Biodiversity patterns and conservation of the coastal forests of Eastern Africa

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturewissenschaftlichen Fakültat der Universität Basel

von

Christopher David Barratt

aus Großbritannien

Basel, 2017

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von

Prof. Dr. em. Peter Nagel (Fakultätsverantwotlicher), PD Dr. Simon P. Loader (Dissertationsleiter), Prof. Neil D. Burgess (Korreferent)

Basel, 18th April 2017

Prof. Dr. Martin Spiess The Dean of Faculty

Table of Contents

Introduction	1
Biodiversity patterns in space and time	2
Conservation of biodiversity	2
Molecular tools for estimating biodiversity	4
Coastal forests of Eastern Africa, endemism, and environmental influences	5
Amphibians	6
Objectives	8
Chapter overview	9
Additional Outputs	10
References	10
Chapter I	17
Next generation sequencing and landscape analyses reveal the importance of paleo-climate,	
geography and hydrology in the population structure of lowland amphibians in East Africa	
Chapter II	44
Environmental correlates of phylogenetic endemism in amphibians and the	
conservation of refugia in the Coastal Forests of Eastern Africa	
Chapter III	65
Museums or cradles of diversity? Paleo- and Neo- endemism patterns in the East African	05
lowlands using near complete assemblage phylogenetic data from amphibians	
Chapter IV	81
A new, narrowly distributed, and critically endangered species of spiny-throated reed	
frog (Anura: Hyperoliidae) from a highly threatened coastal forest reserve in Tanzania	
Synthesis	94
Caveats	96
Shortcomings in our knowledge and future research directions	97
Conclusion	99
References	99
Acknowledgements	103
Supplementary Materials	106
DNA barcoding	100
Chapter I	133
Chapter II	146
Chapter III	164
Chapter IV	168
Curriculum Vitae	171

Introduction

Biodiversity patterns in space and time

Biological diversity is distributed unevenly across the earth. Well known current biodiversity gradients such as the latitudinal (e.g. Fig. 1), altitudinal diversity gradients and the mid-domain effect have contributed significantly to our understanding of diversity patterns. However, how biodiversity has changed over time is also an important factor that can explain past and current patterns (Mannion et al., 2014). In the past decades, significant progress in our understanding of biodiversity at spatial and temporal scales have been made (Rosenzweig, 1995; Gaston & Blackburn, 2007), and how this relates to global change and conservation (Kerr et al., 2007). Endemism, and the persistence of biodiversity over time is hypothesized to be strongly influenced by long-term climatic stability and topography (Sandel et al., 2011; Harrison & Noss, 2017). Over millions of years, refugia are suspected to play a crucial role in maintaining biodiversity during times of geological and climate change (Mayr & O'Hara, 1986, Moreau, 1933, Dynesius & Jansson, 2000). The persistence of diversity over time in refugia is known to lead to areas that support unique biodiversity that has become locally extinct elsewhere. This is especially true in areas with complex topography where a species may only need to move a small distance in response to climate change compared to the large distance that a species in a flat landsape would need to move to adapt to the same climate change conditions. Recent studies using the concept of climate change velocity as a measure of long-term climate stability have shown that areas subjected to high levels of climate change are associated with a marked absence of small ranged birds, mammals and amphibians (Sandel et al., 2011), with areas that are comparatively stable identified as essential refugia for narrow-ranged species that are sensitive to habitat change.

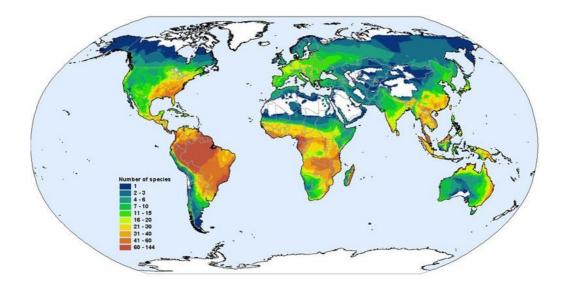


Fig. 1. Global patterns of amphibian species richness, from the Global Amphibian Assessment.

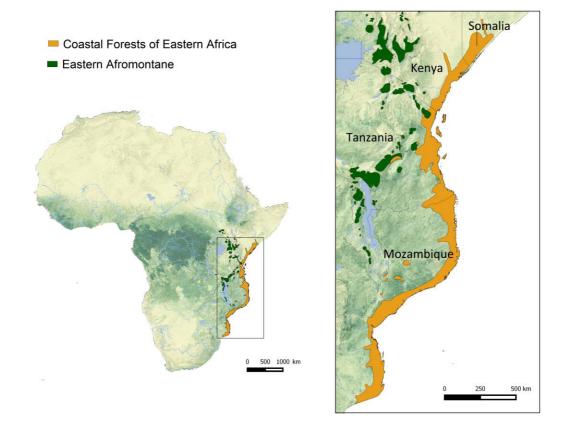
Conservation of biodiversity

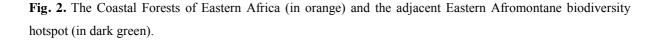
Biodiversity is essential as it forms the foundation for all natural resources that humans need to survive and persist. Although it is an extremely broad and sometimes ambiguously used term, 'biodiversity' may be simply summarised as the variety of life (the variation of species, functional traits and genes). The multile facets of biodiversity provide the foundation for ecosystem functions that control the movement of energy (e.g. primary production, nutrient cycling, decomposition), and the ecosystem services they provide to humanity (e.g. direct benefits such as water, food, medicine, fuel, climate regulation, disease control) (Blackburn, 2008). Soon after the 1992 Earth Summit in Rio de Janeiro, interest in understanding biodiversity loss and how it may affect ecosystem functioning and services increased dramatically. This led to a proliferation of research in these fields and the establishment of several major global initiatives such as the Global Biodiversity Assessment launched by the United Nations Environment Programme, and the biodiversity science research agenda produced by Diversitas, (now the Future Earth project within the International Council for Science). In the quarter of a century since the Rio Earth Summit, there is now unequivocal evidence that biodiversity loss is intricately linked to ecosystem functioning (Cottingham et al., 2001; Balvanera et al., 2006; Cardinale et al., 2007) and is a major driver of global change (Tilman et al., 2014). Moreover, evolutionarily diverse communities have been shown to increase ecosystem stability over time and their functioning (Cadotte et al., 2008; Cadotte, 2013). Linking biodiversity with the direct benefits provided to humans through ecosystem services have proven to be more complex (Cardinale et al., 2012; Balvanera et al., 2014), though there is now evidence of the direct correlation between biodiversity and some provisioning and regulating ecosystem services (Harrison et al. 2014). Protecting biodiversity is therefore a major concern for humanity. Biodiversity is under threat due to climate change and human induced impact, to the point that the earth has been described as being in the midst of a major sixth extinction event (Kolbert, 2014; Ceballos et al., 2015). Reducing biodiversity loss both now and in the future are urgent conservation priorities and key components of the Aichi targets for 2020 by parties to the United Nations Convention on Biological Diversity (Pereira et al., 2013), especially after the failure to meet 2010 targets. To manage biological resources effectively given predicted future human impacts and climate change we need to collectively improve our capacity to assess biodiversity, both now and in the future.

Increasing knowledge of biodiversity patterns and what causes areas of rich biodiversity to form are vital steps towards prioritizing where and why we should focus future conservation efforts. Methods to measure biodiversity have typically focused at the species level, using metrics such as species richness that simply count the number of species present within a given area. The degree of endemism present may also be inferred if the known ranges of species are incorporated with this data. Species richness and endemism are the fundamental measurements of biodiversity which are currently used for conservation efforts at most scales, for example, defining the world's biodiversity hotspots (Myers et al., 2000) or establishing protected areas. Despite the wealth of biodiversity knowledge that is now available to scientists and conservation planners, several problems remain when using traditional methods for assessing biodiversity. Knowledge about biodiversity remains insufficient because the majority of species have still not been described (the Linnean shortfall), and the distributions of most are not fully understood or have significant sampling gaps, especially at local scales (the Wallacean shortfall) (Whittaker et al., 2005). These shortfalls are a serious problem for conservation planning in poorly developed regions of the world which often support high biodiversity but lack the appropriate infrastructure to document and assess it (Bini et al., 2006). Although traditional measures have provided a solid basis for biodiversity assessment and conservation, it has become increasingly clear that species diversity alone misses out on the full patterns of biodiversity present. Biodiversity is optimally represented by the full set of nested clades representing phylogenetic relationships and genetic diversity at all levels within the tree of life, and not just species (Mishler et al., 2014). However, even if we were to describe all of the species on earth and fully account for their distributions we would still have a problem due to a lack of available phylogenetic information for most organisms (the Darwinian shortfall, Diniz-Filho et al., 2013). Therefore, the documentation of biodiversity with molecular

tools and techniques provides the basis for understanding the diversity within and between organisms, and is crucial to integrate the information they can provide to complement traditional measures in future biodiversity assessment and conservation, especially in highly diverse tropical regions.

Molecular tools for estimating biodiversity


The low cost and effort of generating sequence data has led to a proliferation of molecular based biodiversity assessment techniques for rapid biodiversity assessment. One of the most common, DNA barcoding, is a tool that uses a standardized locus of DNA (typically between 400 and 800 base pairs in length) which can be easily amplified and sequenced across a wide range of organisms, showing variability within and between species. Massive online digital libraries of sequences from known species serve as the standard to match an unknown sample, allow its identification (Moritz & Cicero, 2004; Hebert & Gregory, 2005; Lahaye et al., 2008; Nagy et al., 2012), and in vertebrates is typically the mitochondrial 16S rRNA or cytochrome oxidase subunit 1 (COI) genes (Vences et al., 2005). To gain more detailed data, extra loci such as recombinant nuclear genes may be chosen to supplement barcoding genes to increase phylogenetic signal and resolution, or fast evolving loci such as microsatellites may be used for microevolutionary processes acting at the level of populations such as allele frequency changes over time (Tautz & Schlötterer, 1994). With the advent of high throughput Next Generation Sequencing (NGS) techniques and their increasing affordability, it has now become feasible to conduct both macroevolutionary (phylogenomics) and microevolutionary (population genomics) research with unprecedented amounts of sequence data, in the order of thousands to millions of base pairs, for a relatively small cost (Lemmon & Lemmon, 2013). This data is increasingly contributing to the understanding of biodiversity patterns in the world's biologically rich regions (Carew et al., 2013; Joly & Faure, 2015). The last ten years in particular have highlighted the growing importance of phylogenetic perspectives on biodiversity conservation problems (Purvis et al., 2005; Cadotte & Davies, 2010; Davies & Buckley, 2011; Rolland et al., 2012). Phylogenetic information is now a critical component of modern ecology, particularly within macro- and community ecology and conservation (Tucker et al., 2016). The use of phylogeneies acknowledges that the topology and branch length of a phylogenetic tree reflects genetic, phenotypic and trait differences between species and populations (Harvey & Pagel, 1991) and may be used to explain or predict evolutionary and ecological processes. Over seventy phylogeny based metrics are available, each of which may be used to address a range of ecological, evolutionary or conservation questions (Winter et al., 2013). Phylogeny based diversity indices first appeared in conservation as a response to the notion that minimising the loss of evolutionary diversity should be a priority (Vane-Wright et al., 1991). Phylogenetic diversity (PD) emerged as a metric to maximise the evolutionary diversity of a set of taxa in a given area (Faith, 1992) as that should also represent maximal feature diversity. The use of phylogenetics in macroecology and community ecology has tended to focus more on relatedness indices between communities (Webb et al., 2002) or to explain the causes of macro-scale patterns of diversity (Winter et al., 2009; Fritz & Rahbek, 2012; Jetz et al., 2012; Rosauer & Jetz, 2015, Voskamp et al. 2017). The phylogenetic endemism (PE) metric described by Rosauer et al. (2009) in particular has broad applications to conservation, including the identification of geographical concentrations of evolutionary history in refugia (Mooers & Redding, 2009; Carnaval et al., 2014; Laity et al., 2015).


Using amphibians in the East African coastal forests as a model system, this thesis investigates how field work and molecular techniques (DNA barcoding and genomics), spatial data and taxonomic approaches can be

used to improve our knowledge of biodiversity patterns. Furthermore, the thesis seeks to establish the environmental and historical correlations with areas of high biodiversity and endemism to help identify priority areas for conservation.

Coastal forests of Eastern Africa, endemism, and environmental influences

Since the breakup of Pangaea around the Permian (ca. 225 million years ago) Africa became increasingly more isolated from other landmasses before its reunion with Eurasia in the Miocene (ca. 20 million years ago). The continent remained in a relatively stable equatorial position compared to other continents, which continued to move long into the Cenozoic period (Livingstone, 1993). Despite the relative stability of its geographical position, Africa has undergone significant periods of tectonic activity (Sepulchre et al., 2006; Partridge et al., 2010; Moucha & Forte, 2011; Kaufmann & Romanov, 2012) and historical climate oscillations (Demenocal, 1995; Maslin et al., 2014) which have resulted in the topographically complex and highly diverse habitats we see today. The high habitat diversity in Africa supports a quarter (nine) of the of the world's biodiversity hotspots (Myers et al., 2000), with a mixture of ancient relicts that have persisted through major global extinction events as well as relatively young species formed by recent processes. Africa supports many wide-ranging species including the world's most intact megafaunal assemblage (Fjeldså et al., 2004), but also many range-restricted endemics that are highly threatened. Understanding these biodiversity patterns and implementing them in conservation efforts at the continental scale is essential to protect African biodiversity (Brooks et al., 2001).



The Coastal Forests of Eastern Africa (Fig. 2) are one of Africa's foremost biodiversity conservation priorities, and along with the adjacent Eastern Arc mountains form a highly threatened centre of endemism for plants and vertebrates (CEPF, 2007). In addition to their exceptionally high levels of plant endemism, coastal forests support high species richness and endemism of other taxonomic groups including mammals, birds, reptiles, amphibians and invertebrates (Burgess et al., 1998). However, the coastal forests and its rich biological diversity is severely threatened by human impact and predicted future climate change (Azeria et al., 2007; Burgess et al., 2007), and has been described as a 'vanishing refuge' (Burgess et al., 1998). The consensus view is that the coastal forests are the remaining fragments of a once continuous forest that covered tropical Africa during the Early Tertiary (ca. 40 million years ago) (Burgess et al., 1998; Couvreur et al., 2008; Kissling et al., 2012). The slow desiccation of Africa since the Oligocene is hypothesized to have led to natural fragmentation of this larger forest (Axelrod & Raven, 1978; Mumbi et al., 2008), but the increasing human population have drastically accelerated this process. Today the coastal forests consist of a fragmented network of tiny forest patches, mostly less than 20 km² in size, following the Eastern coastline of Africa through Somalia, Kenya, Tanzania and Mozambique. These forest patches are often unique in their community structure and species composition, making comparisons between areas difficult to make (Burgess et al., 1998). To quantify biodiversity and endemism patterns, subcentres of endemism within the Swahili regional centre of endemism were previously identified using species distributional data from a number of plant, vertebrate and invertebrate groups. Based on these data a number of important locations supporting high proportions of endemics were identified in Kenya and Tanzania (Tana river, Arabuko-Sokoke, East Usambara-Kwale, Pemba island, Uluguru, Udzungwa, Pugu hills and Lindi) and Mozambique (Bazaruto archipelago and Mount. Mulanje). The endemic species responsible for these patterns are generally distributed within areas of higher elevation, some of which overlap with the adjacent Eastern Afromontane biodiversity hotspot and other plateaux, and "are best interpreted as relicts and not the result of recent evolution" (Burgess et al. 1998).

Amphibians

Amphibians are tetrapod vertebrates that evolved from osteolepiform fish in the Devonian period (ca. 350-400 million years ago) (Carroll, 2001), comprising of three extant orders and 7,642 currently recognised species globally (Frost et al. 2017). Anurans (frogs and toads, 6,742 species) are the most widespread and species rich order with a near global distribution, whereas Caudates (salamanders and newts, 695 species) are found almost exclusively in the northern hemisphere with the exception of their recent colonization of South America (Elmer et al., 2013). Gymnophiona (caecilians, 205 species) are the least well known amphibian order, and are restricted to tropical regions only. The evolutionary relationships between these three orders have long been debated (Duellman & Trueb 1994), with the recent consensus being that the Gymnophiona are sister to Anurans and Caudates (Roelants et al., 2007; Pyron & Wiens, 2011). Globally, amphibians are known to be declining faster than most other vertebrate groups, with a large proportion of species that are threatened. The causes of these declines are many and varied, though human induced habitat modification is thought to be one of the major drivers of amphibian declines, especially for forest and water dependent species (Stuart et al., 2004). Due to their diverse life histories, ease of sampling and sensitivity to habitat modification and climate change during both aquatic and terrestrial life stages, amphibians have been proposed as useful indicators of the overall health of an ecosystem (Blaustein et al., 1994). As such, they are a suitable taxonomic group to use for assessing biodiversity, particularly

in tropical regions such as Sub-Saharan Africa where biological richness, human induced habitat modification and predicted future climate change are all high.

Fig. 2. A selection of amphibians found in the coastal forests, representing their diverse life histories. a) *Afrixalus fornasini*, b) *Arthroleptis stenodactylus*, c) *Phrynomantis bifasciatus*, d) *Arthroleptis xenodactyloides*, e) *Hyperolius parkeri*, f) *Kassina maculata*, g) *Hyperolius mitchelli*, h) *Ptychadena mascareniensis*, i) *Hemisus marmoratus*, j) *Sclerophrys pusilla*, k) *Chiromantis xerampelina*, l) *Xenopus muelleri*. m) *Boulengerula uluguruensis*, n) *Hyperolius reesi*, o) *Mertensophryne howelli*, p) *Spelaeophryne methneri*, q) *Phrynobatrachus acridoides* r) *Mertensophryne micranotis*. Photographs: Chris Barratt, Michele Menegon, Christoph Liedtke, Gabriela Bittencourt-Silva.

The known amphibian assemblage of the coastal forests of Eastern Africa region is currently around sixty species, though it is difficult to give a precise number due to the poor sampling across most of Mozambigue and Somalia. The amphibians of the coastal forests received fairly little research attention until the scramble for Africa in the middle of the nineteenth century after European colonization (Harper et al. 2010). The first described species from the coastal forests was the treefrog, Leptopelis flavomaculatus in 1864 by Albert Günther, and subsequent work by early European naturalists including Wilhelm Peters, Fritz Nieden, George Boulenger and Ernst Ahl slowly began increasing our knowledge of the amphibians present in this region. The Welshman, Arthur Loveridge made a significant contribution to species descriptions in the early to mid- twentieth century while he was based at the Museum of Comparative Zoology alongside Thomas Barbour. After a slow-down in the number species descriptions after the Second World War, many more species were described by Jean-Luc Perret, Robert Drewes, Alice Grandison, Arne Schiøtz and John Poynton. These efforts continue to this day with over 21 species described in the past 15 years. In Tanzania the lowland (coastal forest) assemblage consists of fifty one species (Poynton et al., 2007), with several additional species from coastal Kenya (Harper et al. 2010) or recently described (Barratt et al. 2017) inflating that number to at least fifty five. Although several of these species are narrow ranged-endemics which are very conspicuous and easily identifiable, many widespread species occur across the coastal forests and adjacent areas of suitable habitat (e.g. savannah and bushland). The systematics of many of these widespread species are very poorly understood (e.g. Poynton, 2006), but some show strong phylogeographic structuring (Channing et al. 2013; Barratt et al. in review) and poorly defined species boundaries possibly representing many additional undescribed cryptic species (Zimkus et al., 2010; 2012; 2017, Harper et al. 2010).

Objectives

The amphibians of the coastal forests of Eastern Africa offer an ideal opportunity to integrate molecular and spatial data for assessing biodiversity and conservation planning. By improving our knowledge of the evolutionary relationships and distribution data for multiple species with markedly varied life histories, we can make broad inferences on the biodiversity patterns across the region. At finer scales, the inclusion of large numbers of samples per species allows cryptic diversity to be clearly quantified for the first time, and the geographic distributions of intraspecific lineages to be clarified.

This thesis is focused on categorizing and documenting amphibian biodiversity across the coastal forests by supplementing existing museum and literature data with new field work and molecular data. The work aims to identify refugia in this region, and understand if environmental factors can explain observed biodiversity patterns. Recent research in other geographic areas have established correlations between climatic stability, forest stability and topography in promoting endemism in small ranged species such as amphibians (Carnaval et al., 2014; Rosauer et al., 2015; Sandel et al., 2011). The links between long-term climate stability and endemism of small-ranged taxa has long been speculated, though this remains to be conclusively tested in East Africa. The long history of species identifications and collections across the coastal forest region have laid the groundwork for this thesis. With additional sampling and data assimilation, using new sequencing technologies and statistical methods, the thesis attempts to explain which factors may be responsible for the biodiversity patterns across the coastal forest, and how this may be important for conservation of this biodiversity hotspot in the future.

Chapter overview

Chapter 1: Next generation sequencing and landscape analyses reveal the importance of paleo-climate, geography and hydrology in the population structure of lowland amphibians in East Africa

<u>Authors</u>: Christopher D. Barratt, Beryl A. Bwong, Robert Jehle, Michele Menegon, Daniel M. Portik, Gabriela B. Bittencourt-Silva, H. Christoph Liedtke, Peter Nagel & Simon P. Loader <u>Status:</u> Draft manuscript (target journal: Evolution)

Using next generation sequencing we reveal phylogeographic patterns in five co-distributed amphibian clades across East Africa. The work improves previous estimates of relationships in these clades, supports the common biogeographic patterns known for this region, and shows that genetic diversity is correlated with geography, hydrology and historical climate. We demonstrate that next generation sequencing is an efficient and cost effective method for assessing genetic variation within poorly defined groups, and will be crucial in the future for assessing tropical diversity.

Chapter 2: Environmental correlates of phylogenetic endemism in amphibians and the conservation of refugia in the Coastal Forests of Eastern Africa

<u>Authors</u>: Christopher D. Barratt, Beryl A. Bwong, Renske E. Onstein, Dan F. Rosauer, Michele Menegon, Nike Doggart, Peter Nagel, W. Daniel Kissling & Simon P. Loader

Status: revision in review (Diversity and Distributions)

Based on large scale DNA barcoding project we estimate phylogenetic endemism (a measure of the evolutionary history of a community contained in a given area) across a well sampled portion of the coastal forest and lowland Eastern Afromontane region in Tanzania and Kenya. We utilise cryptic diversity represented by multiple distinct lineages within species to improve fine scale estimates of endemism. We show that benign current climate and climatic stability in the Quaternary are strong predictors of endemism, supporting the hypothesis that these areas are refugia. We show that the current protected area network is insufficient to protect the endemism supported in these areas.

Chapter 3: Museums or cradles of diversity? Paleo- and Neo- endemism patterns in the East African lowlands using near complete assemblage phylogenetic data from amphibians

Authors: Christopher D. Barratt, Beryl A. Bwong, Peter Nagel & Simon P. Loader

Status: Draft manuscript (target journal: Journal of Biogeography)

For close to the complete lowland amphibian assemblage (fifty-five species) across Tanzania and Kenya, we estimate phylogenetic endemism and use a null model hypothesis testing framework to distinguish the different endemism types present and their geographic distributions. We show that while the coastal forests can be considered as museums of diversity that support ancient relicts, they can in some cases be cradles of diversity, supporting recently evolved forms, and several places support complex mixtures of endemism types. We discuss the results in context of the general geological, climate and hydrological history of the East African lowlands.

Chapter 4: A new, narrowly distributed, and critically endangered species of spiny-throated reed frog (Anura: Hyperoliidae) from a highly threatened coastal forest reserve in Tanzania

<u>Authors</u>: Christopher D. Barratt, Lucinda P. Lawson, Gabriela B. Bittencourt-Silva, Nike Doggart, Theron Morgan-Brown, Peter Nagel & Simon P. Loader

Status: Published (Herpetological Journal)

We describe a new, critically endangered amphibian from the coastal forests of Tanzania (Ruvu South Forest Reserve) using morphological and genetic approaches. The new species is the first lowland member of the montane spiny-throated reed frog clade, and is the sixth endemic amphibian for the Tanzanian coastal forests. Using remote sensing images we demonstrate the catastrophic levels of habitat destruction that have occurred in Ruvu South since 1998, highlighting the urgency of improving conservation protection in this area and also more broadly across the coastal forest region.

Additional Outputs

In addition to the chapters within this thesis, a number of additional outputs have arisen from the work and data collected during this PhD:

Peer-reviewed:

- Zimkus B., Lawson L.P., Barej M., Barratt C.D., Channing A., Dehling J.M., Gehring S., Greenbaum E., Gvodzik V., Harvey J., Kielgast J., Kusamba C., Nagy Z., Pabijan M., Penner J., Du Preez L., Rödel M.O., Vences M., Weber K., Lötters S. (2017). Leapfrogging into new territory: how Mascarene ridged frogs have diversified across Africa. *Molecular Phylogenetics and Evolution*, 106, 254-269.
- Bwong B.A., Nyamache J.O., Malonza P.K., Wasonga D.V., Ngwava J.M., Barratt C.D., Nagel P., Loader S.P. (in press). Amphibian diversity in Shimba Hills National Reserve, Kenya: a comprehensive list of specimens and species. *Journal of East African Natural History*.
- Bwong B.A., Lawson L.P., Nyamache J.O., Barratt C.D., Menegon M., Portik D.M., Malonza P.K., Nagel P., Loader S.P. (in review). Phylogenetic, ecological and morphological variation in the congeners *Hyperolius mitchelli* and *Hyperolius rubrovermiculatus* from East Africa. *Acta Herpetologica*.
- Bittencourt-Silva G.B., Lawson L.P., Tolley K.A., Portik D.M.P., Barratt C.D., Nagel P., Loader S.P. (in review). Integrating phylogeny and ecological niche models to reconstruct the phylogeographical history of the East African reed from *Hyperolius substriatus* Ahl 1931. *Journal of Biogeography*.

Popular press (non- peer reviewed):

Barratt C.D, Tonelli E., Menegon M., Doggart N., Ngalason W., Howell K. (2014). Fragmented habitats and species: the challenges of amphibian conservation in Tanzania today. *Froglog*, **111**, 63-64.

Mongabay (2017) Newly discovered Tanzanian frog already facing extinction.

https://news.mongabay.com/2017/03/newly-discovered-tanzanian-frog-already-facing-extinction/

References

- Axelrod D.I., Raven P.H. (1978) Late Cretaceous and Tertiary vegetation history of Africa. M. Werger (Ed.), *Biogeography and Ecology of Southern Africa*, Junk, The Hague (1978), pp. 77–130.
- Azeria E.T., Sanmartin I., As S., Carlson A., & Burgess N. (2007) Biogeographic patterns of the East African coastal forest vertebrate fauna. *Biodiversity and Conservation*, **16**, 883–912.

- Balvanera P., Pfisterer A.B., Buchmann N., He J.S., Nakashizuka T., Raffaelli D., & Schmid B. (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. *Ecology Letters*, 9, 1146–1156.
- Balvanera P., Siddique I., Dee L., Paquette A., Isbell F., Gonzalez A., Byrnes J., O'Connor M.I., Hungate B.A., & Griffin J.N. (2014) Linking biodiversity and ecosystem services: Current uncertainties and the necessary next steps. *BioScience*, 64, 49–57.
- Barratt C.D., Lawson L.P., Bittencourt-Silva G.B., Doggart N., Morgan-Brown T., Nagel P. & Loader S.P.
 (2017) A new, narrowly distributed, and critically endangered species of spiny-throated reed frog
 (Anura: Hyperoliidae) from a highly threatened coastal forest reserve in Tanzania. *Herpetological Journal*, 27, 13-24.
- Barratt C.D., Bwong B.A., Onstein R.E., Rosauer D.F., Menegon M., Doggart N., Nagel P., Kissling W.D., Loader S.P. (in review) Environmental correlates of phylogenetic endemism in amphibians and the conservation of refugia in the Coastal Forests of Eastern Africa. *Diversity and Distributions*.
- Bini L.M., Diniz-Filho J.A.F., Rangel T.F.L.V.B., Bastos R.P., & Pinto M.P. (2006) Challenging Wallacean and Linnean shortfalls: Knowledge gradients and conservation planning in a biodiversity hotspot. *Diversity and Distributions*, **12**, 475–482.
- Blackburn D.C. (2008) Biogeography and evolution of body size and life history of African frogs: Phylogeny of squeakers (Arthroleptis) and long-fingered frogs (Cardioglossa) estimated from mitochondrial data. Molecular Phylogenetics and Evolution, 49, 806–826.
- Blaustein A.R., Wake D.B., & Sousa W.P. (1994) Amphibian declines: Judging stability, persistence, and susceptibility of populations to local and global extinctions. *Conservation Biology*, **8**, 60–71.
- Brooks T., Balmford A., Burgess N., Fjeldså J., Hansen L. a., Moore J., Rahbek C., & Williams P. (2001) Toward a Blueprint for Conservation in Africa. *BioScience*, **51**, 613.
- Burgess N., Fjeldsa J., Howell K., Kilahama F., Loader S.P., Lovett J.C., & Mbilinyi B. (2007) The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. *Biological Conservation*, 134, 209–231.
- Burgess N.D., Clarke G.P., & Rodgers W.A. (1998) Coastal forests of eastern Africa: status, endemism patterns and their potential causes. *Biological Journal of the Linnean Society*, **64**, 337–367.
- Cadotte M.W. (2013) Experimental evidence that evolutionarily diverse assemblages result in higher productivity. *Proceedings of the National Academy of Sciences*, **110**, 8996–9000.
- Cadotte M.W., Cardinale B.J., & Oakley T.H. (2008) Evolutionary history and the effect of biodiversity on plant productivity. *Proceedings of the National Academy of Sciences of the USA*, **105**, 17012–17017.
- Cadotte M.W. & Davies T.J. (2010) Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. *Diversity and Distributions*, **16**, 376–385.
- Cardinale B.J., Duffy J.E., Gonzalez A., Hooper D.U., Perrings C., Venail P., Narwani A., Mace G.M.,
 Tilman D., Wardle D., Kinzig A.P., Daily G.C., Loreau M., Grace J.B., Larigauderie A., Srivastava
 D.S., & Naeem S. (2012) Biodiversity loss and its impact on humanity. *Nature*, 489, 326–326.
- Cardinale B.J., Wright J.P., Cadotte M.W., Carroll I.T., Hector A., Srivastava D.S., Loreau M., & Weis J.J. (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. *Proceedings of the National Academy of Sciences*, **104**, 18123–18128.

- Carew M.E., Pettigrove V.J., Metzeling L., & Hoffmann A. (2013) Environmental monitoring using next generation sequencing: Rapid identification of macroinvertebrate bioindicator species. *Frontiers in Zoology*, **10**, 45.
- Carnaval A.C., Waltari E., Rodrigues M.T., Rosauer D.F., VanDerWal J., Damasceno R., Prates I., Strangas M., Spanos Z., Rivera D., Pie M.R., Firkowski C.R., Bornschein M.R., Ribeiro L.F., & Moritz C. (2014a) Prediction of phylogeographic endemism in an environmentally complex biome. *Proceedings of the Royal Society B: Biological Sciences*, 281, 20141461.
- Carroll R.L. (2001) The Origin and Early Radiation of Terrestrial Vertebrates. *Journal of Paleontology*, **75**, 1202–1213.
- Ceballos G., Ehrlich P.R., Barnosky A.D., García A., Pringle R.M., & Palmer T.M. (2015) Accelerated modern human induced species losses: entering the sixth mass extinction. *Science Advances*, **1**, 1–5.
- Channing A., Hillers A., Lötters S., Rodel M.O., Schick S., Conradie W., Rödder D., Mercurio V., Wagner P., Dehling J.M., Du Preez L.H., Kielgast J., Burger M. (2013). Taxonomy of the super-cryptic *Hyperolius nasutus* group of long reed frogs of Africa (Anura: Hyperoliidae), with descriptions of six new species. *Zootaxa*, 3620, 301-350.
- Cottingham K.L., Brown B.L., & Lennon J.T. (2001) Biodiversity may regulate the temporal variability of ecological systems. *Ecology Letters*, **4**, 72–85.
- Couvreur T.L.P., Chatrou L.W., Sosef M.S.M., & Richardson J.E. (2008) Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees. *BMC Biology*, **6**, 54.
- Critical Ecosystem Partnership Fund. (2007). Fact Sheet: Eastern Arc Mountains and Coastal Forest Fact Sheet. Available from: < http://www.cepf.net/Documents/cepf.easternarc.factsheet.pdf>. Accessed: 9th March 2017.
- Davies T.J. & Buckley L.B. (2011) Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. *Philosophical Transactions of the Royal Society B-Biological Sciences*, **366**, 2414–2425.
- Demenocal P.B. (1995) Plio-Pleistocene African climate. Science, 270, 53-59.
- Diniz-Filho J.A.F., Loyola R.D., Raia P., Mooers A.O., & Bini L.M. (2013) Darwinian shortfalls in biodiversity conservation. *Trends in Ecology & Evolution*, 28, 689–695.
- Duellman W.E., Trueb L. (1994). Biology of Amphibians. Johns Hopkins University Press, Baltimore.
- Dynesius M. & Jansson R. (2000) Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. *Proceedings of the National Academy of Sciences*, **97**, 9115–9120.
- Elmer K.R., Bonett R.M., Wake D.B., & Lougheed S.C. (2013) Early Miocene origin and cryptic diversification of South American salamanders. *BMC Evolutionary Biology*, **13**, 59.
- Faith D.P. (1992) Conservation evaluation and phylogenetic diversity. *Biological Conservation*, 61, 1–10.
- Fjeldså J., Burgess N.D., Blyth S., & de Klerk H.M. (2004) Where are the major gaps in the reserve network for Africa's mammals? *Oryx*, **38**, 2004.
- Fritz S.A. & Rahbek C. (2012) Global patterns of amphibian phylogenetic diversity. *Journal of Biogeography*, **39**, 1373–1382.
- Gaston K.J. & Blackburn T.M. (2007) Pattern and process in macroecology. Blackwell Science Ltd.

- Harper E.B., Measey G.J., Patrick D.A., Menegon M., Vonesh J.R. (2010) Field guide to the amphibians of the Eastern Arc Mountains and Coastal Forests of Tanzania and Kenya. Camerapix International, Nairobi, Kenya.
- Harrison S, Noss R. (2017). Endemism hotspots are linked to stable climate refugia. *Annals of Botany*, **119**, 207-2014.
- Harvey P.H. & Pagel M.D. (1991) *The Comparative Method In Evolutionary Biology*. Oxford Series in Ecology and Evolution, 239 pp.
- Hebert P.D.N. & Gregory T.R. (2005) The promise of DNA barcoding for taxonomy. *Systematic Biology*, **54**, 852–859.
- Jetz W., Thomas G.H., Joy J.B., Hartmann K., & Mooers A.O. (2012) The global diversity of birds in space and time. *Nature*, **491**, 444–448.
- Joly D. & Faure D. (2015) Next-generation sequencing propels environmental genomics to the front line of research. *Heredity*, **114**, 429–430.
- Kaufmann G. & Romanov D. (2012) Landscape evolution and glaciation of the Rwenzori Mountains, Uganda: Insights from numerical modeling. *Geomorphology*, **138**, 263–275.
- Kerr J.T., Kharouba H.M., & Currie D.J. (2007) The macroecological contribution to global change solutions. *Science*, **316**, 1581–1584.
- Kissling W.D., Eiserhardt W.L., Baker W.J., Borchsenius F., Couvreur T.L.P., Balslev H., & Svenning J.-C.
 (2012) Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. *Proceedings of the National Academy of Sciences*, **109**, 7379–7384.
- Kolbert E. (2014) The Sixth Extinction. Henry Holt & Co.
- Lahaye R., van der Bank M., Bogarin D., Warner J., Pupulin F., Gigot G., Maurin O., Duthoit S., Barraclough T.G., & Savolainen V. (2008) DNA barcoding the floras of biodiversity hotspots. *Proceedings of the National Academy of Sciences*, **105**, 2923–2928.
- Laity T., Laffan S.W., González-Orozco C.E., Faith D.P., Rosauer D.F., Byrne M., Miller J.T., Crayn D., Costion C., Moritz C., & Newport K. (2015) Phylodiversity to inform conservation policy: An Australian example. Science of the Total Environment, **534**, 131–143.
- Lemmon E.M. & Lemmon A.R. (2013) High-Throughput Genomic Data in Systematics and Phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 44, 99–121.
- Livingstone, D.A. (1993). Evolution of African climate. In: Goldblatt P, editor. *Biological relationships between Africa and South America*. New Haven and London: Yale University Press. p. 456-472.
- Mannion P.D., Upchurch P., Benson R.B.J., & Goswami A. (2014) The latitudinal biodiversity gradient through deep time. *Trends in Ecology and Evolution*, **29**, 42–50.
- Maslin M.A., Brierley C.M., Milner A.M., Shultz S., Trauth M.H., & Wilson K.E. (2014) East african climate pulses and early human evolution. *Quaternary Science Reviews*, **101**, 1–17.
- Mishler B.D., Knerr N., González-Orozco C.E., Thornhill A.D., Laffan S.W., & Miller J.T. (2014)
 Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. *Nature Communications*, 5, 4473.
- Mooers A.O. & Redding D.W. (2009) Where the rare species are. *Molecular Ecology*, 18, 3955–3957.
- Moritz C. & Cicero C. (2004) DNA barcoding: Promise and pitfalls. PLoS Biology, 2, e354.

doi:10.1371/journal.pbio.0020354

- Moucha R. & Forte A.M. (2011) Changes in African topography driven by mantle convection. *Nature Geoscience*, **4**, 707–712.
- Mumbi C.T., Marchant R., Hooghiemstra H., & Wooller M.J. (2008) Late Quaternary vegetation reconstruction from the Eastern Arc Mountains, Tanzania. *Quaternary Research*, **69**, 326–341.
- Myers N., Mittermeier R.A., Mittermeier C.G., Fonseca G.A.B., & Kent J. (2000) Biodiversity hotspots for conservation priorities. *Nature*, **403**, 853–858.
- Nagy Z.T., Sonet G., Glaw F., & Vences M. (2012) First Large-Scale DNA Barcoding Assessment of Reptiles in the Biodiversity Hotspot of Madagascar, Based on Newly Designed COI Primers. *PLoS ONE*, 7, e34506.
- Partridge T.C., Dollar E.S., Moolman J., & Dollar L.H. (2010) The geomorphic provinces of South Africa, Lesotho and Swaziland: A physiographic subdivision for earth and environmental scientists. *Transactions of the Royal Society of South Africa*, 65, 1–47.
- Pereira H.M., Ferrier S., Walters M., Geller G.N., Jongman R.H.G., Scholes R.J., Bruford M.W., Brummitt N., Butchart S.H.M., Cardoso A.C., Coops N.C., Dulloo E., Faith D.P., Freyhof J., Gregory R.D., Heip C., Höft R., Hurtt G., Jetz W., Karp D.S., McGeoch M.A., Obura D., Onoda Y., Pettorelli N., Reyers B., Sayre R., Scharlemann J.P.W., Stuart S.N., Turak E., Walpole M., & Wegmann M. (2013) Essential Biodiversity Variables. *Science*, 339, 277–278.
- Poynton J. (2006) On dwarf spiny reedfrogs in Tanzanian eastern lowlands (Anura: Afrixalus). *African Journal of Herpetology*, **55**, 167–169.
- Poynton J.C., Loader S.P., Sherratt E., & Clarke B.T. (2007) Amphibian diversity in East African biodiversity hotspots: Altitudinal and latitudinal patterns. *Biodiversity and Conservation*, 16, 1103– 1118.
- Purvis A., Gittleman J.L., & Brooks T.M. (2005) *Phylogeny and Conservation*. 448 pp. Cambridge University Press.
- Pyron R.A. & Wiens J.J. (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. *Molecular Phylogenetics and Evolution*, 61, 543–583.
- Roelants K., Gower D.J., Wilkinson M., Loader S.P., Biju S.D., Guillaume K., Moriau L., & Bossuyt F. (2007) Global patterns of diversification in the history of modern amphibians. *Proceedings of the National Academy of Sciences*, **104**, 887–892.
- Rolland J., Cadotte M.W., Davies J., Devictor V., Lavergne S., Mouquet N., Pavoine S., Rodrigues A., Thuiller W., Turcati L., Winter M., Zupan L., Jabot F., & Morlon H. (2012) Using phylogenies in conservation: new perspectives. *Biology Letters*, 8, 692–694.
- Rosauer D.F., Catullo R.A., Vanderwal J., & Moussalli A. (2015) Lineage range estimation method reveals fine-scale endemism linked to Pleistocene stability in Australian rainforest herpetofauna. *PLoS ONE*, **10**, e0126274.
- Rosauer D.F. & Jetz W. (2015) Phylogenetic endemism in terrestrial mammals. *Global Ecology and Biogeography*, **24**, 168–179.
- Rosenzweig M. (1995) Species diversity in space and time. Cambridge University Press, Cambridge.

- Sandel B., Arge L., Dalsgaard B., Davies R.G., Gaston K.J., Sutherland W.J., & Svenning J.-C. (2011) The Influence of Late Quaternary Climate-Change Velocity on Species Endemism. *Science*, **334**, 660–664.
- Sepulchre P., Ramstein G., Fluteau F., Schuster M., Tiercelin J.-J., & Brunet M. (2006) Tectonic uplift and Eastern Africa aridification. *Science*, **313**, 1419–1423.
- Stuart S.N., Chanson J.S., Cox N. a, Young B.E., Rodrigues A.S.L., Fischman D.L., & Waller R.W. (2004) Status and trends of amphibian declines and extinctions worldwide. *Science*, **306**, 1783–1786.
- Tautz D. & Schlötterer C. (1994) Simple sequences. *Current Opinion in Genetics and Development*, **4**, 832–837.
- Tilman D., Isbell F., & Cowles J.M. (2014) Biodiversity and Ecosystem Functioning. *Annual Reviews in Ecology Evolution and Systematics*, **45**, 471–93
- Tucker C.M., Cadotte M.W., Carvalho S.B., Davies T.J., Ferrier S., Fritz S.A., Grenyer R., Helmus M.R., Jin L.S., Mooers A.O., Pavoine S., Purschke O., Redding D.W., Rosauer D.F., Winter M., & Mazel F. (2016) A guide to phylogenetic metrics for conservation, community ecology and macroecology. *Biological Reviews*, doi: 10.1111/brv.12252.
- Vane-Wright R.I., Humphries C.J., & Williams P.H. (1991) What to protect?-Systematics and the agony of choice. *Biological Conservation*, 55, 235–254.
- Vences M., Thomas M., van der Meijden A., Chiari Y., & Vieites D.R. (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. *Frontiers in zoology*, **2**, 5.
- Voskamp A., Baker D.J., Stephens PA., Valdes P.J., Willis S.G. (2017). Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds. *Journal of Biogeography*, early view. doi: 10.1111/jbi.12916.
- Webb C.O., Ackerly D.D., McPeek M.A., & Donoghue M.J. (2002) Phylogenies and Community Ecology. Annual Review of Ecology and Systematics, 33, 475–505.
- Whittaker R.J., Araujo M.B., Jepson, P., Ladle R.J., Watson J.E.M., & Willis K.J. (2005) Conservation biogeography: asessment and prospect. *Diversity and Distributions*, **11**, 3–23.
- Winter M., Devictor V., & Schweiger O. (2013) Phylogenetic diversity and nature conservation: where are we? *Trends in Ecology & Evolution*, 28, 199–204.
- Winter M., Schweiger O., Klotz S., Nentwig W., Andriopoulos P., Arianoutsou M., Basnou C., Delipetrou P., Didziulis V., Hejda M., Hulme P.E., Lambdon P.W., Pergl J., Pyšek P., Roy D.B., & Kühn I. (2009)
 Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. *Proceedings of the National Academy of Sciences*, **106**, 21721–5.
- Zimkus B.M., Lawson L., Loader S.P., & Hanken J. (2012) Terrestrialization, miniaturization and rates of diversification in african puddle frogs (anura: Phrynobatrachidae). *PLoS ONE*, **7**, e35118.
- Zimkus B.M., Rodel M.O., & Hillers A. (2010) Complex patterns of continental speciation: Molecular phylogenetics and biogeography of sub-Saharan puddle frogs (*Phrynobatrachus*). *Molecular Phylogenetics and Evolution*, **55**, 883–900.
- Zimkus B.M., Lawson L.P., Barej M.F., Barratt C.D., Channing A., Dash K.M., Dehling J.M., Du Preez L., Gehring P-S., Greenbaum E., Gvodzik V., Harvey J., Kielgast J., Kusamba C., Nagy Z., Pabijan M., Penner J., Rödel M.O., Vences M. & Lötters S. (2017). Leapfrogging into new territory: how

Mascarene ridged frogs have diversified across Africa. *Molecular Phylogenetics and Evolution*, **106**, 254-269.

Chapter I

Next generation sequencing and landscape analyses reveal the importance of paleo-climate, geography and hydrology in the population structure of lowland amphibians in East Africa

Christopher D. Barratt, Beryl A. Bwong, Robert Jehle, Michele Menegon, Daniel M. Portik, Gabriela B. Bittencourt-Silva, H. Christoph Liedtke, Peter Nagel & Simon P. Loader

Draft manuscript (target journal: Evolution)

Next generation sequencing and landscape analyses reveal the importance of paleo-climate, geography and hydrology in the population structure of lowland amphibians in East Africa

Christopher D. Barratt¹, Beryl A. Bwong^{1,2}, Robert Jehle³, Michele Menegon⁴, Daniel M. Portik⁵, Gabriela B. Bittencourt-Silva¹, H. Christoph Liedtke⁶, Peter Nagel¹ & Simon P. Loader^{1,7}

¹ University of Basel, Biogeography Research Group, Department of Environmental Sciences, Basel 4056, Switzerland

² National Museums of Kenya, Herpetology Section, PO Box 40658-00100, Nairobi, Kenya

³ University of Salford, School of Environment and Life Sciences, M5 4WT, Salford, UK

⁴ Museo delle Scienze, Tropical Biodiversity Section, Corso del Lavoro e della Scienza 3, 38122, Trento, Italy

⁵ University of Texas at Arlington, Texas, TX 76019, USA

⁶ Estación Biológica de Doñana Ecology, Evolution and Developmental Group, Department of Wetland Ecology, (CSIC), 41092 Sevilla, Spain

⁷ Natural History Museum, Department of Life Sciences, SW7 5BD, London, UK

Abstract

Genetic variation is often considered the most fundamental dimension of biodiversity as it provides the critical foundation for adaptation to new environmental conditions through evolutionary change. Conservation strategies must therefore be informed by detailed knowledge of genetic diversity, how it is distributed, and the environmental factors that are responsible for these patterns. In the East African lowlands, clear phylogeographic structure is evident across many varied species groups, strongly influenced by the geological and climatic history of Africa, though the reasons for this structure often depend on specific functional and life history characteristics. Here, we attempt to resolve the phylogeography of five widespread amphibian clades across Tanzania, Kenya, Zimbabwe, Malawi and Mozambigue using thousands of genome-wide loci using next generation sequencing (RAD-seq). Our data represent wide geographical sampling across over 2000 km of East Africa, with 27-59 individuals per species group sampled across 8-27 localities. For each clade we infer phylogenetic relationships using up to 1,475,958 bp of sequence data, and estimate population structure using up to 38,642 unlinked single nucleotide polymorphisms. We use environmental connectivity modelling and electrical circuit theory to test correlations between genetic distance (F_{ST}) and environmental data related to geography, habitat suitability, paleo-climate, and hydrology. High phylogeographic structure is present in three of the five clades (Afrixalus stuhlmanni, Leptopelis argenteus and Arthroleptis xenodactyloides), and genetic distances between localities are strongly correlated with paleo-climatic stability dating back to the Pliocene, geographic distance and slope, and the spatial arrangement of hydrological basins. The remaining two clades (Afrixalus fornasini and Leptopelis flavomaculatus) show lower phylogeographic structure, with less clear environmental correlates of F_{ST}. The results reaffirm consistent phylogeographic breaks which are recovered across clades, corresponding to known vegetation zones, terrestrial ecoregions, suggesting that paleo-climatic fluctuations and the spatial location of refugia play a key role in biodiversity patterns. The work here provides a case study of how knowledge of biodiversity in East Africa can be improved by new sequencing technologies, which are likely to become crucial in the near future for measuring biodiversity and informing conservation strategies.

Key words: conservation, phylogeography, connectivity, NGS, circuit theory, gene flow

Introduction

Understanding the distribution of genetic diversity and the factors responsible for observed diversity patterns are both fundamental goals in evolutionary biology. Genetic diversity provides the foundation for evolutionary change (Lewontin, 1975), and to complement ongoing large scale estimates of biodiversity, phylogeographic studies within species are needed for local and regional scale conservation (Miraldo et al. 2016). Habitat fragmentation is known to diminish the ability of populations to make evolutionary responses to environmental change by reducing gene flow (Hoffmann et al., 2015), which may in some cases be mitigated by restoring connectivity between isolated populations. In tropical biodiversity hotspots, landscapes are often highly heterogeneous, often caused by natural habitat fragmentation, though this has in many areas been exacerbated by human activity. This fragmented and human modified landscape tends to lead to highly structured genetic diversity, which may compromise the connectivity, gene flow and resilience of populations (Frankham, 1996), but in some cases can promote speciation (Seehausen et al., 2014). Phylogeographic studies can help to prioritize areas of high conservation value as they identify population structure and unique evolutionary lineages (see Evolutionary Significant Units, Moritz, 1994). Knowledge of these patterns below the species level is important as some populations or lineages may require special conservation. The majority of phylogeographic studies have typically been based on mitochondrial DNA (mtDNA), mainly because sequence data is easy to generate at a low cost. Though mtDNA loci are useful and affordable for large scale studies, they are unable to represent all contemporary and historical population level processes due to being heritable from the maternal line only (Hoelzer, 1997). To gain fully reliable estimations of genetic diversity, the inclusion of recombinant nuclear genes inherited from both parents is required (Karl & Avise, 1993). However, the sequencing of nuclear genes can often require repeated sequencing efforts due to their lower cell copy numbers, and in some cases the development of species-specific primer sets or optimization of lab protocols may be needed (Zhang & Hewitt, 2003). These complications can quickly render the cost of a project prohibitive if large numbers of individuals are necessary.

The timely development of high throughput next-generation sequencing (NGS) technologies enables large numbers of both nuclear and mitochondrial loci to be genotyped simultaneously, and has revolutionized evolutionary research (Hickerson et al., 2010; Davey et al., 2011; Carstens et al., 2012; Lemmon & Lemmon, 2013; McCormack & Faircloth, 2013). In a single sequencing run, NGS generates thousands of loci across multiple individuals, which can be used to address a number of evolutionary questions at both deep and shallow time scales. Restriction-site Associated DNA sequencing (RAD-seq) has gained popularity as an alternative to costly whole genome sequencing due to its flexibility, with a variety of protocols that can be tailored to address specific evolutionary and ecological questions (McCormack & Faircloth, 2013; Andrews & Luikart, 2014; Andrews et al., 2016). Furthermore, these techniques can easily be applied to non-model organisms without an available reference genome at an affordable cost. RAD-seq is a reduced representation library method, which samples a subset of the genome to identify loci, represented by single nucleotide polymorphisms (SNPs) that are homologous across multiple samples. In brief, high molecular weight genomic DNA is digested with one or more restriction enzymes, and sequencing adapters are ligated to the loose ends flanking the cut sites. Several size selection and PCR cleanup steps enable the researcher to choose the size of the fragments to sequence, and unique barcode adapters to each individual can be ligated to enable pooling of hundreds of samples into a single genomic library with sequences per individual later processed by bioinformatic tools (see Fig. 1A for a workflow summary). These methods have been used for a number of evolutionary questions in many model and non-model

organisms, for both population (Etter et al., 2011; Seeb et al., 2011; Eaton, 2014) and phylogenomics (Cariou et al., 2013; Leaché et al., 2014; Pante et al., 2014; Leache et al., 2015), and are likely to continue to do so for the forseeable future (Davey & Blaxter, 2010; McCormack & Faircloth, 2013). Exciting new applications with genomic data are now being used for biodiversity and conservation research, including for high resolution phylogeographic (Emerson et al., 2010; Lexer et al., 2013, 2014; Jeffries et al., 2015; Macher et al., 2015), and the emerging field of landscape genomics, which incorporates elements of population genetics and landscape ecology to identify the factors that shape variation across the genome (Bragg et al., 2015; Rellstab et al., 2015).

Genomic data greatly expands the potential of landscape genetics approaches (Storfer et al., 2007) for understanding what drives patterns of genetic diversity, and is likely to provide vital information to underpin future conservation strategies (Jeffries et al., 2015). In lowland East Africa, two adjacent biodiversity hotspots, the coastal forests of Eastern Africa and the Eastern Afromontane region comprise a highly diverse and heterogeneous habitat mosaic (Burgess et al. 2004). Habitat heterogeneity in this region is hypothesized to be influenced by a number of environmental factors including current climate and topography, but also historical aspects such as mountain building and paleo-climatic changes, thought to be responsible for changes in the structure of hydrobasins, sea level changes and the expansion and contraction of habitats. Species diversity and biogeographic patterns across many groups with varied life histories closely matches this habitat heterogeneity. and many clades often exhibit clear phylogeographic structure, which is a reflection of the environmental changes that have occurred in this region over time. The amphibians of this region are highly diverse, but despite much recent work to refine species distributions, taxonomy and phylogenetic relationships (Blackburn, 2008; Lawson, 2010; Zimkus et al., 2010, 2012; Liedtke et al., 2014; Loader et al., 2015), there remains a lack of studies that have examined intraspecific genetic diversity in high detail. The few papers that have looked at intraspecific diversity typically found high phylogenetic and phylogeographic structure, but have been extremely limited by spatial sampling as they have mostly focused on narrow ranged species which are notoriously difficult to sample adequately (Loader et al., 2014; Lawson et al., 2015). Furthermore, a distinct lack of adequate population genetic resources for African taxa in general such as microsatellites or anonymous nuclear loci have prohibited accurate quantification of genetic diversity and fine scale population structure (e.g. Barratt et al., 2012)

Amphibians are an ideal study organism to investigate the effects of the environment on genetic diversity because they are poor dispersers (Wiens, 1993), and sensitive to climate and habitat changes (Zeisset & Beebee, 2008). Widespread clades may be especially informative as they often consist of a number of unique evolutionary lineages that have been shaped by geographic distance, topography, hydrological features, and current and historical habitat suitability, especially in the tropics (Lawson, 2013). In this paper, we employ next generation sequencing (RAD-seq) to investigate phylogeographic patterns, genetic diversity and their environmental correlates. With new field sampling from across the region, we focus on five widespread species including Fornasini's spiny reed frog, *Afrixalus fornasini* (Bianconi 1849), the Yellow spotted tree frog, *Leptopelis flavomaculatus*, (Günther 1864), and the Dwarf squeaker *Arthroleptis xenodactyloides* (Hewitt 1933). A further two species clades that likely represent species complexes are investigated, the Silvery treefrog, *Leptopelis argenteus* (Pfeffer 1893) group which includes *L. broadleyi* (Poynton 1985) and *L. concolor* (Ahl 1929), and Dwarf spiny reed frogs including *Afrixalus stuhlmanni* (Pfeffer 1893), *A. sylvaticus* (Schiøtz 1974), *A. brachycnemis* (Boulenger 1896) and *A. delicatus* (Pickersgill 1984). Using high resolution genomic data for each clade we i) resolve phylogenetic relationships and phylogeographic structure, and ii) test the most likely

environmental correlates which explain genetic distances between localities (F_{ST}) by using electrical circuit theory and connectivity modelling.

Materials and methods

Sample collection

Samples were collected across the study region in 2013-2015 with fresh tissue samples (leg muscle, liver or toe clips) stored in 100% ethanol to preserve DNA. Additional samples held in collections at the University of Basel, University of Jena, Natural History Museum, London, Science Museum of Trento, Museum of Comparative Zoology, Harvard and Museum of Vertebrate Zoology, Berkeley (collected between 2001 and 2012) were used to complement new field data. A summary of samples used for RAD-seq library preparation along with the total numbers of reads is shown below in Table 1.

Table 1. Summary of samples and unique locality numbers per species used in this study. Total number of sequence reads for each clade is also shown. A full list of all samples and their matching locality data is provided in Table S1.

	No. samples	No. unique localities	Total number of sequence reads (bp)
Afrixalus fornasini	44	30	182,663,928
Leptopelis flavomaculatus	59	25	299,581,783
Afrixalus stuhlmanni	50	32	243,690,376
Arthroleptis xenodactyloides	54	35	199,514,898
Leptopelis argenteus	27	17	154,933,766

DNA extraction and RAD library preparation

Genomic DNA was extracted following the DNeasy Blood & Tissue Kit (Qiagen) procedure for all samples across the five clades. Verification of species identifications were made using the BLAST tool (NCBI, 2016) against our own 16S DNA barcoding database of amphibians across the region. DNA was quantified prior to RAD-seq library preparation using a Qubit fluorometer and visual inspection on agarose gel to verify that DNA was intact. DNA concentration varied from $6-500 \text{ ng/}\mu\text{l}$). We included samples to represent outgroups for each clade, which are included in Table 1. The number of samples in RAD-seq libraries ranged from included 44 Afrixalus fornasini from 30 localities, 59 Leptopelis flavomaculatus from 24 localities, 50 Afrixalus stuhlmanni from 32 localities, 27 Leptopelis argenteus from 17 localities, and 54 Arthroleptis xenodactyloides from 35 localities. We spread all samples across six RAD libraries with between 45 and 51 samples per library each with an individual barcode adapter to demultiplex sequences bioinformatically. To work with an even concentration of 6 $ng/\mu l$ for each library, different amounts of DNA and water were mixed for each sample in order to obtain a solution of 50 µl. Following the RAD-seq library preparation protocol of Etter et al. (2011), 5.0 µl of 10x NEB Buffer 4 and 1.5 µl of the restriction enzyme HF SbfI (New England Biolabs) were added to the 50 µl solution, for a total of 56.5 µl total reaction volume. Samples were then put on a heatblock at 37°C for 65 minutes. 5 µl of P1 adapter were added to the sample along with 1 µl 10x NEB buffer 2, 0.6 µl of rATP, 0.5 µl T4 DNA Ligase, 2.9 µl H₂0 and incubated at room temperature for 45 min. Samples were again heat-inactivated for 20 min at 65°C, pooled, and randomly sheared (Bioruptor UDC-300) to an average size of 500 bp. Sheared product was cleaned using "MinElute Clean-Up Kit" (Qiagen). Samples were then run out on a 1.25% agarose, 0.5x TBE gel and DNA ranging in size 300 bp to 500 bp was isolated using a "MinElute Gel Purification Kit" (Qiagen). The Quick Blunting Kit (NEB) was used to end repair the DNA. Samples were then purified using a QIAquick column and 3 μ l of Klenow Fragment was used to add adenine overhangs on the 3' end of the DNA at 37°C for 30 min. After another purification, 1 μ l of P2 adapter was ligated to the DNA fragments. Samples were again purified and eluted in 52 μ l EB buffer. 5 μ l of this product was used in a PCR amplification with 25.5 μ l Phusion Master Mix, 1.2 μ l of forward and 1.2 μ l of reverse 10 uM Solexa amplification primers, and 20.5 μ l H2O. PCR product was then purified and run on a gel, DNA 300-500 bp excised and eluted in 25 μ l EB. The final eluted product was sequenced (single-end) on an Illumina Hi-seq 2500 at the D-BSSE sequencing facility in Basel, Switzerland.

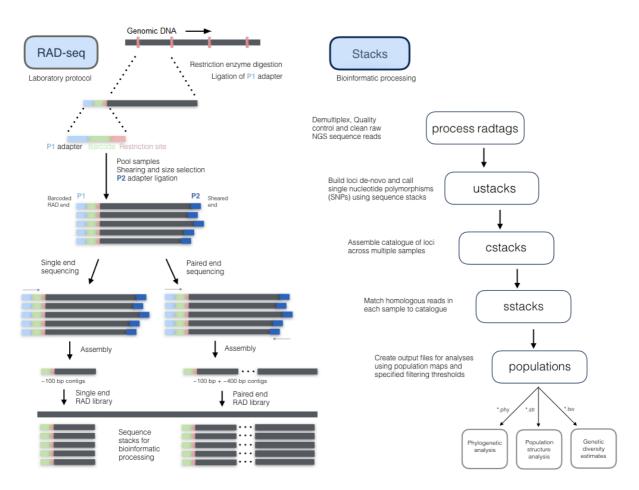


Fig. 1. Workflows for data generation in this study. A) RAD-seq laboratory protocol, B) Stacks bioinformatics.

Data filtering, SNP calling

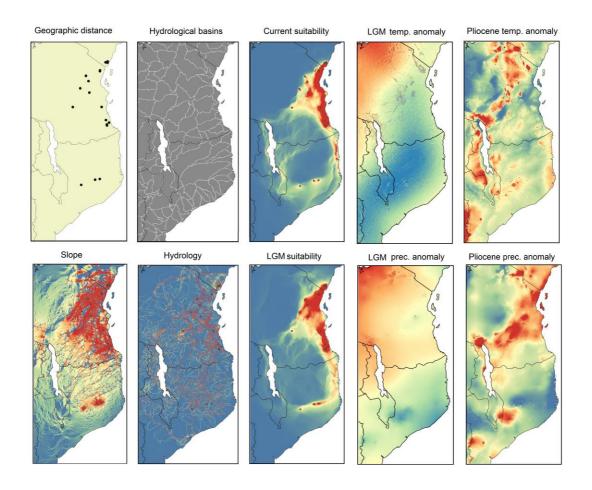
We used STACKS v.1.41 (Catchen et al., 2011, 2013) to process RAD-seq data and produce single nucleotide polymorphism (SNP) datasets. We used the *process_radtags*.pl script to demultiplex each individual sample into its own .fastq file containing all sequence data based on its barcoded adapter during library preparation. The standard workflow of *ustacks, cstacks* and *sstacks* modules were then used to align reads into stacks, build a catalogue of consensus loci by merging alleles across individuals together, and match individuals to the catalogue of loci, respectively (see Fig. 1B). As with most recommendations for RAD-seq studies due to the uniqueness of

each dataset (Cruaud et al., 2014; Huang & Knowles, 2016), and the varying sequencing quality and effort across samples, we initially explored our data with different filtering parameters to investigate the effects of missing data caused by allelic dropout, which is a common problem of RAD-seq datasets caused by uneven sequencing effort across samples (datasets summarized in Table S2). Despite checking DNA quality and molecular weight before sequencing, our sampling still contained several samples with low numbers of sequence reads compared to the rest, so we also created datasets with the removal of any sample with less than 100MB sequence data (hereafter referred to as 'poorly sequenced samples'). We did this because the inclusion of these samples reduced the homology of SNPs, and the overall number of loci, especially for population and genetic diversity analyses (Graham et al., 2015). This resulted in the removal of 9 *A. fornasini*, 5 *A stuhlmanni*, 1 *L. argenteus*, 1 *L. flavomaculatus* and 18 *A. xenodactyloides* samples. Our final catalogue of loci for each dataset used a conservative minimum depth of sequencing coverage of 5x (default = 2x). Based on this catalogue, data matrices were generated using the *populations* module for downstream analyses in each software pipeline using specific output file types and parameters (details in each following section).

Phylogeny

Appropriate sister taxa outgroups for each clade were selected based on known phylogenetic relationships (Frost, 2016). We used *Afrixalus osorioi* and *Afrixalus quadrivittatus* as outgroups for *Afrixalus fornasini* and *Afrixalus stuhlmanni*, respectively. For the *Leptopelis* datasets we used a single sample from each dataset as an outgroup in the other as they are closely related (i.e. a single *L. argenteus* in the *L. flavomaculatus* dataset and vice versa), and *Arthroleptis stenodactylus* as the outgroup for *A. xenodactyloides*. After data filtering, we exported full phylip files for constructing phylogenies which included all SNPs including adjacent RAD-tag sequences as per Leache et al. (2015). We created three datasets for each species group with differing degrees of missing data based on the minimum proportion of the total samples (30, 40 and 50%), with a minimum of 5x coverage for each RAD locus. The phylip files were then imported into RAxML 8.2 (Stamatakis, 2014), relevant outgroups were defined, and we ran the ML + rapid bootstrap algorithm with the GTR+GAMMA+ Γ model. We set the bootstrap replicates parameter to AUTOMRE with the Lewis ascertainment bias correction, which accounts for the omission of constant invariant sites from the data matrix, which may lead to branch length overstimation (Leache et al., 2015).

Population structure


To generate population structure datasets we first removed outgroups and used a stricter minimum sequencing coverage per locus of 7x, and the maximum amount of missing data in the matrix set to 40%. For all population structure analyses we restricted data matrices to only include a single SNP per locus to avoid problems of high linkage disequilibrium between variable sites in the same locus (Andrews et al., 2016). We used discriminant analysis of principal components (DAPC) in the Adegenet R package (Jombart et al., 2008), first converting structure files into fstat format using PGDSpider 2.1.0.3 (Lischer & Excoffier, 2012). We defined multiple values of k (population clusters) between 1 (i.e. a single panmictic population) and the maximum number of individuals in each dataset. For each value of k, the Bayesian Information Criterion (BIC) is calculated, with lower scores indicating a higher probability of that number of population clusters. Unlike other software such as Structure (Pritchard et al., 2000) and FastStructure (Raj et al., 2014), the DAPC method is free of assumptions regarding the population genetic laws of Hardy-Weinberg equilibrium which are likely to be violated by small population

sizes and low numbers of samples per population, which is highly likely in our amphibian data. Furthermore, DAPC has been shown to perform as well or better than other comparable methods for assessing population structure, (Jombart et al., 2008; Jeffries et al., 2015). After preliminary DAPC examination of each clade in full (Fig. S2), we created finer-scale datasets which removed the highly divergent samples, as they were so genetically diverse they masked the population structure detected with the other samples.

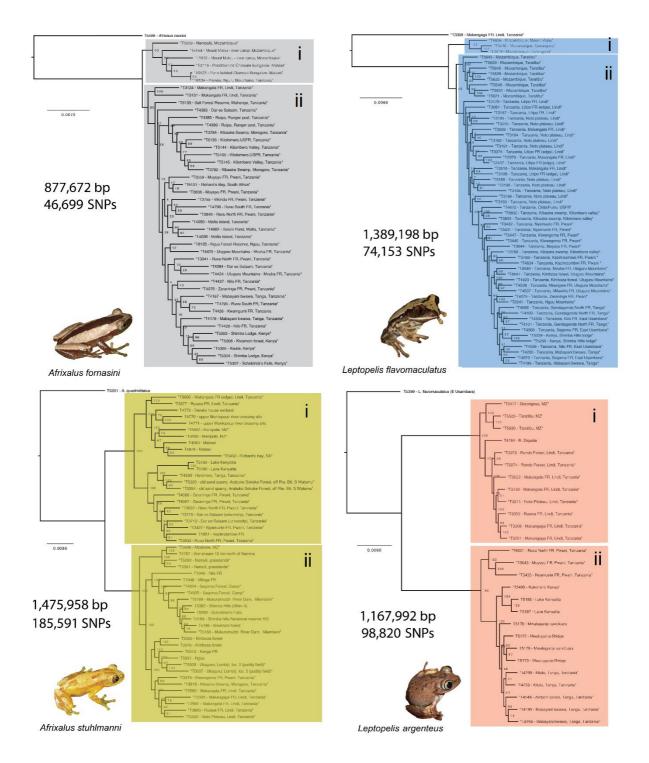
Genetic distances and correlations with environmental data

An F_{ST} matrix between individuals from sampled localities per clade was used to test correlations of genetic distance (F_{ST}) with environmental data using multiple regression, Mantel and partial Mantel tests (see Lawson et al., 2013). For calculations of genetic distances (F_{ST}) we opted for an extremely strict minimum coverage of 20x, with missing data minimized (no more than 30% missing data in the matrix) and restricted the number of SNPs to a single site within each RAD locus, again removing poorly sequenced specimens as these would also bias the F_{ST} estimates. For environmental data we selected variables that could be expected to influence observed genetic distances in amphibians, related to geography (Euclidean distance, topographic slope), habitat suitability now and in the past (Last Glacial Maximum), paleo-climate (absolute temperature and precipitation anomalies in the LGM and Pliocene as a proxy of climatic stability), and hydrological features (hydrological connectivity via waterways, and hydrological basins). Euclidean distance between cells was calculated in ArcGIS 10.2.1 using the EucDistance.py script, along with slope which was calculated using the surface analysis tool based on a digital elevation model at 30 arc-second resolution. (GTOPO30; USGS, available from: http://csgtm.iscgm.org/dataset/gtopo30). Current habitat suitability was estimated using a distribution model for each clade in MAXENT 3.3.3k (Phillips et al., 2006), using nine uncorrelated Bioclim variables (Pearson's r < 0.7) from the Worldclim database (Hijmans et al., 2005). Known presence localities and model parameterization settings for species distribution models follow Barratt et al. (in review). The LGM habitat suitability was generated by projecting the current suitability model onto the matching nine Bioclim variables from the LGM time period (Braconnot et al., 2006). Paleo-climate data used a measure of climate change velocity following Sandel et al (2011), estimating the absolute difference between the temperature and precipitation for the LGM, the Pliocene and the present. Low measures of change indicate more stable climatic conditions over time. Downscaled and geo-processed paleo-climate data was supplied Dr. W.D. Kissling (University of Amsterdam) for the LGM ca. 21 kya (Braconnot et al., 2006), and late Pliocene ca. 3 mya (Haywood & Valdes, 2004). Current climate data (1960-1990) was downloaded from the Worldclim database (Hijmans et al., 2005). Hydrological data for mapping of river systems was based on a shapefile of inland waterways (USGS, 2016), and we differentiated hydrological basins using the HydroBASINS shapefile (Lehner & Grill, 2013). All environmental data were clipped to our study region using ArcGIS 10.2.1.

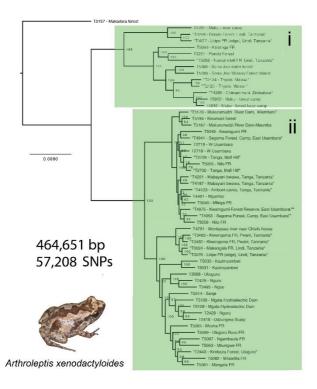
For each environmental variable we created a distance matrix matching the dimensions of the F_{ST} matrix so we could test correlations between variables and genetic distance across species clades. For the current habitat suitability, LGM habitat suitability, slope and hydrology (waterways) we used Circuitscape (McRae & Beier, 2007) to generate connectivity matrices between each sampling site (Fig. 2). Circuitscape transforms the landscape (represented by each environmental variable individually) into a conductivity surface, with values ranging from 0 (complete resistance) to 1 (complete connectivity) based on electrical circuit theory. The least cost paths are calculated (i.e. most suitable routes) between sampling localities through environmental space, and dispersal routes are shown as high values on conductivity maps, with less suitable routes shown as low numbers. Maxent outputs were used for current and LGM habitat suitability (higher suitability pixels had higher conductance), slope was scaled (0 = vertical, 1 = flat), and waterways were assigned a value of 1 (non-waterways as 0). Because values of 0 are interpreted as absolute barriers to gene flow, we transformed all zero occurences to extremely low values of 0.0001 in our data matrices before running Circuitscape. For geographic distance between sampling localities we used the Euclidean distance matrix from ArcGIS, and for hydrological basins we counted the minimum number of hydrobasins separating each sampling locality. Measures of connectivity during the LGM and Pliocene were calculated using least cost paths calculated in SDMtoolbox (Brown, 2014).

Fig. 2. Environmental variables tested against genetic distances. Example shown is *Afrixalus stuhlmann* clade ii (shown on phylogeny in Fig. 3). Variables represent geography (Geographic distance, slope), hydrology (hydrological basins, waterway connectivity), habitat suitability now and in the past (current, LGM) and paleoclimate (LGM and Pliocene anomalies of temperature and precipitation). Warmer colours represent higher connectivity for geographic, hydrological and habitat variables, and higher stability for paleo-climate variables. Sampling points shown as black dots overlaid on the geographic distance variable.

Results


Data quality, SNP calling and processing

We obtained single-end Illumina reads of 90 bp length for 44 *Afrixalus fornasini* (182,663,928 reads), 50 *Afrixalus stuhlmanni* (243,690,376 reads), 27 *Leptopelis argenteus* (154,933,766 reads), 59 *Leptopelis flavomaculatus*


(299,581,783 reads) and 54 *Arthroleptis xenodactyloides* individuals (199,514,898 reads) (Table 1). Phylogenetic datasets contained between 46,699-185,591 variable sites from 2,380-7,559 loci, with the complete sequences (including non-variable sites) exported as phylip files (464,651-1,475,958 bp) for phylogenetic analyses, and population structure datasets contained 2,257-38,462 unlinked SNPs from 2,272-38,659 loci (Table S2). Genetic diversity (F_{ST}) datasets contained between 1,266 and 3,075 loci. Within three datasets (*A. fornasini, A. stuhlmanni, A. xenodactyloides*) we observed a fairly large amount of allelic dropout when exporting data matrices across all samples probably due to poorly sequenced samples with degraded DNA at RAD-seq *SbfI* enzyme cut sites, these samples were mostly museum derived, not freshly collected tissue samples. In general the *Leptopelis (L. argenteus, L. flavomaculatus*) datasets were much more robust to allele dropout as they contained far fewer poorly sequenced samples (n=1 for each dataset).

