for 

processing and regulating emotion. 

 

Using MRI cameras, scientists have shown that emotions are processed by many different areas of the 

brain. There is not just one place that is responsible for processing an emotion. Several brain regions 

work together as a team. This is why scientists say that emotions are processed by a network of brain 

regions. A network of brain regions that process emotions is called an emotion­ processing network 

(see Figure 3). Let us name some of those brain regions that are activated by emotions. They are the 

amygdala, the prefrontal cortex, the cingulate cortex, the hippocampus, and the basal ganglia (Phan et 

al., 2002). Fancy names, but it is not these names you need to remember. What is important to 

understand is that there are many brain regions involved during emotion processing. All the different 

regions have their own job and they all work together to identify and control an emotion. The 
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amygdala, for example, is a tiny part of the brain (it has the shape and size of an almond), and it is 

responsible for handling both positive and negative information. The amygdala is especially important 

when we experience the emotion of fear. Another region of the emotion processing network is the 

prefrontal cortex, which is named after its location: in the front of the brain. The prefrontal cortex is 

like a control center, helping to guide our actions, and therefore, this area is also involved during 

emotion regulation. Both the amygdala and the prefrontal cortex are part of the emotion network. Just 

like good friends, these different brain regions stay in touch and communicate frequently with each 

other. For example, the amygdala (the emotion center) can detect an important fearful event and 

transport that information to the prefrontal cortex (the control center). The prefrontal cortex gets the 

message that there is something scary happening. If necessary, this control center at the front of your 

head sends commands to other brain regions telling them to move your body and run away. To sum it 

up, many brain regions work together to process and react to an emotional situation (see Figure 3). 

 

What happens in the brain when emotion processing fails? 

By now, you understand that feelings are complicated and that emotions are represented and processed 

by many regions in the brain. You also remember that successful emotion regulation is important for a 

persons’ well-being and central for the people around them. As mentioned before, it can be really 

difficult to be around people that are constantly cursing, hitting, or bullying the people around them 

because they cannot control their negative emotions. Unfortunately, some children struggle more than 

others with their emotions. Imagine you have a classmate named Jamie, who has problems with 

regulating emotions, especially anger and fear. Now picture that you make a silly joke with Jamie, but 

instead of laughing, Jamie gets very upset and maybe even starts fighting with you. This is an example 

of someone who has emotion regulation difficulties. Such difficulties in handling emotions can often 

be observed in very aggressive (frequently fighting and bullying) and antisocial (breaking rules) 

teenagers. Research studies have shown that these teenagers cannot always successfully identify their 

emotions. It can also be very hard for these children to control their emotions, like in the case of 

Jamie. This is not fun for you, if you become a victim of Jamie when he wants to fight you. But it is 

also not fun for Jamie, who might be expelled from school for his behavior. It is no fun either for his 

parents or the people around him. You can see that many individuals are affected by Jamie’s 

difficulties controlling his emotions. 
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Because we are interested in how the brain processes and regulates emotions, we do a lot of work with 

children who can successfully handle their emotions. We also invite children who struggle with 

emotion processing and regulation to see whether their brain structure and function looks any different 

from the children who do not have trouble with emotion processing. So far, there have been several 

small studies, suggesting that there are differences in brain function and structure in children with 

aggressive behavior (Sterzer et al., 2007). But, as our MRI section describes, there are challenges 

when doing research studies with younger participants. For example, it is very hard for children to stay 

very still while the MRI takes pictures (Figure 2A). Because of this, most studies have a very small 

number of participants, and the results are not as clear. A method called “meta-analysis” helps to 

summarize the information from all of these very important small studies. Meta-analysis takes the 

results of many studies and combines them into one big finding. For example, we have combined all 

small studies done so far in children and teenagers with aggressive behavior (Raschle et al., 2015). 

While each study had a maximum size of about 40 participants, combining all of them into one meta-

analysis allowed us to look at over 500 children at once. By doing so, we were able to show changes in 

both brain structure and brain activity (function) in the emotion processing network in aggressive 

teenagers (Figure 3). 

 

 

 

  

Figure 3. The emotion processing 

network includes several areas of 

the brain. Some of these areas are 

shown here shaded in blue and you 

can see their different jobs: the 

amygdala (almond) recognizes and 

sorts the emotions before 

transporting them to other areas. 

In the picture, this transportation 

is visualized by a train driving 

along the dotted track line to the 

most frontal part of the brain. 

Once the information arrives there, 

the prefrontal cortex and the 

cingulate cortex act as a control 

center (little man behind desk), 

deciding what has to be done next 

with the incoming emotions. Many 

areas work together to process an 

emotion! (illustration by Menks). 
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May “the force” be with you! 

To summarize, emotions are feelings that are processed by a team of brain regions. Emotion 

processing is a complicated process, which sometimes does not work so well. Difficulties with 

emotion processing and regulation are found in children and teenagers with very aggressive and 

antisocial behavior. Using structural and functional neuroimaging techniques, we showed that areas of 

the emotion processing network of the brain are different in the youths with aggressive behavior. 

