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1. Abbreviations 
 

ACK  ammonium-chloride-potassium 

AML  acute myeloid leukemia 

Batf3  basic leucine zipper transcriptional factor ATF-like 3 

BCR  B-cell receptor 

Blk  B lymphocyte kinase 

BM  bone marrow 

bp  base pair 

BSA  bovine serum albumin 

ccr2  chemokine receptor 2 

CD  cluster of differentiation antigen 

cDC  conventional DC 

Cebpa  CCAAT/enhancer-binding protein alpha 

Ciita  class II transactivator 

CLP  common lymphoid progenitor 

CMP  common myeloid progenitor 

cor  correlation 

CPM  counts per million 

Csf1r  colony-stimulating factor 1 receptor 

Ctla  cytotoxic T-lymphocyte-associate antigen 

Cts  cathepsin 

DC  dendritic cell 

DEG  differentially expressed genes 

DL1  delta-like 1 

DN  double-negative 

DNA  deoxyribonucleic acid 

Dntt  DNA nucleotidylexotransferase 

DP  double positive 

dsDNA  double strand DNA 

Ebf1  early B-cell factor 1 
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EDTA  ethylenediaminetetraacetic acid 

EP  erythrocyte progenitor 

EPLM  early progenitor with lymphoid and myeloid potential 

ERC  extrachromosomal rDNA circles  

F   fraction 

FC  fold change 

FACS  fluorescence-activated cell sorting 

FB  follicular B cell 

FcR  fragment crystallizable receptor 

FDR  false discovery rate 

FGF4  fibroblast growth factor-4 

Flt3  Fms-like tyrosine kinase 3 

Flt3L  Flt3 ligand 

Flt3Ltg  human Flt3L transgenic 

FPKM  fragments per kilobase of transcript per million mapped reads 

GO  gene ontology 

HSC  haematopoietic stem cell 

Igα  immunoglobulin alfa 

Igll1  immunoglobulin lambda-like polypeptide 1 

IL  interleukin 

Il7r  IL7 receptor 

IL7Rα  IL7 receptor alfa chain 

IRES  internal ribosomal entry sequence 

Itgb7  integrin beta-7 

Lat  linker for activation of T-cells 

Lax  linker for activation of X cells 

Lck  leukocyte C-terminal Src kinase 

LD  limiting dilution 

Lin  lineage 

LMPP  lymphoid primed multipotent progenitor 

LSK  Lin- Sca-1+ c-Kit+ 

LT-HSC  long term HSC 
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Ly  lymphocyte antigen 

March1  membrane-associated RING-CH protein I 

M-CSF  macrophage colony-stimulating factor 

MEP  megakaryocyte-erythroid progenitor 

MHC  major histocompatibility complex 

MHCII  MHC class II 

Mpo  myeloperoxidase 

MPP  multipotent progenitor 

mRNA  messenger RNA 

MZB  marginal zone B cell 

NGS  next generation sequencing 

NK  natural killer 

NSG  NOD scid gamma 

PAM  partioning around medoids 

Pax5  paired box protein 5 

PBMC  peripheral blood mononuclear cells 

PBS  phosphate-buffered saline 

PCA  principal component analysis 

PCR  polymerase chain reaction 

pDC  plasmacytoid DC 

Prtn3  proteinaise 3 

qRT-PCR  quantitative reverse transcription PCR 

QS  quality score   

Rag  recombination-activating gene 

RIN  RNA integrity number 

RNA  ribonucleic acid 

RNA-seq  RNA sequencing 

SCF  stem-cell factor 

sd  standard deviation 

SDF1  stromal cell-derived factor-1 

SEM  standard error of the mean 

SiglecH  sialic acid binding Ig-like lectin H 
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Sla2  src-like-adapter protein 

Stat5  signal transducer and activator of transcription 5 

ST-HSC  short term HSC 

TCR  T-cell receptor 

TdT  terminal deoxynucleotide transferase  

TF  transcription factor 

Th2  T helper cell type 2 

Tlr  toll-like receptor 

TN  triple negative 

Trat1  T-cell receptor-associated transmembrane adapter 1 

UMI  unique molecular identifiers 

VCAM-1  vascular cell-adhesion molecule-1 

vs  versus 

WT  wild type 

Zap70  70 kDa zeta-chain associated protein 
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2. Summary 
 

The well-established “classical” model of haematopoiesis reflects a 

hierarchical decision-making process where early multipotent progenitors make an 

irrevocable decision to differentiate towards either the lymphoid or myeloid lineages 

through so-called Common Lymphoid and Common Myeloid progenitor 

intermediates respectively. However, the proposals for alternative differentiation 

pathways and the description of progenitor cells that contradict the lympho-myeloid 

dichotomy have prompted multiple revisions of the strict compartmentalized 

classical model. We have previously characterized a B220+ CD117int CD19- NK1.1- 

uncommitted and multipotent haematopoietic progenitor with combined lymphoid 

and myeloid potential that we called Early Progenitor with Lymphoid and Myeloid 

potential (EPLM). The emergence of high throughput methods enabling the 

investigation of single-cell whole-transcriptome profiles generates data that 

enhances the active debate regarding the heterogeneity of apparently 

phenotypically homogenous progenitors having different multiple lineage potentials. 

This thesis provides a detailed analysis of EPLM heterogeneity by combining the 

alternative and complementary “top-down” and “bottom-up” experimental designs.  

Using the “top-down” approach based on the expression of the cell-surface markers 

Ly6D, SiglecH and CD11c, we could subdivide EPLM into four subpopulations with 

distinct lineage biases. As revealed by the subsequent functional experiments, the 

Ly6D+ EPLM fraction was lymphoid restricted and contained most B-cell potential 

whereas the so-called triple negative (TN) EPLM expressing none of the above 

markers remained as a lympho-myeloid multipotent fraction and the potential 

precursor of the Ly6D+ subset. Subsequently, single-cell RNA sequencing (“bottom-

up” approach) of 152 Ly6D+ and 213 TN single cells revealed that in fact TN are 

composed of a mixture of cells where the myeloid potential is mainly due to the 

contribution of the G3 TN subset whereas the lymphoid potential resides in the G1 

TN clustered group of cells. This heterogeneity was masked in previous bulk 

molecular and functional experiments, thus demonstrating the power of single-cell 

RNA-sequencing technology to study heterogeneity in haematopoietic progenitors at 

an unprecedented resolution. Moreover, single-cell transcriptome profiles enabled 
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the detection in an unbiased manner of markers that better define cellular identity. 

Here we redefined the “top down” EPLM classification by identifying Terminal 

deoxynucleotide Transferase (TdT) as a potential marker with which to discriminate 

the lymphoid and myeloid potential of EPLM since, in addition to the previously 

identified lymphoid primed Ly6D+ cells, TdT is also expressed in the G1 TN fraction, 

which turned to be molecularly indistinguishable from the G2 Ly6D+ fraction. The use 

of other candidate markers such as Ebf1 and CD115 enabled us to prospectively 

isolate cells from different newly identified subgroups of EPLM and to confirm their 

genetic signatures with functional assays, thus supporting the increasing belief that 

the repertoire of genes expressed reflects the immediate lineage bias of that cell. 

Finally, within the Ly6D+ cells, we found a B-cell priming gradient and propose that 

the G1 Ly6D+ fraction is the direct precursor of the first B-cell committed stage, the 

CD117+ CD19+ Pro-B cell. Therefore, we favour the concept that haematopoiesis 

occurs through a process of graded commitment where molecular priming is 

initiated earlier than previously anticipated.  Overall, this study provides a valuable 

model demonstrating that previously characterized, phenotypically homogeneous, 

multipotent progenitor cells are in fact composed of mixtures of cells with differently 

restricted differentiation capacities.  
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3. Introduction 
 

3.1 Initiation of haematopoiesis 

 

Haematopoiesis is a well-orchestrated and tightly regulated process resulting 

in the formation of all blood cell types. In adult mammals, haematopoiesis starts in 

the bone marrow (BM) with a rare cell type called Haematopoietic Stem Cell (HSC) 

that has both self-renewal and multipotent capacities.  Self-renewal is the ability to 

generate cells that are identical to the mother HSCs without differentiation, thus 

allowing the maintenance of the stem cell pool size, while multipotency is the ability 

to differentiate into all functional blood cells.  

Self-renewal and differentiation of HSC requires a special environment, 

termed the hematopoietic stem cell niche, which provides the protection and the 

necessary signals for their maintenance and development [1, 2]. Two main 

microenvironments are suggested to form the bone marrow niches: the endosteal 

and the vascular niche [3]. The endosteal niche, located in the interface between 

bone and BM [4], includes osteoblasts, derived from mesenchymal precursors, that 

produce a number of cell-signalling molecules that contribute to the maintenance 

and regulation of HSC such as Jagged (ligand of Notch receptor), thrombopoietin and 

angiopoietin, SCF, chemokines or Wnt [5]. The vascular niche, located at the 

fenestrated endothelium of bone marrow sinusoids [4, 6], promotes proliferation 

and differentiation, active cycling and generation of short-term HSCs by producing 

factors important for mobilization, homing and engraftment of HSC such as vascular 

cell-adhesion molecule-1 (VCAM-1), stromal cell-derived factor-1 (SDF1) or fibroblast 

growth factor-4 (FGF4) [7]. An important function of the stem cell niche is to 

regulate the balance between cellular self-renewal and differentiation [2]. One 

mechanism that ensures this balance is the control of asymmetric/symmetric cell 

division. As a result of asymmetric division, one daughter cell maintains the mother 

stem cell fate and the other daughter cell becomes more committed to terminal 

differentiation [8, 9]. Several reported mechanisms argue for an intrinsic capability 

of HSCs to divide asymmetrically, exemplified by the unequal molecular segregation 

during cell division. Some examples are: the asymmetric distribution of regulatory 
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cell surface molecules (e.g. notch [10]) or cellular processes [11] in mammalian 

neurogenesis; asymmetric distribution of cellular organelles (e.g. p-granules in 

C.elegans [12]); asymmetric distribution of transcription factors and co-factors (e.g. 

Prospero/Miranda in Drosophila [13]); and asymmetric distribution of DNA (e.g. 

extrachromosomal rDNA circles, ERCs, in yeast [14]). Alternative to the intrinsic 

model, there is a post-mitotic model arguing that the observed differences in the cell 

fates of sister cells are due to post-mitotic mechanisms in which initially identically 

specified daughter cells influence each other’s cell fate (e.g. via Notch signalling 

pathway [15, 16]). Further investigations are required to resolve whether both 

models co-exist and to what extent each model contributes to different specification 

of daughter cells.  

Multi-potentiality of HSCs was first demonstrated by Osawa et al. after 

showing that a single mouse CD34low/- HSC reconstitutes haematopoiesis long-term 

in a lethally irradiated mouse [17, 18]. Similar results were reported by Notta et al. 

with single human HSCs engrafting NGS mouse [19]. Since most mature blood cell 

types are short lived, HSCs are ultimately responsible for the continuous and life-

long renewal of blood. Mature blood cells are produced at an impressive rate of 

more than one million cells per second in the adult human. 

The description of HSCs, and their isolation by fluorescence activated cell 

sorting (FACS), relies on the presence or absence of a range of cell-surface 

molecules. HSCs do not express markers that are associated with the various 

haematopoietic cell lineages (Lin-) including, for example, CD3 (T lymphocytes), B220 

and CD19 (B lymphocytes), CD11b (monocytes-macrophages), Ly-6G (neutrophils) 

and TER-119 (erythoid cells), and they express the two molecules c-Kit, a tyrosine 

kinase receptor for the cytokine stem cell factor (SCF), and Sca-1 a 

phosphatidynositol-anchored membrane protein of unknown function [20]. Thus, 

HSCs are enriched in the Lin-, Sca-1+, c-Kit+ fraction of bone marrow cells, termed LSK 

cells, that represent approximately 0.05% of nucleated adult mouse BM cells [21]. 

The LSK compartment contains cells that repopulate the entire haematopoietic 

system either long-term (LT-HSC) or short-term (ST-HSC). Three different FACS 

staining strategies describe the phenotype of the two LSK subsets. The original 

Weissman approach relies on Thy-1.1 and Flt3 (fms-like) tyrosine kinase, a type 3-
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receptor kinase, whose expression was observed to correlate with a loss of the 

capacity of HSCs to self-renew [22, 23]. In this model LT-HSCs are LSK Flt3- Thy1low 

and, ST-HSCs are LSK Flt3+ Thy1low. Later, in 2005, Jacobsen combined LSK markers 

with CD34 and Flt3 [22], a commonly used strategy. Thus Jacobsen et al. described 

LT-HSCs as LSK CD34- Flt3- and ST-HSC as LSK CD34+ Flt3-. Recently, Morrison made 

use of additional signalling lymphocyte activation molecule markers (CD150, CD48, 

CD229, and CD244) to subdivide LSK cells. Here, LT-HSCs are defined as LSK CD150+, 

CD48-/low, CD229-/low and CD244- while ST-HSC differ in CD229 expression and are 

defined as CD150+, CD48-/low, CD229+ and CD244- [23].  

HSCs differentiate into multipotent progenitor cells (MPPs), which gradually 

lose their multipotentiality while undergoing decision-making, expansion, and 

differentiation via intermediate lineage precursors giving rise to the final 

compartments of functional cells. The long-standing classical model of 

haematopoiesis [24], together with other versions [25], reflects a hierarchical 

decision-making process where early multipotent progenitors make an irrevocable 

decision to differentiate towards either the lymphoid or the myeloid lineage [26]. 

This clear lympho-myeloid separation is supported by the identification of 

progenitors of each lineage. Weissman and colleagues reported the so-called 

common lymphoid progenitor (CLP) [27] which can give rise to B and T lymphocytes 

and natural killer (NK) cells, and the common myeloid progenitor (CMP) [28] which 

can differentiate into the rest of the immune and blood cells. Thus, this traditional 

model illustrates single routes of differentiation to each end-cell type. However, over 

the past 15 years, the above strict compartmentalization of hematopoietic cells has 

been challenged. This is mainly due to the description of progenitor cells that 

contradict the lympho-myeloid dichotomy.  

 

3.2 Early Progenitor with Lymphoid and Myeloid developmental 

potential (EPLM) 

 

The first indication that haematopoietic development has much more 

plasticity than previously anticipated came from studies performed in mice deficient 
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for the transcription factor Pax5 [29]. The Pax5-/- mouse presents an absolute block 

in B-cell development at the Pro-B cell stage. Remarkably, and in contrast to wild-

type (WT) cells, Pax-5 deficient Pro-B cells had multilineage developmental potential 

since they could develop into myeloid, NK, and T cells both in vitro and in vivo [30-

32]. Moreover, even WT committed precursor B cells regain multipotentiality upon 

conditional inactivation of the Pax5 gene [32]. This demonstrates that progenitor 

cells that have progressed some way along a given lineage retain the ability to give 

rise to other cell types until a rather advanced stage of differentiation. However, 

whether such a degree of developmental plasticity occurs under physiological 

conditions is an unresolved issue. Subsequently, our laboratory detected in wild-type 

mouse BM a cell with similar properties to the Pax5-/- Pro-B cells. This cell has the 

capacity to differentiate into lymphoid and myeloid cells and was therefore called 

EPLM (Early Progenitor with Lymphoid and Myeloid developmental potential). EPLM 

cells were identified as B220+ cKitint CD19- and NK1.1- cells representing 0.2% of all 

nucleated BM cells [33] (Figure 1). In terms of phenotype, this progenitor is closely 

related to the CLP with the marked difference of B220 expression, EPLM being B220+ 

whereas CLP are B220-, and partially overlaps with the so-called Fraction A cells 

identified by Hardy and co-workers [34] (Table1 contains a comparison of the 

nomenclatures used for early B-cell developmental stages). Limiting dilution analysis 

of EPLMs cultured together with stromal cells and addition of appropriate cytokines, 

enabled the quantification of in vitro B, T and, myeloid precursor frequencies. EPLMs 

showed strong B-cell developmental potential and strong-to-moderate 

differentiation potential for T cells and myeloid cells (mostly macrophages). 

Figure 1. Gating strategy for the EPLM in the BM of adult C57BL/6: B220
+
 cKit

int
 CD19

-
 NK1.1

-
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Therefore, this suggested that under physiological conditions the developmental fate 

of EPLM is mainly to become B cells. Reconstitution assays in order to assess the 

EPLM’s in vivo developmental potentials revealed their ability to transiently 

reconstitute both B and T cell compartments in sublethaly irradiated Rag2-deficient 

mice. 

Another cell that contradicts the classical lympho-myeloid lineage separation 

is the Lymphoid-Primed MultiPotent progenitor (LMPP), which has little potential for 

megakaryocyte or erythroid development while retaining other potentials [35]. 

Compared with EPLM, LMPP present slower kinetics in developing into lymphoid 

cells, hence suggesting an earlier and upstream location in haematopoietic 

development. Moreover, LMPP is the Flt3 positive high fraction of LSK and, in 

contrast with EPLM, is B220-. Together with the identification of new progenitor 

cells, the finding of alternative routes to end-cell types [36] prompted the necessity 

of proposing new models for the architecture of haematopoiesis.  

 

Table1. B-cell developmental stages in the bone marrow. Comparison of the nomenclatures used to identify 
developmental B cell subsets and how they relate to key VDJ recombination events (comprehensively reviewed 
in Osmond et al. [37], and Hardy et al. [38]). Table adapted from Hardy et al. [39]. 
 

3.3 Pair-wise model of haematopoiesis 

 

In collaboration with others, a few years ago our laboratory presented a new 

model of haematopoiesis called the pair-wise model [40, 41]. In contrast to the 

traditional hierarchical trees, this model outlines haematopoietic development in a 

cyclical representation. Fundamentally, the principle of an HSC giving rise to all blood 

cell types is the same. However, the intermediate progenitor stages are better 

illustrated. In the pair-wise model, the set of developmental potentials that have 

Osmond Melchers	and	Rolink Hardy Status	of	Ig	loci

Pro-B Pre-pro	B	/	EPLM A Germline

Pro-B B D-JH	rearrangement

C VH-DJH	rearrangement

Pre-B Large	pre	B C' VHDJH	pairs	with	λ5-Vpre-B

Pre-BCR	surface	expression

Small	pre	B D Vκ-Jκ	or	Vλ-Jλ	rearrangement	

Immature	B Immature	B E Complete	BCR	(receptor	editing	can	occur)

Developmental	stages
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been shown experimentally are represented as a continuum by arcs (Figure 2). As 

development proceeds, the arcs become shorter indicating that developmental 

potentials are gradually restricted and ultimately cells become committed to a 

differentiated cell fate (as shown by the outermost arc). As its name indicates, this 

model depicts a series of pair-wise developmental relationships between the various 

haematopoietic lineages. This infers that only certain bi-potentialities are permissive. 

For example, a bi-potent T lymphocyte-megakaryocyte cell should not exist, and has 

not been described to date. 

 

 

The pair-wise model has no lineage branching patterns and therefore, does 

not assume a single preferred route to a particular end-cell type. In other words, 

HSCs can reach a specific differentiated blood cell through more than one type of 

intermediate progenitor. For instance, dendritic cells (DC) can be derived from either 

CLP/EPLM or CMP, indicating that DC can have both lymphoid and myeloid origin 

[36]. Moreover, multiple routes have been demonstrated towards neutrophils and 

monocytes [42, 43]. Another advantage is that the pair-wise model maintains the 

possibility that progenitors can move in the opposite direction and regain 

multipotentiality -as is the case for the Pax5-/- Pro-B cells. Overall, the above-

described model, which includes the recently identified progenitors and allows 

Figure 2. Pair-wise model of haematopoiesis. Illustrated is a fate choice continuum with an invariant series of pair-
wise developmental relationships between haematopoietic cells’ fates. 
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alternative routes, leads to a viewpoint that haematopoiesis is a more versatile and 

less strictly compartmentalized process than previously thought.  

In line with the description of progenitor cells that have multiple lineage 

options, there is an increasing debate regarding their heterogeneity. It is highly likely 

that multipotent progenitor cells presently viewed as a homogeneous population 

will be divided into subsets with lineage biases or even into already committed 

subsets. In turn, some end-cell types will be probably further divided into numerous 

subtypes. To what extent progenitor cell populations, and their mature progeny, are 

heterogeneous is very much dependent on the quantity of new and existing cell-

surface markers that can be used to define new subpopulations. In this regard, 

together with the improvement of traditional flow cytometer-based technologies, 

allowing the simultaneous detection of an increasing number of markers, the 

explosion of high throughput technologies, such as RNA sequencing that enable the 

parallel screening of a large amount of markers in an unbiased manner, has been of 

a pivotal importance. 

 

3.4 Single-cell RNA sequencing: the method that dissects heterogeneity 

 

In the last couple of years, RNA sequencing at the single-cell level has 

emerged as an important technology for interrogating the degree of heterogeneity 

in a population. This technology, which can be performed at a whole-transcriptome 

scale with unprecedented resolution, consists of extracting the RNA from individual 

cells followed by a sequencing process similar to that for bulk RNA sequencing. 

When RNA sequencing is performed at the population level, as has been the case for 

most studies, we obtain an average transcription profile of thousands or millions 

pooled cells. This, masks the true distribution of gene expression levels across 

individual cells, thus hampering the elucidation of whether a subset of cells is 

responsible for the expression of a given gene or even if it is the major contributor of 

a function in a seemingly homogeneous population [44]. Therefore, it is crucial to go 

to the single-cell level where there is no averaging effect.  
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3.4.1 Technological advances 
 

The first mRNA sequencing whole-transcriptome analysis of a single cell was 

reported in 2009 by Tang and co-workers. Using a novel mRNA sequencing assay 

they detected expression of 5,270 genes in a single mouse blastomere [45], thus 

greatly overcoming the limited throughput of a couple of hundred genes that can be 

analysed by single-cell qRT-PCR. Moreover, in contrast to qPCR, mRNA sequencing 

based technology provides a comprehensive view of the transcriptome profile in one 

cell in an unbiased manner or, in other words, without requiring prior knowledge 

and selection of genes of interest. However, the method reported relies heavily on 

manual manipulation   of   cells   and   reagents and can only process few cells per 

hour. The limitation of manual handling, either during the capturing or during the 

later processing steps, also occurs in other single-cell RNA sequencing technologies 

such as laser-capture microdissection or single-cell sorting into a multi-well plate. 

Therefore, researchers rapidly attempted the development of automated methods.  

Automation of the single-cell RNA sequencing process became a reality with 

the emergence of chip-based microfluidics devices. In 2013, Fluidigm launched the 

“C1™ Single-Cell Auto Prep System” helping expand access to the single-cell RNA 

sequencing technology [46, 47]. The C1 system provides a completely automated 

workflow that integrates both the capture of single cells in a microfluidic chip and 

the later processing steps including washing, lysis, reverse transcription and, PCR 

pre-amplification. In addition, the major strength of microfluidics is the manipulation 

of minute volumes, working in a nanoliter reaction scale. As a result, albeit allowing 

the processing of only a few tens of cells per experiment, this system presents higher 

reproducibility, more cost-effective reactions and increased sensitivity compared 

with classical methods [48]. In parallel with its commercialization, the journal 

“Nature Methods” declared single-cell sequencing as the method of the year 2013. 

As a consequence, the past few years have seen a burst of papers from laboratories 

around the world that have developed expertise in single-cell approaches. These 

papers include new single-cell technologies and provide evidence for its valuable 

application in many areas. 
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Regarding the development of new technologies, the state-of-the-art has 

shifted towards scaling up the number of cells that can be analysed in parallel and in 

an affordable manner in terms of time and costs. Recently, Klein et al. and Macosko 

et al. have developed two advanced droplet-based microfluidics methods termed 

Drop-seq [49] and inDrop sequencing [50] respectively. Both methods, published in 

the same issue of the journal Cell, massively increase the throughput to several 

thousand of cells while reducing the cost of sequencing. Moreover, despite there 

being some differences between the experimental protocols, both publications rely 

on the same fundamental principle. The cells are separated into nanoliter-sized 

aqueous droplets in carrier oil as reaction chamber. Each reaction chamber contains 

microparticles coated with unique cell barcodes and Unique Molecular Identifiers 

(UMIs). Although droplet microfluidics is not a new technology, this efficient 

barcoding strategy makes it an attractive method and, altogether, has big potential 

for commercialization.  

To date, apart from droplet-based microfluidics, a variety of other 

microfluidics techniques for single-cell trapping exist. Some examples are 

hydrodynamic trap [51], magnetic trap [52, 53], acoustic trap [54], dielectrophoretic 

trap [55], and optical trap [56]. All this together exemplifies increasing interest for 

single-cell handling technologies and creates anticipation for exciting biological 

advances for the coming years.  

 

3.4.2 Applications 
 

Single-cell transcriptomics offers a wide range of applications that have 

already enabled some advances in a broad variety of fields apart from immunology. 

Examples include: oncology, with the dissection of tumour cell heterogeneity [57], 

the identification of subgroups associated with anti-cancer drug resistance [58], and 

the analyses of rare circulating tumour cells [59] or cancer stem cells; embryology, 

with new insights into the gene regulatory networks controlling early stages of 

embryonic development [45, 60-62]; neurobiology, with the unravelling of the 

complex cellular composition of the mouse hippocampus while uncovering novel 

markers and cell types [47]; or microbiology, with the opportunity of sequencing 
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uncultivated microbial eukaryotes at the single-cell level and identifying new species, 

unknown microbial functions and revised evolutionary relationships between 

eukaryotes, bacteria and archea [63, 64]. 

In immunology, single-cell molecular profiling is providing valuable 

information on the differentiation and function of the immune cells both at the 

steady state and during immune responses. Moreover, it is opening up a new avenue 

for finding markers that better describe cell phenotypes in an unbiased manner. 

During the forthcoming years, it is predicted that the identity of many immune cells 

will be redefined while possibly new cell types and subtypes will emerge. Indeed, 

several studies have already pointed in this direction. Mahata et al. identified a Th2 

subpopulation contributing to the maintenance of T-cell homeostasis. It is of interest 

that the Th2 subset, characterized by the expression of a specific enzyme (Cyp11a1), 

could be isolated by using surface molecules whose expression correlates with 

enzyme expression, thus allowing for the first time a broad ex vivo functional 

validation of a new cell type discovered by single-cell RNA sequencing [65]. Similarly, 

Shalek et al. found a very small subset of cells among mouse bone-marrow-derived 

dendritic cells. Those cells, termed precocious, are the first ones that produce and 

secrete a wave of interferon during antiviral responses [66].  Another example with 

novel subsets is a recently published paper providing a detailed study about the 

inter-cellular transcriptomic variation within the traditionally classified classical, 

intermediate and non-classical monocytes [67]. In the publication, Gren et al. reveal 

that each group of monocytes contains further subgroups with distinct genetic 

signatures according to their activation status and differentiation. This indicates the 

ability of single-cell transcriptomics to discover cell heterogeneity within defined cell 

populations. 