Phylogeny

Phylogenetic relationships (Fig. 3) were consistent across trees generated from different datasets with the exception of varying node support and minor differences in the placement of certain individuals likely due to large amounts of missing data even in small matrices because of sequencing effort (Fig. S1). Our phylogenetic analyses show that the three clades exhibiting high divergences (*A. stuhlmanni*, *L. argenteus*, *A. xenodactyloides*) appear to be species complexes containing multiple species. *Afrixalus stuhlmanni* consists of two deeply diverged subclades (i and ii) on the phylogeny, the first appears to correspond with samples *A. delicatus* (previously recognized as *A. brachycnemis*) and a second subclade containing *A. stuhlmanni* and *A. sylvaticus*. In *Leptopelis argenteus*, two main subclades are present, matching the southern *L. argenteus*, with *L. broadleyi* part of the *L. argenteus* clade (subclade i), and northern *L. concolor* (subclade ii). *Arthroleptis xenodactyloides* also shows an extremely strong signal of high differentiation, with two deeply diverged subclades likely representing *A. xenodactyloides* (subclade i) and the closely related but unconfirmed species, *A. stridens* (subclade ii) (Pickersgill 2007) which was described from Kambai and Longuza forest reserves in East Usambara. The clear differentiation shown by these three clades is markedly less so in the remaining two clades, though *A. fornasini* and *L. flavomaculatus* do show phylogenetic structuring, which is generally restricted to the deep divergence between samples from the southern part of the coastal forest and surrounding areas (e.g. Mozambique, Malawi).

Fig. 3. Phylogeny for each clade revealed by RAD-seq (50% missing datasets shown). Note the deep phylogenetic structure present in *A. stuhlmanni*, *A. xenodactyloides* and *L. argenteus* with high node support, compared to the shallower divergences exhibited by *A. fornasini* and *L. flavomaculatus* and comparatively poor node support. Fig. S1 shows the same topologies with the 40% missing datasets. Each major subclade is numbered.

Fig. 3. (continued).

Population structure

Data matrices allowed population and phylogeographic structure to be detected with high statistical power from thousands of unlinked loci (Fig. 4). The analysis for each dataset revealed high congruence with the phylogenetic results, but the presence of highly divergent populations in Mozambique and Malawi in some cases (e.g. *Afrixalus fornasini, Leptopelis flavomaculatus*) masked the signal of population structure in the more closely related invidiuals (Fig. S2). However, once removing these outliers, the population structure became much clearer, displaying between 3 and 6 population clusters per clade based on the lowest BIC scores (3 population clusters for *A. fornasini, L. flavomaculatus*, and 6 for *A. xenodactyloides, L. argenteus* and *A. stuhlmanni*). These clusters of populations were clearly geographically structured across clades, matching phylogenetic patterns (Fig. 4, Mozambique and Malawi *A. fornasini* and *L. flavomaculatus* not shown due to low sample numbers).

Fig. 4. A) Fine scale population structure across each subclade using discriminant analyses of principal components (Jombart et al., 2008). Numbers next to species photos refer to matching subclade identified by phylogeny in Fig. 3 (subclade i for *Leptopelis flavomaculatus* and *Afrixalus fornasini* not shown due to low sample numbers). Inferred population clusters are separated by different colours. B) Map of the distribution of each population cluster in geographical space.

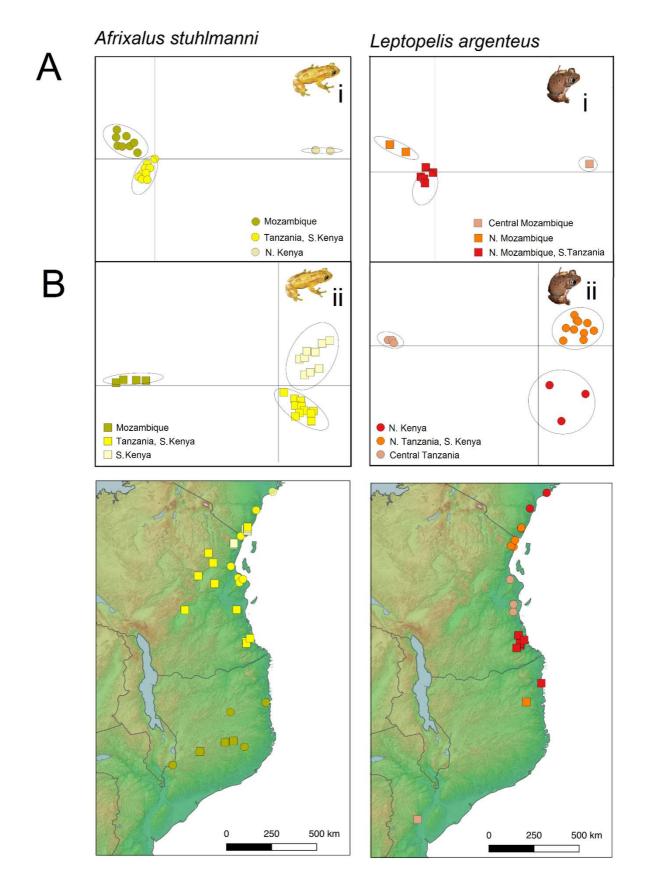


Fig. 4. (continued).

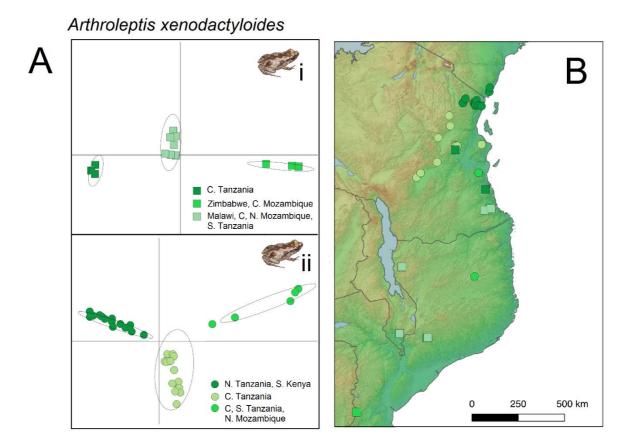


Fig. 4. (continued).

Genetic distances and correlations with environmental data

Although each of the clades we investigate here are widespread, we would expect different levels and routes of connectivity due to their unique ecologies and response to environmental change which may influence their phylogenetic and population structure. Multiple regression, Mantel and partial Mantel tests show the relationships between genetic distance (F_{ST}) and environmental data distance matrices representing geography (Euclidean distance, Slope), habitat suitability (current, LGM), paleo-climate (LGM and Pliocene precipitation and temperature anomalies), and hydrological features (hydrological basins, hydrology) (Table 2, Table S3). Results show that FST estimates for Afrixalus stuhlmanni, Leptopelis argenteus and Arthroleptis xenodactyloides are highly correlated with measures of historical habitat connectivity and the spatial arrangement of hydrological basins, but these correlations are less evident in the remaining two (Leptopelis flavomaculatus and Afrixalus fornasini). Multiple regression analyses show the importance of current, historical and geographic factors in explaining genetic distances, which are significantly correlated variables with F_{ST} within all of the three clades that display high levels of divergence (A. stuhlmanni, L. argenteus, A. xenodactyloides). No clades are closely associated with hydrological features using multiple regression. Overall, the fit of the linear models were significantly different from random (Fisher's scores, Table S3). Mantel tests reveal that in addition to geographical and historical factors, habitat and hydrological basins are significantly correlated to F_{ST} across all species clades except for A. fornasini. These correlations are confirmed by controlling for geographic distance (partial Mantel tests) in all clades except for A. fornasini and L. flavomaculatus. Together, results from multiple regression, Mantel and partial Mantel tests show the clear differences between environmental correlates of F_{ST} across clades,

and point toward the importance of historical climate and habitat connectivity along with hydrobasin structure, especially for species clades that are highly structured. The analyses clearly reflect the differences shown by *A*. *fornasini* and *L*. *flavomaculatus* which show comparatively low population divergences compared to *A*. *stuhlmanni*, *L*. *argenteus* and *A*. *xenodactyloides*.

Table 2. Summary of statistically significant (p < 0.05) environmental correlations with F_{ST} using multiple regression, partial Mantel and Mantel tests. Results are summarized for each of the eight subclades matching Fig. 4. Full results are shown in the supplementary material (Table S3).

	Multiple regression	Partial Mantel	Mantel
<i>Afrixalus fornasini</i> (subclade ii)			Pliocene prec., Pliocene temp.
Leptopelis flavomaculatus (subclade ii)			Pliocene prec., Pliocene temp., Hydrobasins
Afrixalus stuhlmanni (subclade i)		Hydrobasins, Pliocene prec.	Geographic distance, Hydrobasins, Pliocene prec.
Afrixalus stuhlmanni (subclade ii)	Current habitat, LGM temp.		Geographic distance, current habitat, LGM habitat, LGM temp., LGM prec., Pliocene temp., Pliocene prec., Hydrobasins
Leptopelis argenteus (subclade i)	Geographic distance, Slope	LGM temp., LGM prec., Hydrobasins	Geographic distance, current habitat, LGM habitat, LGM temp., LGM prec., Pliocene temp., Pliocene prec., Hydrobasins
Leptopelis concolor (subclade ii)		Current habitat, Hydrobasins, Pliocene prec.	Geographic distance, current habitat, LGM temp., Pliocene prec., Pliocene temp., Hydrobasins, Hydrology
Arthroleptis xenodactyloides (subclade i)	Slope		
Arthroleptis xenodactyloides (subclade ii)	LGM prec., Pliocene prec.	LGM prec., LGM temp., Pliocene prec., Pliocene temp., Hydrobasins	LGM prec., LGM temp., Pliocene prec., Pliocene temp., Hydrobasins

Discussion

The genomic techniques that we employ in this manuscript provide high resolution genomic data for five poorly understood clades, showing distinct phylogenetic structure in each. Major divergences between populations in northern and southern coastal forest lineages are clearly shown. This general congruence supports the broad biogeographical breaks between East African terrestrial ecoregions and species turnover patterns, caused by differences in vegetation structure and hydrological features, reflecting contemporary and historical climate processes in this region. However, though similar at broad scales, finer scale population structure patterns are not entirely congruent across clades and subclades. Environmental correlates of genetic distance highlight these differences, with F_{ST} in the three highly diverged clades highly correlated with historical factors and hydrological basin structure, and weak correlations with environmental variables in the remaining two clades with shallow divergences. The differences between these taxa demonstrate the importance of understanding diversity patterns across multiple species and geographic scales, as studies of single species may provide a somewhat limited perspective of biodiversity patterns. To this end, genomic data will play a key role in the future to provide useful information for conservation planning at multiple spatial and taxonomic scales.

Biogeography and phylogeography

The major biogeographic breaks and deep phylogeographic structure in our data is a clear reflection of the known biogeographic affinities in lowland East Africa for several other taxonomic groups (Tolley et al., 2011; Linder et al., 2012; Lorenzen et al., 2012; Smitz et al., 2013; Zinner et al., 2013; Demos et al., 2015; McDonough et al., 2015; Bertola et al., 2016; Pozzi, 2016) and reinforces known diversity patterns corresponding to our knowledge of vegetation types and terrestrial ecoregions in East (White, 1983; Fayolle et al., 2014, Burgess et al. 2004). The division between the Northern and Southern Zanzibar Inhambane coastal forest mosaics is evident in each of the three deeply divergent clades (*A. stuhlmanni, L. argenteus, A. xenodactyloides*) and also to a lesser extent in *L. flavomaculatus* and *A. fornasini*. The divergences detected in all phylogenies are also recovered within population structure analyses, which detect even clearer genetic clusters of populations across clades. This structure provides clues to the biogeographic relationships between coastal forests and adjacent areas in East Africa.

Almost twenty years ago, Burgess et al. (1998) showed that several parts of the coastal forest region could be considered as refugia as they support a number of range restricted species that are endemic to small forest patches. Just under a decade later, Azeria et al. (2007) investigated the biogeographic patterns of the same coastal forest patches in Tanzania and Kenya with distribution data for birds, mammals and reptiles, concluding that the consistent clustering of species in coastal forest patches in the Usambara-Kwale and Lindi regional subcentres of endemism implied that these areas should be considered as distinct biogeographic provinces. The same paper (Azeria et al. 2007) also demonstrated that though patterns between areas can be generalized across a large number of species, they are strongly influenced by life history traits, in particular dispersal abilities, which could be an explanation for the highly disjunct distributions of reptiles. The authors suggested that reptiles, as poor dispersers, could be good candidates for tracing the effects of past environmental history using phylogeny-based approaches. Our use of amphibians which are generally considered poor disperses with highly structured amphibians support the existence of coastal forest refugia (Burgess et al. 1998) and the distinct biogeographic provinces identified in several coastal forest areas (Azeria et al. 2007). Furthermore our analyses point toward the importance of paleo-

climate, hydrological basin structure and geographic features in determining the observed phylogeographic patterns.

Environmental correlates of genetic diversity

It is well established that many biodiversity patterns can be explained by contemporary environmental factors such as climate and topography (Rosenzweig, 1995). These factors are in part responsible for the present day vegetation structure in Africa (White, 1983; Fayolle et al., 2014), the distribution of terrestrial ecoregions (Burgess et al. 2004), and hydrological structure (Salzburger et al., 2014). However, historical processes are clearly also important in explaining biodiversity patterns, (Ricklefs, 2004; Sandel et al., 2011, Harrison & Noss, 2017), and there is little doubt that history has a strong influence on present day biodiversity (Jetz et al., 2004). These concepts apply to genetic diversity within species as well as more generally to species richness and endemism patterns, though disentangling contemporary and historical drivers of biodiversity remain difficult to prove.

A number of hypotheses discussed by Burgess et al. (1998) to explain endemism patterns of species in the coastal forests are directly relevant to understanding which factors may contribute to the patterns of genetic diversity and population structure outlined in this paper. These hypotheses include the potential effects of historical climate, sea level change and recent evolution on diversity patterns. The aridification of East Africa combined with Milankovitch climate oscillations since the Miocene fragmented once continuous areas of forest into isolated patches (Axelrod & Raven, 1978; Demenocal, 1995; Trauth et al., 2005; Sepulchre et al., 2006; Maslin et al., 2014). Though wetter periods during the late Miocene and Pliocene (Lovett, 1993) may have offered opportunities to reconnect isolated forest patches, the general trend of aridification and forest fragmentation present a plausible explanation for the high genetic diversity and population structure in most of our study clades. Repeated sea level fluctuations since the Miocene have also affected the coastal forest and surrounding areas, with significant inundations that are likely to have completely covered most low-lying areas of coastal forest at some point, and in many cases, repeatedly (Burgess & Clarke, 2000). Areas of higher ground are therefore probable refugia during periods of sea level change, particularly the raised plateau systems across the coastal forests and lowland Eastern Afromontane. The deep divergences shown by our data appear to refute the possibility that recent evolution has occurred in the coastal forest amphibians however, supported by a mtDNA time-calibrated phylogeny placing most of the divergence times between major subclades as occurring between 2 and 8 million years ago (Barratt et al. in review). These dates seem to suggest the importance of the climatic and tectonic upheaval in East Africa beginning throughout the Miocene, which not only affected forest distribution and sea levels but also dramatically altered the hydrology of the region (Salzburger et al. 2014).

Hydrological structure was not discussed by Burgess et al (1998) as a potential driver of endemism patterns in the coastal forest but can be expected to be a major influence on the genetic structure of amphibians. Tectonic uplift since the Miocene had a profound effect on the hydrology of Africa, where in some cases progressive rifting even reversed the flow of major rivers such as the Congo which is estimated to have once formed a substantial delta around the Rufiji river in Tanzania up to 500 km wide (Stankiewicz & de Wit, 2006). The structure of hydrological basins is a correlate of genetic diversity across most of the studied clades in this paper, and is also reported in other literature as an explanatory factor for differentiation between species and populations in this region (Measey et al., 2007; Lawson, 2013). Major rivers may have also acted as barriers which facilitated genetic isolation (Voelker et al., 2013), examples such as the Ruvuma river separating Mozambique

from Tanzania and would explain some of the major biogeographic breaks we observe in our data, particularly the splits between Tanzania/Kenya and Mozambique/Malawi (Lorenzen et al., 2012). Other major rivers appear to be reasonable explanations for the phylogeographic structure such as those shown across Tanzania and Kenya (Zinner et al., 2013; Zimkus et al. 2017) which can be seen by visually inspecting Fig. 4, particularly the Rufiji (*A. fornasini, A. xenodactyloides*), Pangani (*A. stuhlmanni, L. argenteus, A. fornasini, A. xenodactyloides*), and Wami (*L. argenteus*) in Tanzania and the Tana (*A. stuhlmanni*) and Galana (*A. stuhlmanni, L. argenteus*) rivers in Kenya.

These multiple lines of evidence combined with the known large numbers of relictual taxa that are represented by plants, birds and mammals (Fjeldsa & Lovett, 1997; Burgess & Clarke, 2000; Dimitrov et al., 2012. Bryja et al., 2016) in the coastal forests all suggest that the patterns of genetic diversity are caused by environmental heterogeneity, and likely to be a result of historical changes in the environment. This supports the idea that the areas of coastal forests are now facilitating this diversity, and can be considered as refugia (and in some cases micro-refugia) that have persisted through climatic change and deserve special conservation focus to protect them against future climate change and anthropogenic activity. Examples of this that are consistent across the studied species here include the Lindi and Usambara-Kwale subcentres of endemism which appear to be important in supporting unique elements of biodiversity which are not found anywhere else within the study region. Future directions for conservation of the coastal forest region, as for other biodiversity hotspots worldwide should consider the myriad of advantages that large scale genomic data can bring in terms of increasing the numbers of individuals, populations and species that can be sequenced with high throughput NGS technology. Uncovering the intraspecific genetic diversity patterns within multiple species, and identifying refugia is certain to provide useful information for future conservation planning at local and broad scales.

Systematics and taxonomy

A number of taxonomic implications also arise from our analyses, which should be considered in any future systematic work in the clades and species used in this paper. Though untangling the taxonomy of these species is beyond the scope of this paper, further work is most certainly required to refine the taxonomic definition and ranges of species aided by morphological and acoustic analyses. This is particularly relevant for *Afrixalus stuhlmanni*, *Leptopelis argenteus* and *Arthroleptis xenodactyloides* species clades in particular which display deep divergences on the phylogeny (Fig. 3), high genetic variation and poorly known distributions (Poynton, 2006, Blackburn & Measey et al. 2010, Pickersgill, 2007, Schiøtz, 1999). In East African amphibians this is a common pattern which is also reflected by a number of other species complexes in this region (Zimkus et al. 2017, Liedkte et al. 2016, Channing et al, 2013, Bwong et al. in review, Bittencourt-Silva et al. in review).

Acknowledgements

This work was funded by a PhD scholarship from the Humer Foundation to CDB via Veit Arlt at the Centre for African Studies Basel. Thanks to Kim Howell, Wilirk Ngalason and Chacha Werema at the University of Dar es Salaam for field advice and locality data in Tanzania, along with Patrick K. Malonza, Victor Wasonga and Vincent Muchai at National Museums of Kenya, and Tanzania Forest Conservation Group. The Natural History Museum, London, Frontier, Field Museum of Natural History, Chicago, Museum of Vertebrate Zoology, California, Museum of Comparative Zoology, Harvard and National Museums of Kenya, Nairobi are thanked for additional

specimens. Field work in Tanzania was carried out by CDB and colleagues under COSTECH permit 2013-341-NA-2013-121, funded by Freiwillige Akademische Gesellschaft Basel. Kenyan field work permit to BAB was granted by Kenya Wildlife Service (KWS/BRM/5001) and Kenya Forest service. Many thanks to Joash Nyamache for assistance with data collection in Kenya. We are also indebted to Walter Salzburger and Marius Roesti at the University of Basel for their advice on RAD-seq, and library preparation. Sequencing was conducted at the D-BSSE facility in Basel, Switzerland. Several funding sources also provided input to this program including Freiwillige Akademisch Gesellschaft field work funds to CDB and BAB, the European Science Foundation ConGenOmics program (6720 to CDB). We are further indebted to several colleagues who advised on RAD-seq analyses, including Lucinda P. Lawson, Simon Maddock, Jeffrey Streicher and Marco Crotti.

Supplementary material

Fig. S1. RAD-seq phylogenetic trees using 40% missing data.

Fig. S2. Population analyses (DAPC) showing BIC scores for full species clade analyses.

Fig. S3. Population analyses (DAPC) showing BIC scores for subclades.

Appendix S1. Additional methodological information.

Table S1. IDs for samples used in RAD-seq library preparation.

Table S2. Summary of phylogenetic, population and F_{ST} datasets used for analyses.

Table S3. Multiple regression, Mantel and partial Mantel test results for environmental correlations with F_{ST}.

References

- Andrews K.R., Good J.M., Miller M.R., Luikart G., & Hohenlohe P.A. (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. *Nature Reviews Genetics*, **17**, 81–92.
- Andrews K.R. & Luikart G. (2014) Recent novel approaches for population genomics data analysis. *Molecular Ecology*, **23**, 1661–1667.
- Axelrod D.I., Raven P.H. (1978) Late Cretaceous and Tertiary vegetation history of Africa. M. Werger (Ed.), *Biogeography and Ecology of Southern Africa*, Junk, The Hague (1978), pp. 77–130.
- Azeria E., Sanmartín I., Ås S., Carlson A., & Burgess N. (2007) Biogeographic patterns of the East African coastal forest vertebrate fauna. *Vertebrate Conservation and Biodiversity*, **16**, 883–912.
- Barratt C.D., Horsburgh G.J., Dawson D.A., Gower D.J., Wilkinson M., Loader S.P., & Jehle R. (2012)
 Characterisation of nine microsatellite loci in the caecilian amphibian Boulengerula uluguruensis
 (Gymnophiona), and their cross-species utility in three congeneric species. *Conservation Genetics Resources*, 4, 225–229.
- Barratt C.D., Bwong B.A., Onstein R.E., Rosauer D.F., Menegon M., Nagel P., Kissling W.D., Loader S.P. (in review). Environmental correlates of phylogenetic endemism and the conservation of centres of endemism in the coastal forests of Eastern Africa. *Diversity and Distributions*.
- Bertola L.D., Jongbloed H., Van Der Gaag K.J., De Knijff P., Yamaguchi N., Hooghiemstra H., Bauer H., Henschel P., White P.A, Driscoll C.A, Tende T., Ottosson U., Saidu Y., Vrieling K., & De Iongh H.H. (2016) Phylogeographic Patterns in Africa and High Resolution Delineation of Genetic Clades in the Lion (*Panthera leo*). Scientific Reports, 6, 30807.

- Blackburn D.C. (2008) Biogeography and evolution of body size and life history of African frogs: Phylogeny of squeakers (*Arthroleptis*) and long-fingered frogs (*Cardioglossa*) estimated from mitochondrial data. *Molecular Phylogenetics and Evolution*, **49**, 806–826.
- Braconnot P., Harrison S., & Joussaume S. (2006) Coupled simulations of the mid-Holocene and Last Glacial Maximum : new results from PMIP2. *Climate of the Past*, **3**, 1293–1346.
- Bragg J.G., Supple M.A., Andrew R.L., & Borevitz J.O. (2015) Genomic variation across landscapes: Insights and applications. *New Phytologist*, **207**, 953–967.
- Brown J.L. (2014) SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. *Methods in Ecology and Evolution*, **5**, 694–700.
- Bryja J., Mikula O., Šumbera R., Meheretu Y., Aghová T., Lavrenchenko L.A., Mazoch V., Oguge N., Mbau J.S., Welegerima K., Amundala N., Colyn M., Leirs H. & Verheyen E. (2014). Pan-African phylogeny of *Mus* (subgenus *Nannomys*) reveals one of the most successful mammal radiations in Africa. *BMC Evolutionary Biology*, 14, 256.
- Bryja J., Sumbera R., Kerbis Peterhans J.C., Aghova T., Bryjova A., Mikila O., Vicolas V., Denys C., Verheyen
 E. (2016) Evolutionary history of the thicket rates (genus *Grammomys*) mirrors the evolution of African
 Forests since late Miocene. *Journal of Biogeography*, 44, 182-194.
- Burgess N. & Clarke G.P. (2000) *Coastal Forests of Eastern Africa*. IUCN Forest Conservation Programme, **2010**, 443 pp.
- Burgess N.D., Clarke G.P., & Rodgers W.A. (1998) Coastal forests of eastern Africa: status, endemism patterns and their potential causes. *Biological Journal of the Linnean Society*, **64**, 337–367.
- Cariou M., Duret L., & Charlat S. (2013) Is RAD-seq suitable for phylogenetic inference? An in silico assessment and optimization. *Ecology and Evolution*, **3**, 846–52.
- Carstens B., Lemmon A.R., & Lemmon E.M. (2012) The Promises and Pitfalls of Next-Generation Sequencing Data in Phylogeography. *Systematic Biology*, **61**, 713–715.
- Cruaud A., Gautier M., Galan M., Foucaud J., Saune L., Genson G., Dubois E., Nidelet S., Deuve T., & Rasplus J.-Y. (2014) Empirical Assessment of RAD Sequencing for Interspecific Phylogeny. *Molecular Biology and Evolution*, **31**, 1272–1274.
- Davey J.L. & Blaxter M.W. (2010) RADseq: Next-generation population genetics. *Briefings in Functional Genomics*, **9**, 416–423.
- Davey J.W., Hohenlohe P.A., Etter P.D., Boone J.Q., Catchen J.M., & Blaxter M.L. (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. *Nature Reviews Genetics*, **12**, 499–510.
- Demenocal P.B. (1995) Plio-Pleistocene African climate. Science, 270, 53-59.
- Demos T.C., Kerbis Peterhans J.C., Joseph T.A., Robinson J.D., Agwanda B., & Hickerson M.J. (2015)
 Comparative population genomics of African montane forest mammals support population persistence across a climatic gradient and quaternary climatic cycles. *PLoS ONE*, **10**, e031800.
- Dimitrov D., Nogués-Bravo D., & Scharff N. (2012) Why do tropical mountains support exceptionally high biodiversity? The Eastern Arc mountains and the drivers of *Saintpaulia* diversity. *PloS ONE*, **7**, e48908.
- Eaton D. a R. (2014) PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. *Bioinformatics*, **30**, 1844–1849.

- Emerson K.J., Merz C.R., Catchen J.M., Hohenlohe P. a, Cresko W. a, Bradshaw W.E., & Holzapfel C.M. (2010) Resolving postglacial phylogeography using high-throughput sequencing. *Proceedings of the National Academy of Sciences*, **107**, 16196–16200.
- Etter P.D., Bassham S., Hohenlohe P.A., Johnson E.A., & Cresko W.A. (2011) SNP discovery and genotyping for evolutionary genetics using RAD sequencing. *Methods in Molecular Biology*, **772**, 157–178.
- Fayolle A., Swaine M.D., Bastin J.-F., Bourland N., Comiskey J., Dauby G., Doucet J.-L., Gillet J.-F., Gourlet-Fleury S., Hardy O.J., Kirunda B., Kouamé F.N., & Plumptre A.J. (2014) Patterns of tree species composition across tropical African forests. *Journal of Biogeography*, **41**, 2320–2331.
- Fjeldså J. & Lovett J.C. (1997) Biodiversity and environmental stability. *Biodiversity and Conservation*, **6**, 315–323.
- Frankham R. (1996) Relationship of genetic variation to population size in wildlife. *Conservation Biology*, **10**, 1500–1508.
- Frost D.R. (2016) Amphibian species of the world 6.0: an online reference. Available at: http://research.amnh.org/vz/herpetology/amphibia/. Accessed 1st February 2017.
- Graham C.F., Glenn T.C., McArthur A.G., Boreham D.R., Kieran T., Lance S., Manzon R.G., Martino J.A., Pierson T., Rogers S.M., Wilson J.Y., & Somers C.M. (2015) Impacts of degraded DNA on restriction enzyme associated DNA sequencing (RADSeq). *Molecular Ecology Resources*, 6, 1304-1315.
- Haywood A.M. & Valdes P.J. (2004) Modelling Pliocene warmth: Contribution of atmosphere, oceans and cryosphere. *Earth and Planetary Science Letters*, **218**, 363–377.
- Hickerson M.J., Carstens B.C., Cavender-Bares J., Crandall K.A., Graham C.H., Johnson J.B., Rissler L., Victoriano P.F., & Yoder A.D. (2010) Phylogeography's past, present, and future: 10 years after Avise, 2000. *Molecular Phylogenetics and Evolution*, **54**, 291–301.
- Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., & Jarvis A. (2005) WORLDCLIM a set of global climate layers (climate grids). *International Journal of Climatology*, 25, 1965–1978.
- Hoelzer G.A. (1997) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nucleargene trees revisited. *Evolution*, **51**, 622–626.
- Hoffmann A., Griffin P., Dillon S., Catullo R., Rane R., Byrne M., Jordan R., Oakeshott J., Weeks A., Joseph L., Lockhart P., Borevitz J., & Sgrò C. (2015) A framework for incorporating evolutionary genomics into biodiversity conservation and management. *Climate Change Responses*, 2, 1.
- Huang H. & Knowles L. (2016) Unforeseen consequences of excluding missing data from next-generation sequences: Simulation study of rad sequences. *Systematic Biology*, **65**, 357–365.
- Jeffries D.L., Copp G.H., Lawson Handley L.-J., Olsén H., Sayer C.D., & Hänfling B. (2015) Comparing RADseq and microsatellites to infer complex phylogeographic patterns, a real data informed perspective in the Crucian carp, *Carassius carassius*, L. *Molecular Ecology*, **25**, 2997-3018.
- Jetz W., Rahbek C., & Colwell R.K. (2004) The coincidence of rarity and richness and the potential signature of history in centres of endemism. *Ecology Letters*, **7**, 1180–1191.
- Jombart T., Ahmed I., Calboli F., Cori A., Reiners T.E., Solymos P., & Jombart M.T. (2008) Package "adegenet". *Bioinformatics Application Note*, **24**, 1403–1405.
- Karl S. & Avise J.C. (1993) PCR-based assays of mendelian polymorphisms from anonymous single-copy nuclear DNA: techniques and applications for population genetics. *Molecular Biology and Evolution*, 10,

342-361.

- Lawson L.P. (2010) The discordance of diversification : evolution in the tropical-montane frogs of the Eastern Arc Mountains of Tanzania. *Molecular Ecology*, **19**, 4046–4060.
- Lawson L.P. (2013) Diversification in a biodiversity hot spot: Landscape correlates of phylogeographic patterns in the African spotted reed frog. *Molecular Ecology*, **22**, 1947–1960.
- Lawson L.P., Bates J.M., Menegon M., & Loader S.P. (2015) Divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex. *BMC Evolutionary Biology*, **15**, 128.
- Leache A.D., Chavez A.S., Jones L.N., Grummer J.A., Gottscho A.D., & Linkem C.W. (2015) Phylogenomics of Phrynosomatid Lizards: Conflicting Signals from Sequence Capture versus Restriction Site Associated DNA Sequencing. *Genome Biology and Evolution*, 7, 706–719.
- Leaché A.D., Fujita M.K., Minin V.N., & Bouckaert R.R. (2014) Species delimitation using genome-wide SNP Data. *Systematic Biology*, **63**, 534–542.
- Lehner B. & Grill G. (2013) Global river hydrography and network routing: Baseline data and new approaches to study the world's large river systems. *Hydrological Processes*, **27**, 2171–2186.
- Lemmon E.M. & Lemmon A.R. (2013) High-Throughput Genomic Data in Systematics and Phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 44, 99–121.
- Lewontin R. (1975) The Genetic Basis of Evolutionary Change. *The American Journal of Human Genetics*, **27**, 249–251.
- Lexer C., Mangili S., Bossolini E., Forest F., Stölting K.N., Pearman P.B., Zimmermann N.E., & Salamin N. (2013) "Next generation" biogeography: towards understanding the drivers of species diversification and persistence. *Journal of Biogeography*, **40**, 1013–1022.
- Lexer C., Wüest R.O., Mangili S., Heuertz M., Stölting K.N., Pearman P.B., Forest F., Salamin N., Zimmermann N.E., & Bossolini E. (2014) Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in *Restio capensis* (Restionaceae). *Molecular Ecology*, 23, 4373–4386.
- Liedtke H.C., Müller H., Hafner J., Nagel P., & Loader S.P. (2014) Interspecific patterns for egg and clutch sizes of African Bufonidae (Amphibia: Anura). *Zoologischer Anzeiger*, **253**, 309–315.
- Linder H.P., de Klerk H.M., Born J., Burgess N.D., Fjeldså J., & Rahbek C. (2012) The partitioning of Africa: Statistically defined biogeographical regions in sub-Saharan Africa. *Journal of Biogeography*, **39**, 1189–1205.
- Lischer H.E.L. & Excoffier L. (2012) PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. *Bioinformatics*, **28**, 298–299.
- Loader S.P., Lawson L.P., Portik D.M., & Menegon M. (2015) Three new species of spiny throated reed frogs (Anura : Hyperoliidae) from evergreen forests of Tanzania. *BMC Research Notes*, **8**, 167.
- Loader S.P., Ceccarelli F.S., Menegon M., Howell K.M., Kassahun R., Mengistu A.A., Saber S.A., Gebresenbet F., de Sá R., Davenport T.R.B., Larson J.G., Müller H., Wilkinson M., & Gower D.J. (2014) Persistence and stability of Eastern Afromontane forests: Evidence from brevicipitid frogs. *Journal of Biogeography*, 41, 1781–1792.
- Lorenzen E.D., Heller R., & Siegismund H.R. (2012) Comparative phylogeography of African savannah ungulates. *Molecular Ecology*, 21, 3656–3670.

- Lovett J.C. (1993) Climatic history and forest distribution in eastern Africa. In: *Biogeography and Ecology of the Rainforests of Eastern Africa* (Eds. Lovett, J.C. & Wasser, S.K.). pp. 23–31.
- Macher J.-N., Rozenberg A., Pauls S.U., Tollrian R., Wagner R., & Leese F. (2015) Assessing the phylogeographic history of the montane caddisfly *Thremma gallicum* using mitochondrial and restrictionsite-associated DNA (RAD) markers. *Ecology and Evolution*, 5, 648–662.
- Maslin M.A., Brierley C.M., Milner A.M., Shultz S., Trauth M.H., & Wilson K.E. (2014) East african climate pulses and early human evolution. *Quaternary Science Reviews*, **101**, 1–17.
- McCormack J.E. & Faircloth B.C. (2013) Next-generation phylogenetics takes root. *Molecular Ecology*, **22**, 19–21.
- McDonough M.M., Šumbera R., Mazoch V., Ferguson A.W., Phillips C.D., & Bryja J. (2015) Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa's Zambezi region. *Molecular Ecology*, **24**, 5248–5266.
- McRae B.H. & Beier P. (2007) Circuit theory predicts gene flow in plant and animal populations. *Proceedings* of the National Academy of Sciences, **104**, 19885–19890.
- Measey G.J., Galbusera P., Breyne P., & Matthysen E. (2007) Gene flow in a direct-developing, leaf litter frog between isolated mountains in the Taita Hills, Kenya. *Conservation Genetics*, **8**, 1177–1188.
- Moritz C. (1994) Defining Evolutionarily-Significant-Units for Conservation. *Trends in Ecology & Evolution*, **9**, 373–375.
- Pante E., Abdelkrim J., Viricel A., Gey D., France S.C., Boisselier M.C., & Samadi S. (2014) Use of RAD sequencing for delimiting species. *Heredity*, **114**, 450–459.
- Phillips S.J., Anderson R.P., & Schapire R.E. (2006) Maximum entropy modeling of species geographic distributions. *Ecological Modelling*, **190**, 231–259.
- Pozzi L. (2016) The role of forest expansion and contraction in species diversification among galagos (Primates: Galagidae). *Journal of Biogeography*, **43**, 1930–1941.
- Pritchard J.K., Stephens M., & Donnelly P. (2000) Inference of population structure using multilocus genotype data. *Genetics*, **155**, 945–59.
- Raj A., Stephens M., & Pritchard J.K. (2014) FastSTRUCTURE: Variational inference of population structure in large SNP data sets. *Genetics*, **197**, 573–589.
- Rellstab C., Gugerli F., Eckert A.J., Hancock A.M., & Holderegger R. (2015) A practical guide to environmental association analysis in landscape genomics. *Molecular Ecology*, **24**, 4348–4370.
- Ricklefs R.E. (2004) A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1–15.
- Rosenzweig M. (1995) Species diversity in space and time. Cambridge University Press, Cambridge.
- Salzburger W., Bocxlaer B. Van, & Cohen A.S. (2014) Ecology and Evolution of the African Great Lakes and Their Faunas. *Annual Review of Ecology, Evolution and Systematics*, **45**, 519-545.
- Sandel B., Arge L., Dalsgaard B., Davies R.G., Gaston K.J., Sutherland W.J., & Svenning J.-C. (2011) The Influence of Late Quaternary Climate-Change Velocity on Species Endemism. *Science*, **334**, 660–664.
- Seeb J.E., Carvalho G., Hauser L., Naish K., Roberts S., & Seeb L.W. (2011) Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. *Molecular Ecology Resources*, **11**, 1–8.
- Seehausen O., Butlin R.K., Keller I., Wagner C.E., Boughman J.W., Hohenlohe P.A., Peichel C.L., Saetre G.-P.,

Bank C., Brannstrom A., Brelsford A., Clarkson C.S., Eroukhmanoff F., Feder J.L., Fischer M.C., Foote A.D., Franchini P., Jiggins C.D., Jones F.C., Lindholm A.K., Lucek K., Maan M.E., Marques D.A., Martin S.H., Matthews B., Meier J.I., Most M., Nachman M.W., Nonaka E., Rennison D.J., Schwarzer J., Watson E.T., Westram A.M., & Widmer A. (2014) Genomics and the origin of species. *Nature Reviews Genetics*, **15**, 176–192.

- Sepulchre P., Ramstein G., Fluteau F., Schuster M., Tiercelin J.-J., & Brunet M. (2006) Tectonic uplift and Eastern Africa aridification. *Science*, **313**, 1419–1423.
- Smitz N., Berthouly C., Cornélis D., Heller R., van Hooft P., Chardonnet P., Caron A., Prins H., van Vuuren
 B.J., de Iongh H., & Michaux J. (2013) Pan-African Genetic Structure in the African Buffalo (*Syncerus caffer*): Investigating Intraspecific Divergence. *PLoS ONE*, 8, e56235.
- Stamatakis A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics*, **30**, 1312–1313.
- Stankiewicz J. & de Wit M.J. (2006) A proposed drainage evolution model for Central Africa Did the Congo flow east? *Journal of African Earth Sciences*, **44**, 75–84.
- Storfer A, Murphy M., Evans J.S., Goldberg C.S., Robinson S., Spear S.F., Dezzani R., Delmelle E., Vierling L., & Waits L.P. (2007) Putting the "landscape" in landscape genetics. *Heredity*, 98, 128–42.
- Tolley K.A., Tilbury C.R., Measey G.J., Menegon M., Branch W.R., & Matthee C.A. (2011) Ancient forest fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African biodiversity hotspot. *Journal of Biogeography*, **38**, 1748–1760.
- Trauth M.H., Maslin M.A., Deino A., & Strecker M.R. (2005) Late Cenozoic moisture history of East Africa. *Science*, **309**, 2051–2053.
- Voelker G., Marks B.D., Kahindo C., A'genonga U., Bapeamoni F., Duffie L.E., Huntley J.W., Mulotwa E., Rosenbaum S.A., & Light J.E. (2013) River barriers and cryptic biodiversity in an evolutionary museum. *Ecology and Evolution*, 3, 536–545.
- White F. (1983) *The vegetation of Africa: a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa*. Unesco Natural Resources Research, 352 pp.
- Wiens J.J. (1993) Herpetology an introductory biology of amphibians and reptiles. *Systematic Biology*, **42**, 592–596.
- Zeisset I. & Beebee T.J.C. (2008) Amphibian phylogeography: a model for understanding historical aspects of species distributions. *Heredity*, **101**, 109–119.
- Zhang D.-X. & Hewitt G.M. (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. *Molecular ecology*, **12**, 563–584.
- Zimkus B.M., Lawson L., Loader S.P., & Hanken J. (2012) Terrestrialization, miniaturization and rates of diversification in african puddle frogs (anura: Phrynobatrachidae). *PLoS ONE*, **7**, e35118.
- Zimkus B.M., Rödel M.O., & Hillers A. (2010) Complex patterns of continental speciation: Molecular phylogenetics and biogeography of sub-Saharan puddle frogs (Phrynobatrachus). *Molecular Phylogenetics* and Evolution, 55, 883–900.
- Zimkus B.M., Lawson L.P., Barej M.F., Barratt C.D., Channing A., Dash K.M., Dehling J.M., Du Preez L., Gehring P-S., Greenbaum E., Gvodzik V., Harvey J., Kielgast J., Kusamba C., Nagy Z., Pabijan M.,

Penner J., Rödel M.O., Vences M. & Lötters S. (2017) Leapfrogging into new territory: how Mascarene ridged frogs have diversified across Africa. *Molecular Phylogenetics and Evolution*, **106**, 254-269.

Zinner D., Wertheimer J., Liedigk R., Groeneveld L.F., & Roos C. (2013) Baboon phylogeny as inferred from complete mitochondrial genomes. *American Journal of Physical Anthropology*, **150**, 133–140.

Chapter II

Environmental correlates of phylogenetic endemism in amphibians and the conservation of refugia in the Coastal Forests of Eastern Africa

Christopher D. Barratt, Beryl A. Bwong, Renske E. Onstein, Dan F. Rosauer, Michele Menegon, Nike Doggart, Peter Nagel, W. Daniel Kissling & Simon P. Loader

Submitted manuscript (Diversity and Distributions)

Environmental correlates of phylogenetic endemism in amphibians and the conservation of refugia in the Coastal Forests of Eastern Africa

Christopher D. Barratt^{1,2}, Beryl A. Bwong^{1,3}, Renske E. Onstein², Dan F. Rosauer⁴, Michele Menegon⁵, Nike Doggart⁶, Peter Nagel¹, W. Daniel Kissling² & Simon P. Loader^{1,7}

¹ University of Basel, Biogeography Research Group, Department of Environmental Sciences, Basel 4056, Switzerland

² University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics (IBED), P.O. Box 94248, 1090 GE Amsterdam, The Netherlands

³ National Museums of Kenya, Herpetology Section, PO Box 40658-00100, Nairobi, Kenya

⁴ Australian National University, Research School of Biology and Centre for Biodiversity Analysis, Acton, ACT 2601, Australia

⁵ Museo delle Scienze, Tropical Biodiversity Section, Corso del Lavoro e della Scienza 3, 38122, Trento, Italy

⁶ Tanzania Forest Conservation Group, PO Box 23410, Dar es Salaam, Tanzania

⁷ Department of Life Sciences, Natural History Museum, SW7 5BD, London, UK

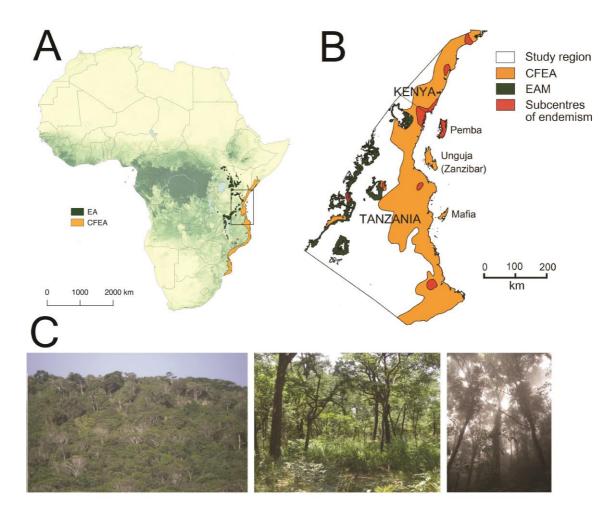
Abstract

Aims: To quantify the spatial distribution of amphibian phylogenetic endemism (PE), an indicator of potential refugia, to test PE for correlations with current and historical environmental predictors, and to evaluate the effectiveness of current protected areas at conserving evolutionary history.

Location: Coastal Forests of Eastern Africa (CFEA) and the adjacent low elevation Eastern Afromontane (EA). Methods: We integrated new and existing spatial and phylogenetic data to map PE for almost the full amphibian assemblage (41 of 55 species), including 35 intraspecific lineages from several species and complexes showing high phylogeographic structure. Using spatial and non-spatial regressive models we tested whether PE can be predicted by measures of Quaternary climate change, forest stability, topographic heterogeneity, and current climate. PE results were intersected with the protected area network to evaluate current conservation effectiveness. Results: We detect refugia in Tanzania and coastal Kenya previously identified as CFEA centres of endemism but also new areas (lowland Tanga region and Pangani river, Zaraninge forest, Mafia island, Matumbi hills). Results show that refugia for amphibians (high PE) are located in areas with long-term Quaternary climate stability and benign current climate (high precipitation of driest quarter, high annual precipitation), with climatically unstable areas demonstrating low PE. Conservation analyses revealed that ten PE hotspots account for over 25% of the total PE, but less than 3% of this is under formal protection.

Main Conclusions: Utilizing cryptic diversity from novel phylogeographic data and distribution modelling improves our understanding of endemism patterns, with climate stability being strongly correlated with the distribution of PE. Our analyses point towards high PE areas being refugia, which require an urgent need to consolidate protected areas within centres of endemism in this highly threatened biodiversity hotspot.

Key words: amphibians, cryptic diversity, niche models, refugia, spatial phylogenetics


Introduction

Biological diversity is concentrated in the tropics but faces unprecedented anthropogenic impact, which has led to the earth being described as in the midst of a major sixth extinction event (Kolbert, 2014, Ceballos et al., 2015). The race to mitigate the loss of biodiversity is therefore an urgent priority, and explaining why some areas are biologically richer than others is a vital step towards prioritizing what should be conserved and why. At global and regional scales, high biodiversity and species endemism has been shown to be correlated with contemporary and historical climate regimes and topography (Ricklefs, 2005; Sandel et al., 2011; Kissling et al., 2012, Kissling et al., 2016), but comprehensive tests within biodiversity hotspots are mostly lacking. Africa holds rich biodiversity with over a quarter of the world's biodiversity hotspots (Myers et al., 2000), though often in small and fragmented areas. Major advances in understanding Africa's biodiversity has been made in recent years (e.g., Jetz et al., 2004, Lorenzen et al., 2012; Linder et al., 2012; Burgess et al., 1992, 1998; Rovero et al., 2014; Levinsky et al., 2013), though many taxonomic groups remain under-sampled, with cryptic diversity often under-represented. Incorporating this intraspecific diversity within species is particularly important for understanding the correlates of biodiversity patterns and prioritizing conservation efforts at local scales.

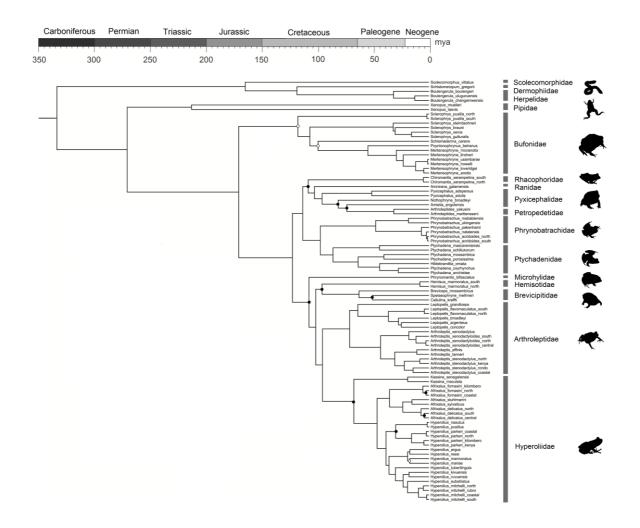
The Coastal Forests of Eastern Africa (CFEA, Fig. 1) are a global conservation priority. However, they remain severely threatened (Azeria et al., 2007; Burgess et al., 2007) and have been described as a 'vanishing refuge' (Burgess et al. 1998). The majority of the CFEA hotspot is lowland (<300m a.s.l.) with several raised areas along the coastline and inland where the CFEA overlaps with parts of the Eastern Afromontane (EA) region up to around 1000m (Udzungwa, Uluguru, Usambara in the Eastern Arc mountains, Tanzania, see Fig. 1A, B). It is thought the fragmented lowland forests of the CFEA and EA region are the remnants of a once continuous forest that covered tropical Africa during the Early Tertiary (Couvreur et al., 2008; Kissling et al., 2012). Historical climate change since the Miocene led to significant contraction and expansion of forests during glacial and interglacial periods (Axelrod & Raven, 1978; Trauth et al., 2005; Maslin et al., 2014), subjecting many low elevation areas to repeated inundation from sea level fluctuations (Burgess & Clarke, 2000; Kent et al. 1971). Climate stability and topography are therefore likely to be important factors in the persistence of this region's biodiversity and the location of refugia (e.g. Moreau, 1933; Haffer, 1969; Mayr & O'Hara, 1986).

Previously, centres of endemism within the Swahili regional centre of endemism across the CFEA were identified using species distributional data from a number of plant, vertebrate and invertebrate groups (Burgess et al., 1998, Fig. 1C). However, phylogenetic information and environmental data have not yet been integrated to validate these findings. The inclusion of phylogenetic information to supplement traditional biodiversity measures such as species richness was popularized by Faith (1992), using phylogenetic diversity (PD) to measure an area's evolutionary history based on the sum of the branch lengths connecting each tip on a phylogenetic tree to its root. Rosauer et al. (2009) extended PD's utility by combining it with weighted endemism (WE; Crisp et al., 2001), to derive phylogenetic endemism (PE). By subdividing the length of each phylogenetic branch across the areas it occurs, PE indicates where substantial components of PD are spatially restricted. A particularly desirable property of PE is that it circumvents the need for formal taxonomic classification by utilizing branch lengths rather than species units. As PE can incorporate cryptic diversity, it has gained popularity in an increasing number of macroecological and conservation studies (Carnaval et al., 2014, Gudde et al., 2013, Laity et al., 2014, Rosauer et al., 2015; 2016). Areas of high PE are typically found where phylogenetic branches with few close relatives are geographically restricted, and are important in a conservation context because they have been used to indicate

refugia where a large proportion of evolutionary history has accumulated over time (Rosauer & Jetz, 2014; Carnaval et al. 2014; Rosauer et al. 2009).

Fig. 1. Distribution of forests in the study region within East Africa. A) Map showing the location of the Coastal Forests of Eastern Africa (CFEA) and their proximity to the Eastern Afromontane (EA) region. B) Study region encompassing major elements of CFEA and lowland EA forests as well as intervening habitat in Kenya and Tanzania, including centres of endemism identified by Burgess et al. (1998). C) Examples of CFEA, with coastal dry forest in Shimba hills, Kenya (left), miombo woodland in Kiwengoma FR, Tanzania (middle), and EA habitat represented by montane forest in Kitolomero FR, Udzungwa (right).

Amphibians offer an excellent model to investigate biodiversity patterns due to their relatively poor dispersal abilities and sensitivity to habitat changes compared with other taxa (but see Van Bocxlaer et al., 2010). The known CFEA species assemblage of Tanzania consists of fifty one species (Poynton et al., 2007), with several additional species from coastal Kenya (Harper et al. 2010) or recently described (Barratt et al. 2017) inflating that number to at least fifty five. Although several of these species are narrow ranged endemics, many are widespread and occur across adjacent areas of suitable habitat (e.g. savannah and bushland). The systematics of many CFEA species are very poorly understood, but some show strong phylogeographic structure with poorly defined species boundaries (e.g. Channing et al. 2013). Phylogeographic data from amphibians has never been utilized for

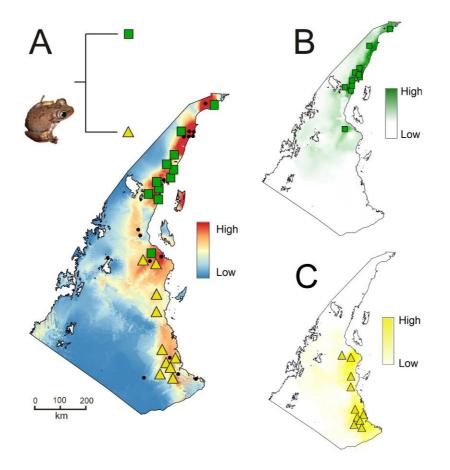

understanding biodiversity patterns in the CFEA but given their suitability compared to traditional measures, they are likely to provide vital insights into this threatened biodiversity hotspot.

In this paper we integrate new and existing phylogenetic and spatial data for amphibians to investigate PE across a major part of the CFEA across Tanzania and Kenya. Utilizing cryptic diversity for the first time, we focus on combining species data with intraspecific diversity in widespread species (hereafter referred to as 'lineages') which likely indicate refugia where biodiversity has persisted during times of climatic instability. Given the extreme climate oscillations and forest cover change across the CFEA since at least the Miocene, we hypothesize that measures of climate stability have a major influence on phylogeographical patterns and the distribution of refugial areas for amphibians, and are good predictors of PE. Using almost the full species assemblage with spatial and phylogenetic data and including intraspecific diversity within multiple species and species complexes, we map the geographic distribution of evolutionary history (PE) and test our two main hypotheses: i) that PE predicts refugia, and is positively correlated with long term climatic stability, and ii) the current protected area network in the region does not effectively conserve refugia for amphibians.

Methods

Lineage discovery and phylogeny

We aimed to integrate as much of the CFEA amphibian assemblage as possible for phylogenetic endemism analyses. We therefore included molecular data from species but also from intraspecific lineages within species where sampling was sufficient. To build a phylogeny representing the amphibian assemblage of the study region (Fig. 2) we first compiled genetic data from recent fieldwork and museum sampling. Genetic samples were collected across the CFEA and lowland parts of the EA over a total of ten non-consecutive field seasons spanning 2001 to 2015. DNA was extracted from fresh tissue samples (leg muscle, liver or toe clip) collected in the field (2013-2015), or from samples held in collections (collected between 2001 and 2012) stored in 100% ethanol. We built a DNA barcoding database using the 16S rRNA mitochondrial gene fragment, screening over 1,500 individual samples. Species identifications were verified against published GenBank sequences, and our own and collaborators unpublished sequences (Breda Zimkus, Daniel Portik, pers. comm.). We examined thoroughly sampled species and complexes with adequate spatial and genetic data to define the intraspecific lineages present within each group based on 16S data. Based on structure in neighbor joining trees from 16S data we then amplified an additional mitochondrial gene for a single representative per lineage (cytochrome oxidase subunit I; COI). Intraspecific lineages were defined using a minimum of 2% sequence divergence across a concatenated alignment of both genes, a reasonable threshold for quantifying divergence at the intraspecific level (see Vences et al., 2005, Fouquet et al. 2014, Chambers & Hebert, 2016). To ensure our analyses were not affected by oversplitting the lineages within species we ran sensitivity analyses whereby lineages were defined by a more conservative threshold of 5% sequence divergence across the two genes. All subsequent analyses were repeated on this dataset and are included in the supplemental information. Details of the molecular procedures follow Barratt et al. (2017) for 16S and Poynton et al. (2016) for COI. All DNA sequences are deposited in GenBank, and accession codes for newly generated sequences from this study can be found in Table S1. Sequences were edited in GENEIOUS 6 and aligned with MUSCLE before Bayesian analyses were performed in BEAST 2.1.3 (Bouckaert et al., 2014) on the concatenated alignment, using the optimal models of evolution per partition (Table S1) according to the Bayesian Information Criterion determined by PARTITIONFINDER 1.1.1 (Lanfear et al. 2013). A full description of the parameters used for the BEAST analysis can be found under the subheading *Phylogenetic tree* in Supplemental Appendix S1.


Fig. 2. Phylogeny representing the amphibian species assemblage for the Coastal Forests of Eastern Africa and surrounding lowland Eastern Afromontane region based on genetic sampling. Intraspecific lineages (n = 35) are also represented in the phylogeny, and have been included in calculations of phylogenetic endemism. Posterior probability for each node is > 0.95 unless indicated by black (pp < 0.95) or white circles (pp < 0.5).

Distribution data

Spatial sampling covered a significant portion of the CFEA across Tanzania and Kenya, including overlapping areas of the adjacent EA region up to 1000 m elevation. With recent field work, this area is more comprehensively sampled compared to the adjacent CFEA in Mozambique and Somalia. We collated data for i) known locations of sequenced specimens (identified to species, or to intraspecific lineage where possible) based on molecular data, and ii) known locations for specimens from museums, GBIF records and CFEA literature without molecular data. These were included in species distribution modelling, to estimate which lineage they belong to provided we could definitively identify to species or species complex (see below). We conducted a rigorous filtering and correction

procedure to our spatial dataset prior to analyses (see *Spatial data filtering*, Appendix S1). The final dataset comprised of 9,184 occurrence records (2,161 unique points; Table S2 and Table S3).

We used species distribution modelling (SDM) to estimate the geographic distribution of each species, and for lineages by following the framework outlined by Rosauer et al. (2015). The method uses a modelling approach informed by known species and lineage point data, partitioning a SDM into its constituent lineage distribution models which are informed by the habitat suitability of grid cells between points where lineages are known from (see example in Fig. 3). Lineage distribution probability for a grid cell is conditional on i) the habitat suitability of the cell for the species as a whole and ii) the habitat connectivity of that cell with known locations of that lineage. We constructed species distribution models (SDMs) in MAXENT 3.3.3k, which uses a machinelearning algorithm based on the principles of maximum entropy (Phillips et al., 2006), shown to be highly effective at predicting distributions using presence only data (Elith et al., 2011). We followed recommendations by Merow et al. (2013) to avoid bias in our SDMs. We used only six bioclimatic layers that were not closely correlated (Pearson's r < 0.6); bio2 (mean diurnal temperature range), bio4 (temperature seasonality), bio5 (max temperature of warmest month), bio12 (annual precipitation), bio14 (precipitation of driest month), and bio18 (precipitation of warmest quarter). These variables were obtained from the Worldclim database based on the CCSM global circulation model (Hijmans et al., 2005) and a digital elevation model (DEM) (GTOPO30; USGS, available from: http://csgtm.iscgm.org/dataset/gtopo30) at 30 arc-second resolution (approximately 1km² grid cells). For all SDMs we used the subsample algorithm with a logistic output, and tested a range of regularization multiplier values between 0 and 3. We chose to use a regularization multiplier of 1 for our SDMs as it produced the most accurate distribution maps based on our own knowledge and IUCN range maps, whilst minimizing overfitting of the models. We ensured all SDMs used an adequate number of unique presence locations (minimum 10 points except for endemics known to have narrow ranges, see Table S2).Background data used 10,000 points within a buffered radius of land 100 km around presence points to emphasize factors locally relevant in distinguishing suitable sites. To account for sampling bias (see Kramer-Schadt et al., 2013; Merow et al., 2013, 2014), presence data was rarefied prior to creating SDMs, with a minimum of 10 km distance allowed between retained points. This distance was chosen as it reduced the spatial autocorrelation of environmental data used to build the models whilst retaining a sufficient number of points per species to model an adequate number of species. We took the average of 25 model replicates for each SDM, evaluating model performance using the area under the curve (AUC) statistic. Models were corrected for over-prediction using the minimum convex polygon method in SDMTOOLBOX 1.1C (Brown et al., 2014) supplemented by our own knowledge of coastal forest amphibians and species range maps (IUCN, 2016). Each SDM was subsequently partitioned into its constituent lineage distribution models (LDMs) using cost distances, jointly informed by the species ecological niche and known locations of each lineage based on geo-referenced genetic data (Rosauer et al., 2015). LDMs were estimated using customized python scripts (https://github.com/DanRosauer/phylospatial). We retained suitability surfaces (likelihood of occurrence per grid cell) per species and lineage as a continuous variable between 0 and 1, which were then used to estimate PE.

Fig. 3. Example of a poorly understood species group (*Leptopelis argenteus*) with two intraspecific lineages. A) Schematic representation of the two clades present in this species and its corresponding species distribution model (green squares = northern lineage, yellow triangles = southern lineage, black dots = species records without DNA to verify to which lineage they belong). B) and C) Lineage distribution models for each of the two intraspecific lineages after partitioning the SDM following Rosauer et al. (2015). For each lineage the relative likelihood of occurrence is shown, demonstrating the overlap of likelihood occurrences for both lineages towards the centre of the map where both have been recorded.

Phylogenetic endemism

We customized R scripts (https://github.com/DanRosauer/phylospatial) to estimate PE, using the phylogeny shown in Fig. 2 and the spatial occurrence of each tree tip (represented by SDM and LDM scores per grid cell at 1 km² resolution as described above). Each of the branch lengths of the phylogeny included in this study was partitioned into the grid cells where it occurs based on the SDM and LDM suitability scores ranging between 0 and 1. For LDMs the method uses the formula below where *b* is one of *n* branches linking lineages in a grid cell to the root, with local suitability as the LDM score for that grid cell, and the total suitability as the sum of all grid cells within the SDM:

$$Model_weighted_PE = \sum_{1,n}^{b} (localsuitdbility[b]/totalsuitdbility[b]) \times length[b]$$

The output from these calculations is a map of the PE per grid cell, where the values of all cells sum to the total length of all corresponding branches on the phylogeny. We follow the basis of Laity et al. (2016) and Rosauer et al. (2015; 2016), utilizing summed PE per grid cell across the region for further analyses.

Environmental correlates of phylogenetic endemism

To test for correlations with PE we first prepared a selection of environmental predictors related to historical stability, topography, and climate that could be expected to influence amphibian phylogenetic endemism. For historical stability, we used two measures of Quaternary climate change, measured as the absolute difference in mean annual temperature and precipitation between the Last Glacial Maximum (LGM) and the present (see Kissling et al. 2012). These measures serve as proxies to represent the effect of climatic oscillations during the Quaternary (Eiserhardt et al., 2015; Sandel et al., 2011). We also prepared a measure of historical forest stability over time following Graham et al. (2010). In brief, forest points (n = 500) were randomly generated within an area classified as evergreen forest according to Tuanmu & Jetz (2014). We then constructed a distribution model in MAXENT using the same variables and model parameters used for SDMs. The model was then projected onto past climate data (mid-Holocene 6 ka BP, last glacial maximum 21 ka BP, last interglacial 120 ka BP). The forest stability measure was then obtained by averaging the log values of suitability for forest in each grid cell across each of the time periods (see *Forest modelling*, Appendix S1). Topographic heterogeneity was calculated as the difference between the minimum and maximum elevation appearing in each grid cell, using the GTOPO30 (USGS) 30 arc second dataset (more detailed information can be found under the Forest modelling section of Appendix S1, with a map of modelled forest stability shown in Fig. S2). We included four bioclimatic variables using available climate data; bio1 (annual mean temperature), bio4 (temperature seasonality), bio12 (annual mean precipitation) and bio14 (precipitation of the driest month).

We used Generalized Linear Models (GLM) and spatially autoregressive models (SAR) to test the relationship between PE (response variable) and the environmental variables mentioned above (predictor variables). We ensured predictor variables were not highly correlated with Pearson's r < 0.7 in all cases (Table S4). All rasters were resampled to

2.5 arc minutes (~5 km² resolution) for environmental predictor analyses to reduce computational requirements, and summarized in Fig. S3. We fitted GLMs for all grid cells in the '*Glmulti*' (Calcagno & Mazancourt, 2010) R package, with log transformed PE as the response and scaled predictors. We tested all combinations of predictors, with main effects only (level = 1), resulting in 128 possible models. We used the corrected Akaike Information Criterion (AICc) for model selection, assessing models using AICc weight. To account for spatial autocorrelation using an SAR, Moran's *I* was calculated for the log transformed PE results and for the residuals of the best GLM using correlograms (full details of the process are described in *Spatial autocorrelation*, Appendix S1). Distance classes were defined at 10 km intervals. We observed spatial autocorrelation at lower distance classes so prepared a spatial weights matrix and re-ran the best GLM with a SAR error model using the errorsarlm function in the R package '*spdep*' (Bivand & Piras, 2015). To define a spatial weights matrix we used the knearneigh function (with k = 1), deriving the minimum distance connecting each cell to at least one neighbor. Using this minimum distance we then defined the neighborhood structure using the dnearneigh function, and created a spatial weights matrix using the nb2listw function (Kissling & Carl, 2008).

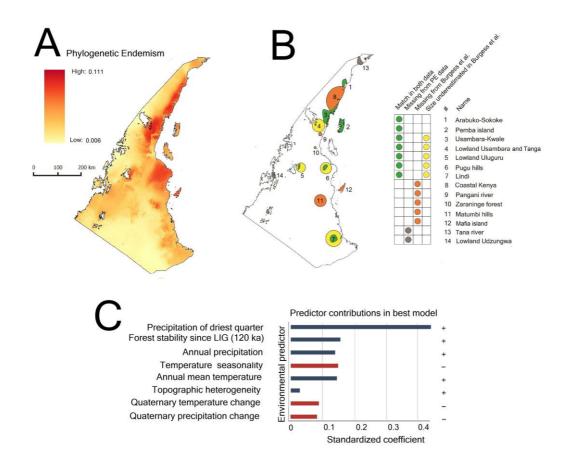
Conservation

We follow Laity et al. (2014) and Rosauer et al. (2016) to demonstrate the effectiveness of the protected area network at conserving evolutionary history (PE). As PE is a measure of the spatial range of each branch on a phylogeny, summing the total PE across an area of interest estimates the total diversity found there (weighted for each branch by its distribution). Thus by intersecting summed PE with shapefiles of the protected area network it is possible to make conservation analyses of how much evolutionary history (i.e. refugia) is currently protected and where shortfalls may lie. We extracted the top 10% of all grid cell values for the PE results to reveal hotspots that contain a disproportionately high share of the total PE and are likely refugia using the *raster* package in R (Hijmans & van Etten, 2012). For each hotspot we calculated the area size, summed PE, and summed PE that falls within protected areas, representing this as a proportion of the whole study region. This was repeated for the top 2.5% and 5% of all grid cell values (Table S8). The shapefiles of the current protected area network across the study region to intersect PE results were obtained from the Critical Ecosystem Partnership Fund (http://www.cepf.net) and World Resources Institute (http://www.wri.org).

An extended version of these methods can be found in Appendix S1, with a schematic summary of the workflow in Fig. S4.

Results

Lineage discovery and phylogeny


Within nine thoroughly sampled species (*Arthroleptis stenodactylus*, *A. xenodactyloides*, *Leptopelis flavomaculatus*, *Sclerophrys pusilla*, *Hemisus marmoratus*, *Afrixalus fornasini*, *Hyperolius parkeri*, *Phrynobatrachus acridoides* and *Chiromantis xerampelina* we defined twenty four intraspecific lineages (Fig. S1). A further eleven lineages were identified within three poorly understood complexes which we refer to as *Leptopelis argenteus* (including *L. concolor*), *Afrixalus stuhlmanni* (including *A. delicatus* and *A. sylvaticus*) and *Hyperolius mitchelli* (including *H. rubrovermiculatus*). The phylogeny captures this cryptic diversity along with several closely related species from the surrounding area (several CFEA species known from Mozambique and the adjacent EA mountains). Phylogenetic results are largely concordant with previous large-scale amphibian tree reconstructions in terms of topology and branch lengths, with high posterior probability, thus we regard the tree as an accurate representation of the inter- and intra- relationships of CFEA amphibians (Fig. 2).

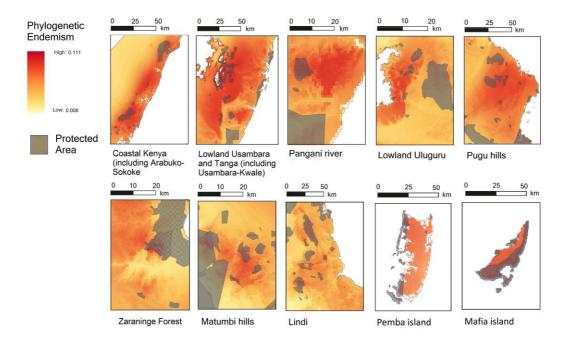
Distribution data

Species distribution models (SDMs) performed well, with mean AUC values from 25 model runs >0.75 in all cases (range = 0.75-0.98, median = 0.83, mean = 0.83; Table S5), indicating 'good' model performance. Variable contributions towards each SDM were generally highest for precipitation of driest month (bio14) and elevation, with the mean contribution of these variables together affecting 59.66% of the predictions across all SDMs, but with high variation across species (Table S5). Forest models show similar variable contributions and are shown in Fig. S3. LDMs created from each SDM clearly delineate the spatial distribution of each lineage (Fig. 3), showing how the method avoids drawing arbitrary boundaries between lineages by accounting for probabilistic uncertainty with lower modelled suitability scores towards the periphery of each lineage range.

Phylogenetic endemism

Phylogenetic endemism is unevenly distributed across our study region, with several aggregations of high PE in ten hotspots, covering a large part of coastal Kenya, and in Tanzania around the lowlands of the EA region surrounding Uluguru and East Usambara mountains (including the Pangani river), the Pugu hills, Matumbi hills and Mafia island. Several smaller hotspots of high PE are represented in Tanzania on Pemba island and Zaraninge forest, and in the fragmented forests of Lindi region surrounding the Rondo Plateau (Fig. 3B).

Fig. 4. Distribution and drivers of phylogenetic endemism (PE) in the Coastal Forests of Eastern Africa (CFEA). A) Summed PE of all species and intraspecific lineages used in this study. B) Comparison of PE results with centres of endemism described in Burgess et al. (1998); green = match in both data, orange = missing from Burgess et al. (1998), yellow = size underestimated in Burgess et al. (1998) grey = area listed in Burgess et al. (1998) but not recovered in our PE analyses. C) Standardized coefficients of predictor variables contributing to explain PE (the response variable) in the best Generalized Linear Model). Blue bars denote positive effects on PE, red bars denote negative effects. Results of spatially autoregressive models are provided in Table S6.


Environmental correlates of phylogenetic endemism

Complex models that included many predictor variables performed best (Table S6) based on AICc scores. Of all possible GLM combinations we tested, the model with the highest Akaike weight (0.99) and lowest AICc score (delta AIC = 0) included all predictors. In this model, the most important predictors positively correlated with PE (in descending order) included precipitation of driest month (bio14), forest stability since the last interglacial, annual mean temperature, annual precipitation, and topographic heterogeneity. Quaternary climate oscillations

(anom_bio1, anom_bio12) and temperature seasonality (bio4) showed a negative correlation with PE (Fig. 4C, Table S6). The spatial model of the best GLM fully accounted for spatial autocorrelation at all distance classes (Table S6) and confirmed the importance of most key predictors in the non-spatial model. Sensitivity analyses of the data using lineages defined by the more conservative 5% divergence cutoff showed the same results in terms of the importance and correlation of predictors (Table S7), indicating that results are consistent even when removing lineages with lower divergences from conspecifics (i.e. between 2 and 5%) from the analysis. This was also the case with the removal of bio14 (which contributes significantly to most SDMs and the forest model). Environmental correlates with amphibian PE were generally consistent between spatial and non-spatial regression models in all datasets including sensitivity analyses, although some predictor variables (forest stability and topographic heterogeneity) showed smaller effect sizes in the spatial models (Table S7).

Conservation

The ten identified hotspots of PE (Fig. 5A) account for a relatively small area size but support a disproportionately high amount of the total PE found across the study region. Up to 25.5% of the total PE is accounted for by these hotspots based on using the upper 10% of all grid cells. (Table 1). The protected area network across this region is extensive. However, intersecting it with the PE results revealed that only a very small proportion of the amphibian evolutionary history in the region is formally protected. Overlaying the hotspots with the protected area network, demonstrated that only small parts of the areas containing high PE are covered (Fig. 5), with less than 3% of the total PE in the study region protected. A list of major protected areas per hotspot is provided in Table S9. As with the environmental correlate analyses, sensitivity analyses using the 5% divergence cutoff dataset showed similar results (Table S8).

Fig. 5. Phylogenetic endemism (PE) hotspots, with the protected area network displayed in blue. The location of hotspots within the region is illustrated in Fig. 4B. Maps demonstrate that only a small proportion of high PE grid cells are protected, with results summarized for each hotspot in Table 1 and major protected areas per PE hotspot listed in Table S9.

Table 1. Hotspots of phylogenetic endemism categorized using the top 10% of all PE scores across grid cells, numbers refer to Fig. 4B. Size of each area is shown in km² and as a percentage of the total study area, with the protected area proportions (%) also indicated. Similarly, PE summed across each area is shown both as an absolute value and as a percentage, with the proportional representation (%) of the total indicated. Results are summarized in bold across all hotspots. Sensitivity analyses of this data can be found in Table S8.

Hotspot	Area (km ²)	% of total area	% of total area currently protected	PE	% of total PE	% of total PE currently protected
1. and 8. Coastal Kenya (including Arabuko-Sokoke)	6374	2.27	0.30	462.39	5.89	0.82
2. Pemba island	109	0.04	0.00	6.08	0.08	0.01
3. and 4. Lowland Usambara and Tanga (including Usambara-Kwale)	8351	2.98	0.18	644.77	8.22	0.58
5. Lowland Uluguru	1021	0.36	0.07	65.56	0.84	0.15
6. Pugu hills	10028	3.58	0.35	682.76	8.70	0.87
7. Lindi	31	0.01	0.01	1.73	0.02	0.02
9. Pangani river	625	0.22	0.02	42.54	0.55	0.05
10. Zaraninge forest	398	0.14	0.02	23.59	0.30	0.04
11. Matumbi hills	661	0.24	0.04	40.41	0.51	0.10
12. Mafia island	481	0.17	0.11	30.95	0.39	0.26
Total	28079	10.02	1.11	2000.78	25.50	2.89

Discussion

This study integrates phylogenetic and spatial data to provide the first comprehensive analysis of CFEA amphibian patterns. The CFEA is one of the highest priority ecosystems for conservation worldwide (Azeria et al., 2007) despite our limited knowledge of how inter- and intra-specific diversity is distributed. Our results demonstrate the utility of measures such as PE that can provide more meaningful measures than species distribution data alone for local scale conservation efforts. Analyses of PE correlations with environmental predictors strongly support our hypothesis that high levels of Quaternary climate stability, in particular for precipitation, are positively correlated with PE, suggesting the presence of refugial areas. Conservation analyses using PE demonstrate the worrying reality that only a tiny proportion of the identified refugial areas (endemism hotspots) are formally protected for conservation. Based on these analyses we suggest the protected areas covering high PE should be prioritized and consolidated to maintain the biodiversity that has accumulated and persisted there.