Luckily, the brain has the ability to change and adapt, especially when people are still young. The 

more we know about how our brain develops and how it processes and regulates emotions, the more 

we can help children with emotion processing problems. This knowledge also helps doctors to choose 

the most helpful treatment for these children. For example, if we know that a child struggles with 

recognizing an emotion, then that is what we teach them to practice. Or if we see that a child cannot 

control his emotions, we teach him ways to do so. In the end, we want to understand and teach others 

how to deal with feelings of anger, fear, and aggression in a good way. We hope that we can help 

those children struggling with their emotions and bring all of us a little closer to the “Jedi in us.” 
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and Adolescent Psychiatry in Basel. I would like to better understand why some 

children sometimes become rapidly stressed and often react very aggressively. 

From my clinical work, I learnt that the reasons often lead back to negative living 

conditions in which the children grew up. It seems that because of these negative 

experiences, kids with aggressive behavior have developed a super sensor to 

detect signs of danger. Thus, one of my research interests is to investigate the 

biological mechanism of this super sensor in order to better understand those 

children who have problems inhibiting aggressive behavior. 

  





Chapter 7.  General Discussion 

97 

 

Chapter 7. General Discussion 
 

The central aim of this dissertation was to further the neuroscientific knowledge of antisocial 

behavior in children and adolescents by investigating the underlying structural and functional 

neurobiological characteristics, with an extra focus on possible sex differences and the neural 

correlates of callous-unemotional traits. First, we aimed to aggregate and summarize the current 

neuroimaging literature, through meta-analyses, with the purpose of overcoming the heterogeneity 

of antisocial behavior and generating a common “overlapping” pattern of structural and functional 

atypicalities in youths with antisocial behavior. Secondly, the relation between callous-

unemotional traits and brain structure was investigated separately for sex and independently of 

psychiatric comorbidities. Thirdly, this work investigated white matter structures within a 

homogenous group of girls with conduct disorder –the severe variant of antisocial behavior– in 

comparison to typically developing girls. Fourthly, this dissertation presents preliminary neural 

and eye-gaze results from a novel-developed eye-tracking paradigm, which lays the foundation for 

studying the direct relationship between neural-activation patterns and attention to social cues (i.e. 

eye-region of faces) within a cohort of youths with antisocial behavior. Additionally, we have 

translated the results from our meta-analysis project to the general public using accessible 

language, attractive illustrations, and popular examples (e.g. Star Wars), in order to raise awareness 

about antisocial behavior and the importance of neuroscience research in youths. The following 

sections elaborate and summarize the key findings, strengths, and challenges of this dissertation, as 

well as the impact of this work on the current research field and future prospects. 

 

7.1. Structural and functional neural patterns in gray matter  

This dissertation presents novel evidence for distinct structural and functional neural patterns in 

children and adolescents with antisocial behavior. We observed a consistent pattern of gray matter 

reductions and hypoactivations in brain areas that are involved in the emotion processing and 

regulation network (e.g. prefrontal and limbic cortex). Our findings are in line with other recent 

meta-analyses investigating neural correlates of antisocial behavior in youths (Rogers & De Brito, 

2016) and adults (Aoki, Cortese, & Tansella, 2015; Yang & Raine, 2009). Especially structural 

atypicalities within the insula were a recurring theme within this work. Insula volume was not only 

correlated with antisocial behavior throughout the preceding literature (chapter 2) but also 

positively correlated with callous-unemotional traits independent of clinical antisocial behavior 

(chapter 3). For this latter study, we have constructed a novel composite score for callous-

unemotional traits based on multiple sources (i.e. parental and self-report) and instruments (i.e. 

ICU and YPI questionnaire). This new composite score had a higher internal reliability 

(Cronbach’s alpha of 0.83; see chapter 3, supplement 2) than the two individual dimensions 
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commonly used, thus informing the importance to use several information sources when 

investigating callous-unemotional traits. In the following paragraphs we will shortly review the key 

areas found in this dissertation that contained atypical structural and functional gray matter in 

youths with antisocial behavior: amygdala, insula, and prefrontal cortex. 

 

7.1.1. Amygdala 

The amygdala is a key-player within the emotion processing network (see Figure 1.; Haxby, 

Hoffman, & Gobbini, 2000), hence this structure is crucial for the perception and encoding of 

emotionally loaded stimuli (Garavan et al., 2001; Irwin et al., 1996; LeDoux, 2000; Lindquist et al., 

2012), empathy (Baron-Cohen et al., 1999; Carr et al., 2003), and moral reasoning (Luo et al., 

2006). Empirical research has repeatedly connected altered amygdala functioning and structure to 

antisocial behavior in adulthood (Boccardi et al., 2011; Contreras-Rodriguez et al., 2014; Craig et 

al., 2009; Ermer et al., 2012; Glenn, Raine, & Schug, 2009; Kiehl et al., 2001; Marsh & Blair, 

2008b; Osumi et al., 2012; Pardini et al., 2014; Raine & Yang, 2006; Yang et al., 2009b). 