However, as a proof of concept, massive parallel single-cell RNA sequencing 

has also been applied to more complex and heterogeneous systems such as the 

spleen [68] or peripheral blood mononuclear cells (PBMCs) [53]. Apart from the 

identification of previously unknown hidden subpopulations, this approach could 

reconstitute the global cell heterogeneity within splenic tissue and PBMCs, thus 

envisaging the opportunity to redefine our knowledge on lineage hierarchy. In fact, a 

number of studies have amplified the current hematopoietic classifications and 
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differentiation trajectories through the detection of transient or intermediate cell 

states [69-71]. For instance, Paul et al. identified seven subgroups of c-Kit+ Sca1- Lin- 

sorted cells representing a gradient of erythrocyte transcription, from expression of 

early progenitor genes towards the up-regulation of functional genes [69]. It is of 

note that, unlike current models, none of the seven subsets co-expressed 

megakaryocyte genes. Therefore, they suggested that the standard gating and 

sorting for megakaryocyte-erythrocyte progenitors (MEP) might be termed 

erythrocyte progenitors (EP) instead. This exemplifies the necessity of revising the 

identity of the different immune cells as well as their subtypes, lineages and 

composition within tissues. 

In conclusion, the studies reported to date have convincingly demonstrated 

that single-cell RNA sequencing is a powerful approach that can be used in many 

applications such as exploring cellular heterogeneity in a population, studying 

differentiation dynamics, redefining cell identity, or identifying rare cell types among 

others.  Excitingly, it is expected that application of this technology will continue to 

expand as the techniques and analysis tools evolve.  

 

3.5 The role of IL-7 and Flt3L cytokines in lymphocyte development 

 

Cytokines are the pivotal external factors that deliver environmental signals 

to control haematopoietic cell development. Their mode of action can be viewed as 

either instructive or permissive [72]. In the instructive model, cytokines act directly 

on progenitor cells to drive them towards a specific lineage by actively inducing the 

initiation of a lineage-specific gene program. In contrast, in the permissive model 

commitment occurs in a cell-autonomous and stochastic manner and cytokines act 

to selectively allow cells committed to a particular lineage to survive and/or 

proliferate [73, 74]. The precise instructive versus permissive role of cytokines in 

haematopoiesis remains controversial [75-77]. Two important cytokines for T- and 

B–lymphocyte development are IL-7 and Flt3L since their receptors are co-expressed 

in a narrow window immediately before commitment and mutant mice show 

impaired lymphoid development [78-81].  
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IL-7 was originally identified as a growth factor for B-cell progenitors [82]. 

Later on, IL-7 activity on thymocytes and T-cell survival was also reported [83]. 

Subsequently, a specific receptor for IL-7, expressed in both B- and T-cell 

progenitors, was identified [84]. Mice lacking either the cytokine [81] or its receptor 

(IL-7Rα) [80] have a leaky arrest of T-cell development at the DN2 stage [80, 81] and 

absence of γδT cells [85], whereas a dramatic defect in B-cell generation with a block 

at the Pro-B cells stage occurs. Reports with over-expression of the pro-survival gene 

Bcl2 demonstrated that whereas the T-cell defect is rescued, thus suggesting a 

permissive role of IL-7 in early T-cell development [86, 87], B-cell development is not 

re-established [88, 89], arguing for an instructive role of this cytokine in B-cell 

commitment at least in mice. Interestingly, humans with defects in IL-7 signalling 

display a normal B-cell development [90, 91]. However, an in vitro system has 

provided clear evidence that IL-7R signalling through Stat5 alone is not sufficient to 

induce transcription of Ebf1 and Pax5 [92], indispensable for B-cell commitment, 

therefore arguing for an important but redundant action of IL-7 during commitment 

to the B-cell lineage [93, 94]. Therefore, while the importance of IL-7 as a survival 

and growth factor for committed B-cell progenitors is well established, its instructive 

role through Ebf1 and Pax5 up-regulation remains unclear.  

Flt3 ligand (Flt3L) is one of the essential cytokines for cell survival and 

proliferation during early haematopoiesis [95, 96]. Its function has gained much 

attention since mutations in Flt3L signalling are commonly found in Acute Myeloid 

Leukaemia (AML) [97]. Using flow cytometry, its receptor (Flt3) has been detected as 

early as the non-self-renewing MPP stage of development [98]. Thereafter, several 

downstream myeloid and lymphoid progenitors continue to express Flt3 with the 

exception of megakaryocyte-erythrocyte progenitors [99]. Flt3 expression is 

extinguished upon lineage commitment and, among differentiated cells, only 

dendritic cells retain Flt3 on their surface. For instance, during B-cell commitment 

Pax5 expression directly antagonizes that of Flt3 [100]. In the thymus, Flt3 

expression is used to identify the earliest and uncommitted thymocyte 

subpopulation with remaining B-cell developmental potential [101-103].  Mice with 

targeted gene disruption of Flt3 [78] or its ligand [79] do not exhibit a complete loss 

of any haematopoietic population but reduced numbers of B, DC and NK cells [78, 
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79]. Moreover, upon transplantation, BM progenitors from Flt3-/- or Flt3L-/- mice 

reconstitute the B-cell compartment poorly [78, 79] and Flt3L was found to be 

essential for maintaining normal numbers of uncommitted B-cell progenitors [104]. 

Therefore, these results suggest a survival and proliferative action of Flt3L during B-

cell development, rather than instructive. It is probable that Flt3L signalling exerts its 

function in concert with signalling from other cytokines such as SCF or IL-7 [92, 105]. 

This is manifested in cultures of lymphoid progenitor cells, such as ETP, CLP or EPLM, 

in the presence of IL-7, where Flt3L provides and additive anti-apoptotic effect while 

stimulating proliferation [106, 107]. 

 

3.6 Flt3Ltg mouse 

 

Until recently, both bulk and single-cell RNA sequencing required a 

considerable amount of starting material. For bulk experiments, it was about 500 

nanograms of RNA per sample, while for the single-cell capturing step using the C1 

platform the starting density recommended in the “single-cell preparation guide” 

from fluidigm is 166-255 cells/µL and 5-20 μL are loaded into the chip. To overcome 

this limitation, because the EPLM is a rare population, we made use of a mouse 

model, the Flt3 ligand transgenic (Flt3Ltg) mouse, to isolate EPLM and other 

progenitor populations in greater numbers.  

Initially, Ceredig et al. showed that apart from DC, increased in vivo Flt3L 

availability after several injections led to transient expansion of Flt3+ progenitors 

with either myeloid or lymphoid developmental potential or both [108]. Later on, 

our laboratory generated a transgenic mouse with sustained over-expression of 

human Flt3L, thus providing for the first time a detailed in vivo analysis of the effect 

of this cytokine on different haematopoietic lineages [109]. Examination of Flt3Ltg 

mice confirmed the importance of Flt3L in DC development. Moreover, the 

transgenic mice presented a tremendous expansion of almost all haematopoietic 

progenitors in the BM with the exception of MEP. The decrease in MEP occurred in a 

rapid fashion when WT mice were injected with recombinant Flt3L, therefore 

suggesting for the first time an instructive role for the Flt3L cytokine. Tsapogas and 

co-workers proposed that an increased level of Flt3L guides haematopoietic 
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development towards the lymphoid-myeloid fate at the expense of the 

megakaryocyte-erythrocyte fate [41, 109]. This provides an explanation for the 

decreased platelet counts and the consequent development of anaemia in Flt3Ltg 

mice.  

The EPLM compartment is a good 

example of the tremendous expansion of 

progenitors in the BM of Flt3Ltg mice. In 

fact, the number of EPLM cells was 

increased by 14-fold when compared to WT 

mice (Figure 3). Therefore, the Flt3Ltg 

mouse is an excellent tool for the isolation 

of large numbers of EPLM and other 

progenitor cells for further in vitro and in 

vivo experiments, transcriptome profiling or 

molecular biology analyses. 

 

 
  

Figure 3. Total numbers of CMP, CLP and EPLM in 
the BM of WT (white symbols) and Flt3Ltg (black 
symbols) mice (5-7 mice per group). ***P<0.0001. 
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4. Aim of the project 
 

In this thesis we sought to characterize a previously identified uncommitted and 

multipotent progenitor cell called EPLM with the aim to: 

 Dissect EPLM heterogeneity by combining the use of cell surface markers, 

such as Ly6D, SiglecH and CD11c, the so-called “top down” experimental 

strategy, with single-cell RNA sequencing, “bottom up” approach. 

 Unravel whether EPLM phenotypic or molecular heterogeneity causes 

different sets of potentials in the identified subpopulations by in vitro limiting 

dilution assays and in vivo reconstitution experiments. 

 Study the precursor-product relationship among the subpopulations in bulk 

culture with cytokines. 

 Identify markers that better define cellular identity of the EPLM 

subpopulations in an unbiased manner, by single-cell RNA sequencing. 

 Utilize the identification of EPLM subpopulations in order to study the role of 

cytokines (Flt3L and IL-7) in B-cell commitment (von Muenchow et al. 

Appendix paper 1). 
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5. Materials and methods 
 

5.1 Mice 

 

C57BL/6 (B6), B6 Rag2-deficient [110], B6 FLT3L transgenic (Flt3Ltg, [109]) 

and Ebf1ihCd2/+-Flt3Ltg mice used herein were 6 to 11 weeks old and matched by age 

and sex for each experiment. All mice were bred and maintained in our animal 

facility under specific pathogen-free conditions. All animal experiments were carried 

out according to institutional guidelines (authorization numbers 1886 and 1888 from 

Kantonales Veterinäramt, Basel). 

Ebf1ihCd2/+ mice were provided by Prof. Meinrad Busslinger and co-workers 

[111]. These mice had been generated by inserting an internal ribosome entry 

sequence (IRES)-hCd2 (ihCd2) reporter gene into the 3’ untranslated region of the 

Ebf1 gene. We next crossed the Ebf1ihCd2/+ reporter to the Flt3Ltg mice, thereby 

generating the Ebf1ihCd2/+-Flt3Ltg mice. 

 

5.2 Flow cytometry and cell sorting 

 

Bone marrow cell suspensions were obtained from femurs of the two hind 

legs of mice. Bones were flushed with a 2ml syringe filled with PBS containing 0.5% 

BSA and 5mM EDTA. Afterwards, single-cell suspensions were subjected to ACK 

treatment for erythrocyte depletion, stained with the appropriate combination of 

antibodies for 30 minutes at 4°C, and washed for subsequent flow cytometry or cell 

sorting. The following antibodies were used (from BD Pharmingen, 18 eBioscience, 

BioLegend, or produced in house) with names in brackets describing the 

corresponding clone: anti-B220 (RA3-6B2), anti-CD117 (c2B8), anti-CD19 (1D3), anti-

NK1.1 (PK136), anti-SiglecH (551), anti-CD11c (HL3), anti-Ly6D (49-H4), anti-CD115 

(AFS98), anti-hCD2 (RPA-2.10) conjugated with FITC, PE, PE/Cy7, APC, Bv421 or 

Biotin plus streptavidin-Bv650. For detection of TdT, cells were fixed and 

permeabilized after cell-surface staining using the Foxp3 Fix/Perm buffer kit 

(eBioscience), and subsequently stained with APC-conjugated anti-TdT (19-3) 

according to the supplier’s protocol. Flow cytometry was performed using a BD LSR 
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Fortessa (BD Biosciences) and data were analyzed using FlowJo v9.8 Software 

(Treestar). For cell sorting, a FACS Aria IIu (BD Biosciences) was used (>98% purity). 

 

5.3 In vitro limiting dilution assay 

 

ST2 [112], OP9 [113] and OP9 stromal cells expressing the Notch ligand Delta-

like 1 (OP9-DL1) [114] were plated in a 96-well flat-bottom plate one day prior to co-

culture at 3x103 cells per well. The following day, semi-confluent stromal cells were 

γ-irradiated with 3000 rad using a Cobalt source (Gammacell 40, Atomic Energy of 

Canada, Ltd) at 100 rad/min and co-cultured with graded numbers of sorted 

haematopoietic progenitors in 48 replicates (or as indicated). Cells were maintained 

as a monolayer in IMDM supplemented with 5x10-5M β-mercaptoethanol, 1mM 

glutamine, 0.03% w/v Primatone (Quest Naarden, The Netherlands), 100U/mL 

Penicillin, 100 μg/mL Streptomycin and 5% FBS (Amimed) at 37°C in a humidified 

atmosphere containing 10% CO2 in the air. OP9 and OP9-DL1 co-cultures were 

additionally supplemented with 10% IL7-conditioned medium. After 10 days (for OP9 

cell cultures) or 15 days (for OP9-DL1 and ST2 cell cultures), wells were inspected 

using an inverted microscope. Wells containing colonies of more than 50 cells were 

scored as positive. For each experiment, the frequency of negative wells was plotted 

against the number of haematopoietic progenitors plated and the fraction of 

progenitor cells developing B-cell, T-cell or myeloid colonies was estimated 

considering plating efficiency that follows a Poisson distribution. 

 

5.4 In vivo reconstitution assay 

 

Recipient Rag2-deficient mice were -irradiated using a Cobalt source as 

previously described at a dose of 400 rad 4h prior to reconstitution. Indicated 

numbers of sorted haematopoietic progenitors from donor mice (B6, Flt3Ltg or 

Ebf1ihCd2/+-Flt3Ltg as specified) were injected intravenously. After 3 weeks, spleen 

and thymus of recipient mice were separately analysed by flow cytometry. 
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5.5 Bulk cultures with cytokines 

 

A number of 5x104 sorted haematopoietic progenitors from Flt3Ltg mice 

were cultured with 50ng/ml Flt3L prepared in-house and 10% IL-7 conditioned 

medium in a 24-well flat-bottom plate. Cells were maintained as previously indicated 

and from day 2 to day 6, one well containing cells from each population was 

analysed by flow cytometry for Ly6D and CD19 expression. 

 

5.6 Statistical analysis 

 

Statistical analysis was performed with GraphPad Prism v6.0f software. Two-

tailed unpaired Student t tests were used for statistical comparisons. Data are 

presented as mean values ± SEM (n.s. not significant or P > 0.05, *P ≤ 0.05, **P ≤ 

0.01, ***P ≤ 0.001, ****P ≤ 0.0001). 

 

5.7 Bulk RNA sequencing 

5.7.1 Sample acquisition 

 

Ly6D+ and TN EPLM subpopulations as well as CD115- TN and Pro-B cells were 

sorted from femurs of 2-pooled male Flt3Ltg mice (6 to 8 weeks of age). After each 

sort, cells were centrifuged, resuspended in 0.5ml of TRIzol reagent and stored at      

-80°C for later total RNA extraction. From the Ly6D+ and TN samples, 100μl 

containing ~3 x104 cells were previously used for the capture of single cells. 
 

5.7.2 RNA extraction 
 

Total RNA was extracted from ex-vivo sorted samples using TRIzol-based 

method [115, 116]. Briefly, 1x105 to 3x105 cells were lysed in 0.5ml of TRIzol reagent 

and 0.1ml of chloroform was added per 0.5ml TRI reagent. After incubation and 

centrifugation for phase separation, the aqueous phase containing the RNA was 

recovered and mixed with isopropanol in a 1:1 ratio for RNA precipitation. Following 

15min incubation and centrifugation, the supernatant was discarded while the RNA 

pellet was first washed with 75% ethanol and subsequently resuspended with 20μl 
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of DEPC treated water. Concentration and 260/280 purity ratio was initially 

determined using NanoDrop 1000 Spectrophotometer (Witec AG). Selected RNA 

samples were stored at -80°C for later usage. 
 

5.7.3 RNA quality 
 

Either 500ng or 1μg of total RNA per sample was sent to the Genomics Facility at the 

D-BSSE (Basel) for quality control, library preparation and sequencing. Quality and 

level of degradation of the extracted RNA was assessed with RNA integrity number 

(RIN) assigned by the Agilent 2100 Bioanalyzer instrument using either the Nano or 

the Pico Agilent RNA 6000 kit (Agilent Technologies). Samples with a RIN value over 8 

and presenting clean peaks were considered for further analysis. The RNA quantity 

was measured by the Infinite M1000 PRO - Tecan instrument using the Quant-iT 

RiboGreen RNA Assay Kit.  

 

Figure M1. Quantification of raw sequenced data for the Ly6D
+
, TN and Pro-B samples. (A) Number of 

sequenced reads per sample. (B) Percentage of reads that mapped to the mouse genome (mm9). (C) Number of 
counts per sample (library size) considering reads mapped to genes (exons only). (D) The total number of 
detected genes per sample (with at least 1 count). 
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5.7.4 Library preparation 
 

For the preparation of sequencing libraries, the TruSeq Stranded mRNA LT 

Sample Preparation kit was used following the manufacturer’s guide [117]. The 

polyA containing mRNA molecules were purified using poly-T oligo attached 

magnetic beads and subsequently fragmented using divalent cations under elevated 

temperatures. Afterwards, the RNA fragments were copied into first strand cDNA 

using reverse transcriptase and random primers. Strand-specificity information was 

achieved by replacing dTTP with dUTP during the second strand cDNA synthesis. To 

prevent self-ligation of the double-stranded cDNA, the 3’ ends of the blunt 

fragments were adenylated followed by ligation of barcoded adapters suitable for 

Illumina-based sequencing. The product was subjected to 15 cycles of PCR 

amplification.  

Size and purity of the library fragments was assessed by the Fragment 

Analyzer using the NGS Fragment 1-6000bp method (average fragment size 321bp, 

sd 20.36), while quantification was done with Quant-iT PicoGreen® dsDNA Assay Kit; 

TEcan instrument. 
 

5.7.5 Sequencing 
 

Indexed DNA libraries were pooled in equal volumes and loaded on one 

NextSeq 500 High Output flow cell (Illumina). Single-end sequencing was performed 

on the Illumina NextSeq™ 500 Sequencing System (D-BSSE, Basel) for 81 cycles 

yielding in 21 to 35 millions of reads, 81-mers, per sample (Fig. M1 A). 

The Genomics Facility with the Illumina pipeline performed de-multiplexing 

and reads were transferred in the FastQ format via openBIS. A quality control of the 

sequenced data was performed using the FastQC tool 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, Version 0.11.3). All 

samples comprised high number of reads (> 21 millions) with median Quality Score 

(QS) of 35, a GC content distribution equivalent to the expected theoretical 

distribution (~52%), a sequence duplication level typical for RNA-seq samples, and 

no adapter content present (no need for trimming of reads). Fig. M2 shows a 

representative example. 

 
 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Figure M2. Example of quality control of raw sequence data (FASTQC). (A) Quality scores for individual positions 
within read sequence (over all reads). (B) Quality score distribution over all sequences. (C) GC content 
distribution over all sequences. Red: theoretical GC content (%); blue: observed GC content (%). (D) Distribution 
of sequence length over all sequences. (E) Relative number of sequences with different degrees of duplication. 
(F) Frequency of contamination by sequencing adapters. Replicate 2 of Ly6D group is taken as a representative 
example.  
 

5.7.6 Pre-processing of sequencing data 
 

All downstream analysis was performed using the open source software R 

accessed via RStudio server (R version 3.2.0). Sequencing reads were aligned to the 

mouse genome assembly, version mm9 (downloaded from UCSC 

http://genome.ucsc.edu), with SpliceMap [118, 119], included in the R/Bioconductor 

package QuasR, version 1.10.1. Splice-map was also capable of mapping reads that 

cover exon junctions. More than 80% of total reads were successfully mapped for 

each sample (Fig. M1 B). Subsequently, a count table with gene expression levels 

was generated using the qCount function from QuasR package and coordinates of 

RefSeq mRNA genes (http://genome.ucsc.edu, downloaded in December 2013). The 

expression level was defined as a number of reads that started within any annotated 

exon of a gene (exon-union model). Total counts per sample ranged from 13 to 22 

millions (Fig. M1 C), the so-called library size. Genes with no counts across all 

samples were filtered out from the analysis. For 17,290 genes at least 1 read was 

detected across all samples, corresponding to ~14,800 genes per sample (Fig. M1 D).  

Raw counts were normalized between samples with the TMM method 

(weighted trimmed mean of M-values [120]), expressed as counts per million 

mapped reads (CPM), and transformed to the log2-scale (log2CPM). 

http://genome.ucsc.edu/
http://genome.ucsc.edu/
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5.7.7 Data analysis 
 

Differential expression analysis was performed using edgeR v3.12.1 [121]. A 

prior count of 8 was used in order to minimize the large log-fold changes for genes 

with small number of counts. Genes with a false discovery rate (FDR) <0.05 and 

abs|log2(FoldChange)| >1 were considered differentially expressed genes (DEG). For 

principal component analysis (PCA) average gene expression was centred to zero and 

only the top 50% of genes with highest variance across analysed dataset (calculated 

as inter-quartile range) were used. PCA plots were generated with the ggplot2 v2.1.0 

R package. Heatmap with sample pair-wise Pearson’s correlation coefficients were 

also generated with the same subset of genes and visualized with the NMF v0.20.6 R 

package. Annotated heatmap of gene expression variation of the indicated genes 

across the samples was also generated with the NMF v0.20.6 R package. Average 

gene expression was centred to 0 and distances were calculated from Pearson’s 

correlation values of samples using the Euclidean method. MA and Volcano plots 

were produced using custom R scripts. Gene ontology enrichment analysis was 

performed with the DAVID v6.7 bioinformatics database, based on Fisher’s Exact 

method [122, 123]. Gene ontology terms of DEG were determined to be significantly 

enriched when Pval <0.05. 

 

5.8 Single-cell RNA sequencing 
 

5.8.1 Capture of single cells 
 

Single cells were captured from ex-vivo sorted haematopoietic progenitors on 

a small-sized (5-10μm cell diameter) C1 Single-Cell Auto Prep IFC for mRNA 

sequencing (Fluidigm) using the Fluidigm C1 system. Cell diameter of the Ly6D+ and 

TN cells, imaged on Leica DMI 4000 microscope and measured with ImageJ software, 

was similar and homogeneous, 8.54 and 8.77μm respectively (Fig. M3 A). Therefore, 

no bias due to cell size or morphology was expected during the capturing. Cells were 

loaded onto the chip at a concentration of ~300 cells/μl as recommended by the 

manufacturers and the 96 chambers were inspected by phase-contrast microscopy 

to determine the number of captured single cells. A total of 3 chips per population 

were used yielding a good overall capture efficiency, 178 Ly6D+ and 232 TN single 
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cells (Fig. M3 B,C). Subsequently, cells were lysed, the polyA containing mRNA 

molecules were hybridized to oligo-dT and whole-transcriptome full-length amplified 

cDNA was prepared by template switching on the C1 fluidigm chip according to the 

manufacturer’s protocol, using the SMARTer Ultra Low RNA kit for the Fluidigm C1 

System (Clontech). Quantification of cDNA was done with Quant-iT PicoGreen® 

dsDNA Assay Kit; TEcan instrument. 

Figure M3. Single-cell capturing. (A) Average diameter of Ly6D
+
 cells (n=24) and TN cells (n=36) determined by 

phase-contrast microscope and measured with ImageJ. (B) Representation of a single-cell captured in one of the 
96 chambers of the C1 Fluidigm small chip. Picture taken with phase-contrast microscope in the second chip run 
of TN cells. (C) Capture efficiency. Number (n°) and percentage (%) of single-cells captured per chip (run) or per 
population (total).  
 

5.8.2 Library preparation 
 

Illumina single-cell libraries were constructed in 96-well plates using the 

Nextera XT DNA Library Preparation Kit (Illumina) following the protocol supplied by 

Fluidigm (“Using C1 to Generate Single-Cell cDNA Libraries for mRNA Sequencing”). 

Briefly, 0.1-0.3ng of harvested cDNA was subjected to tagmentation, a process in 

which the DNA fragmentation and sequencing adapter ligation occurs in a single step 

performed by the Nextera XT transposome, followed by purification with AMPure XP 

beads. 
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5.8.3 Sequencing 
 

Indexed DNA libraries originated from single cells captured in 3 different 

chips (288 libraries) were pooled in equal volumes and loaded on one NextSeq 500 

High Output flow cell (Illumina). Single-end sequencing was performed on the 

Illumina NextSeq™ 500 Sequencing System (D-BSSE, Basel) for 76 cycles. 

As for the bulk RNA sequencing, reads (76-mers) were received after de-

multiplexing in the FastQ format and checked for quality using the FastQC tool 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, Version 0.11.3). Only 

the FastQ files corresponding to C1 chambers with a single cell were selected for 

downstream analysis, thus excluding the ones derived from doublets, debris or 

empty chambers (previously determined by phase-contrast microscopy). We 

obtained a total of 360 million reads for the Ly6D+ and 371 million reads for the TN. 

The average number of reads per cell was 2x106 for the Ly6D+ and 1.6x106 for the TN 

(Fig. M4 A). 

 

Figure M4. Quantification and quality control of raw sequenced data for Ly6D
+
 (left panels) and TN (right 

panels) single cells. Per cell distribution of (A) number of sequenced reads, (B) percentage of reads mapped to 
the mouse genome (mm9) out of the total number of reads, (C) counts (library size) considering reads mapped to 
genes (exons only) and, (D) total number of genes detected (with at least 1 count). Ly6D

+
 n=178; TN n=213. Blue 

line: mean; dotted red line: thresholds applied to the data (any cells not meeting these thresholds failed the 
quality control and were excluded from the analysis). 

 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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5.8.4 Pre-processing of sequencing data 
 

All downstream analysis was performed using the open source R software 

accessed via RStudio server (R version 3.2.0). Sequencing reads were aligned to the 

mouse genome assembly, version mm9 (downloaded from UCSC 

http://genome.ucsc.edu), with SpliceMap [118, 119], included in the R/Bioconductor 

package QuasR, version 1.10.1. Approximately 80% of total reads were successfully 

mapped for each sample (Fig. M4 B). Subsequently, a count table with gene 

expression levels was generated using the qCount function from QuasR package and 

coordinates of RefSeq mRNA genes (http://genome.ucsc.edu, downloaded in 

December 2013). The expression level was defined as the number of reads that 

started within any annotated exon of a gene (exon-union model). Total counts per 

cell were approximately 810,000 for the Ly6D+ and 720,000 for the TN (Fig. M4 C), 

the so-called library size. Genes with no counts across all samples were filtered out 

from the analysis. At least one read per gene was detected for a total of 14,814 

genes across all cells, corresponding to approximately 3,500 expressed genes per cell 

in both Ly6D+ and TN (Fig. M4 D).  

During the quality control, cells having less than 60% of mapped reads, less 

than 200,000 counts, or less than 800 detected genes were filtered out from further 

analysis (dotted red lines in Fig. M4). In total, 365 (152 Ly6D+ and 213 TN) cells out of 

410 or 89% passed these criteria. 

Raw counts were normalized between cells and genes, expressed as 

fragments per kilobase of transcript per million mapped reads (FPKM). For 

visualization purposes, 1 was added to FPKM values and transformed to the log2-

scale (log2FPKM). 
 

5.8.5 Data analysis 
 

If not otherwise specified, the downstream analysis was performed using the 

1008 differentially expressed genes (DEG, FDR <0.05 and abs|log2(FoldChange)| >1) 

from the bulk RNA-seq experiment when comparing Ly6D+ with TN populations. 