Environmental correlates of PE

The lowland areas of the CFEA have been subjected to more severe and prolonged climatic changes compared to adjacent higher elevation areas (Burgess & Clarke, 2000; Mumbi et al., 2008) which have likely influenced biodiversity in this region, probably since the Tertiary (Azeria et al., 2007). Environmental predictors (Fig. S4) demonstrate the heterogeneous nature of the study region with several areas that have remained more stable than others in terms of Quaternary precipitation and temperature change. These measures are a useful proxy for historical climatic stability through deeper time (see Sandel et al. 2011), and can help to explain biogeographic breaks and endemism at the species level not only in many amphibians (e.g. Barratt et al. 2017, Loader et al. 2014, Zimkus et al. 2017) but also across other taxonomic groups. Broad biogeographic breaks are common in many other vertebrate taxa across other parts of sub-Saharan Africa including ungulates (Arctander et al., 1999; Lorenzen et al., 2012), small mammals (Mynhardt et al. 2015), birds (Habel et al., 2015), and reptiles (Tolley et al. 2011). This points towards the importance of refugia in the persistence of biodiversity during long-term climate change (Fjeldså & Lovett, 1997).

Our results on environmental correlates or PE are consistent with other literature linking climate and habitat stability to endemism patterns and glacial refugia globally (Sandel et al. 2011, Kissling et al. 2016), in other parts of the world (Bell et al., 2010; Carnaval et al., 2014; Weber et al., 2013, 2014; Rosauer et al., 2015), and in sub-Saharan Africa (e.g. Hamilton, 1976, Fjeldså & Lovett, 1997; Gehrke & Linder, 2011; Tolley et al., 2011; Loader et al., 2014; Levinsky et al., 2013). While our results can be indicative of endemism patterns in non-volant species with poor dispersal abilities (Zug et al. 2001), the integration of data from taxa across larger parts of the tree of life within the CFEA would be beneficial to fully describe biodiversity patterns and evolutionary processes (e.g. González-Orozco et al., 2015)..

Conservation

Conservation prioritization across the CFEA, as in many other biodiversity hotspots, can be boosted by fine-scale data to determine how best to effectively apply the limited conservation resources that are allocated. To achieve this, policy makers require more detailed knowledge of biodiversity and endemism patterns than are currently available to supplement existing information. In this paper we have shown that the integration of phylogenetic, spatial data and distribution modeling can include cryptic diversity in well sampled taxonomic groups, and may be particularly useful for confirming known hotspots of endemism and highlighting new areas. The congruence of our PE results with those derived from existing species distribution data for this region (Burgess et al. 1998) is striking despite fundamental differences in the datasets used (both taxonomically and methodologically). Burgess et al.'s (1998) analysis investigated endemism using a large proportion of known endemic CFEA species (i.e. almost 800 endemic plants, invertebrates, and vertebrates). Our results support the recognition of many of Burgess et al.'s (1998) centres of endemism, but show that several of these areas are likely underestimated in extent, and we highlight additional and previously unrecognized areas of high PE.

Integrative measures such as PE that include cryptic diversity with distribution modelling can reveal finer scale endemism patterns than species occurrence data alone. Such data at finer resolution are particularly important for understanding local scale patterns and processes (e.g. Carnaval et al. 2014; Rosauer et al., 2015), and show the strength of using measures such as PE that are not reliant on formal taxonomic classification. Although it appears that there is an extensive protected area network across the CFEA region, our data reveal

large gaps in this network. Nevertheless, it should be noted that our data is modelled and as such does not account for the substantial anthropogenic landscape modification that has occurred (e.g. Godoy et al. 2012, Hall et al., 2009). Combined with relatively low levels of legal enforcement, anthropogenic modification poses a major conservation concern across the CFEA, which will be exacerbated by future population growth and climate change. The high levels of threatened biodiversity and the rapidly increasing human population make conservation efforts in this region extremely challenging, especially given the limited funding and resources.

Conservationists are rarely afforded the luxury of planning new protected areas, and in most cases it is a race against time to protect whatever is possible before it disappears. Given the rapid loss of most forests outside governmental reserves, particularly in the East Usambaras and surrounding areas, our research suggests that strengthening protected areas that fall within identified PE hotspots would perhaps be the best strategy to conserve the biodiversity and evolutionary history of this region. We further suggest that existing frameworks for effective conservation prioritization based on phylogenetic and spatial data (e.g. Pollock et al., 2015) could be used to optimize conservation management efforts in this region. The conceptual framework in this manuscript is applicable to discover the distribution of biodiversity in any area, at any scale, and including cryptic diversity, allowing a flexible and objective means to identify important areas that should be considered for future conservation prioritization.

Acknowledgements

CDB is funded by a PhD scholarship from the Humer Foundation via the Centre for African Studies Basel. BAB is funded by Stipendienkommission für Nachwuchskräfte. We are grateful to the University of Dar es Salaam, Frontier Tanzania, and Tanzania Forest Conservation Group for field advice. The Natural History Museum, London, Field Museum of Natural History, Chicago, Museum of Vertebrate Zoology, California, Museum of Comparative Zoology, Harvard and National Museums of Kenya, Nairobi are thanked for assisting in loaning of specimens. Field work in Tanzania was carried out by CDB and colleagues under COSTECH permit 2013-341-NA-2013-121, funded by Freiwillige Akademische Gesellschaft Basel. Kenyan field work permit to BAB was granted by Kenya Wildlife Service (KWS/BRM/5001) and Kenya Forest service. Joash Nyamache is thanked for assistance with data collection in Kenya.

Supplementary material

- Fig. S1. Spatial sampling used in this study.
- Fig. S2. Forest stability models.
- Fig. S3. Environmental predictors.
- Fig. S4. Schematic workflow of analyses.

Fig. S5. Lineage distribution models for all 35 intraspecific lineages included in this study.

Appendix S1. Additional methodological information.

- Table S1. Sequences used in this study and evolutionary models per partition.
- Table S2. Spatial and genetic dataset summary.
- Table S3. Spatial point data.
- Table S4. Correlations of environmental data.

Table S5. SDM, forest model contributions.

Table S6. Environmental correlates of PE.

 Table S7. Sensitivity analyses – environmental correlations.

Table S8. Sensitivity analyses – conservation analyses.

Table S9. Major protected areas that intersect each of the eight PE hotspots shown in Fig. 5 and Table 1.

References

- Arctander, P., Johansen, C. & Coutellec-Vreto, M.-A. (1999) Phylogeography of three closely related African bovids (tribe Alcelaphini). *Molecular Biology and Evolution*, **16**, 1724-1739.
- Axelrod, D.I., & Raven, P.H. (1978) Late Cretaceous and Tertiary vegetation history of Africa. *Biogeography and Ecology of Southern Africa* (ed. Werger, M.J.A.). Springer, Netherlands.
- Azeria, E.T., Sanmartin, I., As, S., Carlson, A. & Burgess, N. (2007) Biogeographic patterns of the East African coastal forest vertebrate fauna. *Biodiversity and Conservation*, 16, 883-912.
- Barratt, C.D., Lawson, L.P., Bittencourt-Silva, G.B., Doggart, N., Morgan-Brown, T., Nagel, P. & Loader, S.P.
 (2017) A new, narrowly distributed, and critically endangered species of spiny-throated reed frog (Anura: Hyperoliidae) from a highly threatened coastal forest reserve in Tanzania. *Herpetological Journal*, 27, 13-24.
- Bell, R.C., Parra, J.L., Tonione, M., Hoskin, C.J., MacKenzie, J.B., Williams, S.E. & Moritz C. (2010) Patterns of persistence and isolation indicate resilience to climate change in montane rainforest lizards. *Molecular Ecology*, **19**, 2531-2544.
- Bivand, R. & Piras, G. (2015) Comparing implementations of estimation methods for spatial econometrics. *Journal of Statistical Software*, 63, 1-36. Available from: http://www.jstatsoft.org/v63/i18/.
- Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C-H., Xie, D., Suchard, M.A., Rambaut, A., & Drummond, A.J. (2014). BEAST 2: A Software platform for Bayesian evolutionary analysis. *PLoS Computational Biology*, 10, e1003537. doi:10.1371/journal.pcbi.1003537.
- Brown, J.L., Cameron, A., Yoder, A.D., & Vences, M. (2014) A necessarily complex model to explain the biogeography of the amphibians and reptiles of Madagascar. *Nature Communications*, **5**, 5046.
- Burgess, N. & Clarke, G.P (eds.). (2000) *Coastal Forests of Eastern Africa*. IUCN Forest Conservation Programme, Gland, Switzerland and Cmabridge, UK.
- Burgess, N., Fjeldså, J., Howell, K., Kilahama, F., Loader, S.P., Lovett, J.C. & Mbilinyi B. (2007) The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. *Biological Conservation*, **134**, 209-231.
- Burgess, N.D., Clarke, G.P. & Rodgers, W.A. (1998) Coastal forests of eastern Africa : status, endemism patterns and their potential causes. *Biological Journal of the Linnean Society* **64**, 337-367.
- Burgess, N.D., Mwasumbi, L.B., Hawthorne, W.J., Dickinson, A. & Doggett, R.A. (1992) Preliminary assessment of the distribution, status and biological importance of coastal forests in Tanzania. *Biological Conservation*, 62, 205-218.
- Calcagno, V. & de Mazancourt, C. (2010) glmulti : An R package for easy automated model selection with (generalized) linear models. *Journal of Statistical Software*, **34**, 1-29.
- Carnaval, A.C., Waltari, E., Rodrigues, M.T., Rosauer, D.F, Vanderwal, J., Damasceno, R., Prates, I., Strangas, M.,
 Spanos, Z., Rivera, D., Pie, M.R., Firkowski, C.R., Bornschein, M.R., Ribeiro, L.F., Moritz, C (2014)
 Prediction of phylogeographic endemism in an environmentally complex biome. *Proceedings of the Royal*

Society B, **281**, doi: 10.1098/rspb.2014.1461.

- Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M. & Palmer T.M. (2015) Accelerated modern human – induced species losses: entering the sixth mass extinction. *Sciences Advances*, **1**, 1-5.
- Channing, A., Hillers, A., Lötters, S., Rödel, M.-O., Schick, S., Conradie, W., Rödder, D., Mercurio, V., Wagner, P., Dehling, J.M., Du Preez, L. H, Kielgast, J. & Burger, M. (2013) Taxonomy of the super-cryptic *Hyperolius nasutus* group of long reed frogs of Africa (Anura: Hyperoliidae), with descriptions of six new species. *Zootaxa*, 3620, 301-350.
- Couvreur T.L.P., Chatrou L.W., Sosef M.S.M., & Richardson J.E. (2008) Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees. *BMC biology*, **6**, 54.
- Crisp, M.D, Laffan, S., Linder, H.P. & Monro, A. (2001) Endemism in the Australian flora. *Journal of Biogeography*, 28, 183-198.
- Eiserhardt, W.L., Borchsenius, F., Sandel, B., Kissling, W.D. & Svenning, J.C. (2015) Late Cenozoic climate and the phylogenetic structure of regional conifer floras world-wide. *Global Ecology and Biogeography*, **24**, 1136-1148.
- Faith, D.P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
- Fjeldså, J. & Lovett, J.C. (1997) Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. *Biodiversity and Conservation*, **6**, 325-346.
- Gehrke, B. & Linder, H.P. (2011) Time, space and ecology: Why some clades have more species than others. *Journal of Biogeography*, **38**, 1948-1962.
- Godoy, F.L., Tabor, K., Burgess, N.D., Mbilinyi, B.P., Kashaigili, J.J. & Steininger, M.K. (2011) Deforestation and CO2 emissions in coastal Tanzania from 1990 to 2007. *Environmental Conservation*, **39**, 62-71.
- González-Orozco, C.E., Mishler, B.D., Miller, J.T., Laffan, S.W., Knerr, N., Unmack, P., Georges, A., Thornhill, A.H., Rosauer, D.F. & Gruber, B. (2015) Assessing biodiversity and endemism using phylogenetic methods across multiple taxonomic groups. *Ecology and Evolution*, 5, 5177-5192.
- Graham, C.H., VanDerWal, J., Phillips, S.J., Moritz, C. & Williams, S.E. (2010) Dynamic refugia and species persistence: Tracking spatial shifts in habitat through time. *Ecography*, **33**, 1062-1069.
- Gudde, R.M., Joy, J.B. & Mooers, A.O. (2013) Imperilled phylogenetic endemism of Malagasy lemuriformes. *Diversity and Distributions*, **19**, 664-675.
- Habel, J.C., Borghesio, L., Newmark, W.D., Day, J.J., Lens, L., Husemann, M. & Ulrich W. (2015) Evolution along the Great Rift Valley: phenotypic and genetic differentiation of East African white-eyes (Aves, Zosteropidae). *Ecology and Evolution*, 5, 4849-4862.
- Haffer, J. (1969) Speciation in Amazonian forest birds. Science, 165, 131-137.
- Hall, J., Burgess, N.D., Lovett, J., Mbilinyi, B. & Gerau, R.E. (2009) Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. *Biological Conservation*, **142**, 2510-2521.
- Hamilton, A.C. (1976) The significance of patterns of distribution shown by forest plants and animals in tropical Africa for the reconstruction of upper Pleistocene palaeo-environments: a review. *Palaeoecology of Africa*, 9, 63-97.

- Harper, E.B., Measey, G.J., Patrick, D.A., Menegon, M., Vonesh, J.R. (2010) Field guide to the amphibians of the Eastern Arc Mountains and Coastal Forests of Tanzania and Kenya. Camerapix International, Nairobi, Kenya.
- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25, 1965-1978.
- Jetz W., Rahbek C., & Colwell R.K. (2004) The coincidence of rarity and richness and the potential signature of history in centres of endemism. *Ecology Letters*, **7**, 1180–1191.
- Kent, P.E., Hunt, J.A. & Johnstone, D.W. (1971) *Geophysics of coastal Tansania*. Institute of Geological Sciences, Geophysical papers, 101 pp.
- Kissling, W.D. & Carl, G. (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. *Global Ecology and Biogeography*, **17**, 59-71.
- Kissling, W.D., Blach-Overgaard, A., Zwaan, R.E. & Wagner, P. (2016) Historical colonization and dispersal limitation supplement climate and topography in shaping species richness of African lizards (Reptilia: Agaminae). *Scientific Reports*, 6, 34014.
- Kissling, W.D., Eiserhardt, W.L., Baker, W.J., Borchsenius, F., Couvreur, T.L.P., Balslev, H., & Svenning, J.-C. (2012) Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. *Proceedings of the National Academy of Sciences USA*, **109**, 7379-7384.
- Kolbert, E. (2014) The Sixth Extinction. Henry Holt and Company, New York.
- Kramer-Schadt S., Niedballa J., Pilgrim J.D., Schr??der B., Lindenborn J., Reinfelder V., Stillfried M., Heckmann I., Scharf A.K., Augeri D.M., Cheyne S.M., Hearn A.J., Ross J., Macdonald D.W., Mathai J., Eaton J., Marshall A.J., Semiadi G., Rustam R., Bernard H., Alfred R., Samejima H., Duckworth J.W., Breitenmoser-Wuersten C., Belant J.L., Hofer H., & Wilting A. (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. *Diversity and Distributions*, **19**, 1366–1379.
- Laity, T., Laffan, S.W., Gonzalez-Orozco, C.E., Faith, D.P., Rosauer, D.F., Byrne, M., Miller, J.T., Crayn, D., Costion, C., Moritz, C.C. & Newport, K. (2014) Phylodiversity to inform conservation policy: An Australian example. *Science of the Total Environment*, **534**, 131-143.
- Lanfear, R., Calcott, B., Ho, S.Y.W., & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution*, 29, 1695– 1701.
- Levinsky, I., Araújo, M.B., Nogués-Bravo, D., Haywood, A.M., Valdes, P.J. & Rahbek C. (2013) Climate envelope models suggest spatio-temporal co-occurrence of refugia of African birds and mammals. *Global Ecology and Biogeography*, 22, 351-363.
- Linder, H.P., de Klerk, H.M., Born, J., Burgess, N.D., Fjeldså, J. & Rahbek, C. (2012) The partitioning of Africa: Statistically defined biogeographical regions in sub-Saharan Africa. *Journal of Biogeography*, **39**, 1189-1205.
- Loader, S.P., Ceccarelli, F.S., Menegon, M., Howell, K.M., Kassahun, R., Mengistu, A.A., Saber, S.A., Gebresenbet, F. & Gower, D.J. (2014) Persistence and stability of Eastern Afromontane forests : evidence from brevicipitid frogs. *Journal of Biogeography*, **41**, 1781-1792.
- Lorenzen, E.D., Heller, R., & Siegismund, H.R. (2012) Comparative phylogeography of African savannah ungulates. *Molecular Ecology*, 21, 3656-3670.

- Maslin, M.A., Brierley, C.M., Milner, A.M., Shultz, S., Trauth, M.H., & Wilson, K.E. (2014) East african climate pulses and early human evolution. *Quaternary Science Reviews*, **101**, 1-17.
- Mayr, E. & O'Hara, R.J. (1986) The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. *Evolution*, **40**, 55-67.
- Merow C., Smith M.J., Edwards T.C., Guisan A., Mcmahon S.M., Normand S., Thuiller W., Wüest R.O., Zimmermann N.E., & Elith J. (2014) What do we gain from simplicity versus complexity in species distribution models? *Ecography*, **37**, 1267–1281.
- Merow C., Smith M.J., & Silander J.A. (2013) A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. *Ecography*, **36**, 1058–1069.
- Moreau, R.E. (1933) Pleistocene climatic changes and the distribution of life in East Africa. *Journal of Ecology*, **21**, 415-435.
- Mumbi, C.T., Marchant, R., Hooghiemstra, H., & Wooller M.J. (2008) Late Quaternary vegetation reconstruction from the Eastern Arc Mountains, Tanzania. *Quaternary Research*, **69**, 326-341.
- Myers, N., Mittermeier R.A., Mittermeier, C.G., Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. *Nature*, 403, 853-858.
- Pollock, L.J., Rosauer, D.F., Thornhill, A.H., Kujala, H., Crisp, M.D., Miller, J.T. & McCarthy M.A. (2015)
 Phylogenetic diversity meets conservation policy: small areas are key to preserving eucalypt lineages. *Philosophical Transactions of the Royal Society B*, **370**, doi: 10.1098/rstb.2014.0007.
- Ricklefs, R.E., Bermingham, E., Dick, C.W. & Moritz., C. (2005) Phylogenetic perspectives on patterns of regional and local species richness. in: *Tropical Rainforest: past, present, and future* (pp. 16-40). University of Chicago Press.
- Rosauer, D., Laffan, S.W., Crisp, M.D., Donnellan, S.C. & Cook, L.G. (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. *Molecular Ecology*, 18, 4061-4072.
- Rosauer, D.F., Blom, M.P.K., Bourke, G., Catalano, S., Donnellan, S., Gillespie, G., Mulder, E., Oliver, P.M., Potter, S., Pratt, R.C., Rabosky, D.L., Skipwith, P.L. & Moritz, C. (2016) Phylogeography, hotspots and conservation priorities: an example from the Top End of Australia. *Biological Conservation*, doi: 10.1016/j.biocon.2016.05.002
- Rosauer, D.F., Catullo, R.A., Vanderwal, J., & Moussalli, A. (2015) Lineage range estimation method reveals finescale endemism linked to Pleistocene stability in Australian rainforest herpetofauna. *PLoS One*, doi:10.1371/journal.pone.0126274.s001
- Rovero, F., Menegon, M., Fjeldså, J., Collett, L., Doggart, N., Leonard, C., Norton, G., Owen, N., Perkin, A., Spitale, D., Ahrends, A. & Burgess N.D. (2014) Targeted vertebrate surveys enhance the faunal importance and improve explanatory models within the Eastern Arc Mountains of Kenya and Tanzania. *Diversity and Distributions*, 20, 1438-1449.
- Sandel, B., Arge, L., Dalsgaard, B., Davies, R.G., Gaston, K.J., Sutherland, W.J. & Svenning, J.-C. (2011) The Influence of late Quaternary climate-change velocity on species endemism. *Science*, **334**, 660-664.
- Tolley, K.A., Tilbury, C.R., Measey, G.J., Menegon, M., Branch, W.R., & Matthee, C.A. (2011) Ancient forest fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African biodiversity hotspot. *Journal of Biogeography*, **38**, 1748-1760.

- Trauth, M.H., Maslin, M.A., Deino, A. & Strecker, M.R. (2005) Late Cenozoic moisture history of East Africa. *Science*, **309**, 2051-2053.
- Tuanmu, M.N. & Jetz, W. (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. *Global Ecology and Biogeography*, 23, 1031-1045.
- Van Bocxlaer I., Loader S.P., Roelants K., Biju S.D., Menegon M., & Bossuyt F. (2010) Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. *Science*, **327**, 679–682.
- Weber, L.C., Vanderwal, J., Schmidt, S., Mcdonald, W.J.F. & Shoo, L.P. (2014) Patterns of rain forest plant endemism in subtropical Australia relate to stable mesic refugia and species dispersal limitations. *Journal of Biogeography*, 41, 222-238.
- Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Damgaard, C.F., Dormann, C.F., Forchhammer, M.C., Grytnes, J., Guisan, A., Heikkinen, R.K., Høye, T.T., Ockinger, E., Schmidt, N.M., Termansen, M., Wardle, D.A., Aastrup, P. & Svenning, J-C. (2013) The role of biotic interactions in shaping distributions and realised assemblages of species : implications for species distribution modelling. *Biological Reviews of the Cambridge Philosophical Society*, **8**, 15-30.
- Zimkus B.M., Lawson L.P., Barej M.F., Barratt C.D., Channing A., Dash K.M., Dehling J.M., Du Preez L., Gehring P-S., Greenbaum E., Gvodzik V., Harvey J., Kielgast J., Kusamba C., Nagy Z., Pabijan M., Penner J., Rödel M.O., Vences M. & Lötters S. (2017). Leapfrogging into new territory: how Mascarene ridged frogs have diversified across Africa. *Molecular Phylogenetics and Evolution*, **106**, 254-269.

Chapter III

Museums or cradles of diversity? Paleo- and Neo- endemism patterns in the East African lowlands using near complete assemblage phylogenetic data from amphibians

Christopher D. Barratt, Beryl A. Bwong, Peter Nagel, Simon P. Loader

Draft manuscript (target journal: Journal of Biogeography)

Museums or cradles of diversity? Paleo- and Neo- endemism patterns in the East African lowlands using near complete assemblage phylogenetic data from amphibians

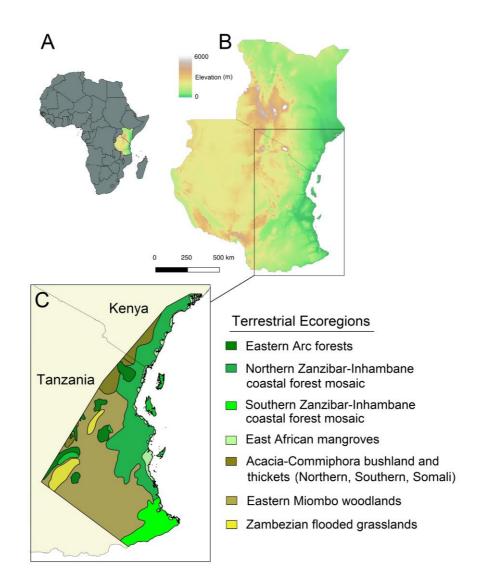
Christopher D. Barratt¹, Beryl A. Bwong^{1,2}, Peter Nagel¹, Simon P. Loader^{1,3}

¹ University of Basel, Biogeography Research Group, Department of Environmental Sciences, Basel 4056, Switzerland

² National Museums of Kenya, Herpetology Section, PO Box 40658-00100, Nairobi, Kenya

³ Natural History Museum London, Department of Life Sciences, Vertebrates, UK

Abstract


Identifying centres of endemism and the processes that contribute to their formation is fundamental in biogeography and macroecology. Two non-mutually exclusive hypotheses have examined whether range restricted species accumulate in an area due to low extinction rates ('museums of diversity') or high rates of speciation ('cradles of diversity'). In East Africa, lowland forest patches are generally interpreted as museums supporting ancient relicts caused by historical forest fragmentation since the Miocene. However, traditional measures such as species richness and endemism are unable to empirically test this hypothesis as they only consider species in geographical space and do not account for the temporal aspect of their diversification. To address this shortfall, we use phylogenetic and spatial data with a recently described statistical framework to identify centres of endemism, and distinguish between museums (paleo-endemism) and cradles of diversity (neoendemism). Results confirm previous speculations of refugia, with paleo-endemism mainly distributed around lowland parts of the Eastern Afromontane and coastal forests in Kenya. Interestingly, neo-endemism was detected in miombo woodland, grasslands and island habitats. Several super-endemic areas supporting simultaneous paleoand neo- endemism suggest that some parts of coastal forest, along with the Eastern Afromontane are key refugia for maintaining biodiversity in this region (museums), as well as being centres for recent radiations (cradles). The use of empirical data to categorize endemism types and how they are geographically distributed is a first for this region, and provides vital information which may be useful for future biodiversity conservation in this global biodiversity hotspot.

Key words: spatial phylogenetics, conservation, null models, Tanzania, Kenya, spatial data.

Introduction

Biodiversity is unevenly distributed across geographical space, with rich tropical regions supporting many centres of endemism that contain high numbers of range-restricted species. Centres of endemism are exceptionally important for biodiversity because range-restricted species are often unable to survive in areas other than those in which they are found. As such, these endemic areas and many of the species within them are worldwide conservation priorities due to anthropogenic impacts and climate change (Myers et al., 2000). Suitable habitats for species shift over time, with historical climate in particular considered as a major factor in explaining current biodiversity patterns (Sandel et al., 2011; Fjeldså & Lovett, 1997; Dimitrov et al., 2012). Hypotheses about how centres of endemism form has focused on the competing ideas that they may be 'museums' of diversity that support ancient paleo-endemic survivors of past widespread extinction events, 'cradles' of diversity supporting high numbers of relatively recently evolved neo-endemic species, or combinations of the two (Jablonski et al., 2006; Chown & Gaston, 2000; Gaston & Blackburn, 2007). However, traditional measures of biodiversity that only account for species numbers and their geographic distributions are unable to distinguish between paleo- and neo- endemism as they provide no information on the temporal aspect of species diversification. To this end, phylogenetic information can greatly assist our understanding of biodiversity patterns across space and time (Rosenzweig, 1995). A recently published statistical framework (Mishler et al., 2014) developed a novel metric, relative phylogenetic endemism (RPE), which enables the categorization of endemism types based on the community phylogenetic composition of any given area. Using phylogenetic branch lengths (see Rosauer et al., 2009), the type of endemism present can be categorized based on whether it holds an over-representation of deeper branch lengths (paleo-endemism), an over-representation of shorter branch lengths (neo-endemism), or some mixture of the two. Distinguishing the types of endemism present in biodiversity hotspots may lead to a more thorough understanding of the processes that lead to current biodiversity patterns, and provide a fundamental basis to understand the reasons why some areas are richer than others.

In lowland East Africa, two adjacent biodiversity hotspots (Myers et al., 2000) hold a significant proportion of the region's endemic species. The Coastal Forests of Eastern Africa (CFEA, Fig. 1) span across coastal East Africa from Somalia, through Kenya, Tanzania and Mozambique, and in several places (less than 1000 m elevation) overlap with the Eastern Afromontane hotspot (EA, specifically the Eastern Arc forests). The CFEA and surrounding areas are a highly hetergeneous habitat mosaic, supporting moist and dry forest, coastal thicket, miombo woodland, savannah, swamp, and mangroves close to the coast. Many of the lower elevation areas of this region have been subjected to severe climate oscillations since at least the Miocene, with some higher elevation habitats such as the EA and raised plateaus within the CFEA thought to have remained relatively stable (Mumbi et al., 2008; Newmark, 2002). Paleo-climatic stability has undoubtedly had a profound effect on the habitat and species diversity across this region with the contraction and expansion of forest closely linked to the pulses of glacial and interglacial periods (Axelrod & Raven, 1978; Maslin et al., 2014; Trauth et al., 2005; Demenocal, 1995; Sepulchre et al., 2006). Parts of this region are likely to have acted as refugia for biodiversity during the late Pleistocene (Diamond & Hamilton, 1980; Fjeldså & Lovett, 1997; Voelker et al., 2010; Dimitrov et al., 2012) and probably much earlier, minimally to the Miocene (Bryja et al., 2014; Tolley et al., 2011; Loader et al., 2014; Demos et al., 2015). Putative refugia and centres of endemism within the CFEA and lowland EA have been identified using species distributional data in Tanzania (lowlands of the Udzungwa and Uluguru mountains, Lindi, Pugu hills, Pemba island, Usambara-Kwale), and Kenya (Arabuko-Sokoke and Tana river) (Burgess et al. 1998). These refugia are hypothesized to support ancient paleo- endemic diversity, with limited recent evolution (neo-endemism), though this has so far only been speculated, without empirical tests using appropriate phylogenetic data (Burgess et al., 1998). Amphibians represent an excellent model system to test the spatial distribution of endemism types across the region because compared to most other vertebrates they are poor dispersers and sensitive to climate change over time. The CFEA and surrounding grasslands and woodland habitats supports at least fifty-one amphibian species in total (Poynton et al., 2007; IUCN, 2015), with many range-restricted species that demonstrate a remarkable variety of life histories (Müller et al., 2013).

Fig. 1. A) Location of the study area in East Africa. B) Elevation profile, C) Extent of spatial sampling within Tanzania and Kenya, showing the terrestrial ecoregions that are represented.

In this paper we use phylogenetic and spatial data for amphibians to investigate biodiversity and endemism patterns in a thoroughly sampled part of the East African lowlands. We hypothesize that in line with previous speculations, paleo-endemism is the dominant type to explain amphibian assemblages in the CFEA, and especially so in higher elevation areas such as plateaux and lowland parts of the EA. To test this hypothesis, we sampled near complete species level amphibian data across lowland Tanzania and Kenya. The extensive dataset we compiled allows us to: i) map the distribution of biodiversity and endemism by comparing species richness (SR), phylogenetic diversity (PD) and phylogenetic endemism (PE), and ii) distinguish the types of endemism present and how it is geographically distributed across the region.

Methods

Data collection and integration

We used data from a large-scale study of phylogenetic endemism across the CFEA investigating intra-specific endemism patterns, supplemented with additional species that covered the lowland EA (Barratt et al. in review). A full description of the methods used can be found in the methods section of that paper. In brief, genetic samples were collected across the CFEA and EA over numerous field seasons (2001-2015) and a phylogeny was reconstructed using BEAST 2.1.3 (Bouckaert et al., 2014) with the caecilian, Scolecomorphus vittatus (Gymnophiona) as an outgroup. The phylogeny included individual representatives of each species (n = 55) using partial fragments of the mitochondrial genes 16S rRNA and cytochrome oxidase subunit 1 (COI). The phylogeny from Barratt et al. (in review) was trimmed to match our species dataset (Fig. S1). Spatial sampling matches the phylogenetic data, together covering an area of Tanzania and Kenya that is relatively well known in terms of species composition (compared to the poorly sampled remainder of the CFEA in Mozambique and Somalia). We restrict our study to this area to account for the uncertainty of species identifications in other regions of coastal forest, and the lack of phylogenetic and spatial data for these taxa. We combined recent field sampling with existing spatial data collected from museum and literature sources (Burgess & Clarke, 2000 and references within) and collaborators databases (Kim Howell pers. comm.). We used occurrence data to build species distribution models (SDMs) in MAXENT 3.3.3k (Phillips et al., 2006) for each species, spatially rarefying all occurrence data first to ensure that models were not biased towards collecting localities. Our species level dataset after filtering and correction in ARCMAP 10.2.1 comprised of 9.987 individual records for the 55 species with phylogenetic data (Table 1). This dataset covers almost the entire known coastal forest amphibians in this area and includes peripheral coastal forest species present in this area that are members of montane clades that extend into the CFEA (Poynton et al., 2007). We ran a sensitivity analysis of the full data, to account for the removal of 11 species that are geographically restricted, predominantly occurring in the lowland EA. Though these species occur within the study area the level of their interaction with the lowland assemblage is uncertain, so we ran all subsequent analyses on the 44 species dataset, (Table 1), and results are supplied in the appendix. (Fig. S2, S3).

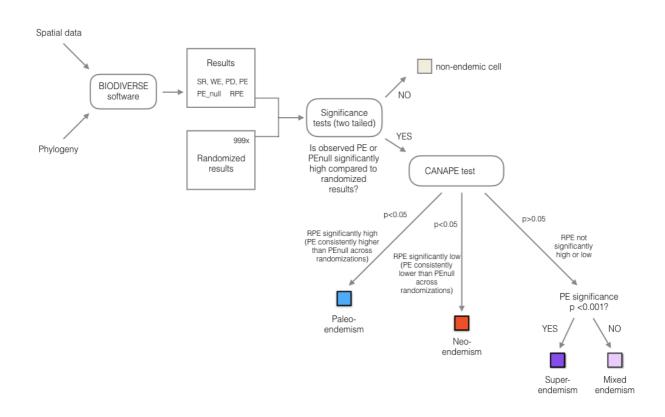
Table 1. Summary of species used in this study for the 55 and 44 species datasets. * species were removed for the sensitivity analysis using the 44 species dataset.

Family	Genus	Species	Spatial	Unique	Unique spatial
			records	spatial	records after
				records	rarefying
Arthroleptidae	Arthroleptis	affinis*	320	23	13
	Arthroleptis	stenodactylus	761	174	62
	Arthroleptis	tanneri*	65	4	2
	Arthroleptis	xenodactyloides	738	137	37
	Arthroleptis	xenodactylus*	78	18	7
	Leptopelis	argenteus	51	12	9
	Leptopelis	concolor	141	37	24
	Leptopelis	flavomaculatus	230	87	33
	Leptopelis	grandiceps*	38	14	7
Bufonidae	Sclerophrys	brauni*	50	20	7
	Sclerophrys	gutturalis	99	64	30
	Sclerophrys	pusilla	76	41	18
	Mertensophryne	howelli	13	1	2
	Mertensophryne	lindneri	28	16	9
	Mertensophryne	loveridgei	65	14	7
	Mertensophryne	micranotis	78	37	16
	Mertensophryne	usambarae	7	4	2
Brevicipitidae	Breviceps	mossambicus	88	24	14
	Callulina	kreffti	257	7	3
Hemisotidae	Hemisus	marmoratus	282	91	47
Herpelidae	Boulengerula	changamwensis	18	3	2
	Boulengerula	uluguruensis	9	6	5
Hyperoliidae	Afrixalus	fornasini	647	116	57
	Afrixalus	delicatus	64	12	10
	Afrixalus	stuhlmanni	290	64	36
	Afrixalus	sylvaticus	78	24	17
	Hyperolius	argus	250	60	34
	Hyperolius	mariae	380	60	32
	Hyperolius	mitchelli	201	28	28
	Hyperolius	nasutus	156	33	21
	Hyperolius	parkeri	171	52	35
	Hyperolius	pusillus	215	38	17
	Hyperolius	reesi	77	9	6
	Hyperolius	rubrovermiculatus	63	6	2
	Hyperolius	ruvuensis	4	1	1
	Hyperolius	substriatus	946	76	19
	Hyperolius	tuberilinguis	590	94	48
	Kassina	maculata	78	34	21
	Kassina	senegalensis	291	52	26
Microhylidae	Phrynomantis	bifasciatus	64	30	16
Petropedetidae	Arthroleptides	martiensseni*	53	25	6
	Arthroleptides	yakusini*	14	5	5
Phrynobatrachidae	Phrynobatrachus	acridoides	574	138	62
	Phrynobatrachus	mababiensis	123	52	29
Pytchadenidae	Hildebrandtia	ornata	8	6	6
	Ptychadena	anchietae	307	91	38
	Ptychadena	mossambica	49	28	19
	Ptychadena	mascareniensis	61	27	18
Pyxicephalidae	Amietia	angolensis*	111	26	14
	Pyxicephalus	edulis	35	20	14
Ranidae	Amnirana	galamensis	80	21	16
Rhacophoridae	Chiromantis	xerampelina	287	87	49
Pipidae	Xenopus	laevis*	11	5	5
	Xenopus	muelleri	245	76	39
14	21	55	9,987	2,222	1,094

Σ

Biodiversity and endemism patterns

We integrated species occurrences and matching phylogenetic data in the software BIODIVERSE 1.99 (Laffan et al., 2010) as 10km^2 grid cells. This size of grid cells was chosen due to computational constraints when randomizing the data. As Biodiverse requires presence/absence data to calculate biodiversity metrics we used the minimum training presence threshold of each SDM to transform each model into a binary distributional matrix (1 = present, 0 = absent). We supplied a parameter file to match phylogenetic tips on the tree to their SDMs and calculated species richness (SR), weighted endemism (WE), phylogenetic diversity (PD), phylogenetic endemism (PE) and a new metric known as relative phylogenetic endemism (RPE, Mishler et al. 2014) for later categorization of endemism types using the *spatial analyses* function in Biodiverse (hereafter referred to as observed results). When calculating RPE, an alternative PE score per grid cell is first estimated (PE_{null}), using a phylogenetic tree with equalized branch lengths but the same number of taxa in each grid cell. This serves as a null model to test the observed PE scores per grid cell (PE) against, and RPE is then calculated as a ratio between PE and PE_{null} for each grid cell.


We randomized the data using the *rand_structure* feature for 999 iterations (hereafter referred to as randomized results). During each randomization, the taxa on the phylogeny are randomly assigned to a grid cell without replacement, therefore keeping the number of grid cells per species and the species richness of each grid cell constant. The calculations of PE, PE_{null} and RPE are made at each iteration, and form a null distribution that is used to test the significance of observed results with non-parametric tests.

Categorical analysis of neo- and paleo- endemism

We followed a method named categorical analysis of neo- and paleo- endemism (CANAPE, Mishler et al., 2014) to compare observed and randomized PE results. The workflow for the estimation of biodiversity metrics, significance testing and CANAPE method is shown in Fig. 2. The method is designed to investigate if an area supports more or less PE than would be expected by chance compared to a null model after multiple randomizations of the data. By testing significance levels of observed PE values per grid cell compared to the null expectation (PE_{null}), CANAPE firstly identifies areas of endemism which significantly differ from the null distribution after multiple randomizations, and secondly categorizes these areas into their endemism types by thresholding the RPE metric with observed PE values as a ratio. Areas are parsed into their types of endemism present based on whether there is an overrepresentation of shorter or longer branch lengths (neo- or paleo- or mixtures of these two).

From the calculations made in BIODIVERSE 1.99, we exported observed and randomized results into separate files and modified an R script to fit our data and run the CANAPE classification (https://github.com/NunzioKnerr/biodiverse_pipeline). Results were classified with two-tailed non-parametric tests, first looking for significantly high PE or PE_{null} (i.e. p<0.05), with cells meeting this requirement then assessed for the significance of RPE to determine paleo- or neo- endemism. Significantly high RPE (p<0.05) means that PE is consistently higher than PE_{null} , indicating paleo-endemism, where significantly low means that PE is consistently lower than PE_{null} , indicating neo-endemism. If RPE is not significant, then a mixture of paleo- and neo- endemism is present; with areas of PE and PE_{null} that are both significantly high (p<0.01) in these cases being termed super-endemic grid cells.

Categorical Analysis of Neo- and Paleo- endemism

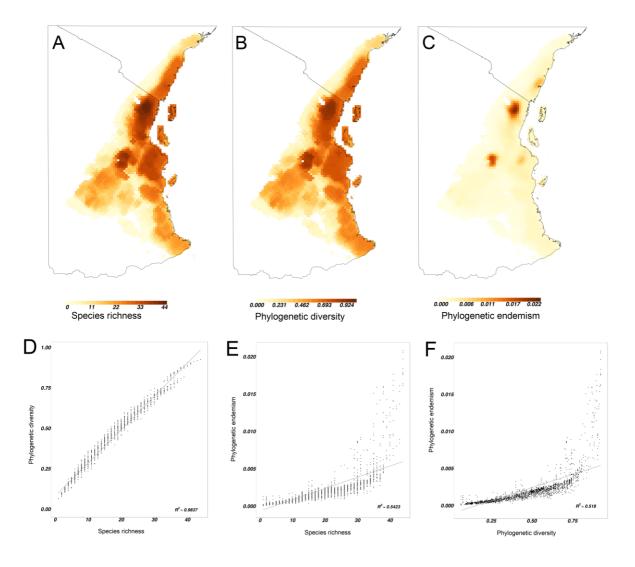


Fig. 2. Workflow for this paper, explaining the steps to calculate PE, RPE and how the CANAPE method categorizes endemism types.

Results

Biodiversity and endemism patterns

The first step of our analysis was to estimate and compare SR, PD and PE. Areas of high SR and PD are widespread across our sampling area but generally higher in the northern parts, corresponding to the northern Zanzibar-Inhambane coastal forest mosaic (White, 1968, 1983). This includes parts of the lowland EA (Usambara, Uluguru) and northern parts of the CFEA (Pugu hills and around the city of Dar es Salaam). Phylogenetic endemism is generally low across the study region, but is comparatively higher in several areas (East Usambara, Uluguru, Pugu hills in Tanzania and the southern part of coastal Kenya around Mombasa) (Fig. 3, A-C). Bivariate plots and linear regression analyses investigating relationships among these variables reveal that SR and PD are closely correlated, though PE accounts geographic rarity by identifying distinct concentrations of evolutionary history that are not always represented by high species richness (Fig. 3 D-F). These results demonstrate the utility of phylogenetic endemism in highlighting grid cells that are rich in evolutionary history but not necessarily species richness/phylogenetic diversity.

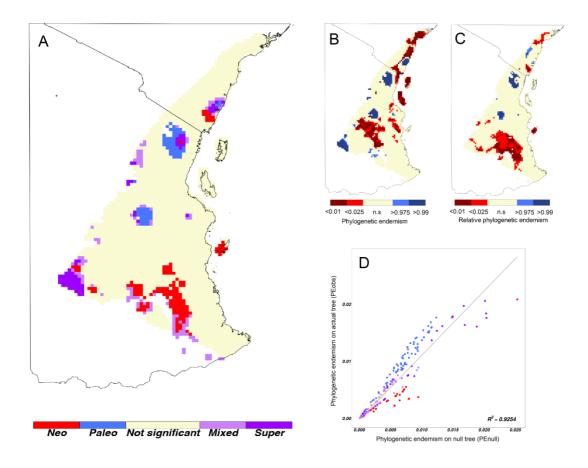


Fig. 3. A) Species richness (SR), B) Phylogenetic diversity (PD), C) Phylogenetic endemism (PE) across the study area (upper panel). Darker colours represent higher scores, results shown are for the 55 species dataset. Relationships between biodiversity indices used are shown in the lower panel; D) phylogenetic diversity vs species richness, E) phylogenetic endemism vs species richness, F) phylogenetic endemism vs phylogenetic diversity. Scattered data points in E and F show areas with high levels of phylogenetic endemism that are not highly correlated with species richness or phylogenetic diversity.

Categorical analysis of neo- and paleo- endemism

We identified several areas dominated by paleo-endemism (blue) in lowland East Africa, supporting our hypothesis that paleo-endemism – or museums of diversity - have significantly contributed to the present-day amphibian diversity in the area. However, these are mainly located in lowland parts of the EA (West and East Usambara, Uluguru, Nguru), and only one in coastal forest in southern Kenya (Fig. 4A). We also detected areas dominated by neo-endemism (red), these included the Selous Game reserve and Lindi region in Tanzania, Kilombero Valley and Mahenge mountains, Mafia island and East Usambara in Tanzania, and also the Shimba Hills in Kenya. Super-endemic areas that comprise of high levels of both paleo- and neo- endemism together (dark purple) include lowland EA (Uluguru, Udzungwa, Usambara, Nguru), a large area in the Kilombero Valley, the

Pugu hills (Tanzania) and around Mombasa (Kenya). Mixed endemism (light purple) is found on the periphery of all other paleo-, neo- or super- endemic areas. The statistical significance of PE and RPE when compared with randomized null models, and the relationship between PE and PE_{null} for each statistically significant grid cell are shown in Fig. 4 B-C, respectively.

Fig. 4. A) Categorization of neo- and paleo- endemism (CANAPE) based on the significance tests of B) phylogenetic endemism, C) relative phylogenetic endemism, D) shows the relationship between phylogenetic endemism on the actual tree (PE) and phylogenetic endemism on the null tree (PE_{null}) after randomization, which is used along with significance tests of PE and RPE to categorize endemic grid cells into neo-, paleo-, mixed and super categories.

Discussion

Our results demonstrate that PE offers a valuable tool for assessing biodiversity and endemism, and unlike PD, which is linked to species richness patterns, can reveal concentrations of evolutionary history that are not necessarily species rich. The distinction between endemism types enhances our understanding of the evolutionary processes that have led to current biodiversity patterns and further underlines the complexity of the diversity patterns in lowland East Africa. The randomization and null model framework show that many areas of PE are statistically significant (all non-beige coloured grid cells in Fig. 4A). By employing the new RPE metric within the CANAPE hypothesis-testing framework we show that there is geographical complexity in the results. For the first time we prove with phylogenies that many concentrations of paleo-endemism in lowland East Africa exist,

the majority of these in the lowland EA, but some in coastal forests. Results for neo-endemism suggest that grassland and miombo woodland habitats in particular are important centres for neo-endemism in amphibians.

Paleo-endemism indicates an over-representation of long-branch lengths compared what would be expected by chance, suggesting that ancient diversity may have has persisted in those areas, gradually becoming endemic relicts with increased extinction in the surrounding areas. The distribution of paleo- endemism revealed by our results is in agreement with previous hypotheses of refugia in lowland parts of this region (Burgess et al. 1998), mainly concentrated in coastal forest areas that overlap with lowland parts of the EA (Usambara, Uluguru, Nguu, Nguru, Udzungwa). Relictual paleo-endemic coastal forest diversity is also detected in Mombasa. Superendemism in adjacent coastal Kenva and the Pugu hills in Tanzania lend support to the idea that some part of the coastal forests are museums of diversity that can best be described as a 'vanishing refuge' (Burgess et al. 1998). Results recover several of the subcentres of endemism speculated by Burgess et al. (1998). The dominance of paleo- and super-endemism in the northern part of our study region (lowland EA and parts of the CFEA) confirm that these places are, at least in part, museums of diversity that support relicts that gradually became extinct in surrounding areas over time (Burgess et al., 1998; Azeria et al., 2007; Diamond & Hamilton, 1980). This might be linked to close proximity of the EA to the northern coastal region, compared to the central and south parts – with the Uluguru's being the only EA refugia relatively close to central coastal region. Other major geographical changes are likely to be important in shaping the paleo-endemism patterns we recover. The major tectonic uplift that created the Great Lakes and African Rift Valley from the Miocene onwards likely contributed significantly to the vicariant evolution of many species in this region (Tolley et al., 2011; Loader et al., 2014; Lawson et al., 2015; Demos et al., 2015; Bryja et al., 2014). Repeated historical climate and sea level fluctuations since Miocene, but especially during the Pleistocene, accompanied by the slow desiccation of African habitats are thought to have played a major role in the fragmentation of a more pan-African forest (Trauth et al., 2005; Maslin et al., 2014; Demenocal, 1995). Such large scale retraction of forests likely explains the high levels of paleo-endemism detected, where ancient relicts could only have persisted in particular areas that remained stable over long time periods (Burgess et al., 2007; Fjeldsa & Lovett, 1997; Loader et al., 2014; Tolley et al., 2011).

Neo-endemism, in contrast, is caused by an over-representation of shorter branch lengths than expected by chance, signifying that endemism is caused by recent evolution. The dominance of neo-endemism in areas that correspond to miombo woodland and grasslands such as the Selous Game Reserve and the Kilombero valley indicate that the relatively low stability and shifting climate of these landscapes, which are partially maintained by seasonal fire (Frost, 1996), may be key in the evolution of new lineages (e.g., Morley, 2000). The categorization of Mafia island as a centre of neo-endemism is also interesting in this respect, as it formed part of the mainland up to around 9,000 years ago in the Last Glacial Maximum when it became isolated (Prendergast et al. 2016), which may have led to recent evolution in situ. Neo-endemism is not detected on other islands such as Zanzibar and Pemba however, which may be explained by relatively poor sampling for most species in these areas which may have had a reduced prediction of occurrence across species by SDMs. Neo-endemism patterns confirm previous hypotheses that most of the coastal forests are not important centres of recent evolution (Burgess et al. 1998). However, neo-endemism in coastal forest areas such as Mafia island and the Shimba hills suggests that these parts of the CFEA should be considered as cradles of diversity, reflecting recent radiations.

Geographically, it is perhaps notable that areas representing museums of diversity (i.e. paleo- and superendemism) are generally concentrated in the northern parts of the study region, corresponding to the Northern Zanzibar-Inhambane coastal forest mosaic, and in closer proximity to the EA. The EA, along with northern parts of the coastal forests is predicted to have remained more climatically stable than the Southern Zanzibar-Inhambane coastal forest mosaic, which receives less rainfall due to being in the rain shadow of Madagascar, and has also undergone less extreme sea level changes since the Miocene (Burgess & Clarke, 2000). Though major parts of the CFEA and EA can certainly be considered as museums of relictual diversity which aligns with previous studies, there is evidence from our results to suggest that several areas are cradles of diversity that promote speciation. Using empirical data to categorize the types of endemism and their distribution is novel for this region, and provides vital preliminary information and a framework that may be useful to guide future biodiversity conservation in this global biodiversity hotspot. Complex mixtures of endemism types are present across this part of East Africa, and generalizations are not easy to make, as previous studies of this region have noted (Burgess & Clarke, 2000). However, the CFEA and EA regiona are clearly unique as they support paleo-endemic relicts of ancient processes alongside neo-endemics from recent processes, with both signatures detectable in our data. This is unsurprising given the high habitat heterogeneity of the coastal forests in particular, and the unique characteristics and histories of many coastal forest patches, though it has not been quantified before despite being suggested (Burgess et al. 1998).

The interplay between historical and environmental factors in shaping biodiversity patterns remains poorly understood. Our data show patterns across parts of lowland East Africa suggest the existence of both cradles and museums of diversity. These findings are in line with other recent studies in other geographic regions (Couvreur et al., 2011; Pennington et al., 2015, Koenen et al, 2015) but in Sub-Saharan Africa cradles of diversity are generally more concentrated in grassland type habitats (Linder et al., 2014), supporting the idea that forest habitats are important museums of diversity in this region. Our findings have broad implications for the understanding of tropical biodiversity hotspots in Africa, but is also applicable to other biologically rich areas worldwide.

Acknowledgements

This work was funded by various organizations including a PhD doctoral scholarship from the Humer Foundation to CDB (Humer-Stiftung zur Förderung des wissenschaftlichen Nachwuchses), a ConGenOmics grant from the European Science Foundation (No. 6720 to CDB), the Swiss National Science Foundation (No. 31003A-133067 to SPL), Swiss Academy of Sciences, Freiwillige Akademische Gesellschaft Basel, The Centre for African Studies Basel, The University of Basel Kick Start Grant, University of Chicago, and the Field Museum of Natural History Africa Council. We are also grateful to many people and organizations that provided assistance in the field, logistical support and advice, including Kim Howell, Wilirk Ngalason, Chacha Werema, Frontier Tanzania, and Tanzania Forest Conservation Group. John Poynton, Mark Wilkinson, David Gower, Jeff Streicher and Patrick Campbell (Natural History Museum, London, UK), Alan Resetar (Field Museum of Natural History, Chicago, US) and Jens Vindum (CAS), Michele Menegon (Science Museum, Trento, Italy), Breda Zimkus, Joanna Larson and Jose Rosado (Harvard University, Cambridge, US) are thanked for assisting in loaning of specimens. For advice, help with fieldwork, permits for research and export in Tanzania, we thank (in no particular order) Tanzania Commission for Science and Technology (COSTECH research permit RCA 2001-272; RCA 2007-153, RCA 2009-306-NA-2009-201, 2011-239-NA-2011-82, 2006 and 2007-72-NA-2006-19, 2013-341-NA-2013-121), Tanzania Wildlife Research Institute (TAWIRI), and Wildlife Division for granting permission to conduct

research in Tanzania and export these specimens. Bob Drewes and Jens Vindum (CAS) and Daniel K. Johansson (ZMUC) for access to specimens and information held in their respective collections. SPL and BAB were awarded Ernst Mayr Grants to visit MCZ in 2005 and 2014. BAB PhD scholarship is funded by Stipendienkommission für Nachwuchskräfte, Basel Switzerland and 2014-2015 fieldwork was kindly supported by Frewillige Akademische Gesellschaft Basel. The permit (KWS/BRM/5001) to conduct fieldwork at SHNR was granted by Kenya Wildlife Service to BAB. Base Titanium-Kwale supported PKM fieldwork. Special gratitude goes to the SHNR Senior Warden Mr. Mohammed Kheri and Community Warden Mr. Nathan Gatundu as well as all the rangers who provided us with security during the 2013-2015-field work. Very special thanks to Reto Hagmann and Silvio Predali who aided significantly in DNA and spatial database construction.

Supplementary material

Fig. S1. Trimmed phylogenetic tree from Barratt et al. (in review) to match species level dataset.

Fig. S2. Sensitivity analyses with 44 species dataset showing SR, PD, PE and their relationships.

Fig. S3. Sensitivity analyses (CANAPE) for 44 species dataset.

References

- Axelrod D.I., Raven P.H. (1978) Late Cretaceous and Tertiary vegetation history of Africa. In: M. Werger (Ed.), *Biogeography and Ecology of Southern Africa*, Junk, The Hague (1978), pp. 77–130.
- Azeria E.T., Sanmartin I., As S., Carlson A., & Burgess N. (2007) Biogeographic patterns of the East African coastal forest vertebrate fauna. *Biodiversity and Conservation*, 16, 883–912.
- Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.H., Xie D., Suchard M.A., Rambaut A. & Drummond A.J. (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. *PLoS Computational Biology*, 10, 1003537.
- Bryja J., Mikula O., Šumbera R., Meheretu Y., Aghová T., Lavrenchenko L.A., Mazoch V., Oguge N., Mbau J.S.,
 Welegerima K., Amundala N., Colyn M., Leirs H. & Verheyen E. (2014) Pan-African phylogeny of *Mus* (subgenus *Nannomys*) reveals one of the most successful mammal radiations in Africa. *BMC Evolutionary Biology*, 14, 256.
- Burgess N. & Clarke G.P. (2000) *Coastal Forests of Eastern Africa*. IUCN Forest Conservation Programme, **2010**, 443 pp.
- Burgess N., Fjeldsa J., Howell K., Kilahama F., Loader S.P., Lovett J.C., & Mbilinyi B. (2007) The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. *Biological Conservation*, **134**, 209–231.
- Burgess N.D., Clarke G.P., & Rodgers W.A. (1998) Coastal forests of eastern Africa: status, endemism patterns and their potential causes. *Biological Journal of the Linnean Society*, **64**, 337–367.
- Chown S.L. & Gaston K.J. (2000) Areas cradles and museums: The latitudinal gradient in species richness. *Trends in Ecology and Evolution*, **15**, 311–315.
- Couvreur T., Forest F. & Baker W.J. (2011) Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. *BMC Biology*, **9**, 44
- Demenocal P.B. (1995) Plio-Pleistocene African climate. Science, 270, 53-59.
- Demos T.C., Kerbis Peterhans J.C., Joseph T.A., Robinson J.D., Agwanda B., & Hickerson M.J. (2015) Comparative population genomics of African montane forest mammals support population persistence across a climatic

gradient and quaternary climatic cycles. PLoS ONE, 10, e031800.

- Diamond A.W. & Hamilton A.C. (1980) The distribution of forest passerine birds and Quaternary climatic change in tropical Africa. *Journal of Zoology*, **191**, 379–402.
- Dimitrov D., Nogués-Bravo D. & Scharff N. (2012) Why do tropical mountains support exceptionally high biodiversity? The Eastern Arc mountains and the drivers of Saintpaulia diversity. *PloS ONE*, **7**, e48908.
- Fjeldsa J. & Lovett J.C. (1997) Biodiversity and environmental stability. *Biodiversity and Conservation*, 6, 315–323.
- Frost, P. (1996) The Ecology of Miombo Woodlands. In: Campbell, B. (ed.), *The Miombo in transition: woodlands and welfare in Africa*. Center for International Forestry Research, 273 pp.
- Gaston K.J. & Blackburn T.M. (2007) Pattern and process in macroecology. Blackwell Science Ltd.
- IUCN (2015) IUCN Red List of Threatened Species. Available from: <*http://www.iucnredlist.org>*. Accessed: 6th September 2015.
- Jablonski D., Roy K. & Valentine J.W. (2006) Out of the Tropics: Evolutionary Dynamics of the Latitudinal Diversity Gradient. *Science*, **314**, 102–106.
- Koenen E.J.M., Clarkson J.J., Pennington T.D., Chatrou L.W. (2015) Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. *New Phytologist*, **207**, 327-339.
- Laffan S.W., Lubarsky E. & Rosauer D.F. (2010) Biodiverse, a tool for the spatial analysis of biological and related diversity. *Ecography*, **33**, 643–647.
- Lawson L.P., Bates J.M., Menegon M., & Loader S.P. (2015) Divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex. *BMC Evolutionary Biology*, **15**, 128.
- Linder, H.P., Pennington, T. & Schneider, H. (2014) The evolution of African plant diversity. *Frontiers in Ecology and Evolution*, **2**, 1–14.
- Loader S.P., Ceccarelli F.S., Menegon M., Howell K.M., Kassahun R., Mengistu A.A., Saber S.A., Gebresenbet F., de Sá R., Davenport T.R.B., Larson J.G., Müller H., Wilkinson M., & Gower D.J. (2014) Persistence and stability of Eastern Afromontane forests: Evidence from brevicipitid frogs. *Journal of Biogeography*, 41, 1781– 1792.
- Maslin M.A., Brierley C.M., Milner A.M., Shultz S., Trauth M.H., & Wilson K.E. (2014) East african climate pulses and early human evolution. *Quaternary Science Reviews*, **101**, 1–17.
- Mishler B.D., Knerr N., González-Orozco C.E., Thornhill A.D., Laffan S.W. & Miller J.T. (2014) Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. *Nature Communications*, **5**, 4473.
- Morley R.J. (2000) Origin and Evolution of Tropical Rain Forests. Chichester: Wiley, 378 pp.
- Müller H.M., Liedtke H.C., Menegon M. Beck J., Ballesteros-Mejia L., Nagel P., Loader S.P. (2013) Forests as promoters of terrestrial life-history strategies in East African amphibians. *Biology Letters*, 9, doi: 10.1098/rsbl.2012.1146.
- Mumbi C.T., Marchant R., Hooghiemstra H. & Wooller M.J. (2008) Late Quaternary vegetation reconstruction from the Eastern Arc Mountains, Tanzania. *Quaternary Research*, **69**, 326–341.
- Myers N., Mittermeier R.A., Mittermeier C.G., Fonseca G.A.B. & Kent J. (2000) Biodiversity hotspots for conservation priorities. *Nature*, 403, 853–858.
- Newmark W.D. (2002) Conserving biodiversity in East African forests. A study of the Eastern Arc Mountains. Springer.

- Pennington R.T., Hughes M. & Moonlight P.W. (2015) The Origins of Tropical Rainforest Hyperdiversity. *Trends in Plant Science*, 20, 693–695.
- Phillips S.J., Anderson R.P. & Schapire R.E. (2006) Maximum entropy modeling of species geographic distributions. *Ecological Modelling*, **190**, 231–259.
- Poynton J.C., Loader S.P., Sherratt E. & Clarke B.T. (2007) Amphibian diversity in East African biodiversity hotspots: Altitudinal and latitudinal patterns. *Biodiversity and Conservation*, **16**, 1103–1118.
- Rosenzweig M. (1995) Species diversity in space and time. Cambridge University Press, Cambridge.
- Sandel B., Arge L., Dalsgaard B., Davies R.G., Gaston K.J., Sutherland W.J., & Svenning J.-C. (2011) The Influence of Late Quaternary Climate-Change Velocity on Species Endemism. *Science*, **334**, 660–664.
- Sepulchre P., Ramstein G., Fluteau F., Schuster M., Tiercelin J.-J., & Brunet M. (2006) Tectonic uplift and Eastern Africa aridification. *Science*, **313**, 1419–1423.
- Tolley, K.A., Tilbury, C.R., Measey, G.J., Menegon, M., Branch, W.R. & Matthee, C.A. (2011). Ancient forest fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African biodiversity hotspot. *Journal of Biogeography*, **38**, 1748–1760.
- Trauth M.H., Maslin M.A., Deino A., & Strecker M.R. (2005) Late Cenozoic moisture history of East Africa. *Science*, **309**, 2051–2053.
- Voelker G., Marks B.D., Kahindo C., A'genonga U., Bapeamoni F., Duffie L.E., Huntley J.W., Mulotwa E., Rosenbaum S.A., & Light J.E. (2013) River barriers and cryptic biodiversity in an evolutionary museum. *Ecology and Evolution*, 3, 536–545.

Chapter IV

A new, narrowly distributed, and critically endangered species of spiny-throated reed frog (Anura: Hyperoliidae) from a highly threatened coastal forest reserve in Tanzania

> Christopher D. Barratt, Lucinda P. Lawson, Gabriela B. Bittencourt-Silva, Nike Doggart, Theron Morgan-Brown, Peter Nagel & Simon P. Loader

> > Published (Herpetological Journal)

Herpetological Journal

FULL PAPER

A new, narrowly distributed, and critically endangered species of spiny-throated reed frog (Anura: Hyperoliidae) from a highly threatened coastal forest reserve in Tanzania

Christopher D. Barratt¹, Lucinda P. Lawson^{2,3,4}, Gabriela B. Bittencourt-Silva¹, Nike Doggart⁵, Theron Morgan-Brown⁵, Peter Nagel¹ & Simon P. Loader^{1,6}

¹University of Basel, Biogeography Research Group, Department of Environmental Sciences, Basel 4056, Switzerland

²Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th St. Culver Hall 402. Chicago, IL 60637, USA

³Field Museum of Natural History, 1400 S. Lake Shore Dr. Chicago, IL 60605, USA

⁴University of Cincinnati, 614 Rieveschl Hall. Cincinnati, OH 45221, USA

⁵Tanzania Forest Conservation Group, PO Box 23410, Dar es Salaam, Tanzania

⁶ University of Roehampton, SW15 4JD, Holybourne Avenue, London, UK

Amphibians are in decline globally due to increasing anthropogenic changes, and many species are at risk of extinction even before they are formally recognised. The Coastal Forests of Eastern Africa is a hotspot of amphibian diversity but is threatened by recent land use changes. Based on specimens collected in 2001 we identify a new species from the coastal forests of Tanzania. The new species belongs to the spiny-throated reed frog complex that comprises a number of morphologically similar species with highly fragmented populations across the Eastern Afromontane Region, an adjacent biodiversity hotspot comprising of numerous isolated montane forests. The new species is the first coastal forest member of this otherwise montane clade. We formally describe this species, assess its distribution and conservation threat, and provide a revised key to species of the spinythroated reed frog complex. We highlight the most important characters distinguishing the new species from the other similar reed frog species. Recent surveys at the type locality and also more broadly across the region failed to find this new species. The conservation threat of this species is critical as the only known locality (Ruvu South Forest Reserve) is currently subjected to devastating land use changes.

Key words: Coastal Forests of Eastern Africa, conservation, habitat destruction, Hyperolius ruvuensis sp. n., Hyperolius spinigularis, Tanzania **Ruvu South Forest Reserve**

INTRODUCTION

mphibians are threatened by extinction across the Aglobe (Stuart et al., 2004), with extinction rates exceeding those of other vertebrate groups (Hof et al., 2011). Adding to the increased threat to amphibians, the distribution of areas with the highest species richness often corresponds with areas impacted disproportionately by multiple threat factors, such as climate change, land use changes, and chytridiomycosis (Hof et al., 2011). The current challenge faced by biologists, particularly those in tropical countries where biodiversity is most concentrated, is the race to describe species before they go extinct.

The Coastal Forests of Eastern Africa represent an area of high amphibian species richness (e.g., Poynton et al., 2007) but many of the small remaining forest patches are relatively poorly known (Barratt et al., 2014). The area has long been identified as an area of importance for biodiversity (Burgess et al., 1992; 1998; Burgess & Clarke, 2000) but has suffered major land use changes (Burgess et al., 1992, Tanzania Forest Conservation Group, 2012; Godoy et al., 2011). The long-term survival potential of species in these forests therefore remains uncertain given current trends in anthropogenic threats. Given the rapid rate of change, efforts in highlighting the biodiversity of this region, identifying key areas for conservation, and monitoring the health of populations are of the utmost importance.

In 2001 four specimens of a hyperoliid frog species were collected from a coastal forest in Tanzania identifiable to a clade of spiny-throated reed frogs. This clade exhibits a distinctive gular flap, with almost all species having asperities on the gular, and some with spines on the chest, and/or groin (Hyperolius burgessi Loader et al., 2015, H. davenporti Loader et al., 2015, H. minutissimus Schiøtz and Westergaard 2000, H. spinigularis Stevens 1971, H. tanneri Schiøtz 1982, H. ukwiva Loader et al.,

Correspondence: Christopher D. Barratt (c.d.barratt@gmail.com)

2015). The spiny-throated reed frogs comprise a clade of several morphologically similar species that are found on isolated mountains across the Eastern Afromontane (EAM hereafter) region adjacent to the Coastal Forests of Eastern Africa (Lawson et al., 2015, Loader et al., 2015). These coastal specimens were not taxonomically evaluated and remained in the herpetology collection of the Natural History Museum in London. Recent fieldwork in the coastal forests of Tanzania has failed to secure any further individuals assigned to this coastal population.

In this study we assess the population of *H*. cf. *spinigularis* collected from Ruvu South Forest Reserve, a coastal forest patch less than 45 km from the major city of Dar es Salaam. Given that this material is the only non-montane record of the spiny-throated reed frogs, rare and apparently not recently collected, we review its taxonomic placement, biogeographic significance and conservation risk.

MATERIAL AND METHODS

Molecular Data

Specimens were collected by Frontier Tanzania (stored at the Natural History Museum, London, see collecting details in type description) and stored in 70% ethanol. Samples of muscle and/or liver were taken from representative individuals and preserved in 95% ethanol. Specimens included in this study are listed in Table 1, with expected occurrence data per species and Genbank numbers (KX455694-KX455723). Phylogenetic relationships of H. cf. spinigularis from Ruvu South Forest Reserve and all other known spiny-throated reed frogs (based on Loader et al., 2015, Lawson et al., 2015) were estimated between all individuals using a previously published gene dataset including one mitochondrial (ND2) and three nuclear (c-Myc, POMC, RAG1) genes, with Hyperolius mitchelli used as an outgroup. In addition we included from a smaller sampling of individuals one mitochondrial partial gene (16SrRNA). To reconstruct relationships, sequences were aligned using MUSCLE (Edgar, 2004), excluding poorly aligned regions of all genes using GBlocks (Castresana, 2000). The optimal model of molecular evolution for our gene partition (GTR+G) was found using PartitionFinder v.1.1.1 (Lanfear et al., 2012). For the complete concatenated alignment, intra- and inter-clade distances were calculated using the Species Delimitation plugin v1.04 for Geneious Pro (Masters et al., 2011). Molecular phylogenies were constructed using Bayesian and maximum likelihood (ML) approaches in BEAST (v.2.1.3) and RAxML v.8.0.0 (Ronguist et al., 2012, Stamatakis, 2014). To examine species boundaries across the reconstructed phylogeny we applied a Bayesian implementation of the General Mixed Yule-Coalescent model ("bGMYC" package v.1.0.2 for R, Reid & Carstens, 2012) using trees from the BEAST analysis. In BEAST, the first 10% of generations were discarded as burnin for both convergence and tree estimates. Convergence was investigated using Tracer v.1.6 (Rambaut et al., 2014) through a visual inspection of adequate mixing and ESS estimates >200. The maximum clade credibility tree was calculated for BEAST using TreeAnnotator. ML node support in RAxML was evaluated by non-parametric bootstrapping with 1000 replicates. BEAST analysis was run with a coalescent, constant size tree-prior and a strict molecular clock (as recommended for recent populationlevel analyses). Each locus was rate scaled to reflect the faster evolution times in mtDNA using rates outlined in Lawson et al. (2015). To address alternative phylogenetic hypotheses, we enforced topological constraints on our RAxML trees and performed AU, KH and SH topology tests in CONSEL v.0.20 (Shimodaira & Hasegawa, 2001).

Morphology

Material was examined from the Natural History Museum, London (BMNH) in addition to material previously documented in Loader et al. (2015). Morphological measurements were taken to the nearest 0.1 mm using Mitutoyo Absolute Digimatic Calipers (CD-6"C) with the aid of a Leica MZ8 stereo microscope (Leica Microsystems GmbH, Wetzlar, Germany). Sex was determined by the presence or absence of the gular flap in adult specimens. Measurements in this analysis match those in Loader et al. (2015) and include: Snout-Urostyle Length (SUL), Head Width (HW), Head Length Diagonal from corner of mouth (HLD), Head Length Diagonal from jawbone end (HLDJ), Nostril-Snout (NS), Inter-narial (IN), Eye to Nostril (EN), Eye Distance (EE), Inter-orbital (IO), Tibiafibula Length (TL), Thigh Length (THL), Tibiale Fibulare Length (TFL), Foot Length (FL), Forelimb Length (FLL), Hand Length (HL), Width of Gular Flap (WGF), and Height of Gular Flap (HGF). Qualitative characters were further investigated: gular shape, proportions and spinosity to assess differences from congeneric species. In order to assess the overall pattern of morphometric variation in these species (see Table 1 for specimen list) we also conducted a principal component analysis on log-transformed data using the Ggbiplot package in R (R Development Core Team, 2014; Wickham, 2009; Venables & Ripley, 2002).

Coastal forest surveys and remote sensing analysis of habitats

The geographic distribution of *H.* cf. *spinigularis* from Ruvu South Forest Reserve was mapped using the original collection records made by Frontier Tanzania in 2001. Additionally, we constructed a map of the points where major surveys have been conducted in other parts of the coastal forests of Tanzania using our own data and other published literature (Fig. 4). The data were accumulated on the basis of major collections in the region including Arthur Loveridge (Loveridge, 1942), Frontier Tanzania and Kim Howell (Appendix 7 in Burgess & Clarke, 2000), Frontier Tanzania (2001), and Barratt (unpublished data) (see Online Appendix 1).

We conducted an analysis of the habitat change in Ruvu South Forest Reserve since 1998 (Fig. 5A, Online Appendix 2). The land-cover change analysis covers Ruvu South Forest Reserve and two other nearby forest reserves (Pugu and Kazimzumbwi), which historically contained similar forest types. The most recent image used in the analysis was a Landsat 8 image dated 13 June 2014, chosen as the most recent cloud free image **Table 1.** Details of specimens included in this study for molecular and morphological analyses (Modified from Table 3 in Lawson et al., 2015). Genbank accession numbers of new sequences generated for this study (KX455694-KX455723) are shown per gene, for all other sequences please see Lawson et al. (2015).

Species	Altitudinal range occurence	Habitat	Expected Occurrence	Voucher numbers GenBank accession numbers of new sequences				
					16s	ND2	C Myc	POMC
H. burgessi	East Usambara:	Submontane	14,774 km²	FMNH18989	KX455710			
	900–1100 m	forest		FMNH 274258	KX455709			
	Nguru: 900–1000 m			FMNH 274259				
	Uluguru: 980 m			FMNH 274310				
				FMNH 274311				
				FMNH 274312				
				FMNH 274313				
				FMNH 274314				
				FMNH 274321				
				FMNH 274322				
				FMNH 274323				
				FMNH 274324	KX455706			
				FMNH 274482	10(435700			
				FMNH 274483				
				FMNH 274483				
				FMNH 274944	KX455705			
				MTSN 8238	KX433703			
				MTSN 8238				
				MTSN 8259				
				MTSN 8260				
				MTSN 8267				
				MTSN 8273				
H. davenporti	Livingstone: 2010 m	Montane forest edge	28 km²	MTSN 7453	KX455703			
				MTSN 7464	KX455695	KX455714	KX455722	KX455719
				MTSN 7465	KX455694	KX455715	KX455723	KX455718
				MTSN 7467		KX455716		KX455717
H. minutissimus	Njombe: 2010 m	Montane forest	14,904 km²	FMNH 274290				
		edge and	,					
		grassland		MUSE 11023				
				MUSE 11024				
				MUSE 11026				
				MUSE 11028	10/455302			
				MCZ DK R771421	KX455702			
				MCZ DK R771422	KX455701			
				MCZ DK R771423	KX455700			
				MCZ DK R771424	KX455699			
				MCZ DK R771426				
				MCZ DK R771432	KX455698			
<i>H. ruvuensis</i> sp. n.	lowland Tanzania:	Coastal forest	2 km²	BMNH 2002.410				
	230m	thicket, swamp		BMNH 2002.411	KX455696	KX455712		KX455721
				BMNH 2002.412				

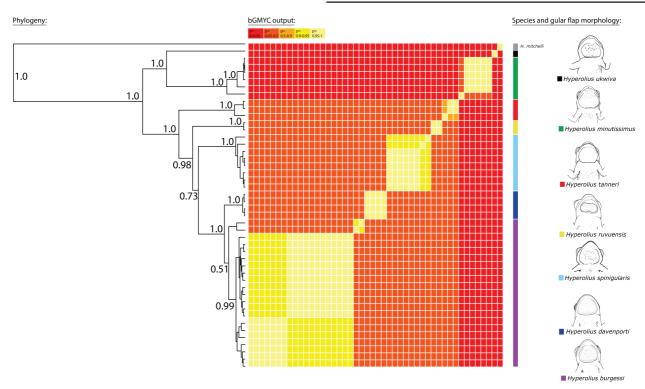
Table 1. Continued.