Consequently, amygdala dysfunction is suggested to be one of the core features and possible 

marker in the symptomatology of antisocial behavior (Blair, 2003, 2008b; Boccardi et al., 2011; 

Carre et al., 2013; Craig et al., 2009; Crowe & Blair, 2008; Dadds et al., 2006; Gao et al., 2009; 

Glenn & Raine, 2008; Jones et al., 2009; Marsh et al., 2013a; Weber et al., 2008). Consistent with 

the literature, our meta-analyses have identified functional and structural abnormalities in the right 

and left-hemispheric amygdala in youths with antisocial behavior. These findings are in line with 

the proposed neurobiological model that associated amygdala dysfunction with impaired emotional 

empathy (Blair, 2013). 

 

 

 

Figure 1. Schematic overview of major 

findings within this dissertation. Gray 

matter reductions and/or hypoactivation 

within the insula, amygdala, orbitofrontal 

cortex (OFC), dorsomedial prefrontal 

cortex (dmPFC)) of youths with antisocial 

behavior. White matter alterations within 

the body of the corpus callosum (white) and 

uncinate fasciculus (blue lines) of girls with 

conduct disorder.  
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7.1.2. Insula 

The insula is part of the cerebral cortex and is bi-directionally connected to various brain regions, 

including the orbitofrontal cortex, anterior cingulate, parietal, temporal cortices, and the amygdala 

(see Figure 1.; Dupont et al., 2003). Neuroimaging evidence supports a generic role of the insula in 

the awareness of bodily sensations and affective feelings, but also during processing of emotions 

such as anger and disgust (Craig, 2009; Lindquist et al., 2012; Phan et al., 2002; Phillips et al., 

1997). Both hypo- and hyperactivity of the insula are linked to antisocial behavior, especially 

during tasks of emotion processing and empathy (Anderson et al., 2017; Decety et al., 2013; 

Fairchild et al., 2014; Fan et al., 2011; Klapwijk et al., 2015; Lockwood et al., 2013; Phan et al., 

2002; Rubia et al., 2009; Sundermann & Pfleiderer, 2012). Also thinning and reduced density of 

gray matter within the insula are commonly found in adults with psychopathy (Gregory et al., 

2012; Ly et al., 2012; Schiffer et al., 2011) and negatively related to psychopathic traits (Cope et 

al., 2012; Ermer et al., 2012). In line with the literature of adult antisocial behavior and the 

proposed neurobiological model, our meta-analyses indicated several clusters of hypoactivations 

and gray matter reductions within the insula in youths with antisocial behavior. Furthermore, these 

functional and structural atypicalities were partly overlapping in the same part of the left insula, 

which could point towards a robust neural correlate of antisocial behavior in youths functioning as 

a potential neural marker (see chapter 2).  

 

Interestingly, our whole-brain multiple regression analyses (chapter 3) indicated a strong positive 

correlation between callous-unemotional traits and increased gray matter density in the bilateral 

anterior insula of typically-developing boys. This is in contrast to previous studies in adults (Cope 

et al., 2012; de Oliveira-Souza et al., 2008; Ermer et al., 2012) that suggested an opposite -

negative- relationship between callous-unemotional traits and the insula volume. So far, one study 

has observed decreased bilateral insula volume in youths with antisocial behavior that was 

negatively correlated with empathy scores (Sterzer et al., 2007). The discrepancy in correlation 

direction between Sterzer et al. (2007) and our results could be attributed to different sample 

selection (i.e. sample size, clinical diagnoses, ADHD comorbidities) or behavioral dimensions (i.e. 

callous-unemotional traits or empathy) assessed. No significant relationship was found between 

callous-unemotional traits and gray matter volume in girls. Research reporting sexual-dimorphism 

in the brain-development trajectories for both insula and whole-brain gray matter may explain the 

observed sex differences (Giedd & Rapoport, 2010; Lenroot et al., 2007). Thus, our findings 

highlight the importance of including both sexes for comparison in future studies. 
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7.1.3. Prefrontal cortex 

The prefrontal cortex (PFC) consist of multiple regions, including the orbitofrontal and 

dorsomedial prefrontal cortex, that show aberrant brain function and structure in youths with 

antisocial behavior (see Figure 1.). The overall main function of the PFC is cognitive control, such 

as self-regulation, decision making, planning, and achieving goals/actions (Miller & Cohen, 2001). 

Particularly the medial prefrontal cortex (dmPFC) has been implicated in emotional self-regulation 

(Davidson, Putnam, & Larson, 2000), general self-referential activities (D'Argembeau et al., 2007) 

and emotion-related decision making (Euston, Gruber, & McNaughton, 2012). Empirical evidence 

has linked the prefrontal cortex to antisocial behavior in adults (Anderson et al., 1999; Beyer et al., 

2014; Blair, 2003; Blair, 2007a, 2007b; Decety et al., 2013; Raine et al., 2000; Yang et al., 2009a). 