Dimensionality reduction was performed with principal component analysis. 

Average gene expression was centred to zero and PCA plots were generated with the 

ggplot2 v2.1.0 R package. To visualize the degree of cell-to-cell heterogeneity, 

http://genome.ucsc.edu/
http://genome.ucsc.edu/
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annotated heatmap of sample pair-wise Pearson’s correlation coefficients was 

produced using the NMF v0.20.6 R package. Eight Ly6D+ cells were not considered 

for subsequent clustering because of their very low transcriptome correlation to any 

other cell, on average less than 0.3 (Fig. 11C left, in results section). Cell clustering 

was performed using the Partitioning Around Medoids (PAM) method implemented 

in the cluster v2.0.4 R package [124]. Gene expression was first centered (mean=0) 

and distances were calculated from cell-to-cell Pearson’s correlation values using the 

Euclidean method. The optimal number of clusters was selected based on silhouette 

plot, which for Ly6D+ corresponded to K=2 (with average silhouette width of 0.10) 

and K=3 for the TN (with average silhouette width of 0.13). Cells with negative 

silhouette width values were excluded while the other 331 cells were assigned to 

one of the 5 groups. Heatmap with Pearson’s correlation coefficients among the 

clustered groups of cells was generated with the top 50% of genes with highest 

variance across analysed dataset (calculated as inter-quartile range) and visualized 

with the NMF v0.20.6 R package. 

Differential gene expression analysis to compare the clustered groups of cells 

was performed using the 14,528 detected expressed genes across the 331 single 

cells with edgeR v3.12.1 [121]. A prior count of 0.5 was added to all gene counts in 

order to minimize the large log-fold changes for genes with small number of counts. 

Genes with FDR <0.05 and abs|log2(FoldChange)| >1 were considered as 

differentially expressed. MA, Volcano, Violin and Scatter plots were produced using 

custom R scripts.  

Gene ontology enrichment analysis was performed with the DAVID v6.7 

bioinformatics database, based on Fisher’s Exact method [122, 123]. Gene ontology 

terms of DEGs were determined to be significantly enriched when Pval <0.05. 
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6. Results 
 

6.1 EPLM progenitor population can be divided into at least 4 

subpopulations 

 

We have previously characterized an uncommitted and multipotent 

haematopoietic B220+ CD117int CD19- NK1.1- progenitor with combined lymphoid 

and myeloid potential that we have called “Early Progenitor with Lymphoid and 

Myeloid potential” (EPLM) [33]. When describing progenitor cells that apparently 

have multiple lineage potentials, there is a continuing debate concerning whether 

individual cells within the seemingly phenotypically homogeneous population are 

truly multipotent or whether the population contains a mixture of cells each with 

different lineage potentials. With the aim of addressing this question, we decided to 

examine the expression of additional markers known to be associated with different 

haematopoietic lineages. These markers were Ly6D, SiglecH and CD11c. Ly6D 

(Lymphocyte Antigen 6 Complex, Locus D) is a receptor with unknown function used 

as a specification marker for early B-cell stages. Indeed, a Ly6D+ subpopulation of 

CLP has already been shown to have a B-cell bias [125, 126]. SiglecH is an 

immunoglobulin-like lectin receptor expressed on mouse plasmacytoid dendritic 

cells (pDC) that upon binding to sialic acid carbohydrates modulates the secretion of 

type I interferons and is commonly used as a pDC marker [127, 128]. CD11c (integrin 

alpha-X) associates with CD18 (integrin beta-2 chain) forming the complex 

CD11c/CD18 that is the receptor for the complement component iC3b as well as for 

fibrinogen and is also involved in cell-cell interactions during inflammatory 

responses. It is important for monocyte adhesion and is used as a murine marker for 

conventional dendritic cells (cDC) [129]. 

To test the expression of the selected markers, we combined the reported 

EPLM gating strategy to define B220+ CD117int CD19- NK1.1- EPLM and included Ly6D 

and SiglecH. This staining combination resulted in the identification of three EPLM 

fractions (F) both in WT and Flt3Ltg mice. Thus, F1 was Ly6D+ SiglecH-, F2 Ly6D+ 

SiglecH+, and F3 Ly6D- SiglecH- (Fig. 4A,B upper panels).  
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Figure 4. Heterogeneous expression of Ly6D, SiglecH and CD11c on EPLM progenitor population (B220
+
 

CD117
int

 CD19
-
 NK1.1

-
). (A,B) Representative FACS plots of EPLM from the BM (2 femurs) of WT (A) and Flt3Ltg 

mice (B) with the addition of Ly6D and SiglecH identifying three fractions (illustrated as F1, F2 and F3). CD11c 
expression in each of the fractions is shown in the second row. (C) Percentage of CD11c

+
 cells in each EPLM 

fraction from WT (n=5) and Flt3Ltg (n=5) mice. Bars show mean±SEM. (D) Representative FACS plot showing the 
gating strategy for the four EPLM subpopulations from WT (upper panel) and Flt3Ltg (lower panel) mice. (E) 
Summary of EPLM subpopulations as percentages (upper panel) or numbers (lower panel) from WT (n=5) and 
Flt3Ltg (n=5) mice. Shown as mean±SEM. Two-tailed unpaired Student t tests, *P ≤ 0.05, **P ≤ 0.01. 
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Subsequently, we explored CD11c expression by these three fractions in both 

mouse strains. Results indicated that F1 contained only 5.1±0.5% CD11c+ cells 

whereas F2 were mostly CD11c+ (85.2±2.7%). Interestingly, F3 were heterogeneous 

for CD11c expression, with about one third (28.1±2.7%) being CD11c+ in WT but 

considerably more (43.1±9.1%) in Flt3Ltg mice (Fig. 4A,B lower panels and Fig. 4C). 

This result indicates that F3 can be further subdivided into two CD11c+ and CD11c- 

fractions resulting in four major EPLM subpopulations. In Fig. 4D and in subsequent 

experiments, we represent the 4 EPLM subpopulations in a simplified manner by 

staining for Ly6D in one colour and both SiglecH and CD11c using antibodies 

conjugated with the same fluorochromes in the other. We can thus distinguish the 

four EPLM subpopulations as: the Ly6D+ SiglecH- CD11c- (Ly6D+) single positive 

subpopulation in red, the Ly6D- SiglecH- CD11c- triple negative (TN) in green, the 

Ly6D+ SiglecH+ CD11c+ triple positive in blue. Since this is the only subpopulation that 

contains significant numbers of SiglecH+ cells (Fig. 4A,B upper right cytogram), they 

are referred to as SiglecH+. Finally, the Ly6D- SiglecH- CD11c+ (CD11c+) subpopulation 

is shown in orange (Fig. 4D,E). In the bone marrow of WT mice, EPLM 

subpopulations are present in limited numbers (2.7±0.8x103 Ly6D+ cells, 2.3±0.7x103 

TN cells, 3±0.3x103 SiglecH+ cells, and only 1.1±0.3x103 CD11c+ cells). In marked 

contrast, Flt3Ltg mice contain two orders of magnitude more of each EPLM 

subpopulation (2.4±0.9x105 Ly6D+, 0.7±0.2x105 TN, 1.8±1x105 SiglecH+, and only 

0.5±0.2x105 CD11c+) (Fig. 4E lower panel) with minor modifications in their relative 

frequencies (Fig. 4E upper panel). We have previously shown [109] that Flt3Ltg mice 

had dramatically increased numbers of EPLM and this result shows that all four 

subpopulations are affected almost equally.  

In conclusion, based on the expression of Ly6D, SiglecH and CD11c, the EPLM 

progenitor population can be further subdivided into at least four subpopulations 

whose numbers all increase significantly in Flt3Ltg mice. 
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6.2 The heterogeneity of EPLM is reflected in different sets of 

potentials for each subpopulation 

 

 We next wanted to assess if the heterogeneous expression of Ly6D, SiglecH 

and CD11c cell surface markers by EPLM reflects distinct developmental potentials. 

Several clonal in vitro culture systems exist to quantify the capacity of progenitor 

cells to differentiate into distinct lineages. These systems use stromal cells and 

addition of exogenous factors known to support differentiation towards a particular 

lineage. Stromal cell clones supporting B lymphopoiesis and/or myelopoiesis are well 

established and extensively used. ST2 stromal cells producing macrophage colony-

stimulating factor (M-CSF) support both B lymphopoiesis and/or myelopoiesis 

although the latter one is favoured [112, 130]. B-cell development from 

haematopoietic progenitors is much more efficient on OP9 stromal cells [113, 131] 

because they are derived from the bone marrow of M-CSF deficient op/op mice 

Figure 5. Distinct in vitro developmental potentials for the EPLM subpopulations. Limiting dilution analysis of 
Ly6D

+
, TN, SiglecH

+
 and CD11c

+
 for B-cell (A), T-cell (B) or myeloid (C) potentials. EPLM subpopulations were 

sorted from WT (10 pooled mice, upper panels) and Flt3Ltg (2-pooled mice, lower panels) and plated at the 
indicated concentrations on either OP9 stromal cells together with IL-7 (A), OP9-DL1 stromal cells in the 
presence of IL-7 (B), or ST2 stromal cells (C). After 10 days (for OP9 cell cultures) or 15 days (for OP9-DL1 and 
ST2 cell cultures), B-cell, T-cell or myeloid clones were scored using an inverted microscope and, when unclear, 
clone type was confirmed by flow cytometry. TN and CD11c

+
 subsets from WT were plated at only 3 cell 

concentrations due to the limited number of cells. The lowest concentration of the two previous subsets was 
plated in 96 replicates while all the rest in 48. One representative experiment is shown and Table 2 
summarizes the independent experiments performed and indicates the n repetitions for each subpopulation, 
mice and condition. 
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[132]. In the absence of M-CSF, macrophage growth is not supported thereby 

revealing lymphocyte potential [130]. This culture system is normally supplemented 

with IL-7 and/or other cytokines promoting cell growth such as Flt3L or SCF. Even 

though B-cell and myeloid propagation was for a long time successfully achieved in 

monolayer stromal cell cultures, a T-cell system had not been reported. Then, in 

2002 Zuniga-Pflücker and colleagues showed for the first time the efficient and long-

term commitment and propagation of T cells in a simple stromal cell monolayer 

system [114, 133]. Use was made of the well-established OP9 stromal cell line, but in 

addition, since the Delta-Notch system had been identified as instructing T-cell 

lineage choice [134], OP9 cells were transduced with the Notch-ligand Delta-like 1 

(DL1). This generated the OP9-DL1 stromal cell line, which efficiently promoted early 

stages of T-cell development. 

We made use of the above described culture systems and performed a 

limiting dilution (LD) assay in order to examine the B-cell, T-cell and myeloid 

precursor frequencies of the four EPLM subpopulations. For that, we sorted them 

from WT or Flt3Ltg mice and plated graded number of cells with the appropriate 

cocktail of stromal cells and cytokines to support B-cell (OP9 + IL7), T-cell (OP9-DL1 + 

IL7) or myeloid (ST2) differentiation. After 10 days (for OP9 cell cultures) or 15 days 

(for OP9-DL1 and ST2 cell cultures), B-cell, T-cell or myeloid clones were scored using 

an inverted microscope and, when unclear, clone type was confirmed phenotypically 

by flow cytometry. The result of a representative experiment is shown in Fig. 5 and a 

summary of all experiments in Table 2. Under B cell conditions, Ly6D+ and TN 

Table 2. Summary table containing mean frequencies of progenitors with B-cell, T-cell and myeloid potential. 
Number of independent experiments is shown (n) for the different populations. 

B-cell	

potential

T-cell	

potential

Myeloid	

potential

B-cell	

potential

T-cell	

potential

Myeloid	

potential

n 11 6 7 8 4 5

mean	freq 1	in	6.4 1	in	38 <	1	in	99 1	in	11 1	in	4.3 <	1	in	500

n 4 3 6 3 2 3

mean	freq <	1	in	500 <	1	in	500 1	in	14 <	1	in	500 <	1	in	500 1	in	30

n 7 3 3 6 3 4

mean	freq 1	in	34 1	in	55 1	in	25 1	in	70 1	in	8.6 1	in	15

n 1 1 1 3 3 3

mean	freq <	1	in	500 <	1	in	500 1	in	5 <	1	in	500 <	1	in	500 1	in	20CD11c+

WT Flt3Ltg

Ly6D+

SiglecH+

TN
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subpopulations generated colonies, thus revealing B-cell potential. The B-cell 

precursor frequency was higher in the Ly6D+ cells (about 1 in 5) than in the TN 

(about 1 in 20) and overall greater for both subpopulations in WT mice compared 

with their respective counterparts in Flt3Ltg mice (1 in 12 for Ly6D+ and about 1 in 90 

for TN) (Fig. 5A). CD11c and SiglecH+ subpopulations did not generate colonies either 

under B-cell or T-cell conditions (Fig. 5A,B). Ly6D+ and TN cells from WT mice 

generated T cells at low frequencies whereas in Flt3Ltg mice, frequencies were 

notably increased (Fig. 5B). When EPLM subpopulations were plated on ST2 stromal 

cells, the Ly6D+ subpopulation did not generate myeloid clones, whereas all other 

EPLM subpopulations, from either WT or Flt3Ltg mice, possessed myeloid potentials 

although at different frequencies (Fig. 5C). Therefore, each EPLM subpopulation has 

different sets of potentials. Whereas Ly6D+ cells are lymphoid restricted, TN show 

trilineage developmental potential. The SiglecH+ and CD11c+ subpopulations do not 

show lymphoid potential and as their cell-surface marker profile suggests, they could 

be (at least a fraction of them) already committed to the pDC and cDC fates 

respectively. Since in our laboratory we are mostly interested in studying the 

lymphoid development of EPLM, for the rest of the project we focused on the Ly6D+ 

and TN subpopulations.  

We therefore tested the in vivo capacity of Ly6D+ and TN progenitors to 

reconstitute the B- and T-cell compartments of lymphopenic mice. The two EPLM 

subpopulations were sorted from WT or Flt3Ltg mice and equal numbers (4x103 from 

WT and 2x104 from Flt3Ltg) transferred into sub-lethally irradiated Rag2-deficient 

recipient mice [110]. Rag2-deficient mice lack mature B and T lymphocytes due to 

their inability to initiate V(D)J rearrangement. Therefore, the developmental stages 

observed after antigen receptor rearrangement are generated from donor cells. 

Flow cytometry of the spleen at 3 weeks following transfer revealed that B-cell 

compartments were significantly reconstituted in all mice. Both Ly6D+ and TN 

progenitors either from WT or Flt3Ltg generated CD19+ IgM+ B cells (Fig. 6A,C). 

Additional analysis of the spleen CD19+ cells revealed the presence of both CD21high 

CD23- marginal zone B cells (MZB) and CD21int CD23+ follicular B cells (FB) (Fig. 6A 

lower panels). Therefore, although TN cells present less B-cell precursor frequency in 

vitro, both populations have in vivo B-cell developmental potential. Analysis of the 
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Figure 6. Reconstitution of B- and T-cell compartments in sub-lethally irradiated B6 Rag2-deficient mice with 
Ly6D

+
 or TN cells from WT or Flt3Ltg mice. (A) CD19 versus IgM expression on spleen cells 3 weeks after 

transfer of 4x10
3
 WT derived (upper panels) or 2x10

4
 Flt3Ltg derived (lower panels) Ly6D

+
 and TN 

subpopulations. Also CD21 and CD23 expression on gated CD19
+
 spleen cells are shown. (B) CD4 and CD8 

expression on thymocytes 3 weeks after transfer of 4x10
3
 WT derived (upper panels) or 2x10

4
 Flt3Ltg derived 

(lower panels) Ly6D
+
 and TN subpopulations. Also TCRβ expression on DN, DP, CD8

+
 and CD4

+
 gated 

thymocytes is shown. (C,D) Quantification of CD19
+
 IgM

+
 (C), CD4

+
 and CD8

+
 (D) populations presented as 

frequency of live cells. Ly6D
+
 WT (n=5), TN WT (n=4), Ly6D

+
 Flt3Ltg (n=5), TN Flt3Ltg (n=5). Shown as 

mean±SEM. 
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thymus showed that, in line with the in vitro observations, cells derived from Flt3Ltg 

were much more efficient at reconstituting the thymus than those from WT mice 

(Fig. 6B,D). Thus, WT derived progenitors could only reconstitute the thymus of one 

out of nine mice whereas progenitors from Flt3Ltg mice reconstituted seven out of 

ten animals (Fig. 6D). Comparing the two EPLM subpopulations, in WT mice only the 

Ly6D+ subpopulation had any T cell reconstitution potential (1/5 vs 0/5) whereas in 

Flt3Ltg mice, both subpopulations had quite robust reconstitution potential (4/5 vs 

3/5) (Fig. 6D). In the T-cell reconstituted thymus, we observed normal levels of CD4+ 

CD8+ double positive (DP), and CD4+ or CD8+ single positive T cells. Simultaneous 

staining for TCRβ indicated that, like in the normal thymus, TCRβ expression on DP 

was lower compared to that on CD4+ cells, and that the CD8+ population contained a 

mixture of TCRβ+ and TCRβlow “immature” CD8+ cells (Fig. 6B). Moreover, CD4- CD8- 

double negative (DN) thymocytes were largely TCRβ- and only a small fraction was 

TCRβ+. Interestingly, although Ly6D+ Flt3Ltg cells showed higher in vitro T cell 

potential (Fig. 6A,B lower panels), they reconstituted better the B-cell than the T-cell 

compartment.  

 

6.3 Ly6D+ EPLM has a lymphoid whereas TN a myeloid genetic 

signature 

 

In order to characterize EPLM subpopulations at the molecular level, we 

performed gene expression profiling (RNA-seq) of bulk populations of Ly6D+ and TN 

EPLM subpopulations as well as CD117+ CD19+ Pro-B cells from Flt3Ltg mice. We 

included the latter population as an already B-cell lineage committed bone marrow 

population and thus downstream of EPLMs. Ly6D+ and TN were sorted as indicated 

in Fig. 4D. All populations were sorted four separate times from the pooled bone 

marrow of two 6-8 week-old male Flt3Ltg mice, in which EPLM numbers are 

significantly increased. All samples were processed as explained in Materials and 

Methods and all passed the quality control (Fig. M1 and Fig. M2). Moreover, all 

biological replicates presented high transcriptome correlation (> r=0.990) (Fig. 7). 

Therefore, we proceeded to apply Principal Component Analysis (PCA) to the data 
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and calculated sample pair-wise Pearson’s correlations. The highest variation among 

samples (71.13% reflected in PC1 axis) accounted for their developmental stage; 

with the uncommitted EPLM subpopulation on the left and the committed Pro-B 

cells on the right (Fig. 8A). Pair-wise transcriptome correlation revealed that, in line 

with PCA, Ly6D+ and TN were the two populations with the highest transcriptome 

association (r=0.973) whereas from the two EPLM subpopulations, the Ly6D+ subset 

was the closest to Pro-B cells (r=0.918 Ly6D+/Pro-B versus r=0.886 TN/Pro-B) and 

therefore to the B-cell lineage (Fig. 8B). 

We further explored transcriptome differences by performing differential 

expression analysis and this is summarised in the table in Fig. 8C showing the total 

number of Differentially Expressed Genes (DEG) for each pair-wise comparison as 

well as the number and the fraction corresponding to up-regulated and down-

regulated genes. To be considered as DEG, the gene expression had to be at least 

two times higher or lower in one population compared with the other and this 

change in expression had to be significant (corrected p-value <0.05). A considerable 

Figure 7. Quality of the Ly6D
+
, TN and Pro-B replicates. (A) Scatterplots with individual expression profiles of two 

representative biological replicates for each population. (B) Heatmaps with pair-wise Pearson’s transcriptome 
correlation per population. 
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fraction (21% and 17%) of genes was differentially expressed when comparing Pro-B 

with either Ly6D+ or TN subpopulations respectively whereas only about 6% (1008 

genes) presented a significant change in expression between the two EPLM 

subpopulations (Fig. 8C), thus suggesting again that Ly6D+ and TN cells are more 

related to each other than to Pro-B cells. In addition, the graphical representation of 

the differential expression analysis (volcano plots, Fig. 8D) also revealed that the fold 

changes and significances of DEGs in the Ly6D+vsTN was less (Fig. 8D right panel) 

Figure 8. Of the two EPLM subpopulations, Ly6D
+ 

cells
 
are closer to the Pro-B cells. (A) Principal component 

analysis and (B) heatmap with pair-wise Pearson’s transcriptome correlation of Ly6D
+
, TN and Pro-B replicates 

and averaged populations respectively. The top 50% of genes with highest variance across analysed dataset 
(calculated as inter-quartile range) were used. (C) Summary table of differential expression analysis containing 
the differentially expressed, up-regulated and down-regulated genes in number and percentage of each pair-wise 
transcriptome comparison. Provided excel file 1 (1_DEGlists_bulkRNAseq) contains the complete lists of DEG. (D) 
Volcano plot (plotted significance against expression ratio) of each pair-wise transcriptome comparison. Each 
dot/star represents a gene. Grey dots: not DEGs; red star: up-regulated genes; blue stars: down-regulated genes. 
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than when they were individually compared with Pro-B (Fig. 8D left and middle 

panels). Interestingly, there was a similar fraction of up-regulated and down-

regulated genes in each comparison, indicating no predominant activation or 

repression of genetic programmes from one haematopoietic stage to the other (Fig. 

8C). 

 

 

We next investigated in detail the genetic differences between the 

apparently transcriptomically related Ly6D+ and TN EPLM subpopulations. For this, 

we studied the nature of the DEG (Ly6D+ vs TN) by gene ontology (GO) enrichment 

analysis. This analysis revealed that the 500 up-regulated genes in Ly6D+ cells were 

enriched for lymphoid biological processes such as activation, proliferation and 

differentiation of B and T cells, VDJ recombination and immunoglobulin production… 

(Table 3, up). Moreover, the genes that accounted for B-cell related biological 

Table 3. Selection of enriched Biological Processes (eBP) in up-regulated and down-regulated genes of the Ly6D
+
 

versus TN comparison. Complete list in excel file 2 (2_eBP_Ly6DvsTN). 
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processes were highly expressed and most of them within the top 50 of up-regulated 

genes (Fig. 9A, upper panel). Among these, were genes encoding the B-cell related 

transcription factors Pax5, Ebf1 and Pou2af1 (Obf1), the recombinase machinery 

Figure 9. Ly6D
+
 and TN EPLM subpopulations present distinct genetic signatures. (A) MA plot (plotted expression 

ratio against average expression intensity) of Ly6D
+
 vs TN transcriptome comparison. B-cell (upper panel), T-cell 

(middle panel) and myeloid (lower panel) related genes are indicated. Grey labels correspond to characteristic 
genes of both B and T cells. (B) Heatmap of expression of lineage-specific genes indicated in A. The colour 
gradient illustrates the centred gene expression level (log2CPM, mean=0 across all samples and per gene). 
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Rag1 and Rag2, the surrogate light chains VpreB1, VpreB2, VpreB3 and Igll1 (lambda 

5) of the pre B-cell receptor (pre-BCR), the signalling immunoglobulin α (Cd79a) and 

β (Cd79b) chains of the pre-BCR complex, the non-receptor tyrosine kinase Blk 

involved in BCR signaling, the receptor for interleukin-7 Il7r and other lymphoid 

related genes (Dntt, Lax and, as expected, Ly6d itself). Interestingly, although Ly6D+ 

cells were sorted as CD19- cells, mRNA expression of the B cell co-receptor CD19 was 

already detected. Taken together, these results suggest that qualitatively, Ly6D+ cells 

express a B-cell genetic signature characteristic of CD19+ Pro-B cell stage. However, 

quantitatively, the overall expression of these genes is markedly lower than Pro-B 

cells (Fig. 9B). In contrast to B-cell related genes, the genes accounting for T-cell 

related biological processes in the 500 up-regulated genes in Ly6D+ cells presented 

lower expression ratios and variable expression intensities overall (Fig. 9A, middle 

panel). Among these genes were the T-cell transcription factor Bcl11b, the Notch1 

receptor, a master regulator of T-cell commitment whose signaling represses the 

expression of genes related with other lineages, the signalling CD3 zeta chain 

(Cd247) of the T-cell receptor (TCR) complex, genes involved in pre-TCR signalling 

such as Lck (non-receptor tyrosine kinase) Rhoh (related GTP-binding protein) Zap70 

(tyrosine kinase) and Sla2 (Src-like-adapter protein), Trat1 (an adaptor protein that 

stabilizes the TCR/CD3 complex at the surface of T-cells), the tnfsf11 cytokine and 

Nlrc3 (positive regulators of T cell activation), and the inhibitory T-cell related 

receptors Ctla4 and Ctla2b. This T-cell genetic signature is exclusive to the Ly6D+ 

subpopulation (Fig. 9B) and is the “feature” that separates them from both the Pro-B 

and TN cells along the PC2 of the principal component analysis (Fig. 8A). 

Analysis of the 500 down-regulated genes revealed that they were largely 

related with myeloid and innate biological processes such as inflammation, 

phagocytosis, responses to bacteria, yeast and fungi, and macrophage activation 

(Table 3, down). Some key genes accounting for these processes were Mpo, Elane 

and Ctsg (enzymes with microbicidal activity), Prtn3 (a serine protease that degrades 

elastin, fibronectin, laminin, vitronectin, and collagen), the phagocytic Fc receptors 

Fcgr2b, Fcgrt, Fcer1g and Fcgr1, the pathogen recognition receptor Tlr1 (Toll-like 

receptor 1), Gata2 (transcriptional regulator of phagocytosis), Clec7a (involved in 

TLR2-mediated inflammatory responses), the polysaccharide binding protein Lbp and 
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the chemokine receptor Cx3cr1 involved in myeloid leukocyte activation (Fig. 9A, 

lower panel, and B). Therefore, TN cells would appear to present a myeloid genetic 

signature.  

From this transcriptomic analysis, we conclude that i) EPLM subpopulations 

are distinct from one another and are both distinct from Pro-B cells ii) of the two 

EPLM subsets, Ly6D+ cells are closer to Pro-B cells iii) whereas the Ly6D+ subset has a 

largely lymphoid genetic signature, that of the TN subset is more myeloid.  
 