Species	Altitudinal range occurence		Expected Occurrence	Voucher numbers	GenBank accession numbers of new sequences			
					16s	ND2	С Мус	POMC
H. spinigularis	Malawi: 690 m	Submontane	5,488 km²	FMNH 274894				
		forest and forest edge		FMNH 274943				
	Mozambique: 1250 m			FMNH 274945				
				FMNH 274947				
				FMNH 274949				
				FMNH 274950				
				MVZ 266050				
H. tanneri		Submontane forest and forest edge	4 km²	FMNH274287				
				FMNH274288	KX455708			
				FMNH274289	KX455707			
				FMNH 18804	KX455711			
H. ukwiva	Rubeho: 1660 m	Montane forest edge	1,179 km²	KMH36053				

of the area. The historical image used in the analysis was a Landsat 5 image dated 16 May 1998, selected as the most cloud free Landsat image covering the three forest reserves near the year that the specimens were collected (2001).

As separate training data were chosen for each scene, no prepossessing was performed on the Landsat imagery, with the exception of improving the georeferencing of the 1998 Landsat 5 scene using the georeferencer plugin in QGIS. In 1998, the three different forest types that dominated Ruvu South Forest Reserve were East African coastal dry forest, East African coastal scrub forest, and degraded variants of each (Burgess & Clarke, 2000). There were also large portions of wooded grassland with a mixture of larger trees and bushes. Training data for the classifications was based on expert knowledge of the area and high-resolution imagery on Google Earth ranging in dates from 2004 to 2014. For the 1998 scene, 232 training polygons were drawn, while for the 2014 scene, 154 training polygons were drawn.

To make better use of limited training data, the Landsat images were segmented using mean-shift segmentation from the Orfeo Toolbox. The spatial radius was set to 5 pixels, the range radius was set to 2 pixels, and the minimum object size to 5 pixels. These settings were chosen after visual experimentation to arrive at a segmentation that did not appear to lump different land-cover types into the same segments. The segment size, mean and variance were then calculated for bands corresponding to Landsat 5 bands 1-5, and 7, 1-arc SRTM elevation data, slope, and a hillshade image corresponding to the particular Landsat scene. The segments were classified in R (R Development Core Team, 2013) using Random Forest and output as TIFF images. Several classifications were generated for each Landsat scene and compared with high-resolution imagery until


there was good visual agreement. The classifications for the two years were then compared using raster algebra in R to arrive at a map of land-cover change. To remove small areas of change due to georeferencing disagreements and speckle, a 5 pixel orthogonal sieve was applied to arrive at the final land-cover change map.

RESULTS

Phylogeny

Bayesian and Maximum Likelihood methods both agreed on previously published evolutionary relationships within the spiny-throated clade (see Fig. 1, Loader et al., 2015, Lawson et al., 2015). The smaller sampling dataset of 16S mtDNA also agreed on the topology recovered with our multilocus dataset, though support and pairwise distances between species were consistently lower. Intraand inter-clade distances using the Species Delimitation tool are given in Table 4 for the larger gene and individual sampled dataset. Analysis using the Species Delimitation plugin in Geneious Pro support previous taxonomic units (as in Loader et al., 2015) in addition to the new species here described. As in Loader et al., (2015) it seems that H. burgessi and H. minutissimus might consist of more than one species (See Table 4). Comparing all individual gene trees, our phylogenetic results appear largely reliant upon the fully resolved mtDNA relationships within this lineage, as many of the nuclear loci appear to retain ancestral polymorphisms, particularly in more recently divergent species.

Topology tests using likelihood scores (Table 2) indicated a significant difference between our optimal tree (*H. ruvuensis* sp. n. as sister taxon to a clade containing *H. spinigularis, H. burgessi* and *H. davenporti*) and alternative topologies, thus refuting the grouping of *H. ruvuensis* sp. n. with either *H. davenporti* or *H.*

Fig. 1. Bayesian phylogeny of the spiny-throated reed frog species complex including *Hyperolius ruvuensis* sp. n. Support for clades is shown on nodes as well as bGMYC species delimitation results shown in colour coding and male gular flap morphology.

burgessi (Table 2). Topology test scores from trees pairing *H. ruvuensis* sp. n. with *H. spinigularis* from Mozambique and Malawi were consistently lower than our optimal tree but not significantly different.

Morphology

Measurements for specimens examined are given in Table 3. Principal component analysis of *H. ruvuensis* sp. n. males and females separately including morphological data from Loader et al. 2015 shows largely overlapping results (Fig. 2), and does not distinguish *H. ruvuensis* sp. n. based on morphometric measures as unique from the rest of the *H. spinigularis* complex. The main trait to distinguish *Hyperolius ruvuensis* sp. n. from the other members of the spiny-throated reed frog complex is the distinctive bilobed shape, disc-like platform, and spinosity of the gular flap, which is evident in both male specimens included in this study, and the relatively large snout-urostyle length in females (See Loader et al., 2015).

Systematics

Hyperolius ruvuensis sp. n. Barratt, Lawson and Loader Ruvu spiny reed frog Figs. 3A, B

Holotype.— BMNH 2002.410 (male, field tag KMH 23565, held at the Natural History Museum, London) collected on 18 May 2001 in Ruvu South Forest Reserve (07° 02' 21.1" S; 38° 54' 58.3" E, 230 m a.s.l) by Frontier-Tanzania. *Paratypes.*— <u>Male</u>: BMNH 2002.412 (field tag KMH 23567). <u>Females</u>: BMNH 2002.411 (field tag KMH 23566), BMNH 2002.413 (field tag KMH 23569) collected at same locality and date as of the Holotype.

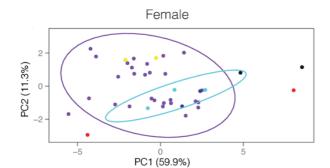

Diagnosis.— Horizontal pupil with distinctive gular flap in males. As with most other members of the spiny-throated clade (*H. burgessi, H. davenporti, H. minutissimus, H. spinigularis, H. ukwiva*), *H. ruvuensis* sp. n. also has the presence of dermal asperities (including on the body and chin region) on the ventrum, unique

Table 2. Results from topology tests of alternative relationships. Most likely tree topologies displayed in rank order from top to bottom. Key: 1 – optimal tree (as in Fig. 1), 2 – *H. ruvuensis* sp. n. and *H. spinigularis* constraint, 3 – *H. ruvuensis* sp. n. and *H. burgessi* constraint, 4 – *H. ruvuensis* sp. n. and *H. davenporti* constraint, obs – the observed log-likelihood difference, bp – bootstrap probability, np – bootstrap probability calculated from multiscale bootstrap, pp=Bayesian posterior probability. AU – Approximately Unbiased test, KH, Kishino-Hasegawa test, SH – Shimodaira-Hasegawa test, WKH – Weighted Kishino-Hasegawa test, WSH – Weighted Shimodaira-Hasegawa test. *significantly different than optimal tree.

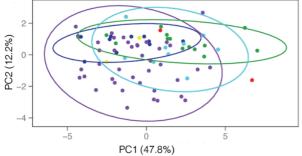

	obs	bp	np	рр	AU	КН	SH	WKH	WSH
1	-1.6	0.656	0.656	0.837	0.687	0.671	0.823	0.671	0.864
2	1.6	0.344	0.344	0.163	0.317	0.329	0.626	0.329	0.547
3*	48.5	0	1e-04	7e-22	3e-04	0.001	0.001	0.001	0.001
4*	48.5	0	1e-04	7e-22	3e-04	0.001	0.001	0.001	0.001

Table 3. *Hyperolius ruvuensis* sp. n. morphology. All measurements in to the nearest 0.1 millimetres, with * indicating the holotype.

Genus	Hyperolius	Hyperolius	Hyperolius	Hyperolius
Species	<i>ruvuensis</i> sp. n.	<i>ruvuensis</i> sp. n.	<i>ruvuensis</i> sp. n.	<i>ruvuensis</i> sp. n.
Museum Number	BMNH 2002.410*	BMNH 2002.411	BMNH 2002.412	BMNH 2002.413
Country	Tanzania	Tanzania	Tanzania	Tanzania
Sex	М	F	М	F
SUL	16.8	25.4	18.7	24.2
Head Width (HW)	6.1	9.2	6.2	8.3
Head Length Diagonal (HLD) corner of mouth	5.3	7.2	5.4	6.9
Head Length Diagonal (HLD) from jawbone end	6.3	8.3	6.4	8.1
Nostril-Snout (NS)	1.0	1.3	1.1	1.2
Inter-narial (IN)	2.1	2.5	2.1	2.3
Eye to Nostril (EN)	1.9	2.3	1.9	2.2
Eye Distance (EE)	3.6	4.0	3.7	4.0
Inter-orbital (IO)	3.1	4.8	2.7	4.5
Tibiafibula Length (TL)	8.7	12.3	9.1	11.8
Thigh Length (THL)	8.5	11.8	9.2	11.4
Tibiale Fibulare Length (TFL)	5.3	7.3	5.8	7.1
Foot Length (FL)	7.4	10.3	7.6	10.1
Forelimb Length (FLL)	4.2	5.3	4.8	5.2
Hand Length (HL)	4.9	6.7	4.8	6.6
Gular Flap: Width	4.8	-	5.1	-
Gular Flap Height	3.2	-	3.6	-

Fig. 2. Principal Component Analysis of morphological divergence between species. Raw morphological measurements for *H. ruvuensis* sp. n. shown in Table 3. For the other species in the complex we used data from Additional file 2 in Loader et al. 2015.

amongst hyperoliids. The presence of asperities on the gular flap diagnoses this species from H. tanneri, for which they are absent. The distribution of dermal asperities in two distinct circular patches differs from the anteriorly positioned distribution of asperities in H. minutissimus and H. ukwiva, and the evenly distributed asperities on the gular flap in H. burgessi, H. davenporti and H. spinigularis. Furthermore, H. ruvuensis sp. n. males have a bilobed and rounded gular flap - distinctive from the rounded gular flap of H. burgessi, H. davenporti and H. minutissimus (see Fig. 1). The bilobed gular flap in H. ruvuensis sp. n. is similar to that seen in H. spinigularis from Malawi and H. ukwiva from Rubeho, although in H. ruvuensis sp. n. it is much more pronounced and raised, forming a disc-like structure on the gular flap (see Figs. 1, 3B). This raised disc like gular flap is a diagnostic character for males of H. ruvuensis sp. n. Based on molecular data the species is genetically distinct from close relatives, and is the sister taxon to a clade comprising of H. davenporti, H. burgessi and H. spinigularis, being minimally 5.9% pairwise divergent from its closest relative (H. davenporti) based on ND2, C Myc, POMC and RAG1 genes. Hyperolius ruvuensis sp. n. further has an allopatric distribution with respect to other species in the complex and is the only member found at low elevation within the coastal forest belt of Eastern Africa (Fig. 4).

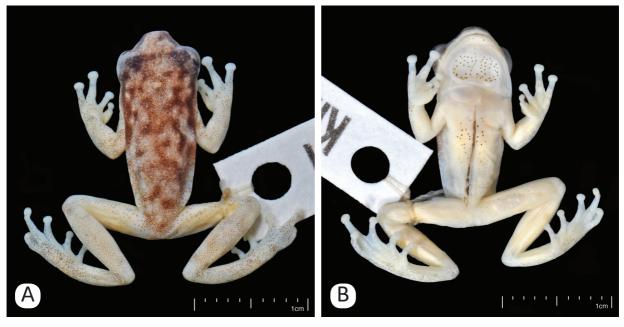
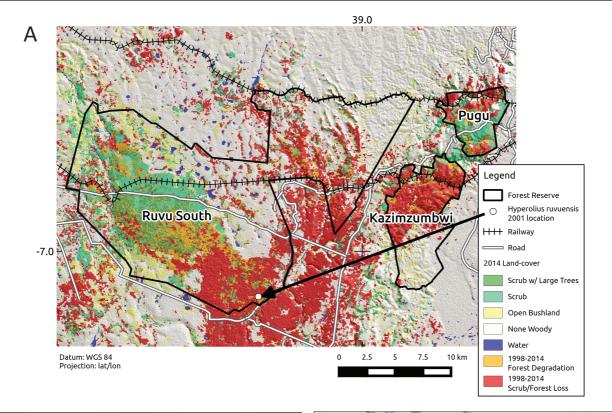


Fig. 3. Dorsal (A) and ventral (B) views of the holotype of *H. ruvuensis* sp. n. BMNH 2002.410. Scale bar = 1cm.

Description of holotype. - Small to moderate sized hyperoliid. Pupil horizontal. Snout blunt and slightly rounded. Canthus rostralis angular, being slightly convex on the horizontal plane and slightly concave on the vertical plane. Distance between eyes is 3.6 mm and interorbital distance is 3.1 mm. The inter-narial distance is 2.1 mm, greater than narial distance to the eye (1.9 mm). The nostril to snout is 1.0 mm. The width of head (6.1 mm) equals 0.36 of the body length (16.8 mm). The gular flap width is more than (4.8 mm) the height (3.2 mm). The gular flap is raised and bilobed, anteriorly narrowing. It is marked by black asperities (ca. 65) distributed across the gular flap in two distinct patches on each lobe. Asperities are evenly distributed on each lobe, though a small patch without asperities is present towards the lower central part of each lobe. Tibio-tarsal articulation of the adpressed hind limb reaching the eye. Tibio-tarsal (8.7 mm) is almost equal to thigh length (8.5 mm). The tibiale fibulare length is 5.3 mm. Toes have expanded fleshy discs with the foot being 7.4 mm. Webbing is extensive almost reaching the base of the fleshy discs on all toes apart from the first toe where it only reaches the first tubercle. The forelimb length is 3.3 mm, less than the hand length (4.8 mm). The hands have expanded, rounded fleshy discs. Webbing just reaching distal subarticular tubercle of the outer finger and slightly reduced on all other fingers. Dorsal skin surface granular with a single minute black asperity surmounting many of the granules. Ventral skin surface strongly granular with black asperities on the mentum (ca. 8), gular flap (ca. 60), abdomen (ca. 40) and undersurfaces of the femur (ca. 20 on each femur). Ventral asperities much more prominent than those of the dorsum.

Paratypes. — Head and body proportions in close agreement with those of the holotype (Fig. 3, Table 3). The distribution of the asperities of the male paratype is in close agreement with that of the holotype. As with other *H. spinigularis* group species the proportions of the gular flap in males, diagnostic for the species, shows slight


variation which means care needs to be taken in applying this character, though the unique shape and spinosity of *H. ruvuensis* sp. n. should enable clear differentiation from other members of the complex (Figs. 1, 3B). Webbing of all the material conforms to that of the holotype.

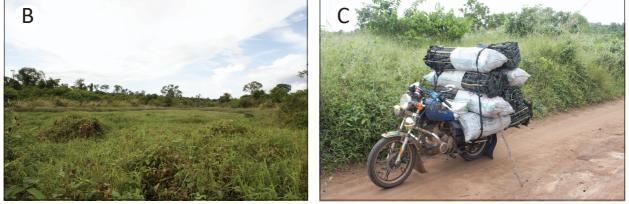


Fig. 4. Map of coastal Tanzania showing the type locality of *H. ruvuensis* sp. n. (yellow circle) and additional coastal forest localities that have been surveyed but did not yield members of the spiny-throated reed frog complex. See Online Appendix 1 for locality data and sources.

Table 4. Species delimitation results for the spiny-throated reed frog complex using the Species Delimitation Plugin for Genious Pro (Masters et al., 2011) with our Bayesian phylogeny from Figure 1. Delimitation results show all taxa are monophyletic, and show the closest relative for each species. Intra-dist shows intra-specific genetic distance between samples within each species (values of 0 indicate a single representative per species), Inter-dist shows inter-specific genetic distance to the closest relative.

Species	Closest relative	Monophyletic?	Intra-dist	Inter-dist
H. mitchelli	H. ukwiva	yes	0	0.164
H. ukwiva	H. minutissimus	yes	0	0.06
H. minutissimus	H. ukwiva	yes	0.01	0.06
H. tanneri	H. davenporti	yes	0.007	0.049
<i>H. ruvuensis</i> sp. n.	H. davenporti	yes	0.003	0.059
H. spinigularis	H. davenporti	yes	0.007	0.041
H. davenporti	H. burgessi	yes	0.003	0.018
H. burgessi	H. davenporti	yes	0.01	0.018

Fig. 5. Habitat change and photographs of Ruvu South Forest Reserve in April 2015. (A) Habitat change from 1998–2014, see also Online Appendix 2. (B) Grassland swamp area of type locality based on original GPS co-ordinates, (C) Charcoal being transported by motorbike illegally from Ruvu South Forest Reserve, a common sight in the coastal forests.

Colour patterning of adults. - In life: Head and dorsum is brown with a creamy white mottling on back, in some individuals the mottling extends along the side of the animal from the anterior end. The ventrum side is generally white with the exception of the asperities in males which are dark brown/black. Forelimbs and hindlimbs are mottled creamy white colour matching the dorsum, with flashes of orange on the thighs and feet and faded white heel spots. In preservative: The holotype (BMNH 2002.410) is a creamy colour, with the asperities and pigmentation of chromatophores on the dorsum resulting in a brown mottled appearance. Forelimbs, hindlimbs and feet are cream coloured with scattered brown chromatophores on the dorsal side. The ventral side is cream coloured with the exception of the asperities on the abdomen, gular flap and mentum. The male paratype (BMNH 2002.412) resembles the holotype in basic patterning but the colour is largely absent from the dorsum and head. The female paratypes also exhibit colour and pattern variation, BMNH 2002.411 is cream coloured with several small patches of brown on the dorsum, legs and forelimbs, and BMNH 2002.413 is cream with more subtle brown patches. Both female specimens have scattered patches of cream colour where the brown pigment is reduced. All specimens had lateral dark edged white stripes (either thin or irregular in size and outline) ending anteriorly in a narrow stripe meeting at the snout. Sexual dimorphism. -- Females attain a much larger size than the males (Table 3). Asperities of the dorsum are slightly weaker in the females and completely absent from the ventral side. Males are easily distinguished from the females by their characteristic bilobed and raised gular flap (Fig. 3B).

Advertisement Call. - No advertisement call is known.

Etymology.— The species is named after Ruvu South Forest Reserve where the specimens were collected and is the current extent of the species occurrence.

Distribution and habitat. - The species is likely endemic to Ruvu South Forest Reserve in Tanzania (See Figs. 4, 5A). Specimens were collected by Mr. David Emmett who provided valuable information on the habitat of the type locality. Specimens were found on reeds and bushes in a swampy open grassland area beside a permanent pond on a lowland plain (230 m a.s.l). Adjacent to the grassland was some sparse forest cover which kept the type locality partially shaded during the day (canopy height of <10 m, ground vegetation layer >50 % cover and shrub layer <10 % cover). One of the authors of the paper (SL) was able to revisit Ruvu South Forest Reserve in April 2015, where a rapid survey was conducted. The survey failed to discover any individuals of this species with a one day survey conducted at the type locality and two night surveys in varied habitats (swamp and forest) located in the northern part of the Forest Reserve. Figure 5A shows habitat classifications in Ruvu South Forest Reserve with the location of the type locality. Estimates of forest loss and severe habitat degradation are also given and show severe habitat degradation around the type locality - as also evidenced by ground truthing (see also Figs. 5B–D). Furthermore, on a broader scale, surveys across the coastal region in Tanzania failed to

find any specimens referable to this species (Fig. 4). The apparent restriction of *Hyperolius ruvuensis* sp. n. solely to Ruvu South Forest Reserve seems plausible and not due to sampling deficiencies across the region.

IUCN red listing.— Because the area of occupancy is probably less than 10 km², all individuals are in a single sub-population and the extent of its habitat and possibly the number of reproductively active individuals are declining, we recommend the species to be listed as Critically Endangered based on the IUCN red list criteria (IUCN, 2012). The species cannot be classified as Extinct due to the lack of exhaustive surveys in known and expected habitat.

Key to the East African Spiny-throated Reed Frogs

As in Loader et al. (2015) we present a key that should identify adult male specimens of all presently described species.

	1a	Gular flap with black dotted asperities, species not found in West Usambara Mountains	2
	1b	Gular flap lacking any asperities, species found in West Usambara Mountains	H. tanneri
1	2a	Black dotted asperities evenly distributed across the gular flap	3
1	2b	Black dotted asperities distributed on anterior and mid region of the gular flap	6
	3a	Gular flap bilobed	4
	3b	Gular flap not bilobed	5
4	4a	Gular flap strongly bilobed, with asperities distributed into two discernable circular raised platforms, demarcating the area, species found in coastal forests of Tanzania.	H. ruvuensis sp. n.
4	4b	Gular flap bilobed, with asperities distributed regularly across the gular flap. Species found in Malawi and Mozambique	H. spinigularis
	5a	Gular flap rounded with posterior and anterior ends more equal. The gular flap is usually either equal or wider than height, species found in Southern Highlands of Tanzania.	H. davenporti
ļ	5b	Gular flap narrowly tapering anteriorly and usually equal or greater in height, species found in East Usambara, Nguru, and Uluguru Mountains	H. burgessi
(6a	Gular flap not bilobed and found in Udzungwa Mountains. Females reach a moderate size 18–24mm	H. minutissimus
6	6b	Gular flap bilobed, and found in Rubeho Mountains. Females reach a	H. ukwiva

DISCUSSION

Biogeography

large size >25mm

Our phylogenetic reconstruction of the spiny-throated reed frog clade is consistent with the multi-locus gene tree of Lawson et al. (2015), showing generally high divergence between species. Our analyses places *H*.

ruvuensis sp. n. as sister taxon to a clade containing H. burgessi, H. davenporti and H. spinigularis (see Fig. 1) though the relationships between the latter clade are not well resolved. Topology tests on alternative relationships suggest most are significantly worse, however, an alternative topology with H. ruvuensis sp. n. forming a clade with H. spinigularis in Malawi and Mozambique was not significantly worse. The lack of resolution prevents robust biogeographic conclusions but we can speculate upon a potential scenario given the best topology and known distribution of species. The position of H. ruvuensis sp. n. and H. tanneri – two geographically widely separated populations, relative to the H. spinigularis, H. davenporti and H. burgessi clade - lends support to a formerly relatively widespread coastal and montane ancestor that became increasingly fragmented and restricted to both montane and coastal regions. Such a scenario has been previously speculated upon in other groups (Kingdon, 1989; Burgess et al., 1998) with a number of examples of sister group relationships among coastal and montane regions embedded in montane or coastal clades. This has been specifically shown in birds (e.g. Roy et al., 1997) and plants (e.g. Dimitrov et al., 2012) occurring in both montane and lowland rainforest habitats.

Climate fluctuations have been important in expanding and contracting forest habitats in East Africa (Burgess & Clarke, 2000), and such fluctuations were likely important in speciation processes that produced the current extant species in the H. spinigularis complex with their currently restricted distributions. Such changes in species ranges were documented in Lawson et al. (2015) potentially producing peripatric populations (e.g. H. tanneri, H. davenporti) and the new species documented here could comprise another example - particularly given the potential niche shift to coastal forest, open woodland type habitat. Furthermore, H. ruvuensis sp. n. restricted to the coastal forests and a relatively divergent species (based on molecular differences) provides a piece of evidence that might suggest the relative longevity of coastal forests. Burgess and Clarke (2000) argued that endemism in coastal forests was likely in part attributed to the old age, or non-inundated habitats in the region). This was also shown in African violets (Saintpaulia spp.), in a study by Dimitrov et al. (2012) who suggested the presence of micro-endemic species in their analysis supports the existence of lowland refugia even during glacial maxima.

Conservation

The coastal forests are an important ecosystem for conservation in Africa due to its rich biodiversity (Myers et al., 2000, Azeria et al., 2007). However, many coastal forests have either disappeared completely or have been reduced to extremely small patches less than 20 km² in size (Burgess et al., 1998). Across the Coastal Forests of Eastern Africa, there are over 1750 endemic plant and 100 endemic vertebrate species respectively, which are in many cases present in several forests (Conservation International, 2015), however similarly to *H. ruvuensis* sp. n. there are also micro-endemics likely restricted to single

sites (e.g. several millipede and amphibian species see Burgess et al., 1998). The type locality and only known location of *H. ruvuensis* sp. n., Ruvu South Forest Reserve, is one of the few remaining areas of coastal forest near to Dar es Salaam, and in recent years has undergone severe deforestation for fuelwood, timber and biofuel production (Gwegime et al., 2013; see Figs. 5A–C). Our analysis of the forest reserve shows habitat change over the last 16 years (1998–2014) with particularly high rates of deforestation in areas formerly covered in coastal forest relative to the areas that are dominated by coastal thicket. Particularly worrying is the level of habitat change in the southern parts of the reserve, which includes the precise type locality of *H. ruvuensis* sp. n.

Assessing the impact of habitat change has on amphibian assemblage in Ruvu South Forest Reserve is currently not possible given the lack of data on the spatial distribution of species and population numbers. Gross habitat changes (Fig. 5A, Online Appendix 2), as recorded for this area, however are likely to impact amphibian assemblage but it is unclear how this might specifically impact the new species here described, only recorded once from grassland swamps that adjoin forest in 2001. Our rapid surveys in both the type locality and northern parts of the reserve with historically similar habitat in 2015 failed to find the species, though more extensive survey efforts are necessary to better validate its potential absence. Today the adjoining areas are heavily degraded woodland with evidence of extensive charcoal burning, which could have had an impact on the species but this remains speculative and requires a monitoring program to better understand whether the species is indeed absent or declining.

All members of the spiny-throated reed frog complex have small distributions, with the consequence that all species are classified as threatened in recently compiled IUCN red list assessments. *Hyperolius ruvuensis* sp. n. in particular is of high conservation concern due to the high rates of deforestation in Ruvu South Forest Reserve, and its extremely small extent of occurrence (Table 1, Fig. 4). For all East African spiny-throated reed frogs, it will be important to establish the full extent of their distributions, with future sampling of the Eastern Afromontane and Coastal Forests of Eastern Africa, as these data have important conservation implications.

Beyond the conservation of this newly described species – Ruvu South Forest Reserve and, more broadly, the coastal forests of Tanzania are highly threatened habitats that require further conservation attention. These habitats provide important sustainable resources for human populations (Burgess et al., 1992; Tanzania Forest Conservation Group, 2012) but forest resources are currently being used unsustainably and in many cases, illegally, depleted. The region is currently being subjected to an unprecedented level of human induced habitat change, and without drastic intervention the forests will be entirely lost in the coming years.

ACKNOWLEDGEMENTS

For advice, help with fieldwork, permits for research and export in Tanzania, we thank (in no particular order) Tanzania Commission for Science and Technology (COSTECH research permit RCA 2001-272; RCA 2007-153, RCA 2009-306-NA-2009-201, 2011-239-NA-2011-82, 2006 and 2007-72-NA-2006-19, 2013-341-NA-2013-121), Tanzania Wildlife Research Institute (TAWIRI), and Wildlife Division for granting permission to conduct research in Tanzania and export these specimens.

We are also grateful to many people and organisations that provided assistance in the field, logistical support and advice, including Kim Howell, Wilirk Ngalason, Chacha Werema, Frontier Tanzania, and Tanzania Forest Conservation Group. Mr. Charles Meshack, Bakari Salim, Yahaya Mtonda and Andrew Perkin were instrumental in revisiting the site in 2015. David Emmett collected the *H. ruvuensis* sp. n. specimens and provided valuable information on the type locality habitat. Mark Wilkinson, Jeff Streicher and Patrick Campbell (BMNH), Alan Resetar (FMNH) and Jens Vindum (CAS) are thanked for assisting in loaning of specimens or access to institutional facilities for making measurements of specimens. Miguel Vences, Robert Jehle and two anonymous reviewers are also thanked for advice on earlier drafts.

This work was funded by various organisations including a PhD doctoral scholarship from the Humer Foundation to CB (Humer-Stiftung zur Förderung des wissenschaftlichen Nachwuchses), a ConGenOmics grant from the European Science Foundation (No. 6720 to CB), the Swiss National Science Foundation (No. 31003A-133067 to SPL), Swiss Academy of Sciences, Freiwillige Akademische Gesellschaft Basel, The Centre for African Studies Basel, The University of Basel Kick Start Grant, University of Chicago, and the Field Museum of Natural History Africa Council.

REFERENCES

- Azeria, E.T., Sanmartín, I., Ås, S., Carlson, A. & Burgess, N. (2007). Biogeographic patterns of the East African coastal forest vertebrate fauna. *Biodiversity and Conservation* 16, 883–912.
- Barratt, C.D., Tonelli, E., Menegon, M., Doggart, N., et al. (2014). Fragmented habitats and species: The challenges of amphibian conservation in Tanzania today. *FrogLog* 111, 63–64.
- Burgess, N.D., Clarke, G.P. & Rodgers, W.A. (1998). Coastal forests of eastern Africa: status, endemism patterns and their potential causes. *Biological Journal of the Linnean Society* 64, 337–367.
- Burgess, N.D., Mwasumbi, L.B., Hawthorne, W.J., Dickinson, A. & Doggett, R.A. (1992). Preliminary assessment of the distribution, status and biological importance of coastal forests in Tanzania. *Biological Conservation* 62, 205–218.
- Burgess, N.D. & Clarke, G.P. (eds.). (2000). Coastal Forests of Eastern Africa. IUCN Forest Conservation Programme, Gland, Switzerland and Cambridge, England.
- Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.

Molecular Biology and Evolution 17, 540–552.

- Conservation International. (2015). Coastal Forests of Eastern Africa. Critical Ecosystem Partnership Fund. Available from: http://www.cepf.net/resources/hotspots/africa/ Pages/Coastal-Forests-of-Eastern-Africa.aspx>. Accessed: 9 September 2015.
- Dimitrov, D., Nogués-Bravo, D. & Scharff, N. (2012). Why do tropical mountains support exceptionally high biodiversity? The Eastern Arc Mountains and the drivers of *Saintpaulia* diversity. *PLoS One:* DOI: 10.1371/journal.pone.0048908.
- Edgar, R.C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32, 1792–1797.
- Godoy, F.L., Tabor, K., Burgess, N.D., Mbilinyi, B.P., et al. (2011).
 Deforestation and CO₂ emissions in coastal Tanzania from 1990 to 2007. *Environmental Conservation* 39, 62–71.
- Gwegime, J., Mwangoka, M., Mulungu, E., Perkin, A. & Nowak, K. (2013). The biodiversity and forest condition of Ruvu South Forest Reserve. TFCG Technical Paper 37. Dar es Salaam, Tanzania.
- Hof, C., Araújo, M.B., Jetz, W., Rahbek, C. (2011). Additive threats from pathogens, climate and land-use change for global amphibian diversity. *Nature* 480, 516–519.
- IUCN (2012). IUCN Red List Categories and Criteria: Version 3.1. IUCN Species Survival Commission. IUCN, Gland, Switzerland and Cambridge, UK. ii + 30 pp.
- Kingdon, J. (1989). Island Africa: The Evolution of Africa's Rare Animals and Plants. Princeton University Press, Princeton, New Jersey.
- Lanfear, R., Calcott, B., Ho, S.Y.W., Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution* 29, 1695–1701.
- Lawson, L.P. (2010). The discordance of diversification: evolution in the tropical-montane frogs of the Eastern Arc Mountains of Tanzania. *Molecular Ecology* 19, 4046–4060.
- Lawson, L.P., Bates, J., Menegon, M. & Loader, S.P. (2015). Divergence at the edges: Peripatric isolation in the montane Spiny Throated Reed Frog complex. *BMC Evolutionary Biology* 15, 128.
- Loader, S.P., Lawson, L.P., Portik, D.M. & Menegon, M. (2015). Three new species of spiny throated treefrogs (Anura: Hyperoliidae) from evergreen forests of Tanzania. *BMC Research Notes* 8, 167.
- Loveridge, A. (1942). Scientific results of a fourth expedition to forested areas in east and central Africa. V. Amphibians. *Bulletin of the Museum of Comparative Zoology* XCI, 237– 373.
- Masters, B.C., Fan, V. & Ross, H.A. (2011). Species Delimitation: a Geneious plugin for the exploration of species boundaries. *Molecular Ecology Resources* 11, 154–157.
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B & Kent, J. (2000). Biodiversity hotspots for conservation priorities. *Nature* 403, 853–858.
- Poynton, J.C., Loader, S.P., Sherratt, E. & Clarke, B.C. (2007). Amphibian diversity in East African biodiversity hotspots: altitudinal and latitudinal patterns. *Biodiversity and Conservation* 16, 1103–1118.
- Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014). Tracer v1.6, Available from: http://beast.bio.ed.ac.uk/Tracer>.

- Reid, N.M., Carstens, B.C. (2012). Phylogenetic estimation error can decrease the accuracy of species delimitation:
 a Bayesian implementation of the general mixed Yulecoalescent model. *BMC Evolutionary Biology* 12, 196.
- R Development Core Team. (2013). *R: A language and environment for statistical computing.* R Foundation for Statistical Computing Vienna, Austria. Available from: http://www.R-project.org.
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* 61, 539–542.
- Roy, M.S., Da Silva, J.M.C., Arctander, P., Garcia-Moreno, J., Fjeldså, J. (1997). The speciation of South American and African birds in montane regions. In *Avian molecular evolution and systematics*. San Diego : Academic Press, Incorporated, p. 325–343.

assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247.

- Stamatakis, A. (2014). RAxML Version 8: a tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. *Bioinformatics* 30, 1312–1313.
- Stuart, S.N., Chanson, J.S., Cox, N.A., Young, B.E., et al. (2004). Status and trends of amphibian declines and extinctions worldwide. *Science* 306, 1783–1786.

Tanzania Forest Conservation Group. (2012). *Coastal forests under threat*. Available from: <http://coastalforests.tfcg. org/threats.html>. Accessed: 9 September 2015.

Venables, W.N. & Ripley, B.D. (2002). *Modern Applied Statistics* with S. Springer. New York.

Wickham, H. (2009). *Ggplot2: Elegant Graphics for Data Analysis*. Springer. New York.

Shimodaira, H. & Hasegawa, M. (2001). CONSEL: for

Accepted: 14 December 2015

Please note that the Appendix for this article is available online via the Herpetological Journal website (http://www.thebhs.org/pubs_journal_online_appendices.html)

Synthesis

Synthesis

"The coastal forests are interpreted as a 'vanishing refuge' with the endemic species gradually becoming more and more relict (and presumably extinct) due historically to climatic desiccation and more recently to human destruction" – Burgess et al. (1998).

The research in this thesis provides the most extensive biodiversity assessment to date for the amphibians of the coastal forests of Eastern Africa biodiversity hotspot, and demonstrates the intricate interplay between current biodiversity patterns and the environment. Previous biodiversity assessments of the coastal forest region have showed that several coastal forest patches support a disproportionately high number of endemic species, and that these places are best interpreted as refugia where species have become increasingly relictualized due to environmental change and human activity (Burgess et al. 1998). Though this information vastly improved our knowledge of the coastal forest region, the patterns were inferred by aggregating relatively coarse-scale species distributions, and did not include molecular data, which is particularly important to test the links between biodiversity patterns and past environmental change. This thesis was dedicated to understanding coastal forest biodiversity patterns in finer spatial detail, by using modelling approaches and molecular data for the whole amphibian assemblage, along with spatial analyses of environmental data.

Using next generation sequencing (RAD-seq) datasets, I demonstrated that intraspecific relationships and cryptic diversity patterns can be well resolved, even for poorly understood species clades (chapter I), and that knowledge of these intraspecific relationships can be applied to broader scale analyses of endemism using phylogenies and spatial data (Rosauer et al., 2009). By accounting for intraspecific diversity within phylogenybased endemism analyses, I showed that endemism can be measured using phylogenetic branch lengths and spatial rarity, and used to identify places where high levels of evolutionary history have accumulated. These places have significant conservation value because they hold a disproportionately high amount of unique biodiversity. With my analyses, I showed that these data can improve knowledge of endemism patterns, with thirty-five distinct lineages within several species that are endemic to specific microrefugia (chapter II). Importantly my work has led to the identification of three previously unrecognised endemic areas in Tanzania, which are likely to be of critical conservation concern. Accounting for intraspecific diversity in biodiversity assessment is a growing field (Rosauer et al., 2015; Tarroso et al., 2015), and enables a broader perspective on biodiversity conservation, especially in poorly understood tropical regions where cryptic diversity is often high (Miraldo et al., 2016). Phylogeny-based measures of endemism for the complete species assemblage of amphibians (fifty-five species) in the region demonstrate that places supporting high numbers of species do not necessarily correspond to high levels of evolutionary history, and that complex mixtures of ancient paleo-endemic and recent neo-endemic diversity are present within the coastal forest region. In line with previous work I proved that coastal forests surrounding the lowland Eastern Afromontane region are dominated by ancient relicts, and should be considered as museums of diversity but also that there are several areas that have facilitated recent evolution, along with mixtures of endemism types (chapter III).

With environmental data, I demonstrated that genetic diversity within species (chapter I) is strongly linked to past environmental stability dating as far back as the late Pliocene (ca. 3 mya), topography, and the spatial structure of hydrological basins. For analyses of biodiversity patterns incorporating intraspecific diversity

(chapter II), I showed that higher phylogenetic endemism is clustered in places with benign current climate, that have experienced habitat and climate stability since at least the late Quaternary, but most probably further back in time. Together, analyses of genetic diversity and endemism patterns in this thesis strongly support the hypothesis that several major areas of coastal forest are refugia, and especially around the lowland parts of the Eastern Afromontane. These refugia have allowed biodiversity to persist over time while climate change and anthropogenic activities have reduced forest cover across East Africa. The spatial analyses I undertook in chapters II and IV indicate that many of these refugia are highly threatened and poorly conserved, and the description of the coastal forests as a "vanishing refuge" (Burgess et al. 1998) is appropriate given the ancient diversity they support and their highly threatened status.

Caveats

There are a number of limitations regarding the molecular data analysed in this thesis that need to be outlined. Although DNA barcoding is an important tool for confirming species identifications of poorly known tropical taxa, it is by no means a 'silver bullet' solution to quantifying biodiversity. Using only mitochondrial DNA for large scale phylogenetic reconstruction is not optimal as it does not capture all population level processes because it is only maternally inherited (Hoelzer, 1997). Though our phylogeneis used for phylogenetic endemism estimates in chapter II and III represent expected species relationships, extra nuclear genes should ideally be sequenced to help to fully resolve the trees and account for the shortcomings of mitochondrial DNA. In addition, a lack of adequate fossil data for African amphibians hinders the calibration of accurately dated phylogenies which are particularly useful for verifying the topology and branch length estimation across phylogenies. The dated Bayesian phylogenies in this thesis (chapter II and III) were built using secondary calibrations, which are based on previous results of molecular dating studies to infer the timing of divergence dates on specific parts of the phylogeny. Although methods to estimate evolutionary divergence times have improved a great deal since the first introduction of the molecular clock (Morlon et al., 2011), the use of secondary calibrations still remain suboptimal. Secondary calibrations offer a relatively good estimate of phylogenetic relationships when no fossil data is available, but are no substitute, in many cases failing to accurately reproduce results from primary fossil data studies (Schenk, 2016).

Despite large quantities of sequence data for the RAD-seq analyses in chapter I, accurate fine-scale population structure is difficult to detect because of a lack of dense population sampling, however broad-scale phylogeographic patterns were well resolved. The RAD-seq strategy was designed to account for wide geographical sampling, which enabled the detection of broad spatial patterns that are evident in each study. However, to gain a better understanding of population processes, such as estimating effective population sizes, inbreeding co-efficients and identifying genetic bottlenecks in isolated populations, larger numbers of individuals from each locality would be required (Luikart et al., 1998). Such sampling intensity was beyond the scope of this PhD. With denser population sampling, it would also be possible to examine demographic histories of specific populations in more detail, which may be particularly informative for supporting the existence of refugia in the coastal forests highlighted in chapters II and III. Identifying distinct colonization events that may have led to current population structure would have been particularly informative (Gutenkunst et al., 2009; Pickrell & Pritchard, 2012). Chapter IV, which describes a new species of frog that has not been seen since 2001, reminds us that despite the rapid developments in sequencing technologies, taxonomy and systematic work still remains

an essential part of biodiversity assessment. Formal descriptions of species, and not molecular based units of biodiversity, are fundamental to designate threat status, and remain the cornerstone of current conservation policy.

The spatial sampling in this thesis is comprehensive, though is still restricted mainly to the coastal forests of Tanzania and southern Kenya (chapters II, III and IV) where sampling intensity is now relatively even. Inadequate sampling across coastal forests in Mozambique, northern Kenya and Somalia, both in terms of DNA samples but also geographic records restricts the inferences that can be made about these areas, even with the use of species distribution modelling techniques. Species distribution modelling has provided great promise for biodiversity and conservation, to estimate distributions of biodiversity but is not without its pitfalls (Elith & Leathwick, 2009; Merow et al., 2013). The quality of environmental data, both for species distribution modelling and for environmental correlation analyses presented in this thesis is not optimal. The environmental data I used within this thesis is based on data recorded from a low number of weather stations and then interpolated to produce global climate layers (Hijmans et al., 2005). This interpolated data is imperfect, due to its failure to capture local scale climate variation accurately in some cases, but is currently the only available opportunity for investigating paleo-climatic history. New cloud-cover based climate layers from remote sensing data (Wilson & Jetz, 2016) deal with the problem of data interpolation, and offer great promise for biodiversity monitoring in the future, though they are not vet applicable to paleo-climate models. In this thesis, species distribution modelling approaches are somewhat crude, and must be interpreted carefully as they may overestimate distributions of species and lineages based on inaccurate measures of habitat suitability. When building and assessing species distribution models I accounted for all possible errors to maximise their quality (Merow et al. 2013), and adopted further quality checking including comparing known distributions to IUCN range maps. A further problem of the species distribution models in this thesis are that the anthropogenic impacts by humans are not accounted for sufficiently by the environmental data, and many of the refugia detected may actually be much smaller due to human activities which the environmental data is unable to verify. The species distribution models and detection of refugia based on phylogenetic endemism scores ideally need to be ground-truthed with future survey work, though the inaccessibility of many areas in the tropics due to steep topography or political problems still remains one of the biggest stumbling blocks to fully understanding tropical biodiversity patterns worldwide.

Shortcomings in our knowledge and future research directions

The work in this thesis has made several advances in understanding the biodiversity patterns and environmental correlates of amphibians in the coastal forests of East Africa, including using phylogenetic data to validate some of the previous hypotheses about the biodiversity of the region (Burgess et al., 1998; Azeria et al., 2007). However, my research does not answer all of the questions about this regions rich biodiversity, and a number of fruitful avenues for future research are summarized below.

Quantifying tropical diversity

The tropics are known to support high levels of biodiversity, though this is often poorly categorized (Magurran, 2004) and subject to exceptionally high anthropogenic threat (Kolbert, 2014). Rapid biodiversity assessments facilitated by DNA barcoding (chapter I, II, III) and next generation sequencing (chapter I) are already becoming an increasingly important aspect of biodiversity conservation (Taberlet et al. 2012, Joly & Faure, 2015) that can provide higher resolution estimates of biodiversity patterns. In the future, molecular methods are set to increase

in importance, and next generation sequencing in particular provide data that are useful for unravelling relationships in taxonomically complex groups as I demonstrated (chapter I). These methods are already being employed in South and East Africa for plants (Lexer et al., 2013, 2014), fish (Wagner et al., 2013; Brawand et al., 2014) and small mammals (Demos et al., 2015) but the RAD-seq approach adopted in this thesis was the first ever application for amphibians in this region, and provides a case study of how this can be applied to understand cryptic diversity. Expansion of these methods is likely to continue for other taxa, and exciting times lie ahead for quantifying tropical biodiversity, though it is a race to categorize biodiversity before it disappears, as sadly may be the case with the new species described in chapter IV. Though we clearly still have a long way to go to fully explain the diversity of the tropics, the molecular tools at our disposal, their decreasing cost, and massive online repositories of available sequence data to identify species will aid the challenge significantly. In the future, I would suggest that sampling efforts are targeted within and around the endemism hotpots identified within this thesis, not only for amphibians but also for other taxonomic groups, and in particular reptiles, which are another poorly understood taxonomic group in this region. The development of a facility for in-country DNA barcoding, although difficult to establish and maintain, would come relatively cheap, and provide an exceptionally timely boost to the categorization of biodiversity and subsequent conservation efforts of the coastal forest region. This should be combined with the ongoing collection of geo-referenced DNA samples and species records by local organization and international collaborations. The subsequent databasing and open access publication of biodiversity data in findable, accessible, interoperable and reusable formats (Wilkinson et al., 2016) will therefore be essential to communicate biodiversity knowledge to stakeholders and policymakers.

Phylogenetics to identify centres of endemism and refugia

I have shown that the adoption of phylogenetic community-based biodiversity metrics such as phylogenetic endemism (chapters II and III) provide an efficient means of incorporating molecular data into biodiversity assessment and identifying refugia (Purvis et al., 2005; Rolland et al., 2012). Furthermore, branch-length based estimates of biodiversity enable the evolutionary history of an area to be categorized depending on the type of endemism present (chapter III), which may be particularly relevant for making conservation decisions, such as the conservation prioritization of ancient (paleo-endemic) diversity (Avise, 2008; Mishler et al., 2014). Refinements of these methods are ongoing (Tucker et al., 2016) alongside improved modelling techniques for distribution data (Merow et al. 2016). These methods are already being applied at global (Fritz & Rahbek, 2012; Rosauer & Jetz, 2015), and continental scales to predict the effects of future climate change on biodiversity (González-Orozco et al., 2016). However, at the scale of the African continent they are sorely lacking, and I aim to continue my research to aid biodiversity knowledge in Africa. Excitingly, improvements to our knowledge of the tree of life such as near-complete phylogenies (Jetz et al., 2012; Faurby & Svenning, 2015; Tonini et al., 2016), and the availability of matching spatial datasets (BirdLife & NatureServe, 2014; IUCN, 2015; GARD, 2017) enable phylogenetic endemism analyses to be conducted comprehensively for the first time across Africa. With these available phylogenetic and spatial datasets across multiple taxonomic groups, large scale analyses of African diversity becomes possible, especially by accounting for evolutionary history to allow the identification of centres of endemism and refugia. Advances in complementarity-based spatial conservation prioritization software (Leathwick et al., 2010) now facilitate conservation prioritization based on biodiversity patterns informed by evolutionary history (Pollock et al., 2015), but can also take into account aspects of functional diversity (Tilman

et al. 1997, Petchey et al. 2002). Combined with molecular data, I believe that these approaches can be employed to establish the optimal configuration of protected area networks that most efficiently capture biodiversity across taxonomic groups at broad scales which may be key to implementing a cohesive conservation plan which has so far been lacking in Africa (Brooks et al., 2001). At fine-scales, such as across the coastal forests of Eastern Africa, high resolution analyses of endemism patterns may help to protect ecosystem function and services which may be integral to the maintenance of this rich biodiversity (Cardinale et al., 2012). In a global context it is critically important to fill in biodiversity threat gaps by synthesizing available high quality biodiversity datasets that are up to date, assessed by experts, and repeated over time in appropriate spatial resolutions (Joppa et al., 2016). The ongoing collection of biodiversity data that meets these criteria will provide the basis for assessing anthropogenic biodiversity threats and how these can be counteracted to preserve biodiversity in the future.

Conclusion

This thesis has demonstrated that amphibian biodiversity is unevenly distributed across the Coastal forests of Eastern Africa, and that environmental factors, and in particular long term-stability, play a key role in the spatial distribution of this biodiversity. With this work I have shown that molecular data is key to the ongoing categorization of biodiversity in rich tropical regions, and that next generation sequencing in particular can resolve difficult taxonomic groups, and holds rich promise for future tropical research. The phylogenetic endemism measure that I used demonstrates how community evolutionary history can be measured to identify refugia, and the categorization of these endemism types showed that coastal forests are mainly museums of diversity supporting the persistence of ancient paleo-endemic lineages, but in some cases cradles that support recently evolved neo-endemics. Together, the analyses within this thesis support previously described centres of endemism in the coastal forest region, proving this with phylogenetic data for the first time. With spatial analyses I confirmed that many areas supporting high levels of endemism are highly threatened and poorly conserved, and it is critical that conservation efforts in this region are increased to protect the biodiversity that exists in these places.

References

- Avise J.C. (2008) Colloquium paper: three ambitious (and rather unorthodox) assignments for the field of biodiversity genetics. *Proceedings of the National Academy of Sciences*, **105 Suppl**, 11564–70.
- Azeria E.T., Sanmartin I., As S., Carlson A., & Burgess N. (2007) Biogeographic patterns of the East African coastal forest vertebrate fauna. *Biodiversity and Conservation*, **16**, 883–912.
- BirdLife & NatureServe (2014) Bird species distribution maps of the world. Available at: http://datazone.birdlife.org/. Accessed on 1st March 2017.
- Brawand D., Wagner C.E., Li Y.I., Malinsky M., Keller I., Fan S., Simakov O., Ng A.Y., Lim Z.W., Bezault E., Turner-Maier, J. Johnson J., Alcazar R., Noh H.J., Russell P., Aken B., Alföldi J., Amemiya C., Azzouzi N., Baroiller J.-F., Barloy-Hubler F., Berlin A., Bloomquist R., Carleton K.L., Conte M. a., D'Cotta H., Eshel O., Gaffney L., Galibert F., Gante H.F., Gnerre S., Greuter L., Guyon R., Haddad N.S., Haerty W., Harris R.M., Hofmann H., Hourlier T., Hulata G., Jaffe D.B., Lara M., A.P. L., MacCallum I., Mwaiko S., Nikaido M., Nishihara H., Ozouf-Costaz C., Penman D.J., Przybylski D., Rakotomanga M., Renn S.C.P., Ribeiro F.J., Ron M., Salzburger W., Sanchez-Pulido L., Santos M.E., Searle S., Sharpe T., Swofford R., Tan F.J., Williams L., Young S., Yin S., Okada N., Kocher T.D., Miska E. a., Lander E.S., Venkatesh B.,

Fernald R.D., Meyer A., Ponting C.P., Streelman J.T., Lindblad-Toh K., Seehausen O., & Di Palma F. (2014) The genomic substrate for adaptive radiation in African cichlid fish. *Nature*, **513**, 375-381.

- Brooks T., Balmford A., Burgess N., Fjeldså J., Hansen L., Moore J., Rahbek C., & Williams P. (2001) Toward a Blueprint for Conservation in Africa. *BioScience*, **51**, 613.
- Burgess N.D., Clarke G.P., & Rodgers W.A. (1998) Coastal forests of eastern Africa: status, endemism patterns and their potential causes. *Biological Journal of the Linnean Society*, **64**, 337–367.
- Cardinale B.J., Duffy J.E., Gonzalez A., Hooper D.U., Perrings C., Venail P., Narwani A., Mace G.M., Tilman D., A.Wardle D., Kinzig A.P., Daily G.C., Loreau M., Grace J.B., Larigauderie A., Srivastava D.S., & Naeem S. (2012) Biodiversity loss and its impact on humanity. *Nature*, 489, 326–326.
- Demos T.C., Kerbis Peterhans J.C., Joseph T.A., Robinson J.D., Agwanda B., & Hickerson M.J. (2015) Comparative population genomics of African montane forest mammals support population persistence across a climatic gradient and quaternary climatic cycles. *PLoS ONE*, **10**, e031800.
- Elith J. & Leathwick J.R. (2009) Species Distribution Models : Ecological Explanation and Prediction Across Space and Time. *Annual Review of Ecolocy, Evolution and Systematics*, **40**, 677-697.
- Faurby S. & Svenning J.C. (2015) A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. *Molecular Phylogenetics and Evolution*, 84, 14– 26.
- Fritz S.A. & Rahbek C. (2012) Global patterns of amphibian phylogenetic diversity. *Journal of Biogeography*, *39*, 1373–1382.
- González-Orozco C.E., Pollock L.J., Thornhill A.H., Mishler B.D., Knerr N., Laffan S.W., Miller J.T., Rosauer D.F., Faith D.P., Nipperess D.A., Kujala H., Linke S., Butt N., Külheim C., Crisp M.D., & Gruber B. (2016) Phylogenetic approaches reveal biodiversity threats under climate change. *Nature Climate Change*, 1, 1–6.
- Gutenkunst R.N., Hernandez R.D., Williamson S.H., & Bustamante C.D. (2009) Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data. *PLoS Genetics*, 5, e1000695.
- Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., & Jarvis A. (2005) WORLDCLIM a set of global climate layers (climate grids). *International Journal of Climatology*, 25, 1965–1978.
- Hoelzer G.A. (1997) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nucleargene trees revisited. *Evolution*, **51**, 622–626.
- IUCN (2015) IUCN Red List of Threatened Species. *Version 2015.3*, Available from: http://www.iucnredlist.org. Accessed: 3rd February 2017.
- Jetz W., Thomas G.H., Joy J.B., Hartmann K., & Mooers A.O. (2012) The global diversity of birds in space and time. *Nature*, **491**, 444–448.
- Joly D. & Faure D. (2015) Next-generation sequencing propels environmental genomics to the front line of research. *Heredity*, **114**, 429–430.
- Joppa L.N., O'Connor B., Visconti P., Smith C., Geldmann J., Hoffmann M., Watson J.E.M., Butchart S.H.M., Virah-Sawmy M., Halpern B.S., Ahmed S.E., Balmford A., Sutherland W.J., Harfoot M., Hilton-Taylor C., Foden W., Minin E. Di, Pagad S., Genovesi P., Hutton J., & Burgess N.D (2016) Filling in biodiversity threat gaps. *Science*, **352**, 416–418.

Kolbert E. (2014) The Sixth Extinction. Henry Holt & Co.

- Leathwick J.R., Moilanen A., Ferrier S., & Julian K. (2010) Complementarity-based conservation prioritization using a community classification, and its application to riverine ecosystems. *Biological Conservation*, 143, 984–991.
- Lexer C., Mangili S., Bossolini E., Forest F., Stölting K.N., Pearman P.B., Zimmermann N.E., & Salamin N. (2013) "Next generation" biogeography: towards understanding the drivers of species diversification and persistence. *Journal of Biogeography*, **40**, 1013–1022.
- Lexer C., Wüest R.O., Mangili S., Heuertz M., Stölting K.N., Pearman P.B., Forest F., Salamin N., Zimmermann N.E., & Bossolini E. (2014) Genomics of the divergence continuum in an African plant biodiversity hotspot, I: drivers of population divergence in *Restio capensis* (Restionaceae). *Molecular Ecology*, 23, 4373–4386.
- Luikart G., Allendorf F.W., Cornuet J.M., & Sherwin W.B. (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. *Journal of Heredity*, **89**, 238–247.
- Magurran A. (2004) Introduction: measurement of (biological) diversity. *Measuring Biological Diversity*, p. 1–17. Blackwell Science Ltd.
- Merow C., Smith M.J., & Silander J.A. (2013) A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. *Ecography*, **36**, 1058–1069.
- Merow C., Allen J.M., Aiello-Lamens M., Silander J.A. Jr (2016) Improving niche and range estimates with Maxent and point process models by integrating spatially explicit information. *Global Ecology and Biogeography*, 25, 1022-1036.
- Miraldo A., Li S., Borregaard M.K., Florez-Rodriguez A., Gopalakrishnan S., Rizvanovic M., Wang Z., Rahbek C., Marske K.A., & Nogues-Bravo D. (2016) An Anthropocene map of genetic diversity. *Science*, 353, 1532–1535.
- Mishler B.D., Knerr N., González-Orozco C.E., Thornhill A.D., Laffan S.W., & Miller J.T. (2014) Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. *Nature Communications*, 5, 4473.
- Morlon H., Parsons T.L., & Plotkin J.B. (2011) Reconciling molecular phylogenies with the fossil record. *Proceedings of the National Academy of Sciences*, **108**, 16327–16332.
- Pickrell J.K. & Pritchard J.K. (2012) Inference of population splits and mixtures from genome-wide allele frequency data. *PLoS Genetics*, **8**, e1002967.
- Pollock L.J., Rosauer D.F., Thornhill A.H., Kujala H., Crisp M.D., Miller J.T., & McCarthy M.A. (2015)
 Phylogenetic diversity meets conservation policy: small areas are key to preserving eucalypt lineages.
 Philosophical Transactions of the Royal Society London B Biological Sciences, **370**, 20140007.
- Purvis A., Gittleman J.L., & Brooks T.M. (2005) *Phylogeny and Conservation*. 448 pp. Cambridge University Press.
- Rolland J., Cadotte M.W., Davies J., Devictor V., Lavergne S., Mouquet N., Pavoine S., Rodrigues A., Thuiller W., Turcati L., Winter M., Zupan L., Jabot F., & Morlon H. (2012) Using phylogenies in conservation: new perspectives. *Biology Letters*, 8, 692–694.
- Rosauer D., Laffan S.W., Crisp M.D., Donnellan S.C., & Cook L.G. (2009) Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. *Molecular Ecology*, **18**,

4061-4072.

- Rosauer D.F., Catullo R.A., Vanderwal J., & Moussalli A. (2015) Lineage range estimation method reveals finescale endemism linked to Pleistocene stability in Australian rainforest herpetofauna. *PLoS ONE*, 10, e0126274.
- Rosauer D.F. & Jetz W. (2015) Phylogenetic endemism in terrestrial mammals. *Global Ecology and Biogeography*, 24, 168–179.
- Schenk J.J. (2016) Consequences of secondary calibrations on divergence time estimates. *PLoS ONE*, **11**, DOI:10.1371/journal.pone.014822.
- Schmidt-Lebuhn A.N., Knerr N.J., Miller J.T., & Mishler B.D. (2015) Phylogenetic diversity and endemism of Australian daisies (Asteraceae). *Journal of Biogeography*, **42**, 1114–1122.
- Taberlet P., Coissac E., Pompanon F, Brochmann C., Willerslev E. (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. *Molecular Ecology* **21**, 2045-2050.
- Tarroso P., Velo-Antón G., & Carvalho S.B. (2015) PHYLIN: An R package for phylogeographic interpolation. *Molecular Ecology Resources*, 15, 349–357.
- Tonini J.F.R., Beard K.H., Ferreira R.B., Jetz W., & Pyron R.A. (2016) Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. *Biological Conservation*, **204**, 23–31.
- Tucker C.M., Cadotte M.W., Carvalho S.B., Davies T.J., Ferrier S., Fritz S.A., Grenyer R., Helmus M.R., Jin L.S., Mooers A.O., Pavoine S., Purschke O., Redding D.W., Rosauer D.F., Winter M., & Mazel F. (2016)
 A guide to phylogenetic metrics for conservation, community ecology and macroecology. *Biological Reviews*, doi: 10.1111/brv.12252.
- Wagner C.E., Keller I., Wittwer S., Selz O.M., Mwaiko S., Greuter L., Sivasundar A., & Seehausen O. (2013) Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. *Molecular Ecology*, 22, 787–798.
- Wilkinson M.D., Dumontier M., Aalbersberg Ij.J., Appleton G., Axton M., Baak A., Blomberg N., Boiten J.-W., da Silva Santos L.B., Bourne P.E., Bouwman J., Brookes A.J., Clark T., Crosas M., Dillo I., Dumon O., Edmunds S., Evelo C.T., Finkers R., Gonzalez-Beltran A., Gray A.J.G., Groth P., Goble C., Grethe J.S., Heringa J., 't Hoen P., Hooft R., Kuhn T., Kok R., Kok J., Lusher S.J., Martone M.E., Mons A., Packer A.L., Persson B., Rocca-Serra P., Roos M., van Schaik R., Sansone S.-A., Schultes E., Sengstag T., Slater T., Strawn G., Swertz M., Thompson M., van der Lei J., van Mulligen E., Velterop J., Waagmeester A., Wittenburg P., Wolstencroft K., Zhao J., & Mons B. (2016) The FAIR Guiding Principles for scientific data management and stewardship. *Scientific Data*, **3**, 160018.
- Wilson A.M. & Jetz W. (2016) Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions. *PLoS Biology*, 14, e1002415.

Acknowledgements

I am extremely thankful for the opportunity to have conducted this research, and I would like to acknowledge many people and organisations for supporting me on the long road to the completion of this PhD.

Simon - you provided the opportunity for me to pursue my fascination with East African amphibians, and have been nothing short of an inspiration to me. Your support and encouragement drove me to work my socks off to complete this thesis, and you always inspired new ideas and allowed me to grow as a scientist. I have been very lucky to have you as a boss and a friend, and it has been an abosolute privilege to have worked with you on this project! Prof. Peter Nagel, I am very grateful to you for providing the foundation and support within the institute to plan and complete this work. You have always supported the research of our group, and I thank you for sharing interest with your broad knowledge of African biodiversity. The Centre for African Studies in Basel and in particular Veit Arlt are thanked for supporting this project. I also thank the secretaries, Ruth and Rosi for helping me to settle in Basel, and also for assistance with complicated documents containing unpronounceable German words!

I probably would not have came to Basel were it not for Robert Jehle my former MSc supervisor, whose openness and ideas resulted in not just my first publication, but my first attendance at scientific conferences - including the African amphibian working group in Trento 2012, which indirectly led to me embarking on this PhD. Robert enabled me to make my first steps into academia, and to make my important link with Simon.

The first half-year of my PhD was dominated by fieldwork in Tanzania, and though it was sometimes stressful and tiring working alone I very much appreciated the company of colleagues and friends who spent a little time with me in the field – especially Simon, Bibi, Peter and Jan on short separate trips in southern Tanzania. I am also very thankful to Ele who travelled with me in northern Tanzania and spent substantial time in local forestry offices for permits and collecting frogs. Thanks especially to local kiongozi Hassan Mpanga, who despite being barely 5 feet tall and unable to touch the floor when sat on his motorbike somehow managed to transport me on dirt roads along with all my equipment between several forest patches in Lindi region! A great deal of local advice for coastal forests in Tanzania came from Kim Howell, Wilirk Ngalason and Chacha Werema (University of Dar es Salaam) and Nike Doggart (Tanzania Forest Conservation Group). A number of people who allowed me to work in their collections must also be acknowledged - thank you David Gower, Mark Wilkinson, John Poynton (NHM London), and Michele Menegon (MUSE). Also thanks to a bunch of people who provided specimen or DNA samples for this research – Lucinda Lawson, Breda Zimkus, Joanna Larson, Dan Portik, Werner Conradie, Harith Farooq, Hendrik Müller and Alan Channing. I thank Marius Rösti and Walter Salzburger for guidance and preparation of next generation sequencing libraries and the use of the Salzburger lab, along with Jeff Streicher, Simon Maddock and Marco Crotti from NHM London for useful discussions about RAD-seq data.

My life in Switzerland has been enriched by a number of wonderful people, with lots of tea and cake (soil cake anyone?), barbecues, Rhine swimming, hiking, parties and of course beer drinking, mainly in the wonderful Johannitterbar. Many colleagues and friends (in no particular order here) have been an integral part of my life the last 3.5 years – Simon, Bibi, Beryl, Chris, Reto, Natalia, Juliane, Vlad, Kiran, Brice, Rob, Zuza, Lindsey, Georg, Phil, Flo, Henri, Tobias, Silvio, Lena, Lena, Steve, Julian, Vany, Aleks - I thank you for all the good times and

friendship we have shared, and I am sure we will keep in touch, wherever we all end up! I am appreciative to my old friends in Manchester too for always being available whenever I got the chance to come back to drink beer and take some time off from work – thanks for being there Connell, Sumner, Stevie D, Kev and Nick! Thanks too to my new friends and family in the Netherlands for your openness and support! I'm also very thankful to Daniel Kissling who allowed me recently to join his group in Amsterdam for the final push of my thesis writing, and had a very positive effect on my work.

Thank you to my family - my parents, Gill and Steve, and my sisters Claire and Amy who have supported me throughout my entire life, in every endeavour. As far back as I can remember I've always been mezmerised by the natural world – whether that be catching grasshoppers in buckets, studying rockpools on Cawsand beach, fishing trips at Penlee point, collecting frogs in leftover sweet jars or watching David Attenborough programmes open-mouthed on early Sunday evenings! I also thank my extended family, including John and Luke for always making trips home a lot of fun – especially with Ollie and the new arrivals!

Renske, my lovely lady – thank you for all of your insight, encouragement and positivity - you have helped me through these stressful last months, and all of the things we have done and places we have travelled to have helped me stay sane (mostly). I'm so grateful that we met - every day is like a holiday, and being with you anywhere is wonderful. I can't wait to see what we do next together!

Finally, I would like to thank Prof. Neil Burgess for taking on the important role of external examiner for my thesis, and Prof. Eberhard Parlow for agreeing to chair my defence.

This PhD was funded by the Humer foundation for Academic talent and the Freiwilligen Akademischen Gesellschaft Basel.

Supplementary Materials

DNA Barcoding

A large-scale DNA barcoding project formed the basis of this thesis, with use of existing sequence data from within Dr. Simon Loader's lab group at the University of Basel (ca. 200 genetic samples). My own field work across the Tanzanian coastal forests provided almost 1000 genetic samples which contributed to this database, and several hundred additional samples from Kenya, Mozambique and Malawi were obtained. The following people and institutions contributed to the additional samples collected, either from tissue loans or recent field work, resulting in a total of 1,532 amphibian DNA samples from the coastal forests and surrounding areas:

Simon P. Loader (University of Basel)
Beryl Akoth Bwong (National Museums of Kenya)
Gabriela Bittencourt-Silva (University of Basel)
Michele Menegon (Museum of Science, Trento, Italy)
David Gower, Mark Wilkinson, John Poynton (Natural History Museum, London)
Hendrik Mueller (University of Jena, Germany)
Lucinda Lawson (Field Museum of Natural History, Chicago, USA)
Breda Zimkus, Joanna Larson (Museum of Comparative Zoology, Harvard, USA)
Daniel Portik (Museum of Vertebrate Zoology, Berkeley, USA)
Werner Conradie (Port Elizabeth museum, South Africa)
Harith Farooq (University of Western Cape, Cape Town, South Africa)
Kim Howell (University of Dar es Salaam, Tanzania)

For each sample, genomic DNA was first extracted using the DNeasy Blood & Tissue Kit (Qiagen). To generate DNA barcode data, the commonly used mitochondrial *16S* rRNA gene (Vences et al. 2005) was amplified, and the PCR products were visualized under UV light on 1.5% agarose gels. PCR products of expected size (ca. 500 base pairs) were Sanger sequenced by Microsynth AG sequencing facility, Balgach, Switzerland. Sequence data was cleaned and verified using Codoncode Aligner 7.0.1 (CodonCode Corporation, Dedham, Massachusetts, USA), and consensus sequences were queried against existing GenBank sequences using the NCBI BLAST tool (NCBI Resource Coordinators, 2016) to verify species identifications. All sequences were given a unique ID number, and the sequence, locality data, voucher specimen GPS coordinates were recorded in an internal MySQL database created by Reto Hagmann (Table S1).

Table S1. All coastal forest amphibians used in this PhD thesis, including their unique ID numbers (T no.), Species IDs, Voucher numbers, and locality data including GPS coordinates (WGS84 format).

T no.	Species ID	Voucher ID	Cnt	Locality	Long	Lat
T1942	Afrixalus brachycnemis	BM 2002.376	ΤZ	Ruvu South	38.878	-6.948
T1944	Afrixalus brachycnemis	BM 2002.997	ΤZ	Uluguru	37.838	-7.179
T1951	Afrixalus brachycnemis	BM 2005.915	ΤZ	Kazizumbwi	39.040	-6.945
T1952	Afrixalus brachycnemis	BM 2002.372	ΤZ	Ruvu South	38.813	-6.895
T2710	Afrixalus brachycnemis	HM 1660	MWI	Thyolo town, Thyolo	35.137	-16.063
T2711	Afrixalus brachycnemis	HM 1661	MWI	Thyolo town, Thyolo	35.137	-16.063
T3427	Afrixalus brachycnemis	CB 13.338	ΤZ	Nyamuete FR, Pwani, Tanzania	39.034	-8.326
T3428	Afrixalus brachycnemis	CB 13.339	ΤZ	Nyamuete FR, Pwani, Tanzania	39.034	-8.326
T3429	Afrixalus brachycnemis	CB 13.340	ΤZ	Nyamuete FR, Pwani, Tanzania	39.034	-8.326
T3434	Afrixalus brachycnemis	CB 13.345	ΤZ	Nyamuete FR, Pwani, Tanzania	39.034	-8.326
T3712	Afrixalus brachycnemis	CB 13.504	ΤZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3713	Afrixalus brachycnemis	CB 13.505	ΤZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3714	Afrixalus brachycnemis	CB 13.506	ΤZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3715	Afrixalus brachycnemis	CB 13.507	ΤZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3716	Afrixalus brachycnemis	CB 13.508	ΤZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3717	Afrixalus brachycnemis	CB 13.509	ΤZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3832	Afrixalus brachycnemis	CB 13.626	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3833	Afrixalus brachycnemis	CB 13.627	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3834	Afrixalus brachycnemis	CB 13.628	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3835	Afrixalus brachycnemis	CB 13.629	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3836	Afrixalus brachycnemis	CB 13.630	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3837	Afrixalus brachycnemis	CB 13.631	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3838	Afrixalus brachycnemis	CB 13.632	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3853	Afrixalus brachycnemis	CB 13.647	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3854	Afrixalus brachycnemis	CB 13.648	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3855	Afrixalus brachycnemis	CB 13.649	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3856	Afrixalus brachycnemis	CB 13.650	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3857	Afrixalus brachycnemis	CB 13.651	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4087	Afrixalus brachycnemis	CB 13.737	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4088	Afrixalus brachycnemis	CB 13.738	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4089	Afrixalus brachycnemis	CB 13.739	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4090	Afrixalus brachycnemis	CB 13.740	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4091	Afrixalus brachycnemis	CB 13.741	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4092	Afrixalus brachycnemis	CB 13.742	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4093	Afrixalus brachycnemis	CB 13.743	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4094	Afrixalus brachycnemis	CB 13.744	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4236	Afrixalus brachycnemis	CB 13.886	TZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4762	Afrixalus brachycnemis	MMA-16	MZ	Mnt Mabu	36.588	-16.313
T5020	Afrixalus brachycnemis	BM 2002.373	ΤZ	Ruvu South FR	38.813	-6.895
T5021	Afrixalus brachycnemis	BM 2002.374	TZ	Ruvu South FR	38.878	-6.948
T5021	Afrixalus brachycnemis	BM 2002.375	TZ	Ruvu South FR	38.878	-6.948
T5382	Afrixalus brachycnemis	MVZ 265821	MZ	Serra Jeci Grassland drainage banana plant 1	35.173	-12.86
T5383	Afrixalus brachycnemis	MVZ 265822	MZ	Serra Jeci Grassland drainage banana plant 1	35.173	-12.86
T5384	Afrixalus brachycnemis	MVZ 265823	MZ	Serra Jeci Grassland savannah pond	35.184	-12.87
T5389	Afrixalus brachycnemis	MVZ 265824	MZ	Namuli, grasslands	37.072	-15.384
T5390	Afrixalus brachycnemis	MVZ 265825	MZ	Namuli, grasslands	37.072	-15.384
T5391	Afrixalus brachycnemis	MVZ 265826	MZ	Namuli, grasslands	37.072	-15.384
T5394	Afrixalus brachycnemis	MVZ:226254	KN	old sand quarry, Arabuko Sokoke Forest	39.867	-3.333
T5395	Afrixalus brachycnemis	MVZ:226255	KN	old sand quarry, Arabuko Sokoke Forest	39.867	-3.333
T4763	Afrixalus cf. delicatus	WC-DNA-1227	MZ	Revubo river below Tenge Hill	33.772	-15.719
T4766	Afrixalus cf. delicatus	WC-DNA-1349	MZ	Revubo river below Tenge Hill	33.772	-15.71
T2930	Afrixalus delicatus	GPN 032	MZ	Gorongosa N.P.	34.805	-18.665
14/00	1 y manus acin ans	0111 052	1412	G01011g050 11.1 .	54.005	-10.00.