Our meta-analysis in chapter 2 has indicated several areas within the prefrontal cortex (i.e. OFC, 

dmPFC) with reduced gray matter density and hypoactivations in youths with antisocial behavior 

compared to healthy peers. Hence, our findings align with previous studies and recent meta-

analytical findings (Aoki et al., 2015; Rogers & De Brito, 2016; Yang & Raine, 2009), but also 

partly correspond with the neurobiological model proposed by Blair (2013) that linked the dmPFC 

with impairments in decision making. Importantly, our functional and structural alterations overlap 

within the same region of the dmPFC; this point out the possibility of the OFC and dmPFC as 

future neural markers for antisocial behavior in youths.  

 

7.2. Neural connectivity in antisocial behavior. 

Research has suggested that the previous mentioned gray matter structures (i.e. the amygdala, 

insula, and prefrontal cortex) are interconnected through white matter tracts within the prefrontal-

limbic circuitry, and thus it is proposed that one specific tract, i.e. the uncinate fasciculus (see 

Figure 1.), is altered in individuals with antisocial behavior (Blair, 2008a; Craig et al., 2009; Finger 

et al., 2012; Marsh et al., 2011a). In chapter 4, we described alterations within several white matter 

tracts including the uncinate fasciculus, which showed a small cluster of decreased mean diffusivity 

(MD) but not atypical fractional anisotropy (FA) as is observed in previous studies (Sarkar et al., 

2013; Sobhani et al., 2015; Zhang et al., 2014a). Importantly, this dissertation presented the first 

whole-brain DTI analysis in girls with conduct disorder that had as outcome white matter 

alterations within the body of the corpus callosum (see Figure 1.). These findings, corrected for age 

and independent of ADHD symptoms, align with boys with antisocial behavior (Breeden et al., 

2015; Passamonti et al., 2012; Sarkar et al., 2013; Sobhani et al., 2015; Zhang et al., 2014a; Zhang 

et al., 2014b). The corpus callosum is the largest white matter tract of the brain and crucial for 

interhemispheric communication, and thus critical for enabling higher order skills such as emotion 

regulation (Raine et al., 2003). Furthermore, fibers of the callosal body connect to the insula 

(Raybaud, 2010), this structure is associated with emotion processing and, as mentioned before, 
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commonly affected in youth presenting antisocial behavior (see chapter 2) and correlated with 

callous-unemotional traits (see chapter 3). We therefore hypothesize that our observed alterations 

within the corpus callosum may result in reduced interhemispheric processing within the limbic 

system and consequent lower emotion regulation abilities in girls with antisocial behavior. 

 

7.3. Strengths and limitations  

This dissertation has an overall important strength, namely the inclusion of homogenous samples to 

investigate the distinct neurobiological correlates of antisocial behavior in youths; this will not only 

benefit the results’ accuracy but will also facilitate the interpretation and comparison of our results 

with past and future research. As mentioned before, antisocial behavior is a heterogeneous disorder 

composed of various psychiatric subdiagnoses (e.g. ODD and CD) or subtypes (e.g. CU traits, 

proactive or reactive aggression), each variant could distinctively influence brain structure and 

function (Fairchild et al., 2013b; Fanti, 2016; Klahr & Burt, 2014; Stadler, Poustka, & Sterzer, 

2010). Thus, creating homogenous groups in neuroimaging studies is a necessity to avoid biased 

results in relation to antisocial behavior, and to incrementally understand the complex etiology of 

antisocial behavior. Consequently, to strengthen the results of this dissertation we have included 

solely patients with conduct disorder (the severe variant of antisocial behavior) in chapter 4 and 5. 

Furthermore, another strong point of this work is that our studies’ results are independent of the 

common comorbidity ADHD, a disorder known to considerably affect neural characteristics 

(Castellanos-Ryan et al., 2014; Castellanos et al., 2002; Rubia et al., 2008). For example, chapter 4 

controlled for ADHD symptoms in twofold. First, girls with ADHD comorbidities were initially 

included for the primary analysis and then excluded from a secondary analysis; a comparison of 

both outcomes indicated no significant influence of ADHD comorbidity on our results. Second, a 

post-hoc multiple regression analysis was performed to measure the variance in white matter that is 

explained by ADHD symptoms, as was done in earlier studies (Fairchild et al., 2011; Pape et al., 

2015; Passamonti et al., 2012). A more stringent method is used for Chapter 3, here typically 

developing and non-aggressive youths free from ADHD and other psychiatric disorders were 

included: in this manner any possible comorbidity is excluded from affecting the data.  

