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1 INTRODUCTION

1.1 Carbon dioxide

1.1.1 Significance

Theoretical and experimental investigations of weakly bound molecular complexes are of fun-
damental importance for understanding of molecular interactions responsible for properties of
condensed phases. The carbon dioxide clusters provide a simple model for such studies. Car-
bon dioxide has been a subject of many papers in recent years. Some deal with its role in the
biosphere, mainly the greenhouse effect. The greenhouse effect is the rise in temperature that
the Earth experiences because certain gases in the atmosphere (water vapor, carbon dioxide,
nitrous oxide, and methane, for example) trap energy from the sun. Without these gases,
heat would escape back into space and Earth’s average temperature would be lower. Other
investigations deal with the significance of carbon dioxide for the nutrition for plants, the su-
percritical carbon dioxide as a green solvent for extraction and synthesis and the existance of
carbon dioxide in the atmospheres of Mars and Venus.

1.1.2 Previous Investigations

The carbon dioxide dimer was first detected in 1966 by Leckenby et al.[19]. The slipped-
parallel(C2h - geometry) structure of the carbon dioxide dimer was shown experimentally in
references [23] - [25](high-resolution infrared) and [26](Raman studies) to be the stable one.
That the structure of the dimer is slipped-parallel(C2h - geometry) was shown in [20] as a
result of quantum-chemical calculations. The dimerisation equilibrium constant was evaluated
using partition functions [27].

1.1.3 Dimer formation

A new method is developed to calculate the equilibrium constant of weak dimer complexes
and the life time of the dimer in the gas phase. Actually it is not an easy task to define when
approaching monomers form a dimer. In the new method the defined time correlation function
from the molecular dynamics simulations shows a slow decay corresponding to real dimers and
a fast decay corresponding to unstable collisions. The results obtained for the carbon dioxide
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dimerization are compared to results obtained by two other methods using partition function
and second virial coefficient. A possible application is to predict the dimer carbon dioxide
concentration in the atmospheres of Mars and Venus.

1.2 Rebinding dynamics of nitric oxide to the V68F Myoglobin

mutant

In connection with the work on rebinding molecular dynamics of nitric oxide to the V68F
Myoglobin mutant I would like to emphasize that the study of reactive processes in chemically
and biologically relevant systems is a topic of much current interest. For fast reactions (proton
transfer, ligand rebinding) computer simulations are a useful means to investigate and under-
stand the energetics and dynamics of chemical reactions. A new surface-crossing algorithm
suitable for describing bond-breaking and bond-forming processes in molecular dynamics sim-
ulations is presented in [41]. The method is formulated for two intersecting potential energy
manifolds which dissociate to different adiabatic states. During simulations, crossings are de-
tected by monitoring an energy criterion. If fulfilled, the two manifolds are mixed over a finite
number of time steps, after which the system is propagated on the second adiabat and the
crossing is carried out with probability one.
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2 DIMERISATION OF CARBON DIOXIDE -
EQUILIBRIUM CONSTANT AND
LIFETIME OF THE DIMER

2.1 Discussion of different approaches

Three different approaches are applied to calculate the equilibrium constant of the carbon
dioxide dimerization. The different approaches vary from application of classical mechanics to
quantum mechanics and from macroscopic to microscopic insight.
Approach 1 is based on the virial expansion of a gas and the concept of an excluded volume.
Approximations are the validity of the virial expansion and mainly the concept of the excluded
volume. The excluded volume, a volume assumed to be constant, independent of temperature,
is also a practical limitation of approach 1, since the second virial coefficient is accurately
known from experiment, but the excluded volume can be estimated only roughly.
The new Approach 2 is based on classical molecular dynamics simulations. It allows not only
to predict the equilibrium constant, but also the lifetime of the dimer. A principal limita-
tion is the classical treatment of the formation and dissociation process. In addition there
are practical limitations connected to the question when is a complex a stable dimer and the
unsatisfactory statistics at higher temperature.
Approach 3, applied before by Slanina [27], is based on statistical thermodynamics with data
obtained from ab initio quantum mechanical calculations. The main approximations are the
assumptions of a rigid rotator and harmonic oscillators (RRHO), and the limited accuracy of
the quantum mechanical calculations (incomplete basis set, approximated treatment of elec-
tron correlation). Whereas the quantum mechanical calculations have reached a much higher
accuracy now than in the previous work by Slanina et al., the RRHO assumptions must be
considered as serious limitations for weak complexes.
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2.2 The Macroscopic Approach Utilizing the Second Virial
Coefficient

2.2.1 Basic equations

Stogrin and Hirschfelder [28] derive the equilibrium constant of dimerisation from the second
virial coefficient. The second virial coefficient for molecules interacting with spherically sym-
metric potential is divided into three parts: a contribution of Bb, related to the equilibrium
constant for the formation of bound dimers, a contribution Bm, related to the equilibrium con-
stant for the formation of metastable dimers, and a contribution Bf , due to molecules which
interact but they are free to separate after the interaction. The authors show that for the
Sutherland Potential U(r), where r is the distance between the molecules,

U(r) = ∞, r < 1

U(r) = −rp, r > 1 (2.1)

the total reduced second virial coefficient for p = 6 should be described with a polynomial
of powers of (1/T ), where T is the temperature. Also in [29] the second virial coefficient is
described with powers of (1/T ). There are two levels of approximation for the equilibrium
constant. The first one shown in [34] and [35] is:

Kp(T ) = −B(T )

RT
(2.2)

The second one [28] uses the excluded volume b to correct the equilibrium constant of dimeri-
sation:

Kp(T ) =
(b − B(T ))

RT
(2.3)

The connection between the excluded volume b and the second virial coefficient B(T ) is known
[37]. The attraction forces lead to an increasing pressure, and the repulsion forces lead to a
decreasing molar volume of the real gas. For an ideal gas:

PVm = RT (2.4)

and for a real gas:

(P + π)(Vm − b) = RT (2.5)

The pressure π must depend on the volume:

π =
c

Vm
+

a

V 2
m

+
d

V 3
m

+ . . . (2.6)

We can take the series only till the second member, then

(P +
c

Vm
+

a

V 2
m

)(Vm − b) = RT (2.7)
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For a very small pressure, or for very big molar volumes, when we can neglect b compared to
Vm, we will have again the ideal case, hence the constant c must be zero.

PVm + c +
a

Vm
= RT

(P +
a

V 2
m

)Vm = RT

π =
a

V 2
m

(2.8)

We cannot compress a gas to zero volume because of the repulsion forces between the particles.
It is clear that we can compress the gas till the moment the particles come into contact with
each other. Then the constant b depends on the volume of the molecule itself. Let us assume
that the molecules behave as rigid spheres with radius r. The distance between the centers of
two spheres cannot be less than 2r. The volume of a sphere with radius 2r will be

4

3
π(2r)3 = 8VMolecule (2.9)

This volume is accessible to two molecules. For one molecule it should be 4VMolecule. The
exclusion volume b is

b = NA · 1

2
· 4

3
π(2r)3 (2.10)

= NA · 4 · 4

3
πr3 (2.11)

For a real gas the van der Waals equation will be:

(P +
a

V 2
m

)(Vm − b) = RT (2.12)

When we have a volume V = n · Vm of amount of substance n,

(P + n2 a

V 2
)(

V

n
− b) = RT

(P + n2 a

V 2
)(V − nb) = nRT (2.13)

From equation (2.12) the following relation can be derived:

PVm(1 +
a

PV 2
m

)(1 − b

Vm
) = RT (2.14)

a/PV 2
m and b/Vm can be considered as small values, compared to 1. If we write the Taylor

series around zero of 1/(1 + x) ≈ 1 − x + 2x2 . . . and stop after the first power of x then we
can do the substitution 1 − x ≈ 1/(1 + x), leading to the following equation:

PVm = (1 − a

PV 2
m

)(1 +
b

Vm
)RT

PVm = RT (1 +
b

Vm
− a

PV 2
m

− a

PV 2
m

b

Vm
) ≈ RT (1 +

b

Vm
− a

PV 2
m

) (2.15)

PVm ≈ RT (1 +
1

Vm
(b − a

PVm
)) (2.16)

5



We can substitute PVm = RT :

PVm ≈ RT +
RT

Vm
(b − a

RT
)

PVm ≈ RT + P (b − a

RT
) (2.17)

With the virial equation PVm/RT can be shown as a function of powers of 1/Vm :

PVm

RT
= 1 + B

1

Vm
+ C

(

1

Vm

)2

+ D

(

1

Vm

)3

+ . . . (2.18)

Then for the second virial coefficient yields:

B ≈ b − a

RT
(2.19)

2.2.2 Calculation of b and Kp(T) for CO2

One approximation is to take the carbon dioxide molecules as hard spheres with a radius equal
to σ/2. Equation (2.11) then yields:

b = NA · 4 · (4/3)π(σ/2)3 (2.20)

σ can be approximated by σ ≈ RC−C/21/6 assuming a shape of a Lennard-Jones 12 − 6 poten-
tial. We will call this “hard sphere model”.
A more sophisticated approximation which we refer to as “space filling model” is to take the
oxygen and carbon atoms as spheres, evaluate with this model the volume of the carbon dioxide
molecule, and take the b-value as four times the volume of the molecule [30]. The following
equations can be derived:

b = 4VMolecule

= 4NA(2(4/3)πR3
O + (4/3)πR3

C − Vadd) (2.21)

where Vadd is( see Fig. 2.1):

Vadd = 2Vadd,O + 2Vadd,C (2.22)

with:

Vadd,O =
πh2

O

6
(3dO − 2hO) (2.23)

Vadd,C =
πh2

C

6
(3dC − 2hC) (2.24)

To derive equations 2.21-2.24 we take the three atoms as spheres but subtract the overlapping
volumes [30] of spherical segments

V =
πh2

6
(3d − 2h) (2.25)
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where d is the diameter of a sphere. Then h for the oxygen atom will be

hO = rO − x (2.26)

and for the carbon atom

hC = rC − y (2.27)

Let us take a plane perpendicular to the molecular axis containing all points where the surfaces
of the C− and O− sphere cut each other. These points form a circle with radius z around a
point M. Then if the center of the oxygen atom is O (and the van der Waals radius rO ), and
the center of carbon atom is C (and the radius rC ), x = OM and y = CM.