T2932	Afrixalus delicatus	GPN 063	MZ	Gorongosa N.P.	34.814	-18.644
T2933	Afrixalus delicatus	GPN 158	MZ	Gorongosa N.P.	34.676	-19.031
T3066	Afrixalus delicatus	CB 13.089	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3675	Afrixalus delicatus	CB 13.467	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3676	Afrixalus delicatus	CB 13.468	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3677	Afrixalus delicatus	CB 13.469	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3678	Afrixalus delicatus	CB 13.470	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3679	Afrixalus delicatus	CB 13.471	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3680	Afrixalus delicatus	CB 13.472	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T4764	Afrixalus delicatus	WC-DNA-1228	MZ	Revubo river below Tenge Hill	33.772	-15.719
T4765	Afrixalus delicatus	WC-DNA-1230	MZ	Revubo river below Tenge Hill	33.772	-15.719
T4767	Afrixalus delicatus	WC-DNA-1154	MZ	2nd stream 12 km north of Namina	38.735	-14.847
T4768	Afrixalus delicatus	WC-DNA-1157	MZ	2nd stream 12 km north of Namina	38.735	-14.847
T4769	Afrixalus delicatus	WC-DNA-1085	MZ	dammed area just west of Syrah camp	37.631	-13.337
T4770	Afrixalus delicatus	WC-DNA-1109	MZ	upper Montepeuz river crossing site	38.587	-13.408
T4771	Afrixalus delicatus	WC-DNA-1113	MZ	upper Montepeuz river crossing site	38.587	-13.408
T4772	Afrixalus delicatus	WC-DNA-1416	MZ	Dereks house wetland	40.354	-12.933
T4773	Afrixalus delicatus	WC-DNA-1418	MZ	Dereks house wetland	40.354	-12.933
T4774	Afrixalus delicatus	ENI 02	MZ	R. Diquide	40.334	-12.933
T4979	Ū.			Malawi	40.428 35.711	-16.048
	Afrixalus delicatus	FMNH 274871	MWI			
T4980	Afrixalus delicatus	FMNH 274881	MWI	Malawi	35.711	-16.048
T4981	Afrixalus delicatus	FMNH 274867	MWI	Malawi	35.711	-16.048
T5010	Afrixalus delicatus	MTSN 5851	TZ	Mang'ula	NULL	NULL
T5011	Afrixalus delicatus	MTSN 5852	ΤZ	Mang'ula	36.890	-7.843
T3131	Afrixalus fornasini	CB 13.154	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3134	Afrixalus fornasini	CB 13.157	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3553	Afrixalus fornasini	CB 13.417	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3558	Afrixalus fornasini	CB 13.422	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3559	Afrixalus fornasini	CB 13.423	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3635	Afrixalus fornasini	CB 13.427	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3636	Afrixalus fornasini	CB 13.428	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3755	Afrixalus fornasini	CB 13.547	ΤZ	Vikindu FR, Pwani, Tanzania	39.297	-6.994
T3782	Afrixalus fornasini	CB 13.574	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3783	Afrixalus fornasini	CB 13.575	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3784	Afrixalus fornasini	CB 13.576	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3785	Afrixalus fornasini	CB 13.577	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3788	Afrixalus fornasini	CB 13.592	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3791	Afrixalus fornasini	CB 13.583	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3803	Afrixalus fornasini	CB 13.597	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3812	Afrixalus fornasini	CB 13.606	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T3827	Afrixalus fornasini	CB 13.621	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3828	Afrixalus fornasini	CB 13.622	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3840	Afrixalus fornasini	CB 13.634	TZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3841	Afrixalus fornasini	CB 13.635	TZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3842	Afrixalus fornasini	CB 13.636	TZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4036	Afrixalus fornasini	CB 13.686	TZ	Mafia island, Tanzania	39.714	-7.963
T4050	Afrixalus fornasini	CB 13.000 CB 13.700	TZ	Mafia island, Tanzania	39.795	-7.903 -7.849
	• •					
T4076	Afrixalus fornasini	CB 13.726	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4165	Afrixalus fornasini	CB 13.815	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4166	Afrixalus fornasini	CB 13.816	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4167	Afrixalus fornasini	CB 13.817	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4168	Afrixalus fornasini	CB 13.818	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4169	Afrixalus fornasini	CB 13.819	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4170	Afrixalus fornasini	CB 13.820	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4178	Afrixalus fornasini	CB 13.828	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4383	Afrixalus fornasini	MTSN 5143	ΤZ	Dar es Salaam	39.286	-6.787
T4384	Afrixalus fornasini	MTSN 5144	ΤZ	Dar es Salaam	NULL	NULL
T4385	Afrixalus fornasini	MTSN 8121	ΤZ	Ruipa, Ranger post	37.035	-9.169
T4386	Afrixalus fornasini	MTSN 8122	ΤZ	Ruipa, Ranger post	37.035	-9.169
T4387	Afrixalus fornasini	MTSN 8125	ΤZ	Ruipa, Ranger post	37.035	-9.169
T4423	Afrixalus fornasini	BM 2002.998	ΤZ	Uluguru Mountians - Mvuha FR	37.838	-7.179
T4424	Afrixalus fornasini	BM 2002.999	ΤZ	Uluguru Mountians - Mvuha FR	37.838	-7.179

T4425	Afrixalus fornasini	BM 2002.1000	ΤZ	Uluguru Mountians - Mvuha FR	37.838	-7.179
T4426	Afrixalus fornasini	BM 2000.825	ΤZ	Kwamgumi FR	38.733	-4.923
T4427	Afrixalus fornasini	BM 2002.551	ΤZ	Nilo FR	38.663	-4.904
T4428	Afrixalus fornasini	BM 2002.552	ΤZ	Nilo FR	38.663	-4.904
T4795	Afrixalus fornasini	BM 2002.377	ΤZ	Ruvu South FR	38.813	-6.895
T4796	Afrixalus fornasini	BM 2002.378	ΤZ	Ruvu South FR	38.762	-6.901
T4982	Afrixalus fornasini	MCZ A-32090	ΤZ	Baleni Pond, Mafia	39.803	-7.850
T5144	Afrixalus fornasini	MUSE 11052	ΤZ	Mgeta Hydroelectric Dam	36.091	-8.312
T5145	Afrixalus fornasini	MUSE 11053	ΤZ	Mgeta Hydroelectric Dam	36.091	-8.312
T5201	Afrixalus quadrivittatus	MW 04283	ΤZ	Igamba falls, Kigoma region	29.979	-5.182
T5023	Afrixalus sp P&B	BM 2002.561	TZ	Nilo FR	38.660	-4.904
T5025	Afrixalus sp P&B	BM 2002.562	TZ	Nilo FR	38.663	-4.904
T5024		BM 2002.566	TZ	Nilo FR	38.652	-4.929
	Afrixalus sp P&B					
T2346	Afrixalus stuhlmanni	MTSN 7703	TZ	Kimboza Forest	37.802	-7.002
T2347	Afrixalus stuhlmanni	MTSN 7704	TZ	Kimboza Forest	37.802	-7.002
T2348	Afrixalus stuhlmanni	MTSN 7705	ΤZ	Kimboza Forest	37.802	-7.002
T2349	Afrixalus stuhlmanni	MTSN 7706	ΤZ	Kimboza Forest	37.802	-7.002
T2350	Afrixalus stuhlmanni	MTSN 7722	ΤZ	Kimboza Forest	37.802	-7.002
T3805	Afrixalus stuhlmanni	CB 13.599	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3806	Afrixalus stuhlmanni	CB 13.600	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3818	Afrixalus stuhlmanni	CB 13.612	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T5008	Afrixalus stuhlmanni	SL 804	ΤZ	Ukaguru; Lumbiji, loc. 2 (paddy field)	36.984	-6.615
T1948	Afrixalus sylvaticus	BM 2002.318	ΤZ	Mlinga	38.748	-5.059
T2980	Afrixalus sylvaticus	CB 13.025	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2981	Afrixalus sylvaticus	CB 13.026	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2987	Afrixalus sylvaticus	CB 13.044	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3013	Afrixalus sylvaticus	CB 13.030	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3067	Afrixalus sylvaticus	CB 13.090	TZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3099	Afrixalus sylvaticus	CB 13.122	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
		CB 13.122 CB 13.123				-9.994 -9.994
T3100	Afrixalus sylvaticus		TZ	Makangala FR, Lindi, Tanzania	39.388	
T3113	Afrixalus sylvaticus	CB 13.136	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3123	Afrixalus sylvaticus	CB 13.146	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3132	Afrixalus sylvaticus	CB 13.155	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3203	Afrixalus sylvaticus	CB 13.226	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3212	Afrixalus sylvaticus	CB 13.235	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3213	Afrixalus sylvaticus	CB 13.236	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3214	Afrixalus sylvaticus	CB 13.237	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3215	Afrixalus sylvaticus	CB 13.238	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3216	Afrixalus sylvaticus	CB 13.239	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3217	Afrixalus sylvaticus	CB 13.240	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3318	Afrixalus sylvaticus	CB 13.325	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3319	Afrixalus sylvaticus	CB 13.326	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3320	Afrixalus sylvaticus	CB 13.327	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3321	Afrixalus sylvaticus	CB 13.328	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3474	Afrixalus sylvaticus	CB 13.385	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3475	Afrixalus sylvaticus	CB 13.386	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3476	Afrixalus sylvaticus	CB 13.387	TZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3470 T3477	Afrixalus sylvaticus	CB 13.388	TZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3478			TZ	-		-8.304
	Afrixalus sylvaticus	CB 13.389		Kiwengoma FR, Pwani, Tanzania	38.903	
T3683	Afrixalus sylvaticus	CB 13.475	TZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T4044	Afrixalus sylvaticus	CB 13.694	TZ	Mafia island, Tanzania	39.795	-7.849
T4388	Afrixalus sylvaticus	MTSN 8124	ΤZ	Ruipa, Ranger post	37.035	-9.169
T4848	Afrixalus sylvaticus	MTSN 7707	ΤZ	Kimboza Forest	37.804	-7.005
T4924	Afrixalus sylvaticus	MTSN 9517	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4925	Afrixalus sylvaticus	MTSN 9518	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4926	Afrixalus sylvaticus	MTSN 9519	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4938	Afrixalus sylvaticus	MTSN 9524	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4942	Afrixalus sylvaticus	MTSN 9528	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4955	Afrixalus sylvaticus	MTSN 9547	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4956	Afrixalus sylvaticus	MTSN 9548	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4978	Afrixalus sylvaticus	MTSN 9574	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T5007	Afrixalus sylvaticus	SL 803	ΤZ	Ukaguru; Lumbiji, loc. 2 (paddy field)	36.984	-6.615
	· ·					

T5009	Afrixalus sylvaticus	SL 805	ΤZ	Ukaguru; Lumbiji, loc. 2 (paddy field)	36.984	-6.615
T5012	Afrixalus sylvaticus	MTSN 8375	ΤZ	Kanga FR	37.724	-5.960
T5013	Afrixalus sylvaticus	MTSN 8383	ΤZ	Kanga FR	37.724	-5.960
T5025	Afrixalus sylvaticus	BM 2002.563	ΤZ	Nilo FR	38.663	-4.904
T5392	Afrixalus sylvaticus	MVZ:234560	KN	Shimba Hills (Shim 4)	39.341	-4.266
T5393	Afrixalus sylvaticus	MVZ:234561	KN	Shimba Hills (Shim 4)	39.341	-4.266
T4586	Amietia angolensis	no number	ΤZ	Mgambo F.R.	NULL	NULL
T4587	Amietia angolensis	BM 2002.893	TZ	Mgambo F.R.	38.813	-4.792
T4588	°	BM 2002.375 BM 2005.165	TZ	Uluguru Mountains - Kasanga FR		-7.191
	Amietia angolensis				37.774	
T4589	Amietia angolensis	BM 2005.166	ΤZ	Uluguru Mountians - Mvuha FR	37.838	-7.179
T4590	Amietia angolensis	BM 2005.167	TZ	Uluguru Mountians - Uluguru Ruvu FR	37.863	-7.008
T5126	Amietia angolensis	MUSE 11034	ΤZ	Mgeta Hydroelectric Dam	36.091	-8.312
T4463	Sclerophrys brauni	BM 2002.335	ΤZ	Mlinga Forest Reserve	38.731	-5.061
T4464	Sclerophrys brauni	BM 2000.841	ΤZ	Kwamgumi FR	38.758	-4.943
T4465	Sclerophrys brauni	BM 2005.112	ΤZ	Uluguru Mountains - Kasanga FR	37.774	-7.191
T4929	Sclerophrys brauni	MTSN 9511	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T1657	Sclerophrys gutturalis	AC 2933	ΤZ	Ifakara	36.684	-8.134
T1689	Sclerophrys gutturalis	MTSN 5036	ΤZ	Handeni	38.032	-5.417
T3029	Sclerophrys gutturalis	CB 13.052	ΤZ	Lake Rutamba, Lindi, Tanzania	39.462	-10.033
T3063	Sclerophrys gutturalis	CB 13.086	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3149	Sclerophrys gutturalis	CB 13.172	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3152	Sclerophrys gutturalis	CB 13.172	TZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
		CB 13.175 CB 13.176	TZ	· · · ·		-10.050
T3153	Sclerophrys gutturalis			Litipo FR, Lindi, Tanzania	39.475	
T3154	Sclerophrys gutturalis	CB 13.177	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3155	Sclerophrys gutturalis	CB 13.178	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3156	Sclerophrys gutturalis	CB 13.179	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3159	Sclerophrys gutturalis	CB 13.182	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3160	Sclerophrys gutturalis	CB 13.183	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3542	Sclerophrys gutturalis	CB 13.406	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3543	Sclerophrys gutturalis	CB 13.407	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3544	Sclerophrys gutturalis	CB 13.408	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3545	Sclerophrys gutturalis	CB 13.409	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3722	Sclerophrys gutturalis	CB 13.514	ΤZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3723	Sclerophrys gutturalis	CB 13.515	ΤZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3724	Sclerophrys gutturalis	CB 13.516	ΤZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3725	Sclerophrys gutturalis	CB 13.517	TZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3726	Sclerophrys gutturalis	CB 13.518	TZ	Dar es Salaam (university), Tanzania	39.204	-6.779
		CB 13.519	TZ	< \$77		
T3727	Sclerophrys gutturalis			Dar es Salaam (university), Tanzania	39.204	-6.779
T3733	Sclerophrys gutturalis	CB 13.525	TZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3734	Sclerophrys gutturalis	CB 13.526	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3735	Sclerophrys gutturalis	CB 13.527	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3743	Sclerophrys gutturalis	CB 13.535	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T4031	Sclerophrys gutturalis	CB 13.681	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4095	Sclerophrys gutturalis	CB 13.745	ΤZ	Zaraninge FR, Pwani, Tanzania	38.495	-6.071
T4116	Sclerophrys gutturalis	CB 13.766	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4117	Sclerophrys gutturalis	CB 13.767	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4118	Sclerophrys gutturalis	CB 13.768	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4272	Sclerophrys gutturalis	CB 13.929	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4466	Sclerophrys gutturalis	BM 2002.362	ΤZ	Kazizumbwi FR	39.055	-6.931
T4467	Sclerophrys gutturalis	BM 2005.928	ΤZ	Kazizumbwi FR	NULL	NULL
T4468	Sclerophrys gutturalis	BM 2005.1298	TZ	Bombo Forest Reserve	38.703	-4.810
T4469	Sclerophrys gutturalis	BM 2005.1298 BM 2005.1299	TZ	Bombo Forest Reserve	38.703	-4.820
T4470	Sclerophrys gutturalis	BM 2005.1300	TZ	Bombo Forest Reserve	38.681	-4.809
T4471	Sclerophrys gutturalis	BM 2005.113	ΤZ	Uluguru Mountains - Kasanga FR	37.774	-7.191
T4983	Sclerophrys gutturalis	MCZ A-32006	ΤZ	Dondwe Forest, near Mvuti	39.097	-7.065
T3051	Sclerophrys pusilla	CB 13.074	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3056	Sclerophrys pusilla	CB 13.079	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3057	Sclerophrys pusilla	CB 13.080	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3058	Sclerophrys pusilla	CB 13.081	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3064	Sclerophrys pusilla	CB 13.087	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3065	Sclerophrys pusilla	CB 13.088	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3150	Sclerophrys pusilla	CB 13.173	ΤZ	Makangala FR, Lindi, Tanzania	39.405	-9.987
				C , , , , , , , , , , , , , , , , , , ,		

T310 Scherophysy puella CB 13192 TZ Latyo FK, Lindi, Tazaznia 39:473 -00:69 T3115 Scherophysy puella CB 13:09 TZ Latyo FK, Lindi, Tazaznia 39:473 -00:69 T3180 Scherophysy puella CB 13:09 TZ Latyo FK, Lindi, Tazaznia 39:475 -00:60 T4105 Scherophysy puella CB 13:75 TZ Anhoni coves, Tauga, Tazzania 39:048 -5:03 T4125 Scherophysy puella CB 13:75 TZ Anhoni coves, Tauga, Tazzania 39:048 -5:03 T4147 Scherophysy puella CB 13:75 TZ Anhoni coves, Tauga, Tazzania 38:024 -5:024 T4148 Scherophysy puella CB 13:75 TZ Anhoni coves, Tauga, Tazzania 38:024 -5:024 T4147 Scherophysy puella CB 13:75 TZ Anhoni coves, Tauga, Tazzania 38:024 -5:024 T4148 Scherophysy puella M3:023:36 TZ Magne hores, Tauga, Tazzania 38:024 -5:024 T4149 Scherophysy puella M3:023:3							
1180 Schemplers pundla CB 13:20 TZ Lingo FR, Lindi, Tanzania 39.47 -0.050 1380 Schemplers pundla CB 13:207 TZ Makangaga FR, Lindi, Tanzania 39.48 -0.050 1310 Schemplers pundla CB 13:207 TZ Makangaga FR, Lindi, Tanzania 39.048 -5.073 14119 Schemplers pundla CB 13:277 TZ Amboni caves, Tanga, Tanzania 39.048 -5.073 14128 Schemplers pundla CB 13:277 TZ Amboni caves, Tanga, Tanzania 38.24 -5.034 14188 Schemplers pundla CB 13:277 TZ Mahoyai bawan, Tanga, Tanzania 38.24 -5.054 14178 Schemplers pundla MIS 2002.36 TZ Migaar Mountiana - Ulagara Mauriana - Mauriana - Mauriana - Ma	T3169	Sclerophrys pusilla	CB 13.192	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
1318. Schernphyr, pradfa CB 13.204 T.Z Latipo FR, Lindi, Tanzania 19.732 -9.495 1319. Schernphyr, pradfa CB 13.79 T.Z Anboni caves, Tanga, Tanzania 30.048 -5.073 1412. Schernphyr, pradfa CB 13.775 T.Z Anboni caves, Tanga, Tanzania 30.048 -5.073 1418. Schernphyr, pandfa CB 13.375 T.Z Anboni caves, Tanga, Tanzania 30.048 -5.034 1418. Schernphyr, pandfa CB 13.375 T.Z Mahyau howan, Tanga, Tanzania 30.048 -5.034 14147. Schernphyr, pandfa MTSN 8123 T.Z Ruinga Forst Reseve 37.535 -5.044 14478. Schernphyr, pandfa INV 2005.405 T.Z Waambe F.R. 38.74 -4.950 14478. Schernphyr pandfa INV 2005.411 T.Z Ulagara Monationa - Ulagara Morationa - Ulagara Morationa - Ulagara Morationa - Ulagara Morationa - TA 36.834 -7.856 15127. Schernphyrs pandfa MISE 1103 T.Z Ulagara Morationa - Ulagara Moration - Ulagara Moration - Ulagara Moration - Ulagara Moration - Ula	T3175	Sclerophrys pusilla	CB 13.198	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
17109 Scherophys.pstaffa CH 13.07 T.Z Makangga PK, Lindi, Tanzania 39.28 9-495 17119 Scherophys.pstaffa CH 13.775 T.Z Amboni curves, Tanga, Tanzania 39.048 5.073 174125 Scherophys.pstaffa CH 13.775 T.Z Amboni curves, Tanga, Tanzania 39.048 5.073 174128 Scherophys.pstaffa CH 13.787 T.Z Makayan brows, Tanga, Tanzania 39.048 5.073 174128 Scherophys.pstaffa CH 13.787 T.Z Makayan brows, Tanga, Tanzania 39.049 5.034 174168 Scherophys.pstaffa MTNS 8446 T.Z Makargan PA 38.232 -5.054 17417 Scherophys.pstaffa BM 2002.353 T.Z Magan Mountana - Ulagara Mountana - Ulagara Mountana - Sthero FR -7.056 17418 Scherophys.pstaffa MUSE 1103 T.Z Magan Mountana - Ulagara Mountana - Sthero FR -8.312 17513 Scherophys.pstaffa MUSE 1103 T.Z Magan Mountana - Ulagara Mountana - Sthero FR -8.312 17514 Scherophys.pstaffa	T3180	Sclerophrys pusilla	CB 13.203	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
14119 Scherophys putifia CH 11 769 1.2 Amboin cores, Tanga, Tuazania 30.48 5-073 14125 Scherophys putifia CH 13 777 T.Z Amboin cores, Tanga, Tuazania 30.48 5-073 14185 Scherophys putifia CH 13 X8 T.Z Mahyani bawaa, Tang, Tuazania 39.048 5-073 14186 Scherophys putifia MTSN 843 T.Z Mahyani bawaa, Tang, Tuazania 39.048 5-073 14186 Scherophys putifia MTSN 8433 T.Z Ruaps, Ranger post 37.053 5-054 14176 Scherophys putifia BM 2005.155 T.Z Waambo F.R 38.744 4.950 14147 Scherophys putifia BM 2005.115 T.Z Magan Moartians - Ulagan Rovar FR 37.505 -0.057 14148 Scherophys putifia MUSE 11035 T.Z Magan Hydroelecric Dam 36.914 -8.312 15131 Scherophys putifia MUSE 11035 T.Z Magan Hydroelecric Dam 36.914 -8.312 15143 Scherophys putifia MUSE 11035	T3181	Sclerophrys pusilla	CB 13.204	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
1412 Scherophrys pusifia CB 13.73 TZ Amboni caves, Tanga, Tanzania 39.048 5.073 14128 Scherophrys pusifia CB 13.83 TZ Mahayami bowas, Tanga, Tanzania 38.924 5.034 14188 Scherophrys pusifia MTSN 3446 TZ Mikargenobe 37.015 9.109 14100 Scherophrys pusifia BN 2002.336 TZ Minga Forest Reserve 38.727 4.950 14147 Scherophrys pusifia BN 2002.335 TZ Migan Forest Reserve 38.737 4.950 14147 Scherophrys pusifia BN 2002.135 TZ Migan Mountains - Uliggan Rev LR 37.863 7.008 14148 Scherophrys pusifia MCZ A.3195 TZ Hendo Hondo Lodge, Udirangova 36.091 8.312 15121 Scherophrys pusifia MCZ A.3195 TZ Mountains - Uliggan Mountains - Uliggan Rev LR 36.091 8.312 15131 Scherophrys pusifia MUSE 11019 TZ Mountain Mountains - Uliggan Mountains - Maga Montaing - Mass -	T3300	Sclerophrys pusilla	CB 13.307	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
1412 Scherophray purilla CB 13.77 TZ Anbour ceves, Tanga, Tanzania 39.048 5.034 1418 Scherophray purilla MTSN 546 TZ Mabayani bwava, Tanga, Tanzania 39.048 5.034 1420 Scherophray purilla MTSN 546 TZ Mabayani bwava, Tanga, Tanzania 39.048 5.054 1447 Scherophray purilla MTSN 5123 TZ Mujaga Torest Reserve 33.751 5.054 1447 Scherophray purilla IM 200.316 TZ Magamb F.R. 38.814 -4.791 1448 Scherophray purilla IM ZO.3111 TZ Ungarni Meunitares - Ungarni Revu F.R. 37.861 -6979 1448 Scherophray purilla MCE A-32195 TZ Hondo Hondo Lodge, Udangawa 36.884 -7.856 15121 Scherophray purilla MCE A-32195 TZ Magai Hydrodectric Dam 36.091 -8.312 15131 Scherophray purilla MUSE 1103 TZ Magai Hydrodectric Dam 36.091 -8.312 15143 Scherophray purilla MUSE 1039 <td>T4119</td> <td>Sclerophrys pusilla</td> <td>CB 13.769</td> <td>ΤZ</td> <td>Amboni caves, Tanga, Tanzania</td> <td>39.048</td> <td>-5.073</td>	T4119	Sclerophrys pusilla	CB 13.769	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
1412 Scherophray purilla CB 13.77 TZ Anbour ceves, Tanga, Tanzania 39.048 5.034 1418 Scherophray purilla MTSN 546 TZ Mabayani bwava, Tanga, Tanzania 39.048 5.034 1420 Scherophray purilla MTSN 546 TZ Mabayani bwava, Tanga, Tanzania 39.048 5.054 1447 Scherophray purilla MTSN 5123 TZ Mujaga Torest Reserve 33.751 5.054 1447 Scherophray purilla IM 200.316 TZ Magamb F.R. 38.814 -4.791 1448 Scherophray purilla IM ZO.3111 TZ Ungarni Meunitares - Ungarni Revu F.R. 37.861 -6979 1448 Scherophray purilla MCE A-32195 TZ Hondo Hondo Lodge, Udangawa 36.884 -7.856 15121 Scherophray purilla MCE A-32195 TZ Magai Hydrodectric Dam 36.091 -8.312 15131 Scherophray purilla MUSE 1103 TZ Magai Hydrodectric Dam 36.091 -8.312 15143 Scherophray purilla MUSE 1039 <td>T4125</td> <td>Sclerophrys pusilla</td> <td>CB 13.775</td> <td>ΤZ</td> <td>Amboni caves, Tanga, Tanzania</td> <td>39.048</td> <td>-5.073</td>	T4125	Sclerophrys pusilla	CB 13.775	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
1418. Scherophrsy puella CB 13.838 TZ Makayan bwawa, Tang, Tanzania 38.94 5.034 1498. Scherophrsy puella MTSN 8123 TZ Ruige, Ranger post 37.035 9.169 1447. Scherophrsy puella BM 2002.355 TZ Minga Froest Reserve 38.727 4.950 1447. Scherophrsy puella BM 2002.455 TZ Maganto F. R. 37.863 -7.008 1448. Scherophrsy puella BM 2002.455 TZ Maganto F. R. 37.863 -7.008 1448. Scherophrsy puella IM 2005.114 TZ Ulugaru MountiansUlugaru Ruru R. 37.863 -7.086 1512. Scherophrsy puella MUSE 11036 TZ Mgeta Hydrodectric Dam 36.091 -8.312 1513. Scherophrsy puella MUSE 11036 TZ Mgeta Hydrodectric Dam 36.091 -8.312 1513. Scherophrsy puella MUSE 11040 TZ Mgeta Hydrodectric Dam 36.091 -8.312 1514. Scherophrsy puella MUSE 11040 TZ <			CB 13.777				
1439 Scherophrsy paulia MTSN 5446 7 Mikergenber NULL NULL 1440 Scherophrsy paulia MTSN 513 T.Z. Ruipa, Ranger post 37.035 -9.169 1447 Scherophrsy paulia BM 200.546 T.Z. Minga Forst Reserve 38.814 4.791 1447 Scherophrsy paulia BM 200.5115 T.Z. Migambo F.R. 38.814 4.791 1448 Scherophrsy paulia BM 200.5114 T.Z. Ulugaru MountainsUlugaru Rueu R.R. 37.863 -6.979 1548 Scherophrsy paulia MCZ.A.32195 T.Z. Honda Hondo Logg. Udurgava 36.884 -8.555 15128 Scherophrsy paulia MUSE 11035 T.Z. Mogari Hydroclectric Dam 36.091 -8.312 15141 Scherophrsy paulia MUSE 11035 T.Z. Mogari Arydroclectric Dam 36.091 -8.312 15141 Scherophrsy paulia MUSE 11037 T.Z. Mogari Arydroclectric Dam 36.091 -8.312 15143 Scherophrsy paulia MUSE 11037 T.Z. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
1440 Scherophers pusitia MTNN 8123 TZ Ruinga Forest Reserve 37.03 -9.169 1447 Scherophers pusitia BM 2000.346 TZ Kuangani TR 38.721 -4.500 1447 Scherophers pusitia BM 2000.346 TZ Kwangani TR 38.721 -4.500 1448 Scherophers pusitia BM 2000.3115 TZ Ulaguri Mountians - Uluguru Ruou RR 37.863 -7.008 1448 Scherophers pusitia MUSE 11035 TZ Mgata Hydroclectric Dam 36.091 -8.312 1518 Scherophers pusitia MUSE 11035 TZ Mgata Hydroclectric Dam 36.091 -8.312 1513 Scherophers pusitia MUSE 11045 TZ Mgata Hydroclectric Dam 36.091 -8.312 1513 Scherophers pusitia MUSE 11049 TZ Mgata Hydroclectric Dam 36.091 -8.312 1514 Scherophers pusitia MUSE 11045 TZ Moraci GR (Hoya hill) NULL NULL 1444 Arhoraphies of Mydata Marka 4.0409 -7.724		1 2 1					
1447 Scherophrys posifile DM 2000 346 TZ Minga Fores Reserve 38 731 4505 1447 Scherophrys posifile DM 2000 846 TZ Kwangumi FR 38 814 4.791 1447 Scherophrys posifile DM 2002 853 TZ Ulugart Mountians - Ulugarta Navu FR 37.803 -7.008 1448 Scherophrys posifile DM 2002 151 TZ Ulugart Mountians - Ulugarta Navu FR 37.500 -6.979 1512 Scherophrys posifile MUSE 11036 TZ Mgeta Hydroelectric Dam 36.091 -8.312 1513 Scherophrys posifile MUSE 11039 TZ Mgeta Hydroelectric Dam 36.091 -8.312 1514 Scherophrys posifile MUSE 11049 TZ Monazi GR (Haya hill) NULL <					e		
1447 Solzenphrys paulla BM 2000345 TZ Kamganni FR 38 372 4-950 14478 Solzenphrys paulla BM 2005.115 TZ Mgambo F.R. 38 841 4.791 1448 Solzenphrys paulla BM 2005.115 TZ Uluguri Mountins - Ulugura Navu FR 37.603 -7.008 1448 Solzenphrys paulla MCS 2.3129 TZ Honds Hondo Lodge, Udranyma 36.84 -7.856 1512 Solzenphrys paulla MUSE 11030 TZ Mgata Hydroelectric Dam 36.091 -8.312 1513 Solzenphrys paulla MUSE 11039 TZ Mgata Hydroelectric Dam 36.091 -8.312 1514 Solzenphrys paulla MUSE 11049 TZ Mgata Hydroelectric Dam 36.091 -8.312 1514 Solzenphrys paulla MUSE 11039 TZ Magata Hydroelectric Dam 36.091 -8.312 15143 Arbroleptics anarticassent BM 2002.395 TZ Momazi GR (Haya hill) NULL NULL NULL NULL NULL NULL NULL NULL							
T447 Scherophrys pusilla BM 2002 353 TZ Migman Der R. 38.814 4.771 T4480 Scherophrys pusilla BM 2005.115 TZ Uluguru Mountians - Uluguru Ruvu FR 37.780 -6.079 T4948 Scherophrys pusilla MU2C A-32198 TZ Hondo Hondo Lodge, Lidzangwa 36.884 -7.886 T5123 Scherophrys pusilla MUSE 11035 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5131 Scherophrys pusilla MUSE 11039 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T6143 Scherophrys pusilla MUSE 11039 TZ Momazi GR (Ibaya hill) NULL NULL T4444 Scherophrys xeros BM 2002 395 TZ Mionga Forse Reserve 38.724 -5.068 T4444 Arthroleptides martiensseri BM 2002 391 TZ Miinga Forse Reserve 38.732 -5.058 T4443 Arthroleptides martiensseri BM 2002 391 TZ Miinga Forse Reserve 38.731 -4.921 T4443 Arthroleptides martiensseri <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></td<>					-		
T447 Sclerephrys pusilla PM 2005 114 TZ Ulugun Mountians - Ulugun Nuv FR 37.803 -6.099 T448 Sclerephrys pusilla MCZ A-52195 TZ Hondo Lodge, Udrangwa 36.884 -7.856 T5121 Sclerephrys pusilla MUSE 11035 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5131 Sclerephrys pusilla MUSE 11039 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5141 Sclerephrys pusilla MUSE 11039 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T4447 Sclerephrys seros BM 2005 397 TZ Mkomazi GR (Ibaya hill) NULL		1 2 1			-		
T+480 Sciemphrys pusilia BM 2005.114 TZ Uluganu Muontians - Uluganu Ruvu FR 37.790 6.979 T4948 Sciemphrys pusilia MCZ A-32195 TZ Model Indo Lodge, Udzungwa 36.884 -7.856 T5127 Sciemphrys pusilia MUSE 11046 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5131 Sciemphrys pusilia MUSE 11049 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5141 Sciemphrys pusilia MUSE 11049 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T4443 Sciemphrys recros BM 2005.896 TZ Mkomazi GR (Ihaya hill) NULL NULL T4443 Sciemphrys recros BM 2002.320 TZ Musing Forest Reserve 38.752 -5.058 T4443 Arthroleptide martiensseni BM 2002.320 TZ Minga Forest Reserve 38.751 -4.914 T4434 Arthroleptide martiensseni BM 2002.370 TZ Minga Forest Reserve 38.751 -4.914 T4434 Arthroleptide suntriensseni <t< td=""><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></t<>					•		
T4984 Sclerophrys pusilia MCZ A-32195 TZ Hondo Hondo Lodge, Udzungwa 36.884 -7.856 T5128 Sclerophrys pusilia MUSE 11035 TZ Mgeta Hydroelectric Dam 36.001 -8.312 T5138 Sclerophrys pusilia MUSE 11039 TZ Mgeta Hydroelectric Dam 36.001 -8.312 T5141 Sclerophrys acros BM 2005.896 TZ Mkomazi GR (Ibaya hill) NULL NULL NULL T4443 Sclerophrys acros BM 2005.896 TZ Kuonazi GR (Ibaya hill) NULL NULL NULL T4443 Sclerophrys acros BM 2002.320 TZ Minga Forest Reserve 38.752 -5.058 T4443 Arthroleptides martiensseni BM 2002.320 TZ Minga Forest Reserve 38.748 -5.059 T4433 Arthroleptides martiensseni BM 2002.820 TZ Naganbo F.R. 38.811 4.933 T4434 Arthroleptides martiensseni BM 2002.737 TZ Nio FR 38.643 -4.954 T4435 Arthroleptides valuaini <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
15127 Sclerophrys pusilia MUSE 11035 TZ Mgeta Hydroelectric Dam 36.091 -8.312 15138 Sclerophrys pusilia MUSE 11036 TZ Mgeta Hydroelectric Dam 36.091 -8.312 15141 Sclerophrys pusilia MUSE 11049 TZ Mgeta Hydroelectric Dam 36.091 -8.312 15444 Sclerophrys areos BM 2005.896 TZ Mkomazi GR (Ibaya hill) NULL NULL 17443 Sclerophrys areos BM 2002.395 TZ Rkuva South FR 37.24 -5.906 174429 Arthroleptides martiensseni BM 2002.320 TZ Minga Forest Reserve 38.752 -5.058 17443 Arthroleptides martiensseni BM 2002.321 TZ Minga Forest Reserve 38.751 -4.921 17443 Arthroleptides martiensseni BM 2002.320 TZ Minga Forest Reserve 38.751 -4.921 17443 Arthroleptides martiensseni BM 2002.321 TZ Minga Forest Reserve 38.751 -4.921 17443 Arthroleptides martiensseni BM 2002.574 TZ Nio FR 38.611 -4.973							
15128 Sclerophrys pusilia MUSE 11039 TZ Mgeta Hydroelectric Dam 56.091 -8.312 15141 Sclerophrys pusilia MUSE 11039 TZ Mgeta Hydroelectric Dam 36.091 -8.312 15143 Sclerophrys scros BM 2005.896 TZ Mkomazi GR (Dayn hill) NULL NULL 17442 Sclerophrys scros BM 2002.395 TZ Ruova South FR 38.814 -6.909 17442 Sclerophrys scros BM 2002.395 TZ Ruova South FR 38.814 -6.909 17444 Arthroleptide martiensseni BM 2002.321 TZ Minga Forest Reserve 38.752 -5.058 17443 Arthroleptide martiensseni BM 2002.321 TZ Minga Forest Reserve 38.751 -4.921 17433 Arthroleptide martiensseni BM 2002.321 TZ Minga Forest Reserve 38.751 -4.921 17434 Arthroleptide martiensseni BM 2002.577 TZ Nio FR 38.613 -4.995 17434 Arthroleptide synaxini BM 2005.012 Uluguru							
T5131 Sclerophrys pusilla MUSE 11039 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5144 Sclerophrys pusilla MUSE 11049 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T447 Sclerophrys seros BM 2005.896 TZ Mkomazi GR (Baya hill) NULL NULL T4482 Sclerophrys seros BM 2002.395 TZ Kawa South FR 38.814 -6.900 T4404 Arthrolepitides martiensseri BM 2002.321 TZ Minga Forest Reserve 38.752 -5.058 T4433 Arthrolepitides martiensseri BM 2002.321 TZ Minga Forest Reserve 38.754 -6.059 T4434 Arthrolepitides martiensseri BM 2002.374 TZ Nilo FR 38.614 -4.921 T4434 Arthrolepitides martiensseri BM 2002.574 TZ Nilo FR 38.643 -4.921 T4434 Arthrolepitides martiensseri BM 2002.577 TZ Nilo FR 38.647 -7.911 T4435 Arthrolepitides martiensseri BM 2005.013 TZ Uluguru Mountins - Kasanga FR 37.774 -7.191 T							
T5141 Sclerophrys pusilla MUSE 11049 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T4474 Sclerophrys zeros BM 2005.896 TZ Mkomaz GR (Ibaya hill) NULL NULL T4425 Sclerophrys zeros BM 2005.897 TZ Ruva South FR 38.814 -6.099 T4444 Arthroleptides martiensseni BM 2002.395 TZ Ruva South FR 37.24 -5.068 T4434 Arthroleptides martiensseni BM 2002.321 TZ Minga Forest Reserve 38.732 -5.058 T4434 Arthroleptides martiensseni BM 2002.322 TZ Minga Forest Reserve 38.748 -5.059 T4433 Arthroleptides martiensseni BM 2002.327 TZ Minga Forest Reserve 38.731 -4.921 T4434 Arthroleptides martiensseni BM 2002.578 TZ Nilo FR 38.613 -4.951 T4435 Arthroleptides martiensseni BM 2005.013 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4436 Arthroleptide syakasini BM 2005.013 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191							
T4474 Sclerophrys.seros BM 2005.896 TZ Nkomazi GR (Ibaya hill) NULL NULL T4475 Sclerophrys.seros BM 2005.897 TZ Nkomazi GR (Ibaya hill) NULL NULL T4482 Sclerophrys.seros BM 2002.395 TZ Ruva Suth FR 37.24 -5.969 T4449 Arthroleptides martiensseni BM 2002.310 TZ Minga Forest Reserve 38.752 -5.058 T4434 Arthroleptides martiensseni BM 2002.321 TZ Minga Forest Reserve 38.748 -5.059 T4434 Arthroleptides martiensseni BM 2002.322 TZ Kwamgumi FR 38.711 -4.921 T4434 Arthroleptides martiensseni BM 2002.574 TZ Nilo FR 38.673 -4.961 T4435 Arthroleptides martiensseni BM 2002.571 TZ Nilo FR 38.71 -7.191 T4436 Arthroleptides valuxini BM 2002.571 TZ Nilo FR 38.74 -9.95 T4436 Arthroleptides valuxini BM 2002.571 TZ Nilo FR 38.774 -7.191 T4437 Arthroleptides valuxini <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
T4475 Sclerophrys xeros BM 2005 897 TZ Mkomazi GR (Ibaya hill) NULL NULL T4482 Sclerophrys xeros BM 2002 395 TZ Ruru South FR 38.814 -6.909 T4404 Arthroleptides martiensseni BM 2002 320 TZ Minga Forest Reserve 38.752 -5.058 T4434 Arthroleptides martiensseni BM 2002 321 TZ Minga Forest Reserve 38.745 -5.058 T4434 Arthroleptides martiensseni BM 2002 321 TZ Minga Forest Reserve 38.745 -5.059 T4434 Arthroleptides martiensseni BM 2002 804 TZ Kwamguni FR 38.71 -4.921 T4434 Arthroleptides martiensseni BM 2002 577 TZ Nilo FR 38.643 -4.951 T4435 Arthroleptides martiensseni BM 2005 777 TZ Nilo FR 37.744 -7.191 T4434 Arthroleptides wakuini BM 2005 101 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4435 Arthroleptides yakuini BM 2005 013 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191		Sclerophrys pusilla				36.091	
T4482 Sclerophrys xeros BM 2002.395 TZ Ruvu South FR 38.814 -6.909 T4404 Arthrolephides cf, yalusini MTSN 8382 TZ Kanga FR 37.724 -5.968 T4429 Arthrolephides martiensseni BM 2002.320 TZ Minga Forest Reserve 38.752 -5.058 T4430 Arthrolephides martiensseni BM 2002.322 TZ Minga Forest Reserve 38.751 +4.921 T4432 Arthrolephides martiensseni BM 2002.322 TZ Minga Forest Reserve 38.751 +4.921 T4433 Arthrolephides martiensseni BM 2002.574 TZ Nilo FR 38.611 +4.921 T4435 Arthrolephides martiensseni BM 2002.578 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4436 Arthrolephides valusini BM 2005.012 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4439 Arthrolephides valusini BM 2005.014 TZ Uluguru Mountains - Kasanga FR 37.774 -1.91 T433 Arthrolephides valusini MUSE 11040 TZ Mgeat Hydroelectirc Dam 36.091 -8	T4474	Sclerophrys xeros	BM 2005.896	ΤZ	· · · /	NULL	NULL
T4404 Arthroleptides cf. yakusini MTSN 8382 TZ Kanga FR 37.724 -5.960 T4429 Arthroleptides martiensseni BM 2002.320 TZ Minga Forest Reserve 38.752 -5.058 T4430 Arthroleptides martiensseni BM 2002.322 TZ Minga Forest Reserve 38.751 -4.921 T4433 Arthroleptides martiensseni BM 2000.826 TZ Kwanguni FR 38.751 -4.921 T4434 Arthroleptides martiensseni BM 2002.574 TZ Nilo FR 38.613 -4.994 T4434 Arthroleptides martiensseni BM 2002.577 TZ Nilo FR 38.613 -4.994 T4434 Arthroleptides martiensseni BM 2002.577 TZ Nilo FR 38.613 -4.955 T4434 Arthroleptides yakusini BM 2005.012 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4433 Arthroleptides yakusini BM 2005.013 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4434 Arthroleptides yakusini MUSE 11047 TZ Miguru Mountains - Kasanga FR 37.774 -7.191	T4475	Sclerophrys xeros	BM 2005.897	ΤZ	Mkomazi GR (Ibaya hill)	NULL	NULL
T4429 Arthroleptides martiensseni BM 2002.320 TZ Minga Forest Reserve 38.752 -5.058 T4430 Arthroleptides martiensseni BM 2002.321 TZ Minga Forest Reserve 38.751 -4.921 T4431 Arthroleptides martiensseni BM 2002.822 TZ Kwamguni FR 38.751 -4.921 T4432 Arthroleptides martiensseni BM 2002.874 TZ Kwamguni FR 38.673 -4.921 T4434 Arthroleptides martiensseni BM 2002.577 TZ Nilo FR 38.663 -4.9921 T4435 Arthroleptides martiensseni BM 2002.577 TZ Nilo FR NULL NULL T4436 Arthroleptides valusini BM 2002.578 TZ Nilo FR NUL NULL NULL T4439 Arthroleptides valusini BM 2005.013 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4439 Arthroleptides valusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5132 Arthroleptides valusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312	T4482	Sclerophrys xeros	BM 2002.395	ΤZ	Ruvu South FR	38.814	-6.909
T4430 Arthroleptides martiensseni BM 2002.321 TZ Mlinga Forest Reserve 38.752 -5.058 T4431 Arthroleptides martiensseni BM 2002.322 TZ Mlinga Forest Reserve 38.751 -4.921 T4432 Arthroleptides martiensseni BM 2002.804 TZ Mgambo F.R. 38.811 -4.793 T4434 Arthroleptides martiensseni BM 2002.574 TZ Nilo FR 38.643 -4.9951 T4435 Arthroleptides martiensseni BM 2002.578 TZ Nilo FR 38.643 -4.9551 T4435 Arthroleptides martiensseni BM 2005.012 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4436 Arthroleptides yakusini BM 2005.013 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T5130 Arthroleptides yakusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5133 Arthroleptides yakusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5134 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 <	T4404	Arthroleptides cf. yakusini	MTSN 8382	ΤZ	Kanga FR	37.724	-5.960
T4431 Arthroleptides martiensseni BM 2002.322 TZ Minga Forest Reserve 38.748 -5.059 T4432 Arthroleptides martiensseni BM 2002.804 TZ Kwamgumi FR 38.711 -4.921 T4433 Arthroleptides martiensseni BM 2002.874 TZ Mgambo F.R. 38.613 -4.991 T4435 Arthroleptides martiensseni BM 2002.577 TZ Nilo FR 38.643 -4.955 T4436 Arthroleptides martiensseni BM 2002.577 TZ Nilo FR NULL NU	T4429	Arthroleptides martiensseni	BM 2002.320	ΤZ	Mlinga Forest Reserve	38.752	-5.058
T4432 Arthroleptides martiensseni BM 200.826 TZ Kwangumi FR 38.751 4.921 T4433 Arthroleptides martiensseni BM 202.574 TZ Mgambo F. R. 38.673 4.904 T4434 Arthroleptides martiensseni BM 202.574 TZ Nilo FR 38.673 4.904 T4435 Arthroleptides martiensseni BM 202.577 TZ Nilo FR 8.643 4.955 T4436 Arthroleptides martiensseni BM 2002.578 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4438 Arthroleptides valusini BM 2005.012 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4439 Arthroleptides valusini MUSE 11038 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5132 Arthroleptides valusini MUSE 11041 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5134 Arthroleptides valusini MUSE 11041 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides valusini MUSE 11041 TZ Mgeta Hydroelectric Dam 36.091 -8.312 <td>T4430</td> <td>Arthroleptides martiensseni</td> <td>BM 2002.321</td> <td>ΤZ</td> <td>Mlinga Forest Reserve</td> <td>38.752</td> <td>-5.058</td>	T4430	Arthroleptides martiensseni	BM 2002.321	ΤZ	Mlinga Forest Reserve	38.752	-5.058
T4433 Arthroleptides martiensseni BM 2002.804 TZ Mgambo F.R. 38.811 -4.793 T4434 Arthroleptides martiensseni BM 2002.574 TZ Nilo FR 38.633 -4.904 T4435 Arthroleptides martiensseni BM 2002.578 TZ Nilo FR NULL NULL T4436 Arthroleptides martiensseni BM 2005.518 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4438 Arthroleptides valusini BM 2005.013 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T439 Arthroleptides valusini BM 2005.014 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4330 Arthroleptides valusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5132 Arthroleptides valusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides valusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides valusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8	T4431	Arthroleptides martiensseni	BM 2002.322	ΤZ	Mlinga Forest Reserve	38.748	-5.059
T4434 Arthroleptides martiensseni BM 2002.574 TZ Nilo FR 38.673 -4.904 T4435 Arthroleptides martiensseni BM 2002.577 TZ Nilo FR 38.643 -4.955 T4436 Arthroleptides martiensseni BM 2002.578 TZ Nilo FR NULL NULL NULL T4437 Arthroleptides yakusini BM 2005.012 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4438 Arthroleptides yakusini BM 2005.013 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T5130 Arthroleptides yakusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5133 Arthroleptides yakusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5139 Arthroleptides yakusini MUSE 11042 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5130 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 <	T4432	Arthroleptides martiensseni	BM 2000.826	ΤZ	Kwamgumi FR	38.751	-4.921
T4435 Arthroleptides martiensseni BM 2002.577 TZ Nilo FR 38.643 4.955 T4436 Arthroleptides martiensseni BM 2002.578 TZ Nilo FR NULL NULL T4436 Arthroleptides yakusini BM 2005.012 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4438 Arthroleptides yakusini BM 2005.014 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T5130 Arthroleptides yakusini MUSE 11038 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5133 Arthroleptides yakusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5133 Arthroleptides yakusini MUSE 11041 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5134 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5134 Arthroleptides yakusini MUSE 11047 TZ Kageta Hydroelectric Dam 36.091 -8.312	T4433	Arthroleptides martiensseni	BM 2002.804	ΤZ	Mgambo F.R.	38.811	-4.793
T4436 Arthroleptides martiensseni BM 2002.578 TZ Nilo FR NULL NULL NULL T4437 Arthroleptides yakusini BM 2005.012 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4438 Arthroleptides yakusini BM 2005.013 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4339 Arthroleptides yakusini BM 2005.014 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T5130 Arthroleptides yakusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5133 Arthroleptides yakusini MUSE 11041 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5139 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides yakusini MUSE 11048 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides yakusini MUSE 11047 TZ Sanje 36.991 -8.312 T5140 Arthroleptides yakusini MUSE 11048 TZ Kanga FR 37.724	T4434	Arthroleptides martiensseni	BM 2002.574	ΤZ	Nilo FR	38.673	-4.904
T4437 Arthroleptides yakusini BM 2005.012 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4438 Arthroleptides yakusini BM 2005.013 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4439 Arthroleptides yakusini BM 2005.014 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T5130 Arthroleptides yakusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5133 Arthroleptides yakusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5134 Arthroleptides yakusini MUSE 11042 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides yakusini MUSE 11042 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides yakusini MUSE 11048 TZ Saje 36.901 -8.312 T636 Arthroleptide syakusini MUSE 11048 TZ Kanga FR 37.724 -5.960 T5019 Arthroleptis affinis MTSN 8569 TZ Kanga FR 37.724 -5.960	T4435	Arthroleptides martiensseni	BM 2002.577	ΤZ	Nilo FR	38.643	-4.955
T4437Arthroleptides yakusiniBM 2005.012TZUluguru Mountains - Kasanga FR 37.774 -7.191 T4438Arthroleptides yakusiniBM 2005.013TZUluguru Mountains - Kasanga FR 37.774 -7.191 T4439Arthroleptides yakusiniBM 2005.014TZUluguru Mountains - Kasanga FR 37.774 -7.191 T5130Arthroleptides yakusiniMUSE 11040TZMgeta Hydroelectric Dam 36.091 -8.312 T5133Arthroleptides yakusiniMUSE 11040TZMgeta Hydroelectric Dam 36.091 -8.312 T5134Arthroleptides yakusiniMUSE 11042TZMgeta Hydroelectric Dam 36.091 -8.312 T5139Arthroleptides yakusiniMUSE 11042TZMgeta Hydroelectric Dam 36.091 -8.312 T5140Arthroleptides yakusiniMUSE 11042TZMgeta Hydroelectric Dam 36.091 -8.312 T5140Arthroleptides yakusiniMUSE 11048TZMgeta Hydroelectric Dam 36.091 -8.312 T5140Arthroleptides yakusiniMUSE 11048TZKanga FR 37.724 -5.960 T5119Arthroleptis affinisMTSN 5679TZSanje 36.911 -7.772 T5018Arthroleptis affinisMTSN 7721TZKinboero ValleyNULLNULLT5027Arthroleptis gf.BM 2000.891TZKilombero ValleyNULLNULLT5028Arthroleptis sp.BM 2000.893TZKilombero ValleyNULLNULL <td>T4436</td> <td></td> <td>BM 2002.578</td> <td>ΤZ</td> <td>Nilo FR</td> <td>NULL</td> <td>NULL</td>	T4436		BM 2002.578	ΤZ	Nilo FR	NULL	NULL
T4438 Arthroleptides yakusini BM 2005.013 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T4439 Arthroleptides yakusini BM 2005.014 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T5130 Arthroleptides yakusini MUSE 11048 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5133 Arthroleptides yakusini MUSE 11041 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5134 Arthroleptides yakusini MUSE 11041 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5134 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5134 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5136 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5136 Arthroleptides yakusini MUSE 11048 TZ Kaga FR 37.724 -5.960 T5019 Arthroleptides afinis MTSN 8369 TZ Kanga FR 37.724 -5.960	T4437	*	BM 2005.012	ΤZ	Uluguru Mountains - Kasanga FR	37.774	-7.191
T4439 Arthroleptides yakusini BM 2005.014 TZ Uluguru Mountains - Kasanga FR 37.774 -7.191 T5130 Arthroleptides yakusini MUSE 11038 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5133 Arthroleptides yakusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5133 Arthroleptides yakusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5134 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides yakusini MUSE 11048 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T636 Arthroleptides yakusini MUSE 11048 TZ Mgeta Hydroelectric Dam 36.091 -7.772 T5018 Arthroleptides dfinis MTSN 8348 TZ Kanga FR 37.724 -5.960 T2444 Arthroleptis effinis MTSN 7721 TZ Kilombero Valley NULL NULL							
T5130 Arthroleptides yakusini MUSE 11038 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5132 Arthroleptides yakusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5133 Arthroleptides yakusini MUSE 11041 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5134 Arthroleptides yakusini MUSE 11042 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5139 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T636 Arthroleptides yakusini MUSE 11048 TZ Mgeta Hydroelectric Dam 36.091 -7.772 T5018 Arthroleptis grifinis MTSN 8569 TZ Kanga FR 37.724 -5.960 T5027 Arthroleptis cf. affinis MTSN 7721 TZ Kilombero Valley NULL NULL T5028 Arthroleptis sp. BM 2000.892 TZ Kilombero Valley NULL NULL T5							
T5132 Arthroleptide yakusini MUSE 11040 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5133 Arthroleptides yakusini MUSE 11041 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5134 Arthroleptides yakusini MUSE 11042 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5134 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides yakusini MUSE 11048 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T616 Arthroleptide grakusini MUSE 11048 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T636 Arthroleptis gfinis MTSN 5679 TZ Sange 36.911 -7.772 T5018 Arthroleptis affinis MTSN 8348 TZ Kanga FR 37.724 -5.960 T5027 Arthroleptis sp. BM 2000.891 TZ Kilombero Valley NULL NULL T5028 Arthroleptis sp. BM 2000.892 TZ Kilombero Valley NULL NULL T2319 Arthroleptis							
T5133Arthroleptide yakusiniMUSE 11041TZMgeta Hydroelectric Dam36.091-8.312T5134Arthroleptides yakusiniMUSE 11042TZMgeta Hydroelectric Dam36.091-8.312T5139Arthroleptides yakusiniMUSE 11047TZMgeta Hydroelectric Dam36.091-8.312T5140Arthroleptides yakusiniMUSE 11047TZMgeta Hydroelectric Dam36.091-8.312T636Arthroleptides yakusiniMUSE 11048TZMgeta Hydroelectric Dam36.091-8.312T636Arthroleptide syakusiniMTSN 5679TZSanje36.911-7.772T5018Arthroleptis affinisMTSN 8369TZKanga FR37.724-5.960T2444Arthroleptis affinisMTSN 7721TZKimboza Forest37.802-7.002T5027Arthroleptis sp.BM 2000.891TZKilombero ValleyNULLNULLT5028Arthroleptis sp.BM 2000.892TZKilombero ValleyNULLNULLT5029Arthroleptis sp.BM 2002.593TZNilo FR38.693-4.928T2319Arthroleptis stenodactylusBM 2002.593TZUluguru Mountains37.774-7.191T2323Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.759-6.979T2324Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.888-7.179T2324Arthroleptis stenodactylusBM 2005.037TZUluguru							
T5134 Arthroleptides yakusini MUSE 11042 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5139 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides yakusini MUSE 11048 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T636 Arthroleptides yakusini MUSE 11048 TZ Sanje 36.911 -7.772 T5018 Arthroleptis affinis MTSN 5679 TZ Sanje 36.911 -7.772 T5019 Arthroleptis affinis MTSN 8369 TZ Kanga FR 37.724 -5.960 T5027 Arthroleptis sp. BM 2000.891 TZ Kimboza Forest 37.802 -7.002 T5028 Arthroleptis sp. BM 2000.892 TZ Kilombero Valley NULL NULL T5029 Arthroleptis sp. BM 2000.893 TZ Kilombero Valley NULL NULL T2318 Arthroleptis stenodactylus BM 2005.033 TZ Uluguru Mountains 37.774 -7.191 T3232 Arthroleptis stenodactylus BM							
T5139 Arthroleptides yakusini MUSE 11047 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T5140 Arthroleptides yakusini MUSE 11048 TZ Mgeta Hydroelectric Dam 36.091 -8.312 T636 Arthroleptides yakusini MTSN 5679 TZ Sanje 36.911 -7.772 T5018 Arthroleptis affinis MTSN 8348 TZ Kanga FR 37.724 -5.960 T5019 Arthroleptis affinis MTSN 7721 TZ Kimboza Forest 37.802 -7.002 T5027 Arthroleptis sp. BM 2000.891 TZ Kilombero Valley NULL NULL T5028 Arthroleptis sp. BM 2000.893 TZ Kilombero Valley NULL NULL T2318 Arthroleptis stenodactylus BM 2002.593 TZ Nilo FR 38.651 -4.863 T2322 Arthroleptis stenodactylus BM 2005.033 TZ Uluguru Mountains 37.774 -7.191 T2323 Arthroleptis stenodactylus BM 2005.037 TZ Uluguru Mountains							
T5140Arthroleptides yakusiniMUSE 11048TZMgeta Hydroelectric Dam36.091-8.312T636Arthroleptides yakusiniMTSN 5679TZSanje36.911-7.772T5018Arthroleptis affinisMTSN 8348TZKanga FR37.724-5.960T5019Arthroleptis affinisMTSN 8369TZKanga FR37.724-5.960T2444Arthroleptis cf. affinisMTSN 7721TZKimboza Forest37.802-7.002T5027Arthroleptis sp.BM 2000.891TZKilombero ValleyNULLNULLT5028Arthroleptis sp.BM 2000.892TZKilombero ValleyNULLNULLT5029Arthroleptis sp.BM 2000.893TZKilombero ValleyNULLNULLT2318Arthroleptis stenodactylusBM 2002.593TZNilo FR38.693-4.928T2322Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.774-7.191T2323Arthroleptis stenodactylusBM 2005.034TZUluguru Mountains37.759-6.979T2326Arthroleptis stenodactylusBM 2005.035TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838					• •		
T636Arthroleptides yakusiniMTSN 5679TZSanje36.911-7.772T5018Arthroleptis affinisMTSN 8348TZKanga FR37.724-5.960T5019Arthroleptis affinisMTSN 8369TZKanga FR37.724-5.960T2444Arthroleptis cf. affinisMTSN 7721TZKimboza Forest37.802-7.002T5027Arthroleptis sp.BM 2000.891TZKilombero ValleyNULLNULLT5028Arthroleptis sp.BM 2000.892TZKilombero ValleyNULLNULLT5029Arthroleptis sp.BM 2000.893TZKilombero ValleyNULLNULLT2318Arthroleptis stenodactylusBM 2002.593TZNilo FR38.651-4.863T2322Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.774-7.191T2323Arthroleptis stenodactylusBM 2005.034TZUluguru Mountains37.838-7.179T2324Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2326Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.64-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKaziumbwi FR39.062 <td< td=""><td></td><td>1 2</td><td></td><td></td><td></td><td></td><td></td></td<>		1 2					
T5018Arthroleptis affinisMTSN 8348TZKanga FR37.724-5.960T5019Arthroleptis affinisMTSN 8369TZKanga FR37.724-5.960T2444Arthroleptis cf. affinisMTSN 7721TZKimboza Forest37.802-7.002T5027Arthroleptis sp.BM 2000.891TZKilombero ValleyNULLNULLT5028Arthroleptis sp.BM 2000.892TZKilombero ValleyNULLNULLT5029Arthroleptis sp.BM 2000.893TZKilombero ValleyNULLNULLT2318Arthroleptis stenodactylusBM 2002.593TZNilo FR38.651-4.863T2322Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.774-7.191T2323Arthroleptis stenodactylusBM 2005.035TZUluguru Mountains37.759-6.979T2326Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2327Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.923TZKaizumbwi FR39.062-6.955T2344Arthroleptis stenodactylusBM 2005.923TZKaizumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2991Arthroleptis stenodactylusAC 1266TZZaraninge38.608-6.137 <td></td> <td></td> <td></td> <td></td> <td>• •</td> <td></td> <td></td>					• •		
T5019Arthroleptis affinisMTSN 8369TZKanga FR37.724-5.960T2444Arthroleptis cf. affinisMTSN 7721TZKimboza Forest37.802-7.002T5027Arthroleptis sp.BM 2000.891TZKilombero ValleyNULLNULLT5028Arthroleptis sp.BM 2000.892TZKilombero ValleyNULLNULLT5029Arthroleptis sp.BM 2000.893TZKilombero ValleyNULLNULLT2318Arthroleptis stenodactylusBM 2002.593TZNilo FR38.663-4.928T2319Arthroleptis stenodactylusBM 2002.594TZNilo FR38.651-4.863T2322Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.774-7.191T2323Arthroleptis stenodactylusBM 2005.034TZUluguru Mountains37.759-6.979T2324Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2325Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.838-7.179T2326Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.764-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKaziumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T291Arthroleptis stenodactylusAC 1266TZZaraninge38.608 <t< td=""><td></td><td>1 .</td><td></td><td></td><td>-</td><td></td><td></td></t<>		1 .			-		
T2444Arthroleptis cf. affinisMTSN 7721TZKimboza Forest37.802-7.002T5027Arthroleptis sp.BM 2000.891TZKilombero ValleyNULLNULLT5028Arthroleptis sp.BM 2000.892TZKilombero ValleyNULLNULLT5029Arthroleptis sp.BM 2000.893TZKilombero ValleyNULLNULLT2318Arthroleptis stenodactylusBM 2002.593TZNilo FR38.693-4.928T2319Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.774-7.191T2322Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.774-7.191T2323Arthroleptis stenodactylusBM 2005.034TZUluguru Mountains37.759-6.979T2326Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2327Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.024TZUluguru Mountains37.64-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKaizumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2541Arthroleptis stenodactylusAC 1266TZZaraninge38.608-6.137T291Arthroleptis stenodactylusCB 13.002TZMakangala FR, L		x 00					
T5027Arthroleptis sp.BM 2000.891TZKilombero ValleyNULLNULLT5028Arthroleptis sp.BM 2000.892TZKilombero ValleyNULLNULLT5029Arthroleptis sp.BM 2000.893TZKilombero ValleyNULLNULLT2318Arthroleptis stenodactylusBM 2002.593TZNilo FR38.693-4.928T2319Arthroleptis stenodactylusBM 2002.594TZNilo FR38.651-4.863T2322Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.774-7.191T2323Arthroleptis stenodactylusBM 2005.034TZUluguru Mountains37.774-7.191T2324Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2326Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2327Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.64-6.985T2328Arthroleptis stenodactylusBM 2005.022TZUluguru Mountains37.64-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKazizumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2541Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994					e		
T5028Arthroleptis sp.BM 2000.892TZKilombero ValleyNULLNULLT5029Arthroleptis sp.BM 2000.893TZKilombero ValleyNULLNULLT2318Arthroleptis stenodactylusBM 2002.593TZNilo FR38.693-4.928T2319Arthroleptis stenodactylusBM 2002.594TZNilo FR38.651-4.863T2322Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.774-7.191T2323Arthroleptis stenodactylusBM 2005.034TZUluguru Mountains37.774-7.191T2324Arthroleptis stenodactylusBM 2005.035TZUluguru Mountains37.759-6.979T2326Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2327Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.042TZUluguru Mountains37.64-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKazizumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2541Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994							
T5029Arthroleptis sp.BM 2000.893TZKilombero ValleyNULLNULLT2318Arthroleptis stenodactylusBM 2002.593TZNilo FR38.693-4.928T2319Arthroleptis stenodactylusBM 2002.594TZNilo FR38.651-4.863T2322Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.774-7.191T2323Arthroleptis stenodactylusBM 2005.034TZUluguru Mountains37.774-7.191T2324Arthroleptis stenodactylusBM 2005.035TZUluguru Mountains37.759-6.979T2326Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2327Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.042TZUluguru Mountains37.64-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKazizumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2541Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994					•		
T2318Arthroleptis stenodactylusBM 2002.593TZNilo FR38.693-4.928T2319Arthroleptis stenodactylusBM 2002.594TZNilo FR38.651-4.863T2322Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.774-7.191T2323Arthroleptis stenodactylusBM 2005.034TZUluguru Mountains37.774-7.191T2324Arthroleptis stenodactylusBM 2005.035TZUluguru Mountains37.759-6.979T2326Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2327Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.042TZUluguru Mountains37.64-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKazizumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2541Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994			BM 2000.892		•		
T2319Arthroleptis stenodactylusBM 2002.594TZNilo FR38.651-4.863T2322Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.774-7.191T2323Arthroleptis stenodactylusBM 2005.034TZUluguru Mountains37.774-7.191T2324Arthroleptis stenodactylusBM 2005.035TZUluguru Mountains37.759-6.979T2326Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2327Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.042TZUluguru Mountains37.764-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKazizumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2541Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994			BM 2000.893			NULL	
T2322Arthroleptis stenodactylusBM 2005.033TZUluguru Mountains37.774-7.191T2323Arthroleptis stenodactylusBM 2005.034TZUluguru Mountains37.774-7.191T2324Arthroleptis stenodactylusBM 2005.035TZUluguru Mountains37.759-6.979T2326Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2327Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.042TZUluguru Mountains37.764-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKazizumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2541Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994	T2318	Arthroleptis stenodactylus	BM 2002.593	ΤZ	Nilo FR	38.693	-4.928
T2323Arthroleptis stenodactylusBM 2005.034TZUluguru Mountains37.774-7.191T2324Arthroleptis stenodactylusBM 2005.035TZUluguru Mountains37.759-6.979T2326Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2327Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.042TZUluguru Mountains37.764-6.985T2334Arthroleptis stenodactylusBM 2005.923TZUluguru Mountains37.764-6.955T2540Arthroleptis stenodactylusBM 2005.923TZKazizumbwi FR39.062-6.955T2541Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2991Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994	T2319	Arthroleptis stenodactylus	BM 2002.594	ΤZ	Nilo FR	38.651	-4.863
T2324Arthroleptis stenodactylusBM 2005.035TZUluguru Mountains37.759-6.979T2326Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2327Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.042TZUluguru Mountains37.764-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKazizumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2541Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994	T2322	Arthroleptis stenodactylus	BM 2005.033	ΤZ	Uluguru Mountains	37.774	-7.191
T2326Arthroleptis stenodactylusBM 2005.037TZUluguru Mountains37.838-7.179T2327Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.042TZUluguru Mountains37.764-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKazizumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2541Arthroleptis stenodactylusAC 1266TZZaraninge38.608-6.137T2991Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994	T2323	Arthroleptis stenodactylus	BM 2005.034	ΤZ	Uluguru Mountains	37.774	-7.191
T2327Arthroleptis stenodactylusBM 2005.038TZUluguru Mountains37.838-7.179T2328Arthroleptis stenodactylusBM 2005.042TZUluguru Mountains37.764-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKazizumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2541Arthroleptis stenodactylusAC 1266TZZaraninge38.608-6.137T2991Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994	T2324	Arthroleptis stenodactylus	BM 2005.035	ΤZ	Uluguru Mountains	37.759	-6.979
T2328Arthroleptis stenodactylusBM 2005.042TZUluguru Mountains37.764-6.985T2334Arthroleptis stenodactylusBM 2005.923TZKazizumbwi FR39.062-6.955T2540Arthroleptis stenodactylusAC 1265TZZaraninge38.608-6.137T2541Arthroleptis stenodactylusAC 1266TZZaraninge38.608-6.137T2991Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994	T2326	Arthroleptis stenodactylus	BM 2005.037	ΤZ	Uluguru Mountains	37.838	-7.179
T2334 Arthroleptis stenodactylus BM 2005.923 TZ Kazizumbwi FR 39.062 -6.955 T2540 Arthroleptis stenodactylus AC 1265 TZ Zaraninge 38.608 -6.137 T2541 Arthroleptis stenodactylus AC 1266 TZ Zaraninge 38.608 -6.137 T2991 Arthroleptis stenodactylus CB 13.002 TZ Makangala FR, Lindi, Tanzania 39.388 -9.994	T2327	Arthroleptis stenodactylus	BM 2005.038	ΤZ	Uluguru Mountains	37.838	-7.179
T2334 Arthroleptis stenodactylus BM 2005.923 TZ Kazizumbwi FR 39.062 -6.955 T2540 Arthroleptis stenodactylus AC 1265 TZ Zaraninge 38.608 -6.137 T2541 Arthroleptis stenodactylus AC 1266 TZ Zaraninge 38.608 -6.137 T2991 Arthroleptis stenodactylus CB 13.002 TZ Makangala FR, Lindi, Tanzania 39.388 -9.994	T2328		BM 2005.042	ΤZ	-	37.764	-6.985
T2540 Arthroleptis stenodactylus AC 1265 TZ Zaraninge 38.608 -6.137 T2541 Arthroleptis stenodactylus AC 1266 TZ Zaraninge 38.608 -6.137 T2991 Arthroleptis stenodactylus CB 13.002 TZ Makangala FR, Lindi, Tanzania 39.388 -9.994	T2334		BM 2005.923	ΤZ		39.062	-6.955
T2541Arthroleptis stenodactylusAC 1266TZZaraninge38.608-6.137T2991Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994			AC 1265	ΤZ	Zaraninge		
T2991Arthroleptis stenodactylusCB 13.002TZMakangala FR, Lindi, Tanzania39.388-9.994					•		
					-		
					-		
					- / /		

T3253	Arthroleptis stenodactylus	CB 13.261	ΤZ	Rondo Forest, Lindi, Tanzania	39.200	-10.119
T3255	Arthroleptis stenodactylus	CB 13.262	ΤZ	Rondo Forest, Lindi, Tanzania	39.199	-10.119
T3256	Arthroleptis stenodactylus	CB 13.263	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3257	Arthroleptis stenodactylus	CB 13.264	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3258	Arthroleptis stenodactylus	CB 13.265	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3259	Arthroleptis stenodactylus	CB 13.266	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T4269	Arthroleptis stenodactylus	CB 13.923	ΤZ	Kilulu, Tanga, Tanzania	39.130	-4.765
T4287	Arthroleptis stenodactylus	AC 1265	ΤZ	Zaraninge Forest	NULL	NULL
T4288	Arthroleptis stenodactylus	AC 1266	ΤZ	Zaraninge Forest	NULL	NULL
T4440	Arthroleptis stenodactylus	BM 2002.379	ΤZ	Ruvu South FR	38.814	-6.909
T4441	Arthroleptis stenodactylus	BM 2002.383	ΤZ	Ruvu South FR	38.814	-6.909
T4442	Arthroleptis stenodactylus	BM 2002.357	ΤZ	Kazizumbwi FR	39.053	-6.932
T4443	Arthroleptis stenodactylus	BM 2005.918	ΤZ	Kazizumbwi FR	39.053	-6.943
T4444	Arthroleptis stenodactylus	BM 2000.894	ΤZ	Kilombero Valley	NULL	NULL
T4445	Arthroleptis stenodactylus	BM 2000.908	ΤZ	Kilombero Valley	NULL	NULL
T4446	Arthroleptis stenodactylus	BM 2000.829	ΤZ	Kwamgumi FR	NULL	NULL
T4447	Arthroleptis stenodactylus	BM 2000.830	TZ	Kwamgumi FR	NULL	NULL
T4448	Arthroleptis stenodactylus	BM 2000.831	TZ	Kwangumi FR	NULL	NULL
T4449	Arthroleptis stenodactylus	BM 2000.551 BM 2002.547	TZ	Namakutwa FR	NULL	NULL
	1 .		TZ	Nilo FR		-4.908
T4450	Arthroleptis stenodactylus	BM 2002.595			38.663	
T4451	Arthroleptis stenodactylus	BM 2005.1321	TZ	Bombo Forest Reserve	38.681	-4.809
T4452	Arthroleptis stenodactylus	BM 2005.1322	ΤZ	Bombo Forest Reserve	38.681	-4.809
T4453	Arthroleptis stenodactylus	BM 2005.032	TZ	Uluguru Mountains - Kasanga FR	37.774	-7.191
T4454	Arthroleptis stenodactylus	BM 2005.039	ΤZ	Uluguru Mountians - Mvuha FR	37.838	-7.179
T4455	Arthroleptis stenodactylus	BM 2005.040	ΤZ	Uluguru Mountians - Mvuha FR	37.838	-7.179
T4456	Arthroleptis stenodactylus	BM 2005.041	ΤZ	Uluguru Mountians - Mvuha FR	37.837	-7.180
T4457	Arthroleptis stenodactylus	BM 2005.045	ΤZ	Uluguru Mountians - Uluguru Ruvu FR	37.863	-7.008
T4458	Arthroleptis stenodactylus	BM 2005.046	ΤZ	Uluguru Mountians - Uluguru Ruvu FR	37.863	-7.008
T4802	Arthroleptis stenodactylus	?_multiple_07	ΤZ	Rondo plateau	NULL	NULL
T4803	Arthroleptis stenodactylus	?_multiple_08	ΤZ	Mbarawala	NULL	NULL
T4930	Arthroleptis stenodactylus	MTSN 9512	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4933	Arthroleptis stenodactylus	MTSN 9515	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4934	Arthroleptis stenodactylus	MTSN 9516	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4939	Arthroleptis stenodactylus	MTSN 9525	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4940	Arthroleptis stenodactylus	MTSN 9526	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4943	Arthroleptis stenodactylus	MTSN 9529	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4945	Arthroleptis stenodactylus	MTSN 9535	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4946	Arthroleptis stenodactylus	MTSN 9536	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4950	Arthroleptis stenodactylus	MTSN 9540	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4964	Arthroleptis stenodactylus	MTSN 9556	TZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T5402	Arthroleptis stenodactylus	MVZ:233788	ΤZ			
T2720	Arthroleptis stenodactylus	MCZ 148779	TZ	Dar es Salaam, Dondwe Forest	39.097	-7.064
T2722	Arthroleptis stenodactylus	MCZ 148794	TZ	Lindi, Rondo Forest	39.178	-10.118
T2723	Arthroleptis stenodactylus	MCZ 148794 MCZ 148801	TZ	Lindi, Rondo Forest	39.178	-10.118
T2726	Arthroleptis stenodactylus	MCZ 148817	TZ	Lindi, Rondo Forest	39.178	-10.118
	Arthroleptis stenodactylus	MCZ 148817 MCZ 148832	TZ	Dar es Salaam, Dondwe Forest		
T2727	1 .				39.097	-7.064
T2728	Arthroleptis stenodactylus	MCZ 148833	TZ	Dar es Salaam, Dondwe Forest	39.097	-7.064
T2732	Arthroleptis stenodactylus	MCZ 148848	TZ	Tanga, Mafi Hill	38.141	-4.923
T2733	Arthroleptis stenodactylus	MCZ 148849	ΤZ	Tanga, Mafi Hill	38.141	-4.923
T2734	Arthroleptis stenodactylus	MCZ 148850	ΤZ	Tanga, Mafi Hill	38.141	-4.923
T5142	Arthroleptis stenodactylus	MUSE 11050	ΤZ	Mgeta Hydroelectric Dam	36.091	-8.312
T4783	Arthroleptis tanneri	no number	MZ	Mnt Mabu	36.588	-16.313
T2418	Arthroleptis xenodactyloides	MTSN 5680	ΤZ	Sanje	36.911	-7.772
T2441	Arthroleptis xenodactyloides	MTSN 7516	ΤZ	Segoma FR, East Usambara	38.761	-4.976
T2442	Arthroleptis xenodactyloides	MTSN 7681	ΤZ	Kimboza Forest	37.802	-7.002
T2443	Arthroleptis xenodactyloides	MTSN 7710	ΤZ	Kimboza Forest	37.802	-7.002
T2721	Arthroleptis xenodactyloides	MCZ 148791	ΤZ	Lindi, Rondo Forest	39.178	-10.118
T2724	Arthroleptis xenodactyloides	MCZ 148802	ΤZ	Lindi, Rondo Forest	39.178	-10.118
T2725	Arthroleptis xenodactyloides	MCZ 148803	ΤZ	Lindi, Rondo Forest	39.178	-10.118
T2729	Arthroleptis xenodactyloides	MCZ 148840	ΤZ	Tanga, Mafi Hill	38.141	-4.923
T2730	Arthroleptis xenodactyloides	MCZ 148841	ΤZ	Tanga, Mafi Hill	38.141	-4.923
T2731	Arthroleptis xenodactyloides	MCZ 148842	ΤZ	Tanga, Mafi Hill	38.141	-4.923
	-					