6.4 EPLM subpopulations are developmentally related 
 

 We have seen that Ly6D+ and TN cells have distinct genetic signatures and 

different in vitro developmental potentials. However, they are fractions of the 

original EPLM population. The question arose whether as a population EPLM are 

composed of developmentally unrelated fractions or whether there is a precursor-

product relationship between them. To address this question, we sorted the two 

EPLM subpopulations from Flt3Ltg mice and cultured them in the presence of Flt3L 

and IL-7. An initial number of 5x104 cells were plated and from day 2 to day 6 we 

monitored the emergence of Ly6D+ and CD19+ cells by flow cytometry. We observed 

that, already after 48 hours, almost half of the cells sorted as Ly6D negative (TN), up-

regulated Ly6D (Fig. 10A lower left panel). This indicates that the TN EPLM 

Figure 10. TN subpopulation is the precursor of the 
Ly6D

+
 subpopulation and differentiates into B cells 

with slower kinetics. Bulk culture of initially plated 
5x10

4
 Ly6D

+
 or TN cells from Flt3Ltg supplemented 

with Flt3L and IL-7. From day 2 to day 6 one well 
containing cells from each population was analyzed by 
flow cytometry for Ly6D and CD19 expression (A) and 
the total number of cells was counted to monitor the 
number of CD19

+
 B cells (B). One representative 

experiment is shown out of 3. 
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subpopulation can give rise to the Ly6D+ subset. B cells expressing CD19 were 

detected around day 4 reaching 24% of cells at day 6, whereas by this time, Ly6D 

expression had decreased (Fig. 10A lower panels). In contrast, Ly6D+ cells had 

differentiated into B cells already by day 2 and 75% were CD19+ at day 6 (Fig. 10A 

upper panels). Moreover, the total number of B cells generated from Ly6D+ was 

dramatically higher than those generated from TN cells (Fig. 10B). These results 

indicated that, as observed in the limiting dilution assays, Ly6D+ cells have higher B-

cell precursor frequency and differentiate into B cells with faster kinetics compared 

with TN. The slower kinetics observed in the TN cells indicate that the TN are the 

direct precursors of the Ly6D+ and, therefore, they might first move to the Ly6D+ 

stage before differentiating into B cells.  

 

6.5 Single-cell RNA sequencing reveals distinct degree of molecular 

heterogeneity of Ly6D+ and TN EPLM subpopulations 

 

As a population, the TN subset of EPLM would appear to have multilineage 

developmental potential (Fig. 5) prompting the question whether they are 

composed of a mixture of cells. If this were the case, which fraction of TN EPLM 

constitutes the precursor of the Ly6D+ fraction? Therefore, we further explored the 

heterogeneity of EPLM subpopulations by performing single-cell RNA sequencing. 

Ly6D+ (B220+ CD117int CD19- NK1.1- Ly6D+ SiglecH- CD11c-) and TN (B220+ CD117int 

CD19- NK1.1- Ly6D- SiglecH- CD11c-) were sorted from the same Flt3Ltg mice used for 

the bulk RNA sequencing and utilized for the capture of single cells with the C1 

Fluidigm system. A total of 178 Ly6D+ and 232 TN single cells were captured (Fig. M3 

C) and their subsequent library preparation and sequencing were performed as 

explained in Materials and Methods. During the quality control of the sequenced 

data only cells with more than 60% of mapped reads, at least 2x105 counts and more 

than 800 detected genes were selected for further analysis, resulting in 152 Ly6D+ 

and 213 TN single cells (Fig. M4). In Principal Component Analysis cells did not 

cluster according to the chip they were captured, thus revealing that there was no 

batch effect (Fig. 11A). Instead, in the same PCA with the cells coloured according 
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to their cell type, we found that the first component (PC1 axis) partially segregated 

the TN (on the left) from the Ly6D+ (on the right) with some cells overlapping in the 

middle (Fig. 11B and attached 3D_PCAplot_2), suggesting that the two EPLM 

subpopulations, or at least a fraction, are transcriptionally related. PC2 (Fig. 11B) and 

PC3 (attached 3D_PCAplot_2) showed that Ly6D+ cells are distributed along a single 

pathway that is relatively homogeneous whereas the TN cells are more differently 

distributed and exhibit a branching pattern, thereby indicating that they might be 

more heterogeneous. In order to better address this, we quantified the degree of 

cell-to-cell heterogeneity by calculating the cell pair-wise Pearson’s correlation 

coefficients and generating a correlation heatmap for each cell type (Fig. 11C). Ly6D+ 

single cells showed an overall higher transcriptome correlation (predominant 

yellow/orange colour and a mean correlation value of 0.42, Fig. 11C left) compared 

with the TN single cells (predominant blue colour and a mean correlation value of 

Figure 11. Transcriptomic heterogeneity of TN and Ly6D
+
 EPLM subpopulations by single-cell RNA sequencing. 

(A,B) Principal component analysis of 152 Ly6D
+
 and 213 TN single cells using as gene set the 1008 differentially 

expressed genes from the bulk RNA-seq experiment when comparing Ly6D
+
 with TN populations. Cells are 

coloured according to the chip they were captured (A) or the cell type (B). Dynamic 3D PCA plots are provided in 
the attached documents: 3D_PCAplot_1 and 3D_PCAplot_2. (C) Heatmap with cell-to-cell Pearson’s 
transcriptome correlation of Ly6D

+
 (left) and TN (right) cells calculated with the same gene set as for the PCA. 

Mean correlation value (mean cor) and standard deviation (sd) is shown. 
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0.32, Fig. 11C right). Moreover, Ly6D+ cells showed a seemingly homogeneous 

correlation whereas the TN cells presented clusters of cells transcriptomically related 

to each other (yellow) but very different to the rest (blue). These results indicate 

that the TN EPLM subpopulation has in turn a heterogeneous transcriptome and 

might be composed by a mixture of cells.  

 

6.6 Identification of two Ly6D+ and three TN subgroups with distinct 

genetic signatures 

 

The next question after identifying a heterogeneous subset was to unravel 

how many subgroups did it contain. Therefore, we performed cell clustering using 

the Partioning Around Medoids (PAM) method as explained in Materials and 

Methods. The analysis revealed two robust groups (G1 and G2) of Ly6D+ and three  

(G1, G2 and G3) of TN cells as illustrated in the PCA plot coloured according to the 

subgroups (Fig. 12A and attached 3D_PCAplot_3). Thus, the Ly6D+ population is 

further subdivided into G1 Ly6D+, composed of 56 cells (red) and G2 Ly6D+, 

composed of 82 cells (orange), whereas the TN population is subdivided into G1 TN 

with 85 cells (purple), G2 TN composed of 52 cells (blue) and G3 TN with 56 cells 

(green). In order to explore the degree of similarity or divergence among the 

clustered groups of cells we calculated their pair-wise transcriptome correlation, 

which revealed that the two Ly6D+ subgroups had higher transcriptome association 

(R=0.696) than those observed between any of the TN subgroups (R=0.582 G1/G2, 

R=0.662 G1/G3, R=0.666 G2/G3) (Fig. 12B). Interestingly, the two groups of cells with 

the highest transcriptome correlation are part of different EPLM subpopulations, 

namely the G2 Ly6D+ and G1 TN with R=0.721 (Fig. 12B), thereby suggesting that the 

G1 TN (purple cells in Fig. 12A) group could be the fraction of the TN population 

that, as we have observed in culture, is the precursor of the Ly6D+ cells (circles in Fig. 

12A). Finally, the subgroup having the most distinct transcriptome profile is the G2 

TN (Fig. 12B left column, and blue cells in Fig.12A). 

We further studied genetic differences by applying differential expression 

analysis to the clustered groups of cells. The table in Fig. 12C shows all the 
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comparisons analysed reporting the number and percentage of DEG (FDR <0.05 and 

abs|log2(FoldChange)| >1), up-regulated and down-regulated genes. The complete 

table containing the DEG for each comparison is provided as a supplementary file 

(3_DEGlists_scRNAseq). Less than 1% of the genes were differentially expressed 

when comparing the two Ly6D+ subgroups (Fig. 12C first row) and with overall low 

significance level (Fig. 12D, left). In contrast, comparisons among the TN subgroups 

Figure 12. Cell clustering identifies three TN and two Ly6D
+
 distinct subgroups. (A) PCA with shape according to 

cell type (circles Ly6D
+
, triangles TN) and colour according to the subgroups revealed by PAM clustering method 

(materials and methods). Text boxes indicate the group name and the number of cells. Grey: excluded cells due 
to low correlation or negative width silhouette values as explained in materials and methods. 3D_PCAplot_3 
attached. (B) Heatmap with pair-wise Pearson’s transcriptome correlation of Ly6D

+
 and TN subgroups. Average 

expression across all detected genes was calculated for each of the five cell clusters, and the top 50% of genes 
with highest variance across analysed dataset (calculated as inter-quartile range) were used. (C) Summary table 
of differential expression analysis containing the differentially expressed, up-regulated and down-regulated 
genes in number and percentage of the indicated transcriptome comparisons. Provided excel file 
(3_DEGlists_scRNAseq) contains the complete lists of DEG. (D) Volcano plot (plotted significance against 
expression ratio) of the indicated pair-wise transcriptome comparisons. Each dot/star represents a gene. Grey 
dots: not DEGs; red star: up-regulated genes; blue stars: down-regulated genes. 
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yielded more differentially expressed genes (1-6%, Fig. 12C second to fourth rows), 

and with overall higher significance levels and fold ratios (Fig. 12D). Of note, when 

comparing the two subgroups with the highest transcriptome correlation, namely G2 

Ly6D+ and G1 TN, only 25 genes were differentially expressed with Ly6d, as 

expected, on the top (complete DEG lists in 3_DEGlists_scRNAseq excel file), 

therefore confirming that these two subgroups of cells sorted as two phenotypically 

distinct EPLM subpopulations (Ly6D+ and Ly6D-) are related. 

We next performed a detailed screening based on the DEG lists in order to 

unravel the gene expression patterns of each subgroup. Fig. 13 (A-C) shows a 

collection of genes exclusively or more highly expressed in one of the clustered 

groups of cells. The G1 Ly6D+ red subgroup up-regulates genes (Fig. 13A) related 

with B-cell biological processes (Table 4A). Although we have previously shown that 

the entire Ly6D+ population is lymphoid restricted (Fig. 5) and has a strong B-cell 

genetic signature (Fig. 9A upper panel), single-cell transcriptomic analysis reveals 

that this signature is mostly contained within the red subgroup, as is exemplified by 

CD19 expression (Fig. 13A), a hallmark of B-lymphopoiesis. The G2 TN blue cluster of 

cells up-regulates genes characteristic of the cDC lineage such as the genes encoding 

the α and β chains of the major histocompatibility complex (MHC) class II (H2-Aa, 

H2-Ab1, H2-Eb1), the MHC class II-associated invariant chain (Ii, Cd74), the 

transcriptional co-activator of MHC class II genes (Ciita), the E3 ligase (March1) that 

ubiquitinates the cytoplasmic tail of MHC class II regulating their steady-state level of 

expression, the transcriptional regulators Id2 and Batf3 (expressed by cDC and 

necessary for the development of CD8α cDC) and the integrin Itgb7 related with 

leukocyte migration to mucosal tissues (Fig. 13B). Apart from antigen processing and 

presentation biological processes, the genes up-regulated in the G2 TN cells are also 

involved in actin cytoskeleton organization, leukocyte adhesion, actin 

polymerizations and depolymerisation, protein complex assembly, and regulation of 

cellular component size (Table 4B and lists of DEG (G1vsG2)TN and (G2vsG3)TN in 

excel file 3_DEGlists_scRNAseq). This suggests that the blue group of clustered cells, 

which is the most transcriptionally different to the rest (Fig. 12), might already be 

expressing the intracellular machinery necessary to acquire the dendritic cell 

morphology and the antigen presenting function characteristic of mature cDC. The 
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G3 TN green subgroup mostly up-regulates myeloid related genes (Fig. 13C) involved 

in innate biological processes (Table 4C) characteristic of the entire TN population 

(Fig. 9A lower panel), thus suggesting that this might be the fraction of TN largely 

containing the observed myeloid potential. However, although the G3 TN subset is 

myeloid biased, its genetic signature is not resolved to any specific myelomonocytic 

cell. Some genes such as myeloperoxidase (Mpo) are characteristic of both 

monocyte/macrophages and granulocytes while others are exclusive to granulocytes 

(Elane, expressed in neutrophils) or monocyte/macrophages (chemokine Cx3cr1).  

Figure 13. Distinct genetic signatures of the Ly6D
+
 and TN subgroups. Violin plots with up-regulated or 

exclusively expressed genes in G1 Ly6D
+
 (A), G2 TN (B), G3 TN (C), (G1, G2) Ly6D

+
 and G1 TN (D), or G2 and G3 TN 

(E) subgroups. The median expression level is shown with a line when more than 50% of the cells express the 
indicated gene. G1 Ly6D

+
 (n=56), G2 Ly6D

+
 (n=82), G1 TN (n=85), G2 TN (n=52), G3 TN (n=56). 
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Interestingly, our screening did not find genes exclusively expressed in G2 

Ly6D+ orange cells or G1 TN purple cells. Instead, we observed that these two 

subsets follow the same pattern of expression, meaning that when a gene is 

expressed in one group it is also expressed in the other one (Fig. 13D) or it is down-

Table 4. Selection of enriched Biological Processes (eBP) in up-regulated genes of the G1 Ly6D
+
 (A), G2 TN (B), 

G3 TN (C), G1 TN (D) groups of cells compared with the subgroups indicated in brackets. Complete list in excel file 
(4_eBP_scRNAseq_subgroups). 
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regulated in both (Fig. 13E). Moreover, their pattern of expression is qualitatively 

linked to that of the red subset. Quantitatively, some genes are more highly 

expressed in the G1 Ly6D+ cells (Fig. 13D, upper panels) whereas others in the G2 

Ly6D+ and G1 TN cells (Fig. 13D, lower panels). Among the latter ones, there are T-

cell related genes such as Notch1, Lck, Rhoh, Ctla2a, Ctla2b, Gata3, Lat or Zap70 (Fig. 

13D, lower-left panels), thereby indicating that the orange and purple cells might 

retain T-cell developmental potential. As a conclusion, these two groups have a 

lymphoid genetic profile that is not resolved into any particular lineage, presenting B 

and T enriched biological processes (Table 4D) and co-expressing B-, T- and 

lymphoid-genes (Il7r, Dntt or Lax1, Fig. 13D upper left). Finally, there are genes 

expressed in both green and blue cells (Fig. 13E). These are mostly myeloid related 

genes (Csfr1, Ccr2, Ifi30 or Ctsh) because although the blue cells are some way along 

the cDC lineage, as immature DC they have myeloid properties such as phagocytosis. 

In summary, the single-cell transcriptomic analysis of the Ly6D+ and TN EPLM 

subpopulations reveals that: i) the clustered groups of cells have distinct genetic 

signatures (summarized in Fig. 14A) with a remarkable lympho-myeloid separation 

and ii) the degree of heterogeneity in the entire Ly6D+ and TN populations is 

reflected into their subgroups’ genetic profiles. Thus, both Ly6D+ subsets present a 

lymphoid genetic profile (with the G1 Ly6D+ cell in a more advanced developmental 

stage towards the B-cell lineage), whereas those of the TN present signatures to 

both the lymphoid (G1 TN) or myeloid (G2 and G3 TN) lineages, including some with 

a cDC lineage profile (G3 TN).  

 

6.7 Expression of lymphoid and myeloid genes is mutually exclusive in 

single EPLM cells 

 

We have observed that the same group of cells can co-express genes of 

different lymphoid or myeloid lineages. For instance, the orange G2 Ly6D+ cells 

express both the T-cell master regulator Notch1 and the early B-cell transcription 

factor Ebf1 (Fig. 13A,D), whereas the green G3 TN cells express both the neutrophil 

marker Elane and the macrophage colony-stimulating factor receptor Csf1r (Fig. 

13C,D). In order to elucidate if the previous expression patterns also occur at the 
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single-cell level, we plotted the expression levels of representative pairs of 

transcripts, each characteristic of different lineages. We observed that a large 

Figure 14. Mixed- and opposed-lineage states at the single-cell level. (A) Same PCA plot as in Fig. 12A 
summarizing the genetic signatures of the Ly6D

+ 
and TN subgroups revealed by our bioinformatic analysis. (B-D) 

Scatter plots showing the expression levels in log2FPKM of selected B and T (B), Neutrophil (Neu) and 
Monocyte/Macrophages (Mo/Mc) (C) or Myeloid (Mye) and Lymphoid (Lym) (D) lineage marker pairs in the 
Ly6D

+
 and TN subpopulations. Bottom legend indicates the colour and shape corresponding to each subgroup. 

Dotted vertical and horizontal lines delimit when the transcript of the indicated gene is detected (> 0). 
Percentages within the double-positive area of the plot indicate the fraction of cells co-expressing both genes to 
the number of cells expressing only one gene (top: gene on vertical axis; bottom: gene on horizontal axis). 
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proportion of the Ebf1+ cells also expressed Notch1 (75,6%, Fig. 14B left). The co-

expression level was also high when comparing the immunoglobulin α chain of the 

pre-BCR complex (Igα or Cd79a) with the T-cell tyrosine kinase Lck (75% of the 

CD79a+ and 28.5% of the LcK+ cells, Fig. 14B right) Moreover, when examining 

neutrophil-monocyte/macrophage lineages, a high proportion of single-cells co-

expressed Elane and Csfr1 (76.9% of the Elane+ and 23.3% of the Csfr1+ cells, Fig. 

14C). Therefore, the EPLM progenitor population contains single cells with mixed-

lineage states within the lymphoid (B and T) and myeloid (granulocyte and 

monocyte/macrophage) lineages. 

 
Figure 15. Marker candidates to isolate either the G1 TN (A) or the G1 Ly6D

+
 group of cells (B). PCA plots 

generated as in Fig. 12A. Colour represents the expression level in log2FPKM for each indicated gene per cell. 
Shape indicates the cell type: circles Ly6D

+
, triangles TN. 
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In contrast, we detected distinct lymphoid and myeloid specification for the 

EPLM subgroups, with the cells on the left part of the PCA plot myeloid primed (G2 

and G3 TN), whereas those in the centre (G1 TN and G2 Ly6D+) and on the right (G1 

Ly6D+), lymphoid primed (Fig. 14A). This marked lympho-myeloid separation was 

confirmed at the single-cell level since we did not encounter significant co-

expression of early myeloid (Cebpa and Ctsg) and lymphoid (Rag1 and Il7r) 

specification genes (Fig. 14D). The mutual exclusive expression of lymphoid and 

myeloid genes indicates that the EPLM might be composed of a mixture of cells with 

either lymphoid or myeloid priming and, that the multilineage developmental 

potential observed for the TN EPLM subpopulation is possibly not contained in the 

same single cell.  

 

6.8 Selective markers for each subgroup. TdT the best candidate to 

separate cells with lymphoid from those with myeloid genetic profiles  

 

After identifying selectively expressed markers for each of the clustered 

groups of cells (Fig. 13), we selected the best candidates in order to isolate the 

subgroups of interest and validate their genetic signatures with functional assays. 

We first isolated the G1 TN purple cells since we hypothesized that this TN fraction 

could be the precursor of the Ly6D+ EPLM subpopulation. For that, we performed 

and extensive screening using the PCA plot as a powerful way of interrogating the 

gene expression of any gene across the dataset and the best candidate was the Dntt 

gene (Fig. 15A upper left). In the PCA plot with cells coloured according to the Dntt 

transcript level (expressed in log2FPKM), we observe that all G1 and G2 Ly6D+ cells 

(circles) are Dntt positive as well as the vast majority of G1 TN cells (purple in Fig. 

13D upper left panel and Fig. 14A) with the exception of the small upper cluster of 

cells (box in the PCA plot in Fig. 15A). The Dntt gene encodes the Terminal 

deoxynucleotidyl Transferase (TdT) enzyme, a non-template polymerase that 

catalyzes the addition of random nucleotides at the junction of rearranged genes of 

both B- and T-cell receptors, thereby ensuring a highly diverse B- and T-cell receptor 

repertoire.  
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We checked the TdT protein expression by intracellular staining of the EPLM 

progenitor population and confirmed by flow cytometry that TdT can split the TN 

(B220+ CD117int CD19- NK1.1- Ly6D- SiglecH- CD11c-) cells into two almost equal 

fractions (50.5% TdT+) and that it is expressed by nearly all (87.8%) Ly6D+ EPLM (Fig. 

16A). Therefore, TdT is potentially an excellent marker to isolate the TN TdT+ cells, 

equivalent to the G2 TN cluster identified in our bioinformatics analysis, and to test if 

their developmental potential matches that of their observed lymphoid genetic 

signature. Unfortunately, TdT is not a cell-surface marker and cannot be directly 

used to sort TdT positive cells by FACS. Moreover, there is no TdT reporter mouse 

available. For that reason, our laboratory is in the process of generating a TdT 

Figure 16. Expression of TdT, CD115 and Ebf1 within the Ly6D
+
 and TN EPLM subpopulations. (A-C, upper 

panels) Representative FACS plot showing expression of TdT (A), CD115 (B) or Ebf1 (C) protein within the Ly6D
+
 

and TN EPLM of Flt3Ltg (A,B) or Flt3Ltg-Ebf1
ihCd2/+ 

(C). (A-C, lower panels) Percentages of TdT (A), CD115 (B) or 
Ebf1 (C) expressing Ly6D

+
 and TN EPLM from Flt3Ltg (n=3, A; n=4, B) or Flt3Ltg x Ebf1

ihCd2/+ 
(n=3, C). Shown as 

mean±SEM. (D) Construct to generate the Ebf1
ihCd2/+ 

reporter mice as reported in [112]. 
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reporter mouse, which will shed light to this and other ongoing projects in the near 

future.  

As an alternative to TdT, we screened for cell surface candidates that would 

enable us to enrich for the G1 TN fraction of cells. The most promising were those 

encoded by Csf1r, Ly6c2 and Ccr2 genes (Fig. 15A), whose expression is mostly 

overlapping with the blue G2 and green G3 TN cells (Fig. 13E and Fig. 14A). 

Moreover, as shown in the PCA plots (Fig. 15A) they are not expressed by exactly the 

same single cells, suggesting that they could be used in combination in order to 

exclude a major fraction of cells belonging to the G2 and G3 TN clusters. We 

attempted several protein surface stainings of the EPLM with individual or 

combinations of CD115 (or CSF-R, encoded by Csf1r gene), Ly6C2 and/or Ccr2 

markers. However, we only detected significant expression of the CD115 cell surface 

protein, with about one third of the TN EPLM subpopulation being CD115+ (Fig. 16B). 

We also wanted to isolate the G1 Ly6D+ red cells in order to validate their B-

cell specification. For that, the two best candidates were the B-cell transcription 

factor Ebf1 and the BCR complex-associated protein α chain Cd79a (Fig. 15B and Fig. 

13A). We had access to the Ebf1ihCd2/+ mice provided by Prof. Meinrad Busslinger and 

co-workers [111]. These mice had been generated by inserting an internal ribosome 

entry sequence (IRES)-hCd2 (ihCd2) reporter gene into the 3’ untranslated region of 

the Ebf1 gene (Fig. 16D). We next crossed the Ebf1ihCd2/+ reporter to the Flt3Ltg mice, 

thereby generating the Ebf1ihCd2/+-Flt3Ltg mice. EPLM staining of the latter mice 

revealed that on average 57.5% of Ly6D+ cells express hCD2 and therefore Ebf1 (Fig. 

16C).  

 

6.9 Excluding CD115+ cells enriches for TN cells with lymphoid profile 

 

In order to assess if the detected fraction of CD115- TN cells possesses the 

lymphoid genetic signature observed in the single-cell RNA sequencing experiment, 

we performed several assays. First, we examined the B-cell, T-cell and myeloid 

precursor frequencies of the two TN (CD115+ and CD115-) fractions. For that, we 

sorted them from Flt3Ltg mice and plated graded numbers of cells with the 

appropriate cocktail of stromal cells and cytokines (same experimental procedure 
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Figure 17. CD15
- 
TN fraction contains the lymphoid profile. (A) Limiting dilution analysis of CD115

+
 TN and 

CD115
-
 TN for B-cell, T-cell or myeloid developmental potentials. EPLM subpopulations were sorted from Flt3Ltg 

(2 pooled mice) and plated at the indicated concentrations on either OP9 stromal cells together with IL-7, OP9-
DL1 stromal cells in the presence of IL-7, or ST2 stromal cells. After 10 days (for OP9 cell cultures) or 15 days (for 
OP9-DL1 and ST2 cell cultures), B-cell, T-cell or myeloid clones were scored using an inverted microscope. One 
representative experiment is shown out of 2. (B) Heatmap of expression of lineage-specific genes as in Fig. 9B. 
The colour gradient illustrates the centred gene expression level (log2CPM, mean=0 across all samples and per 
gene). (C) Reconstitution of B-cell compartment in sub-lethally irradiated B6 Rag2-deficient mice with 5x10

3
 

CD115
-
 TN cells from WT mice. Left panel: CD19 versus IgM expression on spleen cells 3 weeks after transfer. 

Also CD21 and CD23 expression on gated CD19
+
 spleen cells are shown (middle panel). Right panel: 

Quantification of CD19
+
 IgM

+
 populations presented as frequency of live cells. CD115

-
 TN (n=5). Shown as 

mean±SEM. 
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 explained in results section 2 and Fig. 5). The results indicated that the CD115- TN 

fraction had lymphoid potential, poor B-cell precursor frequency (< 1 in 50) and 

strong T-cell precursor frequency (1 in 7), whereas the CD115+ TN did not (Fig. 17A 

upper and middle panel). Moreover, the latter population possessed considerably 

higher myeloid developmental potential (1 in 2 for CD115+ TN versus 1 in 20 for 

CD115- TN) (Fig. 17A lower panel). Although low, the myeloid potential observed in 

the CD115- TN could be explained because this fraction contains the G1 TN cells as 

well as others of the G2 and G3 clustered groups (Fig. 15A upper-right panel) that 

showed a myeloid genetic signature. We believe that using TdT as a marker we 

would be able to discriminate the cells with myeloid developmental potential.  

The observed lymphoid developmental potential of the CD115- TN cells 

would appear to be in line with their genetic signature, as revealed by bulk RNA 

sequencing. Briefly, we compared the previously sequenced Ly6D+, TN and Pro-B 

populations (Fig. 9) with the newly identified CD115- TN fraction. In Fig. 17B, a 

heatmap generated with the same genes as was shown in Fig. 9B, indicates that the 

CD115- TN subset has a gene expression pattern more similar to the Ly6D+ than the 

entire TN population has to the Ly6D+ cells, especially for T-cell related genes. 

Finally, although the CD115- TN subset had a poor B-cell precursor frequency in vitro, 

they were able to reconstitute the splenic B-cell compartments of Rag2-deficient 

mice (Fig. 17C). This finding shows their in vivo B-cell developmental potential and 

suggests that there might be a factor that is necessary to support B lymphopoiesis 

missing in the in vitro cultures.  

Collectively, these results indicate that the CD115 marker identified by single-

cell RNA sequencing is able, as predicted by the genetic profiles of the clustered 

groups of cells (Fig. 14A), to exclude cells with myeloid precursor frequency and 

thereby enrich for those having lymphoid profiles and being the precursor of the 

Ly6D+ EPLM subpopulation.  