Another important factor that needs mentioning are sex differences, which recently became a more 

crucial criterion within the research field of antisocial behavior (Moffitt & Caspi, 2001; Silverthorn 

& Frick, 1999; Vloet et al., 2014). Nevertheless, the vast majority of empirical research on 

antisocial behavior has been conducted with male participants. Even though, sex differences are 

commonly observed in the adolescent brain (De Bellis et al., 2001; Giedd et al., 1999; Lenroot & 

Giedd, 2010; Lenroot et al., 2007). Multiple behavioral studies have suggested sex-dependent 

developmental trajectories for antisocial behavior (Cohen et al., 1993; Eley et al., 1999; Fairchild et 

al., 2014; Lahey et al., 2006; McCabe et al., 2004; Odgers et al., 2008; Silverthorn & Frick, 1999; 
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Veenstra et al., 2006), however, only few neuroimaging studies have investigated sex differences in 

youths with antisocial behavior on a neural level (Fairchild et al., 2013a; Zhang et al., 2014a). The 

reason for this low number of female studies is probably the lower prevalence-rate of girls with 

antisocial behavior (Moffitt et al., 2001; Vloet et al., 2014). Therefore, the investigation of possible 

sex effects was a relevant theme in this dissertation, and was successfully explored by including 

and analyzing both sexes independently (chapter 3 and 5) or including solely female participants 

(chapter 4). Unfortunately, all of the above mentioned criteria for homogenous grouping could not 

be implemented in our meta-analysis (chapter 2), since the study inclusion was limited by the 

scarceness of neuroimaging studies investigating young samples with antisocial behavior. To 

overcome this limitation, we implemented other stringent inclusion criteria (e.g. specific fMRI 

paradigms and analysis methods) to improve the analytical accuracy of our meta-analyses 

examining the robustness of previously found neural correlates in youths with antisocial behavior.  

 

Despite the above mentioned strength of this dissertation one limitation within three of our studies 

(chapter 2, 4 and 5) has to be addressed: the discrimination based on the age of onset –childhood-

onset or adolescent-onset– of the antisocial behavior was not taken into account for our patient 

populations. Time-of-onset group distinction was proposed by empirical research decades ago 

(Aguilar et al., 2000; Moffitt, 1993; Moffitt et al., 1996; Odgers et al., 2007; Odgers et al., 2008), 

and is nowadays incorporated into the DSM-V (APA, 2013). Not only are individuals with 

childhood-onset (i.e. symptoms prior to age of 10 years) more likely to persist their antisocial 

behavior into adulthood, they also differ in structural and functional neural patterns from 

individuals with adolescent-onset antisocial behavior (Fairchild et al., 2011; Huebner et al., 2008; 

Hyatt et al., 2012; Passamonti et al., 2010; Stadler et al., 2007). Age-of-onset could therefore be an 

important criterion to take into account, however, it should be noted that girls have more often an 

adolescent-onset diagnosis than boys, indicating again the importance of sex differences in 

antisocial behavior (McCabe et al., 2004). In this dissertation, dividing our participants based on 

onset-type lead to extreme unbalanced groups, and excluding either the child-onset or adolescent-

onset group would have decreased the analytical power to such an undesirable level that we have 

decided to combine both onset-types (chapter 4 & 5). Investigating boys and girls with antisocial 

behavior separately and divided according to onset-type should be the aim for future research 

studies in the neuroscience field. Furthermore, longitudinal studies –from childhood to adulthood– 

are necessary to gain more insight into the developmental trajectories of antisocial behavior. 

Another potential limitation is alcohol/substance abuse (chapter 4 and 5), a factor known to affect 

the brain (Bellis et al., 2005) and frequently associated with antisocial behavior (Crowley et al., 

2001; Fergusson, Horwood, & Ridder, 2007). Even though, a minority of our patient population 
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had an alcohol/substance-use comorbidity, measured through the diagnostically interview (K-

SADS-PL; Delmo et al., 2000), we cannot exclude potential effects on our results.  

 

7.4. Future prospects 

The present work furthers the knowledge about the neurobiological basis of antisocial behavior in 

youths using several neuroimaging techniques to measure different brain characteristics, such as 

gray matter, white matter tracts, and brain activity. A better understanding of the developmental 

trajectory of antisocial behavior could not only improve individualized diagnostics and facilitate 

early detection of children at risk, but could also stimulate the improvement of effective treatments 

and intervention programs. Early neural markers may help, since a timely start of intervention 

program precedes success (Pardini & Frick, 2013). Thus, increased knowledge allows health care 

institutions and juvenile systems to provide better personalized care for children and adolescents 

with antisocial behavior. 

 

Several recommendations can be made for future studies to advance the understanding of antisocial 

behavior in youths. Future neuroimaging studies should take sex differences into account when 

investigating antisocial behavior in youths, for example, by means of avoiding mixed-gender 

groups or adding sex as a factor within statistical analysis. Considering the lower prevalence rate of 

girls with antisocial behavior, more effort should be made to recruit and investigate girls with 

antisocial behavior, a good example is the multi-disciplinary study FemNAT-CD that will recruit 

and investigate the neurobiology of 400 girls (and 400 boys) with conduct disorder across Europe 

(https://www.femnat-cd.eu/), chapter 3 contains data from this consortium. 

