edoc

Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum : the molecular model and its implications for light-harvesting

Schirmer, T. and Huber, R. and Schneider, M. and Bode, W. and Miller, M. and Hackert, M. L.. (1986) Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum : the molecular model and its implications for light-harvesting. Journal of molecular biology, Vol. 188, H. 4. pp. 651-676.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5258296

Downloads: Statistics Overview

Abstract

The crystal structure of the light-harvesting protein-pigment complex C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum has been determined by Patterson search techniques on the basis of the molecular model of C-phycocyanin from Mastigocladus laminosus. The crystal unit cell (space group P321) contains three (alpha beta)6 hexamers centred on the crystallographic triads. The hexamer at the origin of the unit cell exhibits crystallographic 32 point symmetry. The other two hexamers (independent of the former) show crystallographic 3-fold and local 2-fold symmetry. The 3-fold redundancy of the asymmetric unit of the crystal cell was used in the refinement process, which proceeded by cyclic averaging, model building and energy-restrained crystallographic refinement. Refinement was terminated with a conventional crystallographic R-value of 0.20 with data to 2.5 A resolution. The two independent hexamers of the unit cell are identical within the limits of error at all levels of aggregation. Two trimers, which closely resemble the M. laminosus C-phycocyanin, are aggregated head-to-head to form the hexamer. Both trimers fit complementarily and are held together by polar and ionic interactions. Conservation of the amino acid residues involved in protein-chromophore and intermonomer interactions suggests common structural features for all biliproteins. Most probably, the hexameric aggregation form present in the crystals is closely related to the discs of native phycobilisome rods. All tetrapyrrole chromophores are extended but with different geometries enforced by different protein surroundings. In particular, interactions of the propionic side-chains with arginine residues and of the pyrrole nitrogen atoms with aspartate residues define configuration and conformation of the chromophores. Relative chromophore distances and orientations have been determined and a preferential pathway for the energy transfer suggested. Accordingly, within a hexamer the absorbed energy is funneled to chromophore B84 and then transduced via B84 chromophores along the phycobilisome rods.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Structural Biology & Biophysics > Structural Biology (Schirmer)
UniBasel Contributors:Schirmer, Tilman
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:Elsevier
ISSN:0022-2836
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:22
Deposited On:22 Mar 2012 13:30

Repository Staff Only: item control page