 

6.10 Ebf1 enriches for Ly6D+ cells with B-cell potential  

 

In order to elucidate if the newly identified Ebf1+ Ly6D+ subset is B-cell 

primed as predicted by the single-cell RNA sequencing experiment, we assessed their 
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 in vitro and in vivo developmental potentials. Since the entire Ly6D+ EPLM 

subpopulation is already lymphoid restricted, we focused our analysis on examining 

Figure 18. Ebf1
+
 Ly6D

+
 fraction is enriched in B-cell whereas Ebf1

-
 Ly6D

+
 fraction in T-cell developmental 

potential. (A) Limiting dilution analysis of Ebf1
+
 Ly6D

+
 and Ebf1

-
 Ly6D

+
 for B-cell and T-cell developmental 

potentials. EPLM subpopulations were sorted from Flt3Ltg-Ebf1
ihCd2/+

 (2-pooled mice) and plated at the indicated 
concentrations on either OP9 stromal cells together with IL-7 or OP9-DL1 stromal cells in the presence of IL-7. 
After 10 days (for OP9 cell cultures) or 15 days (for OP9-DL1), B-cell or T-cell clones were scored using an inverted 
microscope. One representative experiment is shown out of 2. (B) Reconstitution of B (left) and T (right) cell 
compartment in sub-lethally irradiated B6 Rag2-deficient mice with 5x10

3
 Ly6D

+
 Ebf1

+
 or Ly6D

+
 Ebf1

-
 cells from 

Flt3Ltg-Ebf1
ihCd2/+

 mice. Left panels: CD19 versus IgM expression on spleen cells 3 weeks after transfer. Also CD21 
and CD23 expression on gated CD19

+
 spleen cells are shown. Right panels: CD4 and CD8 expression on 

thymocytes 3 weeks after transfer. Also TCRβ expression on DN, DP, CD8
+
 and CD4

+
 gated thymocytes is shown. 

(C) Quantification of CD19
+
 IgM

+
 (left), CD4

+
 and CD8

+
 (right) populations presented as frequency of live donor 

cells (left) or frequency of live cells (right). Ebf1
+
 Ly6D

+
 (n=4), Ebf1

-
 Ly6D

+
 (n=5). Shown as mean±SEM. 
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the B-cell and T-cell precursor frequencies of the two (Ebf1+ and Ebf1-) Ly6D+ 

fractions by limiting dilution (Fig. 18A). The results indicate that although both 

subsets have in vitro B and T cell developmental potential, the Ebf1+ Ly6D+ fraction 

has a higher B-cell precursor frequency (1 in 5 for Ebf1+ Ly6D+ versus 1 in 21 for Ebf1- 

Ly6D+), whereas the Ebf1- Ly6D+ fraction has a higher T-cell precursor frequency 

(almost 1 in 2 for Ebf1- Ly6D+ versus 1 in 11 for Ebf1+ Ly6D+) (Fig. 18A). These results 

were confirmed by their differential abilities to reconstitute mouse B- and T-cell 

compartments in vivo (Fig. 18B,C). Whereas the Ebf1+ Ly6D+ subset had all the B cell 

reconstitution potential (2/4 vs 0/5), the Ebf1- Ly6D+ were the only cells able to 

reconstitute the thymus with TCRβ+ T cells (2/5 vs 0/4) (Fig. 18C). Overall, the 

genetic profiles of the two Ly6D+ clusters (red and orange in Fig. 14A) predicted by 

single-cell RNA sequencing, and exemplified with the Ebf1 marker, are reflected in 

their developmental potentials. 
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7. Discussion 
 

The identification of two complementary clonogenic hematopoietic 

progenitors, CLP in 1997 [27] and CMP in 2000 [28], with the capacity to 

differentiate into all cells of the lymphoid and myeloid lineages respectively, resulted 

in the so-called “classical” model of haematopoiesis found in most current text 

books. This classical model reflects a hierarchical decision-making process whereby 

early multipotent progenitors make an early and irrevocable decision to differentiate 

towards either the lymphoid or the myeloid lineages. Since then, the classical model 

of haematopoiesis is in constant revision as a consequence of finding numerous 

additional progenitor cell types and alternative routes of differentiation. For 

instance, the identification of the LMPP [35] suggests an earlier branching of the 

megakaryocyte/erythrocyte pathway to the lympho-myeloid lineages, before the 

branching of the two latter lineages, and is supported by several later studies [70, 

135].  Moreover, the irreversible and strict compartmentalization of haematopoietic 

progenitor cells was first challenged by the finding that in WT mice, committed 

precursor B cells regain multipotentiality upon conditional inactivation of the Pax5 

gene [31]. This suggested that there might be a greater degree of developmental 

plasticity in haematopoiesis than previously thought. Subsequently, our laboratory 

detected in the BM of wild type mice a cell with similar properties to the Pax5-/- Pro-

B cells that we called “Early Progenitor with Lymphoid and Myeloid potential” 

(EPLM) [33]. This was an uncommitted and multipotent haematopoietic B220+ 

CD117int CD19- NK1.1- progenitor with combined lymphoid and myeloid 

developmental potential, therefore challenging the lympho-myeloid dichotomy 

supported by the classical model of haematopoiesis.   

In the present study, we have interrogated the multipotentiality of the EPLM 

in detail and assessed its potential heterogeneity. First, we found that EPLM 

expressed heterogeneous levels of three cell surface markers Ly6D, SiglecH and 

CD11c, resulting in subdivision of EPLM into at least four subpopulations (Fig. 4D). 

Moreover, this EPLM subdivision was still present in Flt3Ltg mice, in which the 

numbers of all EPLM subpopulations were significantly increased almost equally 

(about two orders of magnitude, Fig. 4E), thus making the Flt3Ltg mouse a good 



 68 

model to further study EPLM subpopulations. When we assessed the in vitro and in 

vivo developmental potential of individual subsets by limiting dilution and 

reconstitution assays respectively, we observed that EPLM heterogeneity was 

reflected in different sets of potentials. Briefly, SiglecH+ and CD11c+ subpopulations 

could not generate lymphoid cells and, as their cell surface marker profile suggests, 

they could be (at least a fraction) already committed to the pDC and cDC lineages. 

Ly6D+ cells were lymphoid restricted and TN showed trilineage (B, T and myeloid) 

developmental potential (Fig. 5) although with lower B- and T-cell precursor 

frequencies compared with their Ly6D+ counterparts (Fig. 5A,B). Of note, Ly6D+ and 

TN cells from Flt3Ltg mice showed lower B-cell potential but higher T-cell precursor 

frequencies (Fig. 5A,B), as well as increased T-cell reconstitution efficacy in the 

thymus (Fig. 6D). One explanation for this finding could be the lower levels of Pax5 

and Ebf1 B-cell transcription factors detected in Ly6D+ cells from Flt3Ltg mice 

compared to their WT counterparts (von Muenchow et al., Appendix paper 1). 

However, Flt3L is not an instructive factor for B-cell commitment of these 

progenitors. Instead, the main effect of Flt3L is the induction of their proliferation 

(von Muenchow et al., Appendix paper 1). Therefore, it could well be that an 

increased percentage of cycling progenitors results in a decreased fraction initiating 

the B-cell developmental program, thus explaining the proportional reduction of 

Ebf1- and Pax5-expressing Ly6D+ cells and the increased ability of these progenitors 

to give rise to T cells. However, it is important to mention that, in Flt3Ltg mice, the 

total number of B-cell progenitors is not affected due to the general expansion of 

the EPLM compartment (Fig. 4). Since Flt3L is reported to be important for pDC 

development [109, 136, 137] and the EPLM subpopulations might have pDC 

developmental potential, we hypothesize that pDC progenitors might be expanded 

in the transgenic mice, thereby providing an alternative explanation for the reduced 

B-cell potential. Although a clonal assay to assess quantitative pDC precursor 

frequency does not yet exist, it would be of interest to investigate the pDC 

developmental potential of EPLM subpopulations from WT and Flt3Ltg mice. 

Another striking observation from the developmental potential assays was 

that, in spit of the poor in vitro capacity of TN cells to generate B cells (Fig. 5A), they 

were nevertheless able to reconstitute the splenic B-cell compartments of all 
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injected mice (Fig. 6C). This result therefore suggests that in in vitro cultures, there 

might be a factor missing that is necessary to support B lymphopoiesis. The opposite 

was observed for the T-cell potential in that this was more efficient in vitro than in 

vivo (Fig. 5B and Fig. 6D). A key difference in the two experimental systems used to 

determine T-cell potential is the availability of Notch ligands. Whereas the in vitro 

system generates highly sensitive readouts that take advantage of the T-cell lineage-

promoting activity of Notch1 signalling via culturing progenitors on feeder cells 

expressing Notch ligands [138], the intravenous injection system depends on 

progenitors travelling to the thymus prior to receiving Nocth ligand signalling upon 

thymus entry. Experimentally, this limitation could be overcome if progenitors were 

directly injected intrathymically. However, EPLM are progenitor cells residing in the 

bone marrow and therefore it is probable that although Ly6D+ cells show robust in 

vitro T-cell potential, their “default” physiological fate, when no other lineage 

commitment signal, such as Notch ligand, interferes, might be to become a B cell. 

Finally, we observed similar in vivo capacity of Ly6D+ and TN progenitors to 

reconstitute the splenic B-cell compartment (Fig. 6C). To further confirm this, it 

would be worthwhile injecting limiting numbers of progenitors and monitoring their 

reconstitution at different time points. Overall, these results and associated 

discussions raise the fundamental question of which assays truly represent the 

physiological potential of progenitor cells. 

Transcriptomic analysis of the Ly6D+ and TN EPLM subpopulations showed 

that their distinct developmental potentials were supported by differential gene 

expression programs. Thus Ly6D+ EPLM had a lymphoid molecular priming and 

transcriptomic profile closer to committed Pro-B cells, whereas the TN had a more 

myeloid genetic signature (Fig. 9 and Table 3). Even though TN cells up-regulate 

myeloid genes involved in innate biological processes, we were able to demonstrate 

the precursor-product relationship between TN and Ly6D+ EPLM subpopulations, 

with the TN (or at least a fraction thereof) being the precursor of the Ly6D+ 

subpopulation, and therefore explaining the slower kinetics and decreased efficiency 

of the latter progenitor differentiating into CD19+ B cells (Fig. 13). Collectively, the 

previous data reveals that the TN EPLM subpopulation is a lympho-myeloid 
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progenitor, whereas the Ly6D+ EPLM subpopulation is likely to be the direct 

precursor of CD19+ committed Pro-B cells. 

The emergence of high throughput methods enabling the investigation of 

whole-genome or whole-transcriptome profiles from single cells, boosts the existing 

debate regarding the heterogeneity of apparent phenotypically homogeneous 

progenitor cells that have multiple lineage potentials. To shed light onto this active 

debate, by performing single-cell RNA sequencing we provide herein a detailed 

analysis of the heterogeneity of the Ly6D+ and TN EPLM subpopulations. This study 

captured 365 single-cell gene expression snapshots of the Ly6D+ (152) and TN (213) 

transcriptional landscapes. Principal component analysis is a good method to 

visualize and interpret high dimensional data (e.g. 365 single cells x 14814 detected 

genes). This method maximizes the variance of the features (genes in our case). 

Therefore, in order to obtain informative components (or dimensions) in the plots, it 

is common practise to select a subset of the original gene set that contains most of 

the variation among the samples [53, 139, 140]. One strategy is to perform an 

unsupervised selection of, for example, the 50% of genes with the highest variance 

across the analysed dataset, as was done for the visualization of the bulk RNA 

sequencing experiment. However, to analyse the single-cell data we decided to 

concentrate on the 1008 genes that we identified as differentially expressed 

between the Ly6D+ and TN populations. Our reasoning was that this set of genes 

would provide insights into the intra-population variation. This is because the 

population approach obscures molecular heterogeneity by averaging gene 

expression. By analysis of bulk populations, high expression of a particular gene in an 

individual subset will be interpreted as general expression by all cells. As suggested 

by their branching structure in the PCA and their low cell-to-cell transcriptome 

correlation our initial analysis indicated that the TN subset is a more heterogeneous 

population than their Ly6D+ partners (Fig. 11). Moreover, the PAM clustering based 

on the selected subset of genes, partitioned the Ly6D+ into two major clusters 

whereas the TN was subdivided into three robust groups. Of note, Ly6D+ and TN cells 

had not been completely segregated in the PCA (Fig. 11B), thereby suggesting that 

the overlapping cells might be in a related cellular state. This was confirmed by the 

analysis of the two clustered groups corresponding to the convergent area, namely 
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G2 Ly6D+ and G1 TN (Fig. 12A), revealing that they have the highest transcriptome 

correlation among the subgroups (0.721, Fig. 12B) and the lowest number of DEG 

(25, Fig. 12C). Therefore, the G1 TN is likely to be the fraction that we previously 

observed experimentally to be the precursor of Ly6D+ cells. However, our latter in 

silico analysis performed at the whole-transcriptome scale of the G2 Ly6D+ and G1 

TN subgroups, which are sorted as two phenotypically distinct populations, suggests 

that they should be considered as one subset. This finding highlights the limitations 

of accurately defining complete cellular identities by relying on expression of few cell 

surface markers, the so-called “top-down” approach [141]. This notion has been 

manifested in other studies such as when Paul et al. suggested that the standard 

gating for sorting MEP might be better termed erythrocyte progenitor (EP) gating 

[69].  

When performing cell clustering, it is of pivotal importance to investigate the 

nature of the subgroups in order to determine if the cells are clustered as a result of 

stochastic fluctuations of the transcriptome and certain cellular states (e.g. cell cycle 

status or cellular stress), or instead, the clustering reflects gene expression variation 

that might be significant for the biological function being tested [142]. In our case, 

the hypothesis is to ask whether individual EPLM are multipotent or whether as a 

population they are composed of a mixture of cells with distinct linage 

developmental potentials. Therefore, we sought to determine if the clustered groups 

of cells reflect genetic signatures of progenitors from distinct haematopoietic 

lineages. For that, we extended our analysis to all detected genes (14,814) across the 

365 single-cells and examined the DEG and enriched biological processes defining 

each subgroup (Table 4 and supplementary excel file 3_DEGlists_scRNAseq). With 

this approach, we were able to unravel marked genetic biases between EPLM 

indicative of molecular priming towards distinct fates. Whereas the G1 Ly6D+ 

subgroup showed a strong B-cell genetic signature (red Fig. 14A) with robust 

expression of B-cell related genes characteristic of the Pro-B cell stage (Cd79a, Vpreb 

genes, Igll1, Cd19, Ebf1 or Blnk Fig. 13A) and B-cell enriched biological processes 

(Table 4A), the G2 TN subgroup, which has the most distant transcriptome, revealed 

a cDC genetic signature (blue Fig. 14A) with consistent expression of genes (H2- 

genes, Cd74, Ciita, Id2 or Batf3 Fig. 13B) and enriched biological processes (Table 4B) 
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either related with antigen processing and presentation or necessary for cDC 

development. The G3 TN subgroup exhibited a myeloid genetic signature (green Fig. 

14A), up-regulating myeloid genes (Mpo, Ctsg, Prtn3, Elane, Cx3cr1, Cebpa or Csfr1 

Fig. 13C,E) related with innate processes (Table 4C). Finally, the G2 Ly6D+ / G1 TN 

subset (orange and purple respectively in Fig. 14A) showed a lymphoid genetic 

signature (Fig. 13D and Table 4D) with a B-cell specification milder to that of the G1 

Ly6D+. Taken together, these results indicate that, as reflected by their central 

location in the PCA, these cells might me in an intermediate state while exhibiting 

promiscuous expression of B- and T-cell genes. Therefore, the previous data suggest 

functional heterogeneity among the EPLM subpopulations and validates single-cell 

RNA sequencing as a powerful technology to dissect molecular heterogeneity of a 

previously considered homogeneous population via generating biologically 

meaningful clusters of cells. In addition, numerous studies have reported the use of 

this technology with similar purposes [46, 53, 57, 67-69, 139, 143-145]. For instance, 

Gren et al. reveal transcriptomic variation within the traditionally classified classical, 

intermediate and non-classical monocytes [67]; Paul et al. report heterogeneity in 

myeloid progenitors [69]; Kowalczyk et al. find extensive transcriptome variability 

among HSCs [145]; and Drissen et al. subdivided the pre-GM population into a 

Gata1+ pre-GM fraction generating mast cells, eosinophils, megakaryocytes and 

erythroid cells and a Gata1- pre-GM subset generating monocytes, neutrophils and 

lymphocytes [139]. These publications challenge the existence of a clonal myeloid 

progenitor generating all innate myeloid immune cell types. 

We also investigated lineage priming at the single-cell level and found a 

significant proportion of single cells co-expressing early B- and T-cell (Fig. 14B) or 

granulocyte and monocyte/macrophage (Fig. 14C) specification genes. This is 

consistent with other studies where mixed lymphoid [126, 146] or myeloid [135, 

147, 148] lineage patterns of gene expression are reported in single cells. However, 

whereas heterogeneity is well studied in myeloid progenitors, we are not aware of 

other reports addressing mixed lymphoid priming at the single-cell level and whole- 

transcriptome scale, thus highlighting the importance of our study. Strikingly, and in 

agreement with other reports [144, 149-151], we did not observe single cells with 

mixed myeloid and lymphoid lineage gene expression profiles (Fig. 14D).             
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Hans-Reimer Rodewald and co-workers made use of an Il7r fate mapping mouse line 

to determine the almost exclusive lymphoid progeny of Il7r expressing cells, thus 

further supporting our findings [149]. Nevertheless, we cannot exclude that, due to 

the “snapshot” nature of the transcriptomic analysis, as well as the medium 

throughput of cells analysed and the medium sequencing depth, we are missing a 

transient and presumably rare intermediate state with promiscuous lympho-myeloid 

gene expression. Previous data suggested that bifurcation of the lymphoid and 

myeloid molecular priming occurs before the EPLM stage. Therefore, the common or 

separate origin of the Ly6D+/G1TN (lymphoid primed) versus the G2/G3TN (myeloid 

primed) EPLM fractions is of interest and requires further investigation. In line with 

our findings, there is an increasing body of evidence supporting the notion that 

priming occurs much earlier in development than previously thought. Indeed, 

expression of lineage-affiliated genes has been reported as early as in the HSC stage, 

with various analyses indicating biases at the apex of haematopoiesis [135, 144, 152-

158], thereby suggesting that the cellular output of the multipotent early 

progenitors is small [135]. 

One key aspect of single-cell RNA sequencing studies is the identification of 

markers representative of the identified clusters of cells in order to prospectively 

isolate them and perform functional assays to validate the predicted genetic 

signatures. In our study, we found that the reclassification of EPLM subpopulations 

was exemplified by expression of Dntt (encoding TdT), which was expressed in the 

Ly6D+ as well as the vast majority of G1 TN but not in G2 and G3 TN cells (Fig. 15A). 

We believe that TdT reporter mice (being currently generated in our laboratory), will 

provide the exciting opportunity not only to isolate the lymphoid-primed EPLM 

fraction but also to test and demonstrate, as previously suggested [159], if TdT+ 

CD19- cells constitute the earliest lymphoid progenitor in adult mice. Moreover, this 

reporter will be of importance in studies comparing fetal versus adult 

haematopoietic progenitors and to stablish when TdT is first expressed in ontogeny.  

Profiting the power of single-cell RNA sequencing to identify markers in an 

unbiased manner, we performed an extensive screening and found potential 

candidates (Fig. 15A,B). As a proof-of-concept, we made use of Ebf1ihCd2/+ reporter 

mice in order to test the developmental potential of Ebf1+ EPLM (comprising most of 
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the G1 and some G2 Ly6D+ cells). As expected, the Ebf1+ Ly6D+ fraction exhibited 

higher B-cell precursor frequency and in vivo reconstitution potential than the Ebf1- 

Ly6D+ fraction (Fig. 18). This result demonstrates that we can find markers from our 

single-cell transcriptomic analysis that, when tested, successfully predict 

developmental outcome. Although the G1 Ly6D+ fraction has a strong B-cell genetic 

specification and developmental potential, the observed marginal in vitro T-cell 

potential suggests that they are still not restricted to the B-cell lineage. This supports 

the concept that genetic specification precedes commitment [147, 160, 161] and 

that Ebf1 initiates B-cell specification whereas Pax5 acts later to drive commitment 

[126, 160]. Of note, in our single-cell analysis, we barely detected Pax5 expression 

(n=8), which could be due to the insufficient sequencing depth to detect low 

expressing transcripts, or the use of Flt3Ltg mice (in which Pax5 is lower at the EPLM 

stage, von Muenchow et al. Appendix paper 1). However, even though EPLM are 

sorted as CD19-, we consistently detected Cd19 transcript (n=19). Therefore, we 

propose the herein newly identified G1 Ly6D+ subset as the direct precursor of the 

first B-cell committed stage, namely the CD117+ CD19+ Pro-B cells.  

Additionally, we tested the CD115 cell surface marker (encoded by Csf1r 

gene) identified in our single-cell RNA sequencing experiment and expressed by a 

good proportion of the G2 and G3 TN cells. Interestingly, our molecular and 

functional analysis revealed that compared with the entire TN population, CD115- TN 

had reduced myeloid but enriched lymphoid properties (Fig. 17), thus confirming 

that priming at the molecular level correlates with the immediate differentiation bias 

of EPLM cells. Therefore, our data support intrinsic differentiation potentials through 

differential gene expression programs, although we do not exclude the contribution 

of other factors such as epigenetic regulation or extrinsic cytokine signalling.  

Single-cell transcriptome profiling has already enabled advances to be made 

in a broad variety of fields. However, it implies a subsequent prospective strategy 

which, although useful for this and other research studies [65, 139], depends on the 

identification of cell-surface markers or the existence of reporter mice in order to 

translate the single-cell transcriptome findings. Additional genetic tools and 

integration of different omics analysis will certainly be developed, thus enhancing 

the contribution of single-cell analysis technology to the field of cell lineage 
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determination. Indeed, the first genome and transcriptome sequenced from the 

same individual cell already exists [162], enabling a direct comparison of genomic 

variation and transcriptome heterogeneity. The challenge will be to generate 

methods for RNA and protein measurements without destroying the cell of interest 

in order to relate gene expression with cell behaviour. These measurements will 

require transcriptional and translational reporters combined in single-molecule 

imaging and quantification experiments.   

As a summary, in this thesis, by studying the previously reported multipotent 

and uncommitted B220+ CD117int CD19- NK1.1- EPLM progenitor, we have been able 

to: first divide the EPLM into four subpopulations with distinct lineage biases using 

the “top down” strategy. This is based on the expression of cell surface markers 

(Ly6D, SiglecH and CD11c in our case). Subsequently, we further investigated the 

EPLM heterogeneity using the alternative and complementary “botton up” approach 

[141], in which high-dimensional molecular profiles measured for each single cell are 

used to classify distinct states and types. The latter strategy has revealed that: i) 

Ly6D+ and TN EPLM subpopulations have distinct degrees of molecular and 

functional heterogeneity ii) the Ly6D+ subset is composed of two lymphoid specified 

subgroups with a B-cell priming gradient iii) the TN subset is composed of three 

groups of cells with lymphoid or myeloid genetic signatures, including some cells 

with a cDC lineage profile iv) genetic signatures reveal a remarkable lympho-myeloid 

separation and v) this separation is better exemplified by Dntt instead of Ly6D, 

thereby redefining the initial “top down” classification. Taken together, these results 

indicate that the EPLM is a good example supporting the finding that previously 

characterized multipotent progenitor populations are in fact composed of mixtures 

of cells with differently restricted differentiation capacities. EPLM share their B220, 

CD117 and CD19 phenotype with Pax5-/- Pro-B cell clones that exhibit multilineage 

differentiation capacities. However, despite this phenotypic similarity, we can 

conclude from the analysis of the developmental potential of individual subsets that 

EPLM are in fact distinct from Pax5-/- Pro-B cells [30, 31, 33]. More generally, this 

study illustrates how single-cell expression profiling can be used to identify novel 

subpopulations and cellular intermediates that can then be prospectively isolated 

and characterized in functional assays.  
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Finally, in the context of constant and necessary revisions of the 

haematopoietic schemes, we argue in favour of a revised model of haematopoiesis 

in which lineage priming is initiated as early as at the HSC level and progressively 

increases with development, ultimately giving rise to the differentiated blood cell 

types. Thus, unlike the classical hierarchical and branching model of haematopoiesis, 

we support alternative representations like the pair-wise model (Fig. 2; [41]) where 

the route a progenitor cell will take to arrive at a particular destination is more 

flexible than currently represented. This more flexible model better reflects 

haematopoietic versatility and can potentially accommodate the increasingly 

reported alternative differentiation pathways [36, 70, 139, 158]. However, our 

findings suggest a revision of the CLP/EPLM continuum arch of the pair-wise model. 

Now we know that the lymphoid priming of the EPLM resides in the TdT+ fraction 

(herein identified as the Ly6D+ as well as the G1 TN EPLM subpopulations), and 

therefore this is the fraction of EPLM that should be placed directly downstream of 

CLP rather than the entire EPLM population [33]. The location of the other EPLM 

fractions in the above scheme has yet to be defined and requires further 

investigation. Moreover, haematopoiesis seems to occur through a process of 

“graded commitment” [69, 135] and this is consistent with our finding of an 

increasing degree of B-cell priming within EPLM subsets (G2 Ly6D+ / G1 TN < G1 

Ly6D+). How to illustrate the global haematopoietic process of “graded 

commitment” in the revised models of haematopoiesis remains an exciting challenge 

for the near future. Ultimately, this thesis makes a significant contribution to the 

study of the phenotypic and genotypic heterogeneity and lineage priming of 

progenitors during early stages of haematopoietic development.  
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ABSTRACT 

 

Hematopoietic cells are continuously generated throughout life from 

hematopoietic stem cells, thus making hematopoiesis a favorable system to study 

developmental cell lineage commitment. The main factors incorporating 

environmental signals to developing hematopoietic cells are cytokines, which 

regulate commitment of hematopoietic progenitors to the different blood lineages 

by acting either in an instructive or a permissive manner. Flt3-ligand (FL) and 

Interleukin-7 (IL7) are cytokines pivotal for B cell development, as manifested by the 

severely compromised B cell development in their absence. However, their precise 

role in regulating B cell commitment has been the subject of debate. In the present 

study we assessed the rescue of B cell commitment in mice lacking IL7 but 

simultaneously over-expressing FL. Results obtained demonstrate that FL over-

expression in IL7 deficient mice rescues B cell commitment, resulting in significant 

Ebf1 and Pax5 expression in Ly6D+CD135+CD127+CD19- precursors and subsequent 

generation of normal numbers of CD19+ B cell progenitors, therefore indicating that 

IL7 can be dispensable for commitment to the B cell lineage. Further analysis of 

Ly6D+CD135+CD127+CD19- progenitors in IL7- or FL-deficient mice over-expressing 

Bcl2, as well as in IL7-transgenic mice suggests that both FL and IL7 regulate B cell 

commitment in a permissive manner; FL by inducing proliferation of 

CD135+CD127+Ly6D+CD19- progenitors and IL7 by providing survival signals to these 

progenitors.  
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 INTRODUCTION 

 

Hematopoiesis, the generation of all blood cells from hematopoietic stem 

cells (HSC), takes place continuously in the adult bone marrow. Accumulating 

evidence suggests that HSC generate the different hematopoietic lineages via oligo-

potent progenitors having limited self-renewal capacity and restricted 

developmental potentials. Activation of lineage-specific gene transcription in these 

progenitors eventually leads to their commitment to a particular lineage. Cytokines 

are the most prominent environmental factors regulating hematopoietic lineage 

commitment, doing so by acting either in an instructive or a permissive manner (1). 