Figure 2.1: Definitions for the space filling model of CO2
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Then one can write the following system of equations:

r2
O − x2 = z2

r2
C − y2 = z2

x + y = rCO (2.28)

The right sides of the first two equations are equal, hence:

x + y = rCO

r2
O − x2 = r2

C − y2 (2.29)

If we take into account that y2 − x2 = (y − x)(y + x) then:

x + y = rCO

(y − x)(y + x) = r2
C − r2

O (2.30)

Substituting x + y with rCO yields:

(y − x)rCO = r2
C − r2

O (2.31)

and after a rearrangement:

y = (r2
C − r2

O)/(rCO) + x (2.32)

Taking into account equations 2.32, 2.28, 2.27 and 2.26 one can derive the following expres-
sions:

hO = (r2
C − (rCO − rO)2)/(2rCO)

hC = (r2
O − (rCO − rC)2)/(2rCO) (2.33)

For the equilibrium constant in both cases, i.e. the hard sphere model and the space filling
model, one can use:

Kp(T ) = (b − B(T ))/RT (2.34)

The second virial coefficient depends on the temperature and the chemical nature of the gas.
To obtain numerical values one needs in the both approximations B(T ). It can be taken from
experiment( see A, D, E and H in table 2.1) or from quantum chemical calculations( see B,
C, F and G in table 2.1). For the hard sphere approximation one needs RC−C in addition.

For the space filling model the van der Waals radii are needed. We take 1.70Å for carbon and
1.52Å for oxygen. From the definition of the van der Waals radii we conclude that their sum
corresponds to equilibrium distances, hence they are also reduced to get σ values as discussed
for the hard sphere model. In addition the C − O bond length has to be known.

8



Table 2.1: Equlilbrium constant of dimerisation( in 10−3bar−1) for different temperatures and
the excluded volume b( in cm3/mol) for different models

T/K A B C D E F G H
b 42.67 42.10 44.66 41.82 41.58 56.91 39.56 56.77

- hs∗ hs∗ hs∗ hs∗ sf∗ hs∗ sf∗

220 15.90 11.99 8.89 15.85 15.84 9.56 15.73 16.67
300 6.63 5.11 3.84 6.60 6.59 4.33 6.51 7.19
400 3.10 2.41 1.80 3.08 3.07 2.17 3.01 3.53
500 1.74 1.35 1.01 1.72 1.72 1.30 1.67 2.08
600 1.10 0.85 0.62 1.08 1.08 0.87 1.04 1.38
700 0.75 0.57 0.41 0.74 0.73 0.62 0.70 0.99
800 0.55 0.40 0.29 0.53 0.53 0.47 0.50 0.76
900 0.42 0.29 0.21 0.41 0.40 0.37 0.38 0.60

1000 0.33 0.22 0.15 0.32 0.32 0.30 0.29 0.50
1100 0.27 0.17 0.12 0.26 0.26 0.25 0.23 0.42

∗ hs - hard sphere model
∗ sf - space filling model

2.2.3 Results for the dimerisation equilibrium constant

Table 2.1 and figure (2.2) give the results obtained with the above models and the following
data:

A: experimental second virial coefficient from [21] table II.

( b from [37], table 2.-1.);

B: second virial coefficient with 8s6p4d1f potential,

from [21], table II, hard sphere model, RC−C = 3.614Å;

C: second virial coefficient with 5s4p2d potential,

from [21], table II, hard sphere model, RC−C = 3.686Å;

9
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Figure 2.2: Equilibrium constant vs. temperature from different models
A to H calculated from the second virial coefficient.

D: “experimental values”, second virial coefficient from [21] table II,

hard sphere model, RC−C = 3.606Å, the distance between the two molecules carbon dioxide
in the dimer from IR experiments, see [21], [23];
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E: “experimental values”, second virial coefficient from [21] table II,

hard sphere model, RC−C = 3.599Å, the distance between the two molecules carbon dioxide
in the dimer from IR experiments, see [21], [25];

F : second virial coefficient with 8s6p4d1f potential,

space filling model, the equilibrium C − O bond length is 1.16805Å, see [21];

G: second virial coefficient, calculated with the potential SAPT-a [22],

hard sphere model, RC−C = 3.54Å;

H: experimental values for the second virial coefficient from [21], table. II,

space filling model, C − O distance 1.162047Å from [22].

As can be seen the different approximations as well as the different assumptions for the numer-
ical values yield similar results. The temperature behaviour is about the same and K differs
in the most extreme cases only by a factor two.
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2.3 The Molecular Dynamics Simulation Approach

2.3.1 Basic equations

The correlation between two different quantities A and B is measured through the correlation
coefficient [31]:

cAB =
< δAδB >

σ(A)σ(B)
(2.35)

σ2(A) = < δA2 >

= < δA2 >ens − < δA >2
ens (2.36)

δ(A) = A− < A >ens (2.37)

The absolute value of cAB lies between 0 and 1. Values close to 1 indicate a high correlation.
If A and B are the variables at different times, the correlation coefficient is dependent on the
time difference . This function is called time correlation function. If A and B describe the
same quantity, cAA is called an autocorrelation function.

cAA(t) =
CAA(t)

σ2(A)

=
CAA(t)

CAA(0)
(2.38)

(2.39)

=
< δA(0)δA(t) >

< δA(0)δA(0) >
(2.40)

CAA(t) is the non-normalized correlation function CAA(t) =< δA(0)δA(t) > .

2.3.2 Application to CO2 equilibrium.

Here we follow the work of Impey et al. [32] about the residence time of water molecules in
the coordination shell of metal ions and of Stillinger [33] about hydrogen bonds.
Let us take a function Pj(t, tn; t∗) [32]. This is a property of the molecule j and is equal either
to 0 or to 1. It takes the value 1 if the molecule j lies within the first coordination shell of the
ion at both time steps tn and t + tn, and in the interim does not leave the coordination shell
for any continuous period longer then t∗. Under all other circumstances, it takes the value 0.
An averaged quantity nion(t) is defined by the expression:

nion(t) =
1

Nt

Nt
∑

n=1

∑

j

Pj(tn, t; t∗) (2.41)
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Stillinger [33] describes three types of lifetime:
- identify the molecular pair bonded at time t = 0; define P1(t) to be the average fraction of
pairs that remain bonded without interruption over the entire interval from 0 to t ;
- in terms of the same set of t = 0 pairs, let P2(t) be those that are bonded at later time t ,
irrespective of intervening interruptions;
- denote the total number of hydrogen bonds present in the system at time t by Nb(t) , and
set

P3(t) =
< [Nb(0)− < Nb >][Nb(t)− < Nb >] >

< [Nb(0)− < Nb >]2 >
(2.42)

P1, P2 and P3 are each equal to unity at t = 0, and in the infinite system limit they all
approach zero as t increases. Their long time behaviour ought to be roughly exponential with
characteristic decay times τ1, τ2 and τ3.
In this work we assume a dilute gas consisting of N particles. If the center of mass of one
particle A is within a radius rc of the center of mass of another particle A, we call it a
“pseudodimer” PA2. We define a function f(t), which is 1/2, if A is part of a PA2 from
the beginning and 0 otherwise. F (t) =

∑

f(t) over all monomers. We define an auto-time-
correlation-function C =< F (0)F (t) >. We expect for C a curve, which looks about like a
curve with two exponential decays:
- The fast decay is due to the molecules hitting other molecules without binding. The decay
time τf is roughly rc/v, where v is an average molecular velocity. τf is proportional to rc, which
permits to check this interpretation.
- The slow decay is due to the dimers and its decay time τs is the life time of dimers and should
be virtually independant of rc. Extrapolation of the slow decay to time zero yields the number
of dimers through PA2.A2, whereas the value of the time autocorrelation function at time zero
is the square of the number of pseudodimers (PA2)

2.
- The equilibrium constant is:

Kp(T ) =
PA2/PΘ

(PA/PΘ)2

=
xA2(P/PΘ)

x2
A(P/PΘ)2

=
xA2

x2
A(P/PΘ)

=
A2(N − A2)

(N − 2A2)2(P/PΘ)
(2.43)

as the mole fractions are:

xA2 =
A2

N − A2
(2.44)

xA =
N − 2A2

N − A2
(2.45)
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and P is the total pressure of the monomer-dimer mixture and the partial pressures are:

PA2 = xA2P (2.46)

PA = xAP (2.47)

P/PΘ is the pressure in terms of 105Pa = 1 bar.
- Even if the dimer recombines within its lifetime, these definitions are correct.

2.3.3 Simulations

An accurate pair potential from quantum chemical ab initio calculations [22] was applied in the
simulations assuming pair additivity. Simulations in a microcanonical (NVE) ensemble under
periodic boundary conditions were performed with 512 rigid molecules by the Verlet algorithm.
The SHAKE algorithm [31] was used to maintain the constraints. Simulations were started
from a cubic lattice with random orientation and after 100000 steps of equilibration data were
accumulated during a further 900000 steps of 20 fs length. Since the molecules have neither a
charge nor a dipole moment no special treatment of the long range forces was applied, but a
large cutoff-radius of 1400 pm was used. The time correlation function was sampled every 0.4
ps in 90 windows of a length of 600 ps, each shifted by 200 ps.