 

Future studies implementing longitudinal designs may enable us to shed more light on the 

developmental pathway of antisocial behavior. This line of research also enables us to identify 

possible predictors or markers (e.g. brain correlates, behavior) for antisocial behavior; such 

predictors are beneficial for the improvement of prevention and treatment programs. Longitudinal 

designs will further allow the investigation of the bidirectional influence of neurobiological, 

psychobiological, and environmental influences on developing antisocial behavior. Furthermore, 

based on chapter 3 we suggest more studies need to examine the relationship between callous-

unemotional traits and brain structure, not only in typically-developing individuals, strictly at-risk 

children, or those with antisocial behavior, but across the whole spectrum.  

 

In chapter 5 we introduced preliminary results of eye gaze and neuronal activation during 

emotional face processing compared between youths with and without antisocial behavior. So far, 

https://www.femnat-cd.eu/
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no fMRI study has investigated emotion processing and eye-tracking simultaneously. The 

effectiveness of our online eye-tracking neuroimaging paradigm is validated and we aim to finalize 

this project in the near future. We recommend future studies to combine biological measurements 

(e.g. heart rate, hormonal levels, genes) with neuroimaging data to improve the understanding of 

the complex neurobiological background of antisocial behavior in youths. 

 

Additionally, we want to highlight the importance of fellow researchers translating their 

noteworthy scientific results to the public in order to raise general awareness of the investigated 

topic and its importance to society. Scientific publications are written using scientific language and 

a multitude of field-specific jargon. Therefore, scientists are encouraged to write their discoveries 

in an accessible language, in this way the general population is invited to read and further their 

knowledge about various scientific topics in a comfortable and leisurely manner (for example, see 

chapter 6). The topic of this dissertation may interest a broad audience since it concerns a generally 

known (“popular”) child- and adolescent disorder. This increases the likelihood that parents, 

teachers, care givers, and even youths are interested in reading articles about the neurobiology of 

antisocial behavior. Additionally, public awareness is also beneficial for the researcher self, since 

enhanced public awareness of the topic could facilitate the recruitment of participants and funding 

for future or continuing study projects (e.g. longitudinal designs). 

 

7.5. Conclusion 

The results presented in this dissertation expand our current knowledge on the structural and 

functional neural correlates in children and adolescents with antisocial behavior in several ways. 

The results of this dissertation investigated the robustness of past study results in youths with 

antisocial behavior and provide future research a helpful informative background of the 

consistently altered brain regions in youths with antisocial behavior. Prior research has already 

demonstrated that callous-unemotional traits –a marker for severe antisocial behavior– affect the 

gray matter volume in several brain areas of youths with antisocial behavior (De Brito et al., 2009; 

Fairchild et al., 2013a; Wallace et al., 2014). However, this relationship has not been investigated –

to our knowledge– independently of antisocial behavior and its comorbidities such as ADHD, 

depression, and anxiety. This thesis has observed gender-specific effects of callous-unemotional 

traits on gray matter volume in a large international population of typically developing youths, 

independent of psychiatric disorders. Thus providing original knowledge to this topic and new 

evidence for the importance of callous-unemotional traits and gender effects in antisocial behavior. 

In contrast to gray matter, the characteristics of white matter are less extensively investigated 

within antisocial behavior; this is especially true for girls. This work has expanded the current 

literature with novel findings of integrity alterations in white-matter structures of girls with conduct 
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disorder (i.e. the more severe variant of antisocial behavior); this work found no correlation 

between these observed white matter alterations and ADHD comorbidity or callous-unemotional 

traits. 

 

An overall conclusion that emerged from our studies is that children and adolescents with antisocial 

behavior have robust gray and white matter alterations but also altered neural-activation patterns 

compared to their typically developing peers. Comparable brain alterations exist in adults with 

antisocial behavior (Bertsch et al., 2013; Birbaumer et al., 2005; Contreras-Rodriguez et al., 2014; 

de Oliveira-Souza et al., 2008; Ly et al., 2012; Muller et al., 2008). These similar-affected brain 

areas could serve as possible (predictive) markers for antisocial behavior in adulthood and 

throughout life; however, longitudinal studies –from child to adult– are needed to examine the 

possibility of such neurobiological markers and to inform research about the development 

trajectory of antisocial behavior. Furthermore, the results presented in this dissertation also point to 

a substantial impact of callous-unemotional traits on the young brain (i.e. insula) independent of the 

presence of clinical antisocial behavior, however, sex-dependent differences were observed. Future 

studies are necessary to further investigate callous-unemotional traits and gender differences within 

children and adolescents with antisocial behavior. Furthermore, due to the heterogeneity within 

groups of youths with antisocial behavior, it is a necessity to define homogenous cohorts based on 

sub diagnoses, comorbidities, age, gender, and substance abuse. We also recommend to investigate 

antisocial behavior in combination with previously identified biological and environmental risk 

factors (e.g. genetics, hormones, or childhood maltreatment). The findings within this dissertation 

encourage future studies to further investigate the developmental trajectories and potential neural 

markers of antisocial behavior in order to enhance early detection and improve intervention 