In the instructive model, cytokines induce a signaling cascade in progenitors leading 

to the initiation of a lineage-specific gene program, typically through up-regulation 

and/or activation of transcription factors, eventually resulting in commitment to a 

particular lineage. In contrast, the permissive model advocates that commitment of 

progenitors to different lineages occurs in a cell-autonomous, stochastic manner, 

with cytokines acting as a selection rather than a commitment factor, promoting the 

survival and/or proliferation of a specific lineage at the expense of other lineages 

originating from the same progenitor. Elucidating the precise mode of action of 

cytokines is technically challenging and therefore the instructive versus permissive 

roles of cytokines is hotly debated (2-4). Although the permissive model was favored 

in the past, recent data provide solid evidence for the instructive action of several 

cytokines including M-CSF, G-CSF, EPO and Flt3-ligand (5-8). However, our 

understanding of how cytokines regulate hematopoiesis remains elusive, as different 

cytokines can act in various ways and their function might be cell-context dependent 

(9). Moreover, most studies to date have addressed cytokine regulated myeloid 

differentiation with relatively little information on lymphoid lineage commitment.  

 That Interleukin-7 (IL7) is a crucial cytokine for B cell generation is 

demonstrated by the dramatic defect in B cell generation in mice lacking either the 

cytokine (10) or its receptor (11). Interestingly, while human B cell progenitors are 

also responsive to IL7 (12), disruption of IL7 signaling caused by mutations does not 

ablate B cell development in man (13, 14). IL7 was initially identified as a growth 

factor for B cell progenitors (15) and early studies demonstrated that in vivo over-
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expression of the pro-survival gene Bcl2 did not rescue B cell development in the 

absence of IL7 signaling suggesting that IL7 acts in an instructive manner in B cell 

commitment (16, 17). The subsequent findings that uncommitted Common 

Lymphoid Progenitors (CLP) from Il7-/- mice lacked expression of the transcription 

factor Early B-cell Factor 1 (Ebf1) (18) and that Ebf1 over-expression partially 

restored B cell generation from these CLP (19), led to the hypothesis that IL7, 

through Stat5 activation, instructs commitment to the B cell lineage by initiating 

Ebf1 expression in uncommitted progenitors. Supporting this hypothesis, a putative 

Stat5 binding site was later identified in one of the Ebf1 promoters (20). However, a 

more recent study has shown that Bcl2 can rescue B cell generation in a Stat5 

conditional knock-out mouse (21). Furthermore, the Ebf1-expressing fraction of CLP 

(Ly6D+ CLP) is dramatically reduced in Il7-/- mice (22), therefore providing an 

alternative possibility for the reduced Ebf1 expression observed in Il7-/- CLP. 

Interestingly, B cell lineage commitment is initiated at the molecular level in 

Ly6D+CD19- progenitors (23). Hence, while the importance of IL7 as a growth factor 

for committed B cell progenitors has been well established, it remains unclear 

whether it instructs oligo-potent progenitors to commit to the B cell lineage through 

Ebf1 and Pax5 up-regulation.  

 Ftl3-ligand (FL), the only known ligand for the Flt3 receptor (CD135), is a 

cytokine important for the generation of many hematopoietic lineages and its 

function has gained much attention as mutations in FL signaling are commonly found 

in Acute Myeloid Leukemias (AML) (24). Committed B cell progenitors do not express 

CD135 since expression of the B cell commitment factor Pax5 leads to its down-

regulation (25). However, upon transplantation, bone marrow progenitors from Flt3-

/- and Flt3l-/- mice reconstitute the B cell compartment poorly (26, 27), and FL was 

found to be essential for maintaining normal numbers of uncommitted B cell 

progenitors (28).  

 Recently, we described a FL-transgenic mouse model (hereafter Flt3Ltg) 

expressing high levels of FL in vivo, which has enabled us to suggest an instructive 

role for FL in early stages of hematopoiesis (8). By breeding these mice with Il7-/- 

mice we herein show that increased FL levels can rescue B cell commitment in 

CD135+CD127+CD19- progenitors and restore early CD19+ B cell progenitor numbers 
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in the absence of IL7 signaling, suggesting a permissive role for IL7 in B cell 

commitment. Further analyses of a combination of mouse genotypes over-

expressing or lacking FL and IL7, as well as the pro-survival gene Bcl-2, have enabled 

us to identify a permissive role for both IL7 and FL in B cell commitment.  
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RESULTS 

 

Increased in vivo levels of FL rescue B cell commitment in Il7-/- Ly6D+CD19- 

progenitors 

We have previously characterized an uncommitted B cell progenitor with 

combined lymphoid and myeloid potential (Early Progenitor with Lymphoid and 

Myeloid potential – EPLM) (29). EPLM can be further subdivided by SiglecH, CD11c, 

CD115 and Ly6D expression enabling us to identify the Ly6D+SiglecH-CD11c-CD115- 

fraction of EPLM (hereafter Ly6D+ EPLM) as the population containing most B cell 

potential, while being devoid of myeloid potential (Fig. S1B). This EPLM 

subpopulation is identified as Lin-CD19-CD117intB220intLy6D+CD135+CD127+ (Figure 

1A) therefore partially overlapping phenotypically with Ly6D+ CLP (Fig. S1A) and pre-

pro-B cells (30, 31). Ly6D+ EPLM numbers in Il7-/- and Flt3l-/- mice are significantly 

decreased compared to WT; 7-fold for Il7-/- and 13-fold for Flt3l-/- respectively and a 

similar dramatic decrease was observed in Ly6D+ CLP from both mutant mice (Figure 

1B-C). FL deficiency also affected the numbers of Ly6D- EPLM and CLP, while IL7 did 

not (Fig. S1C-D). Therefore, Ly6D+ EPLM/CLP represent the earliest developmental 

stage of the B cell pathway affected by the absence of IL7. 

 We have recently generated a mouse model expressing high in vivo levels of 

FL (8). The progenitor compartment of these mice showed a dramatic increase in 

EPLM and CLP numbers, with their Ly6D+ fractions increased 90-fold and 28-fold 

respectively relative to WT (Figure 1D-E). We crossed Flt3Ltg with Il7-/- mice to assess 

the extent to which increased FL levels could potentially rescue the loss of 

Ly6D+CD19- progenitors in Il7-/- mice. As shown in Figure 2 A-B, in vivo over-

expression of FL leads to a significant increase in Flt3Ltg-Il7-/- EPLM and CLP 

numbers, reaching levels of those in Flt3Ltg mice. Crucially, a full rescue of Ly6D+ 

EPLM and CLP can be seen in these mice, with a striking 470-fold and 31-fold 

increase in numbers compared to their Il7-/- counterparts (Figure 2A-B). 

Furthermore, the numbers of the earliest committed CD19+CD117+ pro-B cells were 

fully restored in Flt3Ltg-Il7-/- mice, showing a 251-fold increase compared to Il7-/- 

(Figure 2C and Fig. S2). However, this rescue was less pronounced in downstream 

CD19+CD117-IgM- and CD19+IgM+ B cell stages, since these cells require IL7 to 
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expand. As a consequence of this rescue in bone marrow B cell development, 

numbers of splenic marginal zone and follicular B cells were significantly increased in 

Flt3Ltg-Il7-/- mice compared to Il7-/- (Figure 2D). While thymic T cell development was 

not rescued in Flt3Ltg-Il7-/- mice (Fig S3), a significant increase in splenic T cell 

numbers was observed (Fig. S4) as a result of their expansion upon FL over-

expression (32). 

To assess whether these rescued Flt3Ltg-Il7-/- Ly6D+CD19- progenitors could 

give rise to B cells in vitro, we sorted Flt3Ltg-Il7-/- Ly6D+ EPLM and plated them at 

limiting dilution on OP9 stromal cells in the presence of IL7. As shown in Figure 3A, 

Flt3Ltg-Il7-/- Ly6D+ EPLM could generate B cells at similar frequencies to their WT and 

Flt3Ltg counterparts, whereas the few Il7-/- Ly6D+ EPLM isolated could not. A rescue 

in Ly6D+ EPLM was also observed when Il7-/- mice were injected with FL (Figure 3E) 

and when plated under the same conditions these rescued Ly6D+ EPLM also showed 

a restored in vitro B cell potential (Fig. S5A). Further, when transplanted into 

irradiated Rag2-/- mice they were able to generate IgM+ B cells (Fig S5B-C).  Thus, 

increased FL levels restore the generation of Ly6D+ progenitors, rather than merely 

expanding the few Ly6D+ EPLM/CLP found in Il7-/- mice. Real-time quantitative PCR 

analysis of Ly6D+ EPLM from Flt3Ltg-Il7-/- mice revealed significant expression of 

Ebf1, Pax5 and Foxo1 transcription factors’ mRNA in the absence of IL7 (Figure 3B). 

Ebf1 expression at the protein level was confirmed by intracellular FACS staining 

(Figure 3C-D). Even though the percentage of Flt3Ltg-Il7-/- Ebf1+Ly6D+ EPLM did not 

reach WT levels, it was similar to the one found in Flt3Ltg mice, which produce IL7. 

Therefore, Ebf1/Pax5 expression and subsequent commitment to the B cell fate can 

occur in the absence of IL7 signaling, arguing against an instructive role of this 

cytokine in B cell commitment. 

CD127 (IL7Rα) is a receptor shared between IL7 and thymic stromal 

lymphopoietin (TSLP), a cytokine capable of rescuing B cell development when over-

expressed in the absence of IL7 (33). Since TSLP is produced by dendritic cells (34), 

which are dramatically expanded in Flt3Ltg mice (8), in vivo FL over-expression could 

lead to increased levels of TSLP thereby rescuing B cell development in Flt3Ltg-Il7-/- 

mice. To investigate this possibility we injected Il7-/- or Il7rα-/- mice with FL as 

described above and assessed the rescue of Ly6D+ EPLM and downstream CD19+ 
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progenitors. FL injections into Il7-/- mice resulted in a significant increase in Ly6D+ 

EPLM and CD19+CD117+ B cell progenitors, comparable to the rescue observed in 

Flt3Ltg-Il7-/- mice (Figure 3E). FL injected Il7rα-/- mice also demonstrated a significant 

rescue of Ly6D+ EPLM and CD19+CD117+ pro-B cells, indicating that the observed 

rescue of B cell commitment in Flt3Ltg-Il7-/- mice is not mediated through the action 

of TSLP. 

 

IL7 promotes survival, but not proliferation, of Ly6D+CD135+CD127+CD19- 

progenitors 

Even though our Flt3Ltg-Il7-/- mouse model suggests that IL7 is dispensable 

for B cell commitment, the dramatic decrease in Il7-/- Ly6D+ EPLM/CLP argues for a 

role of IL7 in the maintenance of this population when FL levels are limiting, by 

promoting either their survival or their proliferation. To investigate the potential role 

of IL7 as a survival factor for Ly6D+CD135+CD127+CD19- progenitors, we crossed Il7-/- 

mice with mice expressing the pro-survival gene Bcl2 (35). Bcl2tg-Il7-/- mice 

demonstrated a minor but statistically significant 2.6-fold increase in Ly6D+ EPLM 

and 2.2-fold increase in Ly6D+ CLP numbers compared to Il7-/- mice (Figure 4A-B). 

Cell cycle stage analysis of Ly6D+ EPLM of these mice indicated that most of the cells 

rescued by Bcl2 are in a quiescent state (Fig. S6) and do not proliferate in response 

to cytokines, thereby compromising to some extent the rescue of these progenitors’ 

numbers. Importantly, when plated on OP9 stromal cells plus IL7, Bcl2tg-Il7-/- Ly6D+ 

EPLM generated B cells at frequencies similar to WT mice (Figure 4C), indicating that 

these rescued Ly6D+ cells had B cell potential. Indeed, when analyzing bone marrow 

CD19+ committed progenitors, we could see a significant 68-fold increase in the 

earliest CD19+CD117+ pro-B cell compartment, compared to Il7-/- (Figure 4D). Due to 

the their quiescent state {Fig. S6 and (36)} and the IL7 dependence of their 

proliferation, Bcl2tg-Il7-/- CD19+CD117+ numbers did not reach WT levels, whereas 

downstream CD19+ immature B cells showed a less pronounced, but significant 

rescue (Figure 4D). In the periphery of these mice, marginal zone and follicular B cell 

numbers were increased, whereas as previously reported (16), T cell numbers were 

rescued (Fig. S7). Therefore, providing an extra Bcl2-mediated survival signal in vivo 

partially rescues Il7-/- Ly6D+CD19- progenitors with B cell potential and restores 
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significantly the generation of CD19+ progenitors. This suggests a role for IL7 in 

facilitating the survival of Ly6D+CD135+CD127+CD19- progenitors. 

 To evaluate the potential proliferative effect of IL7 on 

Ly6D+CD135+CD127+CD19- progenitors, we analyzed a transgenic mouse model in 

which Il7 expression is driven by an MHC Class II promoter, resulting in increased in 

vivo levels of IL7 (37). These mice exhibit a lymphoproliferative phenotype with 

increased numbers of CD19+ B cells (38). In contrast to bone marrow CD19+ cells, 

Ly6D+ EPLM numbers did not increase in response to elevated IL7 (Figure 5A-C). In 

addition, the cell cycle profile of Ly6D+ EPLM remained unaltered in Il7tg mice 

compared to WT (Figure 5D), arguing against a proliferative action of IL7 on these 

progenitors. To exclude the possibility that a proliferative signal by FL present in 

these mice compromised the effect of increased IL7 on the cell cycle status of Ly6D+ 

EPLM, we crossed Il7tg with Flt3l-/- mice. Over-expression of IL7 in vivo did not result 

in a significant increase in Ly6D+ EPLM or CLP numbers in the absence of FL (Figure 

5E and FigS8). In contrast, a 3-fold increase in CD19+CD117+ numbers was observed 

(Figure 5F), in agreement with the proliferative effect of IL7 on CD19+ B cells. This 

resulted in a small, but significant, increase in splenic follicular B cells (Fig. S9). 

Moreover, cell cycle analysis of Il7tg-Flt3l-/- Ly6D+ EPLM showed no significant 

change in their cycling profile compared to their Flt3l-/- counterparts (Figure 5G). 

Therefore, we conclude that while IL7 acts as a proliferative factor for CD19+ 

committed B cells, it does not do so for their Ly6D+CD135+CD127+CD19- precursors. 

 

FL induces proliferation of Ly6D+CD135+CD127+CD19- progenitors 

As evident in Figure 5G, loss of in vivo FL signaling affected the proliferative 

status of Ly6D+ EPLM. Comparison of Ly6D+ EPLM numbers in mice either lacking or 

over-expressing FL showed a 14-fold reduction in Flt3l-/- Ly6D+ EPLM numbers 

compared to WT, while Flt3Ltg Ly6D+ EPLM increased 105-fold (Figure 6A). A similar 

response to FL levels was observed for Ly6D+ CLP (Figure 6A). Cell cycle analysis of 

Ly6D+ EPLM from these mice showed a significant increase in the percentage of Ki67-

DAPI- cells and a decrease in the percentage of Ki67+ cells when FL signaling was 

absent, while Flt3Ltg Ly6D+ EPLM showed the reverse (Figure 6B and Fig. S10). Thus, 
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our data indicate that FL promotes the proliferation of Ly6D+CD135+CD127+CD19- 

progenitors. 

 To evaluate if FL also regulates the survival of Ly6D+CD135+CD127+CD19- 

progenitors, we crossed Flt3l-/- mice with Bcl2tg mice. Thus, Bcl2tg-Flt3l-/- mice 

showed a minor 2-fold increase in Ly6D+ EPLM numbers compared to their Flt3l-/- 

counterparts (1.8-fold for Ly6D+ CLP) (Figure 6C). Nevertheless, the in vitro B cell 

potential of Flt3l-/- Ly6D+ EPLM progenitors was not improved by Bcl2 over-

expression (Figure 6D). Downstream CD19+ progenitors also demonstrated a partial, 

but significant, rescue (Figure 6E). Our analysis of Bcl2tg-Flt3l-/- mice suggests that 

the reduction in Ly6D+CD135+CD127+CD19- progenitors observed in Flt3l-/- mice can 

only be partially explained by a survival role of FL. In contrast, the clear change in the 

numbers and cycling profile of these progenitors in response to the absence or over-

abundance of FL in vivo, as well as the inability of Bcl2 to rescue their in vitro B cell 

potential, points towards proliferation as being the main effector function of FL at 

this developmental stage. 

 

FL does not instruct commitment to the B cell lineage 

The striking rescue in B cell commitment observed in our Flt3Ltg-Il7-/- mice 

could be explained by a potential instructive role of FL when present at high levels in 

vivo. However, increased FL did not result in Ebf1 or Pax5 up-regulation (Figure 3B-

D). Moreover, analysis of Flt3l-/- Ly6D+ EPLM showed that while absence of FL in vivo 

leads to a reduction in the numbers of Ly6D+ EPLM (Figure 1C), it does not 

significantly reduce the percentage of Ebf1+ cells within the population (Figure 7A-B), 

consistent with a permissive rather than instructive role of FL. Finally, the decrease 

in the Ebf1+ fraction of Ly6D+ EPLM upon exposure to high levels of FL was reflected 

in the increased ability of these progenitors to give rise to T cells in vitro, as 

manifested by the high frequency of T cell clone generation when Flt3Ltg Ly6D+ 

EPLM were plated on OP9DL1 stromal cells in the presence of IL7 (Figure 7C). The 

above data suggest that FL does not instruct commitment to the B cell lineage 

through up-regulation of Ebf1 and Pax5 expression. 
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DISCUSSION 

 

Commitment to the B cell lineage is mediated by the expression of Ebf1 and 

Pax5 transcription factors and it is initiated in CD135+CD127+Ly6D+ progenitors prior 

to CD19 expression (30, 31). In Il7-/- mice, this Ly6D+ CLP compartment is significantly 

reduced (22), a finding confirmed in the present study for both CLP and EPLM, a 

B220int/+ population partly overlapping with CLP and pre-pro B cells (Figure 1B-C). 

The proliferative effect of IL7 on committed CD19+ B cell progenitors (38) makes the 

investigation of its role in B cell commitment challenging when using CD19+ cells as 

readout. Hence, we assessed the role of IL7 in B cell commitment by analyzing the 

Ly6D+ CLP/EPLM compartment in different mouse models. Our analysis of Flt3Ltg-Il7-

/-mice showed a complete rescue of Ly6D+ CLP/EPLM numbers in vivo and their B cell 

potential in vitro and in vivo, while Ebf1 and Pax5 were expressed at similar levels to 

Flt3Ltg mice, thereby indicating that IL7 signaling is not required for their up-

regulation at the Ly6D+CD19- stage (Figures 2 and 3). These results suggest that IL7 is 

not acting as an instructive cytokine in B cell commitment by initiating Ebf1 and Pax5 

expression at the CD135+CD127+CD19- stage, as previously hypothesized (18-20), but 

rather as a permissive one. 

 Early investigations had shown that Bcl2 over-expression in the absence of 

IL7 signaling could rescue T cell (39, 40) but not B cell development (16, 17). 

However, a more recent study demonstrated a Bcl2-mediated rescue of CD19+ 

progenitors in conditional Stat5-/- mice, as well as a strong activation of the pro-

survival gene Mcl1 expression by Stat5 (21), therefore suggesting a survival role for 

IL7 in B cell development. Our use of Il7-/- mice instead of Il7rα-/-, which allows the 

assessment of progenitor in vitro B cell potential, and our focus on 

Ly6D+CD135+CD127+CD19- progenitors, has enabled us to confirm the latter findings 

and extend them to the CD19- stage where B cell commitment events are initiated at 

the molecular level. Interestingly, Il7tg mice analysis showed that IL7 indeed acts as 

a proliferative factor for committed CD19+ cells, but not for their CD19- precursors. 

Even in the absence of FL, excess IL7 was unable to significantly increase Ly6D+ 

CLP/EPLM numbers, while it did so for CD19+ B cell progenitors (Figure 5). Hence, we 

propose that the main role of IL7 at the CD135+CD127+CD19- stage is to provide 
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survival signals to the progenitors until they commit to the B cell lineage upon Pax5 

and CD19 expression, after which it additionally induces their proliferation (Figure 

7D). This survival role becomes particularly critical when FL levels are limiting, 

thereby explaining the reduction in Ly6D+ CLP/EPLM seen in Il7-/- mice. Our study, in 

agreement with previous data (21), identifies a common, permissive rather than 

instructive role for IL7 in both B and T cell development (39, 40). 

 The rescue in B cell commitment without active IL7 signaling occurs when FL 

is expressed above physiological levels. Even though a minor role for FL as a survival 

factor for CD135+CD127+Ly6D+CD19- progenitors cannot be excluded, the main effect 

of FL on these progenitors seems to be the induction of their proliferation, as 

suggested by their expansion and their increased cycling upon FL over-expression, 

with the reverse phenotype observed upon loss of FL signaling (Figure 6). Moreover, 

increased FL leads to expansion of Lin-CD117+Sca1+ cells (LSK) (8), thereby increasing 

the developmental input into the CD135+CD127+Ly6D+CD19- progenitor stage. None 

of the mouse models analyzed in the present study gave any evidence for an 

instructive role of FL in B cell commitment. In contrast, excess FL resulted in a 

proportional reduction of Ebf- and Pax5-expressing Ly6D+CD19- progenitors (Figures 

3 and 7). One explanation for this reduction could be the increased percentage of 

cycling Flt3Ltg Ly6D+CD19- progenitors, resulting in a decreased fraction initiating the 

B cell developmental program. Alternatively, another environmental factor, 

responsible for initiation of Ebf1/Pax5 expression and B cell commitment, could be 

the limiting factor in Flt3Ltg mice, thus leading to a smaller fraction of the expanded 

Ly6D+CD19- compartment entering the B cell pathway. Our conclusion is that FL is 

mainly responsible for generating enough CD135+CD127+Ly6D+CD19- progenitors, 

both by inducing their proliferation and by increasing their developmental input 

from the LSK compartment (Figure 7D) (41, 42). As a result, increased levels of FL in 

Flt3Ltg-Il7-/- mice lead to a dramatic increase in CD135+CD127+Ly6D+CD19- progenitor 

numbers, therefore surpassing the need for the survival role of IL7 at this stage and 

resulting in a sufficient fraction of them committing to the B cell lineage. 

 The generation of B cell progenitors in Flt3Ltg-Il7-/- mice is reminiscent of the 

apparent IL7 independency of human B lymphopoiesis, where relatively normal 

numbers of B cells are seen in patients with mutations in components of the IL7 
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signaling pathway (13, 14). However, all patients with such mutations are neonates 

and in neonatal Il7-/- mice, B cell development also takes place (43). Therefore, the 

apparent difference in the IL7 dependency of B cell development between man and 

mouse could actually reflect the corresponding difference between fetal/neonatal 

and adult lymphopoiesis. Our data showing that increased FL signaling can rescue B 

cell commitment in the absence of IL7 could provide a potential explanation for this 

difference. Fetal/neonatal CD135+CD127+CD19- progenitors might be exposed to 

higher levels of FL and/or show higher sensitivity to FL signaling than adult 

CD135+CD127+CD19- progenitors. Indeed, previous studies showed that despite a 

preferable response of fetal B cell progenitors to TSLP, FL signaling remains an 

absolute requirement for fetal B lymphopoiesis (44, 45).  

 The instructive or permissive progenitor regulation of lineage commitment 

by cytokines is a complex process, in which cytokines can initiate developmental 

transcription programs in progenitors. However, the reverse is also true, since the 

particular epigenetic, transcriptional and signaling landscape of a cell can affect its 

response to a cytokine (9). Indeed, while previous analysis of Flt3Ltg mice indicated 

an instructive role for FL in promoting differentiation of multi-potent progenitors 

towards lympho-myeloid and away from erythroid fate (8), our present data show 

that FL acts in a permissive manner for B cell commitment of CD135+CD127+CD19- 

progenitors. In addition, whereas IL7 induces proliferation of committed CD19+ B cell 

progenitors, it does not do so on CD127+CD19- progenitors, suggesting that upon 

commitment to the B cell lineage, changes in the transcription factor and 

intracellular signaling landscape influence the effector function of IL7. Therefore, our 

present data further support the notion of a cell-context dependent cytokine action. 

 The Ebf1/Pax5 up-regulation and subsequent B cell commitment in Flt3Ltg-

Il7-/- mice shown herein raises the issue of the potential extra-cellular regulation of B 

cell commitment. One possibility could be that another environmental signal from 

the bone marrow microenvironment - other than IL7, TSLP and FL - initiates Ebf1 

expression in CD135+CD127+Ly6D+CD19- progenitors resulting in Pax5/CD19 

expression and B cell commitment. Alternatively, as yet uncommitted 

CD135+CD127+Ly6D+CD19- progenitors could express Ebf1 in a cell-autonomous, 

stochastic, manner with some obtaining sufficient Ebf1 to initiate the B cell gene 
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program and eventually commit to the B cell lineage. The intricate transcription 

factor network sustaining B cell commitment through a series of positive feedback 

regulatory loops (46) provides conceptual support for the latter hypothesis.  
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MATERIALS AND METHODS 

 

Mice 

For breeding and analysis, age- and sex-matched C57BL/6 Flt3l-/- (27), Flt3Ltg (8), Il7-/- 

(10), Il7rα-/- (11), Il7tg (38), and (C57BL/6 x C3H) Bcl2tg (35) mice backcrossed with 

C57BL/6 for at least 5 generations were used at 6–11 weeks of age. All mice were 

bred and maintained in our animal facility under specific pathogen-free conditions. 

Animal experiments were carried out within institutional guidelines (authorization 

number 1888 from cantonal veterinarian office, Basel). 

 

Antibodies, flow cytometry, and sorting 

For analysis, cells were flushed from femurs of the two hind legs of mice. The 

procedure was performed in PBS containing 0.5% BSA and 5mM EDTA. For detection 

of Ebf1 and cell cycle analysis, cells were fixed and permeabilized after cell-surface 

staining using the Foxp3 Fix/Perm buffer set (eBioscience), and subsequently stained 

with PE-conjugated anti-Ebf1 (T26-818) or FITC-conjugated anti-Ki67 (B56) and DAPI, 

according to the supplier’s protocol. Flow cytometry was done using a BD 

LSRFortessa (BD Biosciences) and data were analyzed using FlowJo Software 

(Treestar). For cell sorting, a FACSAria IIu (BD Biosciences) was used (>98% purity). 