2.3.4 Data evaluation and results

It was mentioned that we define an auto-time-correlation-function C(t) =< F(0)F(t) > and
we expect for C(t) a curve, which looks about like a curve with two exponential decays
( see figure 2.7). Hence, one can try to fit the normalized auto-time-correlation-function
c(t) =< F(0)F(t) > / < F(0)F(0) > with the function:

y(t) =
∑

i

aie
−t/τi (2.48)

with i = 1, 2; τ1 = τf and τ2 = τs, described above. However tests showed that these fits do
not well represent the data. Deviations found were mainly in the region between the fast and
the slow decay. The origin of the deviations might be due to a non-exponential fast decay
or to an unknown additional decay mechanism. After several tests with other fit functions,
we decided to use the function of equation (2.48) with i = 3, one for the fast decay of the
unstable collisions, one for the slow decay of the real dimers and one with a medium decay
time needed in addition for a good fit. The latter is necessary because the fast decay is not
really an exponential decay. We estimated that the statistical errors from our data evaluation
are probably by at least a factor 5 too small, due to correlations in the samples. The numbers
given in parentheses are hence needed to be multiplied by five to give an estimated statisti-
cal error. Additional errors not included and difficult to estimate are due to the evaluation
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procedure (three exponentials). Extrapolating the slow decay to time zero might yield quite
noticeable errors. Fig. 2.7 shows a typical time correlation function. It was obtained at 300 K
and a density of ρ = 40 mol/cm3 with a cutoff-radius of 8 Å. We expect a fast decay due to
simple collisions and a slow decay due to real dimers. Whereas the slow decay is expected to
be exponential, the fast decay has probably a more complicated shape. Its shape depends on
parameters like the angular distribution of the collisions and the Maxwell-Boltzmann distri-
bution of the velocities. For simplicity, however, we use also an exponential, which allows for
a discussion in terms of a decay time. This might be the origin of the inaccurate fit with two
exponentials only. The third one is then compensating this inaccuracy and has no physical
interpretation. The slow decay time does not depend on the cutoff-radius in contrast to the
fast decay, and the fast decay does not depend on the density in contrast to the slow decay (
see tables 2.3 and 2.4).
The collision times (see Table 2.4) increase with larger cut-off radii, decrease with increasing
temperature and are independent of density. We assume the particles as spheres, which ap-
proach each other on a line which connects the centers of mass. Think one particle fixed in
space with a cutoff-radius rc. From the moment when the center of mass of the other par-
ticle enters the cutoff-radius until it leaves again, it is counted as a pseudo-dimer. As some
of them are just entering and others are leaving at time zero, the average of them have to
fly over a distance d = rc − σ, where σ is the collision distance. Assuming a velocity v̄, the
collision time is τf = (rc − σ)/v̄ ( see table 2.5 and figure 2.6). A comparison shows some
agreement between the collision times in tables 2.4 and 2.5, although those values, obtained
with the simpler model ( see table 2.5) are shorter. On figures 2.4-2.6 one can see pictures
of the dependence of the duration of collisions on

√

1/T, where T is the temperature in Kelvin.

Table 2.2: Equilibrium constant of dimerisation with molecular dynamics versus temperature.

ρ = 4/ 10−5mol/cm3

T/K; K/10−3bar−1: rc = 6.0/10−10m rc = 8.0/10−10m rc = 10.0/10−10m P/PΘ/bar

200 4.570 (± 0.0700) 6.730 (± 0.0600) 7.190 (± 0.1100) 0.655
300 0.770 (± 0.0060) 0.930 (± 0.0200) 0.920 (± 0.0300) 0.995
400 0.158 (± 0.0080) 0.197 (± 0.0200) 0.150 (± 0.1500) 1.333
500 0.035 (± 0.0030) 0.003 (± 0.0100) 0.0140 (± 0.0200) 1.669

ρ = 2/ 10−5mol/cm3

200 4.830 (± 0.0130) 5.650 (± 0.0200) 5.720 (± 0.0290) 0.328
300 0.720 (± 0.0060) 0.890 (± 0.0100) 0.845 (± 0.0270) 0.493
400 0.540 (± 0.0200) 0.180 (± 0.0700) 0.022 (± 0.0680) 0.662
500 0.084 (± 0.0035) 0.077 (± 0.0080) 0.059 (± 0.0400) 0.829
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Table 2.3: Long (slow) lifetime of dimers versus temperature, in ps.

ρ = 4/ 10−5mol/cm3

T/K; K/10−3bar−1: rc = 6.0/10−10m rc = 8.0/10−10m rc = 10.0/10−10m P/PΘ/bar

200 79.3 (± 0.070) 73.5 (± 0.490) 74.1 (± 0.740) 0.655
300 105.1 (± 0.870) 92.1 (± 1.410) 91.0 (± 2.660) 0.995
400 36.4 (± 1.710) 45.6 (± 3.800) 55.9 (± 16.780) 1.333
500 56.8 (± 4.820) 70.7 (± 28.040) 91.0 (± 116.000) 1.669

ρ = 2/ 10−5mol/cm3

200 171.8 (± 0.540) 175.9 (± 0.690) 176.9 (± 1.004) 0.328
300 170.6 (± 1.670) 154.5 (± 2.450) 168.4 (± 4.900) 0.493
400 10.8 (± 0.290) 24.9 (± 5.360) 64.2 (± 125.100) 0.662
500 71.6 (± 3.420) 66.5 (± 6.725) 99.0 (± 48.150) 0.829

Table 2.4: Short (fast) lifetime (duration of collisions) of dimers versus temperature, in ps.

ρ = 4/ 10−5mol/cm3

T/K; K/10−3bar−1: rc = 6.0/10−10m rc = 8.0/10−10m rc = 10.0/10−10m P/PΘ/bar

200 1.7 (± 0.010) 2.1 (± 0.010) 2.4 (± 0.010) 0.655
300 0.9 (± 0.008) 1.5 (± 0.007) 1.8 (± 0.006) 0.995
400 0.8 (± 0.007) 1.1 (± 0.007) 1.5 (± 0.007) 1.333
500 0.7 (± 0.003) 1.1 (± 0.006) 1.3 (± 0.004) 1.669

ρ = 2/ 10−5mol/cm3

200 1.2 (± 0.018) 1.7 (± 0.020) 2.2 (± 0.017) 0.328
300 1.0 (± 0.007) 1.6 (± 0.007) 1.9 (± 0.007) 0.493
400 0.7 (± 0.020) 1.3 (± 0.009) 1.6 (± 0.006) 0.662
500 0.7 (± 0.007) 1.0 (± 0.006) 1.3 (± 0.006) 0.829

Table 2.5: Short (fast) lifetime (duration of collisions) τf from mean velocity v̄ =
√

8RT/πM
versus temperature, in ps; see figure 2.6

T/K rc = 6.0/10−10m rc = 8.0/10−10m rc = 10.0/10−10m

200 0.899 1.543 2.188
300 0.734 1.260 1.787
400 0.635 1.091 1.547
500 0.568 0.976 1.384
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Figure 2.7: Time correlation function at 300 K, 40 mol/m3 and a cutoff-
radius of 8 Å. The fast decay is due to collisions and the slow
decay corresponds to the dimer life time.
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2.4 The Statistical Thermodynamics Approach

2.4.1 Derivation of the basic equations

The thermodynamics of carbon dioxide dimerisation is evaluated using partition functions cal-
culated from molecular parameters and energetics [27]. The equilibrium constant of dimerisa-
tion in the gas phase can be defined in terms of the partial pressures of the dimer and monomer
as Kp = (p(CO2)2)/(p2

CO2
) = (Px(CO2)2)/(P 2x2

CO2
) = (x(CO2)2)/(Px2

CO2
), where pCO2 and

p(CO2)2 are the partial pressures of the monomer and dimer respectively, P = pCO2 + p(CO2)2

is the total pressure of the monomer-dimer mixture, x are the mole fractions.
For the reaction between ideal gases CO2 = (CO2)2 the chemical potential of the component
i is:

µi =

(

∂A

∂ni

)

T,V,nj 6=i

(2.49)

A = −kT lnZ (2.50)

A is the free energy. If z is the molecular partition function, the partition function of the
system for an ideal gas is:

Z =
zN

N !
(2.51)

The free energy ( see equation (2.50)) for a mixture then becomes:

A = −kT ln

(

z1
N1

N1!
· z2

N2

N2!
. . .

)

= −kT

(

ln
z1

N1

N1!
+ ln

z2
N2

N2!
+ . . .

)

= −kT
∑

i

ln
zi

Ni

Ni!

= −kT
∑

i

(Nilnzi − lnNi!) (2.52)

With the help of Stirling’s formula lnNi! = NilnNi − Ni (for large Ni ) :

A = −kT
∑

i

(Nilnzi − NilnNi + Ni)

= −kT
∑

i

Ni(lnzi − lnNi + 1)

= −kT
∑

i

niNA(ln
zi

NAni
+ 1) (2.53)
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The chemical potential of the component i is ( taking into account equation (2.49)):

µi = −RTln
zi

niNA

= −RTln
zi

Ni
(2.54)

zi =
∑

j

e−εij/kT (2.55)

zid =
∑

j

e−(εij−εid)/kT (2.56)

Here εid is the dissociation energy of the molecule i. In this energy state the molecule is
completely dissociated. zid is the partition function of the molecule relative to this dissociated
energy state:

zid = eεid/kT
∑

j

e−εij/kT

= zie
εid/kT (2.57)

Then the chemical potential is:

µid = −RTln
zi

niNA
· eεid/kT

= −RTln
zi

Ni
· eεid/kT (2.58)

In equilibrium:

2µCO2 = µ(CO2)2 (2.59)

Then further yields:

µid = −RTln(zi
eεid/kT

Ni
) (2.60)

2RTln(zCO2

eεCO2d/kT

NCO2

) = RTln(z(CO2)2

eε(CO2)2d/kT

N(CO2)2

) (2.61)

N(CO2)2

N2
CO2

=
z(CO2)2

z2
CO2

e(ε(CO2)2d/kT+(−2)εCO2d/kT ) (2.62)

On the left side we have the equilibrium constant represented by the number of particles Ni.

KN (V, T ) =
z(CO2)2

z2
CO2

e−∆U0/kT (2.63)

In these equations ∆U0 is the reaction energy at 0K ( ∆U0 is the difference between the quan-
tum mechanical total energies of the two sides in equation 2CO2 = (CO2)2). If we divide by the
whole number of particles N =

∑

i Ni we get the equilibrium constant Kx(V, T ), represented
by mole fractions of the particles xi. The equilibrium constant of the reaction in the gas phase
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in terms of partial pressures Kp(T ) we obtain when we represent the partial pressures with
Pi = xiP , where P =

∑

i Pi is the total pressure of the gas mixture.

Kx(V, T ) =
z(CO2)2

z2
CO2

Ne−∆U0/kT

=
x(CO2)2

x2
CO2

= PKp(T ) (2.64)

Kp(T ) =
z(CO2)2

z2
CO2

NV

RT
e−∆U0/kT

=
P(CO2)2

P 2
CO2

=
Px(CO2)2

P 2x2
CO2

=
x(CO2)2

Px2
CO2

(2.65)

The total partition function of the component j of the equilibrium monomer-dimer mixture
is:

zj = ztrans.,jzrotat.,jzvibr.,jzelectr.,j (2.66)

The vibration and rotation motions can be separated if we consider the molecule as a rigid rotor.
Because of the Born-Oppenheimer approximation( the motion of the nuclei is significantly
slower compared to the motion of the electrons) we can consider the electronic energetic term
separately.
For most molecules, electronic energy separations from the ground state are very large, i.e.
zelectr. = 1.