programs, which could ultimately reduce antisocial behavior and delinquency in our society. 
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Antisociaal gedrag wordt wereldwijd veelvuldig waargenomen bij jongeren en volwassenen. Mede 

door de enorme belasting op deze individuen, maar ook door de noemenswaardige economische last 

op de samenleving is het een aanzienlijk probleem voor de volksgezondheid. Meer kennis en dus een 

beter inzicht in de onderliggende neurobiologische mechanismen van antisociaal gedrag kan de 

huidige diagnostiek (bijvoorbeeld het eerder herkennen van kinderen die verhoogd risico lopen), 

preventieprogramma’s en behandelingsmethoden verbeteren. Tot op heden hebben verscheidene 

neuro-imaging onderzoeken verschillen in de hersenen aangetoond bij jongeren die antisociaal gedrag 

vertonen, ten opzichte van jongeren met een gezonde/normale hersenontwikkeling. Desondanks 

bestaan er discrepanties tussen deze onderzoeksresultaten met betrekking tot de hersengebieden die als 

afwijkend worden beschouwd, maar ook in de mate van verandering (zoals meer of minder 

hersenactiviteit). Deze tegenstrijdige bevindingen worden hoogstwaarschijnlijk veroorzaakt door de 

heterogeniteit binnen de groepen jongeren met antisociaal gedrag die in deze studies onderzocht zijn, 

vooral lettend op sekse, klinische diagnosis en de aanwezigheid van psychopathische trekken zoals 

kenmerken van ongevoeligheid en emotieloosheid (ookwel “callous-unemotional traits” genoemd). 

 

Het hoofddoel van dit proefschrift was het bijdragen van nieuwe neurobiologische kennis over 

antisociaal gedrag bij kinderen en adolescenten door de structuur en activiteit van de hersenen nader te 

bestuderen, waarbij extra rekening gehouden is met mogelijke seksverschillen en psychopathische 

kernmerken. Allereerst hebben wij de huidige neuro-imaging literatuur geanalyseerd met behulp van 

drie meta-analyses. Zo kon eerdergenoemde heterogeniteit in antisociaal gedrag overbrugd worden, 

om vervolgens een overlappend patroon van structurele en functionele neurale correlaten in jongeren 

met antisociaal gedrag te ontdekken. Ten tweede heeft dit onderzoek ook de relatie tussen 

psychopathische trekken en hersenstructuur afzonderlijk voor jongens en meisjes onderzocht en 

onafhankelijk van psychiatrische comorbiditeiten. Ten derde hebben wij in dit proefschrift onderzocht 

of de witte stof (de uitlopers van de hersencellen) in de hersenen verschilt tussen meisjes met en 

zonder een antisociale gedragsstoornis (“conduct disorder”), de zwaardere variant van antisociaal 

gedrag. 

 

Dit proefschrift breidt op verschillende manieren onze huidige kennis uit op gebied van structurele en 

functionele neurale correlaten in kinderen en adolescenten met antisociaal gedrag. Allereerst, de 

resultaten uit onze meta-analyses (hoofdstuk 2) wijzen op een consistent patroon van verminderde 

grijze hersenstof en hypoactivatie in verschillende hersengebieden die zich bevinden in de prefrontale 

en limbische cortex. Deze bevindingen komen overeen met een recent voorgesteld neurobiologisch 

model dat veranderingen in zulke hersengebieden verbindt met de kenmerken van antisociaal gedrag, 

zoals disfunctionele empathie en emotioneel leervermogen. Ten tweede hebben we een positieve 

relatie gevonden (hoofdstuk 3) tussen psychopathische kenmerken en het bilaterale insula volume in 
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een grote internationale groep van normaal ontwikkelende jongens, onafhankelijk van psychiatrische 

aandoeningen. Deze relatie was afwezig voor meisjes. Dit resultaat doet vermoeden dat bepaalde 

psychopathische kenmerken (d.w.z. ongevoeligheid en emotieloosheid) een seksespecifieke 

neurobiologische basis hebben die zelfs in een normatieve populatie gevonden kunnen worden. Ten 

derde presenteert dit proefschrift (hoofdstuk 4) nieuwe bevindingen wat betreft veranderingen in de 

witte stof van het corpus callosum (“hersenbalk”, die de twee hersenhelften met elkaar verbindt) van 

meisjes met antisociaal gedrag. Dit suggereert een verminderde interhemisferische communicatie en 

daardoor het verminderde vermogen om emoties te verwerken, een veel gezien symptoom bij personen 

die antisociaal gedrag vertonen.  