 

In vitro limiting dilution assays 

Experiments have been performed as previously described (47). Briefly, OP9 or 

OP9DL1 stromal cells were plated on flat-bottom 96-well plates one day before the 

initiation of co-cultures, at a concentration of 3000 cells per well. The following day 

stromal cells were γ-irradiated (3000 rad) and the sorted progenitor cells were 

added at different concentrations. Cultures were maintained in IMDM medium 

supplemented with 5 × 10–5  M β-mercaptoethanol, 1 mM glutamine, 0.03% (wt/vol) 

primatone, 100 U/mL penicillin, 100 μg/mL streptomycin, 5% FBS and 10% IL7-

conditioned medium. After 14 days in culture all wells were inspected under an 

inverted microscope and wells containing colonies of more than 50 cells were scored 

as positive. 
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Quantitative real-time PCR 

RNA extraction was performed using TRI Reagent® (Life Technologies) followed by 

cDNA synthesis using using GoScript™ Reverse Transcriptase (Promega). Real-time 

PCR was performed using SYBR Green PCR Master Mix (Applied Biosystems).  

 

Statistical analysis 

Statistical analysis was performed with Prism 6.0g software (GraphPad Software, 

Inc.). Two-tailed unpaired Student t tests were used for statistical comparisons. If 

not differently indicated, data are presented as mean values ± SD or SEM. n.s. not 

significant or P > 0.05, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. 
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FIGURES 

 

Figure 1. IL7 and FL are necessary for the generation of a normal 

Ly6D+CD135+CD127+CD19- compartment. A. FACS plots showing the gating strategy 

used for identification of Ly6D+ EPLM and their percentage of CD135 and CD127 

expression. Lineage staining: SiglecH, CD115, CD11c, NK1.1, Gr-1. B. Representative 

FACS plots of EPLM (upper row) and CLP (lower row) from the bone marrow of WT, 

Il7-/- and Flt3l-/- mice. C. Absolute numbers of Ly6D+ EPLM (upper graph) and CLP 

(lower graph) from the bone marrow of WT (n=13), Il7-/- (n=5) and Flt3l-/- (n=10) 

mice. D. Representative FACS plots of EPLM and CLP from WT and Flt3Ltg mice. E. 

Absolute numbers of total EPLM and CLP (left graphs) and Ly6D+ EPLM and CLP (right 

graphs) from WT and Flt3Ltg mice. 
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Figure 2. Increased in vivo FL levels rescue B cell generation in Il7-/- mice. A. 

Representative FACS plots of EPLM (upper panel) and CLP (lower panel) from WT, Il7-

/-, Flt3Ltg and Flt3Ltg-Il7-/- mice. B. Numbers of EPLM (top left), CLP (bottom left), 

Ly6D+ EPLM (top right) and Ly6D+ CLP (bottom right) from the mouse genotypes 

indicated on the x-axes. For each mouse genotype mean±SEM is shown. C. Numbers 

of CD19+CD117+ (top left), CD19+CD117-IgM- (top right) and CD19+IgM+ (bottom) 

bone marrow cells from the mice indicated on the x-axes. For each mouse genotype 

mean±SEM is shown. D. Numbers of CD19+CD21highCD23low marginal zone (left) and 

CD19+CD21+CD23+ follicular (right) B cells in the spleens of WT or mutant mice, as 

indicated on the x-axes. For each mouse genotype mean±SD is shown.  
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Figure 3. Increased in vivo FL rescues B cell commitment in the absence of IL7 

and/or TSLP. A. In vitro limiting dilution analysis of Ly6D+ EPLM B cell potential. 

Ly6D+ EPLM were sorted from WT, Il7-/-, Flt3Ltg and Flt3Ltg-Il7-/- mice and plated at 

the indicated concentrations on OP9 stromal cells together with IL7. One 

representative out of four independent experiments is shown. B. Real-time 

quantitative PCR analysis showing expression of Ebf1, Pax5 and Foxo1 mRNAs in 

Ly6D+ EPLM sorted from the indicated mouse genotypes. Bars show fold expression 
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relative to WT (set as 1). Error bars represent the SEM from 3-6 independent 

experiments. C. Representative FACS plots showing expression of Ebf1 protein within 

the Ly6D+ EPLM of the indicated WT or mutant mice. D. Percentages of Ebf1-

expressing Ly6D+ EPLM from WT (n=7), Il7-/- (n=3), Flt3Ltg (n=11) and Flt3Ltg-Il7-/- 

(n=6) mice. Bars show mean±SEM. E. Ly6D+ EPLM (left) and CD19+CD117+ (right) 

numbers from WT (n=5), Il7-/-  (n=5), Flt3Ltg (n=3), Flt3Ltg-Il7-/- (n=5) mice, as well as 

from Il7-/- (n=5) and Il7rα-/- (n=6) mice injected intra-peritoneally with 10 daily doses 

of 10 μg FL each (indicated as +FL) or PBS (+PBS, n=4). Shown is the mean±SEM. 

 

  



 112 

Figure 4. Bcl2 over-expression partially rescues B cell commitment in Il7-/- mice. A. 

Representative FACS plots of EPLM (upper panel) and CLP (lower panel) from WT, Il7-

/-, Bcl2tg and Bcl2tg-Il7-/- mice. B. Numbers of EPLM (top left), CLP (bottom left), 

Ly6D+ EPLM (top right) and Ly6D+ CLP (bottom right) from WT and mutant mice, as 

indicated on the x-axes. For each mouse genotype mean±SEM is shown. C. In vitro 

limiting dilution analysis of Ly6D+ EPLM B cell potential. Ly6D+ EPLM were sorted 

from WT, Il7-/-, Bcl2tg and Bcl2tg-Il7-/- mice and plated at the indicated 

concentrations on OP9 stromal cells together with IL7. One representative out of 

three independent experiments is shown. D. Numbers of CD19+CD117+ (top), 

CD19+CD117-IgM- (middle) and CD19+IgM+ (bottom) bone marrow cells from WT and 

mutant mice, as indicated on the x-axes. For each mouse genotype mean±SEM is 

shown. 
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Figure 5. IL7 does not induce proliferation of Ly6D+CD135+CD127+CD19- 

progenitors. A. CD19+CD117+ numbers in bone marrow of WT (n=10), Il7-/- (n=5) and 

Il7tg (n=8) mice. B. EPLM numbers in bone marrow of WT (n=14), Il7-/- (n=7) and Il7tg 

(n=5) mice. C. Ly6D+ EPLM numbers in bone marrow of WT (n=14), Il7-/- (n=7) and 

Il7tg (n=5) mice. D. Cell cycle analysis of Ly6D+ EPLM from WT (n=5) and Il7tg (n=2) 

mice. Graph shows percentages of Ki67-DAPI-, Ki67+DAPI- and Ki67+DAPI+ Ly6D+ 

EPLM. Bars in A, B, C and D show mean±SEM. E. Numbers of EPLM (top left), CLP 

(bottom left), Ly6D+ EPLM (top right) and Ly6D+ CLP (bottom right) from WT and 

mutant mice, as indicated on the x-axes. For each mouse genotype mean±SEM is 

shown. F. Numbers of CD19+CD117+ bone marrow cells from WT and mutant mice, 

as indicated on the x-axis. For each mouse genotype mean±SEM is shown. G. Cell 

cycle analysis of Ly6D+ EPLM from WT (n=5), Flt3l-/- (n=3), Il7tg (n=2) and Il7tg-Flt3l-/- 

(n=3) mice. Graph shows percentages of Ki67-DAPI-, Ki67+DAPI- and Ki67+DAPI+ Ly6D+ 

EPLM. Bars show mean±SEM. 
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Figure 6. FL promotes proliferation but not survival of Ly6D+CD135+CD127+CD19- 

progenitors. A. Numbers of EPLM (top left), CLP (bottom left), Ly6D+ EPLM (top 

right) and Ly6D+ CLP (bottom right) from WT (n=14), Flt3l-/- (n=10) and Flt3Ltg (n=9) 

mice. Bars show mean±SEM. B. Cell cycle analysis of Ly6D+ EPLM from WT (n=5), 

Flt3l-/- (n=3) and Flt3Ltg (n=9) mice. Graph shows percentages of Ki67-DAPI-, 

Ki67+DAPI- and Ki67+DAPI+ Ly6D+ EPLM. Bars show mean±SEM. C. Numbers of EPLM 

(top left), CLP (bottom left), Ly6D+ EPLM (top right) and Ly6D+ CLP (bottom right) 

from WT and mutant mice, as indicated on the x-axes. For each mouse genotype 

mean±SEM is shown. D. In vitro limiting dilution analysis of Ly6D+ EPLM B cell 

potential. Ly6D+ EPLM were sorted from WT, Flt3l-/- and Bcl2tg-Flt3l-/- mice and 

plated at the indicated concentrations on OP9 stromal cells together with IL7. E. 

Numbers of CD19+CD117+ (left), CD19+CD117-IgM- (middle) and CD19+IgM+ (right) 

bone marrow cells from WT and mutant mice, as indicated on the x-axes. For each 

mouse genotype mean±SEM is shown. 
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Figure 7. FL does not instruct Ebf1 expression and B cell commitment. A. 

Representative FACS plots showing expression of Ebf1 protein within the Ly6D+ 

EPLM of WT, Flt3l-/- and Flt3Ltg mice. B. Percentages of Ebf1-expressing Ly6D+ EPLM 

from WT (n=7), Flt3l-/- (n=5) and Flt3Ltg (n=12) mice. Bars show mean±SEM. C. In 

vitro limiting dilution analysis of Ly6D+ EPLM T cell potential. Ly6D+ EPLM were 

sorted from WT and Flt3Ltg mice and plated at the indicated concentrations on 

OP9DL1 stromal cells together with IL7. One representative of four independent 

experiments is shown. D. Schematic model for the permissive role of IL7 and FL 

acting on hematopoietic progenitors and CD19+ committed B-cell precursors. HSC: 

Hematopoietic Stem Cell; LMPP: Lymphoid-primed Multi-Potent Progenitor; CLP: 

Common Lymphoid Progenitor; EPLM: Early Progenitor with Lymphoid and Myeloid 

potential. 
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SUPPORTING INFORMATION 

 

 

Supporting Materials and Methods 

 

Antibodies 

The following antibodies were used for flow cytometry (from BD Pharmingen, 

eBioscience, BioLegend, or produced in house): anti-B220 (RA3-6B2), anti-CD117 

(2B8), anti-CD19 (1D3), anti-NK1.1 (PK136), anti-SiglecH (551), anti-CD11c (HL3), 

anti-CD115 (AFS98), anti-Ly6D (49-H4), anti-CD127 (SB/199), anti-CD135 (A2F10), 

anti-Sca1 (D7), anti-IgM (M41), anti-CD21 (7G6), anti-CD23 (B3B4), anti-CD4 (GK1.5), 

anti-CD8 (53.6.7), anti-TCRβ (H57). 

 

Quantitative real-time PCR 

The primers used were: Ebf1: Ebf1-F: 5’-CAGGAAACCCACGTGACAT-3’; Ebf1-R: 5’-

CCACGTTGACTGTGGTAGACA-3’, Pax5: Pax5-F: 5’ACGCTGACAGGGATGGTG-3’; Pax5-

R: 5’-GGGGAACCTCCAAGAATCAT-3’, Foxo1: Foxo1-F: 5’-AGTGGATGGTGAAGAGCGT-

3’, Foxo1-R: 5’-GAAGGGACAGATTGTGGCG-3’, Actin: Actin-F: 5’-

CTGTCGAGTCGCGTCCACC-3’, Actin-R: 5’-CGCAGCGATATCGTCATCCA-3’. 
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Supporting Figures 
 

 

Fig. S1. A. CLP FACS staining in WT mice. FACS plots showing the gating strategy used 

for the identification of Ly6D+ CLP. Lineage staining: SiglecH, CD115, CD11c, NK1.1, 

Gr-1. B. In vitro limiting dilution analysis of Ly6D+ and Ly6D- EPLM B cell potential. 

Cells were sorted as shown in Figure 1A and plated at the indicated concentrations 

on OP9 stromal cells together with IL7 A representative of 3 independent 

experiments is shown. C, D. Numbers of EPLM (C) and CLP (D) progenitors in WT 

(n=13), Il7-/- (n=5) and Flt3l-/- (n=10) mice. EPLM were stained as shown in Figure 1A 

and CLP as shown in A. Student’s t test. ***P ≤ 0.001. Bars show mean±SEM. 
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Fig. S2. Rescue of CD19+ bone marrow B cell progenitors in Flt3Ltg-Il7-/- mice. Figure 

shows representative FACS plots for the identification of CD19+CD117+, CD19+CD117-

IgM- and CD19+IgM+ bone marrow cells. 
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Fig. S3. Thymic T cell development in Flt3Ltg-Il7-/- mice. A. Representative FACS 

plots showing CD4/CD8 thymocyte staining from 6-8 week old WT, Il7-/-, Flt3Ltg and 

Flt3Ltg-Il7-/- mice (n=4 for each group). B. Total numbers of CD4+ (left panel) and 

CD8+ (right panel) single-positive thymocytes from the mouse genotypes indicated 

on the x-axes.  
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Fig. S4. A. Representative FACS plots illustrating T cells in the spleens of WT (first 

row), Il7-/- (second row), Flt3Ltg (third row), and Flt3Ltg-Il7-/- (fourth row) mice. After 

gating on living lymphocytes TCRβ+ cells are further sub-grouped in CD4 and CD8 

positive T cells. B. Representative FACS plots illustrating B cells in the spleens of WT 

(first row), Il7-/- (second row), Flt3Ltg (third row), and Flt3Ltg-Il7-/- (fourth row) mice. 

After gating on living lymphocytes CD19+ cells are further sub-grouped in 

CD21highCD23low marginal zone B cells and CD21+CD23+ follicular B cells. C and D. 

Numbers of splenic CD4+ (C) and CD8+ (D) T cells, stained as shown in A, from WT 

and mutant mice as indicated on the x-axes. ***P ≤ 0.001, ****P ≤ 0.0001. Student’s 

t test; n = 9-15. Data shown above are mean ± SD. 
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Fig. S5. B cell potential of Ly6D+ EPLM cells from Il7-/- mice injected with FL. Il7-/- mice 

were injected with FL (10 daily doses of 10μg for each mouse) and Ly6D+ EPLM were 

sorted from their bone marrows one day after the last injection A. In vitro limiting 

dilution analysis of the B cell potential of FL-injected Il7-/- Ly6D+ EPLM. Cells were 

plated at the indicated concentrations on OP9 stromal cells plus IL7. Flt3Ltg Ly6D+ 

EPLM were used as positive controls. B, C. In vivo B cell potential of FL-injected Il7-/- 

Ly6D+ EPLM. Five thousand Ly6D+ EPLM from FL-injected Il7-/- or Flt3Ltg mice were 

intravenously injected into sub-lethally irradiated Rag2-/- mice. Four weeks after cell 

transfer spleens were analyzed for expression of CD19 and IgM. B. Respresentative 

FACS plots of recipient spleens. C. Numbers of CD19+IgM+ B cells harvested from the 

analyzed spleens (n=4 mice for each group). 
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Fig. S6. Quiescent state of Bcl2-rescued cells in vivo. A. Cell cycle analysis of Ly6D+ 

EPLM from WT (n=5), Bcl2tg, (n=2), Il7-/- (n=2) and Bcl2tg-Il7-/- (n=4) mice. Graph 

shows percentages of Ki67-DAPI-, Ki67+DAPI- and Ki67+DAPI+ Ly6D+ EPLM. *P ≤ 0.05, 

**P ≤ 0.01, ***P ≤ 0.001. Student’s t test. Bars show mean±SEM. B. Representative 

Ki67/DAPI FACS plots of the Ly6D+ EPLM cell cycle analysis collectively presented in 

A. 
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Fig. S7. Bcl2-mediated rescue of splenic T and B cells in the absence of IL7. A. 

Representative FACS plots illustrating T cells in the spleens of WT (first row), Il7-/- 

(second row), Bcl2tg (third row), and Bcl2tg-Il7-/- (fourth row) mice. After gating on 

living lymphocytes TCRβ+ cells are further sub-grouped in CD4 and CD8 positive T 
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cells. B. Representative FACS plots illustrating B cells in the spleens of WT (first row), 

Il7-/- (second row), Bcl2tg (third row), and Bcl2tg-Il7-/- (fourth row) mice. After gating 

on living lymphocytes CD19+ cells are further sub-grouped in CD21highCD23low 

marginal zone B cells and CD21+CD23+ follicular B cells. C. Numbers of splenic CD4+ 

(top) and CD8+ (bottom) T cells, stained as shown in A, from WT and mutant mice as 

indicated on the x-axes. D. Numbers of splenic marginal zone (top) and follicular 

(bottom) B cells, stained as shown in B, from WT and mutant mice as indicated on 

the x-axes.  **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. Student’s t test; n = 4-9. Data 

shown above are mean ± SD. 
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Fig. S8. Representative FACS plots of EPLM (upper panel) and CLP (lower panel) from 

WT, Flt3l-/-, Il7tg and Il7tg-Flt3l-/- mice. 
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Fig. S9. Effect of IL7 over-expression on WT and Flt3l-/- splenic T and B cells. A. 

Representative FACS plots illustrating T cells in the spleens of WT (first row), Flt3l-/- 

(second row), Il7tg (third row), and Il7tg-Flt3l-/- (fourth row) mice. After gating on 

living lymphocytes TCRβ+ cells are further sub-grouped in CD4 and CD8 positive T 

cells. B. Representative FACS plots illustrating B cells in the spleens of WT (first row), 
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Flt3l-/- (second row), Il7tg (third row), and Il7tg-Flt3l-/- (fourth row) mice. After gating 

on living lymphocytes CD19+ cells are further sub-grouped in CD21highCD23low 

marginal zone B cells and CD21+CD23+ follicular B cells. C. Numbers of splenic CD4+ 

(top) and CD8+ (bottom) T cells, stained as shown in A, from WT and mutant mice as 

indicated on the x-axes. D. Numbers of splenic marginal zone (top) and follicular 

(bottom) B cells, stained as shown in B, from WT and mutant mice as indicated on 

the x-axes. ns not significant or P > 0.05, ****P ≤ 0.0001. Student’s t test; n = 3-15. 

Data shown above are mean ± SD. 
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Fig. S10. Effect of in vivo FL levels on Ly6D+ EPLM cell cycle. Representative 

Ki67/DAPI FACS plots of the Ly6D+ EPLM cell cycle analysis collectively presented in 

Figure 6B. 
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ABSTRACT 

 

Fetal liver (FL) and bone marrow (BM) derived pro-B cells were propagated 

long-term in stromal cell free cultures supplemented with interleukin-7 (IL-7), stem 

cell factor and FLT3 ligand. Within a week, most cells expressed surface CD19, 

CD79A, λ5 and VpreB antigens and had rearranged immunoglobulin D-J heavy chain 

genes. Both FL and BM pro-B cells reconstituted the B-cell compartments of 

immuno-incompetent Rag2-deficient mice with FL pro-B generating follicular, 

marginal zone (MZB) and B1a B cells, but BM pro-B cells mainly MZB. Reconstituted 

mice generated significant IgM and IgG antibodies to a type II T-independent antigen 

with FL pro-B cell reconstituted mice generating surprisingly high IgG1 titers. Finally, 

we show for the first time that mice reconstituted with mixtures of stromal cell free 

in vitro propagated pro-B and pro-T cells mounted a T-cell dependent antibody 

response. This novel stromal cell free culture system facilitates our understanding of 

B-cell development and might be applied clinically. 
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INTRODUCTION 

 

In mammals, B cells develop from hematopoietic stem cells (HSCs), 

antenatally from the fetal liver (FL) and postnatally from the bone marrow (BM). 

Various stages of B-cell development are distinguishable by combinations of cell 

surface and intracellular markers, cell cycle profile and rearrangement status of IgH 

and IgL genes [1-4]. B-cell commitment is determined by the transcription factor 

Pax5 [5-7] one of whose target genes is CD19 [8]. The earliest B-cell committed 

precursor, or pro-B cell, proliferates rapidly, is CD19+ CD117+ [1, 9] and has its IgH D–J 

genes rearranged [4]  and are absent in Pax5-deficient [10], Il7 or Il7R gene deleted 

mice [11, 12]. The receptor tyrosine kinases CD117 and CD135 and their 

corresponding ligands, SCF and FLT3L, are important for early B-cell development 

[13-17]. Blocking SCF binding with an anti-CD117 antibody inhibits pro-B cell 

proliferation in IL-7-containing stromal cell cultures [18] and CD135 or FLT3L-

deficient mice have a dramatically reduced BM pro-B-cell compartment [19]. Thus 

Pax5 and cytokines are important for early B-cell development. 

We previously showed that FL-derived pro-B cells could be grown long-term on 

stromal cells and IL-7 [20]. Here we present for the first time that this is possible for 

BM-derived pro-B cells. We have described an early (E) progenitor (P) with lymphoid 

(L) and myeloid (M) developmental potential, called EPLM, in the BM [21]. EPLM are 

B220+, CD117+ but CD19- NK1.1-. When cultured either on OP9 stromal cells plus IL-7 

or without stromal cells but with IL-7, SCF and FLT3L, EPLM from the FL or BM can be 

propagated long-term and differentiate into CD19+ pro-B cells. Moreover, upon in 

vivo transplantation into immunodeficient Rag2 gene deficient hosts, these pro-B 

cells reconstitute a functional B-cell compartment. Finally, when these mice are 

reconstituted with a mixture of in vitro stromal cell free propagated pro-B and pro-T 

cells [22], a small, but functional adaptive immune system is generated.  
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RESULTS 

 

Growth of BM pro-B cells long-term 

Using stromal cell-based cultures, only FL-derived pro-B cells could be grown 

long-term [20]. We recently identified a B220+CD117+CD19-NK1.1- BM progenitor 

having lymphoid and myeloid developmental potential, called EPLM [21]; now we 

tested their capacity to generate long-term growing pro-B cells. Thus, 

B220+CD117+CD19-NK1.1- (CD19-) and B220+CD117+CD19+NK1.1- (CD19+) cells from 

FL or BM were sorted (Fig.1A) and plated on OP9 stromal cells plus IL-7. After 6 days, 

cells were harvested every 3 - 4 days and re-plated on fresh stromal cells and IL-7. 

FACS staining 6-7 days after initiation of cultures showed in all cases that the 

cultured cells were >90% positive for CD19 expression and this expression was 

further increased to almost 100% and retained throughout the culture period (data 

not shown and Figure 1D). CD19- (EPLM) cells grew continuously with doubling times 

of about 30hrs, whereas CD19+ cells proliferated for the first 7 days and then died 

(Fig 1B). RNAseq analysis on CD19+ cells derived from CD19- EPLM grown for 12 days 

on OP9 plus IL-7 and freshly-isolated CD19+CD117+ cells similarly grown for 5 days 

revealed that only 83 genes, none of which were B-cell related, were ≥2 fold 

differentially expressed (Table SI). All 44 B cell related genes were similarly 

expressed (Table SII). Gene ontology analysis of the 83 genes did not identify genes 

that explained the growth difference observed. An additional RNAseq analysis of ex 

vivo isolated CD19+CD117+ cells and EPLM derived CD19+ cells maintained on OP9 

stromal cells in the presence of IL-7 for two weeks revealed 3449 differentially 

expressed genes (Table SIII). However, amongst them we could not identify 

particular candidates that might be responsible for the dissimilar growth capacity 

observed.  

FL-derived EPLM grew better than BM-derived EPLM on OP9 with IL-7 

(Fig.1C) with >95% of both becoming CD19+ (Fig.1D) with ~25% BM and >60% FL-

derived cells expressing CD117 (Fig.1D). RT-PCR analysis revealed that both 

expressed CD79a, CD79b, Igll1 (λ5) and Vpreb1 (Fig.1E) and both had undergone DH-

JH rearrangements (Fig.1F). Thus, BM and FL EPLM cultured on OP9 plus IL-7 give rise 

to pro-B cells proliferating for more than three months. 
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Long-term propagation of BM and FL pro-B cells in stromal cell free cultures 

FL pro-B cells propagated on stromal cells plus IL-7 reconstituted the B-cell 

compartment of immuno-deficient mice [20, 29, 30]. However, it is unlikely that pro-

B cells derived from co-culture settings will ever be approved for therapeutic 

purposes. Therefore, we developed a stromal cell free culture system consisting of 

soluble IL-7, SCF and FLT3L. As shown in figure 2A and B, EPLM from FL and BM 

showed very robust growth under these stromal cell free conditions. Indeed, the 

growth rate of BM-derived EPLM was identical under stromal cell and stromal cell 

free conditions (Fig.2A). However, growth of FL EPLM was slightly slower without 

stromal-cell support (Fig.2B). Stromal cell free cultured EPLM became CD19+ with 

~35% BM and >75% FL-derived cells expressing CD117 (Fig.2C and D). Moreover, 

cells cultured without stroma expressed CD79a and b, Igll1 (λ5) and Vpreb1 (Fig.2E) 

and had their IgH chains DH-JH rearranged (Fig.2F). Thus, both BM and FL EPLM 

cultured with IL-7, SCF and FLT3L alone also give rise to long-term proliferating pro-B 

cells. Moreover, as shown for FL-derived pro-B cells [20], BM-derived pro-B cells 

expressing the anti-apoptotic Bcl2 transgene cultured with or without stromal-cell 

support efficiently differentiated into IgM+ B cells upon IL-7 removal (Figure S1). 

 

In vivo B-cell reconstitution by BM or FL EPLM-derived pro-B cells. 

To test whether in vitro-generated FL or BM-derived pro-B cells could 

reconstitute mice, 107 EPLM-derived pro-B from FL or BM of B6 CD45.1 mice 

cultured with or without stroma were transferred into sub-lethally irradiated CD45.2 

B6 Rag2-deficient mice. After 5-10 weeks, FACS analysis of spleen or peritoneal 

cavity (PerC) cells of FL (Fig 3A) or BM (Fig 4A) reconstituted mice showed that 

expression of donor CD45.1+was restricted to CD19+ B cells (first column) and in both 

cases, all CD19+ cells were IgM+ (second column). In figure 3, WT cytograms are 

shown in the first row. Based on CD5 expression, FL-derived pro-B cells propagated 

with or without stroma gave rise to a large fraction of B1a B cells especially in the 

PerC (Fig.3A third column cytograms). As expected, BM-derived pro-B cells 

generated few CD5+ B cells (Fig.4A third column cytograms). Using combined 

expression of CD21 and CD23 to define CD21+/CD23- marginal zone B (MZB) and 
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CD21+/CD23+ follicular B cells (FB) spleen CD19+ B cells derived from FL pro-B cells 

propagated with or without stroma were similar (Fig3A fourth column cytograms). 

Thus 40 – 60% were FB and 30 – 40% were MZB. The CD19+/CD21-/CD23- cells (lower 

left quadrant) most likely represent B1 B cells. Immunohistochemical analysis (Fig 

3B) of reconstituted mice showed the typical B cell follicular structure seen in WT 

mice comprising an outer ring of IgMhigh (green) IgDlow (blue) MZB cells surrounding 

metallophilic macrophages (red) with IgMpositiveIgDhigh FB inside. Mice reconstituted 

with BM pro-B cells cultured by the two methods also showed no obvious 

differences in CD21 and CD23 expression (Fig4A fourth column cytograms). 