Translational partition function

The derivation of the translational partition function is described in [38]. Let us take the
volume V as a volume of a cube of edge L; then V = L3 . In the sum z =

∑

j e−(Ej/kT ) the
energies Ej in this case are those associated with one molecule possessing three translational
degrees of freedom only and confined to a cubical box. The possible energies of a particle
in a box are: Elx,ly ,lz = h2(l2x + l2y + l2z)/8mL2, lx, ly, lz = 1, 2, 3, . . ., where lx, ly, lz are the
three quantum numbers, or Ej = h2j2/8mL2, if j is one of lx, ly, lz = 1, 2, 3, . . .. The equation
l2x + l2y + l2z = R2 yields E = (h2R2)/8mL2 = (h2R2)/8mV 2/3.
From [37]:

∞
∑

j=1

e−Ej/kT =

∞
∫

j=0

e−Ej/kT dj

=

∞
∫

j=0

e−
h2j2

8mL2kT dj (2.67)
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Here j is one of the lx, ly, lz = 1, 2, 3, . . .. If we make the substitution:

y2 =
h2j2

8mL2kT
(2.68)

dj =
L

h
(8mkT )1/2 · dy (2.69)

∞
∑

j=1

e−Ej/kT =
L

h
(8mkT )1/2

∞
∫

y=0

e−y2
dy

=
L

h
(8mkT )1/2

√
π

2

=
L

h
(2πmkT )1/2 (2.70)

In lx, ly, lz space, Vm = L3, we can write:

zt =
Vm(2πmkT )3/2

h3
(2.71)

Rotational partition function

In quantum mechanics [38] the energy levels of a linear rigid rotator e.g. carbon dioxide, are

Ej = j(j + 1) h2

8π2I
, j = 0, 1, 2, . . ., with degeneracy ωj = 2j + 1. I is the moment of inertia

about the center of mass. The moment of inertia I is:

I =
n
∑

i=1

mid
2
i (2.72)

where di is the distance of the ith nucleus from the center of mass of the molecule. The
coordinates of the center of mass of a molecule are given by:

xcm =
1

M

n
∑

i=1

mix
2
i

ycm =
1

M

n
∑

i=1

miy
2
i

zcm =
1

M

n
∑

i=1

miz
2
i (2.73)

where xi, yi and zi are the Cartesian coordinates of the ith nucleus in an arbitrary coordinate
system, and M = m1+m2+ . . .+mn. The rotational partition function for a linear polyatomic
molecule is:

zr =
∑

j

ωje
−Ej/kT

=
∞
∑

j=0

(2j + 1)e−j(j+1)Θr/T (2.74)

Θr =
h2

8π2Ik
(2.75)
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Θr is the characteristic temperature for rotation. The sum for zr may be replaced by an
integral when Θr ≪ T . This will lead to the high temperature or classical limit for zr [38]. At
high temperatures we can write:

zr =

∞
∫

j=0

(2j + 1)e−j(j+1)Θr/T dj

=

∞
∫

j=0

e−j(j+1)Θr/T d(j(j + 1)) (2.76)

zr =
T

Θr

=
8π2IkT

h2
(2.77)

With the number of the indistinguishable configurations σ∗ of the molecule:

zr =
2IkT

σ∗h̄2 (2.78)

For the carbon dioxide σ∗ = 2.

Now we will explain the general (non linear) case, as used for the dimer. The moment of
inertia is a fundamental property of rigid bodies. The rotational properties of a rigid body are
characterized by the principal moments of the body, which are defined in the following way. If
we choose any set of Cartesian axes with origin at the center of mass of the body, the moments
of inertia about these three axes are:

Ixx =
n
∑

i=1

mi[(yi − ycm)2 + (zi − zcm)2]

Iyy =
n
∑

i=1

mi[(xi − xcm)2 + (zi − zcm)2]

Izz =
n
∑

i=1

mi[(xi − xcm)2 + (yi − ycm)2] (2.79)

There are also products of inertia, such as:

Ixy =
n
∑

i=1

mi(xi − xcm)(yi − ycm) . . . (2.80)

According to the theorem of rigid body motion there always exists a particular set of Cartesian
coordinates X, Y , Z, called the principal axes, passing through the center of mass of the body
such that all the products of inertia vanish. The moments of inertia about these axis Ixx, Iyy

and Izz( or customarily denoted by Ia, Ib and Ic) are called the principal moments of inertia.
If the principal moments of inertia are Ia = Ib = Ic, then we have a spherical top and the
energy levels and the degeneracy are given by([39]):

εj =
j(j + 1)h̄2

2I
(2.81)

j = 0, 1, 2, . . .

ωj = (2j + 1)2 (2.82)
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The high-temperature limit of the partition function is:

qrot =
1

σ

∞
∫

j=0

(2j + 1)2e−j(j+1)h̄2/2IkT dj (2.83)

Since high temperature means that high values of j are important, we may neglect 1 compared
to j in equation (2.83) and write:

qrot =
1

σ

∞
∫

j=0

4j2e−j2h̄2/2IkT dj (2.84)

The solution of the integral
∞
∫

0
x2e−ax2

is
√

π/4a3/2 yielding:

qrot =

√
π

σ
(2IkT/h̄2)3/2

=

√
π

σ
(8π2IkT/h2)3/2 (2.85)

In the case of an asymetric top, namely Ia 6= Ib 6= Ic:

qrot =

√
π

σ
(8π2IakT/h2)1/2(8π2IbkT/h2)1/2(8π2IckT/h2)1/2 (2.86)

Vibrational partition function

We can write the following expressions for the vibrational partition function of a harmonic
oscillator, when we measure the energies from the lowest vibrational energy state. In quantum
mechanics the energy states are En = (n + 1/2)hν, n = 0,1,2, . . . . A geometric sequence
{xn}k

n=0 with constant |x| < 1 has a sum Sk =
∑k

n=0 xn, which can be described with the
following expressions:

(1 − x)Sk = (1 + x + x2 + . . . + xk) − (x + x2 + x3 + . . . + xk+1)

= 1 − xk+1

(2.87)

Sk =
1 − xk+1

1 − x
(2.88)

For an infinite series (k → ∞) this yields

S∞ =
1

1 − x
(2.89)

Then for the vibrational partition function we get:

zv =
∞
∑

n=0

e−En/kT
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= e−hν/2kT
∞
∑

n=0

(e−hν/kT )n

=
e−hν/2kT

1 − e−hν/kT
(2.90)

2.4.2 Results for the dimerisation equilibrium constant

In this work the dimerisation constant has been calculated with different basis sets in the
Møller-Plesset 2nd order perturbation approximation and the coupled-cluster method with
and without CounterPoise(CP) correction.
The geometries on the levels MP2/cc − pVDZ, MP2/aug − cc − pVDZ, MP2/aug − cc − pVTZ
were optimized by Inna Boychenko with the program package Gaussian03 [44]. Frequencies for
the MP2/aug − cc − pVTZ, dimer, were also calculated by Inna Boychenko with the program
package Gaussian03 [44].
The thermodynamics of carbon dioxide dimerisation is evaluated using partition functions sup-
plied with calculated molecular parameters and energetics.
One of the results for the equilibrium constant in [27] is 0.00329 bar−1 (temperature 200 K,
MP2/5s4p2d, ∆U0 ref. source [20]). We have obtained a result close to this value (model A∗,
table 2.6; results in table 2.8).

Table 2.6: Structures of dimer(d) and monomer(m) ( all the bond lenghts are in Å and the
angles in degrees).

Model Basis set and method rcc(d.) rco1(d.) rco2(d.) occ1(d.) occ2(d.) rco(m.) occ(m.)

A∗ MP2/5s4p2d,
CP=CouterPoise corr. 3.6230 1.1700 1.1670 58.40 121.90 1.1690 180.000

B∗ MP2/6 − 31 + +G∗ 3.5870 1.1808 1.1784 58.21 122.08 1.1796 180.000
C∗ MP2/cc − pVDZ 3.4850 1.1784 1.1756 60.08 120.35 1.1771 180.000
D∗ MP2/cc − pVDZ,

CP 3.8251 1.1776 1.1763 59.03 121.17 1.1771 179.977
E∗ CCSD/cc − pVDZ 3.5440 1.1697 1.1664 58.86 121.64 1.1681 180.000
F ∗ MP2/aug − cc − pVDZ,

CP 3.6593 1.1813 1.1790 58.64 121.56 1.1802 179.973
G∗ MP2/aug − cc − pVTZ,

CP 3.5541 1.1714 1.1690 59.36 120.84 1.1702 179.985

According to [40], the CP corrected total energy of the system (of two molecules A and B) is
E(AB,CP ) = E(AB,AB) + [E(A,A) −E(A,AB)] + [E(B,B) −E(B,AB)], where E(X,Y ) is the energy of
the subsystem(fragment) X calculated in the basis of unit Y .
The coupled-cluster method is an approach to the correlation problem that is based on an expo-
nential ansatz. The exact ground-state molecular wave function is a product of the normalized
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Figure 2.8: Equilibrium constant vs. temperature; A∗ -
MP2/5s4p2d,CP = CounterPoise correction; B∗ -
MP2/6 − 31 + +G∗; C∗ - MP2/cc − pVDZ; D∗ -
MP2/cc − pVDZ, CP; E∗ - CCSD/cc − pVDZ; F ∗ -
MP2/aug − cc − pVDZ, CP; G∗ - MP2/aug − cc − pVTZ,
CP( see table 2.6)

Hartree - Fock wave function and exp(T ) ( exp(T ) defined by the Taylor-series expansion).
The cluster operator T is the sum of the n-particle excitation operators, n = 1, 2, 3, . . . (n-the
number of electrons of the system; T =

∑

j Tj). So the exact ground-state molecular wave
function is a linear combination of Slater determinants that include the normalized Hartree -
Fock wave function and all possible excited configurations. In the CCSD method are included
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the effects of single and double exitations, T = T1 + T2 .