T3024	Arthroleptis xenodactyloides	CB 13.047	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3075	Arthroleptis xenodactyloides	CB 13.098	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3076	Arthroleptis xenodactyloides	CB 13.099	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3077	Arthroleptis xenodactyloides	CB 13.100	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.511	-10.032
T3091	Arthroleptis xenodactyloides	CB 13.114	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3092	Arthroleptis xenodactyloides	CB 13.115	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3093	Arthroleptis xenodactyloides	CB 13.116	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3094	Arthroleptis xenodactyloides	CB 13.117	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3095	Arthroleptis xenodactyloides	CB 13.118	TZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3096	Arthroleptis xenodactyloides	CB 13.110	TZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3097	Arthroleptis xenodactyloides	CB 13.120	TZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3098	Arthroleptis xenodactyloides	CB 13.121	TZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3105	Arthroleptis xenodactyloides	CB 13.128	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3106	Arthroleptis xenodactyloides	CB 13.129	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3140	Arthroleptis xenodactyloides	CB 13.163	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3141	Arthroleptis xenodactyloides	CB 13.164	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3144	Arthroleptis xenodactyloides	CB 13.167	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3145	Arthroleptis xenodactyloides	CB 13.168	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3146	Arthroleptis xenodactyloides	CB 13.169	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3147	Arthroleptis xenodactyloides	CB 13.170	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3220	Arthroleptis xenodactyloides	CB 13.243	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3221	Arthroleptis xenodactyloides	CB 13.244	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3222	Arthroleptis xenodactyloides	CB 13.245	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3223	Arthroleptis xenodactyloides	CB 13.246	TZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3223	Arthroleptis xenodactyloides	CB 13.240	TZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
	Arthroleptis xenodactyloides					-10.118
T3225		CB 13.248	TZ	Rondo Forest, Lindi, Tanzania	39.178	
T3226	Arthroleptis xenodactyloides	CB 13.249	TZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3227	Arthroleptis xenodactyloides	CB 13.250	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3228	Arthroleptis xenodactyloides	CB 13.251	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3229	Arthroleptis xenodactyloides	CB 13.252	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3245	Arthroleptis xenodactyloides	CB 13.253	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3246	Arthroleptis xenodactyloides	CB 13.254	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3247	Arthroleptis xenodactyloides	CB 13.255	ΤZ	Rondo Forest, Lindi, Tanzania	39.178	-10.118
T3248	Arthroleptis xenodactyloides	CB 13.256	ΤZ	Rondo Forest, Lindi, Tanzania	39.200	-10.119
T3249	Arthroleptis xenodactyloides	CB 13.257	ΤZ	Rondo Forest, Lindi, Tanzania	39.200	-10.119
T3250	Arthroleptis xenodactyloides	CB 13.258	ΤZ	Rondo Forest, Lindi, Tanzania	39.200	-10.119
T3251	Arthroleptis xenodactyloides	CB 13.259	ΤZ	Rondo Forest, Lindi, Tanzania	39.200	-10.119
T3254	Arthroleptis xenodactyloides	CB 13.260	ΤZ	Rondo Forest, Lindi, Tanzania	39.200	-10.119
T3268	Arthroleptis xenodactyloides	CB 13.275	ΤZ	Namatimbili FR, Lindi, Tanzania	39.238	-9.111
T3269	Arthroleptis xenodactyloides	CB 13.276	ΤZ	Namatimbili FR, Lindi, Tanzania	39.238	-9.111
T3280	Arthroleptis xenodactyloides	CB 13.287	ΤZ	Namatimbili FR, Lindi, Tanzania	39.238	-9.111
T3322	Arthroleptis xenodactyloides	CB 13.329	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3323	Arthroleptis xenodactyloides	CB 13.330	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3324	Arthroleptis xenodactyloides	CB 13.331	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3325	Arthroleptis xenodactyloides	CB 13.332	TZ	Makangaga FR, Lindi, Tanzania		-9.495
	1 5				39.292	
T3422	Arthroleptis xenodactyloides	CB 13.333	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3423	Arthroleptis xenodactyloides	CB 13.334	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3424	Arthroleptis xenodactyloides	CB 13.335	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3480	Arthroleptis xenodactyloides	CB 13.391	ΤZ	Kiwengoma FR, Pwani, Tanzania	NULL	NULL
T3481	Arthroleptis xenodactyloides	CB 13.392	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3482	Arthroleptis xenodactyloides	CB 13.393	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3483	Arthroleptis xenodactyloides	CB 13.394	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T4120	Arthroleptis xenodactyloides	CB 13.770	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4121	Arthroleptis xenodactyloides	CB 13.771	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4122	Arthroleptis xenodactyloides	CB 13.772	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4123	Arthroleptis xenodactyloides	CB 13.773	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4131	Arthroleptis xenodactyloides	CB 13.781	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4132	Arthroleptis xenodactyloides	CB 13.782	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4133	Arthroleptis xenodactyloides	CB 13.783	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4134	Arthroleptis xenodactyloides	CB 13.784	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4134	Arthroleptis xenodactyloides	CB 13.785	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4186	Arthroleptis xenodactyloides	CB 13.836	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
17100	nn orepris renounceyiones	CD 15.050	12		56.724	2.027

T4187	Arthroleptis xenodactyloides	CB 13.837	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4201	Arthroleptis xenodactyloides	CB 13.851	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4202	Arthroleptis xenodactyloides	CB 13.852	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4203	Arthroleptis xenodactyloides	CB 13.853	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4461	Arthroleptis xenodactyloides	BM 2002.851	ΤZ	Mgambo F.R.	38.813	-4.792
T4775	Arthroleptis xenodactyloides	WC-DNA-1148	MZ	between two inselbergs along Mecuburi	38.849	-14.700
T4776	Arthroleptis xenodactyloides	WC-DNA-1149	MZ	between two inselbergs along Mecuburi	NULL	NULL
T4777	Arthroleptis xenodactyloides	WC-DNA-1151	MZ	between two inselbergs along Mecuburi	38.849	-14.700
T4778	Arthroleptis xenodactyloides	WC-DNA-1152	MZ	between two inselbergs along Mecuburi	38.849	-14.700
T4779	Arthroleptis xenodactyloides	WC-DNA-1059	MZ	Montepuez river near Chiefs house	38.709	-13.318
T4780	Arthroleptis xenodactyloides	WC-DNA-1061	MZ	Montepuez river near Chiefs house	38.709	-13.318
T4781	Arthroleptis xenodactyloides	WC-DNA-1062	MZ	Montepuez river near Chiefs house	38.709	-13.318
T4782	Arthroleptis xenodactyloides	WC-DNA-1078	MZ	Montepuez river near Chiefs house	38.709	-13.318
T5016	Arthroleptis xenodactyloides	MTSN 8446	ΤZ	Mgeta	36.087	-8.339
T5017	Arthroleptis xenodactyloides	MTSN 8460	TZ	Mgeta	36.087	-8.339
T5030	Arthroleptis xenodactyloides	BM 2002.360	TZ	Kazizumbwi FR	39.053	-6.932
T5030		BM 2002.361	TZ	Kazizumbwi FR	39.053	-6.932
	Arthroleptis xenodactyloides					
T5032	Arthroleptis xenodactyloides	BM 2005.924	TZ	Kazizumbwi FR	39.073	-6.977
T5033	Arthroleptis xenodactyloides	BM 2005.925	TZ	Kazizumbwi FR	39.073	-6.977
T5034	Arthroleptis xenodactyloides	BM 2005.926	ΤZ	Kazizumbwi FR	39.053	-6.943
T5035	Arthroleptis xenodactyloides	BM 2000.930	ΤZ	Kilombero Valley	NULL	NULL
T5036	Arthroleptis xenodactyloides	BM 2000.951	ΤZ	Kilombero Valley	NULL	NULL
T5037	Arthroleptis xenodactyloides	BM 2000.925	ΤZ	Kilombero Valley	NULL	NULL
T5038	Arthroleptis xenodactyloides	BM 2000.944	ΤZ	Kilombero Valley	NULL	NULL
T5039	Arthroleptis xenodactyloides	BM 2000.926	ΤZ	Kilombero Valley	NULL	NULL
T5040	Arthroleptis xenodactyloides	BM 2002.325	ΤZ	Mlinga Forest Reserve	38.752	-5.058
T5041	Arthroleptis xenodactyloides	BM 2002.326	ΤZ	Mlinga Forest Reserve	38.748	-5.059
T5042	Arthroleptis xenodactyloides	BM 2002.327	ΤZ	Mlinga Forest Reserve	38.748	-5.059
T5043	Arthroleptis xenodactyloides	BM 2002.328	ΤZ	Mlinga Forest Reserve	38.748	-5.059
T5044	Arthroleptis xenodactyloides	BM 2002.329	ΤZ	Mlinga Forest Reserve	38.748	-5.059
T5045	Arthroleptis xenodactyloides	BM 2000.835	ΤZ	Kwamgumi FR	NULL	NULL
T5046	Arthroleptis xenodactyloides	BM 2000.836	ΤZ	Kwamgumi FR	NULL	NULL
T5047	Arthroleptis xenodactyloides	BM 2000.837	ΤZ	Kwamgumi FR	NULL	NULL
T5048	Arthroleptis xenodactyloides	BM 2000.838	ΤZ	Kwamgumi FR	NULL	NULL
T5049	Arthroleptis xenodactyloides	BM 2000.840	ΤZ	Kwamgumi FR	38.751	-4.921
T5050	Arthroleptis xenodactyloides	BM 2002.883	ΤZ	Mgambo F.R.	38.813	-4.792
T5051	Arthroleptis xenodactyloides	BM 2002.884	ΤZ	Mgambo F.R.	38.813	-4.792
T5051	Arthroleptis xenodactyloides	BM 2002.885	TZ	Mgambo F.R.	38.813	-4.792
T5052	Arthroleptis xenodactyloides	BM 2002.885 BM 2002.886	TZ	Mgambo F.R.	38.813	-4.792
T5055	Arthroleptis xenodactyloides	BM 2002.888	TZ	Mgambo F.R.	38.813	-4.792
T5055			TZ			-4.928
	Arthroleptis xenodactyloides	BM 2002.597		Nilo FR	38.693	
T5056	Arthroleptis xenodactyloides	BM 2002.598	TZ	Nilo FR	38.665	-4.911
T5057	Arthroleptis xenodactyloides	BM 2002.599	TZ	Nilo FR	38.663	-4.908
T5058	Arthroleptis xenodactyloides	BM 2002.600	TZ	Nilo FR	38.659	-4.944
T5059	Arthroleptis xenodactyloides	BM 2002.601	ΤZ	Nilo FR	38.659	-4.944
T5060	Arthroleptis xenodactyloides	BM 2005.078	ΤZ	Uluguru Mountains - Kasanga FR	37.774	-7.191
T5061	Arthroleptis xenodactyloides	BM 2005.079	ΤZ	Uluguru Mountains - Mangala FR	37.759	-6.979
T5062	Arthroleptis xenodactyloides	BM 2005.080	ΤZ	Uluguru Mountians - Milawilia FR	37.750	-6.979
T5063	Arthroleptis xenodactyloides	BM 2005.081	ΤZ	Uluguru Mountains - Mkungwe FR	37.915	-6.869
T5064	Arthroleptis xenodactyloides	BM 2005.082	ΤZ	Uluguru Mountains	37.915	-6.869
T5065	Arthroleptis xenodactyloides	BM 2005.083	ΤZ	Uluguru Mountains - Mvuha FR	37.838	-7.179
T5066	Arthroleptis xenodactyloides	BM 2005.085	ΤZ	Uluguru Mountains	37.838	-7.179
T5067	Arthroleptis xenodactyloides	BM 2005.086	ΤZ	Uluguru Mountains - Ngambaula FR	37.764	-6.985
T5068	Arthroleptis xenodactyloides	BM 2005.087	ΤZ	Uluguru Mountians - Uluguru Ruvu FR	37.863	-7.008
T5069	Arthroleptis xenodactyloides	BM 2005.088	ΤZ	Uluguru Mountians - Uluguru Ruvu FR	37.863	-7.008
T5106	Arthroleptis xenodactyloides	MUSE 11056	ΤZ	Mgeta Hydroelectric Dam		-
T5107	Arthroleptis xenodactyloides	MUSE 11057	ΤZ	Mgeta Hydroelectric Dam		-
T5108	Arthroleptis xenodactyloides	MUSE 11059	ΤZ	Mgeta Hydroelectric Dam	36.091	-8.312
T5109	Arthroleptis xenodactyloides	MUSE 11058	ΤZ	Mgeta Hydroelectric Dam	36.091	-8.312
T5385	Arthroleptis xenodactyloides	MVZ 265870	MZ	Serra Jeci Midway Forest Island		
T5386	Arthroleptis xenodactyloides	MVZ 265871	MZ	Serra Jeci Midway Forest Island	35.181	-12.849
T5387	Arthroleptis xenodactyloides	MVZ 265872	MZ	Serra Jeci Drainage Forest, streamside	35.178	-12.844
				e i orest, strouinster	20.170	-=

T5388	Arthroleptis xenodactyloides	DMP 208	MZ	Serra Jeci water forest	35.178	-12.851
T4941	Arthroleptis xenodactyloides	MTSN 9527	TZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4941 T4953			TZ	-		
	Arthroleptis xenodactyloides	MTSN 9543		Segoma Forest, Camp, East Usambara	38.762	-4.976
T4967	Arthroleptis xenodactyloides	MTSN 9560	TZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4975	Arthroleptis xenodactyloides	MTSN 9569	TZ	Kwamgumi Forest Reserve, East Usambara	38.737	-4.972
T4459	Arthroleptis xenodactylus	BM 2002.611	ΤZ	Nilo FR	38.663	-4.908
T4460	Arthroleptis xenodactylus	BM 2002.612	ΤZ	Nilo FR	38.643	-4.955
T5015	Arthroleptis xenodactylus	MTSN 8373	ΤZ	Kanga FR	37.724	-5.960
T4971	Boulengerula boulengeri	MTSN 9564	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4972	Boulengerula boulengeri	MTSN 9565	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T243	Boulengerula changamwensis	KMH 23345	ΤZ	Kazizumbwi	39.033	-6.933
T1931	Breviceps mossambicus	MCZ 32076	ΤZ	Rondo Plateau	39.205	-10.144
T4601	Breviceps mossambicus	ENI 31	MZ	Cabo Delgabo, Mozambique	39.321	-12.334
T4602	Breviceps mossambicus	WC-DNA-1363	MZ	Coastal dry forest, Mozambique	40.404	-12.767
T4603	Breviceps mossambicus	WC-DNA-1405	MZ	Coastal dry forest, Mozambique	40.404	-12.767
T4462	Breviceps mossambicus	BM 2005.927	ΤZ	Kazizumbwi FR	39.055	-6.931
T4800	Breviceps sp.	? multiple 05	ΤZ	RONDO PLATEAU	NULL	NULL
T3185	Chiromantis xerampelina	CB 13.208	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3186	Chiromantis xerampelina	CB 13.209	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3187	Chiromantis xerampelina	CB 13.210	TZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3188	Chiromantis xerampelina	CB 13.210	TZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3207	1 1	CB 13.230	TZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
	Chiromantis xerampelina		TZ			
T3208	Chiromantis xerampelina	CB 13.231		Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3209	Chiromantis xerampelina	CB 13.232	TZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3260	Chiromantis xerampelina	CB 13.267	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3261	Chiromantis xerampelina	CB 13.268	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3262	Chiromantis xerampelina	CB 13.269	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3263	Chiromantis xerampelina	CB 13.270	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3264	Chiromantis xerampelina	CB 13.271	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3266	Chiromantis xerampelina	CB 13.273	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3267	Chiromantis xerampelina	CB 13.274	ΤZ	Namatimbili FR, Lindi, Tanzania	39.238	-9.111
T3275	Chiromantis xerampelina	CB 13.282	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3276	Chiromantis xerampelina	CB 13.283	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3277	Chiromantis xerampelina	CB 13.284	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3278	Chiromantis xerampelina	CB 13.285	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3279	Chiromantis xerampelina	CB 13.286	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3284	Chiromantis xerampelina	CB 13.291	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3285	Chiromantis xerampelina	CB 13.292	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3286	Chiromantis xerampelina	CB 13.293	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3287	Chiromantis xerampelina	CB 13.294	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3288	Chiromantis xerampelina	CB 13.295	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3289	Chiromantis xerampelina	CB 13.295	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
				Makangaga FR, Lindi, Tanzania		
T3311	Chiromantis xerampelina	CB 13.318 CB 13.336	TZ TZ		39.292	-9.495 8.226
T3425	Chiromantis xerampelina		TZ	Nyamuete FR, Pwani, Tanzania	39.034	-8.326
T3426	Chiromantis xerampelina	CB 13.337	TZ	Nyamuete FR, Pwani, Tanzania	39.034	-8.326
T3433	Chiromantis xerampelina	CB 13.344	TZ	Nyamuete FR, Pwani, Tanzania	39.034	-8.326
T3437	Chiromantis xerampelina	CB 13.348	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3438	Chiromantis xerampelina	CB 13.349	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3439	Chiromantis xerampelina	CB 13.350	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3440	Chiromantis xerampelina	CB 13.351	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3441	Chiromantis xerampelina	CB 13.352	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3442	Chiromantis xerampelina	CB 13.353	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3451	Chiromantis xerampelina	CB 13.362	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3454	Chiromantis xerampelina	CB 13.365	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3455	Chiromantis xerampelina	CB 13.366	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3456	Chiromantis xerampelina	CB 13.367	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3457	Chiromantis xerampelina	CB 13.368	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3458	Chiromantis xerampelina	CB 13.369	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3459	Chiromantis xerampelina	CB 13.370	TZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3460	Chiromantis xerampelina	CB 13.371	TZ	Kiwengoma FR, Pwani, Tanzania	NULL	NULL
T3461	Chiromantis xerampelina	CB 13.372	TZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3462	Chiromantis xerampelina	CB 13.372	TZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
10102	ontanto nor uniperina	0.0.0.0			20.700	0.004

T3463	Chiromantis xerampelina	CB 13.374	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3464	Chiromantis xerampelina	CB 13.375	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3465	Chiromantis xerampelina	CB 13.376	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3466	Chiromantis xerampelina	CB 13.377	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3467	Chiromantis xerampelina	CB 13.378	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3556	Chiromantis xerampelina	CB 13.420	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3550	Chiromantis xerampelina	CB 13.421	TZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
				• • • •		
T3642	Chiromantis xerampelina	CB 13.434	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3656	Chiromantis xerampelina	CB 13.448	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3657	Chiromantis xerampelina	CB 13.449	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3658	Chiromantis xerampelina	CB 13.450	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3662	Chiromantis xerampelina	CB 13.454	ΤZ	Ruawa FR, Lindi, Tanzania	39.579	-9.746
T3663	Chiromantis xerampelina	CB 13.455	ΤZ	Ruawa FR, Lindi, Tanzania	39.579	-9.746
T3664	Chiromantis xerampelina	CB 13.456	ΤZ	Ruawa FR, Lindi, Tanzania	39.579	-9.746
T3665	Chiromantis xerampelina	CB 13.457	ΤZ	Ruawa FR, Lindi, Tanzania	39.579	-9.746
T3666	Chiromantis xerampelina	CB 13.458	ΤZ	Ruawa FR, Lindi, Tanzania	39.579	-9.746
T3667	Chiromantis xerampelina	CB 13.459	ΤZ	Ruawa FR, Lindi, Tanzania	39.579	-9.746
T3672	Chiromantis xerampelina	CB 13.464	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T4102	Chiromantis xerampelina	CB 13.752	TZ	Gendagenda North FR, Tanga, Tanzania	38.645	-5.583
T4102	Chiromantis xerampelina	CB 13.752	TZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
	r r					
T4104	Chiromantis xerampelina	CB 13.754	TZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4105	Chiromantis xerampelina	CB 13.755	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4106	Chiromantis xerampelina	CB 13.756	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4107	Chiromantis xerampelina	CB 13.757	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4108	Chiromantis xerampelina	CB 13.758	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4109	Chiromantis xerampelina	CB 13.759	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4110	Chiromantis xerampelina	CB 13.760	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4111	Chiromantis xerampelina	CB 13.761	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4112	Chiromantis xerampelina	CB 13.762	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4113	Chiromantis xerampelina	CB 13.763	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4262	Chiromantis xerampelina	CB 13.915	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4263	Chiromantis xerampelina	CB 13.916	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4264	Chiromantis xerampelina	CB 13.917	TZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4270	Chiromantis xerampelina	CB 13.924	TZ	Kilulu, Tanga, Tanzania	39.117	-4.749
	*			-		
T4415	Chiromantis xerampelina	MTSN 8314	TZ	Mtemere gate Selous	38.203	-7.751
T4416	Chiromantis xerampelina	MTSN 8319	TZ	Mtemere gate Selous	38.203	-7.751
T4422	Chiromantis xerampelina	MTSN 8588	ΤZ	Mang'ula	36.884	-7.849
T4483	Chiromantis xerampelina	BM 2005.931	ΤZ	Kazizumbwi FR	39.055	-6.931
T4484	Chiromantis xerampelina	BM 2002.862	ΤZ	Mgambo F.R.	38.814	-4.791
T4485	Chiromantis xerampelina	BM 2002.620	ΤZ	Nilo FR	38.663	-4.908
T4486	Chiromantis xerampelina	BM 2002.621	ΤZ	Nilo FR	38.663	-4.908
T4487	Chiromantis xerampelina	BM 2002.622	ΤZ	Nilo FR	38.650	-4.983
T4488	Chiromantis xerampelina	BM 2002.765	ΤZ	Nilo FR	38.663	-4.908
T4489	Chiromantis xerampelina	BM 2005.116	ΤZ	Uluguru Mountains - Kasanga FR	37.774	-7.191
T4841	Chiromantis xerampelina	MTSN 7673	ΤZ	Kimboza Forest	37.804	-7.005
T4842	Chiromantis xerampelina	MTSN 7674	ΤZ	Kimboza Forest	37.804	-7.005
T4948	Chiromantis xerampelina	MTSN 9538	TZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4949	Chiromantis xerampelina	MTSN 9539	TZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
	X					
T4963	Chiromantis xerampelina	MTSN 9555	TZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4977	Chiromantis xerampelina	MTSN 9573	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T2743	Hemisus marmoratus	MCZ A-149023	TZ	Dar es Salaam, near Mvuti	39.097	-7.065
T2744	Hemisus marmoratus	MCZ A-148829	ΤZ	Mafia Island, Pwani, Baleni	39.803	-7.850
T2746	Hemisus marmoratus	MCZ A-148928	ΤZ	Mafia Island, Pwani, Baleni	39.803	-7.850
T3142	Hemisus marmoratus	CB 13.165	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3448	Hemisus marmoratus	CB 13.359	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3449	Hemisus marmoratus	CB 13.360	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3819	Hemisus marmoratus	CB 13.613	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T3868	Hemisus marmoratus	CB 13.662	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T4022	Hemisus marmoratus	CB 13.672	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T4226	Hemisus marmoratus	CB 13.876	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4227	Hemisus marmoratus	CB 13.877	TZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4228	Hemisus marmoratus	CB 13.878	TZ	Horohoro, Tanga, Tanzania	39.102	-4.632
1.220		22 12:070			57.102	

T4233	Hemisus marmoratus	CB 13.883	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4250	Hemisus marmoratus	CB 13.903	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4251	Hemisus marmoratus	CB 13.904	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4252	Hemisus marmoratus	CB 13.905	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4271	Hemisus marmoratus	CB 13.925	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4490	Hemisus marmoratus	BM 2002.889	ΤZ	Mgambo F.R.	38.813	-4.792
T4491	Hemisus marmoratus	BM 2002.890	ΤZ	Mgambo F.R.	38.813	-4.792
T4492	Hemisus marmoratus	BM 2005.1301	TZ	Bombo Forest Reserve	38.681	-4.809
T4493	Hemisus marmoratus	BM 2000.988	TZ	Kilombero Valley	NULL	NULL
T4494	Hemisus marmoratus	BM 2000.989	TZ	Kilombero Valley	NULL	NULL
T4495	Hemisus marmoratus	BM 2000.989 BM 2000.990	TZ	Kilombero Valley	NULL	NULL
T4495 T4496	Hemisus marmoratus	BM 2000.990 BM 2000.991	TZ	Kilombero Valley	NULL	NULL
				•		
T4497	Hemisus marmoratus	BM 2000.992	TZ	Kilombero Valley	NULL	NULL
T4498	Hemisus marmoratus	BM 2000.993	TZ	Kilombero Valley	NULL	NULL
T4499	Hemisus marmoratus	BM 2002.579	TZ	Nilo FR	38.652	-4.929
T4605	Hemisus marmoratus	ENI 30	MZ	Pemba, Mozambique	40.523	-12.997
T4794	Hemisus marmoratus	AC 1243	ΤZ	Tanzania, Dar es Salaam	39.245	-6.825
T4797	Hemisus marmoratus	BM 2002.396	ΤZ	Ruvu South FR	38.813	-6.895
T4806	Hemisus marmoratus	BM 2002.397	ΤZ	Ruvu South FR	38.814	-6.909
T4807	Hemisus marmoratus	BM 2002.398	ΤZ	Ruvu South FR	38.814	-6.909
T4808	Hemisus marmoratus	BM 2002.399	ΤZ	Ruvu South FR	38.793	-6.910
T4830	Hemisus marmoratus	BM 2005.932	ΤZ	Kazizumbwi FR	39.062	-6.934
T4831	Hemisus marmoratus	BM 2005.933	ΤZ	Kazizumbwi FR	39.042	-6.947
T4832	Hemisus marmoratus	BM 2005.934	ΤZ	Kazizumbwi FR	39.042	-6.947
T4928	Hemisus marmoratus	MTSN 9509	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4947	Hemisus marmoratus	MTSN 9537	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4968	Hemisus marmoratus	MTSN 9561	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4969	Hemisus marmoratus	MTSN 9562	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4973	Hemisus marmoratus	MTSN 9566	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4985	Hemisus marmoratus	MCZ A-32036	TZ	Kilongwe School pond, Mafia	39.819	-7.900
T4986	Hemisus marmoratus	MCZ A-32138	TZ	summit Mafi Hill, Tanga	38.141	-4.923
T3685	Hildebrandtia ornata	CB 13.477	TZ	Mkowela village, Ruvuma, Tanzania	37.993	-10.916
T3825	Amnirana galamensis	CB 13.619	TZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3845	Amnirana galamensis	CB 13.639	TZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3845		CB 13.640	TZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
	Amnirana galamensis			· · ·		
T3847	Amnirana galamensis	CB 13.641	TZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3848	Amnirana galamensis	CB 13.642	TZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3849	Amnirana galamensis	CB 13.643	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3851	Amnirana galamensis	CB 13.645	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3852	Amnirana galamensis	CB 13.646	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4034	Amnirana galamensis	CB 13.684	ΤZ	Mafia island, Tanzania	39.714	-7.963
T4041	Amnirana galamensis	CB 13.691	ΤZ	Mafia island, Tanzania	39.717	-7.958
T4151	Amnirana galamensis	CB 13.801	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4152	Amnirana galamensis	CB 13.802	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4172	Amnirana galamensis	CB 13.822	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4175	Amnirana galamensis	CB 13.825	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4987	Amnirana galamensis	MCZ A-32030	ΤZ	Dondwe Forest, near Mvuti	39.097	-7.065
T4608	Hyperolius acuticeps	WC-DNA-579	MZ	Afungi stream crossing	40.484	-10.846
T4609	Hyperolius acuticeps	WC-DNA-1126	MZ	dambo 24 km north of Namina to Mecuburi	38.813	-14.750
T4610	Hyperolius acuticeps	ENI 10	MZ	R. Diquide	40.428	-11.883
T3637	Hyperolius argus	CB 13.429	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3731	Hyperolius argus	CB 13.523	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3732	Hyperolius argus	CB 13.524	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3744	Hyperolius argus	CB 13.536	TZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3745	Hyperolius argus	CB 13.530	TZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3746	Hyperolius argus	CB 13.537 CB 13.538	TZ	Vikindu FR, Pwani, Tanzania	39.299 39.299	-6.990 -6.990
T4037	Hyperolius argus	CB 13.687	TZ	Mafia island, Tanzania	39.299 39.714	-0.990
T4500	Hyperolius argus	BM 2000.856	TZ TZ	Kwamgumi FR	38.733	-4.923
T4501	Hyperolius argus	BM 2000.857	TZ TZ	Kwamgumi FR	38.733	-4.923
T4809	Hyperolius argus	BM 2002.400	TZ TZ	Ruvu South FR	38.813	-6.895
T4810 T4811	Hyperolius argus	BM 2002.401	TZ TZ	Ruvu South FR	38.813	-6.895
	Hyperolius argus	BM 2002.402	ΤZ	Ruvu South FR	38.813	-6.895

		D				
T4812	Hyperolius argus	BM 2002.403	ΤZ	Ruvu South FR	NULL	NULL
T4418	Hyperolius cf. mitchelli	MTSN 8584	ΤZ	Mang'ula	NULL	NULL
T4419	Hyperolius cf. mitchelli	MTSN 8585	ΤZ	Mang'ula	NULL	NULL
T3813	Hyperolius kivuensis	CB 13.607	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T3814	Hyperolius kivuensis	CB 13.608	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T3815	Hyperolius kivuensis	CB 13.609	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T3816	Hyperolius kivuensis	CB 13.610	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T3817	Hyperolius kivuensis	CB 13.611	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T3820	Hyperolius kivuensis	CB 13.614	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T3750	Hyperolius mariae	CB 13.542	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T4040	Hyperolius mariae	CB 13.690	ΤZ	Mafia island, Tanzania	39.714	-7.963
T4043	Hyperolius mariae	CB 13.693	ΤZ	Mafia island, Tanzania	39.795	-7.849
T4045	Hyperolius mariae	CB 13.695	ΤZ	Mafia island, Tanzania	39.795	-7.849
T4047	Hyperolius mariae	CB 13.697	ΤZ	Mafia island, Tanzania	39.795	-7.849
T4048	Hyperolius mariae	CB 13.698	TZ	Mafia island, Tanzania	39.795	-7.849
T4049	Hyperolius mariae	CB 13.699	TZ	Mafia island, Tanzania	39.717	-7.958
T4055	Hyperolius mariae	CB 13.705	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
	••			- - - - - - - - - -		
T4056	Hyperolius mariae	CB 13.706	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4057	Hyperolius mariae	CB 13.707	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4058	Hyperolius mariae	CB 13.708	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4059	Hyperolius mariae	CB 13.709	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4060	Hyperolius mariae	CB 13.710	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4061	Hyperolius mariae	CB 13.711	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4063	Hyperolius mariae	CB 13.713	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4064	Hyperolius mariae	CB 13.714	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4065	Hyperolius mariae	CB 13.715	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4066	Hyperolius mariae	CB 13.716	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4067	Hyperolius mariae	CB 13.717	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4068	Hyperolius mariae	CB 13.718	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4069	Hyperolius mariae	CB 13.719	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4080	Hyperolius mariae	CB 13.730	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4081	Hyperolius mariae	CB 13.731	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4082	Hyperolius mariae	CB 13.732	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4115	Hyperolius mariae	CB 13.765	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4502	Hyperolius mariae	BM 2000.858	ΤZ	Kwamgumi FR	38.733	-4.923
T4508	Hyperolius mariae	BM 2000.859	ΤZ	Kwamgumi FR	38.733	-4.923
T4512	Hyperolius mariae	BM 2002.768	ΤZ	Nilo FR	38.617	-4.898
T4523	Hyperolius mariae	BM 2005.1302	TZ	Bombo Forest Reserve	38.708	-4.820
T4825	Hyperolius mariae	BM 2003.1302 BM 2002.420	TZ	Ruvu South FR	38.878	-4.820 -6.948
T4825 T4826	• •	BM 2002.420 BM 2002.421	TZ	Ruvu South FR		-6.948
	Hyperolius mariae				38.878	
T4827	Hyperolius mariae	BM 2002.422	TZ	Ruvu South FR	38.878	-6.948
T4828	Hyperolius mariae	BM 2002.423	ΤZ	Ruvu South FR	38.878	-6.948
T4988	Hyperolius mariae	MCZ A-32048	TZ	Baleni Pond, Mafia	39.803	-7.850
T4989	Hyperolius mariae	MCZ A-32039	ΤZ	Kilongwe School pond, Mafia	39.819	-7.900
T2982	Hyperolius mitchelli	CB 13.028	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2983	Hyperolius mitchelli	CB 13.029	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2988	Hyperolius mitchelli	CB 13.045	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2989	Hyperolius mitchelli	CB 13.046	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3000	Hyperolius mitchelli	CB 13.011	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3001	Hyperolius mitchelli	CB 13.012	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3012	Hyperolius mitchelli	CB 13.027	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3110	Hyperolius mitchelli	CB 13.133	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3111	Hyperolius mitchelli	CB 13.134	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3112	Hyperolius mitchelli	CB 13.135	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3121	Hyperolius mitchelli	CB 13.144	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3122	Hyperolius mitchelli	CB 13.145	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3126	Hyperolius mitchelli	CB 13.149	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3127	Hyperolius mitchelli	CB 13.150	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3127	Hyperolius mitchelli	CB 13.150	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3128	Hyperolius mitchelli	CB 13.151	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3129	Hyperolius mitchelli	CB 13.152 CB 13.153	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994 -9.994
T3130	Hyperolius mitchelli	CB 13.155 CB 13.156	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994 -9.994
13133	nyperonus muchem	0 13.150	12	makangala 1 is, Elinii, 1 anzälliä	57.500	-7.774

T3135	Hyperolius mitchelli	CB 13.158	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3136	Hyperolius mitchelli	CB 13.159	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3205	Hyperolius mitchelli	CB 13.228	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3206	Hyperolius mitchelli	CB 13.229	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3218	Hyperolius mitchelli	CB 13.241	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3219	Hyperolius mitchelli	CB 13.242	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3282	Hyperolius mitchelli	CB 13.289	ΤZ	Namatimbili FR, Lindi, Tanzania	39.238	-9.111
T3297	Hyperolius mitchelli	CB 13.304	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3298	Hyperolius mitchelli	CB 13.305	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3299	Hyperolius mitchelli	CB 13.306	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3312	Hyperolius mitchelli	CB 13.319	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3312	Hyperolius mitchelli	CB 13.320	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3314	Hyperolius mitchelli	CB 13.321	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3315	Hyperolius mitchelli	CB 13.322	TZ	Makangaga FR, Lindi, Tanzania	NULL	NULL
T3316	Hyperolius mitchelli	CB 13.323	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3468	Hyperolius mitchelli	CB 13.379	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3484	Hyperolius mitchelli	CB 13.395	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3485	Hyperolius mitchelli	CB 13.396	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3549	Hyperolius mitchelli	CB 13.413	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3771	Hyperolius mitchelli	CB 13.563	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3772	Hyperolius mitchelli	CB 13.564	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3773	Hyperolius mitchelli	CB 13.565	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3774	Hyperolius mitchelli	CB 13.566	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3775	Hyperolius mitchelli	CB 13.567	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3776	Hyperolius mitchelli	CB 13.568	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3777	Hyperolius mitchelli	CB 13.569	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3778	Hyperolius mitchelli	CB 13.570	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3779	Hyperolius mitchelli	CB 13.571	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3780	Hyperolius mitchelli	CB 13.572	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3781	Hyperolius mitchelli	CB 13.573	TZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3792	Hyperolius mitchelli	CB 13.584	TZ	Kibasira Swamp, Morogoro, Tanzania	NULL	NULL
T3801	Hyperolius mitchelli	CB 13.595	TZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3804	Hyperolius mitchelli	CB 13.598	TZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T4156	Hyperolius mitchelli	CB 13.806	TZ	Mabayani bwawa, Tanga, Tanzania		-5.034
	••			, e,	38.924	
T4157	Hyperolius mitchelli	CB 13.807	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4158	Hyperolius mitchelli	CB 13.808	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4159	Hyperolius mitchelli	CB 13.809	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4160	Hyperolius mitchelli	CB 13.810	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4161	Hyperolius mitchelli	CB 13.811	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4162	Hyperolius mitchelli	CB 13.812	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4163	Hyperolius mitchelli	CB 13.813	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4181	Hyperolius mitchelli	CB 13.831	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4182	Hyperolius mitchelli	CB 13.832	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4503	Hyperolius mitchelli	BM 2002.628	ΤZ	Nilo FR	38.617	-4.898
T4504	Hyperolius mitchelli	BM 2002.629	ΤZ	Nilo FR	38.617	-4.898
T4505	Hyperolius mitchelli	BM 2002.630	ΤZ	Nilo FR	38.629	-4.888
T4506	Hyperolius mitchelli	BM 2002.631	ΤZ	Nilo FR	38.645	-4.971
T4507	Hyperolius mitchelli	BM 2002.632	ΤZ	Nilo FR	38.659	-4.944
T4517	Hyperolius mitchelli	BM 2005.127	ΤZ	Uluguru Mountains - Kasanga FR	37.774	-7.191
T4843	Hyperolius mitchelli	MTSN 7675	ΤZ	Kimboza Forest	37.804	-7.005
T4844	Hyperolius mitchelli	MTSN 7676	ΤZ	Kimboza Forest	37.804	-7.005
T4845	Hyperolius mitchelli	MTSN 7682	ΤZ	Kimboza Forest	37.804	-7.005
T4846	Hyperolius mitchelli	MTSN 7683	ΤZ	Kimboza Forest	37.804	-7.005
T4849	Hyperolius mitchelli	MTSN 7708	TZ	Kimboza Forest	37.804	-7.005
T4850	Hyperolius mitchelli	MTSN 7709	TZ	Kimboza Forest	37.804	-7.005
T4937	Hyperolius mitchelli	MTSN 9523	TZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4957	Hyperolius mitchelli	MTSN 9529	TZ	Segoma Forest, Camp, East Usambara Segoma Forest, Camp, East Usambara	38.762	-4.976
T4992	Hyperolius mitchelli	MCZ A-32199	TZ	Hondo Hondo Lodge, Udzungwa	36.884	-7.856
	• •					
T5143	Hyperolius mitchelli Hyperolius mitchelli	MUSE 11051 MUSE 11060	TZ TZ	Mgeta Hydroelectric Dam	36.091	-8.312
T5147	Hyperolius mitchelli Hyperolius mitchelli	MUSE 11060	TZ TZ	Mgeta Hydroelectric Dam	36.091	-8.312
T5148	Hyperolius mitchelli Hymerolius mitchelli	MUSE 11061	TZ TZ	Mgeta Hydroelectric Dam	36.091	-8.312
T5149	Hyperolius mitchelli	MUSE 11062	ΤZ	Mgeta Hydroelectric Dam	36.091	-8.312

T2472	Hyperolius nasutus	BM 2002.405	ΤZ	Ruvu South FR	38.878	-6.948
T4130	Hyperolius nasutus	CB 13.780	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4814	Hyperolius nasutus	BM 2002.406	ΤZ	Ruvu South FR	38.878	-6.948
T2471	Hyperolius parkeri	BM 2002.409	ΤZ	Ruvu South FR	38.878	-6.948
T2473	Hyperolius parkeri	BM 2002.633	ΤZ	Nilo FR	38.652	-4.929
T2474	Hyperolius parkeri	BM 2002.634	ΤZ	Nilo FR	38.652	-4.929
T2475	Hyperolius parkeri	BM 2002.635	ΤZ	Nilo FR	38.617	-4.898
T2708	Hyperolius parkeri	MW 01814	ΤZ	Coastal Forest, Tanzania	NULL	NULL
T2709	Hyperolius parkeri	FSU >	ΤZ	Pet Trade	NULL	NULL
T3124	Hyperolius parkeri	CB 13.147	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3125	Hyperolius parkeri	CB 13.148	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3541	Hyperolius parkeri	CB 13.405	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3639	Hyperolius parkeri	CB 13.431	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3640	Hyperolius parkeri	CB 13.432	TZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3770	Hyperolius parkeri	CB 13.562	TZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3800	Hyperolius parkeri Hyperolius parkeri	CB 13.594	TZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T4083	Hyperolius parkeri	CB 13.733	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4084	Hyperolius parkeri	CB 13.734	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4179	Hyperolius parkeri	CB 13.829	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4180	Hyperolius parkeri	CB 13.830	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4237	Hyperolius parkeri	CB 13.887	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4528	Hyperolius parkeri	BM 2002.409	ΤZ	Ruvu South FR	NULL	NULL
T4607	Hyperolius parkeri	WC-DNA-495	MZ	roadside pan, 10 km South of Quionga	40.502	-10.681
T4615	Hyperolius parkeri	WC-DNA-584	MZ	roadside pan, 10 km South of Quionga	40.502	-10.681
T4616	Hyperolius parkeri	WC-DNA-1417	MZ	Dereks house wetland	40.354	-12.933
T4617	Hyperolius parkeri	ENI 11	MZ	R. Diquide	40.428	-11.883
T4414	Hyperolius puncticulatus	MTSN 5678	ΤZ	Sanje	NULL	NULL
T2762	Hyperolius pusillus	BM 2002.410	ΤZ	Ruvu South FR	38.916	-7.037
T4815	Hyperolius pusillus	BM 2002.407	ΤZ	Ruvu South FR	38.878	-6.948
T4816	Hyperolius pusillus	BM 2002.408	ΤZ	Ruvu South FR	38.878	-6.948
T3790	Hyperolius reesi	CB 13.582	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3808	Hyperolius reesi	CB 13.602	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3810	Hyperolius reesi	CB 13.604	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T3821	Hyperolius reesi	CB 13.615	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T5146	Hyperolius reesi	MUSE 11055	TZ	Mgeta Hydroelectric Dam	36.091	-8.312
T4039	Hyperolius sp.	CB 13.689	TZ	Mafia island, Tanzania	NULL	NULL
T4509	Hyperolius sp.	BM 2005.948	TZ	Kazizumbwi FR	NULL	NULL
	** *	BM 2003.948 BM 2002.764	TZ	Nilo FR		
T4513	Hyperolius sp.				NULL	NULL
T4514	Hyperolius sp.	BM 2002.764	TZ TZ	Nilo FR	38.617	-4.898
T4515	Hyperolius sp.	BM 2005.125	TZ	Kasanga FR	37.774	-7.191
T4516	Hyperolius sp.	BM 2005.126	ΤZ	Kasanga FR	37.774	-7.191
T4990	Hyperolius sp.	MCZ A-32049	ΤZ	Baleni Pond, Mafia	39.803	-7.850
T4991	Hyperolius sp.	MCZ A-32017	ΤZ	Dondwe Forest, near Mvuti	39.097	-7.065
T2763	Hyperolius spinigularis	BM 2002.411	ΤZ	Ruvu South FR	38.916	-7.037
T2765	Hyperolius spinigularis	BM 2002.413	ΤZ	Ruvu South FR	38.916	-7.037
T3204	Hyperolius substriatus	CB 13.227	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T4510	Hyperolius substriatus	BM 2002.766	ΤZ	Nilo FR	38.617	-4.898
T4511	Hyperolius substriatus	BM 2002.769	ΤZ	Nilo FR	38.617	-4.898
T3317	Hyperolius tuberlinguis	CB 13.324	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3550	Hyperolius tuberlinguis	CB 13.414	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3551	Hyperolius tuberlinguis	CB 13.415	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3554	Hyperolius tuberlinguis	CB 13.418	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3555	Hyperolius tuberlinguis	CB 13.419	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3638	Hyperolius tuberlinguis	CB 13.430	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3718	Hyperolius tuberlinguis	CB 13.510	TZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3719	Hyperolius tuberlinguis	CB 13.511	TZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3720	Hyperolius tuberlinguis	CB 13.512	TZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3721	Hyperolius tuberlinguis	CB 13.512 CB 13.513	TZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3786	Hyperolius tuberlinguis Hyperolius tuberlinguis	CB 13.578	TZ	Kibasira Swamp, Morogoro, Tanzania		-8.349
T3786 T3787	Hyperolius tuberlinguis Hyperolius tuberlinguis		TZ	Kibasira Swamp, Morogoro, Tanzania Kibasira Swamp, Morogoro, Tanzania	36.228	
T3830	Hyperolius tuberlinguis	CB 13.579	TZ	Ruvu North FR, Pwani, Tanzania	36.228	-8.349 -6.713
	••	CB 13.624			38.970 38.970	
T3831	Hyperolius tuberlinguis	CB 13.625	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713

T3850	Hyperolius tuberlinguis	CB 13.644	ΤZ	Ruvu North FR, Pwani, Tanzania	NULL	NULL
T3858	Hyperolius tuberlinguis	CB 13.652	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3859	Hyperolius tuberlinguis	CB 13.653	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3860	Hyperolius tuberlinguis	CB 13.654	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3861	Hyperolius tuberlinguis	CB 13.655	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3862	Hyperolius tuberlinguis	CB 13.656	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3863	Hyperolius tuberlinguis	CB 13.657	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3864	Hyperolius tuberlinguis	CB 13.658	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4038	Hyperolius tuberlinguis	CB 13.688	ΤZ	Mafia island, Tanzania	39.717	-7.958
T4042	<i>Hyperolius tuberlinguis</i>	CB 13.692	ΤZ	Mafia island, Tanzania	39.795	-7.849
T4046	<i>Hyperolius tuberlinguis</i>	CB 13.696	ΤZ	Mafia island, Tanzania	39.795	-7.849
T4062	<i>Hyperolius tuberlinguis</i>	CB 13.712	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4070	<i>Hyperolius tuberlinguis</i>	CB 13.720	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4071	Hyperolius tuberlinguis	CB 13.721	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4077	Hyperolius tuberlinguis	CB 13.727	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4078	Hyperolius tuberlinguis	CB 13.728	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4078	Hyperolius tuberlinguis	CB 13.729	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4079 T4164	Hyperolius tuberlinguis	CB 13.814	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
	••					
T4171	Hyperolius tuberlinguis	CB 13.821	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4183	Hyperolius tuberlinguis	CB 13.833	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4184	Hyperolius tuberlinguis	CB 13.834	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4185	Hyperolius tuberlinguis	CB 13.835	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4192	Hyperolius tuberlinguis	CB 13.842	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4389	Hyperolius tuberlinguis	MTSN 5504	ΤZ	Mikeregembe	NULL	NULL
T4390	Hyperolius tuberlinguis	MTSN 5505	ΤZ	Mikeregembe	NULL	NULL
T4420	Hyperolius tuberlinguis	MTSN 8586	ΤZ	Mang'ula	36.884	-7.849
T4421	Hyperolius tuberlinguis	MTSN 8587	ΤZ	Mang'ula	36.884	-7.849
T4518	Hyperolius tuberlinguis	BM 2002.419	ΤZ	Ruvu South FR	38.878	-6.948
T4519	Hyperolius tuberlinguis	BM 2002.337	ΤZ	Mlinga Forest Reserve	38.731	-5.061
T4520	Hyperolius tuberlinguis	BM 2002.668	ΤZ	Nilo FR	38.652	-4.929
T4521	Hyperolius tuberlinguis	BM 2002.669	ΤZ	Nilo FR	38.652	-4.929
T4522	Hyperolius tuberlinguis	BM 2002.670	ΤZ	Nilo FR	38.643	-4.955
T4820	Hyperolius tuberlinguis	BM 2002.414	ΤZ	Ruvu South FR	38.813	-6.895
T4821	Hyperolius tuberlinguis	BM 2002.415	ΤZ	Ruvu South FR	38.813	-6.895
T4822	Hyperolius tuberlinguis	BM 2002.416	ΤZ	Ruvu South FR	38.813	-6.895
T4823	Hyperolius tuberlinguis	BM 2002.417	ΤZ	Ruvu South FR	38.878	-6.948
T4824	Hyperolius tuberlinguis	BM 2002.418	ΤZ	Ruvu South FR	38.878	-6.948
T4993	Hyperolius tuberlinguis	MCZ A-32032	ΤZ	Dondwe Forest, near Mvuti	39.097	-7.065
T4994	Hyperolius tuberlinguis	MCZ A-32005	ΤZ	Dondwe Forest, near Mvuti	39.097	-7.065
T4529	Hyperolius viridiflavus	BM 2000.360	ΤZ	Kilombero Valley	NULL	NULL
T4530	Hyperolius viridiflavus	BM 2000.361	ΤZ	Kilombero Valley	NULL	NULL
T4813	Hyperolius viridiflavus mariae	BM 2002.404	ΤZ	Ruvu South FR	38.878	-6.948
T4526	Hyperolius viridiflavus reesi	BM 2000.1000	ΤZ	Kilombero Valley	NULL	NULL
T4527	Hyperolius viridiflavus reesi	BM 2000.999	ΤZ	Kilombero Valley	NULL	NULL
T4525	Hyperolius viridiflavus sp.	BM 2000.860	ΤZ	Kwamgumi FR	38.733	-4.923
T4611	Hyperolius viridiflavus sp.	WC-DNA-1055	MZ	13 km NW of Rapale	39.065	-14.902
T4612	Hyperolius viridiflavus sp.	WC-DNA-1271	MZ	Revubo river junction, s of Tenge Hill	33.761	-15.744
T4613	Hyperolius viridiflavus sp.	WC-DNA-1231	MZ	Revubo river below Tenge Hill	33.772	-15.719
T4614	Hyperolius viridiflavus sp. Hyperolius viridiflavus sp.	no number 02	MZ	Mt Namuli	37.011	-15.338
T4524	Hyperolius viridiflavus subsp.	BM 2000.362	TZ	Kilombero Valley	NULL	NULL
T2476	Kassina maculata	BM 2000.302 BM 2002.427	TZ	Ruvu South FR	38.878	-6.948
T3011	Kassina maculata	CB 13.024	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3681	Kassina maculata	CB 13.473	TZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3709	Kassina maculata Kassina maculata	CB 13.501	TZ TZ	Dar es Salaam (university), Tanzania	39.204 39.204	-6.779 6.779
T3710	Kassina maculata Kassina maculata	CB 13.502	TZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T3711	Kassina maculata	CB 13.503	TZ	Dar es Salaam (university), Tanzania	39.204	-6.779
T4789	Kassina maculata	MW 01818	TZ	Coastal Forest, Tanzania	NULL	NULL
T4804	Kassina maculata	KMH 29421	TZ	JNP, Zanzibar	39.410	-6.242
T3829	Kassina senegalensis	CB 13.623	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4032	Kassina senegalensis	CB 13.682	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4033	Kassina senegalensis	CB 13.683	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4035	Kassina senegalensis	CB 13.685	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137

T4051	Kassina senegalensis	CB 13.701	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4052	Kassina senegalensis	CB 13.702	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4074	Kassina senegalensis	CB 13.724	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4086	Kassina senegalensis	CB 13.736	ΤZ	Zaraninge FR, Pwani, Tanzania	NULL	NULL
T2477	Kassina senegalensis argreivittis	BM 2002.425	ΤZ	Ruvu South FR	38.878	-6.948
T2478	Kassina senegalensis argreivittis	BM 2002.426	ΤZ	Ruvu South FR	38.878	-6.948
T4829	Kassina senegalensis argyreivittis	BM 2002.424	ΤZ	Ruvu South FR	38.878	-6.948
T4833	Kassina senegalensis argyreivittis	BM 2005.935	ΤZ	Kazizumbwi FR	39.042	-6.947
T2479	Leptopelis argenteus	BM 2005.936	ΤZ	Kazizumbwi	NULL	NULL
T2986	Leptopelis argenteus	CB 13.043	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3022	Leptopelis argenteus	CB 13.041	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3022	Leptopelis argenteus	CB 13.042	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
			TZ			-9.994
T3114	Leptopelis argenteus	CB 13.137		Makangala FR, Lindi, Tanzania	39.388	
T3115	Leptopelis argenteus	CB 13.138	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3116	Leptopelis argenteus	CB 13.139	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3117	Leptopelis argenteus	CB 13.140	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3118	Leptopelis argenteus	CB 13.141	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3119	Leptopelis argenteus	CB 13.142	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3120	Leptopelis argenteus	CB 13.143	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3138	Leptopelis argenteus	CB 13.161	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3139	Leptopelis argenteus	CB 13.162	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3158	Leptopelis argenteus	CB 13.181	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3170	Leptopelis argenteus	CB 13.193	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3172	Leptopelis argenteus	CB 13.195	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3173	Leptopelis argenteus	CB 13.196	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3174	Leptopelis argenteus	CB 13.197	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3178	Leptopelis argenteus	CB 13.201	TZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3199	Leptopelis argenteus	CB 13.221 CB 13.222	TZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3200		CB 13.222 CB 13.223	TZ	Noto Plateau, Lindi, Tanzania		
	Leptopelis argenteus				39.374	-9.895
T3201	Leptopelis argenteus	CB 13.224	TZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3211	Leptopelis argenteus	CB 13.234	TZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3265	Leptopelis argenteus	CB 13.272	ΤZ	Rondo Forest, Lindi, Tanzania	NULL	NULL
T3270	Leptopelis argenteus	CB 13.277	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3271	Leptopelis argenteus	CB 13.278	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3272	Leptopelis argenteus	CB 13.279	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3273	Leptopelis argenteus	CB 13.280	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3274	Leptopelis argenteus	CB 13.281	ΤZ	Rondo Forest, Lindi, Tanzania	39.197	-10.121
T3290	Leptopelis argenteus	CB 13.297	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3291	Leptopelis argenteus	CB 13.298	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3292	Leptopelis argenteus	CB 13.299	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3293	Leptopelis argenteus	CB 13.300	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3294	Leptopelis argenteus	CB 13.301	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3295	Leptopelis argenteus	CB 13.302	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3296	Leptopelis argenteus	CB 13.303	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3307	Leptopelis argenteus	CB 13.314	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3308	Leptopelis argenteus	CB 13.314 CB 13.315	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3430 T3435	Leptopelis argenteus Leptopelis argenteus	CB 13.341 CB 13.346	TZ TZ	Nyamuete FR, Pwani, Tanzania Nyamuete FR, Pwani, Tanzania	39.034 39.034	-8.326 -8.326
T3436	Leptopelis argenteus	CB 13.347	TZ	Nyamuete FR, Pwani, Tanzania	39.034	-8.326
T3633	Leptopelis argenteus	CB 13.425	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3643	Leptopelis argenteus	CB 13.435	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3659	Leptopelis argenteus	CB 13.451	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3660	Leptopelis argenteus	CB 13.452	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3661	Leptopelis argenteus	CB 13.453	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3668	Leptopelis argenteus	CB 13.460	ΤZ	Ruawa FR, Lindi, Tanzania	39.579	-9.746
T3669	Leptopelis argenteus	CB 13.461	ΤZ	Ruawa FR, Lindi, Tanzania	39.579	-9.746
T3670	Leptopelis argenteus	CB 13.462	ΤZ	Ruawa FR, Lindi, Tanzania	39.579	-9.746
T3673	Leptopelis argenteus	CB 13.465	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3682	Leptopelis argenteus	CB 13.474	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3869	Leptopelis argenteus	CB 13.663	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T3870	Leptopelis argenteus	CB 13.664	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T3871	Leptopelis argenteus	CB 13.665	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
/-				······································		

T4016	Leptopelis argenteus	CB 13.666	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T4017	Leptopelis argenteus	CB 13.667	ΤZ	Ruvu North FR, Pwani, Tanzania	NULL	NULL
T4018	Leptopelis argenteus	CB 13.668	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T4019	Leptopelis argenteus	CB 13.669	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T4021	Leptopelis argenteus	CB 13.671	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T4136	Leptopelis argenteus	CB 13.786	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4137	Leptopelis argenteus	CB 13.787	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4138	Leptopelis argenteus	CB 13.788	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4139	Leptopelis argenteus	CB 13.789	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4148	Leptopelis argenteus	CB 13.798	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4189	Leptopelis argenteus	CB 13.839	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4193	Leptopelis argenteus	CB 13.843	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4194	Leptopelis argenteus	CB 13.844	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4195	Leptopelis argenteus	CB 13.845	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4234	Leptopelis argenteus	CB 13.884	TZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4256	Leptopelis argenteus	CB 13.909	TZ	Kilulu, Tanga, Tanzania	39.112	-4.749
T4257	Leptopelis argenteus	CB 13.910	TZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4257	Leptopelis argenteus	CB 13.911	TZ	Kilulu, Tanga, Tanzania	39.117	-4.749
		CB 13.911 CB 13.912	TZ		39.117	
T4259	Leptopelis argenteus		TZ	Kilulu, Tanga, Tanzania Kilulu, Tanga, Tanzania		-4.749
T4260	Leptopelis argenteus	CB 13.913			39.117	-4.749
T4261	Leptopelis argenteus	CB 13.914	TZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4273	Leptopelis argenteus	CB 13.930	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T5396	Leptopelis argenteus	MVZ::234054	KN	Kakoneni	39.863	-3.170
T5397	Leptopelis argenteus	MVZ:234055	KN	Kakoneni	39.863	-3.170
T5398	Leptopelis argenteus	MVZ: 234056	KN	Kakoneni	39.863	-3.170
T5400	Leptopelis argenteus	MVZ: 234592	KN	Kakoneni	39.863	-3.170
T5401	Leptopelis argenteus	MVZ:234591	KN	Kakoneni	39.863	-3.170
T4531	Leptopelis barbouri	BM 2002.864	ΤZ	Mgambo F.R.	38.813	-4.792
T4851	Leptopelis barbouri	MTSN 7712	ΤZ	Kimboza Forest	37.804	-7.005
T4784	Leptopelis broadleyi	ENI 01	MZ	R. Diquide	40.428	-11.883
T4785	Leptopelis broadleyi	ENI 06	MZ	R. Diquide	40.428	-11.883
T2480	Leptopelis flavomaculatus	BM 2005.938	ΤZ	Kazizumbwi	NULL	NULL
T2481	Leptopelis flavomaculatus	BM 2002.363	ΤZ	Coastal	NULL	NULL
T2577	Leptopelis flavomaculatus	MTSN 7698	ΤZ	Kimboza Forest	37.808	-7.017
T2578	Leptopelis flavomaculatus	MTSN 7699	ΤZ	Kimboza Forest	37.808	-7.017
T2583	Leptopelis flavomaculatus	MTSN 7701	ΤZ	Kimboza Forest	37.808	-7.017
T2624	Leptopelis flavomaculatus	MTSN 9522	ΤZ	Segoma Forest, Camp	38.750	-4.983
T2978	Leptopelis flavomaculatus	CB 13.021	ΤZ	Makangala FR, Lindi, Tanzania	20.200	-9.994
T2979					39.388	-).))+
	Leptopelis flavomaculatus	CB 13.022	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3009	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.022 CB 13.020	TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania		
T3009 T3010				<u> </u>	39.388	-9.994
	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020	ΤZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania	39.388 39.388	-9.994 -9.994
T3010 T3074	Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023	TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania	39.388 39.388 39.388	-9.994 -9.994 -9.994 -10.030
T3010 T3074 T3081	Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097	TZ TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania	39.388 39.388 39.388 39.507 39.511	-9.994 -9.994 -9.994
T3010 T3074 T3081 T3107	Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130	TZ TZ TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania	39.388 39.388 39.388 39.507 39.511 39.388	-9.994 -9.994 -9.994 -10.030 -10.032
T3010 T3074 T3081 T3107 T3108	Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131	TZ TZ TZ TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania	39.388 39.388 39.388 39.507 39.511 39.388 39.388	-9.994 -9.994 -9.994 -10.030 -10.032 -9.994 -9.994
T3010 T3074 T3081 T3107 T3108 T3137	Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160	TZ TZ TZ TZ TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania	39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.388	-9.994 -9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994
T3010 T3074 T3081 T3107 T3108 T3137 T3157	Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180	TZ TZ TZ TZ TZ TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania	39.388 39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.388 39.475	-9.994 -9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3179	Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180 CB 13.202	TZ TZ TZ TZ TZ TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania	39.388 39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.388 39.475	-9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050 -10.050
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3179 T3189	Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180 CB 13.202 CB 13.212	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.475 39.475 39.374	-9.994 -9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -10.050 -10.050 -9.895
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3179 T3189 T3190	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180 CB 13.202 CB 13.212 CB 13.213	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.475 39.475 39.475 39.374	-9.994 -9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -10.050 -10.050 -9.895 -9.895
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3179 T3189 T3190 T3191	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180 CB 13.202 CB 13.212 CB 13.213 CB 13.214	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania Noto Plateau, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.475 39.475 39.475 39.374 39.374 39.374	-9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050 -10.050 -9.895 -9.895 -9.895
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3179 T3189 T3190 T3191 T3192	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180 CB 13.202 CB 13.212 CB 13.213 CB 13.214 CB 13.215	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania Noto Plateau, Lindi, Tanzania Noto Plateau, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.388 39.475 39.475 39.475 39.374 39.374 39.374	-9.994 -9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050 -10.050 -9.895 -9.895 -9.895 -9.895
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3179 T3189 T3190 T3191 T3192 T3193	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180 CB 13.202 CB 13.212 CB 13.213 CB 13.214 CB 13.215 CB 13.216	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.388 39.475 39.475 39.374 39.374 39.374 39.374	-9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050 -10.050 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3179 T3189 T3190 T3191 T3192 T3193 T3194	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180 CB 13.202 CB 13.212 CB 13.213 CB 13.214 CB 13.215 CB 13.216 CB 13.217	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.388 39.475 39.475 39.374 39.374 39.374 39.374 39.374	-9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050 -10.050 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3157 T3179 T3189 T3190 T3191 T3192 T3193 T3194 T3195	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180 CB 13.202 CB 13.212 CB 13.213 CB 13.214 CB 13.215 CB 13.216 CB 13.217 CB 13.218	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ T	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.388 39.374 39.374 39.374 39.374 39.374 39.374 39.374	-9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050 -10.050 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3157 T3179 T3189 T3190 T3191 T3192 T3193 T3194 T3195 T3196	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180 CB 13.202 CB 13.212 CB 13.213 CB 13.214 CB 13.215 CB 13.216 CB 13.217 CB 13.218 CB 13.219	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ T	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.388 39.475 39.475 39.374 39.374 39.374 39.374 39.374 39.374 39.374	-9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050 -10.050 -10.050 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3157 T3179 T3189 T3190 T3191 T3192 T3193 T3194 T3195 T3196 T3197	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.130 CB 13.160 CB 13.160 CB 13.202 CB 13.212 CB 13.213 CB 13.214 CB 13.215 CB 13.216 CB 13.217 CB 13.218 CB 13.219 CB 13.220	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ T	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.388 39.475 39.475 39.374 39.374 39.374 39.374 39.374 39.374 39.374 39.374 39.374 NULL	-9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050 -10.050 -10.050 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 NULL
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3157 T3179 T3189 T3190 T3191 T3192 T3193 T3194 T3195 T3196 T3197 T3198	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.160 CB 13.202 CB 13.212 CB 13.213 CB 13.214 CB 13.215 CB 13.216 CB 13.217 CB 13.218 CB 13.219 CB 13.220 CB 13.221	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ T	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.378 39.374 39.374 39.374 39.374 39.374 39.374 39.374 39.374 39.374 NULL 39.374	-9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050 -10.050 -10.050 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 NULL -9.895
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3157 T3179 T3189 T3190 T3191 T3192 T3193 T3194 T3195 T3196 T3197 T3198 T3210	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180 CB 13.202 CB 13.212 CB 13.213 CB 13.214 CB 13.215 CB 13.216 CB 13.216 CB 13.217 CB 13.218 CB 13.219 CB 13.220 CB 13.221 CB 13.221 CB 13.233	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ T	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.388 39.475 39.475 39.374 39.374 39.374 39.374 39.374 39.374 39.374 NULL 39.374 39.374	-9.994 -9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050 -10.050 -10.050 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 NULL -9.895 -9.895
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3157 T3179 T3189 T3190 T3191 T3192 T3193 T3194 T3195 T3196 T3197 T3198 T3210 T3431	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180 CB 13.202 CB 13.212 CB 13.213 CB 13.214 CB 13.215 CB 13.216 CB 13.216 CB 13.217 CB 13.218 CB 13.219 CB 13.220 CB 13.221 CB 13.233 CB 13.342	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ T	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.388 39.475 39.475 39.374 39.374 39.374 39.374 39.374 39.374 39.374 NULL 39.374 39.374 39.374	-9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050 -10.050 -10.050 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 NULL -9.895
T3010 T3074 T3081 T3107 T3108 T3137 T3157 T3157 T3157 T3179 T3189 T3190 T3191 T3192 T3193 T3194 T3195 T3196 T3197 T3198 T3210	Leptopelis flavomaculatus Leptopelis flavomaculatus	CB 13.020 CB 13.023 CB 13.097 CB 13.104 CB 13.130 CB 13.131 CB 13.160 CB 13.180 CB 13.202 CB 13.212 CB 13.213 CB 13.214 CB 13.215 CB 13.216 CB 13.216 CB 13.217 CB 13.218 CB 13.219 CB 13.220 CB 13.221 CB 13.221 CB 13.233	TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ TZ T	Makangala FR, Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Litipo FR (edge), Lindi, Tanzania Makangala FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Litipo FR, Lindi, Tanzania Noto Plateau, Lindi, Tanzania	39.388 39.388 39.388 39.507 39.511 39.388 39.388 39.388 39.388 39.475 39.475 39.374 39.374 39.374 39.374 39.374 39.374 39.374 NULL 39.374 39.374	-9.994 -9.994 -9.994 -10.030 -10.032 -9.994 -9.994 -9.994 -10.050 -10.050 -10.050 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 -9.895 NULL -9.895 -9.895

T3444	Leptopelis flavomaculatus	CB 13.355	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3445	Leptopelis flavomaculatus	CB 13.356	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3446	Leptopelis flavomaculatus	CB 13.357	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3447	Leptopelis flavomaculatus	CB 13.358	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3450	Leptopelis flavomaculatus	CB 13.361	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3470	Leptopelis flavomaculatus	CB 13.381	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3471	Leptopelis flavomaculatus	CB 13.382	TZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3472	Leptopelis flavomaculatus	CB 13.383	TZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
				-		
T3473	Leptopelis flavomaculatus	CB 13.384	TZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3486	Leptopelis flavomaculatus	CB 13.397	TZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3487	Leptopelis flavomaculatus	CB 13.398	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3552	Leptopelis flavomaculatus	CB 13.416	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3632	Leptopelis flavomaculatus	CB 13.424	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3644	Leptopelis flavomaculatus	CB 13.436	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3768	Leptopelis flavomaculatus	CB 13.560	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3794	Leptopelis flavomaculatus	CB 13.586	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3795	Leptopelis flavomaculatus	CB 13.587	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3796	Leptopelis flavomaculatus	CB 13.588	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3797	Leptopelis flavomaculatus	CB 13.589	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3798	Leptopelis flavomaculatus	CB 13.590	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3802	Leptopelis flavomaculatus	CB 13.596	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3809	Leptopelis flavomaculatus	CB 13.603	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T4075	Leptopelis flavomaculatus	CB 13.725	TZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4096	Leptopelis flavomaculatus	CB 13.746	TZ	Gendagenda North FR, Tanga, Tanzania	38.645	-5.583
T4090		CB 13.740 CB 13.747	TZ		38.645	-5.583
	Leptopelis flavomaculatus			Gendagenda North FR, Tanga, Tanzania		
T4098	Leptopelis flavomaculatus	CB 13.748	TZ	Gendagenda North FR, Tanga, Tanzania	38.645	-5.583
T4099	Leptopelis flavomaculatus	CB 13.749	TZ	Gendagenda North FR, Tanga, Tanzania	38.645	-5.583
T4100	Leptopelis flavomaculatus	CB 13.750	TZ	Gendagenda North FR, Tanga, Tanzania	38.645	-5.583
T4101	Leptopelis flavomaculatus	CB 13.751	ΤZ	Gendagenda North FR, Tanga, Tanzania	38.645	-5.583
T4196	Leptopelis flavomaculatus	CB 13.846	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4197	Leptopelis flavomaculatus	CB 13.847	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4198	Leptopelis flavomaculatus	CB 13.848	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4199	Leptopelis flavomaculatus	CB 13.849	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4200	Leptopelis flavomaculatus	CB 13.850	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4532	Leptopelis flavomaculatus	BM 2002.340	ΤZ	Mlinga Forest Reserve	38.748	-5.059
T4533	Leptopelis flavomaculatus	BM 2002.687	ΤZ	Nilo FR	38.649	-4.930
T4534	Leptopelis flavomaculatus	BM 2002.688	ΤZ	Nilo FR	38.663	-4.904
T4535	Leptopelis flavomaculatus	BM 2002.691	ΤZ	Nilo FR	38.645	-4.971
T4536	Leptopelis flavomaculatus	BM 2002.689	ΤZ	Nilo FR	38.662	-4.906
T4537	Leptopelis flavomaculatus	BM 2005.128	ΤZ	Uluguru Mountians - Milawilia FR	37.750	-6.979
T4538	Leptopelis flavomaculatus	BM 2005.129	ΤZ	Uluguru Mountians - Mkungwe FR	37.915	-6.869
T4539	Leptopelis flavomaculatus	BM 2005.130	ΤZ	Uluguru Mountians - Mkungwe FR	37.915	-6.869
T4540	Leptopelis flavomaculatus	BM 2005.131	TZ	Uluguru Mountians - Mvuha FR	37.838	-7.179
T4541	Leptopelis flavomaculatus	BM 2005.131 BM 2005.132	TZ	Uluguru Mountians - Mvuha FR	37.837	-7.180
T4606	Leptopelis flavomaculatus	no number_06	MZ	Mnt Mabu	36.588	-16.313
T4834	Leptopelis flavomaculatus	BM 2005.937	TZ	Kazizumbwi FR	39.053	-6.943
T4847	Leptopelis flavomaculatus	MTSN 7702	TZ	Kimboza Forest	37.804	-7.005
T4922	Leptopelis flavomaculatus	MTSN 7719	TZ	Kimboza Forest	37.804	-7.005
T4923	Leptopelis flavomaculatus	MTSN 7720	ΤZ	Kimboza Forest	37.804	-7.005
T4935	Leptopelis flavomaculatus	MTSN 9520	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4936	Leptopelis flavomaculatus	MTSN 9521	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4944	Leptopelis flavomaculatus	MTSN 9530	ΤZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4960	Leptopelis flavomaculatus	MTSN 9552	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4970	Leptopelis flavomaculatus	MTSN 9563	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T5399	Leptopelis flavomaculatus	MVZ:234039	ΤZ	Amani pond, East Usambara	38.627	-5.100
T560	Leptopelis flavomaculatus	BM 2002.363	ΤZ	Coastal	39.062	-6.945
T3151	Lygodactylus sp.	CB 13.174	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T1891	Mertensophryne lindneri	BM 2005.930	ΤZ	Kazizumbwi FR	39.042	-6.947
T1892	Mertensophryne lindneri	BM 2002.394	ΤZ	Ruvu South	38.814	-6.909
T4472	Mertensophryne lindneri	BM 2005.929	TZ	Kazizumbwi FR	39.042	-6.947
T4473	Mertensophryne lindneri	BM 2005.930	TZ	Kazizumbwi FR	NULL	NULL
T4481	Mertensophryne lindneri	BM 2005.949	TZ	Kazizumbwi FR	NULL	NULL
		2.11 2003.747	12			