However, unlike FL-derived pro-B cells, >70% of BM pro-B cell-derived B cells were 

MZB and only 15 – 20% FB (Fig3B fourth column cytograms). 

Spleens of FL-derived pro-B cell reconstituted mice contained around 5 x 106 

B cells with no difference between cells cultured with or without stroma (Fig.4B). In 

contrast, spleens of mice reconstituted with BM-derived pro-B cells contained only 

0.5 x 106 B cells irrespective of whether they had been propagated with or without 

stroma. Thus FL-derived pro-B cells seem to be much more efficient at reconstitution 

than BM-derived cells. 

To test this more stringently, competitive reconstitution experiments were 

performed. Sub-lethally irradiated CD45.2 B6 Rag2-deficient mice were reconstituted 

with a 1:1 mixture of 5 x 106 CD45.2 FL-derived and CD45.1 BM-derived pro-B cells. 

After 8 weeks, FACS analysis of one representative mouse (Fig 4C) showed that 44% 

of splenocytes were CD19+ of which 97.5% (42.9/44) were FL and 2.5% (1.1/4.4) BM-

derived. Similar results were obtained in more than three independent experiments. 

Thus FL-derived pro-B cells are superior to BM-derived ones also in competitive 

transplantation settings.  

In order to identify genes that might be responsible for these observed 

differences between FL- and BM-derived pro-B cells we performed RNA-sequencing 

analysis of the two populations. This analysis identified 218 genes differentially 

expressed more than 2-fold and with high significance (Table SIV). We identified the 

gene Lin28B, as the one most highly expressed in FL-derived pro-B cells compared to 

BM-derived pro-B (34-fold). It was recently shown that enforced Lin28B gene 

expression in adult HSC converted them functionally into FL HSC [31] and that BM-
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derived pro-B cells gained FL-derived pro-B cell properties [32, 33]. To test whether 

Lin28B expression also influenced reconstitution efficiency, we introduced a MigR1 

retrovirus encoding Lin28B into BM-derived pro-B cells propagated on OP9 stromal 

cells for two weeks. Then 5 x 106 Lin28B transduced and 5 x 106 non-transduced BM-

derived pro-B cells were co-transferred into sub-lethally irradiated Rag2-deficient 

recipients. Only 2% CD19+ cells were found in the spleens of these mice of which half 

expressed Lin28B (GFP) (Figure S2). Thus Lin28B expression did not improve the in 

vivo B-cell generating capacity of BM-derived pro-B cells. However, practically all 

CD19+ cells were IgM+ and > 80% Lin28B+ cells were CD5+, thereby resembling B1 B 

cells. Concerning CD5 expression, Lin28B over-expression also converted BM pro-B 

cells to ones phenotypically resembling FL cells. 

 

Pro-B cell derived B cells mount a T-cell independent immune response 

To test whether the B-cell compartments of Rag2-deficient reconstituted 

mice were functional, 8 weeks after cell transfer they were immunized with the T-

cell independent antigen NIP-Ficoll. Serum anti-NIP titers were determined one 

week before and two weeks after immunization. All reconstituted mice mounted a 

good IgM anti-NIP response with IgM titers comparable to those in immunized wild 

type B6 mice (Fig.5A). Mice reconstituted with BM-derived pro-B cells showed a 

rather low, but significant, IgG anti-NIP response (Fig.5B). However, the IgG anti-NIP 

response of mice reconstituted with FL pro-B cells was as high or even higher than 

wild type B6 mice (Fig.5B). Thus the pro-B cell reconstituted B-cell compartments 

were functional.  

The surprisingly high IgG anti-NIP titers in FL pro-B reconstituted mice 

prompted us to determine their isotypes. Thus, the IgG2A and IgG2B anti-NIP titers 

were low (Fig 5C) and comparable to those in immunized wild type B6 mice whereas 

IgG1 and IgG3 titers were considerably higher. Although high IgG3 titers are observed 

in other T-cell independent responses, switching to IgG1 was thought to be a highly 

T-cell dependent phenomenon requiring IL-4 [34-36]. In addition to T cells, mast cells 

[37, 38], basophils [39], eosinophils [40] and ILC2s [41] may produce IL-4. ILC 

generation is largely dependent on IL-7 and Rag2/common gamma chain (Rag2cγ) 

double-deficient mice are practically devoid of ILCs [42, 43]. Therefore, Rag2 and 
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Rag2cγ double-deficient mice were reconstituted with 107 FL-derived pro-B cells and 

immune responses analyzed as above. Both Rag2 and Rag2cγ double-deficient mice 

showed a very significant IgM and IgG anti-NIP response (Fig.6A and B), similar 

and/or even higher than wild type B6 mice. Moreover, both types of reconstituted 

mice showed a very strong IgG1 and IgG3 anti-NIP response (Fig.6 C and D). Thus the 

IgG class switching observed in immunized reconstituted mice does not seem to be 

regulated by ILCs. 

 

Reconstitution of the adaptive immune system by in vitro-propagated pro-B cells 

and pro-T cells 

Recently, we described a stromal cell free culture system for the long-term 

propagation of pro-T cells that could be used to reconstitute the T-cell compartment 

of T-cell deficient mice [22]. However, reconstituted mice contained few regulatory T 

cells and developed a wasting disease preventable by the co-transfer of mature Treg 

cells or co-transfer of pro-T cells transduced with a retrovirus encoding Foxp3-IRES-

GFP. Simultaneous reconstitution with a mixture of in vitro-propagated pro-B cells 

and a non-transduced and Foxp3 transduced pro-T cells in a 4:1 ratio resulted in T 

but no B-cell reconstitution (not shown). Therefore, sub-lethally irradiated B6 Rag2-

deficient mice were first reconstituted with 107 FL-derived pro-B cells and 4 weeks 

later with 107 pro-T cells of which 2.5 x 106 were Foxp3+. Six weeks after pro-T cell-

transfer, a significant B and T-cell reconstitution was seen in peripheral blood cells 

(data not shown). Because FL pro-B cells partially reconstituted the B-cell 

compartment of B-cell deficient, T-cell proficient, µMt mice and mounted a T-cell 

dependent immune response (Figure S3) we tested whether the established B and T 

cells were functional and could cooperate. Reconstituted mice were therefore 

immunized with the T-cell dependent antigen NIP-OVA. Rag2-deficient mice 

reconstituted with pro-B cells alone were used as controls and serum anti-NIP titers 

determined one week before and two weeks after immunization. No IgM or IgG anti-

NIP response was observed in control pro-B cell-reconstituted Rag2-deficient mice 

(Fig.7A). However, mice reconstituted with both pro-B and pro-T cells mounted a 

strong IgM and relatively weak, but significant, IgG anti-NIP response (Fig.7A). Thus 

the reconstituted adaptive immune system was functional. 
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At 10 – 14 weeks after pro-T cell-transfer, the extent of reconstitution was 

assessed by FACS analysis. In one such mouse, spleen lymphocytes comprised 10% B 

cells, 10% CD8 T cells and 20% CD4 T cells (Fig.7B) with ~10% CD4 T cells expressing 

GFP, indicating they were Tregs. Spleen cell numbers of 7 individual mice 14 weeks 

after pro-T cell-transfer (Fig.7C) show they contained around 3.5 x 106 CD19+ IgM+ B 

cells, 1 x 106 CD8 T cells and 3 x 106 CD4 T cells of which 0.5 x 106 were GFP positive; 

derived from Foxp3 transduced pro-T cells. Thus transfer of in vitro-propagated pro-

B and pro-T cells into Rag2-deficient mice resulted into reconstitution of a small, but 

functionally active, adaptive immune compartment. 
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DISCUSSION 

 

To our knowledge, this is the first report describing the long-term 

propagation of BM-derived pro-B cells and their use in reconstituting a functional 

immune system in immune-deficient recipients. Pro-B cells from Pax5-/- mice were 

previously shown to have multi-lineage developmental potential [44] and we 

identified an equivalent B220+CD117+CD19-NK1.1- EPLM cell with lymphoid and 

myeloid developmental potential (called EPLM) in the BM of WT mice [21]. Herein 

we show that BM-derived EPLM cultured on OP9 stromal cells plus IL-7 

differentiated into CD19+, CD79a+, CD79b+, Igll1+ and Vpreb1+ pro-B cells with 

rearranged DH-JH genes. Unlike freshly isolated CD19+ CD117+ pro-B cells, those 

derived from EPLM could be cultured long-term in vitro. Gene expression profiling 

did not reveal an obvious explanation for this difference in growth capacity but could 

possibly be regulated via RNA modification or at the translational level [45-47]. 

To date, long-term growth of pro-B cells required co-culture on stromal cells, 

yet the specific role of stromal cells in this culture system was unknown. Clearly IL-7, 

IL-7R (CD127), SCF and its receptor (CD117) as well as FLT3 and its receptor (CD135) 

all play a role in B-cell development and/or pro-B cell growth [11, 12, 15, 16, 18, 19]. 

Indeed, we now show that EPLMs efficiently grow and differentiate into pro-B cells 

when cultured in the combined presence of IL-7, SCF and FLT3L without contact with 

stromal cells. This indirectly suggests that SCF and FLT3 can substitute for stromal 

cells. 

Pro-B cells maintained on stromal cells plus IL-7 could reconstitute the B-cell 

compartment of immunodeficient mice [20] and herein we extend these findings. 

Both FL and BM EPLM-derived pro-B cells propagated either on stromal cells or 

stromal cell free generated a significant B-cell compartment upon transfer into Rag2-

deficient mice. However, FL-derived pro-B cells were about 40 fold more efficient at 

B-cell reconstitution than their BM-derived partners.  

Although pro-B cells expressing the Lin28B can acquire characteristics of FL-

derived pro-B cells [32] and in vitro-propagated Lin28B-expressing BM-derived pro-B 

cells could generate CD5 positive B cells in vivo, there was no improvement in the in 

vivo-reconstitution capacity of BM pro-B cells.   
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An enlarged MZB compartment is frequently observed in B lymphopenic mice 

[48-52] suggesting that newly-formed B cells first fill the MZB compartment. This 

phenomenon could be due either to a specialized environment within the splenic 

marginal zone or that only B cells expressing certain BCR home to and expand in this 

anatomical location [53]. 

When immunized with the T-independent antigen NIP-Ficoll, all reconstituted 

mice mounted an anti-NIP response indicating their B cell compartments were 

functional.. Mice reconstituted with BM-derived pro-B cells had a slightly lower IgM 

anti-NIP titer than WT mice possibly due to poor B cell reconstitution and showed a 

significant IgG anti-NIP response although still at least 10 fold lower than WT mice. In 

marked contrast, Rag2-deficient mice reconstituted with FL pro-B cells mounted an 

IgM and IgG anti-NIP response that was identical, or even higher than, WT mice 

suggesting that fetal progenitor-derived B cells are the main anti-NIP responders in a 

primary immunization. In B6 mice, the primary anti-NIP antibodies use 

predominantly λ1 light chains [54-56]. The anti-NIP response of pro-B cell-

reconstituted mice was likewise dominated by λ1-containing antibodies (data not 

shown) indicating that the anti-NIP B-cell repertoires in pro-B cell reconstituted mice 

are identical to those of WT mice.  

Surprisingly, FL pro-B cell-reconstituted mice had a high IgG1 anti-NIP 

response an antibody class normally associated with IL-4. Since reconstituted mice 

were devoid of T cells, the question arose which cell type was responsible for IL-4 

production [34-36]. Pro-B cell reconstituted Rag2cγ double-deficient mice, deficient 

in ILCs, also mounted high IgG1 response suggesting that ILCs were not the source of 

IL-4 [42, 43]. Mast cells, basophils and/or eosinophils, could be the source of IL-4 

[37-40]. FL pro-B cells were also able to reconstitute a functional B-cell compartment 

in T-cell containing, B-cell deficient μMt mice (Figure S3). This result might seem 

surprising given that the T-cell compartments in these mice may not be tolerant to 

mature B cells.  

Pro-T cells propagated in vitro under stromal free conditions can reconstitute 

the T-cell compartments of T-cell deficient mice [22]. Here we show that the 

combined transfer of stromal cell free-propagated pro-B and pro-T cells into Rag2-

deficient mice results in the generation of a functional adaptive immune repertoire 



 140 

capable of mounting a T-dependent antibody response. For efficient reconstitution, 

pro-T cell transfer had to be performed 2-3 weeks after the pro-B cell reconstitution 

suggesting that when transferred together, T cells develop that are not tolerant to B 

cells and therefore eliminate them. 

Overall the findings described herein show that progenitor lymphocytes can 

be readily propagated under stromal free conditions in vitro and that these cells can 

be used to reconstitute mice with mature functional lymphocytes. Based on these 

results the establishment of stromal cell free culture systems for human lymphocyte 

progenitors might be of great interest since unlike stromal cell-propagated 

lymphocyte progenitors, stromal cell free propagated cells could be potentially used 

for therapeutic purposes in patients with B and/or T-cell deficiencies. 
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MATERIALS AND METHODS 

 

Mice 

Female C57BL/6 CD45.1 and CD45.2, C57BL/6 Rag2-deficient [23], and C57BL/6 Bcl-2 

transgenic mice [24] with 5–8 weeks of age were used. The appearance of vaginal 

plugs was counted as day 0 of gestation and embryos were taken at day E17.5. All 

mice were bred and maintained in our animal facility under specific pathogen-free 

conditions. Animal experiments were carried out within institutional guidelines 

(authorization numbers 1886 and 1888 from Kantonales Veterinäramt, Basel). 

 

Cell lines, cell culture, and supplements 

The OP9 stromal cell line [25] was cultured as a monolayer in IMDM supplemented 

with 2% FBS, 5 × 10−5 M β-mercaptoethanol, 1 mM glutamine, 0.03% w/v Primatone 

(Quest, Naarden, The Netherlands), and 100 U/mL penicillin. For pro-B cell culture, 

CD117+B220+CD19-NK1.1- cells were sorted from the FL or the femoral BM of adult 

mice and cultured at 104/ml in supplemented IMDM either on a semi-confluent layer 

of 30 Gy -irradiated OP9 stromal cells in the presence of 100U/ml IL-7, or without 

stromal cell support but in the presence of 100U/ml IL-7, 50ng/ml FLT3L, and 

100ng/ml SCF. IL-7 was derived from culture supernatant of J558L cells transfected 

with murine IL-7 cDNA. Polyhistidin-tagged SCF was purified from transfected 

Rosetta pLacI bacteria using Ni-NTA-agarose beads (Qiagen, Venlo, NL). A vector 

expressing a human FLT3L-Fc fusion protein was expressed in Chinese hamster ovary 

cells. The supernatant was passed over a protein A-Sepharose (GE Healthcare, 

Chalfont St. Giles, GB) column in order to purify the protein. Pro T cells were 

cultured as previously described [22]. 

 

Antibodies, flow cytometry, and sorting 

FITC-, PE-, allophycocyanin-, or biotin-labeled mAbs specific for CD117, B220, CD19, 

NK1.1, IgM, Igκ, CD5, CD45.1, CD21, CD23, CD4, CD8α, and TCRβ were either 

purchased from BD Biosciences (Franklin Lakes, NJ, USA) or eBiosciences (San Diego, 

CA, USA), or purified from hybridoma culture supernatants according to standard 

procedures. Staining of the cells was performed as described before [26]. Flow 
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cytometry was done using a FACS Calibur (BD Biosciences) and data were analyzed 

using the CellQuest Pro (BD Biosciences) or FlowJo Software (Treestar). For cell 

sorting, a FACSAria IIu (BD Biosciences) was used (>98% purity). 

 

Transfer of cultured progenitor cells 

Recipient mice were -irradiated using a Cobalt source (Gammacell 40, Atomic 

Energy of Canada, Ltd) 4h prior to reconstitution. The indicated number of pro-B or 

pro T cells was then injected into the tail vein. 

 

Immunohistochemical analysis  

To analyze pro-B-cell derived B-cell localization in the spleen, the 5µm snap frozen 

and acetone-fixed sections were incubated with FITC-labelled anti-IgM (clone M41, 

self-made), APC-labelled anti-IgD (clone 1.19 self-made), and biotinylated anti-

MOMA-1 (Vector, Burlingame, CA), which was revealed with PE-conjugated 

streptavidin (SouthernBiotech, Birmingham, AL). Confocal microscopy images were 

taken with a LSM 510 Meta (Zeiss, Oberkochen, D) and analyzed using the ImageJ 

software and the Fiji image processing package. 

 

NIP-specific antibody responses 

Reconstituted mice were immunized subcutaneously with 100μg NIP-Ficoll or NIP-

OVA in a 1:1 CFA emulsion. Serum IgM and IgG against NIP was analyzed at day 14 

using ELISA as described in [27]. 

 

PCR analyses 

The PCR conditions for amplifying DHJH rearrangements were described elsewhere 

[4, 6, 28]. The primers used were DH 5´-TTCAAAGCACAATGCCTGGCT-3´ and JH3 5´-

GTCTAGATTCTCACAAGAGTCCGATAGACCCTGG-3´. Oligonucleotide primers used for 

CD79A verification from pro-B cDNA were 5´-TGTTTGGGTCCCGGATGCCA-3´and 5´-

CACGCGGAGGTAAGTACCACA-3´, for CD79B 5´-TCTTCTCAGGTGAGCCGGTA-3´and 5´- 

TATGGTTGGCGCTGTCACAT-3´, for IGLL1 5´- AGTAGGACAGACTCTGGGCA-3´and 5´- 

GGCTGACCTAGGATTGTGAGC-3´, for VPREB1 5´-CTCCGGGTCCAAAGATACGAC-3´and 

5´-GCTCATAGCAACACCGCAGAA-3´, and for beta-actin  
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5´-GAAGTCTAGAGCAACATAGCACAGCTTCTC-3´and  

5´-GTGGGAATTCGTCAGAAGGACTCCTATGTG-3´. 

 

Statistical analysis 

Statistical analysis was performed with Prism 6.0g software (GraphPad Software, 

Inc.). Two-tailed unpaired Student t tests were used for statistical comparisons. If 

not differently indicated, data are presented as mean values ± SEM from three 

independent experiments. ns not significant or P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P 

≤ 0.001, ****P ≤ 0.0001. 
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FIGURES 

 

Figure 1. Establishment of EPLM-derived long-term proliferating pro-B cell lines 

from BM and FL. FL and BM-derived CD19-B220+CD117+NK1.1- cells were sorted and 

maintained on OP9 stromal cells plus IL-7 (A) Gating strategy for sorting of CD19+ 

and CD19- B220+CD117+ BM cells. (B) In vitro growth capacity of sorted CD19+ and 

CD19- BM cells on OP9 stromal cells plus IL-7. (C) Comparison of the in vitro growth 

of FL and BM-derived pro-B cells for about 40 days. (D) Representative FACS plots 

showing B220, CD19 and CD117 expression in FL and BM-derived pro-B cells cultured 

for 12 days. (E) RT-PCR analysis of Cd79a, Cd79b, Igll1, Vpreb1, and Actb expression 

in FL and BM-derived pro-B cells cultured for 12 days. (F) Genomic DH-JH 

rearrangement analysis of FL and BM-derived pro-B cells cultures for 12 days.  
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Figure 2. Establishment of EPLM-derived long-term proliferating pro-B cell lines 

from BM and FL under stromal cell free conditions. BM or FL-derived CD19-

B220+CD117+NK1.1- cells were sorted and maintained either on OP9 stromal cells 

plus IL-7 or in the presence of IL-7, SCF and FLT3L without stromal cells. (A) 

Comparison of the growth capacity of BM-derived pro-B cells cultured in the absence 

(black squares) or presence (white circles) of stromal cells for about 40 days. (B) 

Comparison of the growth capacity of FL-derived pro-B cells cultured in the absence 

(black squares) or presence (white circles) of stromal cells for about 40 days. (C) 

Representative FACS plots showing B220, CD19 and CD117 expression on BM-
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derived pro-B cells cultured for 14 days with or without stromal cells, as indicated. 

(D) Representative FACS plots showing B220, CD19 and CD117 expression on FL- 

derived pro-B cells cultured for 14 days with or without stromal cells, as indicated. 

(E) RT-PCR analysis of Cd79a, Cd78b, Igll1, Vpreb1 and Actb expression in FL and BM-

derived pro-B cells cultured for 14 days in the presence of IL-7, SCF and FLT3L 

without stromal cells. (F) Genomic DH-JH rearrangement analysis of FL and BM-

derived pro-B cells cultured for 14 days in the presence of IL-7, SCF and FLT3L 

without stromal cells. 
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Figure 3. In vivo reconstitution potential of FL-derived pro-B cells propagated in 

vitro. Sub-lethally irradiated CD45.2 B6 Rag2-deficient mice were injected 

intravenously with 107 CD45.1 FL-derived pro-B cells propagated in the presence or 

absence of stromal cells. (A) Representative FACS analysis of B cell populations in the 

spleen and peritoneal cavity (PerC) of WT controls and recipient mice 8 weeks after 

cell transfer of the indicated pro-B cells. (B) Representative picture of a staining for 

IgM (green), IgD (blue), and metallophilic macrophages (MOMA-1 in red) on a spleen 

section of mice reconstituted with FL-derived pro-B cells propagated on OP9 stromal 

cells (20x magnification). In total 28 individual mice were injected: 14 mice with FL-

derived pro-B cells propagated with OP9 stromal cells and 14 mice with FL-derived 

pro-B cells propagated without stromal cells. 
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Figure 4. In vivo reconstitution potential of BM-derived pro-B cells propagated in 

vitro and comparison to the corresponding potential of FL-derived pro-B cells. Sub-

lethally irradiated CD45.2 B6 Rag2-deficient mice (n=21) were injected intravenously 

with 107 CD45.1 BM-derived pro-B cells propagated in the presence (14 mice 

injected) or absence (7 mice injected) of stromal cells. (A) Representative FACS 

analysis of B-cell populations in the spleen and peritoneal cavity (PerC) of WT 

controls and recipient mice 8 weeks after cell transfer of the indicated pro-B cells. 

(B) Absolute numbers of CD19+ IgM+ cells in the spleens of mice injected with BM-

derived pro-B cells and FL-derived pro-B cells (Figure 3). Unpaired student’s t-test. 

Data shown above are mean ± SEM and each circle or square is an individual mouse. 
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ns: not significant or P > 0.05, **P ≤ 0.01 and ****P ≤ 0.0001. (C) CD19, IgM, and 

CD45.1 expression from a spleen of a CD45.2 B6 Rag2-deficient mouse 8 weeks after 

transfer of 5 x 106 CD45.2 FL-derived pro-B cells and 5 x 106 CD45.1 BM-derived pro-

B cells. Both pro-B cells were propagated stromal cell free. A representative FACS 

analysis out of 3 independently performed experiments is shown. 
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Figure 5. T-cell independent responses of mice reconstituted with pro-B cells 

propagated in the absence or presence of stromal cells. B6 Rag2-deficient mice 

were reconstituted with BM or FL derived pro-B cells propagated with or without 

stromal cells and immunized with NIP-Ficoll 8 weeks after cell transfer. Normal B6 

(WT) mice were used as controls and statistical significance compared to WT is 

indicated below the after immunization data points (black squares). Titers were 

defined as the serum dilutions that gave 2 times background OD values in the ELISA 

test. Titers of the indicated antibodies were determined in sera taken 1 week before 

immunization (A and B open symbols) and 2 weeks after immunization (A and B 

closed symbols). (A) IgM anti-NIP titers. (B) IgG anti-NIP titers. (C) Anti-NIP IgG 

subclass titers in the serum of mice reconstituted with FL-derived pro-B cells and WT 

mice. ns: not significant or P > 0.05, * or + P ≤ 0.05, ** or ++ P ≤ 0.01, *** or +++ P ≤ 

0.001, **** P ≤ 0.0001. * represents significance compared to pre-bleed. + 

represents significance compared to titer of WT mice. Each symbol represents an 

individual mouse. Unpaired student’s t test; n = 5-8. Data shown above are mean ± 

SEM and two independent experiments were performed. 
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Figure 6. Anti-NIP responses of WT mice, Rag2-deficient and Rag2cγ double-

deficient mice reconstituted with FL pro-B cells propagated on stromal cells and 

immunized with NIP-Ficoll 8 weeks after cell transfer. Titers were defined as the 

serum dilutions that gave 2 times background OD values in the ELISA test. Titers 

were determined in sera taken 1 week before immunization (A and B open symbols) 

and 2 weeks after immunization (A and B closed symbols) (A) IgM anti-NIP titers. (B) 

IgG anti-NIP titers. (C) IgG1 anti-NIP titers. Sera from B6 mice immunized with NIP-

Ficoll or NIP-OVA were used as positive controls. (D) IgG3 anti-NIP titers. Sera from 

B6 mice immunized with NIP-Ficoll or NIP-OVA were used as positive controls. 

Collective data from two independent experiments are shown and each symbol 

represents an individual mouse. ns: not significant, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 

0.001, **** P ≤ 0.0001. Unpaired student’s t test; n = 5-8. Data shown above are 

mean ± SEM. 

A

Figure 6

R
ag

2 
K
O

R
ag

2 
cγ

 K
O

W
T N

IP
-F

ic
ol
l

W
T N

IP
-O

V
A

103

104

105

106

Ig
G

1
 a

n
ti
-N

IP
 ti

te
r

ns

**
**

R
ag

2 
K
O

R
ag

2 
cγ

 K
O

W
T N

IP
-F

ic
ol
l

W
T N

IP
-O

VA

102

103

104

105

106

107

Ig
G

3
 a

n
ti-

N
IP

 t
ite

r
*

**
**

before immunization

after immunization

B

W
T

R
ag

2 
K
O

R
ag

2 
cγ

K
O

102

103

104

105

106
Ig

M
 a

n
ti-

N
IP

 ti
te

r
**** **** **

W
T

R
ag

2 
KO

R
ag

2 
cγ

 K
O

100

101

102

103

104

105

106

Ig
G

 a
n

ti
-N

IP
 ti

te
r

**** ** **

C D



 157 

Figure 7. In vivo lymphoid reconstitution and immune responses in mice injected 

with in vitro propagated pro-B and pro-T cells. Sublethally irradiated Rag2-deficient 

mice were reconstituted with FL-derived pro-B cells and 4 weeks later with a 3:1 

mixture of in vitro propagated pro-T cells [22] and Foxp3-transduced in vitro 

propagated pro-T cells. Mice were immunized with NIP-OVA 11 weeks after pro-B 

cell transfer and splenocytes analyzed by flow cytometry 3-7 weeks later. (A) IgM 

and IgG anti-NIP responses of reconstituted and immunized B6 Rag2-deficient mice. 

Sera were collected 1 week before and 2 weeks after immunization. (B) 

Representative FACS analysis of splenic B- and T-cell populations 10-14 weeks after 

pro-T cell transfer. (C) Absolute numbers of T and B cells found in the spleens of 

reconstituted mice. ns: not significant or P > 0.05, * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 

0.001, **** P ≤ 0.0001. Unpaired student’s t test; n = 7-9. Numbers above data 

points indicate mean ± SEM. Two independent experiments were performed and 

each symbol represents an individual mouse. 
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