Figure (2.8) shows the results calculated from the partition function. Model D∗ ( MP2/cc − pVDZ,
CP=CounterPoise corr.; ∆U0 = - 2383.35 J/mol) has very different values compared to the val-
ues obtained with the others basis sets and methods, connected most probably with not using
a diffuse function in the basis set. The result for the same basis set and method but with-
out counterpoise correction of the basis set superposition error (model C∗: MP2/cc − pVDZ;
∆U0 = - 7634.94 J/mol) is less different from the values obtained with the others basis
sets and methods on figure (2.8). The most important fact is that counterpoise corrected
MP2/aug − cc − pVDZ(Model F ∗: MP2/aug − cc − pVDZ, CP; ∆U0 = - 4682.6 J/mol) gives
result for the equilibrium constant that changes with increasing temperature in a more similar
way to the values obtained with the other basis sets and methods on figure (2.8) then the
counterpoise corrected MP2/cc − pVDZ ( Model D∗). In the tables from 2.7 to 2.20 all the
models from A∗ to G∗ are shown.
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Table 2.7: Partition function for model A∗: MP2/5s4p2d, ∆U0 = - 4180.0 J/mol,
CP=CounterPoise corr.

Dimer Monomer

T/K trans/1030 rot vib tot/1036 trans/1030 rot vib tot/1030

200 7.20 55096.29 460.68 0.02 2.55 180.30 1.02 469.97
220 9.14 63564.02 655.14 0.04 3.23 198.33 1.04 663.92
300 19.85 101218.35 2267.67 0.46 7.02 270.45 1.11 2112.29
400 40.74 155835.84 8413.42 5.34 14.40 360.6 1.27 6583.13
500 71.17 217787.21 26377.99 40.88 25.16 450.75 1.48 16787.28
600 112.26 286288.72 73455.82 236.08 39.69 540.89 1.75 37573.99
700 165.04 360765.02 186810.74 1112.29 58.35 631.04 2.08 76606.07
800 230.45 440770.32 441665.62 4486.21 81.48 721.19 2.48 145482.80
900 309.35 525945.96 982784.31 15990.21 109.37 811.34 2.94 261155.14

1000 402.58 615995.24 207691.23 51504.37 142.33 901.49 3.49 447673.63
1100 510.89 710667.39 4197258.38 152392.09 180.63 991.64 4.12 738311.43

Table 2.8: Equilibrium constant for model A∗: MP2/5s4p2d, ∆U0 = - 4180.0 J/mol

T/K K/10−3bar−1 ∆H⊘/Jmol−1 ∆S⊘/Jmol−1K−1 ∆G⊘/Jmol−1

200 3.28 -2440.14 -59.76 9511.78
220 2.88 -2280.25 -58.99 10698.64
300 2.16 -1631.09 -56.47 15310.55
400 1.90 -809.71 -54.10 20832.14
500 1.86 15.80 -52.26 26145.64
600 1.89 843.08 -50.75 31292.72
700 1.95 1671.29 -49.47 36301.20
800 2.04 2500.10 -48.36 41190.92
900 2.15 3329.31 -47.39 45976.73

1000 2.26 4158.83 -46.51 50670.21
1100 2.37 4988.60 -45.72 55280.58
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Table 2.9: Partition function for model B∗: MP2/6 − 31 + +G∗, ∆U0 = - 2838.6 J/mol

Dimer Monomer

T/K trans/1030 rot vib tot/1036 trans/1030 rot vib tot/1030

200 7.20 54629.48 372.79 0.01 2.55 183.58 1.02 476.32
220 9.14 63025.47 526.19 0.03 3.23 201.94 1.03 671.68
300 19.85 100360.76 1771.57 0.35 7.02 275.37 1.10 2119.38
400 40.74 154515.51 6385.99 4.02 14.40 367.17 1.24 6537.71
500 71.17 215941.98 19571.15 30.08 25.16 458.96 1.43 16526.22
600 112.26 283863.11 53529.82 170.58 39.69 550.75 1.68 36725.12
700 165.04 357708.40 134184.97 792.19 58.35 642.54 1.99 74434.94
800 230.45 437035.85 313520.09 3157.59 81.48 734.33 2.35 140667.42
900 309.35 521489.83 690804.78 11144.38 109.37 826.12 2.78 251467.70

1000 402.58 610776.16 1447765.31 35598.27 142.33 917.91 3.29 429544.99
1100 510.89 704646.19 2904989.29 104579.36 180.63 1009.70 3.87 706250.89

Table 2.10: Equilibrium constant for model B∗: MP2/6 − 31 + +G∗, ∆U0 = - 2838.6 J/mol

T/K K/10−3bar−1 ∆H⊘/Jmol−1 ∆S⊘/Jmol−1K−1 ∆G⊘/Jmol−1

200 1.09 -1036.91 -61.92 11346.46
220 1.03 -880.33 -61.19 12581.62
300 0.94 -243.34 -58.77 17388.24
400 0.95 566.19 -56.47 23155.33
500 1.00 1383.31 -54.66 28715.47
600 1.07 2204.72 -53.18 34109.77
700 1.15 3028.77 -51.91 39365.76
800 1.24 3854.56 -50.81 44503.12
900 1.33 4681.54 -49.84 49536.65

1000 1.43 5509.38 -48.97 54477.87
1100 1.52 6337.86 -48.18 59336.00
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Table 2.11: Partition function for model C∗: MP2/cc − pVDZ, ∆U0 = - 7634.94 J/mol

Dimer Monomer

T/K trans/1030 rot vib tot/1036 trans/1030 rot vib tot/1030

200 7.20 52814.40 156.16 0.01 2.55 182.81 1.02 474.43
220 9.14 60931.43 218.36 0.01 3.23 201.09 1.03 669.09
300 19.85 97026.24 716.89 0.14 7.02 274.21 1.10 2112.20
400 40.74 149381.67 2539.66 1.55 14.40 365.61 1.24 6518.93
500 71.17 208767.24 7701.60 11.44 25.16 457.01 1.43 16484.25
600 112.26 274431.66 20912.98 64.43 39.69 548.42 1.68 36637.50
700 165.04 345823.42 52140.94 297.60 58.35 639.82 1.99 74258.37
800 230.45 422515.18 121307.54 1181.15 81.48 731.22 2.36 140321.39
900 309.35 504163.15 266351.59 4154.14 109.37 822.62 2.79 250809.81

1000 402.58 590482.92 556559.93 13230.25 142.33 914.03 3.29 428335.43
1100 510.89 681234.08 1113910.15 38768.31 180.63 1005.43 3.88 704103.19

Table 2.12: Equilibrium constant for model C∗: MP2/cc − pVDZ, ∆U0 = - 7634.94 J/mol

T/K K/10−3bar−1 ∆H⊘/Jmol−1 ∆S⊘/Jmol−1K−1 ∆G⊘/Jmol−1

200 7.06 -5956.41 -70.46 8236.19
220 5.15 -5700.49 -69.72 9637.92
300 2.34 -5063.17 -67.25 15112.10
400 1.46 -4250.98 -64.92 21715.08
500 1.16 -3431.13 -63.09 28111.83
600 1.02 -2607.42 -61.58 34343.10
700 0.96 -1781.50 -60.31 40436.25
800 0.93 -954.20 -59.21 46410.90
900 0.92 -125.98 -58.23 52281.81

1000 0.93 702.88 -57.36 58060.48
1100 0.94 1532.22 -56.57 63756.09

33



Table 2.13: Partition function for model D∗: MP2/cc − pVDZ, CP, ∆U0 = - 2383.35 J/mol

Dimer Monomer

T/K trans/1030 rot vib tot/1036 trans/1030 rot vib tot/1030

200 7.20 61597.04 2445.03 0.11 2.55 182.81 1.02 474.43
220 9.14 71063.87 3518.41 0.23 3.23 201.09 1.03 669.09
300 19.85 113160.99 12491.76 2.81 7.02 274.21 1.10 2112.20
400 40.74 174222.74 46770.12 33.19 14.40 365.61 1.24 6518.93
500 71.17 243483.68 146703.53 254.21 25.16 457.01 1.43 16484.25
600 112.26 320067.61 407529.45 1464.29 39.69 548.42 1.68 36634.50
700 165.04 403331.28 1032840.95 6875.26 58.35 639.82 1.99 74258.37
800 230.45 492776.32 2432789.82 27626.64 81.48 731.22 2.36 140321.39
900 309.35 588001.74 5393361.57 98105.43 109.37 822.62 2.79 250809.81
1000 402.58 688675.84 11357344.05 314876.49 142.33 914.03 3.29 428335.43
1100 510.89 794518.25 22875554.72 928551.14 180.63 1005.43 3.88 704103.19

Table 2.14: Equilibrium constant for model D∗: MP2/cc − pVDZ, CP, ∆U0 = - 2383.35 J/mol

T/K K/10−3bar−1 ∆H⊘/Jmol−1 ∆S⊘/Jmol−1K−1 ∆G⊘/Jmol−1

200 7.84 -677.52 -43.70 8062.93
220 7.59 -515.11 -42.93 8929.12
300 7.34 139.68 -40.39 12256.80
400 7.73 963.98 -38.02 16171.71
500 8.38 1791.13 -36.17 19877.96
600 9.15 2619.72 -34.66 23417.52
700 9.97 3449.12 -33.38 26818.26
800 10.83 4279.04 -32.28 30100.07
900 11.71 5109.29 -31.30 33277.85

1000 12.61 5939.79 -30.42 36363.17
1100 13.51 6770.46 -29.63 39365.30
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Table 2.15: Partition function for model E∗: CCSD/cc − pVDZ, ∆U0 = - 9198.2 J/mol

Dimer Monomer

T/K trans/1030 rot vib tot/1036 trans/1030 rot vib tot/1030

200 7.20 53204.43 181.10 0.01 2.55 180.02 1.02 465.73
220 9.14 61381.40 253.16 0.01 3.23 198.02 1.03 655.96
300 19.85 97742.77 825.60 0.16 7.02 270.03 1.09 2057.48
400 40.74 150484.84 2885.63 1.77 14.40 360.04 1.21 6293.73
500 71.17 210308.96 8628.03 12.91 25.16 450.05 1.39 15781.01
600 112.26 276458.31 23117.52 71.75 39.69 540.06 1.62 34812.06
700 165.04 348377.28 56961.77 327.51 58.35 630.07 1.91 70099.22
800 230.45 425635.41 131162.81 1286.54 81.48 720.08 2.25 131717.43
900 309.35 507886.34 285412.89 4484.30 109.37 810.09 2.64 234287.85