T1932	Mertensophryne loveridgei	MCZ 32084	ΤZ	Rondo Plateau	39.205	-10.144
T3073	Mertensophryne loveridgei	CB 13.096	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3241	Mertensophryne loveridgei	CB 13.399	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T1882	Mertensophryne micranotis	MTSN 9558	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T1893	Mertensophryne micranotis	BM 2005.135	ΤZ	Uluguru	37.863	-7.008
T1894	Mertensophryne micranotis	BM 2002.428	ΤZ	Ruvu South	38.793	-6.910
T1895	Mertensophryne micranotis	BM 2002.364	ΤZ	Kazizumbwi	39.055	-6.931
T2291	Mertensophryne micranotis	BM 2002.343	ΤZ	Mlinga Forest Reserve	38.744	-5.070
T3242	Mertensophryne micranotis	CB 13.889	ΤZ	Kilulu hill, Tanga, Tanzania	39.125	-4.773
T3243	Mertensophryne micranotis	CB 13.890	ΤZ	Kilulu hill, Tanga, Tanzania	39.125	-4.773
T3244	Mertensophryne micranotis	CB 13.891	ΤZ	Kilulu hill, Tanga, Tanzania	39.125	-4.773
T3252	Mertensophryne micranotis	CB 13.920	ΤZ	Kilulu hill, Tanga, Tanzania	39.125	-4.773
T4391	Mertensophryne micranotis	MTSN 5443	ΤZ	Mikeregembe	36.526	-8.090
T4392	Mertensophryne micranotis	MTSN 5444	ΤZ	Mikeregembe	36.700	-8.167
T4393	Mertensophryne micranotis	MTSN 5445	ΤZ	Mikeregembe	36.526	-8.090
T4542	Mertensophryne micranotis	BM 2002.429	ΤZ	Ruvu South FR	38.845	-6.966
T4543	Mertensophryne micranotis	BM 2002.365	ΤZ	Kazizumbwi FR	39.055	-6.931
T4544	Mertensophryne micranotis	BM 2002.366	ΤZ	Kazizumbwi FR	39.055	-6.931
T4545	Mertensophryne micranotis	BM 2005.939	ΤZ	Kazizumbwi FR	39.042	-6.947
T4546	Mertensophryne micranotis	BM 2005.940	ΤZ	Kazizumbwi FR	39.035	-6.960
T4547	Mertensophryne micranotis	BM 2002.342	ΤZ	Mlinga Forest Reserve	38.754	-5.059
T4549	Mertensophryne micranotis	BM 2002.891	ΤZ	Mgambo F.R.	38.807	-4.757
T4927	Mertensophryne micranotis	MTSN 9557	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4966	Mertensophryne micranotis	MTSN 9559	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4974	Mertensophryne micranotis	MTSN 9568	ΤZ	Kwamgumi Forest Reserve, East Usambara	38.737	-4.972
T1933	Mertensophryne sp. nov.	MCZ 32087	ΤZ	Rondo Plateau	39.205	-10.144
T1934	Mertensophryne sp. nov.	MCZ 32088	ΤZ	Rondo Plateau	39.205	-10.144
T1881	Mertensophryne usambarae	MTSN 9541	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T1883	Mertensophryne usambarae	MTSN 9570	ΤZ	Kwamgumi Forest Reserve, East Usambara	38.737	-4.972
T4952	Mertensophryne usambarae	MTSN 9542	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T3148	Philothamnus semivariegata	CB 13.171	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2997	Phrynobatrachus acridoides	CB 13.008	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3082	Phrynobatrachus acridoides	CB 13.105	ΤZ	Litipo FR (edge), Lindi, Tanzania	NULL	NULL
T3088	Phrynobatrachus acridoides	CB 13.111	ΤZ	Litipo FR (edge), Lindi, Tanzania	NULL	NULL
T3301	Phrynobatrachus acridoides	CB 13.308	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3302	Phrynobatrachus acridoides	CB 13.309	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3303	Phrynobatrachus acridoides	CB 13.310	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3304	Phrynobatrachus acridoides	CB 13.311	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3305	Phrynobatrachus acridoides	CB 13.312	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3306	Phrynobatrachus acridoides	CB 13.313	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3309	Phrynobatrachus acridoides	CB 13.316	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3310	Phrynobatrachus acridoides	CB 13.317	ΤZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3452	Phrynobatrachus acridoides	CB 13.363	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3453	Phrynobatrachus acridoides	CB 13.364	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3641	Phrynobatrachus acridoides	CB 13.433	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3698	Phrynobatrachus acridoides	CB 13.490	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3699	Phrynobatrachus acridoides	CB 13.491	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3700	Phrynobatrachus acridoides	CB 13.492	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3701	Phrynobatrachus acridoides	CB 13.493	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3702	Phrynobatrachus acridoides	CB 13.494	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3703	Phrynobatrachus acridoides	CB 13.495	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3704	Phrynobatrachus acridoides	CB 13.496	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3747	Phrynobatrachus acridoides	CB 13.539	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3748	Phrynobatrachus acridoides	CB 13.540	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3749	Phrynobatrachus acridoides	CB 13.541	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3751	Phrynobatrachus acridoides	CB 13.543	ΤZ	Vikindu FR, Pwani, Tanzania	39.297	-6.994
T3752	Phrynobatrachus acridoides	CB 13.544	ΤZ	Vikindu FR, Pwani, Tanzania	39.297	-6.994
T3764	Phrynobatrachus acridoides	CB 13.556	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3765	Phrynobatrachus acridoides	CB 13.557	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3769	Phrynobatrachus acridoides	CB 13.561	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3839	Phrynobatrachus acridoides	CB 13.633	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3866	Phrynobatrachus acridoides	CB 13.660	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712

T3867	Phrynobatrachus acridoides	CB 13.661	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T4023	Phrynobatrachus acridoides	CB 13.673	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T4024	Phrynobatrachus acridoides	CB 13.674	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T4124	Phrynobatrachus acridoides	CB 13.774	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4128	Phrynobatrachus acridoides	CB 13.778	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4129	Phrynobatrachus acridoides	CB 13.779	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4143	Phrynobatrachus acridoides	CB 13.793	ΤZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4144	Phrynobatrachus acridoides	CB 13.794	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4145	•	CB 13.791	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
	Phrynobatrachus acridoides					
T4146	Phrynobatrachus acridoides	CB 13.796	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4147	Phrynobatrachus acridoides	CB 13.797	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4153	Phrynobatrachus acridoides	CB 13.803	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4154	Phrynobatrachus acridoides	CB 13.804	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4155	Phrynobatrachus acridoides	CB 13.805	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4174	Phrynobatrachus acridoides	CB 13.824	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4177	Phrynobatrachus acridoides	CB 13.827	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4191	Phrynobatrachus acridoides	CB 13.841	ΤZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4216	Phrynobatrachus acridoides	CB 13.866	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4218	Phrynobatrachus acridoides	CB 13.868	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4235	Phrynobatrachus acridoides	CB 13.885	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4239	Phrynobatrachus acridoides	CB 13.892	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4240	Phrynobatrachus acridoides	CB 13.893	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4241	Phrynobatrachus acridoides	CB 13.894	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4242	Phrynobatrachus acridoides	CB 13.895	TZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4243	Phrynobatrachus acridoides	CB 13.896	TZ	Kilulu, Tanga, Tanzania	39.117	-4.749
	•	CB 13.890 CB 13.897	TZ			
T4244	Phrynobatrachus acridoides			Kilulu, Tanga, Tanzania	39.117	-4.749
T4245	Phrynobatrachus acridoides	CB 13.898	TZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4246	Phrynobatrachus acridoides	CB 13.899	TZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4247	Phrynobatrachus acridoides	CB 13.900	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4248	Phrynobatrachus acridoides	CB 13.901	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4249	Phrynobatrachus acridoides	CB 13.902	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4267	Phrynobatrachus acridoides	CB 13.921	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4268	Phrynobatrachus acridoides	CB 13.922	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4396	Phrynobatrachus acridoides	MTSN 5863	ΤZ	Mang'ula	NULL	NULL
T4401	Phrynobatrachus acridoides	MTSN 8367	ΤZ	Kanga FR	37.724	-5.960
T4402	Phrynobatrachus acridoides	MTSN 8371	ΤZ	Kanga FR	37.724	-5.960
T4403	Phrynobatrachus acridoides	MTSN 8372	ΤZ	Kanga FR	37.724	-5.960
T4550	Phrynobatrachus acridoides	BM 2002.430	ΤZ	Ruvu South FR	38.813	-6.895
T4551	Phrynobatrachus acridoides	BM 2002.431	ΤZ	Ruvu South FR	38.813	-6.895
T4552	Phrynobatrachus acridoides	BM 2002.432	ΤZ	Ruvu South FR	38.796	-6.912
T4553	Phrynobatrachus acridoides	BM 2002.433	ΤZ	Ruvu South FR	38.796	-6.912
T4554	Phrynobatrachus acridoides	BM 2002.434	ΤZ	Ruvu South FR	38.878	-6.948
T4555	Phrynobatrachus acridoides	BM 2002.435	TZ	Ruvu South FR	38.878	-6.948
T4556	Phrynobatrachus acridoides	BM 2005.941	TZ	Kava Souli I K Kazizumbwi FR	39.073	-6.945
T4557	Phrynobatrachus acridoides	BM 2002.347	TZ	Mlinga Forest Reserve	38.748	-5.059
	•			e		
T4558	Phrynobatrachus acridoides	BM 2002.230	TZ	Kwamgumi FR	38.733	-4.923
T4559	Phrynobatrachus acridoides	BM 2002.231	TZ	Kwamgumi FR	38.733	-4.923
T4560	Phrynobatrachus acridoides	BM 2002.232	TZ	Kwamgumi FR	38.733	-4.923
T4561	Phrynobatrachus acridoides	BM 2002.734	ΤZ	Nilo FR	38.643	-4.955
T4562	Phrynobatrachus acridoides	BM 2002.735	ΤZ	Nilo FR	38.643	-4.955
T4563	Phrynobatrachus acridoides	BM 2002.736	ΤZ	Nilo FR	38.643	-4.955
T4564	Phrynobatrachus acridoides	BM 2002.737	ΤZ	Nilo FR	38.643	-4.955
T4565	Phrynobatrachus acridoides	BM 2002.738	ΤZ	Nilo FR	38.643	-4.955
T4566	Phrynobatrachus acridoides	BM 2002.739	ΤZ	Nilo FR	38.643	-4.955
T4567	Phrynobatrachus acridoides	BM 2005.136	ΤZ	Uluguru Mountians - Mvuha FR	37.838	-7.179
T4568	Phrynobatrachus acridoides	BM 2005.137	ΤZ	Uluguru Mountians - Mvuha FR	37.838	-7.179
T4569	Phrynobatrachus acridoides	BM 2005.138	ΤZ	Uluguru Mountians - Mvuha FR	37.838	-7.179
T4570	Phrynobatrachus acridoides	BM 2005.139	ΤZ	Uluguru Mountians - Mvuha FR	37.838	-7.179
T4792	Phrynobatrachus acridoides	WTS 8416	ΤZ	Unguja near Mchekeni village, Zanzibar	39.247	-6.190
T4793	Phrynobatrachus acridoides	WTS 8417	ΤZ	Unguja near Mchekeni village, Zanzibar	39.247	-6.190
T4835	Phrynobatrachus acridoides	MTSN 7660	ΤZ	Kimboza Forest	NULL	NULL
T4836	Phrynobatrachus acridoides	MTSN 7661	TZ	Kimboza Forest	37.804	-7.005
050					27.001	

T4837	Phrynobatrachus acridoides	MTSN 7662	ΤZ	Kimboza Forest	37.804	-7.005
T4954	Phrynobatrachus acridoides	MTSN 9546	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4958	Phrynobatrachus acridoides	MTSN 9550	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4959	Phrynobatrachus acridoides	MTSN 9551	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4996	Phrynobatrachus acridoides	MCZ A-32196	ΤZ	Hondo Hondo Lodge, Udzungwa	36.884	-7.856
T4997	Phrynobatrachus acridoides	MCZ A-32003	ΤZ	Dondwe Forest, near Mvuti	39.097	-7.065
T4998	Phrynobatrachus acridoides	MCZ A-32137	ΤZ	summit Mafi Hill, Tanga	38.141	-4.923
T3705	Phrynobatrachus cf. mababiensis	CB 13.497	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3706	Phrynobatrachus cf. mababiensis	CB 13.498	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3753	Phrynobatrachus cf. mababiensis	CB 13.545	ΤZ	Vikindu FR, Pwani, Tanzania	39.297	-6.994
T4025	Phrynobatrachus cf. mababiensis	CB 13.675	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T4085	Phrynobatrachus cf. mababiensis	CB 13.735	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T3008	Phrynobatrachus mababiensis	CB 13.019	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3084	Phrynobatrachus mababiensis	CB 13.107	TZ	Litipo FR (edge), Lindi, Tanzania	39.511	-10.032
	•		TZ			
T3090	Phrynobatrachus mababiensis	CB 13.113		Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3281	Phrynobatrachus mababiensis	CB 13.288	TZ	Namatimbili FR, Lindi, Tanzania	39.238	-9.111
T3469	Phrynobatrachus mababiensis	CB 13.380	TZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3479	Phrynobatrachus mababiensis	CB 13.390	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3674	Phrynobatrachus mababiensis	CB 13.466	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T4217	Phrynobatrachus mababiensis	CB 13.867	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4219	Phrynobatrachus mababiensis	CB 13.869	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4220	Phrynobatrachus mababiensis	CB 13.870	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4221	Phrynobatrachus mababiensis	CB 13.871	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4222	Phrynobatrachus mababiensis	CB 13.872	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4223	Phrynobatrachus mababiensis	CB 13.873	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4224	Phrynobatrachus mababiensis	CB 13.874	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4225	Phrynobatrachus mababiensis	CB 13.875	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4409	Phrynobatrachus mababiensis	KMH 17125	ΤZ	Kilombero Valley	NULL	NULL
T4410	Phrynobatrachus mababiensis	KMH 17199	TZ	Kilombero Valley	NULL	NULL
T4411	Phrynobatrachus mababiensis	KMH 17161	TZ	Kilombero Valley	NULL	NULL
	•			2		
T4412	Phrynobatrachus mababiensis	KMH 17193	TZ	Kilombero Valley	NULL	NULL
T4413	Phrynobatrachus mababiensis	KMH 17191	TZ	Kilombero Valley	NULL	NULL
T4571	Phrynobatrachus mababiensis	BM 2005.942	TZ	Kazizumbwi FR	NULL	NULL
T4572	Phrynobatrachus mababiensis	BM 2005.943	ΤZ	Kazizumbwi FR	NULL	NULL
T4995	Phrynobatrachus mababiensis	MCZ A-32018	ΤZ	Dondwe Forest, near Mvuti	39.097	-7.065
T2985	Phrynobatrachus natalensis	CB 13.037	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2992	Phrynobatrachus natalensis	CB 13.003	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2993	Phrynobatrachus natalensis	CB 13.004	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2994	Phrynobatrachus natalensis	CB 13.005	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2995	Phrynobatrachus natalensis	CB 13.006	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2996	Phrynobatrachus natalensis	CB 13.007	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2998	Phrynobatrachus natalensis	CB 13.009	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T2999	Phrynobatrachus natalensis	CB 13.010	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3002	Phrynobatrachus natalensis	CB 13.013	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3003	Phrynobatrachus natalensis	CB 13.014	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3004	Phrynobatrachus natalensis	CB 13.015	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3005	Phrynobatrachus natalensis	CB 13.016	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3005	Phrynobatrachus natalensis	CB 13.017	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3007	Phrynobatrachus natalensis		TZ	-	39.388	-9.994
	•	CB 13.018		Makangala FR, Lindi, Tanzania		
T3015	Phrynobatrachus natalensis	CB 13.032	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3016	Phrynobatrachus natalensis	CB 13.033	TZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3017	Phrynobatrachus natalensis	CB 13.034	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3018	Phrynobatrachus natalensis	CB 13.035	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3019	Phrynobatrachus natalensis	CB 13.038	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3025	Phrynobatrachus natalensis	CB 13.048	ΤZ	Lake Rutamba, Lindi, Tanzania	39.462	-10.033
T3026	Phrynobatrachus natalensis	CB 13.049	ΤZ	Lake Rutamba, Lindi, Tanzania	39.462	-10.033
T3027	Phrynobatrachus natalensis	CB 13.050	ΤZ	Lake Rutamba, Lindi, Tanzania	39.462	-10.033
T3028	Phrynobatrachus natalensis	CB 13.051	ΤZ	Lake Rutamba, Lindi, Tanzania	39.462	-10.033
T3069	Phrynobatrachus natalensis	CB 13.092	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3070	Phrynobatrachus natalensis	CB 13.093	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3071	Phrynobatrachus natalensis	CB 13.094	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3083	Phrynobatrachus natalensis	CB 13.106	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.511	-10.032
	-					

T3085	Phrynobatrachus natalensis	CB 13.108	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.511	-10.032
T3086	Phrynobatrachus natalensis	CB 13.109	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.511	-10.032
T3089	Phrynobatrachus natalensis	CB 13.112	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.511	-10.032
T3101	Phrynobatrachus natalensis	CB 13.124	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3102	Phrynobatrachus natalensis	CB 13.125	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3162	Phrynobatrachus natalensis	CB 13.185	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3163	Phrynobatrachus natalensis	CB 13.186	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3164	Phrynobatrachus natalensis	CB 13.187	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3165	Phrynobatrachus natalensis	CB 13.188	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3176	Phrynobatrachus natalensis	CB 13.199	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3177	Phrynobatrachus natalensis	CB 13.200	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T4786	Phrynobatrachus pakenhami	KMH 28800	ΤZ	Pemba	39.755	-5.142
T4787	Phrynobatrachus pakenhami	KMH 28801	ΤZ	Pemba	39.755	-5.142
T4788	Phrynobatrachus pakenhami	KMH 28802	TZ	Pemba	39.755	-5.142
T3766	Phrynobatrachus ukingensis	CB 13.558	TZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3767	Phrynobatrachus ukingensis	CB 13.559	TZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T4576	Phrynobatrachus ukingensis	BM 2005.142	TZ	Uluguru Mountians - Uluguru Ruvu FR	37.867	-6.983
	5 0			•		
T4577	Phrynobatrachus ukingensis	BM 2005.143	TZ	Uluguru Mountians - Uluguru Ruvu FR	37.867	-6.983
T4578	Phrynobatrachus ukingensis	BM 2005.144	TZ	Uluguru Mountians - Uluguru Ruvu FR	37.867	-6.983
T4575	Phrynobatrachus uzungwensis	BM 2005.181	TZ	Uluguru Mountians - Mkungwe FR	NULL	NULL
T3671	Phrynomantis bifasciatus	CB 13.463	TZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T3684	Phrynomantis bifasciatus	CB 13.476	ΤZ	Ruawa FR, Lindi, Tanzania	39.569	-9.730
T4054	Phrynomantis bifasciatus	CB 13.704	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4073	Phrynomantis bifasciatus	CB 13.723	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4397	Phrynomantis bifasciatus	MTSN 8591	ΤZ	Kilombero	36.892	-7.858
T4798	Phrynomantis bifasciatus	?_multiple_03	ΤZ	MAFIA ISLAND	NULL	NULL
T4999	Phrynomantis bifasciatus	MCZ A-32035	ΤZ	Dondwe Forest, near Mvuti	39.097	-7.065
T2975	Ptychadena anchietae	CB 13.926	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T2976	Ptychadena anchietae	CB 13.927	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T2990	Ptychadena anchietae	CB 13.001	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3014	Ptychadena anchietae	CB 13.031	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3020	Ptychadena anchietae	CB 13.039	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3021	Ptychadena anchietae	CB 13.040	ΤZ	Makangala FR, Lindi, Tanzania	39.388	-9.994
T3030	Ptychadena anchietae	CB 13.053	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3031	Ptychadena anchietae	CB 13.054	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3032	Ptychadena anchietae	CB 13.055	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3033	Ptychadena anchietae	CB 13.056	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3034	Ptychadena anchietae	CB 13.057	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3035	Ptychadena anchietae	CB 13.058	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3036	Ptychadena anchietae	CB 13.059	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3037	Ptychadena anchietae	CB 13.060	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3038	Ptychadena anchietae	CB 13.061	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3039	Ptychadena anchietae	CB 13.062	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3040	Ptychadena anchietae	CB 13.063	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3041	Ptychadena anchietae	CB 13.064	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3042	Ptychadena anchietae	CB 13.065	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3043	Ptychadena anchietae	CB 13.066	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3044	Ptychadena anchietae	CB 13.067	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3045	Ptychadena anchietae	CB 13.068	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3046	Ptychadena anchietae	CB 13.069	ΤZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3047	Ptychadena anchietae	CB 13.070	TZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3048	Ptychadena anchietae	CB 13.071	TZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3049	Ptychadena anchietae	CB 13.072	TZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3050	Ptychadena anchietae	CB 13.072	TZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3050	Ptychadena anchietae	CB 13.075 CB 13.075	TZ	Makangala FR (edge), Lindi, Tanzania Makangala FR (edge), Lindi, Tanzania	39.369 39.369	-9.982 -9.982
T3052	Ptychadena anchietae	CB 13.075 CB 13.076	TZ	Makangala FR (edge), Lindi, Tanzania Makangala FR (edge), Lindi, Tanzania	39.369 39.369	-9.982 -9.982
T3055	Ptychadena anchietae	CB 13.078 CB 13.077	TZ		39.369 39.369	-9.982 -9.982
	•			Makangala FR (edge), Lindi, Tanzania		
T3055	Ptychadena anchietae Ptychadena anchietae	CB 13.078	TZ TZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982 -9.982
T3059	Ptychadena anchietae Ptychadena anchietae	CB 13.082	TZ TZ	Makangala FR (edge), Lindi, Tanzania	39.369 30.360	
T3060	Ptychadena anchietae Ptychadena anchietae	CB 13.083	TZ TZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3061	Ptychadena anchietae Ptychadena anchietae	CB 13.084	TZ TZ	Makangala FR (edge), Lindi, Tanzania	39.369 39.507	-9.982
T3072	Ptychadena anchietae	CB 13.095	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030

T3079	Ptychadena anchietae	CB 13.102	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.511	-10.032
T3080	Ptychadena anchietae	CB 13.103	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.511	-10.032
T3166	Ptychadena anchietae	CB 13.189	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3167	Ptychadena anchietae	CB 13.190	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3168	Ptychadena anchietae	CB 13.191	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3171	Ptychadena anchietae	CB 13.194	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3536	Ptychadena anchietae	CB 13.400	ΤZ	Kiwengoma FR, Pwani, Tanzania	38.903	-8.304
T3548	Ptychadena anchietae	CB 13.412	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3729	Ptychadena anchietae	CB 13.521	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3730	Ptychadena anchietae	CB 13.522	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3736	Ptychadena anchietae	CB 13.528	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3737	Ptychadena anchietae	CB 13.529	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3738	Ptychadena anchietae	CB 13.530	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3739	Ptychadena anchietae	CB 13.531	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3754	Ptychadena anchietae	CB 13.546	ΤZ	Vikindu FR, Pwani, Tanzania	39.297	-6.994
T3759	Ptychadena anchietae	CB 13.551	TZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3761	Ptychadena anchietae	CB 13.553	TZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T4114	Ptychadena anchietae	CB 13.764	TZ	Gendagenda North FR, Tanga, Tanzania	38.646	-5.583
T4149	Ptychadena anchietae	CB 13.799	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
	Ptychadena anchietae		TZ			
T4173	2	CB 13.823		Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4176	Ptychadena anchietae	CB 13.826	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4204	Ptychadena anchietae	CB 13.854	ΤZ	Horohoro, Tanga, Tanzania	NULL	NULL
T4205	Ptychadena anchietae	CB 13.855	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4206	Ptychadena anchietae	CB 13.856	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4207	Ptychadena anchietae	CB 13.857	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4208	Ptychadena anchietae	CB 13.858	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4209	Ptychadena anchietae	CB 13.859	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4210	Ptychadena anchietae	CB 13.860	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4230	Ptychadena anchietae	CB 13.880	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4231	Ptychadena anchietae	CB 13.881	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4253	Ptychadena anchietae	CB 13.906	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4254	Ptychadena anchietae	CB 13.907	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4255	Ptychadena anchietae	CB 13.908	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4581	Ptychadena anchietae	BM 2005.164	ΤZ	Uluguru Mountians - Uluguru Ruvu FR	37.867	-6.983
T4838	Ptychadena anchietae	MTSN 7664	ΤZ	Kimboza Forest	37.804	-7.005
T4839	Ptychadena anchietae	MTSN 7665	ΤZ	Kimboza Forest	37.804	-7.005
T4840	Ptychadena anchietae	MTSN 7666	ΤZ	Kimboza Forest	37.804	-7.005
T4961	Ptychadena anchietae	MTSN 9553	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T4962	Ptychadena anchietae	MTSN 9554	ΤZ	Segoma Forest, Camp, East Usambara	38.762	-4.976
T5002	Ptychadena anchietae	MCZ A-32101	ΤZ	Amboni Caves	39.059	-5.074
T5003	Ptychadena anchietae	MCZ A-32008	ΤZ	Dondwe Forest, near Mvuti	39.097	-7.065
T5004	Ptychadena anchietae	MCZ A-32132	ΤZ	Mkalamo, Tanga	38.115	-4.991
T5129	Ptychadena anchietae	MUSE 11037	TZ	Mgeta Hydroelectric Dam	36.091	-8.312
T5125	Ptychadena anchietae	MUSE 11043	TZ	Mgeta Hydroelectric Dam	36.091	-8.312
T5136	Ptychadena anchietae	MUSE 11044	TZ	Mgeta Hydroelectric Dam	36.091	-8.312
T5130	Ptychadena anchietae	MUSE 11045	TZ	Mgeta Hydroelectric Dam	36.091	-8.312
T5137	Ptychadena anchietae	MUSE 11046	TZ	Mgeta Hydroelectric Dam	36.091	-8.312
T3078	•	CB 13.101	TZ	Litipo FR (edge), Lindi, Tanzania	39.511	-8.312
	Ptychadena cf. mossambica					
T3537	Ptychadena cf. mossambica	CB 13.401	TZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3538	Ptychadena cf. mossambica	CB 13.402	TZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3539	Ptychadena cf. mossambica	CB 13.403	TZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3540	Ptychadena cf. mossambica	CB 13.404	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3546	Ptychadena cf. mossambica	CB 13.410	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3547	Ptychadena cf. mossambica	CB 13.411	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3634	Ptychadena cf. mossambica	CB 13.426	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3646	Ptychadena cf. mossambica	CB 13.438	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3647	Ptychadena cf. mossambica	CB 13.439	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3648	Ptychadena cf. mossambica	CB 13.440	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3649	Ptychadena cf. mossambica	CB 13.441	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3650	Ptychadena cf. mossambica	CB 13.442	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3651	Ptychadena cf. mossambica	CB 13.443	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3652	Ptychadena cf. mossambica	CB 13.444	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948

T3653	Ptychadena cf. mossambica	CB 13.445	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3756	Ptychadena cf. mossambica	CB 13.548	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3757	Ptychadena cf. mossambica	CB 13.549	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3865	Ptychadena cf. mossambica	CB 13.659	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T4020	Ptychadena cf. mossambica	CB 13.670	ΤZ	Ruvu North FR, Pwani, Tanzania	38.871	-6.712
T4229	Ptychadena cf. mossambica	CB 13.879	ΤZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4582	Ptychadena cf. mossambica	BM 2005.945	ΤZ	Kazizumbwi FR	39.042	-6.947
T4583	Ptychadena cf. mossambica	BM 2002.436	ΤZ	Ruvu South FR	38.878	-6.948
T3793	Ptychadena cf. nilotica	CB 13.585	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3799	Ptychadena cf. nilotica	CB 13.591	ΤZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3807	Ptychadena cf. nilotica	CB 13.601	TZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3811	Ptychadena cf. nilotica	CB 13.605	TZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T3822	Ptychadena cf. nilotica	CB 13.616	TZ	Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
	• •		TZ	1, 0,		
T3823	Ptychadena cf. nilotica	CB 13.617		Kibasira Swamp, Morogoro, Tanzania	36.318	-8.312
T4417	Ptychadena cf. nilotica	MTSN 8127	TZ	Ruipa, Ranger post	37.035	-9.169
T5001	Ptychadena cf. nilotica	MCZ A-32198	TZ	Hondo Hondo Lodge, Udzungwa	36.884	-7.856
T3062	Ptychadena nilotica	CB 13.085	TZ	Makangala FR (edge), Lindi, Tanzania	39.369	-9.982
T3645	Ptychadena nilotica	CB 13.437	ΤZ	Muyuyu FR, Pwani, Tanzania	39.044	-7.948
T3728	Ptychadena nilotica	CB 13.520	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3740	Ptychadena nilotica	CB 13.532	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3741	Ptychadena nilotica	CB 13.533	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T3742	Ptychadena nilotica	CB 13.534	ΤZ	Vikindu FR, Pwani, Tanzania	39.299	-6.990
T5000	Ptychadena nilotica	MCZ A-32046	ΤZ	Baleni Pond, Mafia	39.803	-7.850
T3707	Ptychadena oxyrhynchus	CB 13.499	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T4394	Ptychadena oxyrhynchus	MTSN 5746	ΤZ	Kilombero fr	NULL	NULL
T4395	Ptychadena oxyrhynchus	MTSN 5747	ΤZ	Kilombero fr	NULL	NULL
T3654	Ptychadena porosissima	CB 13.446	ΤZ	Kiwengoma FR, Pwani, Tanzania	NULL	NULL
T3655	Ptychadena porosissima	CB 13.447	ΤZ	Muyuyu FR, Pwani, Tanzania	NULL	NULL
T4407	Ptychadena porosissima	MTSN 5770	ΤZ	Ruaha National Park	35.053	-7.507
T3708	Ptychadena sp.	CB 13.500	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3758	Ptychadena sp.	CB 13.550	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3760	Ptychadena sp.	CB 13.552	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T4579	Ptychadena sp.	BM 2002.370	ΤZ	Kazizumbwi FR	39.051	-6.934
T4580	Ptychadena sp.	BM 2005.946	ΤZ	Kazizumbwi FR	39.046	-6.950
T4600	Ptychadena sp.	BM 2002.761	TZ	Segoma FR	38.617	-4.898
T4805	Ptychadena sp.	WTS 8415	TZ	Unguja near Mchekeni village, Zanzibar	39.247	-6.190
T3686	Pyxicephalus adspersus	CB 13.478	TZ	Ndimba FR, Lindi, Tanzania	39.648	-9.629
T3687	Pyxicephalus adspersus	CB 13.478	TZ	Ndimba FR, Lindi, Tanzania	39.648	-9.629
		CB 13.479 CB 13.480				
T3688	Pyxicephalus adspersus		TZ	Ndimba FR, Lindi, Tanzania	39.648	-9.629
T3689	Pyxicephalus adspersus	CB 13.481	TZ TZ	Ndimba FR, Lindi, Tanzania	39.648	-9.629
T3690	Pyxicephalus adspersus	CB 13.482	TZ	Ndimba FR, Lindi, Tanzania	39.648	-9.629
T3691	Pyxicephalus adspersus	CB 13.483	TZ	Ndimba FR, Lindi, Tanzania	39.648	-9.629
T3692	Pyxicephalus adspersus	CB 13.484	TZ	Ndimba FR, Lindi, Tanzania	39.648	-9.629
T3693	Pyxicephalus adspersus	CB 13.485	TZ	Ndimba FR, Lindi, Tanzania	39.648	-9.629
T4405	Pyxicephalus adspersus	MTSN 5293	ΤZ	Ruaha National Park	35.053	-7.507
T3824	Pyxicephalus edulis	CB 13.618	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3843	Pyxicephalus edulis	CB 13.637	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4026	Pyxicephalus edulis	CB 13.676	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4027	Pyxicephalus edulis	CB 13.677	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4028	Pyxicephalus edulis	CB 13.678	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4029	Pyxicephalus edulis	CB 13.679	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4030	Pyxicephalus edulis	CB 13.680	ΤZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4053	Pyxicephalus edulis	CB 13.703	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4072	Pyxicephalus edulis	CB 13.722	ΤZ	Zaraninge FR, Pwani, Tanzania	38.608	-6.137
T4584	Pyxicephalus edulis	BM 2002.437	ΤZ	Ruvu South FR	NULL	NULL
T4585	Pyxicephalus edulis	BM 2002.438	ΤZ	Ruvu South FR	38.878	-6.948
T5005	Pyxicephalus edulis	MCZ A-32011	ΤZ	Dondwe Forest	39.097	-7.065
T4790	Scolecomorphus vittatus	WTS 1572	ΤZ	Kwamgumi, East Usambara, Tanzania	38.717	-4.950
T4791	Scolecomorphus vittatus	WTS 1548	ΤZ	Kwamgumi, East Usambara, Tanzania	38.717	-4.950
T1930	Spelaeophryne methneri	MCZ 32061	TZ	Rondo Plateau	39.205	-10.144
T4591	Spelaeophryne methneri	BM 2000.216	TZ	Uluguru Mountians - Milawilia FR	37.750	-6.979
T4592	Spelaeophryne methneri	BM 2000.217	TZ	Uluguru Mountians - Milawilia FR	37.750	-6.979
	1 1					

T4406	Tomopterna wambensis	MTSN 5397	ΤZ	Ruaha National Park	35.053	-7.507
T4855	Xenopus laevis	MTSN 7716	ΤZ	Kimboza Forest	37.804	-7.005
T4856	Xenopus laevis	MTSN 7717	ΤZ	Kimboza Forest	37.804	-7.005
T4857	Xenopus laevis	MTSN 7718	ΤZ	Kimboza Forest	37.804	-7.005
T2977	Xenopus muelleri	CB 13.928	ΤZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T3087	Xenopus muelleri	CB 13.110	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.511	-10.032
T3103	Xenopus muelleri	CB 13.126	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3104	Xenopus muelleri	CB 13.127	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.507	-10.030
T3109	Xenopus muelleri	CB 13.132	ΤZ	Litipo FR (edge), Lindi, Tanzania	39.388	-9.994
T3161	Xenopus muelleri	CB 13.184	ΤZ	Litipo FR, Lindi, Tanzania	39.475	-10.050
T3182	Xenopus muelleri	CB 13.205	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3183	Xenopus muelleri	CB 13.206	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3184	Xenopus muelleri	CB 13.207	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3202	Xenopus muelleri	CB 13.225	ΤZ	Noto Plateau, Lindi, Tanzania	39.374	-9.895
T3283	Xenopus muelleri	CB 13.290	TZ	Makangaga FR, Lindi, Tanzania	39.292	-9.495
T3694	Xenopus muelleri	CB 13.486	ΤZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3695	Xenopus muelleri	CB 13.487	TZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3696	Xenopus muelleri	CB 13.488	TZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3697	Xenopus muelleri	CB 13.489	TZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3762	Xenopus muelleri	CB 13.554	TZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3763	Xenopus muelleri	CB 13.555	TZ	Ngumburuni FR, Pwani, Tanzania	39.066	-7.881
T3789	Xenopus muelleri	CB 13.593	TZ	Kibasira Swamp, Morogoro, Tanzania	36.228	-8.349
T3826	Xenopus muelleri	CB 13.620	TZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T3844	Xenopus muelleri	CB 13.638	TZ	Ruvu North FR, Pwani, Tanzania	38.970	-6.713
T4126	Xenopus muelleri	CB 13.776	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4140	Xenopus muelleri	CB 13.790	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4141	Xenopus muelleri	CB 13.791	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4142	Xenopus muelleri	CB 13.792	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4150	Xenopus muelleri	CB 13.800	TZ	Amboni caves, Tanga, Tanzania	39.048	-5.073
T4190	Xenopus muelleri	CB 13.840	TZ	Mabayani bwawa, Tanga, Tanzania	38.924	-5.034
T4190 T4211	Xenopus muelleri	CB 13.861	TZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4211 T4212	Xenopus muelleri	CB 13.862	TZ	Horohoro, Tanga, Tanzania	39.102 39.102	-4.632
T4212	Xenopus muelleri	CB 13.863	TZ	Horohoro, Tanga, Tanzania	39.102	-4.632
T4213	Xenopus muelleri	CB 13.865 CB 13.864	TZ	Horohoro, Tanga, Tanzania	39.102 39.102	-4.632
T4214	Xenopus muelleri	CB 13.865	TZ	Horohoro, Tanga, Tanzania	39.102 39.102	-4.632
T4213 T4232	Xenopus muelleri	CB 13.885 CB 13.882	TZ	Horohoro, Tanga, Tanzania	39.102 39.102	-4.632 -4.632
			TZ	-		
T4265	Xenopus muelleri Xenopus muelleri	CB 13.918 CB 13.919	TZ	Kilulu, Tanga, Tanzania	39.117	-4.749
T4266	Xenopus muelleri Xenopus muelleri		TZ	Kilulu, Tanga, Tanzania Ruvu South FR	39.117	-4.749
T4593	Xenopus muelleri	BM 2002.439			38.813	-6.895
T4594	Xenopus muelleri Xenopus muelleri	BM 2002.440	TZ TZ	Ruvu South FR	38.813	-6.895
T4595	Xenopus muelleri	BM 2005.947	TZ	Kazizumbwi FR	39.062	-6.934
T4596	Xenopus muelleri	BM 2005.175	TZ	Uluguru Mountians - Mvuha FR	37.838	-7.179
T4597	Xenopus muelleri	BM 2005.176	TZ	Uluguru Mountians - Mvuha FR	37.838	-7.179
T4598	Xenopus muelleri Xenopus muelleri	BM 2002.895	TZ TZ	Mgambo F.R.	38.813	-4.792
T4599	Xenopus muelleri	BM 2002.371	TZ	Kazizumbwi FR	39.062	-6.934
T4852	Xenopus muelleri	MTSN 7713	TZ	Kimboza Forest	37.804	-7.005
T4853	Xenopus muelleri	MTSN 7714	TZ	Kimboza Forest	NULL	NULL
T4854	Xenopus muelleri	MTSN 7715	TZ	Kimboza Forest	37.804	-7.005
T4931	Xenopus muelleri	MTSN 9513	TZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T4932	Xenopus muelleri	MTSN 9514	TZ	Segoma Forest, Camp, East Usambara	38.758	-4.981
T5006	Xenopus muelleri	MCZ A-32044	ΤZ	Kilongwe	39.828	-7.878

Supplementary Materials: Chapter I

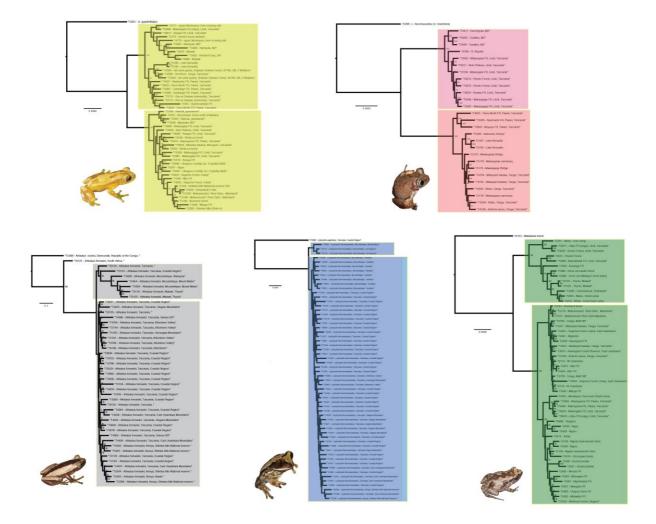
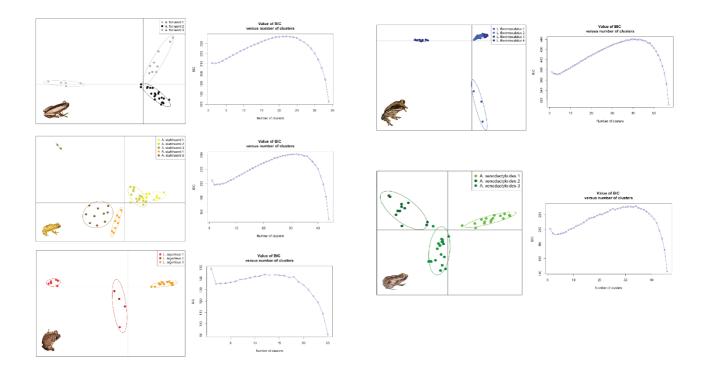
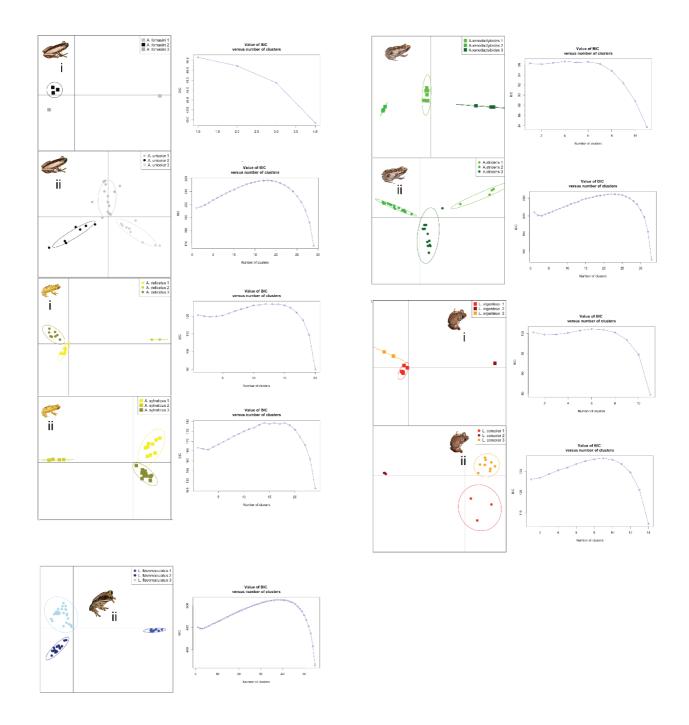




Fig. S1. Phylogenies from RAD-seq data using 40% missing data.

Fig. S2. Full species clade analysis using Discriminant Function analysis of Principal Components using the Adegenet R package. (Jombart et al. 2008). Number of clusters plotted along with corresponding BIC values.

Fig. S3. Subclade analysis using Discriminant Function analysis of Principal Components using the Adegenet R package. (Jombart et al. 2008). . Number of clusters plotted along with corresponding BIC values.

Table S1. Sample IDs for RAD-seq individuals. ID name and locality, species clade, Subclade (identified on phylogeny), population (identified by DAPC analysis), and coordinates of where the sample was collected. * denotes that the sample was removed for population analysis due to poor sequence data or being an outgroup.

ID	Species clade	Subclade	population	Long	Lat
T3139 - Makangala FR, Lindi, Tanzania	Leptopelis argenteus	i	argenteus_2	39.38803	-9.99418
T3211 - Noto Plateau, Lindi, Tanzania	Leptopelis argenteus	i	argenteus_2	39.37409	-9.89532
T3273 - Rondo Forest, Lindi, Tanzania	Leptopelis argenteus	i	argenteus_2	39.19714	-10.12126
T3274 - Rondo Forest, Lindi, Tanzania	Leptopelis argenteus	i	argenteus_2	39.19714	-10.12126
T3291 - Makangaga FR, Lindi, Tanzania	Leptopelis argenteus	i	argenteus_2	39.29196	-9.49454
T3308 - Makangaga FR, Lindi, Tanzania	Leptopelis argenteus	i	argenteus_2	39.29196	-9.49454
T3417 - Gorongosa, MZ	Leptopelis argenteus	i	argenteus_3	34.26533	-18.678761
T3659 - Ruawa FR, Lindi, Tanzania	Leptopelis argenteus	i	argenteus_2	39.56871	-9.72995
T4784 - R. Diquide	Leptopelis argenteus	i	argenteus_2	40.42827	-11.883333
T5626 - Taratibu, MZ	Leptopelis argenteus	i	argenteus_1	39.68658	-12.821783
T5630 - Taratibu, MZ	Leptopelis argenteus	i	argenteus_1	39.68658	-12.821783
T3435 - Nyamuete FR, Pwani, Tanzania	Leptopelis argenteus	ii	concolor_3	39.03441	-8.32557
T3643 - Muyuyu FR, Pwani, Tanzania	Leptopelis argenteus	ii	concolor_3	39.04373	-7.94835
T4021 - Ruvu North FR, Pwani, Tanzania	Leptopelis argenteus	ii	concolor_3	38.8713	-6.71173
T4148 - Amboni caves, Tanga, Tanzania	Leptopelis argenteus	ii	concolor_2	39.04843	-5.0731
T4194 - Mabayani bwawa, Tanga, Tanzania	Leptopelis argenteus	ii	concolor_2	38.92436	-5.03361
T4195 - Mabayani bwawa, Tanga, Tanzania	Leptopelis argenteus	ii	concolor_2	38.92436	-5.03361
T4256 - Kilulu, Tanga, Tanzania	Leptopelis argenteus	ii	concolor_2	39.11713	-4.74908
T4258 - Kilulu, Tanga, Tanzania	Leptopelis argenteus	ii	concolor_2	39.11713	-4.74908
T5172 - Mwaluganje Bridge	Leptopelis argenteus	ii	concolor_2	39.41731	-4.15821
T5173 - Mwaluganje Bridge	Leptopelis argenteus	ii	concolor_2	39.41731	-4.15821
T5178 - Mwaluganje sanctuary	Leptopelis argenteus	ii	concolor_2	39.44002	-4.1278
T5179 - Mwaluganje sanctuary	Leptopelis argenteus	ii	concolor_2	39.44002	-4.1278
T5185 - Lake Kenyatta	Leptopelis argenteus	ii	concolor_1	40.69678	-2.3854444
T5187 - Lake Kenyatta	Leptopelis argenteus	ii	concolor_1	40.69678	-2.3854444
T5400 - Kakoneni, Kenya	Leptopelis argenteus	ii	concolor_1	39.86283	-3.1699667
T3022 - Makangala FR, Lindi, Tanzania	Leptopelis argenteus	i*	-	39.38803	-9.99418
T3416 - Mozambique, Gorongosa	Leptopelis flavomaculatus	i	flavomaculatus_moz	34.26533	-18.678761
T3419 - Mozambique, Gorongosa	Leptopelis flavomaculatus	i	flavomaculatus_moz	34.26533	-18.678761
T4606 - Mozambique, Mount Mabu	Leptopelis flavomaculatus	i	flavomaculatus_moz	36.58756	-16.313055
T3802 - Tanzania, Kibasira swamp, Kilombero valley	Leptopelis flavomaculatus	ii	flavomaculatus_1	36.2277	-8.34888
T2641 - Tanzania, Nguu Mountains	Leptopelis flavomaculatus	ii	flavomaculatus_1	37.47162	-5.539355
T4540 - Tanzania, Mvuha FR, Uluguru Mountains	Leptopelis flavomaculatus	ii	flavomaculatus_1	37.8375	-7.179167
T4100 - Tanzania, Gendagenda North FR, Tanga	Leptopelis flavomaculatus	ii	flavomaculatus_1	38.64486	-5.58302
T3446 - Tanzania, Kiwengoma FR, Pwani	Leptopelis flavomaculatus	ii	flavomaculatus_1	38.90269	-8.30435
T3447 - Tanzania, Kiwengoma FR, Pwani	Leptopelis flavomaculatus	ii	flavomaculatus_1	38.90269	-8.30435
T4199 - Tanzania, Mabayani bwawa, Tanga	Leptopelis flavomaculatus	ii	flavomaculatus_1	38.92436	-5.03361
T4537 - Tanzania, Milawilia FR, Uluguru Mountains	Leptopelis flavomaculatus	ii	flavomaculatus_1	37.75	-6.979167
T4847 - Tanzania, Kimboza forest, Uluguru Mountains	Leptopelis flavomaculatus	ii	flavomaculatus_1	37.80356	-7.005459

T4538 - Tanzania, Mkungwe FR, Uluguru Mountains	Leptopelis flavomaculatus	ii	flavomaculatus_1	37.915	-6.868611
T4075 - Tanzania, Zaraninge FR, Pwani	Leptopelis flavomaculatus	ii	flavomaculatus_1	38.60755	-6.13694
T4098 - Tanzania, Gendagenda North FR, Tanga	Leptopelis flavomaculatus	ii	flavomaculatus_1	38.64486	-5.58302
T4101 - Tanzania, Gendagenda North FR, Tanga	Leptopelis flavomaculatus	ii	flavomaculatus_1	38.64486	-5.58302
T4534 - Tanzania, Nilo FR, East Usambara	Leptopelis flavomaculatus	ii	flavomaculatus_1	38.6625	-4.904444
T4960 - Tanzania, Segoma FR, East Usambara	Leptopelis flavomaculatus	ii	flavomaculatus_1	38.7615	-4.97643
T4970 - Tanzania, Segoma FR, East Usambara	Leptopelis flavomaculatus	ii	flavomaculatus_1	38.7615	-4.97643
T4200 - Tanzania, Mabayani bwawa, Tanga	Leptopelis flavomaculatus	ii	flavomaculatus_1	38.92436	-5.03361
T3431 - Tanzania, Nyamuete FR, Pwani	Leptopelis flavomaculatus	ii	flavomaculatus_1	39.03702	-8.30865
T2480 - Tanzania, Kazimzumbwi FR, Pwani	Leptopelis flavomaculatus	ii	flavomaculatus_1	39.04028	-6.944556
T3768 - Tanzania, Kibasira swamp, Kilombero valley	Leptopelis flavomaculatus	ii	flavomaculatus_1	39.06615	-7.88088
T4384 - Dar es Salaam, Tanzania	Leptopelis flavomaculatus	ii	flavomaculatus_1	39.28574	-6.786671
T5238 - Kenya, Shimba Hills lodge	Leptopelis flavomaculatus	ii	flavomaculatus_1	39.39564	-4.2375
T5239 - Kenya, Shimba Hills lodge	Leptopelis flavomaculatus	ii	flavomaculatus_1	39.39564	-4.2375
T3644 - Tanzania, Muyuyu FR, Pwani	Leptopelis flavomaculatus	ii	flavomaculatus_1	39.04373	-7.94835
T4672 - Tanzania, Chita/Funo, USFR	Leptopelis flavomaculatus	ii	flavomaculatus_1	35.89459	-8.5279245
T3809 - Tanzania, Kibasira swamp, Kilombero valley	Leptopelis flavomaculatus	ii	flavomaculatus_1	36.31764	-8.31238
T4923 - Tanzania, Kimboza forest, Uluguru Mountains	Leptopelis flavomaculatus	ii	flavomaculatus_1	37.80356	-7.005459
T3432 - Tanzania, Nyamuete FR, Pwani	Leptopelis flavomaculatus	ii	flavomaculatus_1	39.03702	-8.30865
T3189 - Tanzania, Noto plateau, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.37409	-9.89532
T3190 - Tanzania, Noto plateau, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.37409	-9.89532
T3191 - Tanzania, Noto plateau, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.37409	-9.89532
T3192 - Tanzania, Noto plateau, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.37409	-9.89532
T3193 - Tanzania, Noto plateau, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.37409	-9.89532
T3194 - Tanzania, Noto plateau, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.37409	-9.89532
T3195 - Tanzania, Noto plateau, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.37409	-9.89532
T3196 - Tanzania, Noto plateau, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.37409	-9.89532
T3198 - Tanzania, Noto plateau, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.37409	-9.89532
T3210 - Tanzania, Noto plateau, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.37409	-9.89532
T2979 - Tanzania, Makangala FR, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.38803	-9.99418
T3009 - Tanzania, Makangala FR, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.38803	-9.99418
T3010 - Tanzania, Makangala FR, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.38803	-9.99418
T3107 - Tanzania, Litipo FR (edge), Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.38803	-9.99418
T3108 - Tanzania, Litipo FR (edge), Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.38803	-9.99418
T3157 - Tanzania, Litipo FR, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.4752	-10.04952
T3179 - Tanzania, Litipo FR, Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.4752	-10.04952
T3074 - Tanzania, Litipo FR (edge), Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.50674	-10.03041
T3081 - Tanzania, Litipo FR (edge), Lindi	Leptopelis flavomaculatus	ii	flavomaculatus_2	39.51065	-10.03238
T5621 - Mozambique, Taratibu	Leptopelis flavomaculatus	ii	flavomaculatus_3	39.68658	-12.821783
T5625 - Mozambique, Taratibu	Leptopelis flavomaculatus	ii	flavomaculatus_3	39.68658	-12.821783
T5628 - Mozambique, Taratibu	Leptopelis flavomaculatus	ii	flavomaculatus_3	39.68658	-12.821783
T5629 - Mozambique, Taratibu	Leptopelis flavomaculatus	ii	flavomaculatus_3	39.68658	-12.821783
T5631 - Mozambique, Taratibu	Leptopelis flavomaculatus	ii	flavomaculatus_3	39.68658	-12.821783
T5643 - Mozambique, Taratibu	Leptopelis flavomaculatus	ii	flavomaculatus_3	39.68658	-12.821783
T5645 - Mozambique, Taratibu	Leptopelis flavomaculatus	ii	flavomaculatus_3	39.68658	-12.821783
T5648 - Mozambique, Taratibu	Leptopelis flavomaculatus	ii	flavomaculatus_3	39.68658	-12.821783
10010 mozamorque, raranou	Leptopens javonacianis		juromaciaans_5	57.00050	12.021703

T3418 - Mozambique, Gorongosa	Leptopelis flavomaculatus	ii*	-	34.26533	-18.678761
T5399 - L. flavomaculatus (E Usambara)	Leptopelis flavomaculatus	ii*	-	38.62663	-5.100033
T2116 - Pond behind Chawani Bungalow, Malawi	Afrixalus fornasini	i	fornasini	35.0638	-16
T6125 - Pond behind Chawani Bungalow, Malawi	Afrixalus fornasini	i	fornasini	35.06446	-16.077674
T5952 - Mount Mabu - river camp, Mozambique	Afrixalus fornasini	i	fornasini	36.44378	-16.281528
T5954 - Mount Mabu - river camp, Mozambique	Afrixalus fornasini	i	fornasini	36.44378	-16.281528
T5609 - Nampula, Mozambique	Afrixalus fornasini	i	fornasini	39.28822	-15.14475
T6121 - Richard's Bay, South Africa	Afrixalus fornasini	i*	-	32.01	-28.78
T6134 - Pemba; Nguru Mountains, Tanzania	Afrixalus fornasini	i*	-	37.52477	-6.030439
T6136 - Kitolomero, USFR, Tanzania	Afrixalus fornasini	ii	unicolor_1	35.98376	-8.39463
T5144 - Kilombero Valley, Tanzania	Afrixalus fornasini	ii	unicolor_1	36.09133	-8.311798
T5145 - Kilombero Valley, Tanzania	Afrixalus fornasini	ii	unicolor_1	36.09133	-8.311798
T3782 - Kibasira Swamp, Morogoro, Tanzania	Afrixalus fornasini	ii	unicolor_1	36.2277	-8.34888
T3784 - Kibasira Swamp, Morogoro, Tanzania	Afrixalus fornasini	ii	unicolor_1	36.2277	-8.34888
T4385 - Ruipa, Ranger post, Tanzania	Afrixalus fornasini	ii	unicolor_1	37.03472	-9.168889
T4386 - Ruipa, Ranger post, Tanzania	Afrixalus fornasini	ii	unicolor_1	37.03472	-9.168889
T3559 - Muyuyu FR, Pwani, Tanzania	Afrixalus fornasini	ii	unicolor_3	39.04373	-7.94835
T3636 - Muyuyu FR, Pwani, Tanzania	Afrixalus fornasini	ii	unicolor_3	39.04373	-7.94835
T6135 - Nguu Forest Reserve, Nguu, Tanzania	Afrixalus fornasini	ii	unicolor_3	37.49361	-5.4791667
T4076 - Zaraninge FR, Pwani, Tanzania	Afrixalus fornasini	ii	unicolor_3	38.60755	-6.13694
T4426 - Kwamgumi FR. Tanzania	Afrixalus fornasini	ii	unicolor_3	38.73278	-4.923056
T4795 - Ruvu South FR, Tanzania	Afrixalus fornasini	ii	unicolor_3	38.8125	-6.895222
T4167 - Mabayani bwawa, Tanga, Tanzania	Afrixalus fornasini	ii	unicolor_2	38.92436	-5.03361
T4178 - Mabayani bwawa, Tanga, Tanzania	Afrixalus fornasini	ii	unicolor_2	38.92436	-5.03361
T3841 - Ruvu North FR, Pwani, Tanzania	Afrixalus fornasini	ii	unicolor_3	38.97007	-6.71349
T5306 - Kivumoni forest, Kenya	Afrixalus fornasini	ii	unicolor_2	39.35	-4.25
T5303 - Shimba Lodge, Kenya	Afrixalus fornasini	ii	unicolor_2	39.39564	-4.2375
T5304 - Shimba Lodge, Kenya	Afrixalus fornasini	ii	unicolor_2	39.39564	-4.2375
T5305 - Kwale, Kenya	Afrixalus fornasini	ii	unicolor_2	39.42547	-4.3752167
T5307 - Scheldrick's Falls, Kenya	Afrixalus fornasini	ii	unicolor_2	39.43096	-4.27553
T5105 - Kitolomero, USFR, Tanzania	Afrixalus fornasini	ii	unicolor_1	35.9824	-8.39521
T6133 - Sali Forest Reserve, Mahenge, Tanzania	Afrixalus fornasini	ii	unicolor_1	36.68831	-8.9659444
T4425 - Uluguru Mountains - Mvuha FR, Tanzania	Afrixalus fornasini	ii	unicolor_3	37.8375	-7.179167
T3840 - Ruvu North FR, Pwani, Tanzania	Afrixalus fornasini	ii	unicolor_3	38.97007	-6.71349
T3755 - Vikindu FR, Pwani, Tanzania	Afrixalus fornasini	ii	unicolor_3	39.29749	-6.99365
T3131 - Makangala FR, Lindi, Tanzania	Afrixalus fornasini	ii	unicolor_3	39.38803	-9.99418
T3134 - Makangala FR, Lindi, Tanzania	Afrixalus fornasini	ii	unicolor_3	39.38803	-9.99418
T4036 - Mafia island, Tanzania	Afrixalus fornasini	ii	unicolor_3	39.71429	-7.96261
T4050 - Mafia island, Tanzania	Afrixalus fornasini	ii	unicolor_3	39.79531	-7.84898
T4424 - Uluguru Mountains - Mvuha FR, Tanzania	Afrixalus fornasini	ii*	-	37.8375	-7.179167
T4427 - Nilo FR, Tanzania	Afrixalus fornasini	ii*	-	38.6625	-4.904444
T4428 - Nilo FR, Tanzania	Afrixalus fornasini	ii*	-	38.6625	-4.904444
T4796 - Ruvu South FR, Tanzania	Afrixalus fornasini	ii*	-	38.76217	-6.901083
T4834 - Tanzania, Kazimzumbwi FR, Pwani	Afrixalus fornasini	ii*	-	39.05347	-6.942528
T4383 - Dar es Salaam, Tanzania	Afrixalus fornasini	ii*	-	39.28574	-6.786671
T4982 - Baleni Pond, Mafia, Tanzania	Afrixalus fornasini	ii*	-	39.80253	-7.849772

T4087 - Zaraninge FR, Pwani, Tanzania	Afrixalus stuhlmanni	i	delicatus_1	38.60755	-6.13694
T4088 - Zaraninge FR, Pwani, Tanzania	Afrixalus stuhlmanni	i	delicatus_1	38.60755	-6.13694
T3832 - Ruvu North FR, Pwani, Tanzania	Afrixalus stuhlmanni	i	delicatus_1	38.97007	-6.71349
T3833 - Ruvu North FR, Pwani, Tanzania	Afrixalus stuhlmanni	i	delicatus_1	38.97007	-6.71349
T1951 - Kazimzumbwi FR	Afrixalus stuhlmanni	i	delicatus_1	39.04028	-6.944556
T3712 - Dar es Salaam (university), Tanzania	Afrixalus stuhlmanni	i	delicatus_1	39.20388	-6.77875
T3715 - Dar es Salaam (university), Tanzania	Afrixalus stuhlmanni	i	delicatus_1	39.20388	-6.77875
T4236 - Horohoro, Tanga, Tanzania	Afrixalus stuhlmanni	i	delicatus_1	39.10166	-4.63209
T5394 - old sand quarry, Arabuko Sokoke Forest	Afrixalus stuhlmanni	i	delicatus_1	39.86667	-3.33333
T5395 - old sand quarry, Arabuko Sokoke Forest	Afrixalus stuhlmanni	i	delicatus_1	39.86667	-3.33333
T5189 - Lake Kenyatta	Afrixalus stuhlmanni	i	delicatus_3	40.68583	-2.4088889
T5190 - Lake Kenyatta	Afrixalus stuhlmanni	i	delicatus_3	40.68583	-2.4088889
T4979 - Malawi	Afrixalus stuhlmanni	i	delicatus_2	35.71076	-16.04831
T4980 - Malawi	Afrixalus stuhlmanni	i	delicatus_2	35.71076	-16.04831
T4770 - upper Montepeuz river crossing site	Afrixalus stuhlmanni	i	delicatus_2	38.58678	-13.407944
T5607 - Nampula, MZ	Afrixalus stuhlmanni	i	delicatus_2	39.28822	-15.14475
T5608 - Nampula, MZ	Afrixalus stuhlmanni	i	delicatus_2	39.28822	-15.14475
T3066 - Makangala FR (edge), Lindi, Tanzania	Afrixalus stuhlmanni	i	delicatus_2	39.36913	-9.98237
T3677 - Ruawa FR, Lindi, Tanzania	Afrixalus stuhlmanni	i	delicatus_2	39.56871	-9.72995
T4773 - Dereks house wetland	Afrixalus stuhlmanni	i	delicatus_2	40.35416	-12.933333
T5932 - Richard's bay, SA	Afrixalus stuhlmanni	i*	-	32.01	-28.78
T4771 - upper Montepeuz river crossing site	Afrixalus stuhlmanni	i*	-	38.58678	-13.407944
T1946 - Nilo FR	Afrixalus stuhlmanni	i*	-	38.66253	-4.940944
T3427 - Nyamuete FR, Pwani, Tanzania	Afrixalus stuhlmanni	i*	-	39.03441	-8.32557
T3320 - Makangaga FR, Lindi, Tanzania	Afrixalus stuhlmanni	i*	-	39.29196	-9.49454
T5007 - Ukaguru; Lumbiji, loc. 2 (paddy field)	Afrixalus stuhlmanni	ii	sylvaticus_2	36.98424	-6.614667
T5008 - Ukaguru; Lumbiji, loc. 2 (paddy field)	Afrixalus stuhlmanni	ii	sylvaticus_2	36.98424	-6.614667
T5931 - Nguu	Afrixalus stuhlmanni	ii	sylvaticus_2	37.49361	-5.4791667
T5012 - Kanga FR	Afrixalus stuhlmanni	ii	sylvaticus_2	37.7243	-5.959949
T1948 - Mlinga FR	Afrixalus stuhlmanni	ii	sylvaticus_3	38.74781	-5.059417
T4924 - Segoma Forest, Camp	Afrixalus stuhlmanni	ii	sylvaticus_3	38.75825	-4.98094
T4925 - Segoma Forest, Camp	Afrixalus stuhlmanni	ii	sylvaticus_3	38.75825	-4.98094
T5392 - Shimba Hills (Shim 4)	Afrixalus stuhlmanni	ii	sylvaticus_3	39.3405	-4.2664167
T5168 - Mukurumudzi River Dam, Miembeni	Afrixalus stuhlmanni	ii	sylvaticus_3	39.42547	-4.3752167
T5169 - Mukurumudzi River Dam, Miembeni	Afrixalus stuhlmanni	ii	sylvaticus_3	39.42547	-4.3752167
T5200 - Scheldrick's Falls	Afrixalus stuhlmanni	ii	sylvaticus_3	39.43096	-4.27553
T5184 - Shimba hills Nataional reserve HQ	Afrixalus stuhlmanni	ii	sylvaticus_3	39.44453	-4.1760278
T5196 - Kivumoni forest	Afrixalus stuhlmanni	ii	sylvaticus_2	39.44453	-4.1760278
T3818 - Kibasira Swamp, Morogoro, Tanzania	Afrixalus stuhlmanni	ii	sylvaticus_2	36.31764	-8.31238
T2346 - Kimboza forest	Afrixalus stuhlmanni	ii	sylvaticus_2	37.80213	-7.002231
T2350 - Kimboza forest	Afrixalus stuhlmanni	ii	sylvaticus_2	37.80213	-7.002231
T3474 - Kiwengoma FR, Pwani, Tanzania	Afrixalus stuhlmanni	ii	sylvaticus_2	38.90269	-8.30435
T3203 - Noto Plateau, Lindi, Tanzania	Afrixalus stuhlmanni	ii	sylvaticus_2	39.37409	-9.89532
T2980 - Makangala FR, Lindi, Tanzania	Afrixalus stuhlmanni	ii	sylvaticus_2	39.38803	-9.89552
T2981 - Makangala FR, Lindi, Tanzania	Afrixalus stuhlmanni	ii	sylvaticus_2 sylvaticus_2	39.38803	-9.99418
T3683 - Ruawa FR, Lindi, Tanzania	Afrixalus stuhlmanni	ii	sylvaticus_2 sylvaticus_2	39.56871	-9.72995
15005 - Kuawa i K, Linui, Tanzallia	лунышы <i>зинитини</i>	11	syrvancus_2	57.500/1	-7.12773

T5390 - Namuli, grasslands	Afrixalus stuhlmanni	ii	sylvaticus_1	37.07196	-15.384275
T5391 - Namuli, grasslands	Afrixalus stuhlmanni	ii	sylvaticus_1	37.07196	-15.384275
T5936 - Mpaluwe, MZ	Afrixalus stuhlmanni	ii	sylvaticus_1	38.31645	-14.91522
T4767 - 2nd stream 12 km north of Namina	Afrixalus stuhlmanni	ii	sylvaticus_1	38.73536	-14.847361
T4289 - Chimanimani, Zimbabwe	Arthroleptis xenodactyloides	i	xenodactyloides_2	32.98439	-19.891993
T2124 - Thyolo, Malawi	Arthroleptis xenodactyloides	i	xenodactyloides_3	35.0638	-16.0769
T2125 - Thyolo, Malawi	Arthroleptis xenodactyloides	i	xenodactyloides_3	35.0638	-16.0769
T5388 - Serra Jeci water forest	Arthroleptis xenodactyloides	i	xenodactyloides_3	35.17778	-12.851208
T5386 - Serra Jeci Midway Forest Island	Arthroleptis xenodactyloides	i	xenodactyloides_3	35.18105	-12.849248
T5809 - Mabu - forest camp	Arthroleptis xenodactyloides	i	xenodactyloides_2	36.40006	-16.286222
T5810 - Mabu - forest base camp	Arthroleptis xenodactyloides	i	xenodactyloides_2	36.40006	-16.286222
T5060 - Kasanga FR	Arthroleptis xenodactyloides	i	xenodactyloides_1	37.77393	-7.191166
T3251 - Rondo Forest	Arthroleptis xenodactyloides	i	xenodactyloides_1	39.19999	-10.11922
T3268 - Namatimbili FR, Lindi, Tanzania	Arthroleptis xenodactyloides	i	xenodactyloides_1	39.23778	-9.11064
T5781 - Mabu - river camp	Arthroleptis xenodactyloides	i	xenodactyloides_3	36.44378	-16.281528
T3248 - Rondo Forest, Lindi, Tanzania	Arthroleptis xenodactyloides	i	xenodactyloides_3	39.19999	-10.11922
T3077 - Litipo FR (edge), Lindi, Tanzania	Arthroleptis xenodactyloides	i	xenodactyloides_3	39.51065	-10.03238
T2729 - Tanga, Mafi Hill	Arthroleptis xenodactyloides	ii	stridens_1	38.14093	-4.923429
T2730 - Tanga, Mafi Hill	Arthroleptis xenodactyloides	ii	stridens_1	38.14093	-4.923429
T2718 - W Usambara	Arthroleptis xenodactyloides	ii	stridens_1	38.27019	-4.714649
T2719 - W Usambara	Arthroleptis xenodactyloides	ii	stridens_1	38.27019	-4.714649
T5056 - Nilo FR	Arthroleptis xenodactyloides	ii	stridens_1	38.66461	-4.910778
T4975 - Kwamgumi Forest Reserve, East Usambara	Arthroleptis xenodactyloides	ii	stridens_1	38.73714	-4.97217
T5049 - Kwamgumi FR	Arthroleptis xenodactyloides	ii	stridens_1	38.75053	-4.920833
T5040 - Mlinga FR	Arthroleptis xenodactyloides	ii	stridens_1	38.75169	-5.058278
T4941 - Segoma Forest, Camp, East Usambara	Arthroleptis xenodactyloides	ii	stridens_1	38.75825	-4.98094
T4461 - Mgambo	Arthroleptis xenodactyloides	ii	stridens_1	38.81297	-4.792
T4187 - Mabayani bwawa, Tanga, Tanzania	Arthroleptis xenodactyloides	ii	stridens_1	38.92436	-5.03361
T4201 - Mabayani bwawa, Tanga, Tanzania	Arthroleptis xenodactyloides	ii	stridens_1	38.92436	-5.03361
T4133 - Amboni caves, Tanga, Tanzania	Arthroleptis xenodactyloides	ii	stridens_1	39.04843	-5.0731
T5170 - Mukurumudzi River Dam, Miembeni	Arthroleptis xenodactyloides	ii	stridens_1	39.42547	-4.3752167
T5167 - Mukurumudzi River Dam-Maumba	Arthroleptis xenodactyloides	ii	stridens_1	39.4292	-4.3753333
T5194 - Kivumoni forest	Arthroleptis xenodactyloides	ii	stridens_1	39.44453	-4.1760278
T2416 - Udzungwa Scarp	Arthroleptis xenodactyloides	ii	stridens_3	35.89459	-8.5279245
T5108 - Mgeta Hydroelectric Dam	Arthroleptis xenodactyloides	ii	stridens_3	36.09133	-8.311798
T5109 - Mgeta Hydroelectric Dam	Arthroleptis xenodactyloides	ii	stridens_3	36.09133	-8.311798
T5014 - Sanje	Arthroleptis xenodactyloides	ii	stridens_3	36.89217	-7.783333
T2688 - Ukaguru	Arthroleptis xenodactyloides	ii	stridens_3	36.94043	-6.594853
T2495 - Nguu	Arthroleptis xenodactyloides	ii	stridens_3	37.47162	-5.539355
T2426 - Nguru	Arthroleptis xenodactyloides	ii	stridens_3	37.52564	-6.0304394
T5061 - Mangala FR	Arthroleptis xenodactyloides	ii	stridens_3	37.75861	-6.979167
T5067 - Ngambaula FR	Arthroleptis xenodactyloides	ii	stridens_3	37.76417	-6.984722
T2443 - Kimboza Forest, Uluguru	Arthroleptis xenodactyloides	ii	stridens_3	37.80213	-7.002231
T5065 - Mvuha FR	Arthroleptis xenodactyloides	ii	stridens_3	37.8375	-7.179167
T5069 - Uluguru Ruvu FR	Arthroleptis xenodactyloides	ii	stridens_3	37.8625	-7.008056
T4781 - Montepuez river near Chiefs house	Arthroleptis xenodactyloides	ii	stridens_2	38.7094	-13.3184

-8.30435
4 -6.932306
3 -9.99418
-10.03041
9 -8.5279245
5 -6.979167
5 -6.868611
1 -4.928472
5 -4.97643
4 -6.932306
4 0 7 5 7 1 3

Table S2. Summary of RAD-seq datasets used for phylogeny, population (DAPC) and genetic distance analyses (F_{ST}).

Species clade	Dataset	phylip file size (bp)	loci	SNPs
Afrixalus fornasini	50% missing data phylogeny	877672	4539	46699
	40% mising data phylogeny	21300	109	1473
	30% missing data phylogeny	3936	20	336
	initial DAPC	-	4735	4735
	Afrixalus fornasini (i) DAPC	-	-	-
	Afrixalus fornasini (ii) DAPC	-	7320	6997
	Afrixalus fornasini (i) FST		1576	1576
	Afrixalus fornasini (ii) FST		1589	1589
Afrixalus stuhlmanni	50% missing data phylogeny	1475958	7559	185591
•	40% mising data phylogeny	314970	1616	35981
	30% missing data phylogeny	19047	98	1970
	initial DAPC	-	1098	1098
	Afrixalus stuhlmanni (i) DAPC	-	2272	2257
	Afrixalus stuhlmanni (ii) DAPC	-	6370	6309
	Afrixalus stuhlmanni (i) FST		896	896
	Afrixalus stuhlmanni (ii) FST		1373	1373
Leptopelis argenteus	50% missing data phylogeny	1389198	7185	74153
	40% mising data phylogeny	385263	1992	20764
	30% missing data phylogeny	166900	863	8970
	initial DAPC	-	1885	1885
	Leptopelis argenteus (i) DAPC	-	24114	19163
	Leptopelis argenteus (ii) DAPC	-	25680	22143
	Leptopelis argenteus (i) FST		2901	2901
	Leptopelis argenteus (ii) FST		3848	3848

Leptopelis flavomaculatus	50% missing data phylogeny	1167992	6003	92820
	40% mising data phylogeny	252672	1300	19828
	30% missing data phylogeny	109178	562	8470
	initial DAPC	-	9829	9829
	Leptopelis flavomaculatus (i) DAPC	-	-	-
	Leptopelis flavomaculatus (ii) DAPC	-	38659	38462
	Leptopelis flavomaculatus (i) FST	-	-	-
	Leptopelis flavomaculatus (ii) FST	-	2662	2662
Arthroleptis xenodactyloides	50% missing data phylogeny	464651	2380	57208
	40% mising data phylogeny	34094	175	3878
	30% missing data phylogeny	3154	16	411
	initial DAPC	-	1030	1030
	Arthroleptis xenodactyloides (i) DAPC	-	9790	9688
	Arthroleptis xenodactyloides (ii) DAPC	-	4367	4345
	Arthroleptis xenodactyloides (i) FST		1651	1651
	Arthroleptis xenodactyloides (ii) FST		1481	1481

Table S3. Environmental correlates of genetic distance (F_{ST}) tested with multiple regression, partial Mantel and Mantel tests (using the *ecodist* and *vegan* R packages).