 

Kortom, dit proefschrift biedt nieuwe bevindingen met betrekking tot de neurobiologie van antisociaal 

gedrag in jongeren en benadrukt het belang van sekseverschillen en kenmerken van ongevoeligheid en 

emotieloosheid. Onze resultaten moedigen toekomstige onderzoeken aan om de 

ontwikkelingstrajecten en potentiele hersenindicatoren/markers van antisociaal gedrag verder te 

onderzoeken. Op deze manier kunnende preventie- en behandelingsprogramma’s worden verbeterd, 

met het uiteindelijke doel antisociaal gedrag en criminaliteit in onze samenleving te reduceren. 
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Baseldütschi Zämmefassig   

Antisoziales Verhalte isch in dr Bevölkerig bi Kinder und Erwachsene wit verbreitet und s‘stellt e 

grosses Gsundheitsproblem dar wege dr grosse belaschtig für d‘einzelni Person und d‘Wirtschaft. E 

besseres Verständnis vo de z‘grundliegende neurobiologische Mechanisme von antisozialem Verhalte 

garantiert e verbesserig in dr aktuelle Diagnostik (z.B.: fruehi Erkennig vo gfördete Kinder) und 

effektivi Präventiv- und Behandligsprogramm. Bis jetzt hend bildgäbendi Studie neurologische 

Unregelmässigkeite in Jugendliche mit antisozialem Verhalte gfunde; einewäg, d‘Stelläne vo denen 

Unregelmässigkeite unterscheide sich vo Studie zu Studie. D Unterschied kömme wohrschinlich vo dr 

verschiedeheit vo de untersuechte Judengliche mit antisozialem Verhalte, bsunders bezüglich 

Gschlecht, klinischer Diagnose und em vorhande sii vo gfühllos-unemotionale 

(Persönlichkeits)Eigeschafte. 

 

S‘zentrale Ziel vo dere Dissertation isch gse s neurowisseschaftliche Wisse vo antisozialem Verhalte 

bi Kinder und Erwachsene zvertiefe indem d‘zgrundliegendi Struktur und d‘neurobiologischi 

Funktionswies untersuecht wärde, mit em Fokus uf megligi Unterschied bim Gschlecht und de 

gfühllos-unemotionale (Persönlichkeits)Eigeschafte. Zerscht hend mir die aktuelli bildgäbendi 

Literatur mithilf vo Metaanalysene untersuecht. Das mit em Ziel d‘Diversität vo antisozialem Verhalte 

z‘überwinde und es allgemeins „überlappendes“ Muschter von strukturelle und funktionelle 

Unterschied bi Jugendliche mit antisozialem Verhalte z‘biko. Zweitens isch s‘Verhältnis zwische 

gfühllos-unemotional (Persönlichkeits)Eigeschafte und dr Gehirnstruktur unabhängig vom Gschlecht 

und psychiatrische Komorbidäte untersuecht worde. Drittens isch d’Integrität von dr wisse Substanz in 

ere homogene gruppe vo Maidle mit Verhaltensstörig – dr stärkere Veriante vo antisozialem Verhalte 

–im Verglich zu normal entwickelnde Gliechaltrige untersuecht worde. 

 

Die Arbet erwieteret unsers aktuelle Wisse vo strukturelle und funktionale neuronale Zämmehang bi 

Kinder und Erwachsene mit antisozialem Verhalte uf verschideni Arte. Erstens hend unseri 

metaanalytische Resultat uf e konsistänts Muschter vo dr Reduktion vo dr graue Substanz und 

Hypoaktivierige in Gehirnregione im präfrontale und limbische Kortex higwiese. Die Resultat passe 

zumene kürzlich vorgstellte neurobiologische Model, dass Veränderige in ähliche Hirnregione mit de 

Verhaltensänderige vo antisozialem Verhalte (z.B. dysfunktion in dr Empathie, emotionales Lerne und 

dr Entscheidigsfindig) verbindet. Zweitens hend mir e positivi Beziehig zwische gfühllos-unemotional 

(Persönlichkeits)Eigeschafte und em Volume vo dr bilaterale insula inere grosse internationale Gruppe 

vo sich normal entwickelnde Bube, abr nit Maidli, unabhängig vo psychiatrische Störige beobachtet. 

Das zeigt, dass gfühllos-unemotional (Persönlichkeits)Eigeschafte e gschlechterspezifischi 

neurobiologischi Grundlag zuesätzlich zu psychiatrische Probene hend. Drittens präsentiert die Arbet 

neuartigi Fund vo Änderige in dr Integrität vo dr wisse Substanz im Gehirnbalke vo Maidli mit 

anitisozialem Verhalte. Das dütet uf e megligs reduzierts interhemisphärisches arbeite hi und dorus 

folgend e reduzierti Fähigkeit zur emotionale Verarbeitig.  
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Zsämmegfasst tuet d Disseration neui Fund bezüglich dr Neurobiologie vo antisozialem Verhalte in 

Judengliche liefere und sie hebt d‘Wichtigkeit vo gfühllos-unemotional (Persönlichkeits)Eigeschafte 

und Gschlechtunterschied hervor. Unseri Resultat ermuetige wieteri Studie dr Entwickligsverlauf und 

potenzielli neuronali Marker von antisozialem Verhalte wieter z‘untersueche. Das um d’Frieherkennig 

und Interventionsprogram z‘verbessere, was letztendlig antisoziales Verhalte und Kriminalität in 

unserer Gsellschaft reduziere könnti.   
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