1000 402.58 594843.57 591731.64 14170.21 142.33 900.10 3.11 398434.38
1100 510.89 686264.92 1176201.96 41238.61 180.63 990.11 3.65 652547.68

Table 2.16: Equilibrium constant for model E∗: CCSD/cc − pVDZ, ∆U0 = - 9198.2 J/mol

T/K K/10−3bar−1 ∆H⊘/Jmol−1 ∆S⊘/Jmol−1K−1 ∆G⊘/Jmol−1

200 22.53 -7423.26 -68.65 6307.32
220 15.08 -7267.01 -67.91 7672.83
300 5.45 -6628.81 -65.44 13001.92
400 2.91 -5816.03 -63.10 19423.28
500 2.10 -4995.81 -61.27 25638.29
600 1.74 -4171.87 -59.77 31687.77
700 1.56 -3345.78 -58.49 37599.09
800 1.47 -2518.35 -57.39 43391.90
900 1.42 -1690.03 -56.41 49080.95
1000 1.39 -861.09 -55.54 54677.74
1100 1.39 -31.69 -54.75 60191.47
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Table 2.17: Partition function for model F ∗: MP2/aug − cc − pVDZ, CP, ∆U0 = - 4682.6
J/mol

Dimer Monomer

T/K trans/1030 rot vib tot/1036 trans/1030 rot vib tot/1030

200 7.20 56884.36 441.58 0.02 2.55 183.77 1.02 476.44
220 9.14 65626.91 625.99 0.04 3.23 202.15 1.03 671.65
300 19.85 104503.25 2130.37 0.44 7.02 275.65 1.09 2116.44
400 40.74 160893.28 7725.75 5.06 14.40 367.54 1.23 6519.19
500 71.17 224855.19 23744.01 39.00 25.16 459.42 1.42 16464.22
600 112.26 295579.83 65047.65 215.84 39.69 551.31 1.67 36571.09
700 165.04 372473.15 163244.96 1003.53 58.35 643.19 1.97 74116.29
800 230.45 455074.91 249283.18 3817.96 81.48 735.08 2.34 140087.52
900 309.35 543014.81 842030.82 14144.73 109.37 826.96 2.77 250511.16

1000 402.58 635986.53 1766316.25 45223.59 142.33 918.85 3.27 428090.50
1100 510.89 733731.13 3547361.95 13297.58 180.63 1010.73 3.86 704194.30

Table 2.18: Equilibrium constant for for model F ∗: MP2/aug − cc − pVDZ, CP, ∆U0 = -
4682.6 J/mol

T/K K/10−3bar−1 ∆H⊘/Jmol−1 ∆S⊘/Jmol−1K−1 ∆G⊘/Jmol−1

200 4.09 -2702.45 -59.24 9146.07
220 3.51 -2543.14 -58.55 10337.39
300 2.48 -1899.78 -56.23 14968.02
400 2.09 -1092.22 -54.02 20516.15
500 1.99 -284.33 -52.29 25860.21
600 1.98 524.87 -50.86 31041.48
700 2.03 1336.26 -49.64 36087.09
800 2.10 2150.09 -48.58 41016.23
900 2.18 2966.22 -47.64 45843.23

1000 2.28 3784.39 -46.79 50579.25
1100 2.38 4604.31 -46.03 55233.22
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Table 2.19: Partition function for model G∗: MP2/aug − cc − pVTZ, CP, ∆U0 = - 5368.4
J/mol

Dimer Monomer

T/K trans/1030 rot vib tot/1036 trans/1030 rot vib tot/1030

200 7.20 53871.32 304.12 0.01 2.55 180.67 1.02 468.18
220 9.14 62150.79 428.88 0.02 3.23 198.74 1.03 659.89
300 19.85 98967.94 1437.81 0.28 7.02 271.00 1.09 2077.28
400 40.74 152371.11 5153.78 3.20 14.40 361.34 1.23 6388.46
500 71.17 212945.11 15716.76 23.82 25.16 451.67 1.42 16106.49
600 112.26 279923.62 42812.99 134.54 39.69 542.00 1.66 35715.46
700 165.04 352744.07 106970.68 622.76 58.35 632.34 1.96 72263.98
800 230.45 430970.60 249283.18 2475.79 81.48 722.67 2.32 136377.13
900 309.35 514252.52 548119.17 8719.80 109.37 813.01 2.74 243529.65

1000 402.58 602299.73 1146793.78 27806.52 142.33 903.34 3.23 415615.79
1100 510.89 694867.01 2297923.03 81576.96 180.63 933.68 3.80 682853.51

Table 2.20: Equilibrium constant for model G∗: MP2/aug − cc − pVTZ, CP, ∆U0 = - 5368.4
J/mol

T/K K/10−3bar−1 ∆H⊘/Jmol−1 ∆S⊘/Jmol−1K−1 ∆G⊘/Jmol−1

200 4.17 -3618.04 -63.65 9112.81
220 3.43 -3459.62 -62.90 10378.24
300 2.16 -2815.54 -60.40 15305.54
400 1.69 -1998.66 -58.05 21223.00
500 1.54 -1175.97 -56.22 26933.30
600 1.49 -350.37 -54.71 32477.64
700 1.49 476.90 -53.44 37883.60
800 1.52 1305.22 -52.33 43170.89
900 1.56 2134.23 -51.36 48354.32

1000 1.62 2963.72 -50.48 53445.43
1100 1.68 3793.58 -49.69 58453.42
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2.5 A Critical Comparison of the Results

It is difficult to decide which equilibrium constants are the most accurate. The statistical
mechanics approach gives unreasonable values at higher temperatures. The weaker the complex
the less reliable are these results. The macroscopic approach via the second virial coefficient
also looses accuracy at higher temperatures since the excluded volume approaches the second
virial coefficient, i.e. the result is a difference of two large numbers, where one of them (the
excluded volume) is a relatively crude model. The new MD approach yields results which are
independent of the dimer-radius. The only limitation is the classical simulation. The weaker
the complex and the higher the temperature the less severe is this limitation, which makes this
method complementary to the others. The only disadvantage is that very long simulations are
needed to get reasonable statistics.
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2.6 Conclusions

A molecular dynamics simulation approach to calculate the dimerization equilibrium constant
and the lifetime of weak complexes is developed and applied to the dimerization of carbon
dioxide. A similar time correlation function was constructed as used before for hydrogen bonds
in aqueous solutions. The dimerization equilibrium constant and its temperature dependence
are compared with two other approaches, one based on the second virial coefficient and a
simple model for the excluded volume and one on the statistical mechanics of a rigid rotator
and harmonic oscillator. The new approach is expected to work good at higher temperatures
and weaker complexes. It is applicable to any weak complex, but long simulation times are
needed for very weak complexes and high temperatures.
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3 REBINDING MOLECULAR DYNAMICS OF
NITRIC OXIDE TO THE V68F
MYOGLOBIN MUTANT

3.1 Introduction to Biomolecular Simulations

Molecular dynamics simulations are important tools for understanding the physical basis of
the structure and function of biological macromolecules. The proteins are not rigid structures
and they have to be described with a dynamic model where the internal motions and resulting
conformational changes play an essential role in their function. Fundamental to molecular
dynamics simulation is the representation of the energy of the protein as a function of its
atomic coordinates [1]. The states expected to be populated at thermal equilibrium are the
low-energy regions of this potential energy function. Forces on individual atoms are related
to the gradient of this function, called “force field”. Atomistic simulations of the properties of
proteins commonly consider an average over the much faster electronic motions, so that the
energy surface on which the atoms move is the Born-Oppenheimer ground-state energy. The
Born-Oppenheimer approximation [3] is the first of several approximations used to simplify the
solution of the Schrödinger equation. It simplifies the general molecular problem by separating
nuclear and electronic motions. This approximation is reasonable since the mass of a typical
nucleus is thousand of times greater than that of an electron. The nuclei move very slowly
with respect to the electrons, and the electrons react essentially instantaneously to changes in
nuclear position [5]. Thus, the electron distribution within a molecular system depends on the
positions of the nuclei, and not on their velocities. The nuclei look fixed to the electrons, and
electronic motion can be described as occuring in a field of fixed nuclei.
The full Hamiltonian for the molecular system can then be written as:

V (r) = T elec(~r) + Tnucl(~R)

+V nucl−elec(~r, ~R)

+V elec(~r) + V nucl(~R) (3.1)

The Born-Oppenheimer approximation allows the two parts of the problem to be solved in-
dependently, so we can construct an electronic Hamiltonian which neglects the kinetic energy
term for the nuclei:

Helec = −1
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This Hamiltonian is then used in the Schrödinger equation describing the motion of electrons
in the field of fixed nuclei:

HelecΨelec(~r, ~R) = Eeff (~R)Ψelec(~r, ~R) (3.3)