Afrixalus stuhlmanni i	Multiple re	gression	Partial M	antel	Mantel			Fisher's
	r	р	r	р	r	р		Exact test
Geographic distance	0.00560	0.762			0.2808	0.025	r2	0.40493
Slope	0.00000	0.935	-0.1391	0.742	-0.147	0.79	р	0.296
Current habitat	0.03104	0.562	-0.2008	0.912	0.1625	0.146	F	6.12433
LGM habitat	-0.00003	0.791	-0.1072	0.694	-0.055	0.476	р	0.296
LGM prec. anomaly	-0.00361	0.627	0.039	0.26	0.185	0.12		
LGM temp. anomaly	0.96410	0.336	0.0906	0.188	0.2089	0.091		
Pliocene prec. anomaly	-0.03854	0.28	0.283	0.042	0.283	0.039		
Pliocene temp. anomaly	-0.25211	0.32	0.2136	0.085	0.2292	0.09		
Hydrobasins	0.00799	0.324	0.2486	0.019	0.3669	0.002		
Hydrology	-0.00001	0.404	-0.1817	0.979	-0.096	0.8		
Afrixalus stuhlmanni ii	Multiple re	gression	Partial M	antel	Mantel			Fisher's
	r	р	r	р	r	р		Exact test
Geographic distance	0.00477	0.86			0.4585	0.003	r2	0.54
Slope	0.00001	0.429	-0.1078	0.701	-0.115	0.689	р	0.005
Current habitat	0.04163	0.001	0.0814	0.28	0.4428	0.012	F	21.2073
LGM habitat	-0.00008	0.836	-0.0672	0.551	0.0639	0.318	р	0.005
LGM prec. anomaly	-0.01460	0.145	0.035	0.344	0.4523	0.001		
LGM temp. anomaly	0.32490	0.005	0.0665	0.123	0.3681	0.001		
Pliocene prec. anomaly	0.21078	0.918	-0.0888	0.793	0.4152	0.002		
Pliocene temp. anomaly	-0.17110	0.504	-0.0551	0.539	0.4218	0.016		
Hydrobasins	-0.00099	0.93	0.0153	0.333	0.3554	0.001		
Hydrology	0.00001	0.709	0.0155	0.337	0.0055	0.164		

Afrixalus fornasini ii	Multiple re	gression	Partial M	antel	Mantel			Fishers'
	r	р	r	р	r	р		Exact test
Geographic distance	0.01899	0.262			-0.006	0.45	r2	0.20925
Slope	-0.00001	0.422	0.1657	0.133	0.1655	0.125	р	0.348
Current habitat	-0.00935	0.53	0.0117	0.364	0.0092	0.4	F	6.49801
LGM habitat	0.00067	0.664	-0.066	0.603	-0.007	0.583	р	0.348
LGM prec. anomaly	-0.01252	0.575	0.2329	0.115	0.2288	0.111		
LGM temp. anomaly	0.15191	0.538	0.2349	0.085	0.2304	0.103		
Pliocene prec. anomaly	0.00001	0.244	0.3271	0.059	0.3242	0.005		
Pliocene temp. anomaly	0.56635	0.197	0.3217	0.062	0.32	0.049		
Hydrobasins	0.00011	0.989	0.0431	0.208	0.0289	0.278		
Hydrology	0.00002	0.157	0.0917	0.13	0.0917	0.117		
Leptopelis argenteus i	Multiple re	gression	Partial M	antel	Mantel			Fisher's
	r	р	r	р	r	р		Exact test
Geographic distance	0.05640	0.044		*	0.4841	0.004	r2	0.87224
Slope	0.00001	0.039	0.119	0.261	-0.044	0.542	р	0.038
Current habitat	-0.12775	0.352	-0.5575	0.93	0.4111	0.006	Р F	13.6542
LGM habitat	0.00155	0.39	-0.0046	0.451	0.4482	0.006	р	0.038
LGM prec. anomaly	-0.25384	0.084	0.5796	0.01	0.6834	0.004	Ľ	
LGM temp. anomaly	-0.17185	0.182	0.5987	0.01	0.6987	0.008		
Pliocene prec. anomaly	0.18430	0.411	-0.2352	0.886	0.4387	0.003		
Pliocene temp. anomaly	-0.83955	0.369	0.1339	0.254	0.4966	0.008		
Hydrobasins	0.04386	0.904	0.6728	0.009	0.7495	0.01		
Hydrology	0.00002	0.924	-0.0767	0.59	0.1623	0.195		
Leptopelis argenteus ii	Multiple re	gression	Partial M	antel	Mantel			Fisher's
1 1 0	r	р	r	р	r	р		Exact test
Geographic distance	-0.04477	0.958		*	0.699	0.001	r2	0.86512
Slope	-0.61788	0.993	-0.3343	0.927	0.2815	0.064	р	0.012
Current habitat	0.06361	0.321	0.6777	0.001	0.8322	0.001	F	24.9426
LGM habitat	-0.00142	0.223	-0.4119	0.958	-0.083	0.491	р	0.012
LGM prec. anomaly	1.41157	0.305	-0.3927	0.969	0.1988	0.153	1	
LGM temp. anomaly	-1.68396	0.297	-0.3732	0.973	0.3288	0.028		
Pliocene prec. anomaly	0.18202	0.98	0.2881	0.049	0.7256	0.003		
Pliocene temp. anomaly	-0.14651	0.895	-0.5353	0.997	0.4179	0.008		
Hydrobasins	-0.00526	0.629	0.6613	0.002	0.843	0.000		
Hydrology	-0.00004	0.514	-0.3764	0.976	-0.065	0.582		
Leptopelis	Multiple re	gression	Partial M	antel	Mantel			Fisher's
flavomaculatus ii	r	р	r	р	r	р		Exact test
Geographic distance	-0.05033	0.207			0.2964	0.059	r2	0.86512
Slope	7.88727	0.035	-0.0162	0.389	0.0459	0.249	р	0.012
r-		0.34	-0.2489	0.995	-0.063	0.517	F	24.9426
· ·	0.16900	0.34			0.00(2	0.376	р	0.012
Current habitat	0.16900 -0.00001	0.19	-0.2687	0.992	0.0063	0.570	Р	
Current habitat LGM habitat			-0.2687 -0.013	0.992 0.911	0.0063	0.069	Р	
Current habitat LGM habitat LGM prec. anomaly	-0.00001	0.19					Р	
Current habitat LGM habitat LGM prec. anomaly LGM temp. anomaly	-0.00001 0.88715	0.19 0.032	-0.013	0.911	0.2259	0.069	Р	
Current habitat LGM habitat LGM prec. anomaly LGM temp. anomaly Pliocene prec. anomaly	-0.00001 0.88715 -0.14856	0.19 0.032 0.714	-0.013 -0.0031	0.911 0.424	0.2259 0.221	0.069 0.062	Р	
Current habitat LGM habitat LGM prec. anomaly LGM temp. anomaly Pliocene prec. anomaly Pliocene temp. anomaly Hydrobasins	-0.00001 0.88715 -0.14856 -0.62723	0.19 0.032 0.714 0.023	-0.013 -0.0031 0.0847	0.911 0.424 0.175	0.2259 0.221 0.3072	0.069 0.062 0.042	Ρ	

Arthroleptis	Multiple re	egression	Partial M	antel	Mantel			Fisher's
xenodactyloides i	r	р	r	р	r	р		Exact test
Geographic distance	-0.00652	0.453			0.0357	0.382	r2	0.47637
Slope	0.09825	0.044	0.3134	0.095	0.3039	0.084	р	0.342
Current habitat	0.05046	0.651	0.1108	0.24	0.0835	0.276	F	3.53796
LGM habitat	0.00219	0.981	0.0622	0.332	0.0668	0.298	р	0.342
LGM prec. anomaly	0.01950	0.672	0.0762	0.317	0.0789	0.32		
LGM temp. anomaly	-0.15614	0.542	0.0212	0.387	0.0414	0.385		
Pliocene prec. anomaly	0.05481	0.528	0.0103	0.42	-0.009	0.501		
Pliocene temp. anomaly	-0.08489	0.781	-0.02	0.513	0.0458	0.333		
Hydrobasins	0.02216	0.448	-0.0067	0.496	0.0265	0.41		
Hydrology	-0.00002	0.362	-0.0701	0.647	-0.067	0.688		

Arthroleptis	Multiple re	gression	Partial M	antel	Mantel			Fisher's
xenodactyloides ii	r	р	r	р	r	р		Exact test
	0.00057	0 (21			0.01	0.0(2	•	
Geographic distance	0.00057	0.631			-0.01	0.863	r2	0.54115
Slope	0.00001	0.883	-0.1186	0.895	-0.114	0.895	р	0.001
Current habitat	-0.00003	0.961	0.0433	0.255	0.0408	0.254	F	44.6842
LGM habitat	-0.00059	0.284	0.0428	0.257	0.0405	0.257	р	0.001
LGM prec. anomaly	0.30326	0.005	0.4604	0.001	0.455	0.001		
LGM temp. anomaly	-0.24026	0.124	0.5582	0.001	0.5542	0.001		
Pliocene prec. anomaly	0.04280	0.001	0.3747	0.001	0.3708	0.001		
Pliocene temp. anomaly	0.60619	0.0142	0.2372	0.018	0.2323	0.021		
Hydrobasins	-0.00183	0.281	0.5978	0.001	0.5895	0.001		
Hydrology	0.00001	0.321	-0.0065	0.458	-0.015	0.522		

Supplementary Materials: Chapter II

Appendix S1. Supplementary methods.

Phylogenetic tree

Sequences were edited in GENEIOUS 6 and aligned with MUSCLE before Bayesian analyses were performed in BEAST 2.1.3 (Bouckaert et al., 2014) on the concatenated 1,271 bp alignment with a secondary calibration point of 350 million years (normal prior, sigma =10.0) as an approximate divergence date between caecilians (Gymnophiona) and frogs (Anura) following Wilkinson et al. (2011). We used the optimal models of evolution per partition (Table S2) according to the Bayesian Information Criterion determined by PARTITIONFINDER 1.1.1 (Lanfear et al. 2013). For all partitions trees were linked, and models and clocks were unlinked. Markov Chain Monte Carlo (MCMC) simulations were run for 100 million iterations, with sampling every 5000 iterations. We checked for convergence using TRACER 1.6, and investigated parameter variations including strict, relaxed and log normal clocks, and Yule/coalescent priors, but found the relaxed clock log normal model with a Yule prior as the best parameter combination (adequate mixing and ESS values>200). We combined two independent runs in LOGCOMBINER 2.1.3 and calculated the maximum clade credibility tree (Fig. 2) with TREANNOTATOR 2.1.2 which was used for further analyses, after the removal of 10% burn-in. Phylogenetic results are largely concordant with previous large-scale amphibian tree reconstructions in terms of topology and branch lengths (Roelants et al., 2007; Frost, 2016; Pyron & Wiens, 2011).

Spatial data filtering

All lineage data was compiled from our own and collaborators field work since 2001, relevant CFEA literature (Burgess and Clarke, 2000), and available distribution records from the Global Biodiversity Information Facility (GBIF). We utilized spatial records from amphibian collections housed at the University of Dar es Salaam, National Museums of Kenya, Natural History Museum London, Science Museum of Trento, Museum of Vertebrate Zoology Berkeley, Museum of Comparative Zoology Harvard, and Field Museum of Natural History Chicago. Due to uncertainty in some data sources such as GBIF and museum records we were conservative regarding which data points were retained, only keeping spatial data which we could be certain were accurate. To assess this, a rigorous filtering and correction procedure to these data prior to further analysis was made. We excluded records not present in our CFEA study region <1000m in altitude (i.e. specific EA restricted species and other species not considered as part of or interacting with the CFEA assemblage) and used only occurrence data that accurately matched the recorded locality names. Species names were corrected to reflect currently recognized taxonomy following Frost et al. (2016), excluding ambiguous records listed as "sp." or "indet." that could not be confidently matched to a species tip on the tree.

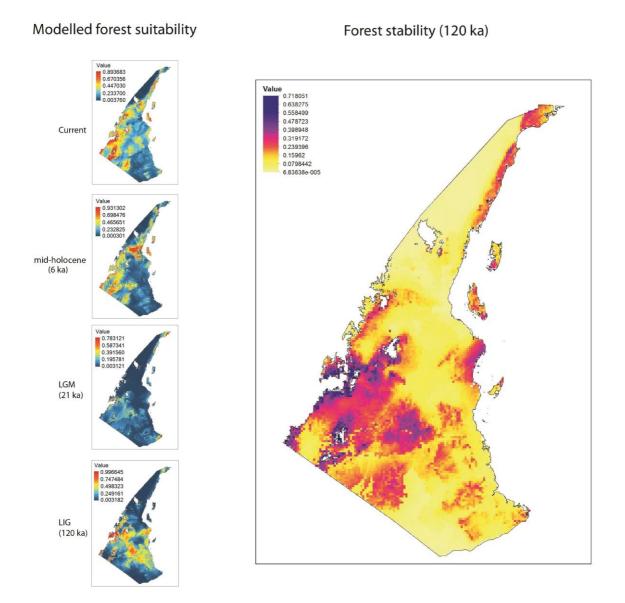
Forest modelling

As no accurate historical vegetation maps of sub-Saharan Africa exist for the time-scales we investigate, we use modelling methods to estimate forest distribution, firstly in the present time and then projected back onto global circulation model climate data for the mid-Holocene (6 ka BP), Last Glacial Maximum (LGM; 21 ka BP) and Last Interglacial (LIG; 120 ka BP) time periods (Hijmans et al. 2005, Braconnot et al., 2007, Otto-Bliesner et al., 2006). Current forest extent was estimated by creating a forest distribution model using the global 1km consensus land cover product (Tuanmu and Jetz, 2015) to classify the study region based on evergreen forest presence (excluding mangroves which are not part of the CFEA). Firstly we reclassified their raster layer, taking only pixels

representing the top 10% of all values for evergreen forest to ensure an accurate representation of current forest was maintained. We transformed the resulting raster into a single polygon and generated 500 random points within this area, with a constraint that the points had a buffer of at least 10 km apart to minimize bias (sensu Graham et al. 2010). We verified that the points covered an accurate representation of current forest habitat by overlaying them on satellite imagery from Google Earth and ground truthing based on first-hand knowledge of the region from recent fieldwork. We subsequently created a predictive model of current forest cover in MAXENT 3.3.3k using bioclimatic variables (bio2, bio4, bio5, bio12, bio14, bio18 from the CCSM global circulation model) and a digital elevation model (GTOPO30; USGS, available from: http://csgtm.iscgm.org/dataset/gtopo30) at 30 arcsecond resolution (approximately 1 km²) with the subsample modeling algorithm, and regularization multiplier of 1. After inspection of the predictive forest model to verify that it accurately represented currently forested habitats, we created historical projections based on past climate data, by projecting the model onto the three time slices with available historical climate data. We followed Graham et al. (2010) to derive a measure of forest stability over time by transforming the forest model at each time slice into its log value and averaging the values across the four time periods (i.e. from the present back to the LIG over 120k years). The exponent of this average value (EXP function in ARCGIS raster calculator) was then used to transform the resulting number into a continuous variable, representing a measure of forest stability in each grid cell (ranging from 0 to 1) following Rosauer et al. (2015) and Graham et al. (2010).

The forest model performed well, with a high AUC values (0.811). Variable contribution was highest for bio14 (53.73%) with each other variable contributing between 6.33 and 13.69% with the exception of bio5 (Table S6). Forest projections at 6 ka BP, 21 ka BP, 120 ka BP and the calculated forest stability surface measure over this time period show that several areas have retained high stability throughout. These areas correspond to lowland parts of the EA and surrounding areas, parts of central coastal Tanzania, with additional areas scattered along the coastline to the east of our map. Remaining low elevation areas and those extending inland have mainly been unstable in terms of forest cover, probably affected by sea level inundation and periods of severe climate change (Fig. S3).

Spatial autocorrelation


To test for spatial autocorrelation we examined the correlation structure of the log transformed response variable (PE) and residuals of the best GLM, visualizing correlograms of Moran's *I* across distance classes of 10 km increments. Model residuals of the GLM were spatially autocorrelated at small distance classes (i.e. Moran's *I* values > 0.7 up to 20 km distance between grid cells), suggesting the need for a spatial model. To define a spatial weights matrix we used the knearneigh function (with k = 1) to derive the minimum distance connecting each cell to at least one neighbor. Using this minimum distance we then defined the neighborhood structure using the dnearneigh function, and created a spatial weights matrix using the nb2listw function, for details see Kissling & Carl (2008). We then used the best GLM and ran a spatial autoregressive error model with the spatial weights matrix to account for spatial autocorrelation using the errorsarlm function in R package '*spdep*' (Bivand & Piras, 2015). This spatial autoregressive error model accounted for spatial autocorrelation in GLM residuals across all distance classes (Tables S6, S7).

References

- Bivand, R. & Piras, G. (2015) Comparing implementations of estimation methods for spatial econometrics. *Journal of Statistical Software*, 63, 1-36. Available from: http://www.jstatsoft.org/v63/i18/.
- Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C-H., Xie, D., Suchard, M.A., Rambaut, A., & Drummond, A.J. (2014). BEAST 2: A Software platform for Bayesian evolutionary analysis. *PLoS Computational Biology*, **10**, e1003537. doi:10.1371/journal.pcbi.1003537.
- Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M.,
 Driesschaert, E., Fichefet, T., Hewitt, C.D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O.,
 Merkel, U., Ramstein, G., Valdes, P., Weber, S.L., Yu, Y., Zhao, Y. (2007) Results of PMIP2 coupled
 simulations of the Mid-Holocene and Last Glacial Maximum Part 1: experiments and large-scale
 features. *Climate of the Past*, 3, 279–276.
- Calcagno, V. & de Mazancourt, C. (2010) glmulti : An R package for easy automated model selection with (generalized) linear models. *Journal of Statistical Software*, **34**, 1-29.
- Frost, D.R. (2016) Amphibian Species of the World: an Online Reference. Version 6.0 (1 October 2016). Electronic Database available from: http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York, USA.
- Graham, C.H., VanDerWal, J., Phillips, S.J., Moritz, C. & Williams, S.E. (2010) Dynamic refugia and species persistence: Tracking spatial shifts in habitat through time. *Ecography*, **33**, 1062-1069.
- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, **25**, 1965-1978.
- Kissling, W.D. & Carl, G. (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. *Global Ecology and Biogeography*, **17**, 59-71.
- Lanfear, R., Calcott, B., Ho, S.Y.W., & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. *Molecular Biology and Evolution*, 29, 1695– 1701.
- Otto-Bliesner., B.L., Marshall, S.J., Overpeck, J.T., Miller, G.H., Hu, A., & CAPE Last Interglacial Project members (2006) Simulating Arctic climate warmth and icefield retreat in the last interlglaciation. *Science*, **311**, 1751-1753.
- Pyron, R.A. & Wiens, J.J. (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. *Molecular Phylogenetics and Evolution*, **61**, 543-583.
- Roelants, K., Gower, D.J., Wilkinson, M., Loader, S.P., Biju, S.D., Guillaume, K., Moriau, L. & Bossuyt, F.
 (2007) Global patterns of diversification in the history of modern amphibians. *Proceedings of the National Academy of Sciences*, **104**, 887-892.
- Tuanmu, M.N. & Jetz, W. (2014) A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. *Global Ecology and Biogeography*, 23, 1031-1045.
- Wilkinson, M., San Mauro, D., Sherratt, E. & Gower, D.J. (2011). A nine-family classification of caecilians (Amphibia: Gymnophiona). *Zootaxa*, 2874, 41-64.

Fig. S1. Lineage distribution models used in this study highlighting the distributions of 35 intraspecific lineages.

Fig. S2. Projected forest stability measures for the current, mid-Holocene, Last Glacial Maximum and Last Interglacial time periods.

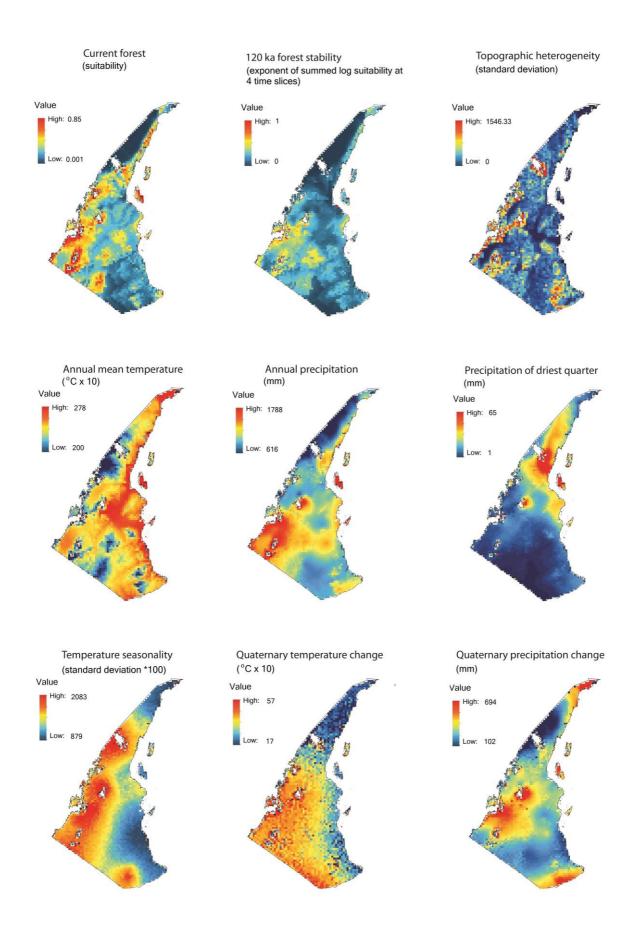


Fig. S3. Environmental predictors used in analyses.

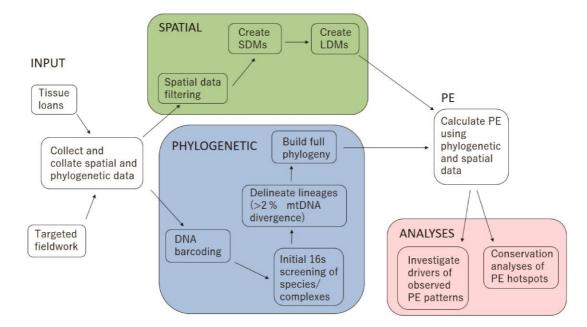


Fig. S4. Workflow representing the steps taken in this study.

Table S1. Sequences used in this study (species and intraspecific lineages) and evolutionary models for eachpartition. Published GenBank Numbers are supplied for 16S and COI sequences.

ID	Species	Locality	Long	Lat	Lineage	16S	COI
T4170	Afrixalus fornasini	Mabayani bwawa,	38.92436	-5.03361	North	KY177039	KY177132
T4425	Afrixalus fornasini	Mvuha FR	37.8375	-7.179167	Coastal	KY177040	KY177116
T5144	Afrixalus fornasini	Mgeta Hydro Dam	36.091327	-8.311798	Kilombero	KY177041	KY177131
T3113	Afrixalus stuhlmanni	Makangala FR	39.38803	-9.99418	stuhlmanni	KY177045	KY177133
T3679	Afrixalus stuhlmanni	Ruawa FR, Lindi	39.56871	-9.72995	delicatus_south	KY177042	KY177136
T3832	Afrixalus stuhlmanni	Ruvu North FR	38.97007	-6.71349	delicatus_central	KY177043	KY177137
T5158	Afrixalus stuhlmanni	Mwaluganje	39.41731	-4.15821	sylvaticus	KY177046	KY177135
T5395	Afrixalus stuhlmanni	Arabuko Sokoke	39.86667	-3.33333	delicatus_north	KY177044	KY177134
T2727	Arthroleptis stenodactylus	Dar, Dondwe	39.096969	-7.064294	Coastal	KY177080	KY177167
T3259	Arthroleptis stenodactylus	Rondo Forest, Lindi	39.17774	-10.11795	Rondo	KY177079	KY177165
T5142	Arthroleptis stenodactylus	Mgeta Hydro Dam	36.091327	-8.311798	North	KY177077	KY177162
T5320	Arthroleptis stenodactylus	Makadara forest	39.395639	-4.237556	Kenya	KY177078	KY177164
T3096	Arthroleptis xenodactyloides	Litipo FR	39.50674	-10.03041	South	KY177071	KY177161
T5060	Arthroleptis xenodactyloides	Kasanga FR	37.773925	-7.191166	Central	KY177072	KY177158
T5069	Arthroleptis xenodactyloides	Uluguru Ruvu FR	37.8625	-7.008056	North	KY177074	KY177160
T3289	Chiromantis xerampelina	Makangaga FR	39.29196	-9.49454	South	KY177003	KY177113
T3464	Chiromantis xerampelina	Kiwengoma FR	38.90269	-8.30435	North	KY177004	KY177112
T3448	Hemisus marmoratus	Kiwengoma FR	38.90269	-8.30435	South	KY176997	KY177086
T4973	Hemisus marmoratus	Segoma Forest	38.7615	-4.97643	North	KY176998	KY177087
T2983	Hyperolius mitchelli	Makangala FR, Lindi	39.38803	-9.99418	South	KY177030	KY177144
T3297	Hyperolius mitchelli	Makangaga FR, Lindi	39.29196	-9.49454	Coastal	KY177029	KY177143
T4957	Hyperolius mitchelli	Segoma Forest	38.7615	-4.97643	North	KY177027	KY177141
T5221	Hyperolius mitchelli	Scheldrick's Falls	39.43096	-4.27553	rubro	KY177028	KY177142
T3124	Hyperolius parkeri	Makangala FR	39.38803	-9.99418	Coastal	KY177035	KY177155
T3770	Hyperolius parkeri	Kibasira Swamp	36.2277	-8.34888	Kilombero	KY177037	KY177154
T5364	Hyperolius parkeri	Base TitaniumArea	39.45095	-2.39755	North	KY177036	KY177153
T6295	Hyperolius parkeri	Arabuko sokoke	39.975806	-3.262667	Arabuko	KY177038	KY177152
T3295	Leptopelis argenteus	Makangaga FR	39.29196	-9.49454	South	KY177068	KY177129

T5165	Leptopelis argenteus	Mukurumudzi River	39.42535	-4.42535	North	KY177070	KY177128
T3179	Leptopelis flavomaculatus	Litipo FR, Lindi	39.4752	-10.04952	South	KY177066	KY177126
T5237	Leptopelis flavomaculatus	Shimba Lodge	39.395639	-4.2375	North	KY177067	KY177127
T2997	Phrynobatrachus acridoides	Makangala FR	39.38803	-9.99418	South	KY177050	KY177110
T5247	Phrynobatrachus acridoides	Shimba Lodge	39.395639	-4.2375	North	KY177048	KY177114
T3065	Sclerophrys pusilla	Makangala FR	39.36913	-9.98237	South	KY177014	KY177095
T4188	Sclerophrys pusilla	Mabayani bwawa	38.92436	-5.03361	North	KY177013	KY177096

Species level data:

ID	Species	16s	COI
T1754	Amietia angolensis	KY177064	-
T3825	Amnirana galamensis	KY177053	KY177117
T4431	Arthroleptides martiensseni	KY177002	KY177157
T510	Arthroleptides yakusini	KY177001	KY177156
T1872	Arthroleptis affinis	KY177075	KY177124
T594	Arthroleptis tanneri	KY177076	-
T2683	Arthroleptis xenodactylus	KY177073	KY177159
T4792	Boulengerula boulengeri	KY176991	-
T2511	Boulengerula changamwensis	KY176994	KY177092
T243	Boulengerula uluguruensis	KY176993	KY177091
T1931	Breviceps mossambicus	KY177082	KY177111
T6265	Callulina kreffti	KY177081	KY177088
T3685	Hildebrandtia ornata	KY177054	-
T3731	Hyperolius argus	KY177021	KY177151
T3813	Hyperolius kivuensis	KY177031	KY177145
T4047	Hyperolius mariae	KY177024	KY177148
T3392	Hyperolius marmoratus	KY177022	-
T4130	Hyperolius nasutus	KY177019	KY177149
T6373	Hyperolius pusillus	KY177020	KY177150
T3808	Hyperolius reesi	KY177023	KY177147
T4819	Hyperolius ruvuensis	KY177032	KY177146
T3204	Hyperolius substriatus	KY177026	KY177140
T4994	Hyperolius tuberilinguis	KY177025	KY177125
T5227	Kassina maculata	KY177034	KY177139
T4035	Kassina senegalensis	KY177033	KY177138
T5626	Leptopelis broadleyi	KY177069	KY177130
T2582	Leptopelis grandiceps	KY177000	KY177115
T5650	Mertensophryne anotis	KY177010	KY177102
T2202	Mertensophryne howelli	KY177008	KY177107
T1892	Mertensophryne lindneri	KY177006	KY177098
T1932	Mertensophryne loveridgei	KY177009	KY177103
T1882	Mertensophryne micranotis	KY177005	KY177099
T1881	Mertensophryne usambarae	KY177007	KY177101
T5639	Nothophryne broadleyi	KY177063	KY177163
T3008	Phrynobatrachus mababiensis	KY177051	KY177120
T3101	Phrynobatrachus natalensis	KY177049	-
T4787	Phrynobatrachus pakenhami	KY177047	-
T4577	Phrynobatrachus ukingensis	KY177052	KY177119
T3684	Phrynomantis bifasciatus	KY177065	KY177118
T5647	Poyntonophrynus beiranus	KY177012	KY177106
T5268	Ptychadena anchietae	KY177056	KY177084
T3062	Ptychadena mascareniensis	KY177059	KY177083
T3757	Ptychadena mossambica	KY177057	KY177109
T5290	Ptychadena oxyrhynchus	KY177055	-
T5286	Ptychadena porosissima	KY177058	KY177108
T6652	Ptychadena schillukorum	KY177060	-

T3691	Pyxicephalus adspersus	KY177061	KY177123
T3824	Pyxicephalus edulis	KY177062	KY177122
T1958	Schismaderma carens	KY177011	KY177100
T2507	Schistometopum gregorii	KY176992	KY177085
T2292	Sclerophrys brauni	KY177017	-
T3156	Sclerophrys pusilla	KY177016	KY177097
T5318	Sclerophrys steindachneri	KY177018	-
T1649	Sclerophrys xeros	KY177015	KY177104
T4791	Scolecomorphus vittatus	KY176990	KY177089
T4591	Spelaeophryne methneri	KY176999	-
T4855	Xenopus laevis	KY176996	KY177093
T3104	Xenopus muelleri	KY176995	KY177094

Models of evolution for phylogeny in Fig. 1 (16s, COI):

Partition	Length (bp)	Best model (BIC)
16s	368	GTR+I+G
col pl	301	TrNef+I+G
co1 p2	301	HKY+I+G
co1 p3	301	TrN+G

Table S3. Spatial data. Large file with almost 10,000 spatial records. Available from my personal website:

 https://christopherdbarratt.files.wordpress.com/2016/02/table-s3-spatial-point-data.xlsx.

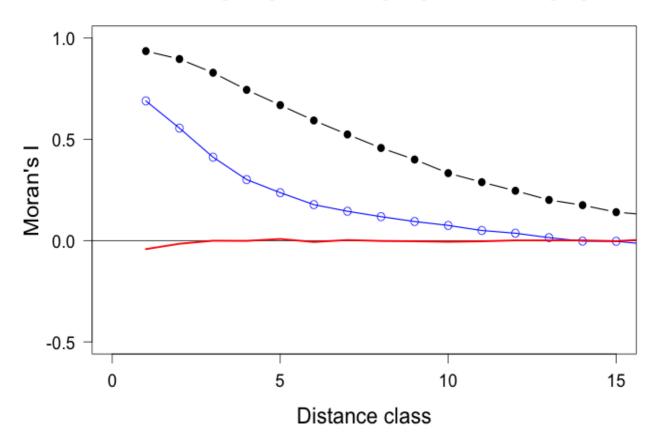
Table S4. Correlation structure of environmental variables.

SDM modelling variables:

	DEM	bio2	bio4	bio5	bio12	bio14	bio15
DEM bio2		0.419	0.513 0.254	-0.531 0.333	0.015 0.524	-0.219 0.155	0.176 -0.224
bio4				0.085	0.231	0.075	-0.019
bio5					-0.254	0.318	-0.465
bio12						-0.011	0.499
bio14							-0.519

Environmental predictor variables:

120k_fa stabil	—	anom_bio12	bio1	bio12	bio14	bio4	topographic heterogeneity
120k_forest stability	0.339	-0.471	-0.259	0.680	-0.296	0.216	0.310
anom_bio1		-0.326	-0.100	0.331	-0.453	0.502	0.095
anom_bio12			-0.244	-0.555	0.050	-0.186	-0.085
bio1				0.026	0.099	-0.332	-0.413
bio12					-0.065	0.294	0.230
bio14						0.082	0.039
bio4							0.211


Table S5.	Variable	contributions	for SDM	and forest model.
-----------	----------	---------------	---------	-------------------

SDM	DEM	bio12	bio14	bio18	bio2	bio4	bio5	AUC
Afrixalus_stuhlmanni Afrixalus_fornasini	0.77 2.01	9.55 12.58	73.00 65.28	1.71 5.01	8.10 7.62	4.26 1.92	2.61 5.58	0.83 0.78
Amietia_angolensis	17.46	23.27	55.57	1.03	1.31	0.90	0.46	0.78
Sclerophrys_gutturalis	8.74	5.61	70.49	1.32	5.37	0.19	8.27	0.79
Arthroleptis_stenodactylus	5.32	9.23	61.96	6.63	5.96	3.07	7.83	0.82
Arthroleptis_xenodactyloides	8.87	11.78	62.09	1.97	4.70	2.40	8.20	0.90
Breviceps_mossambicus	0.01	0.16	29.84	1.37	0.45	9.14	59.04	0.77
Chiromantis_xerampelina	1.18	11.26	63.46	1.80	7.21	6.93	8.17	0.78
Hemisus_marmoratus	2.03	9.82	57.52	4.03	21.20	0.78	4.62	0.83
Amnirana_galamensis	66.25	2.50	26.39	0.00	3.25	0.83	0.78	0.33
Hyperolius_argus	34.01	6.48	24.21	21.30	6.92	3.88	3.21	0.88
Hyperolius_mariae	4.21	8.49	36.19	8.63	39.71	2.02	0.75	0.84
Hyperolius_mitchelli	6.46	9.22	66.70	2.86	7.38	0.69	6.69	0.84
Hyperolius_nasutus	44.19	7.92	23.19	18.64	2.65	0.09	2.49	0.85
Hyperolius_parkeri	28.28	13.22	41.98	5.80	2.03	2.25	5.68	0.83
Hyperolius_pusillus	32.63	4.70	21.36	27.88	8.03	1.22	3.08 4.19	0.83
Hyperolius_reesi	0.46	39.16	15.37	3.22	18.38	5.43	17.97	0.83
Hyperolius_reest Hyperolius_substriatus	0.40	2.89	66.69	3.98	1.15	23.65	0.86	0.98
Hyperolius_tuberilinguis	6.56	18.25	44.67	13.51	7.59	2.93	6.50	0.85
Kassina_maculata	40.11	9.38	27.44	14.33	4.38	4.19	0.18	0.33
Kassina_senegalensis	14.19	10.94	37.92	14.85	10.73	1.39	9.98	0.84
Leptopelis_argenteus	38.39	9.63	13.97	32.11	1.33	0.39	4.19	0.88
Leptopelis_flavomaculatus	6.45	7.81	69.40	0.85	8.62	3.50	3.37	0.88
Mertensophryne_lindneri	5.95	0.09	73.91	5.06	2.23	0.05	12.70	0.90
Mertensophryne_loveridgei	1.54	2.76	3.21	0.00	2.62	9.06	80.81	0.30
Mertensophryne_microanotis	13.32	2.70 8.79	58.53	5.23	11.23	0.01	2.90	0.75
Phrynobatrachus_acridoides	2.32	13.01	59.90	4.44	15.23	2.58	2.53	0.85
Phrynobatrachus_mababiensis	12.79	3.47	56.38	11.71	2.94	9.05	3.68	0.33
Phrynobatrachus_natalensis	0.00	0.46	20.00	0.00	7.64	0.00	71.91	0.74
Phrynomantis_bifasciatus	26.60	2.86	37.16	11.88	15.79	2.34	3.37	0.84
Ptychadena_anchietae	1.70	12.34	67.62	4.71	7.48	0.80	5.33	0.85
Ptychadena_mascareniensis	6.52	2.91	21.84	5.97	60.60	0.33	1.83	0.81
Ptychadena_mossambica	71.62	0.55	13.07	2.83	3.42	1.64	6.89	0.82
Ptychadena_oxyrhynchus	14.11	19.00	71.63	0.00	0.00	0.04	5.21	0.83
Pyxicephalus_edulis	35.80	0.05	14.40	29.51	7.01	5.75	7.48	0.75
Sclerophrys_pusillus	13.85	6.47	56.13	9.93	2.24	6.38	5.01	0.84
Spelaeophryne_methneri	10.32	15.83	2.75	52.33	0.00	0.00	18.76	0.81
Xenopus_muelleri	2.01	11.46	68.50	2.18	12.27	0.31	3.29	0.84
total	587.80	343.86	1679.73	338.61	335.52	121.19	403.29	31.56
mean	15.47	9.05	44.20	8.91	8.83	3.19	10.61	0.83
median	7.65	9.00	50.12	4.86	6.97	1.97	5.11	0.83
						/		
forest model	DEM	bio12	bio14	bio18	bio2	bio4	bio5	Test AUC
current	7.7527	10.9807	53.7315	6.3303	13.6942	6.5145	0.9961	0.811

Table S6. Environmental correlates of PE. Predictor importance (consistent results for SAR and GLM highlighted in blue). Also shown is a plot showing how the SAR model completely accounts for spatial autocorrelation.

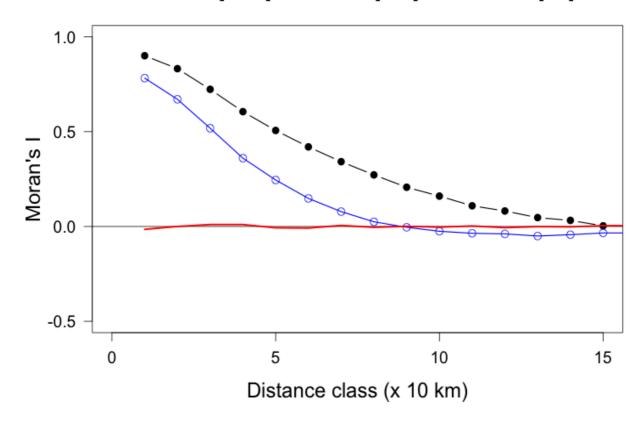
Best GLM				<u>-</u>
formula	AIC	delta_AIC	weight	
div ~ 1 + foreststability_120k+topographic_heterogeneity + bio1 + bio4 + bio12 + bio14 + anom_bio1 + anom_bio12	2307.629	0	0.99	-
Model contributions	GLM		SAR	
Predictor	Estimate	р	st. coeff	р
forest stability	0.155	0.025	0.01	2.31E-01
bio1	0.14	0.019	-0.056	6.18E-07
bio4	-0.146	0.02	0.026	2.22E-01
bio12	0.129	2.30E-02	0.052	4.26E-02
bio14	0.447	1.90E-02	0.178	9.86E-12
topographic_heterogeneity	0.035	0.017	-0.019	1.41E-05
anom_bio1	-0.098	0.022	-0.003	0.52595
anom_bio12	-0.085	0.019	-0.101	1.35E-11

10km raw [black] vs residuals [blue] vs SEM model [red]

Table S7. Sensitivity analyses - Environmental correlates of PE. Predictor importance (consistent results for SAR and GLM highlighted in blue). Also shown is a plot showing how the SAR model completely accounts for spatial autocorrelation.

All predictors, 5% divergence dataset				_
formula	AIC	delta_AIC	weight	
div ~ 1 + foreststability_120k + topographic_heterogeneity + bio1 + bio4 + bio12 + bio14 + anom_bio1 + anom_bio12	2266.51	0	0.98	-
Model contributions	GLM		SAR	
Predictor	Estimate	р	std. coeff	р
Predictor foreststability_120k	Estimate 0.148	р 2.50Е-02	std. coeff 0.006	p 4.58E-01
		*		•
foreststability_120k	0.148	2.50E-02	0.006	4.58E-01
foreststability_120k bio1	0.148 0.134	2.50E-02 0.019	0.006 -0.061	4.58E-01 7.56E-08
foreststability_120k bio1 bio4	0.148 0.134 -0.154	2.50E-02 0.019 0.02	0.006 -0.061 0.032	4.58E-01 7.56E-08 0.13
foreststability_120k bio1 bio4 bio12	0.148 0.134 -0.154 0.122	2.50E-02 0.019 0.02 2.30E-02	0.006 -0.061 0.032 0.036	4.58E-01 7.56E-08 0.13 1.50E-01

anom bio12

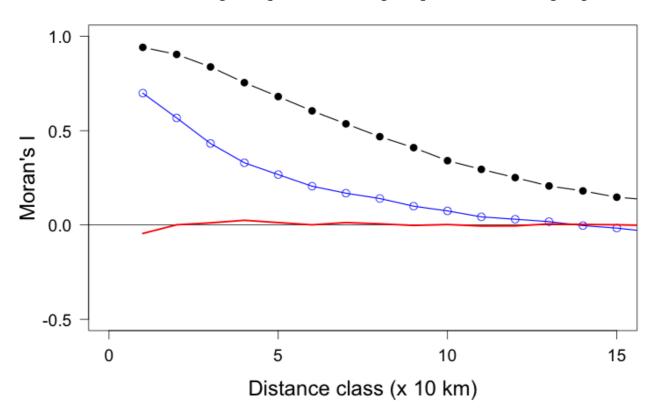

10km raw [black] vs residuals [blue] vs SEM model [red]

-0.091

0.019

-0.099

3.26E-11

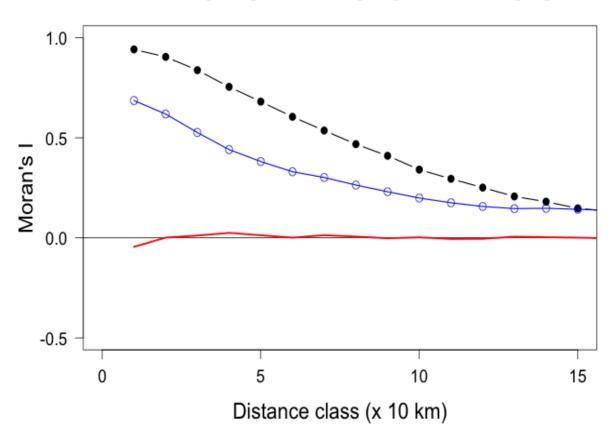

Removed bio14, 2% divergence dataset

Best GLM

formula	AIC	delta_AIC	weight
$div \sim 1 + topographic_heterogeneity + bio1 + bio4 + bio12 +$	3804.20	0	0.70
anom_bio1 + anom_bio12			

Model contributions	GLM		SAR	
Predictor	Estimate	р	std. coeff	р
bio1	0.174	0.025	-0.062	7.28E-06
bio4	0.042	0.025	0.041	6.10E-02
bio12	0.2	2.70E-02	0.131	2.49E-08
topographic_heterogeneity	0.083	0.022	-0.017	9.19E-05
anom_bio1	-0.391	0.024	-0.003	0.563
anom_bio12	-0.148	0.025	-0.087	3.88E-09

10km raw [black] vs residuals [blue] vs SEM model [red]


Removed bio14, 5% divergence dataset

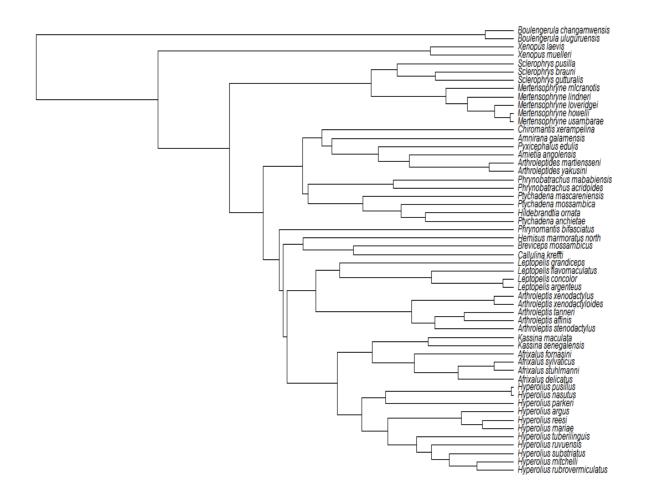
Best GLM

formula	AIC	delta_AIC	weight
div ~ 1+ topographic_heterogeneity + bio1 + bio4 + bio12 + anom_bio1 + anom_bio12	3804.20	0	0.52

Model contributions Predictor	GLM Estimate	р	SAR std. coeff	р
bio1	0.171	0.027	-0.067	7.40E-09
bio4	0.042	0.026	0.048	0.029
bio12	0.193	3.10E-02	0.118	5.37E-07
topographic_heterogeneity	0.078	0.023	-0.015	0.001
anom_bio1	-0.405	0.024	-0.003	0.588
anom_bio12	-0.154	0.027	-0.086	1.07E-08

10km raw [black] vs residuals [blue] vs SEM model [red]

Table S8. Sensitivity analyses (Conservation analysis).


% of cells	Hotspot	Area (km2)	% of total area	% of total area currently protected	PE	% of total PE	% of total PE currently protected	Area of hotspot currently protected (km2)	PE currently protected
top 2.5%	 and 8. Coastal Kenya (including Arabuko-Sokoke) Pemba island 	1796	0.64	0.12	155.33	1.98	0.39	349	30.96
	3. and 4. Lowland Usambara and Tanga (including Usambara-Kwale)	3817	1.36	0.14	34.29	0.44	0.50	404	38.9
	5. Lowland Uluguru	1050	0.45	0.07	101.00	1.00	0.16	156	10.72
	6. Pugu hills 7. Lindi	1253	0.45	0.06	101.29	1.29	0.16	156	12.73
	9. Pangani river	197	0.07	0.01	16.82	0.21	0.02	19	1.56
	10. Zaraninge forest	177	0.07	0.01	10.62	0.21	0.02	17	1.50
	11. Matumbi hills 12. Mafia island								
	Total	7063	2.52	0.33	307.73	3.92	1.07	-	
							1.07	_	
top 5%	 and 8. Coastal Kenya (including Arabuko-Sokoke) Pemba island 	3660	1.31	0.22	293.35	3.74	0.64	612	50.46
	3. and 4. Lowland Usambara and Tanga (including Usambara-Kwale)	5377	1.92	0.15	460.69	5.87	0.52	428	40.68
	5. Lowland Uluguru	229	0.08	0.01	16.81	0.21	0.03	29	2.07
	6. Pugu hills	4431	1.58	0.17	337.52	4.30	0.46	464	35.78
	7. Lindi								
	9. Pangani river	338	0.12	0.02	27.27	0.35	0.05	47	3.68
	10. Zaraninge forest	22	0.01	0.01	1.57	0.02	0.01	16	1.14
	11. Matumbi hills	637	0.23	0.04	39.05	0.50	0.08	104	6.43
	12. Mafia island							_	
	Total	14694	5.02	0.61	1176.3	14.99	1.79	-	
top 10%	1. and 8. Coastal Kenya (including Arabuko-Sokoke)	6374	2.27	0.30	462.39	5.89	0.82	828	64.22
	2. Pemba island	109	0.04	0.00	6.08	0.08	0.01	9	0.50
	3. and 4. Lowland Usambara and Tanga (including Usambara-Kwale)	8351	2.98	0.18	644.77	8.22	0.58	516	45.84
	5. Lowland Uluguru	1021	0.36	0.07	65.56	0.84	0.15	187	11.88
	6. Pugu hills	10028	3.58	0.35	682.76	8.70	0.87	991	67.96
	7. Lindi	31	0.01	0.01	1.73	0.02	0.02	24	1.34
	9. Pangani river	625	0.22	0.02	42.54	0.55	0.05	62	4.07
	10. Zaraninge forest	398	0.14	0.02	23.59	0.30	0.04	47	3.01
	11. Matumbi hills	661	0.24	0.04	40.41	0.51	0.10	126	7.69
	12. Mafia island	481	0.17	0.11	30.95	0.39	0.26	313	20.14
	Total	28079	10.02	1.11	2000.8	25.50	2.89		

% of cells	ergence dataset Hotspot	Area (km2)	% of total area	% of hotspot currently protected	PE	% of total PE	% of total PE currently protected	Area of hotspot currently protected (km2)	PE currently protected
top 2.5%	 and 8. Coastal Kenya (including Arabuko-Sokoke) Pemba island 	1351	0.48	0.11	112.11	1.45	0.32	295	24.96
	3. and 4. Lowland Usambara and Tanga (including Usambara-Kwale)	3659	1.31	0.14	318.26	4.13	0.48	406	37.37
	5. Lowland Uluguru 6. Pugu hills 7. Lindi	1870	0.67	0.07	148.72	1.93	0.21	197	15.85
	9. Pangani river 910. Zaraninge forest 911. Matumbi hills 912. Mafia island	202	0.07	0.01	16.89	0.22	0.02	17	1.35
	Total	7082	2.53	0.33	595.98	7.73	1.03	-	
top 5%	1. and 8. Coastal Kenya (including Arabuko-Sokoke)	3190	1.14	0.21	245.58	3.19	0.59	576	45.29
	2. Pemba island	29	0.01	0.00	2.02	0.03	0.00	3	0.21
	3. and 4. Lowland Usambara and Tanga (including Usambara-Kwale)	5135	1.83	0.15	425.34	5.52	0.51	432	39.27
	5. Lowland Uluguru	149	0.05	0.00	10.51	0.14	0.01	6	0.42
	6. Pugu hills 7. Lindi	4791	1.71	0.17	361.18	4.68	0.47	472	36.04
	9. Pangani river	345	0.12	0.02	27.34	0.35	0.05	47	3.57
	10. Zaraninge forest	22	0.01	0.01	1.54	0.02	0.01	16	1.12
	11. Matumbi hills	77	0.03	0.01	5.41	0.07	0.02	18	1.27
	12. Mafia island	346	0.12	0.08	25.18	0.33	0.22	231	16.81
	Total	14084	5.03	0.64	1104.1	14.32	1.87	-	
top 10%	1. and 8. Coastal Kenya (including Arabuko-Sokoke)	6120	2.18	0.29	427.66	5.55	0.79	822	60.80
	2. Pemba island	592	0.21	0.03	36.3	0.47	0.07	86	5.23
	3. and 4. Lowland Usambara and Tanga (including Usambara-Kwale)	8135	2.90	0.18	611.11	7.93	0.56	497	43.15
	5. Lowland Uluguru	905	0.32	0.06	56.84	0.74	0.13	167	10.39
	6. Pugu hills	10067	3.59	0.35	686.26	8.90	0.87	979	66.89
	7. Lindi	17	0.01	0.00	0.95	0.01	0.01	13	0.73
	9. Pangani river	616	0.22	0.02	43.83	0.57	0.05	55	4.07
	10. Zaraninge forest	300	0.11	0.02	17.88	0.23	0.04	44	2.81
		676	0.24	0.05	41.94	0.54	0.11	132	8.16
	11. Matumbi hills 12. Mafia island	493	0.18	0.12	34.71	0.45	0.30	325	22.82

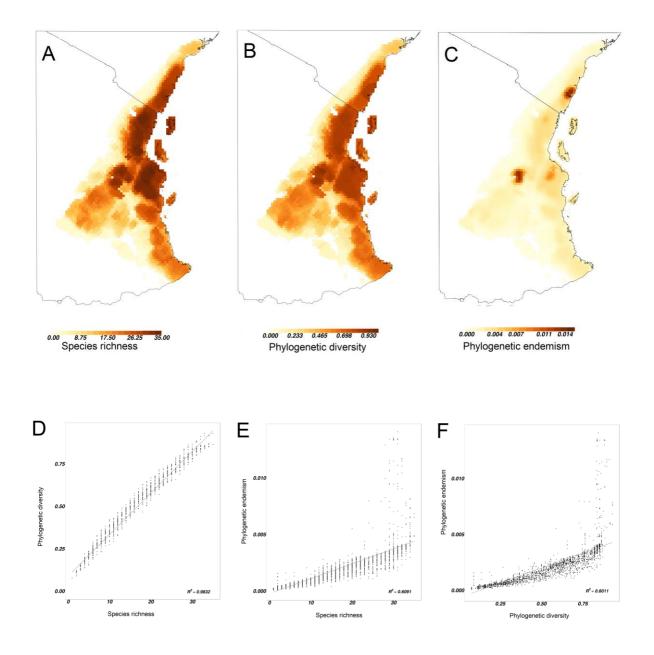

Hotspot	Name	Designation
Coastal Kenya	Arabuko Sokoke	Forest Reserve
5	Buda	Forest Reserve
	Kaya Chonyi	Sacred Kaya Forest
	Kaya Jibana	Sacred Kaya Forest
	Kaya Kambe	Sacred Kaya Forest
	Kaya Ribe	Sacred Kaya Forest
	Shimba Hills	National Reserve
Lowland Usambara and Tanga	Amani	Nature Reserve
C	Bamba Ridge	Forest Reserve
	Bombo West/East	Forest Reserve
	Kwamgumi	Forest Reserve
	Kwani/Makinyumbi	Forest Reserve
	Longuza	Forest Reserve
	Magoroto	Forest Reserve
	Manga	Forest Reserve
	Mgambo	Forest Reserve
	Mlinga	Forest Reserve
	Mtai	Forest Reserve
	Mvuha	Forest Reserve
	Nilo	Nature Reserve
	Semdoe/Msige	Forest Reserve
	South Gendagenda	Forest Reserve
	Tongwe	Forest Reserve
Pangani river	Msumbugwe	Forest Reserve
Zaraninge forest	Zaraninge	Forest Reserve
Lowland Uluguru	Kimboza	Forest Reserve
Lowiand Olugard	Mangala	Forest Reserve
	Milawilila	Forest Reserve
	Ukutu	Wildlife Management Area
	Uluguru-Ruvu	Forest Reserve
Pugu hills	Kazimzumbwi	Forest Reserve
i ugu iiiis	Pande	Game Reserve
	Pugu - Kisarawe	Forest Reserve
	Ruvu South	Forest Reserve
Matumbi hills	Kiwengoma	Forest Reserve
Watumor mins	Kwamrimba	Forest Reserve
	Tong'omba	
Lindi	Chitoa	Forest Reserve Forest Reserve
Lindi	Litipo	
		Forest Reserve
	Makangala	Forest Reserve Forest Reserve
	Matapwa	
	Ndimba	Forest Reserve
	Rondo	Forest Reserve
Mafin inland	Ruawa	Forest Reserve
Mafia island	Mlola	Forest Reserve
	Rufiji-Mafia-Kilwa	RAMSAR ste
Pemba island	Ngezi	Forest Reserve
	Ras Kiuyu	Forest Reserve
	Msitu Mkuu	Forest Reserve
	Pemba channel	Conservation area

Table S9. Major protected areas that intersect each of the PE hotspots shown in Fig. 4 and Table 1.

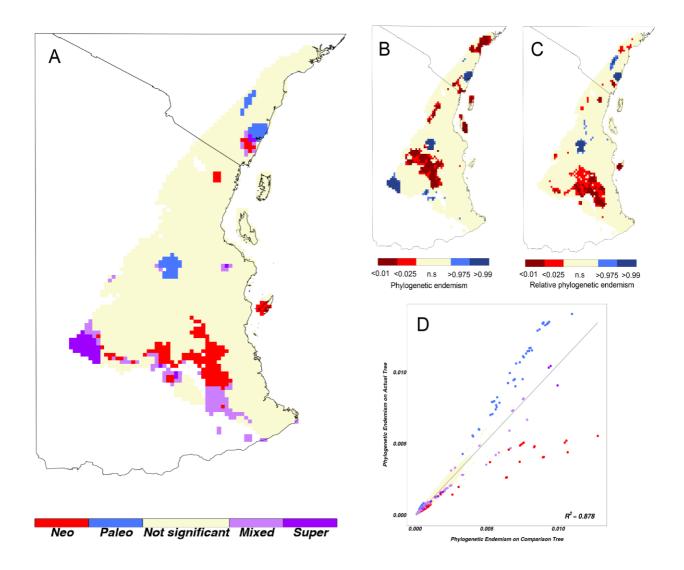

Supplementary Materials: Chapter III

Fig. S1. Pruned phylogeny from Barratt et al (in review) representing species level relationships between coastal forest amphibians.

Fig. S2. Sensitivity analysis using 44 species dataset. A) Species richness (SR), B) Phylogenetic diversity (PD), C) Phylogenetic endemism (PE) across the study area (upper panel). Darker colours represent higher scores. Relationships between biodiversity indices used are shown in the lower panel; D) phylogenetic diversity vs species richness, E) phylogenetic endemism vs species richness, F) phylogenetic endemism vs phylogenetic diversity. Scattered data points in E and F show areas with high levels of phylogenetic endemism that are not highly correlated with species richness or phylogenetic diversity.

Fig. S3. Sensitivity analysis using 44 species dataset. A) Categorization of neo- and paleo- endemism (CANAPE) based on the significance tests of B) phylogenetic endemism, C) relative phylogenetic endemism, D) shows the relationship between phylogenetic endemism on the actual tree (PE) and phylogenetic endemism on the null tree (PE_{null}) after randomization, which is used along with significance tests of PE and RPE to categorize endemic grid cells into neo-, paleo-, mixed and super categories.

Supplementary Materials: Chapter IV

Herpetological Journal

ONLINE APPENDIX

Appendix 1. Locality data for previously surveyed coastal forest patches in Tanzania based on Loveridge (1942), Burgess and Clarke (2000), Frontier Tanzania and recent fieldwork by the author Barratt (unpublished). Frontier Tanzania records for various years were obtained from the library of the Natural History Museum, London.

Locality	Region	Longitude	Latitude	Source
Amboni caves	Tanga	39.04843	-5.07310	Loveridge (1942), Barratt (unpublished), Frontier Tanzania
Amboni estate	Tanga	39.01745	-5.08526	Loveridge (1942)
Baleni (Mafia island)	Pwani	39.79531	-7.84898	Barratt (unpublished)
Chitoa	Lindi	39.45987	-9.94324	Burgess and Clarke (2000), Barratt (unpublished), Frontier Tanzania
Dar es Salaam	Pwani	39.20388	-6.77875	Barratt (unpublished)
Gendagenda	Tanga	38.75633	-5.51091	Burgess and Clarke (2000)
Gendagenda North	Tanga	38.64593	-5.58329	Barratt (unpublished)
Horohoro	Tanga	39.10166	-4.63209	Barratt (unpublished)
Jozani	Zanzibar South	39.40948	-6.25973	Burgess and Clarke (2000)
Kazizumbwi	Pwani	39.05000	-6.93333	Frontier Tanzania
Kibasira	Morogoro	36.22770	-8.34888	Barratt (unpublished)
Kilulu hill	Tanga	39.12460	-4.77332	Barratt (unpublished), Frontier Tanzania
Kilulu village	Tanga	39.11713	-4.74908	Barratt (unpublished)
Kinyope village	Lindi	39.40525	-9.98720	Barratt (unpublished)
Kitaya	Mtwara	40.17337	-10.64777	Loveridge (1942)
Kiwengoma	Pwani	38.90269	-8.30435	Burgess and Clarke (2000), Barratt (unpublished), Frontier Tanzania
Lake Rutamba	Lindi	39.46164	-10.03348	Loveridge (1942), Barratt (unpublished)
Lindi, Southern Province	Lindi	39.23333	-10.00000	Loveridge (1942)
Litipo (edge)	Lindi	39.51065	-10.03238	Barratt (unpublished)
Litipo, Lindi	Lindi	39.47520	-10.04952	Barratt (unpublished), Frontier Tanzania
Mabayani bwawa	Tanga	38.92436	-5.03361	Barratt (unpublished)
Magrotto mountain	Tanga	38.75043	-5.12940	Loveridge (1942), Frontier Tanzania
Makangaga	Lindi	39.29196	-9.49454	Barratt (unpublished)
Makangala	Lindi	39.38803	-9.99418	Barratt (unpublished)
Makangala (edge)	Lindi	39.36913	-9.98237	Barratt (unpublished)
Mbanja	Mtwara	39.73186	-9.88789	Loveridge (1942)
Mchungu	Pwani	39.27662	-7.69087	Burgess and Clarke (2000), Frontier Tanzania
Mikindani	Mtwara	40.08797	-10.26437	Loveridge (1942)
Mkowela village	Ruvuma	37.99328	-10.91619	Barratt (unpublished)
Mkwaja	Tanga	38.82594	-5.79666	Burgess and Clarke (2000), Frontier Tanzania
Mrora	Pwani	39.89728	-7.73156	Burgess and Clarke (2000)
Muyuyu	Pwani	39.04373	-7.94835	Barratt (unpublished)
Namatimbili	Lindi	39.23778	-9.11064	Barratt (unpublished)

Correspondence: Christopher D. Barratt (c.d.barratt@gmail.com)

Appendix 1. Continued.

Locality	Region	Longitude	Latitude	Source
Ndimba	Lindi	39.64829	-9.62917	Barratt (unpublished)
Ngumburuni	Pwani	39.06615	-7.88088	Barratt (unpublished)
Noto Plateau	Lindi	39.37409	-9.89532	Barratt (unpublished)
Namakutwa /Nyamuete	Pwani	39.03441	-8.32557	Burgess and Clarke (2000), Barratt (unpublished), Frontier Tanzania
Pangani falls	Tanga	38.65083	-5.35037	Burgess and Clarke (2000)
Pugu	Pwani	39.09876	-6.90893	Frontier Tanzania (2001), Frontier Tanzania
Rondo Forest	Lindi	39.17774	-10.11795	Loveridge (1942), Barratt (unpublished)
Ruawa	Lindi	39.56871	-9.72995	Barratt (unpublished)
Ruvu North	Pwani	38.95441	-6.70644	Burgess and Clarke (2000), Barratt (unpublished)
Ruvu South	Pwani	38.86667	-6.93333	Burgess and Clarke (2000), Frontier Tanzania
Tanga	Tanga	39.10137	-5.08171	Loveridge (1942)
Tong'omba	Lindi	39.01279	-8.42413	Burgess and Clarke (2000), Frontier Tanzania
Tongwe	Tanga	38.72840	-5.30438	Burgess and Clarke (2000)
Utende (Mafia island)	Pwani	39.71429	-7.96261	Barratt (unpublished)
Vikindu	Pwani	39.29910	-6.99017	Burgess and Clarke (2000), Barratt (unpublished), Frontier Tanzania
Zaraninge	Pwani	38.60755	-6.13694	Burgess and Clarke (2000), Barratt (unpublished)

Appendix 2. Natural vegetation change in Ruvu South Forest Reserve based on Landsat images from 1998 and 2014.

Class Code	Land cover	May 1998 (ha)	June 2014 (ha)
1	Mixed Dry Forest	4,796	0
2	Coastal Scrub Forest	4,119	2,148
3	Scrub Thicket	7,978	7,535
4	Wooded Grassland	10,515	7,096
5	Grassland with short bushes	4,142	10,475
6	Cleared / Sparse Vegetation	660	5,213
7	Wetland	230	480
8	Woodland	562	83
9	Cloud or Shadow	28	0

Curriculum Vitae

Christopher David Barratt

Personal Information:

Full Name:	Christopher David Barratt
• Date of Birth:	20th August 1982
Nationality:	British
Instituition address:	Department of Environmental Sciences, Biogeography, University of
	Basel, Buro-raum 01-03 Klingelbergstr. 27, 4056 Basel, Switzerland.
 Correspondence address: 	Valkenburgerstraat 152 ii, 1011 NB Amsterdam, The Netherlands.
Mobile:	+41 786707793, +44 7582481893
• E-mail:	c.d.barratt@gmail.com
• ORC-ID:	0000-0003-3267-8855
 Google Scholar: 	https://scholar.google.com/citations?user=9Qx6KAIAAAAJ&hl=en
Personal website:	https://christopherdbarratt.wordpress.com/

Education and acedemic qualifications:

University of Basel, Switzerland (<i>September 2013–</i>)	PhD - Biodiversity value of the coastal forests of Eastern Africa (supervisor: Dr. Simon P. Loader)	Defence on 28th April 2017.
University of Salford, The Crescent, Salford (<i>July 2010–July 2012</i>)	MSc by research - Developing microsatellite markers for East African caecilian amphibians (supervisor: Dr. Robert Jehle)	Pass.
University of Salford, The Crescent, Salford (<i>September 2003–June</i> 2007)	BSc (Hons) - Wildlife and Practical Conservation (supervisor: Dr. P.A.Rees)	1 st class.

Relevant skills:

Computing:Competence in phylogenetic and spatial software including RAxML, BEAST, MrBayes, Geneious,
ArcGIS, qGIS, R, Unix scripting and high performance computing cluster operations, python scripting.Communication:Fluent in English, basic French, Italian, Dutch and Swahili.Additional skills:Driver's licence for class B vehicles.

Presentations and posters:

Jan 2017	Drivers of phylogenetic endemism and the conservation of centres of endemism in the Coastal
	Forests of Eastern Africa. International Biogeography Society biennial, Tucson, AZ, USA (talk).
April 2016	A phylogenetic approach to explain amphibian endemism in the East African coastal forests. Estación
	Biológica de Doñana, Seville, Spain. (invited talk).
April 2016	Linking phylogenies and spatial data to explain amphibian endemism in the East African coastal forests.
	Natural History Museum of Bern, Switzerland. (invited talk).
March 2016	Using Next Generation Sequencing and DNA barcoding to reveal the biodiversity value of the Coastal
	forests of Eastern Africa. Department of Life Sciences, University of Roehampton, UK. (invited talk).
Dec 2015	Phylogenetic Endemism of a highly threatened biodiversity hotspot. Young Systematists Forum, Natural
	History Museum, London, UK. (talk)
April 2015	Using NGS and barcode data to explain diversity patterns in the CFEA. Humer Foundation general annual
	meeting. University of Salzburg, Austria. (invited talk).
March 2014	Vanishing refuge: The Coastal Forests of Eastern Africa. 16th African Amphibian Working Group conference,
	Bwindi, Uganda (talk).
April 2011	Newly developed microsatellite markers for the East African caecilian, Boulengerula uluguruensis and their
	utility in congeneric species. British Herpetological Symposium, Bangor, Wales (talk).

Feb 2016	Are the Coastal forests of Eastern Africa a source area of diversity? Biology 16, Swiss Zoological Society, University of Lausanne, Switzerland (poster).
Aug 2015	Are the Coastal forests of Eastern Africa a source area of diversity? Systematics Association biennial, Oxford UK (poster).
July 2015	Are the Coastal forests of Eastern Africa a source area of diversity? Amphibian Conservation Research Symposium, University of Cambridge, UK (poster).
June 2015	Are the Coastal forests of Eastern Africa a source area of diversity? Genotyping By Sequencing course, The Genome Analysis Centre, Norwich, UK (prize for best poster).
Feb 2015	Speciation patterns in the Coastal Forests of Eastern Africa. Biology 15, Swiss Zoological Society, Duberdorf, Switzerland (poster).
Jan 2015	Speciation patterns in the lowland forests of Eastern Africa. International Biogeography Society 7th biennial, University of Bayreuth, Germany (poster).
Sept 2014	Speciation patterns in the lowland forests of Eastern Africa. Genomics of the speciation continuum workshop, University of Fribourg, Switzerland (poster).

Grants:

Feb 2016	Swiss Zoological Society travel grant to attend 8th International Biogeography Society meeting in Tucson, AZ, US. (1'000 CHF)
Oct 2016	Freiwillige Akademischen Gesellschaft Basel - PhD extension grant for 6 months (12'000 CHF)
Jan 2015	Departmental travel grant to attend International 7th Biogeography Society biennial conference in
	Bayreuth, Germany (600 CHF).
Aug 2014	European Science Foundation ConGenOmics – Short grant to visit NHM London (1'350 EUR).
May 2014	Departement Umweltwissenschaften, University of Basel – Travel grant to attend 16th African Amphibian
	Working Group meeting, Bwindi, Uganda (800 CHF).
April 2014	Freiwillige Akademischen Gesellschaft Basel – Field work grant for Tanzania (3'500 CHF).
Sept 2013	Humer Foundation for Academic Talent – PhD scholarship (3 years stipend).

Teaching and supervision: (see Work experience for more):

Nov 2014 Co-supervised Mr. Marco Crotti MSc (Imperial College London). "Empirical data from a species of African frog support the negative consequences of excluding missing data from RADseq analyses".
 Oct 2015 Ran two half-day workshops at the Institute of Biogeography, University of Basel: 'Spatial analysis in R' and 'An introduction to next generation sequencing in unix' (Students: Beryl Bwong, Reto Hagmann, Christoph Liedtke, Gabriela Bittencourt-Silva, Stefan Leiser)

Professional services:

IUCN red list assessor for East African amphibians (2016). Reviewer for *Conservation Genetics Resources, Molecular Phylogenetics and Evolution, Herpetological Bulletin* Associate editor for the *Herpetological Bulletin*

Fieldwork: UK (2004-2008), Principe, West Africa (2005), Tanzania (2004, 2007, 2008, 2013,

Memberships:

Member of Herpetological Association of Africa (2013-), African Amphibian Working Group (2011-), and IUCN red list assessor for East African amphibians

Reviewer for *Conservation Genetics Resources, Molecular Phylogenetics and Evolution, the Herpetological Bulletin* Member of International Biogeography Society (2014-), British Herpetological Society (2010-), Swiss Zoological Society (2013-2017), Swiss Systematics Society (2013-2016)

Work experience:

The Herpetological Journal Managing Editor (freelance) (<i>Dec 2011 – Dec 2016</i>)	Managing the production of a quarterly published, internationally recognised peer-reviewed journal. Responsible for content management, proof reading and typesetting of papers. My work also involved regularly liaising with the Editor, society secretary, printers and authors to produce press quality journal issues.
Wolters Kluwer London (Nov 2012 – Sept 2013)	Production editor and manager for 8 medical journals in a large international publishing house. Duties included contacting editors, authors, typesetters and proofreaders to maintain scheduled publication dates of print and online files.
University of Salford Demonstrator (<i>Sept 2010 – Nov 2012</i>)	Assisting in the teaching of undergraduate practicals based in the laboratory and leading field work on excursions in the School of Environment and Life Sciences during university term time.
Frontier Tanzania Savannah Research Project Research Officer (<i>Aug 2008 – May 2009</i>)	Research office for a conservation NGO in Tanzania. Responsible for design and supervision of all amphibian and mammal research undertaken. Trained and supervised Research Assistants in all survey techniques for science programme. Managed logistics, budget, and seven staff. Supervised up to 25 research assistants at any one time. BTEC in Tropical Habitat Conservation mentor and assessor.
Endemic bird habitat mapping GIS project, Principe Island, West Africa (August – Dec 2005)	Production of GIS maps - gathered data relating to habitats of endemic bird species by conducting field work, contacting environmental organisations such as ECOFAC (www.ecofac.org) and working with forest guides and local people.

Training courses and workshops attended:

Jan 2017	Cleaning Biodiversity Data, International Biogeography Society biennial meeting, Tucson, AZ, USA.
July 2016	East African Amphibian Conservation IUCN discussion group, Natural History Museum, London.
Feb 2016	Adaptation for Bioinformatics Genomics Winter School, Swiss Federal Institute of Technology,
	held in Weggis, Switzerland.
Oct 2015	Introduction to high performance computing cluster use. Swiss Institute for Bioinformatics/
	University of Basel, Switzerland.
June 2015	Genotyping By Sequencing. The Genome Analysis Centre, Norwich, UK.
Oct 2014	Genomics of the speciation continuum. University of Fribourg, Switzerland.

Referees: (Additional academic and professional referees can be obtained on request)

Dr. Simon Loader - PhD supervisor. Department of Environmental Sciences, Biogeography, University of Basel, Klingelbergstr. 27, Switzerland, CH-4056 Basel and Curator of Vertebrates, Natural History Museum, Cromwell Road, London, UK, SW7 5BD (simon.p.loader@gmail.com)

Dr. David Gower - Life Sciences department, LS Vertebrates Division, Natural History Museum, Cromwell Road, London, UK, SW7 5BD (d.gower@nhm.ac.uk)

Dr. Robert Jehle - MSc supervisor, Editor - Herpetological Journal. School of Environment and Life Sciences, Centre for Environmental Systems Research, University of Salford, Peel Building, Salford Crescent, Salford, Greater Manchester, UK, M5 4WT (r.jehle@salford.ac.uk)

Publications in peer reviewed journals:

- Bwong BA, Nyecheme J, Malonza PK, Wasonga V, **Barratt CD**, Nagel P, Loader SP (in press). Amphibian diversity in Shimba Hills National Reserve, Kenya: a comprehensive list of specimens and species. *Journal of East African Natural History*.
- **Barratt CD**, Lawson LP, Bittencourt-Silva GB, Doggart N, Morgan-Brown T, Nagel P, Loader SP (2017). A new, narrowly distributed, and critically endangered species of spiny-throated reed frog (Anura: Hyperoliidae) from a highly threatened coastal forest reserve in Tanzania. *Herpetological Journal* 27, 13-24.
- Zimkus B, Lawson L, Barej M, Barratt CD, Channing A, Dehling JM, Gehring S, Greenbaum E, Gvodzik V, Harvey J, Kielgast J, Kusamba C, Nagy Z, Pabijan M, Penner J, Du Preez L, Rödel MO, Vences M, Weber K, Lötters S. (2017). Leapfrogging into new territory: how Mascarene ridged frogs have diversified across Africa. *Molecular Phylogenetics and Evolution* 106, 254-269.
- Sala-Bozano M, Mariani S, **Barratt CD**, Sacchi H, Boufana B, Coscia I. (2015). Spatio-temporal variability in the population structure in North-East Atlantic stocks of horse mackerel (*Trachurus trachurus*). *Proceedings of the Royal Irish Academy: Biology and Environment* 115B, 211-220.
- O'Brien CD, Hall JE, Orchard D., **Barratt CD**, Arntzen JW, Jehle R. (2015). Extending the natural range of a declining species: Genetic evidence for native great crested newt (*Triturus cristatus*) populations in the Scottish Highlands. *European Journal of Wildlife Research* 61, 27-33.
- **Barratt CD**, Horsburgh GJ, Dawson, DA, Gower DJ, Wilkinson M, Loader SP, Jehle R (2012). Isolation and characterisation of nine polymorphic microsatellites for the caecilian amphibian *Boulengerula uluguruensis*, and cross-species amplification with four congeneric species. *Conservation Genetics Resources* 4, 225–229.

Submitted but not yet accepted publications:

- **Barratt CD**, Bwong BA, Onstein RE, Rosauer DF, Menegon M, Doggart N, Nagel P, Kissling WD, Loader SP (in revision). Environmental correlates of phylogenetic endemism in amphibians and the conseravation of refugia in the coastal forests of Eastern Africa. *Diversity and Distributions*.
- Bwong BA, Lawson LP, Nyecheme J, **Barratt CD**, Menegon M, Portik DM, Malonza PK Nagel P, Loader SP (in review). Phylogenetic, ecological and morphological variation in the congeners *Hyperolius mitchelli* and *Hyperolius rubrovermiculatus* from East Africa. *Acta Herpetologica*.
- Bittencourt-Silva GB, Tolley K, Lawson LP, Portik DM, **Barratt CD**, Nagel P, Loader SP (in review). Impact of species delimitation and sampling on niche models and phylogeographical inference: a case study of the East African reed frog *Hyperolius substriatus* Ahl 1931. *Journal of Biogeography*.

(2 first author papers and 4 co-authored papers in prep)