Solving equation 3.3 for the electronic wavefunction will produce the effective nuclear poten-
tial function Eeff . It depends on the nuclear coordinates and describes the potential energy
surface for the system.
It is not feasible to calculate directly such surfaces for macromolecules with high accuracy by
means of quantum chemistry electronic structure calculations ( see next section). That is why
most practical simulations use a set of simple classical functions to represent the energy, ad-
justing a large number of parameters to optimize agreement with experimental data and with
quantum calculations on smaller molecules. The design and parametrization of force fields for
use in protein simulations is a complex task, involving many decisions concerning which data
to highlight in the fits, expectations of assignability outside the fit area, and computational
efficiency and performance. A recent overview [2] describes the sorts of force fields which are
most generally used and is a reference of the development of the up-to-date research that can
produce better functions in the future.
Simulations can provide the details concerning individual particle motions as a function of
time. They can be used to address specific questions about the properties of a model system,
sometimes more definitely than experiments on the real system. For many aspects of function
of biomolecules exactly these details are of interest: for example by what pathways the ligand
enters and goes out from the heme pocket of myoglobin. Certainly experiments play an essen-
tial role to define the simulation methodology. Comparisons of simulation and experimental
data serves to test the accuracy of the calculated results and to provide criteria how to improve
the methodology.
There are three types of applications of simulation methods in the macromolecular area, as well
as in other areas involving mesoscopic systems. The first uses simulation simply as a means of
sampling configuration space, involved in the utilisation of molecular dynamics. The second
uses simulation to obtain a description of the system at equilibrium, including structural and
motional properties, for example, atomic mean-square fluctuation amplitudes, and the values
of thermodynamic parameters. The third type uses simulation to examine the actual dynam-
ics. Here is needed adequate sampling of configuration space with appropriate Boltzmann
weighting. It must be done so as to represent the development of the system over time. For
the first two types, Monte Carlo simulations can be used, as well as molecular dynamics. For
the third type, where the motions and their development with time are of primary interest,
only molecular dynamics can be used to provide the useful information.
Ponder and Case [2] expect that the key areas of research for the next few years are the use
of continuum methods to model the electrostatic effects of hydration, and the polarizability
to model the electronic response to charges in the environment. They restrict their discussion
to simulations of proteins in water, leaving aside the interesting questions how to deal with
the large variety of small molecules that interact with proteins or with non-aqueous solvents.
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They have chosen to focus on a few force fields that are very widely used. The most commonly
used protein force fields incorporate a relatively simple potential energy function:

V (r) =
∑

bonds

kb(b − b0)
2

+
∑

angles

kθ(θ − θ0)
2

+
∑

torsions

kφ[cos(nφ + δ) + 1]

+
∑

nonbond pairs

[

qiqj

rij
+

Aij

r12
ij
− Cij

r6
ij

]

(3.4)

The first three summations are over bonds ( 1 - 2 interactions), angles ( 1 - 3 interactions), and
torsions ( 1 - 4 interactions). The torsion term can include “improper” torsions, where the four
atoms defining the angle are not all connected by covalent bonds. Such terms serve primarily
to enforce planarity around sp2 central atoms. The final sum ( over pairs of atoms i and j)
excludes 1 - 2 and 1 - 3 interactions and often uses separate parameters for 1 - 4 interactions as
compared with those used for atoms separated by more than three covalent bonds. It describes
electrostatics that use partial charges qi on each atom that interacts via Coulomb’s law. The
combination of dispersion and exchange repulsion forces is represented by a Lennard - Jones 6
- 12 potential, the “van der Waals” term.
Equation 3.4 is one of the simplest potential energy functions that can reproduce the basic
features of protein energy landscapes at an atomic level. It has proved to give insight into
a remarkably broad range of properties. The combination of a potential energy function (
as in equation 3.4 ) and all the parameters in it constitutes a “force field”. There is a close
connection between the force fields and the computer codes that implement them.
The investigation of structural, dynamical and biological properties of myoglobin has a long
history in chemistry, biophysical chemistry and biophysics. In a review elsewhere [10] are
described several computer simulations of structures, energetics and dynamics of myoglobin.
In the work of Kendrew and coworkers [4] myoglobin serves as a reference system. This is
connected also with its great importance for many physiological processes. Myoglobin is a
small globular heme protein which is foremost involved in storing and transporting oxygen in
the muscles, although recently interactions of myoglobin and its mutants with NO as a ligand
have been studied experimentally and theoretically [8] - [14] due to the physiological and
biological importance of NO. Especially attention has been paid on the interaction of NO with
heme proteins because this ligand has a lot of different biological functions [15]. NO is a key
biological messanger, involved in different physiological processes: inhibition of mitochondrial
respiration, inhibition of the enzyme ribonucleotide reductase and neurotransmission in the
brain [16] - [18]. In many cases NO binding to iron atoms in heme or non-heme proteins seems
to be involved.

3.2 Introduction to Electronic Structure Calculations

We carried out electronic structure calculations, starting from the optimized ab initio structure
of bound heme-NO [42]. For each conformation the total energy of the unbound state was
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determined using UB3LYP/VDZ/3-21G with Gaussian [44] in order to scan the potential
energy surface for the unbound state. Here will be given a short introduction to Density
functional theory ( DFT). The DFT approach is based upon a strategy of modeling electron
correlation via general functionals of the electron density [5]. The Hohenberg-Kohn theorem
demonstrates the existance of a unique functional which determines the ground state energy
and density exactly. The theorem does not provide the form of this functional. Following the
work of Kohn and Sham [6] the appropriate functionals partition the electronic energy into
several terms:

E = ET + EV + EJ + EXC (3.5)

Here in equation 3.5, ET is the kinetic energy term ( arising from the motion of the electrons),
EV includes terms describing the potential energy of the nuclear-electron attraction and of
the repulsion between pairs of nuclei, EJ is the electron-electron repulsion term ( it is also
described as the Coulomb self-interaction of the electron density), and EXC is the exchange-
correlation term and includes the remaining part of the electron-electron interactions.
All terms except the nuclear-nuclear repulsion are functions of ρ, the electron density. EJ is
given by the following expression:

EJ =
1

2

∫ ∫

ρ(~r1)(∆r12)
−1ρ(~r2)d~r1d~r2 (3.6)

ET + EV + EJ corresponds to the classical energy of the charge distribution ρ.
Hohenberg and Kohn demonstrated that EXC is a functional of the electron density. EXC

is usually approximated as an integral involving only the spin densities and possibly their
gradients:

EXC(ρ) =

∫

f (ρα(~r), ρβ(~r),∇ρα(~r),∇ρβ(~r)) d3~r (3.7)

We use ρα to refer to the α spin density, ρβ to refer to the β spin density, and ρ to refer to the
total electron density (ρα + ρβ).
EXC is usually divided into separate parts, referred to as the exchange and correlation parts,
actually corresponding to same-spin and mixed-spin interactions, respectively:

EXC(ρ) = EX(ρ) + EC(ρ) (3.8)

All three terms are again functionals of the electron density, and functionals defining the two
components on the right side of equation 3.8 are termed exchange functionals and correlation
functionals, respectively. Both components can be of two distinct types: local functionals
depend only on the electron density ρ, while gradient-correlated functionals depend on both ρ
and its gradient, ∇ρ.
The local exchange functional is defined as follows:

EX
LDA = −3

4

(

3

π

)1/3 ∫

ρ4/3d3~r (3.9)

where ρ is of course a function of ~r. This form was developed to reproduce the exchange energy
of a uniform electron gas.
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Becke formulated the following gradient-corrected exchange functional based on the LDA ex-
change functional in 1988 [7]:

EX
Becke88 = EX

LDA − γ

∫

ρ4/3x2

(1 + 6γ sinh−1x)
d3~r (3.10)

where x = ρ−4/3|∇ρ|. γ is a parameter chosen to fit the known exchange energies of the
inert gas atoms, and Becke defines its value as 0.0042 Hartrees. As equation 3.10 makes clear,
Becke’s functional is defined as a correction to the LDA exchange functional, and it succeeds
in remedying many of the LDA shortcomings.
Similarly, there are local and gradient-corrected correlation functionals. For example, Perdew
and Wang’s formulation of the local part of their 1991 correlation functional:

EC =

∫

ρεC(rS(ρ(~r), ζ))d3~r

rs =

[

3

4πρ

]1/3

ζ =
ρα − ρβ

ρα + ρβ

EC(rS , ζ) = ε(ρ, 0) + aC(rS)
f(ζ)

f ′′(0)
(1 − ζ4)

+ [εC(ρ, 1) − εC(ρ, 0)] f(ζ)ζ4

f(ζ) =

[

(1 + ζ)4/3 + (1 − ζ)4/3 − 2
]

24/3 − 2
(3.11)

Here rS is termed density parameter. ζ is the relative spin polarization. ζ = 0 corresponds to
equal α and β densities, ζ = 1 corresponds to all α density, and ζ = −1 corresponds to all β
density. f(0) = 0 and f(±1) = 1.
The general expression for εC involves both rS and ζ. Its final term performs an interpolation
for mixed spin cases.
The following function G is used to compute the values of εC(rS , 0), εC(rS , 1) and −aC(rS):

G(rS , A, α1, β1, β2, β3, β4, P ) = −2A(1 + α1rS)

ln

(

1 +
1

2A(β1r
1/2
S + β2rS + β3r

3/2
S + β4r

P+1
S )

)

(3.12)

In equation 3.12 all arguments to G except rS are parameters chosen by Perdew and Wang
to reproduce accurate calculations on uniform electron gases. The parameter sets differ for G
when it is used to evaluate each of εC(rS , 0), εC(rS , 1) and −aC(rS).
In an analogous way to the exchange functional, a local correlation functional may also be
improved by adding a gradient correction.
Pure DFT methods are defined by pairing an exchange functional with a correlation functional.
For example, the well-known BLYP functional pairs Becke’s gradient-corrected exchange func-
tional with the gradient-corrected correlation functional of Lee, Yang and Parr.
In practise, self-consistent Kohn-Sham DFT calculations are performed in an iterative manner
that is analogous to an SCF computation. This similarity to the methodology of Hartree -
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Fock theory was pointed out by Kohn and Sham.
Hartree-Fock theory also includes an exchange term as part of its formulation. Recently, Becke
has formulated functionals which include a mixture of Hartree - Fock and DFT exchange along
with DFT correlation, conceptually defining EXC as:

Ehybrid
XC = cHF EHF

X + cDFT EDFT
XC (3.13)

In equation 3.13 the c’s are constants. For example, a Becke-style three-parameter functional
may be defined via the following expression:

EB3LY P
XC = ELDA

X + c0(EHF
X − ELDA

X)

+cX∆EB88
X + EV WN3

C + cC(ELY P
C − EV WN3

C) (3.14)

In equation 3.14 the parameter c0 allows any admixture of Hartree-Fock and LDA local ex-
change to be used. In addition, Becke’s gradient correction to LDA exchange is also included,
scaled by the parameter cX . Similarly, the VWN3 local correlation functional is used, and it
may be optionally corrected by the LYP correlation correction via the parameter cC . In the
B3LYP functional, the parameters values are those specified by Becke, which he determined by
fitting to the atomization energies, ionization potentials, proton affinities and first-row atomic
energies: c0 = 0.20, cX = 0.72 and cC = 0.81. Becke used the Perdew-Wang 1991 correlation
functional in his original work rather than VWN3 and LYP. The fact that the same coefficients
work well with different functionals reflects the underlying physical justification for using such
a mixture of Hartree-Fock and DFT exchange first pointed out by Becke.
Different functionals can be constructed in the same way by varying the component functionals
- for example, by substituting the Perdew-Wang 1991 gradient-corrected correlation functional
for LYP - and by adjusting the values of the three parameters.
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3.3 Reactive Molecular Dynamics

The study of reactive processes in chemically and biologically relevant systems is a topic of
much current interest. For fast reactions (proton transfer, ligand rebinding) computer simula-
tions are a useful means to investigate and understand the energetics and dynamics of chemical
reactions. A new surface-crossing algorithm suitable for describing bond-breaking and bond-
forming processes in molecular dynamics simulations is presented in [41]. Here, we present an
atomistically detailed picture of nitric oxide rebinding after photodissociation from myoglobin.
Using reactive molecular dynamics (RMD) simulations [41] the rebinding probability as a func-
tion of time after dissociation is calculated. RMD is formulated for two intersecting potential
energy manifolds which dissociate to different adiabatic states. During the simulations, cross-
ings are detected by monitoring an energy criterion. If fulfilled, the two manifolds are mixed
over a finite number of time steps, after which the system is propagated on the second adiabat
and the crossing is carried out with probability one. The unbound surface (Fe...NO) is rep-
resented using a standard force field, whereas the bound surface (Fe-NO) is described by an
ab initio potential energy surface [42]. The surface-crossing algorithm, presented in [41] was
used, in order to describe bond-breaking and bond-forming processes in molecular dynamics
simulations later. In [41] is described a new algorithm to follow the transition between two
crossing potential energy surfaces using MD simulations. For this, myoglobin interacting with
small ligands is an ideal reference system. Here we study a mutant of Myoglobin, V68F, where
Valine at position 68 is replaced by Phenylalanine. The rebinding is nonexponential in time, in
agreement with experimental studies ([46],[45]) and can be described using two time constants.
Particular emphasis is paid to the asymptotic separation ∆ between the two potential energy
manifolds which is the only free parameter ( see Figures 3.1 ( [41]) and 3.4). Figure 3.4 shows
potential energy curves for different distance Fe - porphyrin plane. For example for a distance
Fe - porphyrin plane 0.3 Å one can see the same picture shown on figure 3.1.
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Figure 3.1: Bound and unbound potential energy surfaces for MbNO.
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3.4 The Energy Gap Function

An extension of the original RMD approach with a conformationally varying ∆ is discussed and
the results are compared with experiment. The energy gap ∆ can be described as dependant
on the conformation of the system. One of the possibilities for this complicated protein system
is the dependance of the energy gap ∆ on the distance Fe-porphyrin plane. An amplification of
the program code had to be made in order to take into account the problem of the anisotropic
energy gap function.
The next section describes the results for a constant energy gap.

3.5 Results using a Constant Energy Gap

In Figure 3.5 is shown the probability distribution function ( the fraction of the proteins that
have not yet rebound a ligand at time t after the beginning of the simulation) for a 5 ps
trajectory. A longer trajectory had to be studied in order to observe the rebinding for a
longer time interval. Fifteen structures were used as starting points for the simulations. Every
starting structure was used to calculate 10 different trajectories. Thus, 1500 independent 50
ps trajectories were calculated at temperature 300 K.
Varying the asymptotic separation between the two potential energy manifolds [41] (the bound
and unbound state) as a free parameter changes the barrier for rebinding and thus the time
constant. On figures 3.5 and 3.6 and table 3.1 one can see how the changing of the parameter
∆ to lower values changes the fast and slow time constants of the rebinding to higher values.
The higher ∆ values lead to higher barrier of rebinding. The position of the bound state PES
is fixed and the zero of energy corresponds to the minimum of the bound PES. Therefore the
asymptote of the bound PES is at 23.8 + 11.5 = 35.3 kcal/mol. (23.8 kcal/mol is the binding
energy of the minimum of the bound ab initio Fe-NO PES, 11,5 kcal/mol is the difference
between the zeroes of energy of the two potential energy manifolds). In the input files one
gives a SHIFT value, and this fixes the value of ∆. If one uses a SHIFT of 26.0, ∆ is then
35.3 - 26.0 = 9.3 kcal/mol. With varying the free parameter asymptotic separation between
the two potential energy manifolds, one changes the barrier for rebinding. A variation of
this free parameter with the protein conformation and as a function of the distance of Fe
below the heme plane could have a non - negligible influence on the long rebinding times [41].
But in order to have an idea what values of the free parameter are reasonable one has to
characterize sufficiently well the unbound potential energy surface, what is one of the goals of
our calculations. This leads to ab initio results which can be used later to change the program
code and thus to take into account the anisotropic energy gap function.
At longer times a distribution of potential energy barriers [41] due to the occupations of several
locations within the protein arise. Studies on Mb mutants are of interest in order to investigate
the influence of local changes around the binding site on the rebinding dynamics ([46],[45]),
see table 3.1.
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Figure 3.2: Optimized structures for Fe-NO and Fe-ON and the sideon
structure (TS). Total energies are given relative to the Fe-
NO minimum. Intermediate structures between Fe-NO and
TS and TS and Fe-ON along the path are also shown. [42]

3.5.1 Quantum chemical calculations.

The potential energy surface of NO interacting with the heme in ferrous myoglobin has been
calculated [42] and is shown to be bistable ( see Fig. 3.2 ) with an energetically preferred,
bent Fe-NO configuration and a locally metastable, linear Fe-ON structure. The forward
barrier Fe − NO = Fe − ON is 23.4 kcal/mol while the reverse barrier is 8.4 kcal/mol.
The existance of the calculated secondary minimum is confirmed by both structural mini-
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Figure 3.3: Quality of fit of the Potential energy surface

mizations and the scan of the potential energy surface along the two progression coordinates
R(Fe−NO center of mass distance) and θ(Fe−N−O angle) [42]. In order to show that ∆ is conforma-
tionally dependent we carry out electronic structure calculations, starting from the optimized
ab initio structure of bound heme-NO [42], the Fe - NO distance was varied between 2.0 and
4.0 Å, in increments of 0.10 Å. The total energy of the unbound state is determined using
UB3LYP/VDZ/3-21G with Gaussian [44] in order to scan the potential energy surface for the
unbound state. The quantum chemical electronic structure calculation results are shown on
figure 3.7 for distances Fe - porphyrin plane 0.0 Å , 0.2 Å and 0.4 Å. θ is the angle between
the N of NO, NO center of mass and Fe in the center of the porphyrin ring, and the distance
r is between NO center of mass and Fe. On figure 3.3 is shown the fit ( for a distance Fe
- porphyrin plane approximately 0.0 Å, Fe in the plane of the porphyrin ring) of the elec-
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tron structure calculations for the unbound potential energy surface with Morse potential and
Legedre Polynomial(equation 3.15).

V (R, θ) =
10
∑

λ=0

Vλ(R)Pλ(cosθ)

Vλ(R) = De,λ(1 − exp(βλ(R − Re,λ)))2 − De,λ (3.15)
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Table 3.1: Time constants in the rebinding process.

Two-exponential fit, Mb(V68F)NO

∆, ref. [45] 9.3 8.3 7.3 6.3 5.3
kcal/mol

Long time 35 31.92 23.11 17.91 14.20 4.62
constant, (± 5.87) (± 4.65) (± 10.93) (± 13.06) (± 0.98)
ps
Short time 8 3.27 5.10 3.30 2.68 1.18
constant, (± 5.55) (± 1.54) (± 0.59) (± 0.21) (± 0.15)
ps

Table 3.2: Parameters of the Fit of the Potential Energy Surface ( see equation 3.15).

λ De,λ ( kcal/mol) βλ (Å−1) Re,λ (Å)

0 0.926 1.375 3.161
1 0.0 0.0 0.0
2 0.238 1.451 3.311
3 0.0 0.0 0.0
4 0.0 0.0 0.0
5 -0.122 1.468 3.302
6 0.0 0.0 0.0
7 0.0 0.0 0.0
8 0.102 1.322 3.831
9 0.0 0.0 0.0

10 0.2005 -0.866 4.602

The different potentials on the graph 3.3 from left to right correspond to different angles θ,
roughly: 11, 27, 43, 58, 74, 90, 105, 121, 186, 154, 168 respectively. The radial functions
V (R, θ) for the unbound potential energy surface are Morse potentials with three parameters
De ( well depth),Re ( equilibrium separation) and β ( steepness of the repulsive wall) . The 33
free parameters ( 3 for each of the 11 Legendre polynomials, see table 3.2 where the parameters
for the case of Fe in the Porphyrin plane are given) were determined by least-squares fitting of
the Morse parameters to the ab initio data points using the program I-NoLLS [43]( the same
type parameters but with different values were used for the fit of the bound potential energy
surface, [42]).
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3.6 Conclusions

Myoglobin is an interesting and challenging protein to investigate. It is a model system for
biologists, chemists and physicists. Many properties of proteins (flexibility, ligand recognition,
catalysis, regulation of activity) have been observed in myoglobin, so it is one of the first sys-
tems to which new experimental and theoretical techniques are applied, see [47], [48].
Till now different numerical methods helped to understand the metastable structure of pho-
todissociated CO, the infrared spectroscopy of dissociated CO and NO, and how the process
of the rebinding reaction develops in time, with model, based on Smoluchowski equation (
[49], [50]) or with rebinding dynamics simulations( [41], [42]). There are a lot of opportunities
for different computational investigations in the future. For example studying the selectiv-
ity of myoglobin of O2 over CO, or some analogical function but in hemoglobin ( which is a
tetrameric hemeprotein with a heme prosthetic group identical to that of myoglobin). In rapid
time scales ( femtoseconds) the interdependency of electronic and nuclear degrees of freedom
during the photodissociation process is still not well understood and is a challenging field of
further investigations [51].
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Figure 3.5: Probability distribution function for a 5 ps trajectory. In the
input files one gives a SHIF value, and this fixes the value of
∆. If one uses SHIF = 26.0 kcal/mol, ∆ is then 35.3 - 26.0
= 9.3 kcal/mol.
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